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Abstract—The power transmission system is very critical to
the functionality and efficiency of offshore wind farms. The
system uses subsea cables spanning from deep offshore to the
shores for effective integration with other power sources within
the transmission and distribution grid. These cables operate
under harsh environmental conditions and, as a result, are
susceptible to failures. With over 80% of insurance claims so
far in offshore wind energy sector, subsea cable failure has
huge economic implications. These failures occur as result of
fault development within the subsea transmission cable network.
This research aimed to develop a supervised machine learning
approach to identify and predict these fault developments because
if a fault development can be predicted at the incipient stage,
planned maintenance or proactive measures can be carried out to
avoid degeneration into failure. This paper describes our earlier
experiments in applying the extreme gradient boosting ensemble,
Gaussian Naive Bayes and decision tree algorithms in solving this
problem. The testing results showed that the ensemble algorithms
performed accurately and consistently in classifying the faulty
cables with an average classification accuracy over 90%.

Index Terms—Wind farm, subsea power cable, faults, machine
learning

I. INTRODUCTION

The unsustainable nature of conventional energy resources,
the continuous increase in atmospheric greenhouse gases, and
the prevailing global warming, have made the need for alter-
native energy resources a global emergency [1]. Researchers
have risen to this challenge by identifying potential renewable
energy resources to replace fossil fuel [2]. One source for gen-
erating electricity is wind power [3]. The development of wind
energy systems, especially offshore windfarms, is a strategic
energy policy in some European countries including Denmark,
Sweden, United Kingdom, Germany, and even United States
of America and Canada. An offshore windfarm is built with a
cluster of wind turbine generators in the bodies of offshore
sea water and has been proven to be more efficient than
conventional inland windfarms [4]. The United Kingdom alone
has installed capacity of 8.4 GWatts of electricity generated
via offshore windfarms, and over 14.8 Gwatts in the pipeline
to materialise very soon [5].

The electricity generated by the offshore windfarms needs
to be transmitted via subsea cables to an onshore power
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station before feeding into the national grid. These cables
span from the wind turbines offshore, and run through an
offshore substation or conversion station to the transmission
substation onshore. This usually represents a quite long dis-
tance, depending on the capacity of the windfarm, as high
output capacity windfarms are usually situated deep offshore
for better efficiency. These cables are subjected to different
environmental and internal changes that impact functionality
negatively, thereby causing various failures of the entire sys-
tem. These failures not only cause the loss of the generated
power but also cost considerable time and resources to repair.
It is estimated that these failures have constituted over 80
percent of insurance claims of the offshore windfarms in the
UK [6]. Therefore, being able to detect the cable failures and
taking necessary maintenance can make the operation of a
windfarm more cost-effective.

This research aims to develop some machine learning tech-
niques to identify the faults in subsea power cables, based on
the data collected from protection relays installed along the
cables.

II. RELATED WORK

The application of machine learning in solving our type
of problem is still in the development stages, thereby placing
a limit on the amount of existing literature. Therefore, the
study reviewed related works that have sufficient correlation
with the subject matter. In their research, [7] studied the life
expectancy of transmission cables used in offshore windfarms.
They implemented a mathematical model to determine major
physical events that affect subsea cable functionality. The
derived mathematical model which was coded into a desktop
software called CableLife by [7], considered these factors
majorly for its prediction: cable scouring depth, cable wear
mechanism, sliding distance, cable life, with respect to its
abrasion wear coefficient, the coating material, and its lost
overtime due to abrasion. The mathematical model performed
at 30% prediction accuracy upon cross validation with the test
data. On a critical review of the failures considered in the
model and its importance, it is imperative to state that most of
the failure modes considered are more useful pre-installation



of the cable, nothing was mentioned in the analysis of instal-
lation induced failure, and with a 70% misclassification rate,
the model requires a lot of improvement and optimisation.

In the analysis of failure rate in offshore windfarm cable, [8]
revealed that the unavailability of operational data on failure
incidences in offshore transmission systems, due to the organ-
isational policy of the various owners and operators, remains a
major impediment in proffering solutions to the costly problem
of subsea cable failure. The authors’ identified under-reportage
of failures by industry operators, stating that on average, the
failure rate in real time is higher than the figures being reported
in the industries. More than one alternative cable installation,
as a contingency plan, was advocated by the authors, although
considering the cost per cable installation, it is not a cost-
efficient suggestion.

The study by [9] revealed that by exciting the fault res-
onance frequency, measurable changes in voltage amplitude
and phase can be obtained which can help in identifying
faults at incipient stage. The research centred its fault mode
on the possibility of treeing effects because of failure in
cable insulation. The result showed a pronounced variation in
voltage and current profile, representing high impedance fault
which symbolises treeing effect. Although the work was based
of HVDC transmission mode, the result sufficiently proved that
instantaneous rise in current profile of a transmission system
is a potential failure in view. The challenge of inconsistency
[10] in conventional relays which serves as measuring device,
affects this process. This device measures power swing as
a fault, most times tripping the entire transmission system
because of this false alarm [11].

Fault classification and prediction using machine learning
algorithm is the future of power transmission system. Feed
forward Artificial Neural Network with back propagation
algorithm was deployed by [12] in classifying fault develop-
ment within a 33kv MVAC transmission line in Nigeria. The
instantaneous current and voltage values were used in training
the model, which was thereafter evaluated based on MSE
and confusion matrix. The model evaluation result proved
encouraging with MSE of 0.00004279 and model accuracy of
95.7%, in classifying line to ground, line to line and double
line to ground faults. The evaluation result is impressive, but
there was no mentioning of how the model can be deployed
in handling live fed data and detecting fault propagation from
incipient stage. [13] deployed SVM in classifying transmission
system faults. The modelling was carried out with 150 input
data and the evaluation result showed 70% classification
accuracy. Although the performance of the model is not
encouraging, considering the few samples it had to learn
with, the researcher proved a point by considering SVM, in
difference from the conventional ANN.

In reviewing the application of machine learning algorithm
in system failure prediction, [14] identified Decision Tree
Classifier as high performing algorithm, stressing on the
efficacy of the algorithm, as against SVM and Random Forest.
The study by [15], in which special type of ANN, MLP,
was applied on 2500 samples with features on the health of

underground amour cable made of cross-linked polyethylene
(XLPE) insulation material. With 80% and 20% training
and test data partitioning, the model evaluation produced
an accuracy score of 96%, corroborating existing literature
on the high performance of MLP in pattern recognition.
Although conventional MLP form of ANN accomplishes high
performance in classification by altering network weights, [16]
identified that this weight penalty factor results in overfitting
sometimes. Stating how Bayes theorem solves this, [16] opined
that with prior knowledge of event occurrence that share the
same probability density function with the new input data,
their class relationship can be estimated.

III. DATA AND FEATURE EXTRACTION AND SELECTION

The data used in this research were acquired through
Intelligent Electronic Devices (IED) [17] installed at the two
ends of a power transmission system from a windfarm to
an onshore station. The IEDs monitor and protect a power
system and store the data in the IEEE Standard COMTRADE
format. COMTRADE [17] files record oscillography and brief
variations of Voltages and Currents in a protected power sys-
tem. These variations can be results of some faults occurring
in the subsea power cables in the transmission system. The
dataset contains 343 sets of abnormal variations in power
transmission. Each set contains the waveforms (time series)
of four current phases: A, B, C, and Neutral phase of AC,
and some of these phases may have different asymmetric and
symmetric faults. So putting all the phases together, there are
1,372 events.

A. Data Labelling

Each phase of 1,372 time series was visualised and manually
labelled as Normal or Fault. The binary classes of faulty cables
and good cables are distinguished from each other by the
transmission current value flowing through the cable at the
time of measurements. Figures 1 and 2 show two examples of
faulty and normal waveforms. From Fig. 1, it is obvious that
phase A, with transmission current value ranging between -2A
and 2A as against -0.002A and 0.002A in the other phases, is
faulty. Also, from Fig. 2, all the current values of phases A, B,
and C suddenly changed to relatively high values, compared to
the transmission current value in the neutral phase, therefore
all the three current phases began some sort of fault at that
time point. In this way, all 1372 samples were labelled. In
summary, the dataset formed from the samples contains 393
faults and 979 good cables.

B. Feature Extraction

As the data are essentially represented as time series, some
features need to be generated for training machine learning
models. Two approaches were applied for doing this. Firstly,
some basic statistical features were computed from these time
series data, which include mean, std (standard deviation), max,
min, etc.

Then, an existing popular package TSFEL [18] was used to
extract more features from the data, using the spectral domain.
In total, 389 features were extracted.
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Fig. 1: Phase-wise plots of Current Variation in a subsea power
cable with an asymmetrical fault in Phase A.
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Fig. 2: Phase-wise plots of Current Waveforms in a subsea
power cable. It can be seen clearly that in all three Phases, A,
B and C symmetrical faults occurred at a time point.

IV. MACHINE LEARNING ENSEMBLES

A machine learning ensemble, @, is a collection of M mod-
els, ® = {my,ma,...,mg, ..., mps}, which are generated by
using a learning algorithm on a given dataset and the outputs
of those models will be combined with a fusion function
to produce a final output. An ensemble does not necessarily
produce more accurate results [19] if it is not built with more
diverse models as identical or highly correlated models in
an ensemble will have the same weaknesses in terms of the
knowledge they have learned and hence cannot compensate
each other’s errors when their outputs are combined.

Various methods have been developed for generating di-
verse models, although implicitly, to build an ensemble and
some popular ones include Boosting [20] and Random Forest
[21]. They have been demonstrated to be successful in many
applications. Based on the classic Boosting algorithm, some

variants have been produced, and a dominant one is XGBoost,
that is why we chose it as the main classification algorithm to
classify the cable faults.

We also chose Gaussian Naive Bayes (GNB) algorithms,
Multi-Layer Perceptron (MLP) neural networks and Decision
Tree (DT) for comparison. It should be noted that although
deep machine learning methods are nowadays considered as
state of the art, but because they normally require a very large
dataset to utilize their strong learning capacity to produce good
results, and our dataset is quite small, they were not chosen
in the first place for this study.

A. XGBoost Algorithm

XGBoost (eXtreme Gradient Boosting) [22] is an extension
of Gradient Boosting ensemble technique. It uses classification
and regression trees (CART) as the base learners and generates
iteratively several CART models by regularizing their objec-
tives with an aim of minimising the total loss function when
combining all the generated models.

In a Boosting-based ensemble, M models are generated
iteratively with a boosting mechanism with an intention of
enforcing (boosting) the current model to correct the errors
made by the previous models, and their outputs are combined
with their coefficient(weight) ~, to produce the predicted
output ¢ of the ensemble for an input z, i.e.

§lw) =Y mp(zi)n D
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The total loss L(®) of the ensemble can be computed by an
error measure [(y;, ;) over the entire dataset.

L(®) = Z Uys, 9:) 2

The XGBoost extended the gradient boosting loss function
with an extra regularisation to inhibit overfitting.
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where, Q(fx) is the additional regularisation function.

In modelling with the XGBoost algorithm, hyperparame-
ter configuration or tuning is instrumental in improving the
performance of the algorithm. In this work, Scikit Learn
GridSearchCV was utilised to obtain the best predicting pa-
rameters. The study also considered validation of the model
on different variants of the datasets, this was achieved through
a series of different partition and random sampling process.

B. Gaussian Naive Bayes(GNB) Algorithm

The GNB classifier is a simplified Bayes theorem based
probabilistic classifier [23], or called Naive Bayes(NB), which
naively assume that the features are independent from each
other. NB operates by creating a probability model for every
feature vector in the training input data based on their cate-
gorical description. The algorithm determines the probabilities



of an object belonging to a specific class or having certain
associated characteristics with a specific group, meaning that,
GNB is a collection of probabilistic predictive models. GNB
algorithm works with the condition that if the characteristics’
class is specified, the presence or absence of one attribute has
no bearing on the presence or absence of another.

P(zle)P(c)

P(clx) = Pl)

“)
Where P(x) is called the independent probability of x and
P(c) is the class probability of ¢, or the likelihood, P(z|c)
represents the posterior probability of z with respect to the
value of ¢, the likelihood. GNB classifiers can deal with
many categorical and continuous independent variables [16].
Therefore, for a given set of variables, X = x1,29, ...Zn,
the future or posterior probability can be achieved for an event
C; in the set of possible outcomes C' = ci,ca, ...cp. X
represents the predictor, where C is the set of categorical
stages in the dependent variable.

,2,1C5)p(C5)  (5)

Considering that the structure of GNB presumes that the
conditional probabilities of variables that are independent are
statistically independent, the likelihood factor can be elimi-
nated by

p(Cjlz1zs, ... x),) < p(rize, ...
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For more details on the function derivation, [16] and [23]
covered it extensively up to the derivation of map.

V. PERFORMANCE EVALUATION METRICS

The studied models of XGBoost, MLP, GNB, and DT Clas-
sifier were evaluated using the same parameter. The evaluation
parameters include the accuracy, precision, recall, FI score,
the auroc curve score, which relates to the specificity and
sensitivity of the models, and the mcc that represents the
model ability to distinguish between the binary class. The
built models were also validated for performance consistencies
on different values of training and testing data. This was
achieved through different partitioning and stratification of the
input training and testing datasets. Each of the algorithms was
trained and evaluated 60 times, each time with a different
variant of the dataset. The different variants of the dataset
were obtained through changes in the training and testing data
splitting criteria, as mentioned earlier. The means and standard
deviations of 10 runs for each investigation are reported in this
paper later.

VI. EXPERIMENTS AND RESULTS

A. Experiment Designs

The pre-processed dataset consists of 1372 entries with 342
features. The faulty cable represents the target label in the
binary classification modelling, and it is denoted by 1, whereas
the O digit denotes the good condition of transmission cable.

The experiments were designed to investigate the accuracy
of the chosen models by using different numbers of the
features through dimensionality reduction and the size of the
training data.

1) Dimensionality Reduction: As there are 342 features
extracted and some of them may be less relevant or even irrele-
vant, which can not only confuse machine learning algorithms
to not generate better models, but also slow down the learning
process considerably. So, it is usually helpful to reduce the
dimensionality of the data by eliminating some useless and less
important features. In this study, a hybrid method—Random
Forest Elimination (RFE), based on the XGBoost technique,
was used to select the features with most predictive power.

The process can select a given percentage of the initial
dimensionality. In our study, we selected 50%, 25%, 15%, 10%
and 5%, respectively, in order to find out a smallest possible
subset of the more relevant features.

2) Sizes of training data: The data with the selected fea-
tures were partitioned into training and testing datasets in
a stratified manner for a given ration. This ensures that the
subsets have the same distributions of the classes as that of the
original dataset. We varied the ratio from 40%:60%, 50%:50%,
60%:40%, 67%:33%, 70%:30%, and 80%:20% respectively, to
examine the effect of training data size.

3) Repetition of the experiments: To test the consistency
of the models, for each experimental setting, we varied the
random seeds for 10 times to generate 10 sets of training and
testing subsets in order to test the consistency of the chosen
learning algorithms.

The modelling process also varied the dataset dimen-
sionality to ascertain dimensional effect on the algorithm
performance. This was achieved using XGBoost-RFE, and
the resultant datasets were trained and evaluated using the
same algorithm parameters. The dataset was also modelled
in Decision Tree, Gaussian Naive Bayes and Multi-Layer
Perceptron algorithms. The resultant models’ performances
were compared with the ensemble model performance.

B. Results and Evaluations

All the models built with XGBoost algorithm performed
very well upon evaluations. Cross validation using different
subsets of the dataset, obtained from the various data parti-
tionings deployed, showed excellent performance in all the
evaluation parameters. As shown in the confusion matrix in
Fig. 3, the algorithm was able to perfectly distinguish between
the transmission cable status. The error bar plot of the model
performance accuracy as shown in Fig. 4a, that of AUROC
in Fig. 4b, proves the model consistency across all the data
subsets used for the modelling and evaluation processes. With
an average model performance accuracy of 0.996, the AUROC
score, which defines the model sensitivity and specificity to the
target class, averaging at a high score of 0.995, and the MCC
with an average of 0.990, the model showed high efficiency
in classifying the transmission cable status.

The research scope also covered comparison analysis of
some selected algorithms with the sole purpose of identifying
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Fig. 4: The performance of the trained models.

the algorithm with the best performance efficiency. Therefore,
the various models built using the XGBoost, MLP, GNB
and DT algorithms were compared with each other. The
comparison analysis involved the average values of perfor-
mance Accuracy, AUROC score and Computational Time of
all the models considering the various data partitioning criteria
observed.

From Fig. 5a, which compared the various models in
terms of performance Accuracy across all the data partitioning
criteria, the following were observed:

i) XGBoost and DT are the best performing, with approxi-
mately equal values across all data partitioning criteria.

ii) The performancse of XGBoost and DT are not affected by
changes in the training or testing data, as the plot showed
consistency throughout.

iii) MLP models’ performance grew with the training data,
peaking at 60% training data, and just slightly below
XGBoost and DT.

iv) Relatively, GNB is the least performing algorithm, but
it produced consistent results across the different data
subsets.

The comparison analysis with AUROC, as presented in Fig.
5b, showed the same pattern as the performance Accuracy plot.

Models AUROC score Vs Data partitioning

(b) AUROC

(a) Accuracy

Fig. 5: Performance of models as the training data sizes vary.
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Fig. 7: Model accuracy vs feature reduction.

The plot in Fig. 6, which compares the average compu-
tational cost of each the algorithms, shows XGBoost and
MLP on a par. With average computational time of about
4.5 Seconds, both algorithms took longer than the others to
compute. The GNB algorithm took approximately 2 Seconds,
while the DT algorithm, with the least computational cost,
took 1.22 Seconds.

The effect of dataset dimensionality on performance evalu-
ation and computational efficiency was also covered in the
research. The process involved systematic reduction of the
training data features using XGBoost-RFE. The reduction
process generated five subsets of the original datasets, which
were modelled with the four different algorithms, and eval-
vated using the same testing data. The evaluation process
prioritised the performance accuracy and computational time
of each of the models. The line plot in Fig. 7 and Fig. 8
captures the behaviour of the different algorithms with respect
to performance accuracy and computational time, respectively,
as the dataset dimensionality changes. From the performance
accuracy plot in Fig. 7, it is important to note that DT and
XGBoost models maintained almost the same performance
across all the datasets sub-divisions. Whereas, the models of
MLP and GNB made better predictions as the training data
features reduced. Therefore, it is pertinent to state that the
performance of MLP and GNB can be improved by feeding
the algorithm with few best predictors. The computational
cost analysis, represented in Fig. 8, showed MLP algorithm
computing time drastically increasing as the training data
features reduced. This implies that, unlike other models of
XGBoost, DT and GNB, that processed at lower time rate as
the features reduced, the MLP requires more time in handling
datasets with fewer attributes.
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VII. CONCLUSIONS

The need to lower the running and maintenance cost of
offshore energy transmission system prompted this research.
As the world aims to switch from petrol and diesel engine
driven cars to electric cars, the demand for electric power will
increase drastically. This additional surge in energy demand,
together with the ambition of decarbonising our power gener-
ation system, makes research like this of high value.

This research implemented a systematic approach with a
view to solving the increasing challenges of transmission cable
failures in offshore windfarm systems. The study covered
implementation of ensemble machine learning techniques in
solving this problem. Other supervised learning algorithms
were also deployed to ascertain the algorithm that is of better
performance.

The evaluation process considered the different model per-
formance accuracy, precision, sensitivity, specificity and MCC
value. The sensitivity and specificity of the various models
were obtained in terms of the AUROC curve value. The
evaluation process produced excellent results from the various
algorithms, with XGBoost and DT performing optimally, with
average performance Accuracy, AUROC values and MCC
values of 99%, 98% and 100%, respectively, across all the
training data subsets. Although, the performance of MLP
and GNB are not so high and consistent as XGBoost and
DT, they performed relatively well with average performance
Accuracy, AUROC value and MCC values of 90%, 92% and
approximately 100%, respectively, proving the models’ ability
to distinguish between the class labels efficiently. The study
also considered the effect of training data dimensionality on
the performance metrics and computational time of the various
models. The evaluation projected XGBoost and DT as the best,
with consistency in performance accuracy and decrease in the
computational time, as the training data attributes reduced.
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