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Abstract

We study how learning and influence co-evolve in a social network by extending the

classical model of DeGroot (1974) in two fundamental ways:

(a) opinions are multidimensional and the learning time-span is arbitrary;

(b) the effective social network is endogenously shaped by opinion-based homophily.

Our analysis starts by establishing the existence of an equilibrium where, following

(a)-(b), the learning outcome and the social network are jointly determined. This

is followed by its characterization in some simple contexts. Next, we show that, at

equilibrium, the strength of the link between any two agents is always given by its

“support” – roughly, the amount of third-party (indirect) influence impinging on both

agents. This result leads to the key insight that distinct groups may fail to integrate

if their (possibly many) cross-group links lack sufficient support. Building on this, we

identify sets of conditions for which social fragmentation is robust (i.e. dynamically

stable) or even the unique equilibrium.

Keywords: social learning; homophily; influence; echo chambers; integration.

JEL classif. codes: D83, D85.

1 Introduction

In this paper, we develop the idea that the network channeling social influence is shaped in

conjunction with the learning process that unfolds on it – that is, we propose a model where

the two dimensions, influence and learning, co-evolve. This perspective allows us to study

the important issue of how social learning (e.g. the formation of individual opinions in a

social context) is affected by the relaxation of the common, but unrealistic, assumption that

the pattern of social influence stays fixed. Indeed, in the real world, “influence weights”

are typically affected by the ongoing learning process and this may have a substantial and

lasting effect on the final outcome. In particular, it may exacerbate the tendency of an

initially cohesive society to become segregated into separate groups that hardly interact.

This, in fact, has been highlighted as one of the distinct, and also worrying, features of
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modern societies because of the polarization and “echo chambers” it generates.1

At the end of this Introduction, we discuss some related papers that analyze the coevo-

lution of networks and opinions. In different contexts, they show that polarization can be a

stable outcome due to the endogenously determined network structure. In contrast to these

papers, our model stresses how a suitable (topological) notion of ”network embeddedness” –

which we call support – shapes the process through which opinions are formed, possibly end-

ing up in a situation where they become solidly polarized. In this case, the society becomes

fragmented into de facto opinion-independent subpopulations, across which no information

or influence effectively flows.

Within our model, such a state of affairs may arise even if those groups (subpopulations)

of agents are heavily connected across (i.e. they have many links between them). Indeed,

we show that polarization always happens to be an entrenched (i.e. dynamically robust)

possible outcome whenever those cross-group links do not enjoy the aforementioned support.

For, because of homophily, it turns out that such a support is crucially needed if any

amount of influence is to flow across inter-group links, thus breaking polarization. A better

understanding this issue, we shall argue, should help identifying some of the key features and

trade-offs underlying this important problem, hence suggesting possible avenues to tackle

it.

As indicated, our learning model builds upon the well-known setup proposed by DeG-

root, which has been studied in the economic literature by, among others, DeMarzo, Vayanos

and Zwiebel (2003) and Golub and Jackson (2010, 2012). In the DeGroot framework, the

opinion (or belief)2 held by an agent adjusts over time by combining linearly her imme-

diately preceding beliefs and those of others. The vectors of weights specifying how each

agent is affected by every other agent in the population define an influence network/matrix,

which fully governs the overall social-learning process. Then, under the twin assumptions

that the number of learning rounds is unbounded and the influence network is connected, a

standard result in this literature is that, under mild regularity conditions, the population

converges to consensus – i.e. all agents end up holding the same opinion.

The situation, however, is interestingly different if, as we posit here, learning involves a

finite number of learning rounds and the influence network is endogenous. For, on the one

1 A good illustration of the problem is documented by Adamic and Glance (2005), who study the deep

divide between conservative and liberal blogs in the period preceding the U.S. Presidential Election of 2004.

With a different focus, Bishop (2008) discusses the geographical basis for this phenomenon and its negative

effect on social cohesion. For a more general approach to the problem, we refer to Boutyline and Willer

(2017), who show that the interaction bias is more prevalent the more extreme are the political views held by

individuals. Finally, another interesting illustration is provided by Golub and Jackson (2012), who describe

how political prior alignment segmented the information (and hence ended up segmenting the opinion as

well) of the American public on the question of weapons of mass destruction in Iraq.
2In this paper, we apply the term “belief” or “opinion” interchangeably. In general, our model could

apply to any continuous behavioral trait with a compact range.

2



hand, given the pattern of interpersonal influence that eventually materializes, its evolving

topology must obviously play a key role in modulating how much divergence of opinions

may persist after social interaction. And on the other hand, if significant opinion hetero-

geneity still remains, the force of homophily3) may shape a social network that exacerbates

divergence.

The importance of homophily in determining how individuals construct their social

network has been widely documented in the sociological literature. For a good early account

of its pervasiveness in social environments, the reader is referred to the seminal work by

Lazarsfeld and Merton (1954), whereas a more recent survey can be found in McPearson,

Smith-Lovin and Cook (2001).4

It is important to stress that, in this paper, homophily is to be regarded not as a

normative postulate but as a descriptive one. For example, from the point of view of

social learning, it may well yield a suboptimal outcome if information gathering is the main

objective. For, in this case, when choosing with whom to connect, agents should target

those who are different from them and hence likely to hold complementary information –

see Golub and Jackson (2012) or Lobel and Sadler (2013) for an illustration of this point in

different contexts (DeGroot learning in the first case, Bayesian in the second).5

In a nutshell, our homophily-based approach to endogenizing the network of social in-

fluence involves the postulate that the weight of each link should match the similarity of

opinions/beliefs of the agents connected by it. Another important property that will also

be assumed on the underlying environment is that it is rich enough to comprise opinions

in multiple dimensions. Thus, for example, individuals may hold opinions on a number of

different topics: economic, political, religious, etc. Or, even if restricted to just one such cat-

egory, say the economic one, their concern may cover a wide range of different issues such

as growth, unemployment, inflation, or income distribution. Such richness of the “topic

space” is important in our context because it introduces the possibility of defining non-

3Homophily is sometimes defined in terms of some immutable characteristics. In this paper, it is based

on mutable (endogenous) opinions/beliefs.
4Further interesting references providing a general perspective on the phenomenon are Cohen (1977),

Kandel (1978) Marsden (1987, 1988), Alexander et al. (2001), McVicar and Polanski (2014), Moody (2001),

and Knecht et al. (2010). Concerning the specific problem that concerns us here, namely, how homophily

impinges on opinion and belief formation, Golman, Loewenstein, Moene, and Zarri (2016) carry out an

insightful discussion of modern literature, covering a rich range of empirical evidence on what they call the

innate human preference for “belief consonance.” As they explain, in many cases this urge for consonance

leads to belief clustering, i.e. the choice “to associate with – that is, become friends with, work with, and

even have romantic relationships with – others who share their beliefs” (see op. cit., p. 177).
5One must bear in mind, however, that belief-based homophily will typically be only one of the forces

at work and, therefore, may not always be the main driving force in social learning. For example, contrary

to what is often presumed, Gentzkow and Shapiro (2011) and Boxell et al. (2017) have shown that Internet

access need not reinforce ideological segregation. Specifically, they provide empirical evidence where it turns

out to mitigate ideological polarization, at least as compared to alternative situations where face-to-face

interaction is the primary source of news or inter-personal communication.
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trivial correlations among the different opinion dimensions.6 And, as we shall explain, the

similarity measure that underlies our notion of homophily is assessed in terms of whether

agents display correlated deviations from “benchmark opinions” in the different dimensions.

Based on such a notion of similarity, our model posits that, given a certain (exogenously

given) network of inter-agent observation, social influence is adjusted in the following simple

manner:

• every agent adjust the influence she attributes to the agents she observes in proportion

to the degree of (bilateral) similarity displayed with each of them.

This is, in essence, the law of motion that defines the stylized dynamics that governs the

evolution of inter-agent influence. The dynamical system is studied from different perspec-

tives. First, we focus our analysis on its equilibria (i.e. stationary points). Each of these

defines what we label an Equilibrium Influence Matrix (EIM). After establishing an exis-

tence result and characterizing the EIMs for a number of simple benchmark scenarios (e.g.

when the number of learning rounds is unbounded or the observation network is complete),

we turn to studying how, in general, their properties depend on the following two features

of the environment:

(a) the learning span (how many adjustment rounds on agents’ opinions are conducted);

(b) the structure of the observation network among the agents (for, naturally, an

agent can be influenced only by those whom she observes).

A key result in this respect involves singling out a topological measure that characterizes

the weighted pattern of influence that must prevail at any EIM. Specifically, it shows that,

at equilibrium, the influence that any agent i exerts on another agent j must be proportional

to the accumulated (indirect) influence that all third-party agents exert on both i and j.

We call this magnitude the support of the relationship between i and j.

An important consequence of the aforementioned result is that fragmentation of the

population into groups may be hard to overcome by the mere establishment of observation

links that could “bridge” influence across them. To understand this issue dynamically, we

focus on a canonical and especially transparent context where two originally disconnected

groups come into contact, i.e. establish observational links between them. Then we ask:

Will they be able to rely on such cross-group observation to build up enough cross-group

influence as well, thus becoming a more integrated population? We find that, even if the

new bridging links are numerous, this can fail to happen for a number of interestingly

different reasons. More specifically, we characterize how factors such as asymmetries in the

group sizes or the learning span may play a key role in reinforcing segmentation, making it

a dynamically robust state of affairs.

6Even though the model proposed by DeGroot allows for multidimensionality of opinions – and so do, for

example, DeMarzo, Vayanos and Zwiebel (2003) – their approach deals with each dimension independently.
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We close this introduction with a brief discussion of related literature. The general

idea that the co-evolution of links and behavior underlies the dynamics of many interesting

processes in social environments is widely stressed in the network literature.7 Concerning,

more specifically, the phenomenon of social learning that is our focus here, early papers

studying the network-influence interplay include Hegselmann and Krause (2002), Holme

and Newman (2006), Cradall et al. (2008) and Pan (2010), while the paper by Flache et al.

(2017) provides a useful discussion of the previous research in this area.

Within the more recent literature studying such an interplay, we illustrate its broad

diversity by summarizing the papers by Melguizo (2019), Bolleta and Pin (2020), and

Cerreia-Vioglio et al. (2021). All of of them are concerned with the problem of polariza-

tion, but each one explores it from a somewhat different angle. Meguizo proposes a model

where inter-agent homophily is defined in terms of a suitable similarity measure defined on

multi-dimensional space of attributes. Her main conclusion is that disagreement persists

in the long run if, and only if, homophily in at least one attribute grows sufficiently fast.

Instead, Bolleta and Pin study a strategic model of polarization where, along an adjustment

process, heterogeneous agents choose their actions and links to reach a suitable “compro-

mise” between abiding by their own type and minimizing “dissonance” with neighbors. If

the initial distribution of types is sufficiently spread out, there is a convergence toward a

polarized social structure where the population is partitioned into separate network compo-

nents. Finally, Cerreia-Vioglio et al. study a general (but non-strategic) learning framework

where, in contrast with the DeGroot model, agents use opinion aggregators that possibly

display non-linear features. None of these papers, however, study the endogenous interplay

of network embeddedness and opinion evolution that is our primary concern here.

To end our literature review, it is worth mentioning that polarization in social networks

may arise even if the influence network remains fixed and therefore no influence-network

interplay can be the driving force at work. This is well exemplified by papers of Levy

and Razin (2018, 2020), which highlight the role played by the phenomenon often labeled

correlation neglect. More specifically, they show that learning per se on a given network

may also lead to the polarization of opinions/beliefs when agents neglect the correlation

that results from being exposed, directly or indirectly, to non-disjoint sets of peers.8

The rest of the paper is divided into three more sections. Section 2 presents the basic

framework, Section 3 carries out the analysis, Section 4 concludes with a summary. For the

sake of a smooth presentation, all formal proofs are gathered in the Appendix.

7For a recent Handbook survey that discusses this issue for a broad range of socio-economic phenomena

(e.g., bargaining, intermediation, conflict, public goods, or learning) see Vega-Redondo (2016).
8For an elegant axiomatic characterization of such behavior in social networks, see Molavi et al. (2018).
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2 The model

2.1 The pattern of communication and influence

Consider a given population of agents, N = {1, 2, ..., n}, who are connected by an exogenous

observation network on the set N . Formally, this directed network can be represented

through an adjacency matrix L ≡ (lij)i,j∈N with each lij ∈ {0, 1} for all i and j. If lij = 1,

this means that agent i observes (and hence can be influenced by) j. Naturally, we assume

that every agent i can “observe”herself, so lii = 1 for every i ∈ N . The observation network

is assumed exogenous, reflecting those features of the situation (say, geographical, ethnic,

or linguistic) that determine whether an agent can directly influence another agent.

On the other hand, the pattern of effective inter-agent influence can also be formalized as

a network – we shall call it the influence network – and represented through a corresponding

matrix A ≡ (aij)i,j∈N . However, in contrast to the observation network (which is binary

and exogenous), the influence network is weighted and endogenous. We elaborate on each

of these two important characteristics in turn.

(i) A typical entry aij of the matrix A is interpreted as the (relative) intensity with which

agent j influences i – i.e. the weight that i attributes to j’s opinions in shaping her

own. For convenience, every such measure of bilateral influence is taken to lie in the

interval [0, 1] and every row of A adds up to unity. Thus, A is a row-stochastic matrix.

(ii) The pattern of inter-agent influence is endogenized through the homophily-based dy-

namics that describes how agents adjust the influence they ascribe to each agent they

observe. As formally defined below (Subsection 2.4), the stationary points of this

dynamics display the feature that the weight an agent i attributes to any other j is

proportional to their belief similarity, suitably quantified (c.f. Subsection 2.3).

To make the above considerations precise, we introduce three core components of the

model: (a) the behavioral learning dynamics; (b) the notion of homophily; (c) the required

consistency between the former two. To do so is the objective of the following three sub-

sections.

2.2 Learning

The starting point of our model is the learning framework proposed by DeGroot (1974),

which can be summarized as follows. Time proceeds discretely, t = 0, 1, 2, ..., and at every

t each agent i ∈ N holds some opinion xi(t) = (xi1(t), xi2(t), ..., xim(t)), identified with a

point in a common and pre-specified compact and convex set, say an m-dimensional cube

[0, 1]m. Thus, given some prior beliefs (initial opinions), xi(0) ∈ [0, 1]m for every i ∈ N , the
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subsequent opinions of individuals over each dimension evolve over time as follows:

xiq(t) =

n∑
j=1

aijxj(t− 1) (i = 1, 2, ..., n; q = 1, 2, ...,m; t = 1, 2, ...),

or, in compact matrix form,

x(t) = Ax(t− 1) (t = 1, 2, ...), (1)

where A is a square row-stochastic influence matrix (for the moment, fixed) of dimension

n, and x(t) = (x1(t), ...., xn(t)) is an n × m-matrix consisting the m column vectors of

dimension n listing the opinions of all agents at t for each of the m dimensions. Naturally,

the learning process defined by (1) requires the specification of some initial conditions.

These are given by a matrix of individual prior beliefs x(0) = β = (βiq)
n,m
i,q=1 specifying the

initial opinion on every dimension from which each individual in the population starts the

learning process.

Another important parameter of the learning process in our context is what we call

the learning span. This refers to the number K of iterations for which learning proceeds

before the influence matrix A is revised. In general, we want to think of K as finite, which

reflects the idea that learning and influence adjustment proceed at comparable time scales.

This contrasts with the usual approach pursued in the study of the DeGroot model, which

typically focuses on the asymptotic outcome obtained when K grows unboundedly. The

reason for a finite span is that, in general, we want to have the learning outcome depend

on the topology of the network. For example, it is natural to expect that the opinion of

an agent at the end of a learning spell – just at the point where her influence weights

are adjusted – should depend on the relative network proximity to other agents and their

different opinions. This, however, would not happen if learning spells are not bounded. For

then, as explained in the Introduction, the population would typically reach a consensus if

the influence network is connected.

2.3 Similarity

To measure similarity across different individuals’ opinions, we shall rely on a versatile

statistic that can accommodate interesting special cases. For a matrix of opinions x =

(xiq)
n,m
i,q=1 and any pair of agents i and j, we define the similarity between them as follows:

φx
ij =

∑m
q=1ωq(xiq − giq(x))(xjq − gjq(x)), (2)

where each ωq (q = 1, 2, ...,m) weighs the relative relevance (or normalizes the measurement

units) of issue q, while giq(x) acts as a benchmark of comparison for the opinion of i on

that issue. The value of this benchmark can be any convex combination of the form

giq(x) = λbq + (1− λ)
∑m

s=1wsxis, (3)
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where bq is an issue-specific constant opinion, λ ∈ [0, 1] and {ws}ms=1 is a profile of weights

on i’s opinion about each issue s = 1, 2, ...,m.

At one extreme, when giq(x) = bq, every agent evaluates her position on each issue

q with respect to a common opinion bq. This opinion can be viewed as representing an

issue-specific canon in the society that is unchangeable under the learning dynamics. As a

natural example, bq could be the population-average of the initial opinions:9

bq =
1

n

∑n
i=1βiq. (4)

At the other extreme, the benchmark is individual-specific in that it is given by a weighted

sum of i’s opinions on all issues and therefore depends only on the agent’s opinion profile.

In the special case where it coincides with i’s average opinion:

giq(x) =
1

m

∑m
q=1xiq (5)

our similarity measure (2) boils down to a centered version of cosine similarity analogous

to the standard Pearson correlation coefficient.10

Denote by Φx = (φx
ij)

n
i,j=1 the matrix of similarities induced by any given array x of

agents’ opinions. For simplicity, we shall refer to it as the covariation matrix and say that

player i’s and j’s opinions are positively (negatively) correlated when φx
ij > 0 (φx

ij < 0),

while saying that they are uncorrelated (or orthogonal) when φx
ij = 0. When it is clear

from the context, we shall also omit the index x and write simply φij and Φ. As we shall

see, this matrix plays a key role in our analysis. Even though its precise form naturally

depends on the concrete value of the parameters in (2) that define the similarity measure

under consideration, it is worth emphasizing that our results do not depend on them. That

is, they hold for any similarity measure consistent with (2).

Remark 1 (Two routes to comparing agent opinions) Our model relies on two dif-

ferent ways of comparing the opinions of pairs of agents, i and j. One of them is the traditional

one in the DeGroot model. That is, for each time t within a given learning spell, we separately

compare, on each opinion dimension q = 1, 2, ...,m, the distances of their opinions, xiq(t) and

xjq(t). In contrast, the other comparison considered in the model involves a joint measure-

ment of the similarity of the vectors of opinions of the agents, (xir(t))
m
r=1 and (xjr(t))

m
r=1.

9Any other population statistic of the population, such as the median, may also be used to capture a

similar idea. Note that, in every case, agents are supposed to maintain the benchmark fixed throughout, as

they move into a new round of learning.
10Both measures, cosine similarity and Pearson correlation, are measures of behavioral similarity promi-

nently used by computer scientists in the design of memory-based recommender systems. These systems

rely on what are called collaborative (or preference) filtering methods that identify those peers whose past

behavior is similar to that of any given user, and hence can be used to predict the user’s reaction to various

behavioral stimuli. For a good overview of the early developments in this lively field of research in computer

science, the reader may refer to the surveys by Adomavicius and Tuzhilin (2005) and Su and Khoshgoftaar

(2009), or the monographs by Jannach et al. (2010) and Ricci et al. (2011).
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Despite this distinction, however, the two measures – opinion agreement and agent similarity –

are largely aligned at an equilibrium of the full-fledged dynamics. For, if two individuals hold

close opinions in the various dimensions, they must also be similar according to our definition

of agent similarity. And, conversely, if they are similar, they have to be exerting a significant

influence on each other, which in turn implies that their opinions cannot be very different at

equilibrium. This reciprocal effects between agent and opinion similarity will be at the basis

of our equilibrium notion. By themselves, however, they do not characterize equilibria. For, in

general, what equilibria may exist, whether they display polarization or not, and which of them

are dynamically robust, depends on important characteristics of the environment. For example,

it depends on the observation network, the distribution of prior beliefs, or the length of the

learning spells in a non-trivial manner. Indeed, to gain a precise understanding of these matters

is a primary objective of the analysis undertaken in Section 3.

2.4 Homophily and the evolution of social influence

As explained, our key modeling assumption is that the adjustment of inter-agent influence

over time is shaped by opinion-based homophily. Or, to express it more concretely, we

assume that agents reinforce the links with those who hold similar opinions. In this respect,

an important point already made is worth repeating here: homophily is not conceived in

this paper as a normative postulate but as a positive one – that is, as a manifestation of

what, in essence, is a strong bias in human nature.11

Formally, the influence dynamics is taken to operate across (finite) learning spells in-

dexed by s ∈ {1, 2, ...}. At every such s, there is a corresponding influence matrix A(s) that

governs social learning during that spell (cf. Subsection 2.2). For the moment we simplify

matters (see Remark 3 below for various extensions) by supposing that agents start every

learning spell by holding the same beliefs β = (βiq)
n,m
i,q=1. Such a persistence of initial opin-

ions may be understood as a reflection of some relatively stable and generic biases displayed

by each individual agent when confronting a range of concrete issues. Thus, even though

new such issues arise in each learning spell for every dimension q = 1, ...,m, individuals

rely on a quite persistent set of overarching values to shape their initial positions on each

of those dimensions.12 This seems a reasonable modeling choice if those values change only

slowly relative to the speed at which social influence adjusts.

11A possible explanation for this bias is that, even though in the modern world this bias may well have

dysfunctional consequences (e.g. when strong complementarities are required), it may have had positive

(fitness) implications early on in human history.
12For example, an individual may be a fiscal conservative and therefore will tend to have an ex ante

bias against any particular proposal that entails an increase in government spending. Or she may be quite

sensitive to environmental protection, or education, or gender balance and, therefore, tend to evaluate

positively any specific proposal in those dimensions (e.g., limiting traffic in urban areas, a pay increase for

teachers, or some new law that favors the hiring of women).
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Starting from those initial conditions, and after updating their opinions K times during

each learning spell s, the agents eventually reach the vector of opinion x̂(s) = A(s)Kβ.

Then, in adjusting their influence weights to arrive at the influence matrix A(s + 1) that

will prevail in the next spell, agents rely on the matrix Φx̂(s) of bilateral covariations among

the final opinions at s, x̂(s). From Lemma 1 in the Appendix we know that this matrix

can be directly computed as Φx̂(s) = A(s)K Φβ (A(s)K)′. This then allows to measure the

bilateral similarity of the opinions held by agents i and j at the end of s through the

following standardized measure of covariation:

ρ̂ij(A(s)) ≡
max{φx̂(s)

ij , 0}√
φ
x̂(s)
ii φ

x̂(s)
jj

, (6)

It is in terms of such similarity measures that we define the law of motion for inter-agent

influences. Specifically, we simply posit that, at stage s + 1, the influence on any given

agent i exerted by every other other agent j (including i herself) is proportional to the

corresponding standardized similarity between the two agents, ρ̂ij(A(s)). Thus, when we

take into account that:

(a) the entries of A(s+ 1) must be normalized so that this matrix is row-stochastic

(b) only those links in L that are part of the observation network can carry influence

we are led to the following expression for the influence weight on i exerted by j at s+ 1:

aij(s+ 1) =
lij ρ̂ij(A(s))∑

k∈N lik ρ̂ik(A(s))
(i, j = 1, 2, ..., n), (7)

In compact form, it will be convenient to formalize the induced law of motion by the

corresponding vector field F : (Δn−1)n → (Δn−1)n where, for any A(s) and every i, j =

1, 2, ..., n, Fij(A(s)) is given by the RHS of (7). Note that, in general, F (·) depends not

only on the observation network L but also on the (covariation matrix of) prior beliefs β

and the span K characterizing the learning spells.

Much of our analysis in this paper will focus on the stationary (or equilibrium) points

induced by the postulated adjustment process, as described in the following definition.

Definition 1 Given observation matrix L ≡ (lij)i,j∈N , the learning span K, and the set of

initial opinions x(0) = β, a row-stochastic matrix A∗ ≡
(
a∗ij

)
i,j∈N

that satisfies:

F (A∗) = A∗ (8)

is said to be homophily consistent – or, equivalently, an equilibrium influence matrix (EIM).

We end this section with an example and two remarks that bear on interesting aspects

of the model. The example is intended to provide a stylized illustration that may help

understand the nature of the opinion-influence adjustment process postulated here. Then,
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the first remark makes a methodological point concerning the role of opinion multidimen-

sionality in the analysis, while the second one introduces a generalization of the assumption

that prior beliefs are persistent across learning spells.

Example 1 (A twitter-motivated process of influence adjustment) We consider

three agents connected through the observation network L illustrated in Figure 1 (thus all entries

in L are equal to 1 except l13 = l32 = 0). The interpretation of a directed link from i to j in

this network is that i follows (and, hence, is influenced by) j on Twitter.

Figure 1: A directed link from i to j means that i follows (and, hence, is influenced by) j on Twitter.

Let s = 1, 2, ... index the different consecutive weeks (learning spells). During the first part

of each week s – which we conceive as the workweek – the agents write tweets expressing their

opinions and also read the tweets of others, as restricted by the observation matrix L. After each

round of tweets, they revise their opinions as posited by our model, in terms of the influence

matrix A(s) prevailing during that week s. Eventually, at the end of the workweek, this leads to

an opinion vector x̂(s) = A(s)Kβ where K is the number of tweeting rounds during the week

and β stands for the initial opinions that they held at the beginning of it.

Next, on Saturday, the agents reconsider the influence they attribute to (or the intensity

with which they follow) each of the other two individuals. They do so by revising the influence

weights among those whom they observe in proportion to the corresponding similarity of opinions

displayed by the matrix Φx̂(s). That is, the new influence matrix A(s+1) that will be used next

week is computed by (7), i.e., by setting each element aik(s + 1) equal to the row-normalized

version of likρ̂ik(x̂(s)).

Finally, on Sunday, they devote the day to gathering fresh information about issues relevant

for the coming week by, e.g., reading several newspapers (not necessarily the same ones). These

newspapers have a quite persistent position (“editorial lines”) on the different general topics, so

again they form the same opinions β as they held at the beginning of the previous week. These

are, therefore, the starting beliefs of the interaction and opinion revision process unfolding in

week s+ 1.

More concretely, suppose that on the very first week (s = 1) the agents assign their influence
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weights as given by the following matrix:

A(1) =

⎛⎜⎝2/3 1/3 0

1/6 2/3 1/6

1/3 0 2/3

⎞⎟⎠ .

Further suppose, for simplicity, that there is just one round of tweets every week (K = 1) and

that prior beliefs are uncorrelated for each pair of agents and all display the common individual

variation � > 0, i.e. Φβ = �I, where I is the identity matrix. Then, the final beliefs at

the end of the first week is x̂(1) = A(1)β. The corresponding similarity coefficients and the

revised influence weights after this week can then be computed from the covariation matrix

Φx̂(1) = A(1)ΦβA(1)
′ as follows:

ρ̂(x̂(1)) ≈

⎛⎜⎝ 1 .63 .4

.63 1 .32

.4 .32 1

⎞⎟⎠ , A(2) ≈

⎛⎜⎝.61 .39 0

.33 .51 .16

.29 0 .71

⎞⎟⎠ ,

where A(2) is obtained by the adjustment rule (7) from A(1). It can be readily verified that

A(2) is not an EIM, i.e. it does not satisfy the homophily consistency condition (8). However,

if the process continues over several weeks, each of them starting with the influence weights

inherited from the previous one, the influence matrix converges to the EIM,

lim
s→∞A(s) = A∗ =

⎛⎜⎝1/2 1/2 0

1/2 1/2 0

0 0 1

⎞⎟⎠ .

Hence, in equilibrium, only players 1 and 2 effectively communicate via Twitter. ♦

Remark 2 (Opinion multidimensionality) In our model, opinions are defined simultane-

ously on different issues (or dimensions). The question we address here is how much of such

multidimensionality is necessary to render our approach meaningful. As in the previous example,

let us suppose that agents’ initial opinions are orthogonal and their individual variation is posi-

tive and identical, i.e. Φβ = �I.13 The common individual variation � > 0 can be interpreted

as a measure of how much, initially, the alternative issues can be viewed as genuinely different

in agents’ minds. If � = 0 then xiq = x̄i for each agent i and issue q and all the opinion

dimensions would be redundant. Instead, if � > 0, one can easily verify that the similarity

coefficient ρ̂ij(A
∗) in (8) does not depend on the magnitude of � > 0. It follows, therefore,

that the same EIM A∗ satisfies (8) for any fixed value of � > 0, and hence also in the limit

� ↘ 0. This allows one to view A∗ as an EIM for any opinion multidimensionality no matter

how small!14

13Such orthogonality is not essential for the argument but it is assumed here just for the sake of formal

simplicity.
14Methodologically, the approach is reminiscent of that pursued in other strands of literature (e.g. evolu-

tionary game theory – cf. Kandori et al. (1993) or Young (1993)), where a similar approach (in this case,

in terms of mutation rates) has been used as a powerful selection device.
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Remark 3 (On the persistence of initial beliefs) In our earlier presentation of the

model, the assumption that the initial opinion/beliefs remain unchanged across learning spells

was motivated on the grounds that a stable collection of general views/values underlie the par-

ticular positions agents take on concrete issues. This assumption, admittedly demanding, can

be substantially generalized. Specifically, it can be readily checked that our analysis requires

only the weaker condition that, at the beginning of each spell s, agents’ beliefs β(s) exhibit

the same covariation matrix Φβ(s) = Φβ . By way of illustration, a stylized context where such

condition would hold (despite agents changing their prior beliefs across spells) is as follows.

Suppose that, at the beginning of each learning spell s, the n-dimensional vector of prior beliefs

(β1q(s), β2q(s), ..., βnq(s)) on any particular q ∈ {1, 2, ...,m} is drawn at random according to

a multivariate distribution defined over [0, 1]n with covariance matrix Υ. Then, if such random

draws are stochastically independent across issues and the number m of them is very large (for-

mally m → ∞), the induced covariance matrix over agents’ beliefs can be suitably approximated

by Υ. This implies that, in the particular case where λ = 0, the covariation matrix Φβ(s) can

be viewed as roughly equal to Υ, even though the prior beliefs (βi1(s), βi2(s), ..., βim(s)) of any

given agent i will typically be quite different across learning spells s ∈ {1, 2, ...}.
The previous illustrative case notwithstanding, it can still be reasonably argued that, for

many interesting contexts, the assumption that Φβ(s) = Φβ for any spell s may be viewed as

too stringent a description of the situation. This is why, in Subsection 3.5, we approach the

problem in a different manner. Specifically, we extend the formulation of the model to allow for

the possibility that prior beliefs in a certain spell s are partly updated on the basis of the outcome

of social learning in previous spell s− 1, i.e. the prior beliefs in a certain stage partly reflect the

opinion-formation process conducted at earlier stages. There, we discuss how certain aspects of

our basic analysis – in particular, those concerning the central issue of social integration – are

affected by this extension. As we shall see, a natural insight that follows from this extension

is that, when prior beliefs are gradually updated on the basis of previous learning, a faster rate

of such a belief adjustment works towards social integration in a way analogous to how longer

learning spells do.

3 Analysis

In this section, we carry out the analysis of the model. First, Subsection 3.1 starts by

addressing the basic issue of EIM existence and its characterization. Subsection 3.2 de-

scribes the unique connected EIMs in some benchmark cases. Subsection 3.3 discusses the

relationship between homophily consistency (i.e. equilibrium) and a suitable notion of link

support (or neighborhood overlap). Finally, Subsection 3.4 relies on the insights obtained in

Subsection 3.3 to study the relationship between communication/observation bridges and

integration in some illustrative cases.
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3.1 Equilibrium existence

Our primary interest in this paper is to study the characteristics of endogenous patterns of

influence as captured by the equilibrium notion in Definition 1. Thus a first basic question

that must be addressed is the following: Does there always exist an equilibrium influence

matrix that satisfies the required consistency between the learning outcome and the influence

weights? A positive answer to this question and an EIM characterization is provided by the

next result.

Proposition 1 Consider an arbitrary observation network with adjacency matrix L ≡ (lij)i,j∈N ,

any learning span K ≥ 1, and any matrix β of agents’ initial opinions with Φβ ≥ 0. An influence

matrix A∗ that satisfies (8) always exists and it verifies,

a∗ij = a∗iilij ρ̂ij(A
∗) (i, j = 1, 2, ..., n). (9)

Proof. See Appendix.

The existence result in Proposition 1 follows from a standard fixed-point argument

applied to the vector field F (·) defined by (7).

Figures 2 and 3 illustrate the EIMs for a randomly generated observation network with

n = 25 nodes. They are obtained by iterating F (·) from a situation where every agent

assigns the same influence weight to each of her neighbors in the observation network.

In Figure 2, we consider the case where the learning span is the shortest possible,

K = 1. We observe that the resulting pattern of equilibrium influence displays a marked

dichotomous structure, with small subsets of agents maintaining high-influence links among

themselves while the links with all other agents carry much lower influence. This leads to

end opinions in the population that are quite heterogeneous, with agents fragmented into

opinion clusters that sustain only light cross-connections.

In contrast, Figure 3 displays an EIM that is spanned on the same observation network

as in Figure 2 but with communication proceeding for K = 100 rounds. In this alternative

case, the learning process eventually leads to a situation where agents hold essentially the

same opinions. Such a perfect convergence among individual opinions induces in turn an

influence matrix where every agent attributes the same influence weight to each of her

neighbors (and herself). The induced EIM is therefore very different from the one resulting

for K = 1 since it is determined by the exogenous observation structure alone. In the

next subsection, we present some limit context where, as in Figure 3, the (unique) EIM

approaches uniform influence weights.
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Figure 2: Graphical representation of an EIM A∗ ≡ (a∗
ij)i,j∈N for an underlying observation network with

n = 25 nodes that is generated as a realization of an Erdös-Rényi random network. Initial opinions display

identical individual variations and are orthogonal. The learning span is set to K = 1. The EIM is obtained

through the iteration of (7) from initial conditions where every agent attributes a uniform weight to all her

connections in the observation network. The thickness of each edge ij is proportional to
a∗
ij+a∗

ji

2
. Self links

are not shown.

Figure 3: Graphical representation of an EIM A∗ ≡ (a∗
ij)i,j∈N under the same conditions as for Figure 1

except that the learning depth is K = 100.

3.2 Some benchmark scenarios

Here we discuss several benchmark scenarios that will prove useful in our subsequent anal-

ysis. First, we show that the outcome in Figure 3 can be extended to any (weakly) con-

nected15 observation matrix as long as the learning span K is unbounded.

Proposition 2 Consider any (weakly) connected observation network with the observation

matrix L ≡ (lij)i,j∈N and any matrix β of agents’ initial opinions with Φβ ≥ 0. Then, as the

learning span K → ∞, the unique connected EIM converges to the matrix A∗ ≡ (a∗ij)i,j∈N
15A directed graph is weakly connected if when considering it as an undirected graph it is connected, i.e.,

there is an undirected path between any pair of vertices, and strongly connected if there is a directed path

between every pair of vertices. An analogous definition applies to weighted networks.
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where

a∗ij =
lij∑

k∈N lik
(i, j = 1, 2, ..., n),

and the induced bilateral similarity coefficients among end opinions satisfy ρ̂ij(A
∗) = 1 for all

i, j ∈ N .

Proof. See Appendix.

Thus, when the learning span is unbounded, the only connected influence matrix that

meets the equilibrium requirement is the one that matches the observation network and

assigns uniform weights across neighbors. This result makes the simple point that in order

for equilibrium to be consistent with a connected influence pattern that displays a non-trivial

structure, the learning process must fall short of delivering social consensus. If a consensus

obtains, no feedback from the learning process will have any impact on the influence pattern.

Then, the observation network fully imposes its structure on an EIM – i.e. the latter simply

matches the former. These considerations suggest that, for our purposes, it is important

to model social learning within a finite time frame and then study the learning span as an

interesting parameter in the analysis.

Another useful benchmark case concerns situations where the population is segmented

(endogenously) into separate influence components and, for each of these components, the

underlying observation structure is complete. This is a stark setup but, as we shall see,

it is a natural one to study the conditions under which fragmentation of an otherwise

“observationally connected” population may persist. First, we establish the following result.

Proposition 3 Let the observation network be completely connected (i.e., the adjacency

matrix L ≡ (lij)i,j∈N satisfies lij = 1 for all i, j ∈ N). Then, for any given learning span K ≥ 1

and any matrix β of agents’ initial opinions with Φβ ≥ 0, the unique weakly connected EIM A∗

is Q(n) ≡ (qij(n))i,j∈N with qij(n) =
1
n for all i, j = 1, 2, .., n.

Proof. See Appendix.

This result asserts that, if the observation network is complete, the only influence matrix

that renders the population connected and meets the requirement of homophily consistency

is the matrix Q(n), where every agent influences directly each of the other agents with the

same weight. On the one hand, the fact that this matrix is homophily-consistent is quite

clear: under Q(n), every agent is in effect exposed to the same convex combination of the

initial opinions, which in turn supports the uniform influence matrix as an equilibrium. On

the other, the fact that, even for a low K, there is no other connected EIM is less apparent.

Intuitively, it follows from the cumulative effect in which indirect influence raises correlation

and this, in turn, increases direct influence (and thus correlation) up to the point where

only a fully symmetric pattern of influence can prevail at equilibrium.
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Propositions 2 and 3 jointly imply that learning span and connection density can be seen

as substitutes in reaching agreement: Under an equilibrium influence matrix, consensus can

be reached either with sparse connections and many communication rounds (Proposition 2)

or with the complete network and just one round of communication (Proposition 3).

Building upon Proposition 3, the following straightforward corollary follows.

Corollary 1 Let the observation network L be completely connected and consider an r-

element partition of the population given by {Ns}rs=1, with ns ≡ |Ns| for each s = 1, 2, ..., r,

and n1 + ... + nr = n. Let Q(nr) ≡ (qij(nr))
nr

i,j=1 be the square matrix of dimension nr with

qij(nr) = 1
nr

for all i, j = 1, 2, .., nr, and denote by 0nr×ns the matrix of dimension nr × ns

consisting of all zeroes. Assume that Φβ ≡
(
φβ
ij

)
i,j∈N

satisfies φk,� = 0 for k ∈ Ns and � ∈ Ns′

with s 	= s′. Then, for all K ≥ 1 and upon a suitable index labeling, the block diagonal matrix

A =

⎛⎜⎜⎜⎜⎝
Q(n1) 0n1×n2 · · · 0n1×nr

0n2×n1 Q(n2) · · · 0n2×nr

...
...

. . .
...

0nr×n1 0nr×n2 · · · Q(nr)

⎞⎟⎟⎟⎟⎠
is the unique EIM where each set Ns is weakly connected and no agent in Ns influences an

agent from a different set.

This corollary says that under the complete observation network and with uncorrelated

initial opinions across groups of agents, there is a unique EIM that weakly connects all

agents in the same group but separates them from agents in other groups. In this EIM,

each agent has the same influence within their group but no influence on agents in other

groups.

The relevance of Corollary 1 derives from the fact that, in studying the problem of

segmentation among observationally connected agents, it allows us to restrict, without loss

of generality, to subsets of agents who are internally connected through a uniform (and

thus complete) pattern of influence. This will prove particularly useful when we study the

problem of segmentation in Subsection 3.4. The setup in Corollary 1 allows for many other

equilibria (where agents from different groups influence each other). This emphasizes an

acute multiplicity problem in general settings. This is why, when we revisit the issue later

on, our analysis will focus on scenarios where such a segmentation of the population into

independent groups is either the only equilibrium or at least a dynamically robust one.

3.3 Influence and support

In this subsection, we identify a topological measure of the influence network that char-

acterizes the equilibrium strengths of interpersonal influences at equilibrium. This char-

17



acterization will then prove quite useful in our ensuing analysis. We start by defining our

measure of link support for the link ik in a weighted network with the non-negative matrix

of link weights W ≡ (wij)i,j∈N ∈ Rn×n
+ :

ϕik(W ) ≡
∑n

s=1wiswks

(
∑n

s=1w
2
is)

1
2 (
∑n

s=1w
2
ks)

1
2

. (10)

As ϕik(W ) is simply the cosine of the angle between the rows i and k in W , it lies in the

unit interval and it is symmetric (ϕik(W ) = ϕki(W )) whenever these rows have at least one

strictly positive entry each. In our context, the latter condition always holds as we assume

that each node is connected to itself. We will apply ϕik(.) to the influence matrix A and

also to the matrix AK ≡ B ≡ (bij)ij∈N that captures the indirect influence bij that an agent

j has on agent i after K rounds of learning.

An instructive example of (10) derives from its application to the binary adjacency

matrix L ≡ (lij)i,j∈N ∈ {0, 1}n×n that represents our observation network. It follows then

directly from (10) that ϕik(L) is equal to the number of nodes to which both i and k are

connected, divided by the geometric mean of i’s and k’s out-degrees. Or, in other words, it

is a normalized measure of i’s and j’s shared neighborhood in L. We note that ϕik(L) is

closely related to the notion of neighborhood overlap defined in Easley and Kleinberg (2010)

as the ratio,

number of nodes who are neighbors of both i and k

number of nodes who are neighbors of at least one of i or k

where in the denominator they do not count i or k themselves (even though i and k are taken

to be neighbors). This notion is also known as link clustering coefficient in the network

literature (e.g., Pajevic and Plenz, 2012). It is, however, quite different from the usual

notion of clustering, which is node-based. The measure ϕik(L) is also related to the notion

of link support defined for undirected networks by Jackson, Rodŕıguez-Barraquer and Tan

(2012). In their case, a link ik is said to be supported in an underlying network g if there

exists some agent s, different from i and k, such that the links is and ks also belong to

g. Thus, in contrast with our measure, theirs is binary and therefore does not quantify the

extent of support.

As it turns out, the general measure of link support given by (10) allows for the following

topological characterization of EIMs.

Proposition 4 Given an observation network with adjacency matrix L ≡ (lij)i,j∈N , a learning

span K ≥ 1, and a covariation matrix of initial opinions that satisfies Φβ ≡ �I for some � > 0,

the EIM A∗ = (a∗ij)i,j∈N verifies:

a∗ik = a∗ii lik ϕik((A
∗)K) (i, k = 1, 2, ..., n). (11)

Proof. See Appendix.
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Heuristically, the result in Proposition 4 reflects the idea that common K-order partners

help “support” the relationship between i and j, and therefore the more such partners i

and j share, the stronger their relationship. More specifically, in our context the support

comes from the fact that, by being subject to common (indirect) influence, agents i and

k will tend to strengthen the correlation of their behavior and hence, by homophily, their

own link as well.

For the particular case of K = 1, Proposition 4 leads to the stark implication that link

strength between two nodes, i and j, is directly proportional to their neighborhood overlap

ϕik((A
∗)), i.e. to the (weighted) number of neighbors they have in common. Intuitively,

this property suggests that, in endogenous networks, strong links will tend to be arranged in

“triangles.” The literature – see e.g. Kossinets and Watts, (2006, 2009) and Kumpula et al.

(2007) – often rationalizes such configurations through the claim that, among strong links,

the principle of triadic/transitive closure applies (i.e. the friend of a friend tends to become

a friend). Our model, however, provides a quite different explanation for this phenomenon:

it is not the strength of the links that brings about the transitivity in connections; rather,

it is that only those links that are well supported (and hence form part of various triangles)

tend to be strong at equilibrium.

The previous discussion pertains to the endogenous support conditions that must be

enjoyed by strong links at equilibrium. However, still focusing on the sharpest setup where

K = 1, analogous considerations also lead to counterpart conditions on the observational

adjacency matrix L, an exogenous primitive of the model. To formulate it precisely, we use

our topological measure of neighborhood overlap to adapt the definition of supported links

in Jackson, Rodŕıguez-Barraquer and Tan (2012) to our context:

Definition 2 Given the observation network L ≡ (lij)i,j∈N , an observational link ik (lik = 1)

from i to k 	= i is supported when ϕik(L\ik) > 0.

Hence, in light of expression (10), a (directed) observational link ik is supported if after

its removal from L both i and k are able to observe at least one agent s 	= k (possibly,

s = i), i.e., lislks = 1. The next proposition establishes that unsupported links must have

zero weight at equilibrium when learning ends after the first round.

Proposition 5 Consider any given observation network with adjacency matrix L ≡ (lij)i,j∈N ,

and assume that initial opinions satisfy Φβ ≡ �I for some � > 0. Then, if K = 1, only

supported links may have positive weights in an EIM A∗ = (a∗k�)
n
k,�=1:

∀i, k ∈ N : lik = 1, a∗ik > 0 ⇒ ϕik(L\ik) > 0.

The support-related considerations studied in this section bear on the important issue

of social fragmentation that will be studied next in Section 3.4. More specifically, they

concern the question of whether an originally segmented society – say, a population that
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is divided into two disjoint groups that neither influence, nor are influenced by, the other

one – may persist in such a polarized state even when cross-group links are created to avert

it. Or, reciprocally formulated, the issue is when cross-group “bridging” can be an effective

route to integration.

3.4 Bridging

For clarity, we study the problem of bridging and fragmentation in a stylized context where

the population N is partitioned into two groups, G1 = {1, 2, ..., n1} and G2 = {n1 +1, n1 +

2, ..., n1 + n2}, with n1 + n2 = n. It is then useful to decompose the observation adjacency

matrix L into a matrix that concerns the links between agents of the same group and another

one that reflects the observation links between individuals of different groups. Formally, we

write L = L0 + V , where the within-group observation matrix L0 = (l0ij)
n
i,j=1 satisfies:[

l0ij = 1
] ⇒ [i, j ∈ Gq, q ∈ {1, 2}] , (12)

and the cross-group counterpart V = (vij)
n
i,j=1 has:

[vij = 1] ⇒ [
i ∈ Gq, j ∈ Gq′ , q 	= q′

]
. (13)

To fix ideas, we may think of L0 as representing the original situation where the two groups

had no contact whatsoever, while the addition of the matrix V embodies the pattern of

cross-group observation supplementing the original one. In order to control the confound-

ing effects of correlation in prior beliefs, we assume throughout this section that they are

uncorrelated across agents and all display the common individual variation � > 0, i.e.

Φβ = �I, where I is the identity matrix.

Our objective is to explore the conditions under which the possibility of cross-group

influence created by new cross-group links leads to the materialization of some signif-

icant integration of their opinions. Two are our main results. The first is particularly

strong as it applies across all equilibria and it is independent of the connection structure

within each group. However, it is limited to situations with one round of learning and to

large populations. In contrast, the second result applies to any number of learning rounds

and population sizes but it assumes that the observation structure within each group is

complete and focuses on stability of segmented configurations. In both cases, we find that

segmentation can be a persistent phenomenon: either because it is a feature displayed by

all equilibria, or because segmented equilibria are dynamically robust.

3.4.1 The persistence of social segmentation

To illustrate the persistence of social segmentation, we find it useful to start with a frame-

work where the learning spells are short (for simplicity, K = 1) and the population is large
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(n → ∞). We also expand on the benchmark model described above and postulate that the

pattern of observational links across groups is stochastically generated. More precisely, it is

determined by a random matrix Ṽ (a random variable) that determines the realized matrix

V defining the observation links connecting the two groups. We assume that such a random

variable is constructed in a straightforward manner: each agent i ∈ Gq (q = 1, 2) observes

a set of agents selected through a certain number of independent and uniformly distributed

distinct draws from Gq′ (q′ 	= q). Thus, from an ex-ante perspective, when we combine

within- and across-group observation links, the whole observation structure is given by the

random matrix L̃ = L0 + Ṽ , where, as before, L0 is some given adjacency matrix defining

local observation.

As indicated, we are interested in studying the problem when the population is large.

Formally, we study the limit case where n → ∞ and all other parameters (in particular,

node degrees (di)i∈N and group sizes (nq)q=1,2 are functions of n. Furthermore, we make

the following assumptions:

(L.1) limn→∞
nq(n)
n ≡ nq > 0 for each q = 1, 2, i.e. the limit size of each group is fractionally

significant.

(L.2) The full observational degree of every agent i, di(n) ≡
∑

j �=i

[
l0ij(n) + vij(n)

]
, is uni-

formly bounded, i.e. limn→∞ di(n) ≤ D < ∞ with probability one.

As n → ∞, we trace some corresponding sequence of EIM {A∗(n)}n=1,2,..., which is

arbitrary. Thus, since we know (see e.g. Corollary 1) that our theoretical framework allows

for a wide multiplicity of equilibria, we want our result to be strong enough to apply across

all of them.

Proposition 6 Consider a large-population context as described above and suppose that K =

1 and that (L.1)-(L.2) hold. For each population size n ∈ N, denote by pij(n) the probability

that, in some EIM A∗(n) = (a∗k�(n))
n
k,�=1, agent i ∈ Gq has a∗ij(n) > 0 for some j ∈ Gq′ ,

q′ 	= q. Then, limn→∞ pij(n) = 0.

Proof. See Appendix.

A simple illustration of the kind of observation network considered by Proposition 6 is

provided in Figure 4. In a heuristic sense, it is similar in spirit to the well-known model

of small worlds proposed by Watts and Strogatz (1998) where nodes are placed along a

boundariless one-dimensional lattice, a “ring”. It combines, as in the Watts-Strogatz model,

a regular local structure with high clustering with some randomly drawn long-range links

(so-called “shortcuts”). The difference with their model is that, in our case, there are two

separate groups arranged in corresponding rings, links are directed, and the long range-

links only connect nodes of different groups. By virtue of Proposition 6 we can assert that
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the probability that, at equilibrium, any given cross-group link conveys some significant

influence converges to zero as the sizes of the two lattice subnetworks grows unboundedly.

Figure 4: Diagrammatic illustration of the type of observation network studied in Proposition 6. The two

groups, G1 and G2, are of equal size and their nodes are linearly arranged along corresponding rings. The

neighborhoods of typical nodes are illustrated: blue links connect agents within a group, whereas red ones

connect agents of different groups. The observation links within each group are taken to be two-sided, i.e.

involve reciprocal observation. None of the cross-group links display this characteristic.

An interesting point that can be well explained in terms of the example described in

Figure 4 is that the possibility of breaking group-aligned segmentation crucially depends,

in general, on having an effective interplay between the pattern of cross-group links and the

structure of internal connections within each group. In the example, segmentation prevails

at any equilibrium because no cross-group observational link is supported in the sense of

Definition 2. This can be easily changed, however, even without increasing the total number

of cross-group links. What is needed is that the latter be formed by taking into account

the internal connections within each group. Cross-group links, in other words, need to rely

on the internal connection structure of each group to gather the support that is required to

break the segmentation. For example, the link between i and i−2+n/2 would be supported

if i − 1 were also connected to the latter agent. And clearly, analogous changes could be

implemented for every other cross-group link in a similar situation.

Another different way to tackle the problem would focus on the internal structure of

observational links within each group. For example, if this structure were extended by

doubling the radius of observation along the ring from 2 to 4, all cross-group links would

be supported and again segmentation could be broken. Interestingly, this illustrates the

important point that increasing the internal connectivity of groups does not necessarily

render them more impervious to external influence. In some cases, as in the example

discussed, it is precisely such an increase in the internal density of observational connections

that renders the external links effective bridges.
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3.4.2 The dynamic stability of social segmentation

Here we particularize the general bridging setup embodied by conditions (12)-(13) and posit

that the observation network within each group is complete. That is, we assume that the

within-group adjacency matrix for observation L0 = (l0ij)
n
i,j=1 is characterized by:

∀i, j (i 	= j), l0ij = 1 ⇔ [i, j ∈ Gq, q = 1, 2]. (14)

Our analysis will focus on the implications of alternative patterns of cross-group observa-

tion as defined by the given adjacency matrix V = (vij)
n
i,j=1. Furthermore, the approach

will be dynamic, in that we shall identify bridging conditions that render segmentation dy-

namically robust, i.e. locally stable for influence-adjustment process implicitly underlying

our equilibrium EIM notion. To address precisely this issue, we need to describe the initial

conditions from which the adjustment process starts, as well as define formally such an

adjustment process. Next, we address each of these in turn.

In view of Proposition 3, as the starting conditions of the adjustment process, it is

natural to focus on the EIM that is completely connected within each group but disconnected

across groups. This is the equilibrium given by the influence matrix

A0 =

(
Q(n1) 0n1×n2

0n2×n1 Q(n2)

)
, (15)

where 0nr×ns stands for a matrix of dimension nr × ns consisting of all zeros and Q(nr)

represents the uniform matrix with all entries equal to 1/nr.

Note that, as stated in Corollary 1, the influence matrixA0 defines an EIM independently

of the number of observation links across the two groups. So, in this light, the precise

question we want to tackle is: When is such an equilibrium asymptotically (locally) stable?

Or, instead, can a perturbation trigger enough cross-group influence such that segmentation

is broken?

The relevant dynamic adjustment process has been described in Subsection 2.4 and it

boils down to the synchronous dynamic system operating on n×n row-stochastic matrices,

A(s+ 1) = F (A(s)) (s = 1, 2, ...), (16)

where F (·) has been defined by (7).

As advanced, our main result in this subsection specifies sufficient conditions for the

segmented EIM A0 in (15) to be asymptotically stable for the dynamical system (16) when

the prevailing observation matrix is L = L0 + V .

Proposition 7 Consider the observation matrix L = L0 + V , where L0 and V satisfy (12)

and (13), respectively. Then, the segmented EIM A0 in (15) is asymptotically stable for the
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dynamical system (16) when each cross-group link ij (vij = 1) satisfies the following condition,

strictly for at least one link:

ni vi + nj vj + (K − 1)v ≤ ni√n1n2 (17)

where, for each k ∈ N , nk =
∑

�∈N l0k� is the number of agents that player k observes in the

group she belongs to, vk =
∑

�∈N vk� is the number of agents observed by k in the other group,

and v =
∑

k∈N vk.

Proof. See Appendix.

To understand the intuition underlying Proposition 7, let us consider first the simple

case where both groups are symmetric (i.e. n1 = n2 = n/2) and there is just one round of

learning (K = 1). Then, (17) simply becomes vi+vj ≤ n/2. This indicates that the stability

of segmentation obtains if, for each cross-group link ij, agents i and j do not observe jointly

too many individuals from the other group, with the upper bound being proportional to the

population size. Then, the following two questions arise. Why is it that, in evaluating the

destabilizing potential of a particular observational – and therefore directional – link from

i to j, the volume of observations in both directions is relevant? Why is the upper bound

related to the population size?

To answer the first question, note that i’s and j’s beliefs are highly correlated with

those of the individuals in their own group; therefore, if i and j observe jointly only few

individuals from the other group, their beliefs after one round of learning will be only weakly

correlated and hence their influence on each other will tend to vanish after the equilibrium is

perturbed. On the other hand, concerning the role played by population size in the stability

condition, the point to understand here is that the destabilizing impact on segmentation

resulting from cross-group observation has to be balanced against the pull towards restoring

it that is induced by the internal observation links existing within each group. Therefore,

the relative strength of the latter force compared to the former one depends on the size of

the groups.

Finally, let us consider how the former considerations are affected if there is more than

just one round of learning (i.e. K ≥ 2) and/or the groups are asymmetric in size (n1 	= n2).

Mere inspection of (17) indicates that the higher K and the larger the size asymmetry

the harder it is, ceteris paribus, to satisfy that stability condition. This is of course in

line with intuition. First, multiple rounds of learning can only strengthen the effect of

external influence, either directly (by the repeated observation of the other group through

one’s own links) or indirectly (through internal influence, which partly reflects the external

observations conducted by other members of the same group). Second, size asymmetry

favors the breakup of segmentation because, as one of the groups becomes relatively smaller,

it is easier for external influence to have an impact on it.
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From the proof of Proposition 7 it follows that, if all inequalities in (17) are reversed for

each cross-group link and at least one of them holds strictly, then the segmented equilibrium

will be destabilized by small perturbations. The intuition underlying this result is of course

polar to that explained above for the stability of group-based segmentation.

Proposition 7 also allows for a useful and quite transparent analysis of the conditions

under which segmentation is a robust phenomenon for large groups – for example, when

the phenomenon is studied at a whole national level and the two groups consist of those

that support a given political party, speak a different mother tongue, or live in a different

region. This is the setup considered by the following corollary. In it we postulate, as in

Subsection 3.4.1, that n → ∞ and the relevant parameters change accordingly to a given

function of n. Specifically, we assume:

(M.1) limn→∞
nq(n)
n ≡ nq > 0 for each q = 1, 2, i.e. the limit size of each group is fractionally

significant.

(M.2) There exists some function b(n) – possibly growing unboundedly with n – such that

for all i ∈ N and n ∈ N, the corresponding cross-group degree vi(n) ≤ b(n) with

limn→∞
b(n)
n = 0.

Condition (M.1) is exactly as the former (L.1), whereas (M.2) is weaker than (L.2)

as the the cross-group degree of agents is allowed to grow unboundedly with n, but not

comparably fast.16

Corollary 2 Consider a large population as described above and suppose thatK is constant17

and (M.1)-(M.2) hold. Then, there exists some n̂ ∈ N such that for all n ≥ n̂ the corresponding

segmented EIM A0(n) as given in (15) is asymptotically stable for the dynamical system (16).

Proof. See Appendix.

This result indicates that segmentation is a robust phenomenon for sufficiently large

groups with dense within-group connection structures even if the number of cross-group

links grows unboundedly (but slower than b(n)).

We close our discussion in this section with a remark that, in line with what was ex-

plained in Subsection 3.4.1, illustrates that the robustness of segmented equilibrium not

only depends on the number of cross-group links but also on their pattern of connection.

Remark 4 (Bridging and observation structure) To bring our point across in a trans-

parent manner, in this Remark we consider the simple case where the population is divided into

16Thus, for example, the growth could be – as is often posited in the asymptotic theory of random networks

– logarithmic in n, but it could also be faster, e.g. at the rate of
√
n.

17It is easy to see that this assumption could be generalized to allow for K to grow but at a rate lower

than n
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two groups of equal size (i.e. n1 = n2 = n
2 ), the within-group observation matrix L0 satisfies

(14), and there is just one round in every learning spell (K = 1). In this common context, we

consider the following two scenarios.

First suppose that every agent in each group observes less than half of the individuals in the

other group, i.e.

∀i ∈ N, vi < n/4.

Then,

vi + vj <
n

2
, (18)

and the particularization of condition (17) to this case is satisfied. The segmented equilibrium

is thus locally stable even if the total number of cross-group links is of order n2.

Second, we show that, in contrast to the previous case, the segmentation can be destabilized

with a substantially smaller number of cross-group links if these are set in a more asymmetric

manner. As a simple illustration, suppose that only one agent, say 1, in G1, has bi-directional

cross-group links to all n/2 agents in the other group, i.e., v1k = vk1 = 1 and vik = vki = 0 for

all k ∈ G2 and i 	= 1. Then, we find that for each cross-group link 1k and k1,

v1 + vk =
n

2
+ 1 >

n

2
.

Thus, the inequality in (18) is reversed, which means the segmented equilibrium is destabilized.

Importantly, this is achieved with a total of n directed cross-group links (that is, n
2 bidirectional

links), which for large n represents a much fewer number than in the previous construction,

where their total number was allowed to grow at the order of n2! Therefore, we conclude that

what matters is not just the number of links across the two groups but the specific pattern in

which they are arranged.

3.5 Adaptive prior beliefs

We close our discussion by exploring the implications of relaxing the assumption that the

prior beliefs βiq(s) of agent i on issue q at the beginning of the learning spell s do not

depend on her final beliefs in the previous spell. An alternative interesting scenario would

be one where the final beliefs prevailing at the end of one spell fully determine the prior

beliefs from which the following spell starts. Intuitively, such a formulation would suitably

model a situation where, in essence, the same (or very similar) questions recurrently arise

in each dimension and in every learning spell.

Arguably, the real world (and hence the ideal model) is somewhere between these two

extremes. Here, we briefly explore this option and study a convex combination of the two

extreme scenarios. Specifically, we postulate that each agent i = 1, ..., n computes her prior
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beliefs βs
iq on issue q = 1, ...,m at the start of each spell s = 1, 2, ... as follows:18

βs
iq = μ · xs−1

iq + (1− μ)βiq, (19)

where μ ∈ [0, 1] is the weight this agent attributes to the belief xs−1
iq that she held at the

end of the previous K-long learning spell s − 1, and we set x0iq = βiq for all i and some

corresponding fixed belief βiq.

A steady state of the learning process is given by beliefs x̂ that satisfy:

x̂ = AK(μ · x̂+ (1− μ)β), (20)

where recall that β = (βiq)
n,m
i,q=1. If μ = 0, we obtain a special case of our original model

with βs
iq = βiq and, hence, Φβs = Φβ for all s. If μ = 1 the model is formally identical to

the case where K → ∞. That is, for fixed A, opinions converge to a vector x̂ that satisfies:

x̂ = lim
s→∞(AK)sβ = lim

s→∞Asβ, (21)

which is uniquely determined if A is an aperiodic matrix. Clearly, it is a stationary point

for every learning spell, i.e. x̂ = AK x̂.

On the other hand, when μ < 1, the final beliefs x̂ in a steady state are found to be

x̂ = AK(μ · x̂+ (1− μ)β) = (1− μ)(I − μAK)−1AKβ ≡ Bμβ, (22)

where Bμ is a row-stochastic matrix.19

In line with Definition 1, a row-stochastic matrix A∗ = (a∗ij)
n
i,j=1 is said to be an EIM

if it satisfies for each agent i and j the homophily condition a∗ij = a∗iilij ρ̂ij(x̂), given the

steady state x̂ it induces from either (21) or (22) (depending on whether μ = 1 or μ < 1

respectively) and the corresponding pattern of similarity coefficients ρ̂ij(x̂). It can be readily

verified that Propositions 1 and 3 directly generalize to the present scenario with μ ∈ [0, 1],

while former Proposition 2 can be extended as follows.

Proposition 8 Consider a (weakly) connected observation network with adjacency matrix L ≡
(lij)i,j∈N and any matrix β of agents’ initial opinions with Φβ ≥ 0. Then, if either K → ∞
and μ ∈ [0, 1], or K ≥ 1 and μ = 1, the unique connected EIM A∗ = (a∗ij)i,j∈N is given by

a∗ij =
lij∑

k∈N lik
(i, j = 1, 2, ..., n),

and the induced similarity coefficients among end opinions satisfy ρ̂ij(A
∗) = 1 for all i, j ∈ N .

18This formulation is reminiscent of that proposed by Friedkin and Johnsen (1999). In their model, the

postulated belief adjustment rule prevailing over time places some fixed weight on a given vector of initial

beliefs that play an “anchoring” role in the belief adjustment rule applying every period. Thus, it is a feature

that concerns the process that, in our terminology, unfolds within a learning spell. Instead, in our case the

given initial beliefs play an analogous anchoring role when the starting beliefs of a learning spell are adjusted

across consecutive such spells.
19By the expansion (I−μAK)−1=

∑+∞
s=0μ

s(AK)s for μ ∈ (0, 1) one obtains Bμ = (1−μ)
∑∞

s=0μ
sAK(s+1).

27



Proof. See Appendix.

How does the generalization considered here bear on our former analysis of segmenta-

tion? In particular, how does the gradual adjustment of the prior beliefs in learning spells

(i.e. a value of μ > 0) affect the possibility of social integration in an originally segmented

population? Proposition 8 and (21)-(22) suggest that μ plays a similar role to the learning

span K – that is, increasing μ leads, ceteris paribus, to higher correlations among agents’

beliefs and therefore favors integration.

The following numerical analysis illustrates the trade-off between K and μ in the fol-

lowing setup. A population consisting of 10 individuals is divided into two groups, the first

group being the singleton G1 = {1}, while the other group G2 = {2, 3, ..., 10} includes all

other agents in the population. Suppose there is only one cross-group link, l21 = 1, i.e.,

agent 2 observes player 1, but within group G2 the observation structure is complete. Con-

sider now an equilibrium configuration where the corresponding EIM A0 is as given in (15)

for n1 = 1 and n2 = 9. Then, if μ = 0, a sufficient condition ensuring that belief homophily

destabilizes such an equilibrium is that the inequality in (17) is reversed for the cross-link

21,

9 + (K − 1) > 9
√
9 ⇒ K > 19. (23)

To check whether high enough values of μ can destabilize segmentation for a fixed value

of K, we have relied on (20) to set up a generalized version of the influence-adjustment

dynamics (7) for any given μ ∈ [0, 1]. Applying then this law of motion to iterate influence

matrices, we find an EIM A∗ as its fixed point when starting from an influence matrix that

puts a ”small” weight on the single cross-group link 21. At the induced equilibrium, agent 1

will be able to influence directly player 2 and then, indirectly, all other followers {3, 4, ..., 10}
only if the corresponding equilibrium weight of that link, a∗21, is strictly positive. In Figure

5, we report the results of this exercise for K ∈ {5, 10, 15, 20, 25}.

Figure 5: The impact of the parameter μ on the EIM element a∗
21.
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We observe that agent 1 starts exercising influence after μ exceeds some threshold μ̄(K),

where μ̄(K) decreases in K. In particular, μ̄(20) = μ̄(25) = 0, which is consistent with

(23). We also notice that, independently of K, the equilibrium weight a∗21 converges to 0.1

as μ approaches one, i.e., it corresponds to the even distribution of attention among ten

observation links of agent 2, which is in line with conclusion to this effect established by

Proposition 8.

4 Conclusion

This paper studies a model of social learning on an endogenous social network where the

learning framework extends the classical one proposed by DeGroot (1974) in two relevant

dimensions:

• agents’ opinions are multidimensional;

• the number of learning rounds is arbitrary.

In such a generalized framework, the learning outcome typically falls short of full con-

sensus, which then allows us to identify the extent to which agents’ final positions correlate,

depending on the nature of their initial opinions, the architecture of the network, and the

length of the learning process.

Our main objective in this paper has been to develop a theory that endogenizes the

influence network through which social learning unfolds. This network is required to satisfy

a two-fold requirement:

(a) it must respect the communication restrictions imposed by some exogenously given

observation network;

(b) it has to be consistent with a notion of homophily whereby the strength of each

bilateral relationship (influence) is proportional to the corresponding correlation of

behavior (opinions).

We have shown that an important consequence of homophily-based consistency is that,

in equilibrium, the strength of every link has to be proportional to what we have coined

its “network support.” This in turn has important implications for the problem of social

integration, i.e. the question of whether groups that were originally forming their opinions

independently may come to integrate their views through successful “bridges of influence.”

We have identified conditions that render group segmentation either a robust or a fragile

state of affairs, relating those conditions to various features of the model, in particular to

the parameters that determine the cross-group connectivity, the relative group sizes, or the

span of the learning process.

Social integration is an important social problem because it often has serious welfare

consequences. However, a proper study of its normative implications requires a proper
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assessment of its benefits, which in principle may be positive or negative. For, indeed,

depending on how integration is defined, it may be the case that not always more of it is

better – for example, along certain dimensions too much integration can be detrimental to

the preservation of valuable diversity. To incorporate such considerations into the analysis

should be one of the prominent objectives of future research.

In a related vein, another (largely complementary) focus of future research ought to be

the introduction of some extent of payoff-guided behavior into the learning environment.

The model we have studied here is purely behavioral. Other paradigms of social learn-

ing that may be considered include, e.g., observational learning (Bala and Goyal, 1998),

Bayesian learning (Gale and Kariv, 2003), or a mixture of boundedly-rational and Bayesian

learning (Mueller-Frank, 2014). It is conceivable that when such alternative forms of learn-

ing are combined with homophily-based network formation, interesting new perspectives on

the problem may open up.
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5 Appendix

Lemma 1 The matrix Φx =
(
φx
ij

)
i,j∈N

of bilateral covariations (2) among end (stage-K)

opinions x = AKβ can be computed as

Φx = AK Φβ (A
K)′,

where Φβ ≥ 0 is the covariation matrix of the prior beliefs β, A is a row-stochastic influence

matrix and K ≥ 1.

Proof: Let B = AK and note that A and B are row-stochastic. As posited in (3),

given the end-beliefs x = Bβ, define for each issue q the corresponding benchmark giq(x) as

giq(x) = λbq+(1−λ)
∑m

s=1wsxis. First, we prove that the benchmarks G(x) = (giq(x))
n,m
i,q=1

can be computed from the benchmarks G(β) = (giq(β))
n,m
i,q=1 of prior beliefs β,

giq(β) = λbq + (1− λ)
∑m

s=1wsβis,

as G(x) = BG(β). Below, we use the fact that
∑n

k=1Bik = 1 as B is row-stochastic:

(BG(β))iq =
∑n

k=1Bikgkq(β) = λbq
∑n

k=1Bik + (1− λ)
∑n

k=1(Bik
∑m

s=1wsβks)

= λbq + (1− λ)
∑m

s=1wsxis = giq(x) = (G(x))iq,

It follows that for the “benchmarked” prior beliefs β̃ = β − G(β) and end-beliefs x̃ =

x−G(x), it holds that:

x̃ = x−G(x) = Bβ −BG(β) = B(β −G(β)) = Bβ̃.

Then, the similarity measure (2) is computed as:

φx
ij =

∑m
q=1ωqx̃iqx̃jq =

∑m
q=1ωq(

∑n
k=1Bikβ̃kq)(

∑n
k=1Bjkβ̃kq) =∑m

q=1ωq(Bi1Bj1β̃
2
1q +Bi1Bj2β̃1qβ̃2q + ...+BinBjnβ̃

2
nq) =

Bi1Bj1φ
β
11 +Bi1Bj2φ

β
12 + ...+BinBjnφ

β
nn = (B Φβ B

′)ij ,

where in the last line we made the substitution

φβ
ij =

∑m

q=1
ωqβ̃iqβ̃jq. �

Proof of Proposition 1: For a given (finite) learning span K, observation matrix

L ∈ {0, 1}n×n and the initial covariation matrix Φβ , the vector field F (A;K,L,Φβ) :

(Δn−1)n → (Δn−1)n, defined by (7), maps an n−dimensional stochastic matrix A into

another n−dimensional stochastic matrix (Δn−1 is an n−dimensional simplex). F (·) is con-
tinuous as it involves only a finite number of continuous matrix operations when K < ∞.
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As (Δn−1)n is compact and convex, Brouwer fixed-point theorem implies that F has a fixed

point A∗.

When K → ∞, a possible issue is that AK is not necessarily convergent and, then,

F (·) is not well-defined. We restrict in case K → ∞ the domain of F (·) to stochastic

matrices A ∈ (Δn−1)n that satisfy aii ≥ aik for each i, k ∈ N (by (7), F (·) returns only such

matrices). Then, limK→∞AK is convergent by Theorem 2 in the Mathematical Appendix

A in Golub & Jackson (2010). As this restricted domain is compact and convex and F (·)
defined on it is continuous also for K → ∞, Brouwer fixed-point theorem implies that F

has a fixed point A∗.

Finally, equation (9) for an EIM A∗ follows from the condition (8) in the Definition 1

that implies,
a∗ik
a∗ii

=
likρ̂ik(A

∗)
liiρ̂ii(A∗)

= likρ̂ik(A
∗),

as lii = ρ̂ii(A
∗) = 1 and, hence, a∗ii > 0 for each i ∈ N. �

Proof of Proposition 2: If A∗ is an EIM for a fixed adjacency matrix L ∈ {0, 1}n×n

and an initial covariation matrix Φβ ≥ 0, then a∗ii > 0 because lii = 1 and ρii (A
∗) = 1

for each i ∈ N . Hence, A∗ must be aperiodic (e.g., Golub & Jackson, 2010). It is well

known that for a connected (i.e., irreducible), aperiodic and stochastic matrix A∗ each row

of B = limK→∞(A∗)K is equal to the left eigenvector of A∗ associated to the eigenvalue

1. Then, for Φβ ≥ 0, the matrix Φx̂ = BΦβB
′ of bilateral covariations among end-stage

opinions x̂ = Bβ is such that φx̂
ij = c > 0. It follows that all correlations ρik(.) computed

by (6) from Φx̂ for i, k ∈ N are equal to one. Substituting unit correlations into the

definition (8) of EIM yields the claim, a∗ik = lik/
∑N

s=1lis for all i, k ∈ N . The matrix

A∗ is then (weakly) connected as we assume this property for the observation network

L. �

Proof of Proposition 3: We start with the following Lemma.

Lemma 2 For row-stochastic and strictly positive n × n matrices A ≡ (aik)i,k∈N and S ≡
(sik)i,k∈N such that A 	= Q(n), aii ≥ aik and aik/aii = aki/akk for all i, k = 1, ..., n, we have:

δ(A) < δ(AS′), where δ(X) ≡ min
i,k

xikxki
xiixkk

. (24)

Proof: As the matrices A and S are strictly positive and row-stochastic, it holds that, for

all i, k = 1, ..., n,

min
s

ais ≤
∑n

s=1aissks = (AS′)ik ≤ max
s

ais = aii ⇒ (25)

min
s

ais ≤ min
s

(AS′)is ≤ (AS′)ii ≤ max
s

(AS′)is ≤ aii ⇒

min
s

ais
aii

≤ min
s

(AS′)is
(AS′)ii

, ∀i ⇒ min
i,s

ais
aii

≤ min
i,s

(AS′)is
(AS′)ii

.
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Note that aii = maxs ais > mins ais for at least one i. Otherwise, aii = ais for all i, s

which implies ais = 1/n as A is row-stochastic. This, however, would contradict A 	= Q(n).

Therefore, the inequalities in (25) are strict for at least one i. Then, the last inequality in

(25) is also strict, following from it and from the symmetry condition aik/aii = aki/akk that

δ(A) = min
i,k

aikaki
aiiakk

= min
i,k

(
aik
aii

)2 = (min
i,k

aik
aii

)2

< (min
i,k

(AS′)ik
(AS′)ii

)2 ≤ min
i,k

(AS′)ik(AS′)ki
(AS′)ii(AS′)kk

= δ(AS′).

�

To proceed with the proof of the proposition, first we note that Q(n) is an EIM since

Q(n) = Q(n)′ = Q(n)K and Q(n)XQ(n) = const × Q(n) for any matrix X. For, in view

of (6), we have that ρik (Q(n)) = 1 for all i, k ∈ N . The substitution of unit correlations

into the definition (8) shows that Q(n) is an EIM for the completely connected observation

network L.

To prove that Q(n) is the unique connected EIM is somewhat more demanding. First,

we show that any connected EIM A ≡ (aik)i,k∈N on completely connected L must be strictly

positive. To see this, consider nodes i, j and k such that aijajk > 0,

aijajk > 0 ⇒ aij > 0 ⇒ ρij(A) = ρji(A) > 0 ⇒ aji > 0,

aijajk > 0 ⇒ ajk > 0 ⇒ ρjk(A) = ρkj(A) > 0 ⇒ akj > 0.

Hence, positive correlations ρij(A) and ρjk(A) imply that ρik(A) is also positive,

ρij(A)ρjk(A) > 0 ⇒ ρik(A) > 0.

We obtain, therefore,

aijajk > 0 ⇒ aikaki > 0.

As A is connected, this argument propagates to all links in L. We conclude, therefore, that

all elements in the connected EIM A are strictly positive.

On the other hand, condition (8) implies that, given the covariation matrix

C = (cik)i,k∈N ≡ AKΦβ(A
K)′,

the EIM A satisfies the following equalities:

aik
aii

=
aki
akk

= ρik(A) =
cik

(ciickk)1/2
⇒ aikaki

aiiakk
=

cikcki
ciickk

, ∀i, k ∈ N. (26)

A necessary condition for (26) is

δ(A) = δ(C), where δ(X) ≡ min
i,k

xikxki
xiixkk

for X ≡ (xik)i,k∈N . (27)
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where δ(·) is the matrix operator defined in (24). The following properties of δ(·) are easily

verified:

δ(X ′) = δ(X), δ(cX) = δ(X), δ(D1XD2) = δ(X),

where X is an arbitrary matrix with positive entries, D1 and D2 are diagonal matrices and

c is a constant. By the last property, we obtain from (27),

δ(A) = δ(C) = δ(CD2) ≡ δ(AS′), (28)

where S′ ≡ AK−1Φβ(A
K)′D2 and D2 is a diagonal matrix that normalizes the sum of each

column in AK−1Φβ(A
K)′. Hence, S′ is a column-stochastic strictly positive matrix for

any K ≥ 1. By Lemma 2, we know that, for strictly positive row-stochastic matrices S

and A 	= Q(n) such that aii ≥ aik and aik/aii = aki/akk for all i, k, δ(A) < δ(AS′). As

this contradicts (28), we conclude that only A = Q(n) can be an EIM for the completely

connected L. �

Proof of Proposition 4: For the learning span K ≥ 1, the covariation matrix Φβ =

(φβ
ik)i,k∈N , the EIM A and the matrix B = (bik)i,k∈N ≡ AK , the correlation (6) between

final beliefs x̂i(A) and x̂k(A), i.e., rows i and k in the matrix x̂(A) = Bβ, is computed as

ρ̂ik(A) =
φ̂x̂
ik

(φ̂x̂
ii)

1/2(φ̂x̂
kk)

1/2
=

(BΦβB
′)ik√

(BΦβB′)ii
√
(BΦβB′)kk

, (29)

(BΦβB
′)ik =

n∑
s=1

n∑
t=1

bisbktφ
β
st =

n∑
s=1

bisbksφ
β
ss +

n∑
s=1

n∑
t=1,t �=s

bisbktφ
β
st.

When φβ
st = 0 for all t 	= s and φβ

ss = � for all s = 1, ..., n, then ρ̂ik(A) boils down to the

neighborhood overlap ϕik(B). The claim follows then from (9). �

Proof of Proposition 5: For the sake of contradiction, suppose the equilibrium influ-

ence a∗ik > 0 of a link ik (lik = 1) that is not supported. Then, Definition 2 and (10) imply

that:

ϕik(L\ik) = 0 ⇒ lislks = 0 ⇒ a∗isa
∗
ks = 0, ∀s 	= k.

By Proposition 4 and the formula (10), we can calculate then a∗ik as follows:

a∗ik = a∗ii lik ϕik(A
∗) = a∗ii

a∗ika
∗
kk

(
∑n

s=1(a
∗
is)

2)
1
2 (
∑n

s=1(a
∗
ks)

2)
1
2

≤ a∗ik, (30)

where the last inequality follows because
∑n

s=1(a
∗
rs)

2 ≥ (a∗rr)2 for r ∈ {i, k}. If the inequality
is strict, we have reached a contradiction. Otherwise, it must hold that

∑n
s=1(a

∗
rs)

2 = (a∗rr)2

for r ∈ {i, k}. But this implies a∗ik = 0. �

Proof of Proposition 6: For any given population size n, let the realized observation

network be represented by the adjacency matrix L(n) = L0(n) + V (n). Consider a pair of

agents, i, j ∈ N , such that i ∈ Gq and j ∈ Gq′ (q
′ 	= q), while vij(n) = 1; that is, agent
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i observes j through a cross-group (directed) link ij. We know from Proposition 5 that

a∗ij(n) > 0 in an EIM A∗(n) implies that the link ij is supported. In order to prove our

claim, it suffices to show that the probability of the latter event - which we denote Eij(n) -

vanishes as n grows without bounds. We note that Eij(n) can arise only if at least one the

following two further constituent events occur:

• E1
ij(n): There is a cross-group link from i to some agent s ∈ Gq′\j whom j also

observes, i.e. l0is(n)l
0
js(n) = 1.

• E2
ij(n): There is a cross-group link from j to some agent s′ ∈ Gq whom i also observes,

i.e. l0js′(n)l
0
is′(n) = 1.

Denote by r1ij(n) and r2ij(n) the (conditional) probabilities of events E1
ij(n) and E2

ij(n),

respectively, and by qij(n) the probability of the event Eij(n) = E1
ij(n) ∪ E2

ij(n). Then,

noting that (L.2) implies that neither agent i nor j can: (i) have more that D draws to

establish cross-group observational links, or (ii) observe more than D agents from her own

group, the two former probabilities can be bounded as follows:

r1ij(n) ≤
[

1

nq′ −D
D2

]D
r2ij(n) ≤

[
1

nq −D
D2

]D
,

while for the latter one we can write:

qij(n) = 1− (1− r1ij(n)(1− r2ij(n) ≤ 1−
[
1− 1

nq′ −D
D2

]D [
1− 1

nq −D
D2

]D
.

Then, it follows that

lim
n→∞ qij(n) = 0 (31)

since, by (L.1), we have:

lim
n→∞nq(n) = lim

n→∞nq n = ∞ (q = 1, 2). �

Proof of Proposition 7: We start the proof by introducing some notation and estab-

lishing two auxiliary lemmas.

Let � = (�1, ..., �n) and define I(�) as an n × n diagonal covariation matrix of prior

beliefs with the diagonal elements (I(�))ii = �i > 0. For the learning span K ≥ 1,

the n × n influence matrix A ≡ (aik)i,k∈N ≥ 0 and the binary adjacency matrix L ≡
(lik)i,k∈N ∈ {0, 1}n×n, we define

cov(A) ≡ AKI(�)(AK)′, ρik(A) ≡ covik(A)√
covii(A)covkk(A)

, (32)

F̃ik(A;L) ≡ likρik(L ·A)∑n
s=1lisρis(L ·A)

, i, k = 1, ..., n,
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where AB and AK = A...A are products of (compatible) matrices A and B, while A · B is

the Hadamard product, i.e., (A ·B)ik = aikbik. Note that F̃ik(A;L) is identical to Fik(A;L),

as defined by (7), when A ≤ L.

Further, let G1 = {1, ..., n1} and G2 = {n1 + 1, ..., n1 + n2} be two groups with n1 and

n2 nodes, n1 + n2 = n. For any i = 1, ..., n, let Gi = Gq, n
i = nq =

∑
k∈Gq

lik and �i = �q

if i ∈ Gq (q = 1, 2). Let

A0 ≡
(
Q(n1) 0n1×n2

0n2×n1 Q(n2)

)
, L0 ≡ sign(A0), I(�) ≡

(
�1In1×n1 0n1×n2

0n2×n1 �2In1×n2

)
,

where, Q(nr) ≡ (qik(nr))
nr
i,k=1, qik(nr) ≡ 1

nr
, � ≡ (�1, ..., �1, �2, ..., �2).

Lemma 3 For any n× n matrix U ≡ {uij}i,j∈N and ik ∈ n× n,

dρik(A
0 + ωU)

dω
|ω=0 =

⎧⎨⎩
ni�kUGk

i +nk�iUGi

k +(K−1)(�kUGk

Gi +�iUGi

Gk )√
�i�knink

, i, k : Gi 	= Gk,

0, i, k : Gi = Gk,
, (33)

where UM ′
M ≡ ∑

i∈M,j∈M ′ uij .

Proof: We define the real matrix A(ω) ≡ A0 + ωU and the matrix-valued function

fK(ω) ≡ cov(A(ω)) = A(ω)KI(�)(A(ω)K)′, (34)

with a recursive structure:

fK(ω) = A(ω)KI(�)(A(ω)K)
′
= A(ω)A(ω)K−1I(�)(A(ω)A(ω)K−1)′ (35)

= A(ω)A(ω)K−1I(�)(A(ω)K−1)′A(ω)′ = A(ω)fK−1(ω)A(ω)′,

f0(ω) = I(�).

We use the product rule (hg)′ = h′g + hg′ to compute the derivative of (35),

dfK(ω)

dω
= UfK−1(ω)A(ω)′ +A(ω)(

dfK−1(ω)

dω
A(ω)′ + fK−1(ω)U ′) (36)

= A(ω)
dfK−1(ω)

dω
A(ω)′ + UfK−1(ω)A(ω)′ +A(ω)fK−1(ω)U ′,

df0(ω)

dω
= 0.

We solve (36) by successive substitution and evaluate dfK(ω)
dω at ω = 0,

dfK(0)

dω
= A0df

K−1(0)

dω
A0 +Ψ+Ψ′ = ... = (K − 1)A0(Ψ + Ψ′)A0 +Ψ+Ψ′, (37)
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where Ak(0) = A0 for any k = 1, ...,K, Ψ ≡ UfK(0) and

fK(0) = A0I(�)A0 ⇒ fK
ik (0) ≡

{
�i/ni, Gi = Gk,

0, Gi 	= Gk.
(38)

From (37) and (38), it can be verified directly that

dfK
ik (0)

dω
=

ni�kUGk

i + nk�iUGi

k + (K − 1)(�kUGk

Gi +�iUGi

Gk)

nink
. (39)

By applying the quotient rule (h/g)′ = (h′g − hg′)/g2, we obtain the derivative:

dρik(A(ω))

dω
|ω=0 =

d(fK
ik (ω)/

√
fK
ii (ω)f

K
kk(ω))

dω
|ω=0 (40)

=

⎧⎨⎩
√

nink

�i�k

dfK
ik (0)
dω , i, k : Gi 	= Gk,

ni

�i (
dfK

ik (0)
dω − 1

2(
dfK

ii (0)
dω +

dfK
kk(0)
dω )), i, k : Gi = Gk,

where we used (38) to substitute for fK
.. (0). The formula (33) obtains then by substituting

dfK
.. (0)
dω from (39). In particular, Gi = Gk implies �i = �k and ni = nk and all terms in (39)

cancel out in this case. �

Lemma 4 For binary n×n matrices V ≡ (vτω)τ,ω∈N and U st ≡ (ustτω)τ,ω∈N such that vτω = 0

if Gτ = Gω and ustst = 1, ustτω = 0 for τω 	= st,

d

dω
F̃ik(A

0 + ωU st;L0 + V )|ω=0 = (41)⎧⎨⎩
ni�k(Υst)G

k

i +nk�i(Υst)G
i

k +(K−1)(�k(Υst)G
k

Gi +�i(Υst)G
i

Gk )

ni
√
�i�knink

, if vik = 1,

0, if vst = 0,

where Υst ≡ (L0 + V ) · U st.

Proof: First note that the two cases in (41) are neither mutually exclusive nor collec-

tively exhaustive, but they are the only relevant ones for the proof of Proposition 7. Then

define Λ ≡ (λik)i,k∈N ≡ L0+V , Ast(ω) ≡ Λ ·(A0+ωU st) = A0+ωΥst and the normalization

factor

ηi(ω,Λ) ≡
∑n

s=1λisρis(A
st(ω)), i = 1, .., n.

Then we observe that ηi(0,Λ) =
∑

s∈Gi l0is = ni due to the fact that vis = 0 when s ∈ Gi

(i.e. Gs = Gi) and,

ρ(A0) = L0 =

(
1n1×n1 0n1×n2

0n2×n1 1n2×n2

)
. (42)

Applying the quotient rule, we calculate the following derivatives:

dF̃ik(A
0 + ωU st; Λ)

dω
|ω=0 =

d

dω

λikρik(A
st(ω))

ηi(ω,Λ)
|ω=0 = (43)

λik

(ni)2
(
dρik(A

st(ω))

dω
ni − ρik(A

0)
dηi(ω,Λ)

dω
)|ω=0,
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where
dηi(ω,Λ)

dω
=

∑n
s=1λis

dρis(A
st(ω))

dω
. (44)

For vik = 1 the definition of V implies Gi 	= Gk and, then, we have ρik(A
0) = l0ik = 0 and

λik = vik by (42). Then, (43) takes the form:

dF̃ik(A
0 + ωU st; Λ)

dω
|ω=0 =

vik
ni

(
dρik(A

st(ω))

dω
)|ω=0, (45)

which after substitution from (33) specializes to the expression in (41). In order to prove

(41) for vst = 0, we consider three mutually exclusive and collectively exhaustive cases.

1) vst = 0 and Gs = Gt and Gi 	= Gk: This is a special case of the expression in (41)

with Υst = U st and (Υst)G
k

i = (Υst)G
i

k = (Υst)G
k

Gi = (Υst)G
i

Gk = 0.

2) vst = 0 and Gs = Gt and Gi = Gk: Then, dρik(.)
dω |ω=0 = 0 by (33) and ρik(A

0, �,K) =

1 by (42). Hence, from (43), we obtain:

dF̃ik(A
0 + ωU st; Λ)

dω
|ω=0 = − λik

(ni)2
dηi(ω,Λ)

dω
)|ω=0,

which, from (44), vanishes after substitution:

dηi(ω,Λ)

dω
=

∑n
s=1λis

dρis(.)

dω
=

∑
s:Gs=Gi1× 0 +

∑
s:Gs �=Gi0× dρis(.)

dω
= 0.

3) vst = 0 and Gs 	= Gt: In this case, Υst = 0 and

d

dω
F̃ik(A

0 + ωU st; Λ)|ω=0 =
d

dω

λikρik(Λ · (A0 + ωU st))∑n
s=1λisρis(Λ · (A0 + ωU st))

=

d

dω

λikρik(A
0 + ωΥst)∑n

s=1λisρis(A0 + ωΥst)
=

d

dω
F̃ik(A

0 + ωΥst; Λ)|ω=0 = 0.

. �

Now we turn to the proof of the proposition itself. In fact, we shall prove this result in

a more general setting, where the initial opinions of all agents are uncorrelated and have a

common variation �q within each group. Hence, φβ
ii = �1 for each i ∈ G1, φ

β
ii = �2 for

each i ∈ G2, and φβ
ij = 0 when i 	= j.

For a vector valued function f , column vectors x, u and a real number ω, the first order

approximation of f at x is computed as,

f(x+ ωu) ≈ f(x) + ω
∂f(x)

∂x
u ⇒ d

dω
f(x+ ωu)|ω=0 =

∂f(x)

∂x
u, (46)

where ∂f(x)/∂x is the Jacobian of f at x. In particular, for the vector ut such that ut
t = 1

and ut
ν = 0 for all v 	= t,

d

dω
fi(x+ ωut)|ω=0 = (

∂f(x)

∂x
ut)i =

∂fi(x)

∂xt
,
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where ∂f
∂xu

t is the tth column of the Jacobian ∂f(x)/∂x. By the same token, in our context

we obtain for the n × n matrix U st ≡ (ustτω)τ,ω∈N such that ustst = 1 and ustik = 0 for all

ik 	= st,

d

dω
F̃ik(A

0 + ωU st;L0 + V )|ω=0 =
∂F̃ik(A;L0 + V )

∂ast
|A=A0 ≡ Jik,st, (47)

where ik ∈ n×n indexes the row and st ∈ n×n indexes the column in the n2×n2 Jacobian

matrix J ≡
(
∂ ˜Fij

∂ast

)
i,j,s,t∈N

. From (47) and Lemma 4, we obtain the relevant entries in J
and its transposed J ′ as illustrated in the tables below:

J ik,st =

⎧⎪⎨⎪⎩
vst = 0 vst = 1

vik = 0 0 ?

vik = 1 0 ≥ 0

⎫⎪⎬⎪⎭ ⇒ J ′
ik,st =

⎧⎪⎨⎪⎩
vst = 0 vst = 1

vik = 0 0 0

vik = 1 ? ≥ 0

⎫⎪⎬⎪⎭
(48)

Then, from the system of eigenvalue equations J ′e = λe for λ 	= 0 it follows that eik = 0

when vik = 0, where e = {eik}i,k∈N is an n2 × 1 eigenvector of J ′ with entries indexed

by ik ∈ n × n. Hence, in light of (48), only elements of J ′
ik,st with vik = 1 and vst = 1

appear in the eigen equations for J ′. Therefore, for the computation of the eigenvalues and

eigenvectors of J ′, we can think of all entries J ′
ik,st as equal to zero except when vik = 1

and vst = 1, in which case they are non-negative.

By the Perron-Frobenius Theorem, the largest eigenvalue of a nonnegative square matrix

is real and positive and has an associated nonnegative eigenvector. Hence, for the system of

eigen equations J ′e = λe, we have that e > 0 if λ > 0 is the Perron-Frobenius eigenvalue

of J ′ (and, hence, of J ). Then, we can write the sum of the eigen equations as follows:∑
ik:vik=1eik

∑
st:vst=1J ′

st,ik = λ
∑

ik:vik=1eik > 0. (49)

Dividing (49) by
∑

ik:vik=1eik shows that λ is a convex combination of the values in the set

{∑st:vst=1J ′
st,ik}ik:vik=1 = {∑st:vst=1J ik,st}ik:vik=1.

For each ik such that vik = 1, we compute
∑

st:vst=1J ik,st by substituting for J ik,st from

(41) with Υst ≡ (L0 + V ) · U st = U st as vst = 1 (and, hence, Gs 	= Gt):

∑
st:vst=1

ni�k(U st)G
k

i + nk�i(U st)G
i

k + (K − 1)(�k(U st)G
k

Gi +�i(U st)G
i

Gk)

ni
√
�i�knink

=
ni�kV Gk

i + nk�iV Gi

k + (K − 1)(�kV Gk

Gi +�iV Gi

Gk )

ni
√
�i�knink

≡ zik.

We have shown, therefore, that the largest eigenvalue λ of the Jacobian matrix J is a

convex combination of the values in the set {zik}ik:vik=1
. If all these values are smaller

(greater) than one, then λ is smaller (greater) than one and the corresponding dynamic

system is stable (unstable). The condition (17) follows then for the special case �1 =

�2. �
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Proof of Corollary 2: It is enough to show that, for constant K, large n and under

assumptions (M.1)-(M.2), condition (17) is satisfied for all cross-group links ij with i ∈ Gq

and j ∈ Gq′ , q
′ 	= q. We first note that, for each n ∈ N, the LHS of that condition can be

bounded above for every such link ij as follows:

ni vi + nj vj + (K − 1)v ≤ nqnb(n) + (1− nq)nb(n) + (K − 1)nb(n) + nO(n)

= α0n [b(n) + O(n)],

for some α0 > 0 where O(n) is an infinitesimal in n. Combining this conclusion with the

fact that, for large enough n, the RHS of condition (17) can be bounded below by a function

of order O(n2), i.e.

ni√n1n2 ≥ α1n
2,

leads to the desired conclusion. �

Proof of Proposition 8: For μ = 1, (19) implies that, given any K ≥ 1 and any

stochastic and aperiodic20 matrix A, the steady state end-beliefs are equal to

x̂ = AK x̂ ⇒ x̂ = ( lim
K→∞

AK)β.

The same steady state end-beliefs follow from (22) when μ ∈ [0, 1) and K → ∞,

x̂ = (1− μ)(I − μB)−1Bβ = (1− μ)(
∑+∞

s=0μ
sB)Bβ = Bβ,

where B = limK→∞AK . It is well known that for a connected (i.e., irreducible), aperiodic

and stochastic matrix A each row of B is equal to the left eigenvector of A associated

to the eigenvalue 1. Then, all correlations ρik (A), computed by (6) for i, k ∈ N , are

equal to one. Substituting unit correlations into the definition (8) of EIM yields the claim,

a∗ik = lik/
∑N

s=1lis for all i, k ∈ N. �
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