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Abstract
Ecologists	 often	 seek	 to	 infer	 patterns	 of	 species	 occurrence	or	 community	 struc-
ture	from	survey	data.	Hierarchical	models,	including	multi-	species	occupancy	models	
(MSOMs),	can	improve	inference	by	pooling	information	across	multiple	species	via	
random	effects.	Originally	developed	for	local-	scale	survey	data,	MSOMs	are	increas-
ingly	applied	to	 larger	spatial	scales	that	transcend	major	abiotic	gradients	and	dis-
persal	 barriers.	 At	 biogeographic	 scales,	 the	 benefits	 of	 partial	 pooling	 in	MSOMs	
trade	off	against	the	difficulty	of	incorporating	sufficiently	complex	spatial	effects	to	
account	for	biogeographic	variation	in	occupancy	across	multiple	species	simultane-
ously.	We	 show	how	 this	 challenge	 can	 be	 overcome	 by	 incorporating	 preexisting	
range	 information	 into	MSOMs,	 yielding	a	 “biogeographic	multi-	species	occupancy	
model”	 (bMSOM).	We	 illustrate	 the	bMSOM	using	 two	published	datasets:	Parulid	
warblers	in	the	United	States	Breeding	Bird	Survey	and	entire	avian	communities	in	
forests	and	pastures	of	Colombia's	West	Andes.	Compared	with	traditional	MSOMs,	
the	bMSOM	provides	dramatically	better	predictive	performance	at	lower	computa-
tional	cost.	The	bMSOM	avoids	severe	spatial	biases	in	predictions	of	the	traditional	
MSOM	and	provides	principled	species-	specific	 inference	even	 for	never-	observed	
species.	Incorporating	preexisting	range	data	enables	principled	partial	pooling	of	in-
formation	 across	 species	 in	 large-	scale	MSOMs.	Our	biogeographic	 framework	 for	
multi-	species	modeling	should	be	broadly	applicable	in	hierarchical	models	that	pre-
dict	species	occurrences,	whether	or	not	false	absences	are	modeled	in	an	occupancy	
framework.
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1  |  INTRODUC TION

Community	ecologists	often	seek	inference	about	occurrence	pat-
terns	 of	 multiple	 species	 simultaneously.	 To	 improve	 inference,	
especially	 for	 infrequently	detected	 species,	 hierarchical	models	
such	 as	 multi-	species	 occupancy	 models	 (MSOMs)	 share	 infor-
mation	across	species	via	hierarchical	random	effects	(Devarajan	
et al., 2020).	MSOMs	were	originally	developed	for	application	to	
relatively	homogeneous	study	areas	where	occupancy	probabili-
ties	vary	little	across	space	(Dorazio	&	Royle,	2005).	Subsequently,	
MSOMs	have	been	applied	 to	a	variety	of	 landscapes	where	oc-
cupancy	 probabilities	 are	modeled	 as	 a	 function	 of	 site-	specific	
covariates	(e.g.,	Ribeiro	Jr.	et	al.,	2018; Rich et al., 2017;	Tingley	&	
Beissinger,	2013).

At	very	large	spatial	scales	that	subsume	biogeographic	varia-
tion	in	species	ranges,	the	biologically	relevant	covariate	structure	
becomes	 exceedingly	 complex.	 The	 biogeographic	 distributions	
of	 multiple	 species	 depend	 on	 species-	specific	 interactions	 be-
tween	 numerous	 environmental,	 geographic,	 and	 historical	 fac-
tors.	Rather	than	attempting	to	parameterize	and	fit	these	myriad	
effects,	 large-	scale	 single-	species	 distribution	 models	 often	 es-
chew	the	generalized	linear	modeling	framework	in	favor	of	highly	
flexible	additive	effects	(Rushing	et	al.,	2020)	or	machine-	learning	
methods	such	as	Maxent	(Phillips	et	al.,	2006)	or	regression	trees	
(Fink et al., 2010).	 Such	 approaches,	 however,	 are	 not	 easily	
amenable	to	pooling	information	across	data-	poor	species	for	ro-
bust	 community-	level	 inference.	 As	 a	 result,	 there	 is	 a	 need	 for	
hierarchical	multi-	species	approaches	to	study	community	varia-
tion	across	biogeographic	spatial	scales	(Janousek	&	Dreitz,	2020; 
Jarzyna	&	Jetz,	2018).

When	 the	 data	 at	 hand	 are	 insufficient	 to	 estimate	 realistic	
parametric	 models	 that	 adequately	 capture	 the	 biogeography	 of	
every	species	in	a	study	region,	the	benefit	of	partial	pooling	across	
species	 trades	off	against	 the	detriment	of	species-	specific	spatial	
biases.	 Across	 complex	 biogeographic	 landscapes,	we	 expect	 that	
models	that	fail	to	robustly	account	for	species'	ranges	will	tend	to	
underestimate	occupancy	at	points	within	a	species'	range	and	over-
estimate	occupancy	at	points	outside	a	species'	range.

Given	 the	 difficulty	 of	 estimating	 complex	 biogeographic	 pat-
terns	 in	 large-	scale	MSOMs,	previous	authors	have	applied	a	vari-
ety	of	post	hoc	strategies	to	address	inferential	problems	that	arise	
from	 fitting	 simple	MSOMs	 to	biogeographically	 complex	 regions.	
For	example,	Jarzyna	and	Jetz	(2018)	applied	a	MSOM	to	predict	ter-
restrial	bird	richness	across	the	coterminous	United	States	and	man-
ually	adjusted	their	model	output	by	setting	occupancy	probabilities	
to	 zero	 in	 regions	where	 a	 species	 does	 not	 occur.	 Janousek	 and	
Dreitz	(2020)	applied	a	MSOM	to	the	spatial	complex	bird	commu-
nities	of	the	greater	Rocky	Mountains	of	the	United	States,	but	30	
species	(29%)	failed	a	posterior	predictive	check	and	were	excluded	
from	 further	 analysis.	However,	 such	 statistical	 palliatives	 are	 not	
sufficient	 to	ensure	 reliable	 inference,	because	post	hoc	exclusion	
of	species	or	geographic	ranges	still	allows	poorly	modeled	data	to	
inform	inference	in	the	remainder	of	the	model.

Never-	observed	species	pose	additional	modeling	challenges	at	
biogeographic	 scales.	 In	 principle,	 traditional	 MSOMs	 can	 handle	
never-	observed	 species	 via	 data	 augmentation	 with	 excess	 pseu-
dospecies,	each	of	which	is	given	an	all-	zero	detection	history	and	
is	 included	 or	 excluded	 from	 the	 true	 community	 according	 to	 a	
Bernoulli	 random	 variable	 with	 modeled	 probability	Ω(Dorazio	 &	
Royle,	2005).	However,	these	models	cannot	estimate	independent	
covariate	relationships	for	the	never-	detected	species,	and	some	au-
thors	have	chosen	to	exclude	data-	augmented	pseudospecies	from	
downstream	analyses	(e.g.,	Tingley	&	Beissinger,	2013).	Incorporating	
data-	augmentation	 approaches	 into	models	 that	 leverage	 traits	 or	
phylogeny	to	predict	detection	(Sólymos	et	al.,	2017)	or	occupancy	
(e.g.,	via	trait–	environment	interactions)	is	especially	challenging,	re-
quiring	potentially	dubious	assumptions	about	the	trait	distributions	
for	never-	detected	species	or	the	discretization	of	traits	 into	func-
tional	guilds	(Tenan	et	al.,	2017).

Recent	progress	toward	multi-	species	pooling	in	biogeographic-	
scale	MSOMs,	including	models	for	never-	observed	species,	has	fo-
cused	on	discretizing	the	study	region	into	spatial	units	(Sutherland	
et al., 2016;	Tobler	et	al.,	2015)	and	discretizing	the	community	into	
ecological	guilds	 (Tenan	et	al.,	2017).	Sutherland	et	al.	 (2016)	pro-
pose	 a	multi-	region	model	where	 data-	augmented	MSOMs	 are	 fit	
to	 each	 region	 and	 region-	specific	 community	 richness	 is	 directly	
modeled	as	a	 function	of	 covariates.	 Importantly,	 the	 identities	of	
species,	including	species	that	are	never	detected	in	a	particular	re-
gion,	 are	 fixed	 across	 regions,	 thus	 enabling	 pooled	 estimation	 of	
species-	specific	 occupancy	 and	 detection	 probabilities	 across	 the	
entire	multi-	region	study	area.	Tobler	et	al.	(2015)	fit	a	similar	model	
without	data	augmentation,	such	that	the	potential	pool	of	species	in	
any	region	is	exactly	the	total	pool	of	species	observed	study-	wide,	
and	all	 species	 identities	are	 fixed	and	known.	Tenan	et	al.	 (2017)	
extend	the	approach	of	Sutherland	et	al.	(2016)	to	trait-	based	mod-
els,	discretizing	the	community	into	ecological	guilds	and	estimating	
the	 richness	 of	 never-	observed	 species	 for	 each	 guild	 separately.	
However,	 all	 of	 these	methods	 rely	 on	 the	 assumption	 that,	 con-
ditional	 on	 covariates,	 the	 spatially	 discrete	 regions	 are	 internally	
homogeneous	 and	mutually	 independent.	 Therefore,	 they	 are	 not	
suitable	 for	application	 to	biogeographic	 landscapes	with	complex	
and	continuous	spatial	variation.

For	many	taxa,	a	wealth	of	preexisting	biogeographic	informa-
tion	 is	 available	 in	 the	 form	 of	 range	maps,	 geospatial	 sightings	
databases,	and/or	published	range	descriptions.	We	hypothesized	
that	by	leveraging	this	information,	we	could	develop	simple,	trac-
table	 multi-	species	 models	 that	 yield	 reliable	 pooled	 inference	
about	 in-	range	occupancy	probabilities	while	avoiding	 the	pitfall	
of	 conflating	 in-	range	 and	 out-	of-	range	 occupancy	 probabilities	
within	and	across	species.	We	achieve	such	inference	by	collaps-
ing	 complex,	 multidimensional	 biogeographic	 variation	 into	 sim-
ple	 summary	 covariates,	which	we	 call	 range covariates.	 Possible	
range	covariates	 include	 (transformations	of)	 the	distance	to	the	
nearest	geographic	range	margin	or	elevational	range	 limit.	Such	
information	is	increasingly	available,	especially	for	taxa	amenable	
to	occupancy	modeling	(Jetz	et	al.,	2012).	We	refer	to	an	MSOM	
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    |  3 of 11SOCOLAR et al.

that incorporates range covariates as a biogeographic multi- species 
occupancy model	(bMSOM).	Like	the	multi-	region	model	of	Tobler	
et al. (2015),	 the	bMSOM	fixes	the	 identity	of	every	species	 (in-
cluding	 never-	observed	 species)	 in	 the	 dataset.	However,	 unlike	
all	 previous	 models,	 the	 bMSOM	 handles	 arbitrarily	 complex	
biogeographic-	scale	spatial	dependencies	using	a	very	simple	co-
variate	structure.

Here,	 we	 formally	 describe	 the	 bMSOM	 and	 apply	 it	 to	 two	
published	datasets:	51	Parulid	warbler	species	in	the	United	States	
Breeding	Bird	Survey	(49	observed;	two	never-	observed),	and	910	
bird	species	in	forests	and	pastures	of	Colombia's	West	Andes	(314	
observed,	 596	never-	observed).	 In	 addition	 to	 providing	 a	mecha-
nism	for	principled	data	pooling	across	very	large	spatial	scales,	bM-
SOMs	fix	the	 identity	of	every	species	 in	the	metacommunity	and	
link	those	identities	to	real-	world	species	with	known	traits.	They	are	
therefore	exceptionally	suited	to	trait-	based	models	for	occupancy	
and	detection,	 analyses	of	point-	scale	 richness,	 and	biogeographi-
cally	pooled	analyses	of	the	influence	of	 local-	scale	environmental	
variation	on	community	composition	or	structure.	Furthermore,	bM-
SOMs	sometimes	allow	for	a	priori	exclusion	of	data	at	extralimital	
sites	 (where	 occupancy	 is	 implausible),	 thereby	 reducing	 the	 total	
dataset	 size	 and	 the	 computational	 resources	 required	 for	 model	
fitting.

2  |  METHODS

2.1  |  Model formulation

We	formulate	the	likelihood	for	the	standard	MSOM	as

where i, j, and k	index	the	species,	site,	and	visit;	Y	is	an	array	of	binary	
detection/non- detection data; Z	is	a	matrix	giving	the	latent	true	oc-
cupancy	state;	�	 is	an	array	of	detection	probabilities	conditional	on	
occupancy	(i.e.,	p

(
Y ijk = 1|Z ij = 1

)
),	such	that	�k	 is	a	matrix	of	detec-

tion	probabilities	 for	 the	kth	visit;	�	 is	 a	matrix	of	occupancy	prob-
abilities	 (i.e.,	p

(
Z ij = 1

)
);	a and c	are	column	vectors	of	 intercepts	for	

occupancy	and	detection,	respectively;	X and W	are	design	matrices	
for	occupancy	and	detection,	respectively;	b and d	are	column	vectors	
of	coefficients	for	occupancy	and	detection,	respectively;	and	R is the 
joint	 random	effects	distribution	 for	a, b, c, and d.	At	 a	minimum,	R 
must	include	random	intercepts	by	species	for	both	occupancy	(a)	and	
detection (c).

2.2  |  The bMSOM

The	 likelihood	 for	 the	 bMSOM	 is	 no	 different	 from	 the	 standard	
MSOM;	what	 differs	 is	 the	 data.	 As	 in	 a	 data-	augmented	MSOM	
(Dorazio	&	Royle,	2005),	we	append	all-	zero	detection	histories	for	
never-	observed	species.	However,	each	of	these	all-	zero	entries	cor-
responds	to	a	specific	species	 that	we	know	a	priori	occurs	 in	 the	
biogeographic	vicinity	of	the	sampling	points,	and	so	we	treat	all	spe-
cies	as	present	in	the	metacommunity	and	“available”	for	occupancy.

Crucially,	 we	 include	 one	 or	 more	 “range	 covariates”	 that	 de-
scribe	whether	a	given	species	 is	 in-	range	or	out-	of-	range	at	each	
point,	and	we	estimate	species-	specific	random	coefficients	for	the	
range	covariates.	For	example,	if	species-	specific	minimum	and	max-
imum	elevation	data	are	available	along	an	elevational	gradient,	an	
appropriate	 range	 covariate	might	 be	 the	 squared	 elevational	 dis-
tance	from	a	survey	point	to	the	midpoint	of	a	species'	elevational	
range.	If	species	differ	substantially	in	their	elevational	breadth,	we	
might	rescale	these	differences	for	each	species	separately	prior	to	
squaring,	 such	 that	values	of	1	 correspond	 to	 the	 species-	specific	
upper	 range	 limits	 and	 values	 of	 −1	 correspond	 to	 the	 species-	
specific	lower	range	limits.	When	species	are	distributed	over	two-	
dimensional	space	rather	than	along	one-	dimensional	gradients,	we	
suggest	using	a	 range	covariate	based	on	 the	geographic	distance	
from	a	survey	point	to	the	species	geographic	range	margin.	When	
only	 crude	 range	 descriptions	 are	 available,	 the	 range	 covariate	
might	simply	be	binary,	designed	to	distinguish	areas	that	are	clearly	
out-	of-	range.	Regardless	of	the	precise	nature	of	the	range	covari-
ates,	we	include	them	in	the	bMSOM	with	species-	specific	random	
slopes.

In	 the	 bMSOM	 context,	 it	 is	 sometimes	 additionally	 useful	 to	
completely	exclude	severely	out-	of-	range	species-	site	combinations	
from	analysis,	a	process	that	we	call	“biogeographic clipping.”	By	ex-
cluding	 sites	where	occupancy	probabilities	 are	a	priori	negligible,	
it	is	possible	to	improve	within-	range	estimation	while	reducing	the	
computational	burden	of	model	fitting.	For	example,	biogeographic	
clipping	can	account	for	sharp	range	margins	associated	with	abrupt	
biogeographic	barriers	 (e.g.,	mountains	or	deepwater	marine	barri-
ers)	while	still	allowing	occupancy	probabilities	to	decay	more	grad-
ually	 at	 range	margins	 elsewhere.	 Likewise,	migratory	 species	 can	
be	modeled	with	temporal	clipping,	where	species-	site	combinations	
are	removed	from	the	data	if	the	site	was	surveyed	outside	of	the	
dates	of	potential	presence.	Here	we	assume	that	repeat	visits	to	a	
site	occur	sufficiently	quickly	 to	avoid	problems	of	closure	 for	mi-
gratory	species.

2.3  |  Example 1: Warblers of the coterminous 
United States

Jarzyna	and	Jetz	(2018)	analyzed	multi-	species	occupancy	patterns	
of	North	American	birds	by	applying	a	 traditional	MSOM	to	 the	
United	States	Breeding	Bird	Survey	(BBS)	dataset	(Bystrak,	1981).	
With	a	focus	on	the	year	2018,	the	coterminous	United	States,	and	

Y ijk ∼ Bernoulli
(
Z ij

∗
�ijk

)

Z ij ∼ Bernoulli
(
� ij

)

logit(�) = a + Xb

logit
(
�k
)
= c +Wkd

[
a, b, c, d

]
∼ R
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4 of 11  |     SOCOLAR et al.

the	Parulid	warblers,	we	reimplemented	the	modeling	framework	
of	 Jarzyna	and	 Jetz	 (2018)	 and	compared	 the	 traditional	MSOM	
with	the	bMSOM.	We	restricted	the	analysis	to	Parulid	warblers	
(as	opposed	to	the	full	North	American	avifauna)	for	the	sake	of	
computational	efficiency,	and	we	selected	the	Parulid	warblers	in	
particular	because	they	are	relatively	speciose	 (51	species	breed	
in	 the	 coterminous	 United	 States),	 display	 marked	 variation	 in	
species'	 ranges,	are	well	 sampled	by	BBS	protocols,	and	are	suf-
ficiently	homogeneous	in	their	territoriality	and	vocal	behavior	to	
ensure	 that	 they	 approximately	 satisfy	 exchangeability	 assump-
tions	 for	 hierarchical	modeling,	 even	 in	 the	 absence	 of	 species-	
specific	covariates.

We	downloaded	BBS	data	 for	 the	year	2018	 from	www.pwrc.
usgs.gov,	and	we	obtained	range	maps	for	all	Parulid	warblers	that	
regularly	 breed	 within	 200 km	 of	 the	 coterminous	 United	 States	
from	 Birdlife	 International	 (BirdLife	 International	 and	 Handbook	
to	the	Birds	of	the	World,	2019).	To	develop	a	range	covariate,	we	
measured	the	distance	from	the	starting	point	of	each	BBS	survey	
route	 to	 the	nearest	 edge	of	 each	 species'	 range,	 excluding	 range	
limits	associated	with	shorelines.	We	then	sought	a	transformation	
of	the	species	ranges	that	would	approximately	 linearize	the	 logit-	
proportion	of	occupied	points.	We	believed	a	priori	that	the	function	
should	asymptote	at	large	negative	distances	(i.e.,	in	the	core	of	the	
range),	and	we	sought	a	function	that	would	asymptote	at	zero,	such	
that	hierarchical	model	components	would	effectively	be	setting	a	
prior	on	occupancy	probabilities	in	the	core	of	a	species	range.	We	
believe	that	an	asymptote	at	zero	should	help	to	ensure	exchange-
ability	across	species	and	should	aid	in	eliciting	informative	priors	(if	
desired).

We	binned	all	BBS	point-	species	combinations	by	their	distance	
to the range edge (negative distances at in- range points, positive 
distance	at	out-	of-	range	points),	and	we	examined	several	functions	
to	select	one	that	approximately	linearizes	the	logit-	proportion	of	
occupied	points,	ultimately	selecting	the	inverse	logit	of	distance-	
to-	range	 expressed	 in	 units	 of	 200 km	 (Supporting	 Information, 
section	1).

We	fit	three	occupancy	models	to	these	data.	Model	1	(traditional	
MSOM)	is	the	model	of	Jarzyna	and	Jetz	(2018),	with	correlated	ran-
dom	intercepts	for	detection	and	occupancy	and	a	random	slope	for	
the	effect	of	elevation	on	occupancy	(Zipkin	et	al.,	2009):

Model	 2	 (bMSOM)	 extends	 Model	 1	 via	 the	 inclusion	 of	 the	
range	covariate	described	above,	to	become:

Model	3	(bMSOM	with	biogeographic	clipping)	 is	equivalent	to	
model	2	but	excluding	all	species-	point	combinations	>400 km	from	
the	mapped	range,	a	distance	beyond	which	no	detections	existed	
in the data.

We	compared	 the	predictive	performance	of	models	1,	 2,	 and	
3	 via	 approximate	 leave-	one-	out	 cross-	validation	 using	 Pareto-	
smoothed	 importance	 sampling	 with	 moment-	matching	 (Vehtari	
et al., 2017, 2021).	 For	 each	 pair	 of	models,	we	 compared	 overall	
predictive	performance	as	well	as	predictive	performance	for	each	
species	separately.	For	models	1	and	2,	we	compared	predictive	per-
formance	over	all	points	as	well	as	over	just	the	subset	of	points	that	
we	retained	after	biogeographic	clipping.	For	comparisons	involving	
model	 3,	we	 evaluated	predictions	 only	 over	 the	 subset	 of	 points	
retained	after	biogeographic	clipping,	as	this	model	sees	nondetec-
tions	outside	of	the	clipped	range	as	deterministic	structural	zeros.

Code	 to	 perform	 these	 analyses	 is	 available	 online	 at	 https://
github.com/jsoco	lar/bmsom_paper/	tree/maste	r/BBS.

2.4  |  Example 2: Forest conversion in Colombia's 
West Andes

We	applied	the	bMSOM	to	a	dataset	of	bird	species	at	146	point-	
count	stations	on	an	elevational	gradient	 from	1260	to	2680	masl	
in	Colombia's	West	Andes.	Each	point	was	visited	on	four	consecu-
tive	or	nearly-	consecutive	days	(Gilroy,	Edwards,	et	al.,	2014;	Gilroy,	
Woodcock,	et	al.,	2014).	Points	were	located	in	either	forest	or	pas-
ture	and	were	arranged	in	clusters	of	three	points	each	nested	in-
side	 one	 of	 three	 subregions.	 Following	 the	 taxonomy	 of	 BirdLife	
International,	910	bird	species	potentially	occurred	in	the	vicinity	of	
the	points,	based	on	biogeographic	clipping	 (see	below).	Of	 these,	
314	were	detected	at	least	once	and	596	were	never	observed.	Our	
inferential	goal	was	to	assess	how	point-	scale	species	richness	varies	
along the elevational gradient.

We	implemented	a	biogeographically	clipped	bMSOM	framework	
to	address	Colombia's	exceedingly	complex	biogeography.	We	incor-
porated	 two	 range	 covariates,	 based	 on	 elevation	 and	 geography.	
The	elevational	range	covariate	was	based	on	the	elevational	limits	
reported	in	Ayerbe	Quiñones	(2018),	supplemented	with	several	ad-
ditional	references	for	species	whose	taxonomic	treatment	differed	
between	Ayerbe	Quiñones	(2018)	and	BirdLife	International	(2020).	
We	standardized	the	elevations	of	each	point	across	species	by	lin-
early	rescaling	the	raw	elevations	of	the	points	such	that	an	elevation	
of	1	corresponded	to	the	upper	range	limit,	and	an	elevation	of	−1	
corresponded	to	the	lower	range	limit	(Figure	S1).	We	implemented	
biogeographic	clipping	at	species-	standardized	elevations	of	−3	and	
3,	beyond	which	our	dataset	contained	no	detections.	We	addition-
ally	implemented	temporal	clipping	for	migratory	species,	treating	all	
migrants	as	deterministically	absent	outside	of	their	normal	dates	of	
presence	in	Colombia	(Supplementary	Data).

We	derived	 the	geographic	 range	 covariate	using	digital	 range	
maps	from	Ayerbe	Quiñones	(2018;	see	also	Vélez	et	al.,	2021).	We	
implemented	biogeographic	 clipping	 at	 a	 buffer	 of	 160 km	around	
these	 maps,	 as	 well	 as	 at	 the	 crest	 of	 the	 West	 Andes	 and	 the	
floor	of	 the	Cauca	Valley	to	address	the	complex	biogeography	of	
birds	 in	 this	 region.	 Against	 this	 biogeographic	 clipping,	 our	 field	
data	 exposed	 errors	 of	 omission	 in	 just	 two	 species,	 indicative	 of	
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the	high	quality	of	the	Ayerbe	Quiñones	maps.	For	these	two	spe-
cies,	we	added	range	around	previously	known	clusters	of	records	
(eBird,	2021)	that	coincided	with	the	records	in	our	data,	and	we	re-
fined	the	biogeographic	clipping	to	incorporate	an	appropriate	buf-
fer	around	this	additional	range	(see	Supporting	Information, section 
2).	 The	 spatially	 balanced	 sampling	 of	 forest	 and	 pasture	 ensures	
that	this	post	hoc	addition	of	range	does	not	compromise	inference	
about	responses	to	deforestation.	Our	field	data	exposed	no	errors	
of	omission	against	our	temporal	clipping.

After	performing	all	clipping,	we	selected	an	appropriate	trans-
formation	 of	 raw	distance	 for	 the	 geographic	 range	 covariate	 fol-
lowing	 the	 procedure	 described	 for	 warblers	 above.	 Again,	 we	
approximately	linearized	the	logit-	proportions	by	taking	the	inverse	
logits	of	the	distance,	this	time	measured	in	units	of	approximately	
14.9	km	(Supporting	Information,	section	1).

We	modeled	occupancy	on	the	logit	scale	based	on	an	intercept	
and	coefficients	for	the	geographic	range	covariate,	the	elevational	
range	 covariate	 (linear	 and	quadratic	 terms),	 interactions	between	
the	 elevational	 range	 covariate	 (linear	 and	 quadratic	 terms)	 and	
whether	the	species	occurs	at	lowland	elevations,	land-	use,	18	spe-
cies	traits	(Table	S1),	and	the	interactions	of	those	18	traits	with	land	
use.	Our	random	effects	structure	incorporated	random	taxonomic	
intercepts	for	species	and	family,	random	spatial	intercepts	for	spe-
cies:cluster	 and	 species:subregion,	 and	 random	 taxonomic	 coeffi-
cients	 for	all	 range	covariates	 (species-	specific	 terms)	and	for	 land	
use	(species-		and	family-	specific	terms).	Occupancy	is	therefore:

We	modeled	detection	on	the	 logit	scale	based	on	an	 intercept	and	
coefficients	for	land	use,	time	of	day	(given	as	hours	post-	sunrise),	four	
species	traits,	and	the	interaction	between	time	of	day	and	the	median	
elevation	where	a	species	occurs.	Our	random	effects	structure	incor-
porated	random	taxonomic	intercepts	for	species	and	family,	a	random	
intercept	for	species:observer,	and	random	taxonomic	coefficients	for	
time	of	day	(species-	specific	terms)	and	land	use	(species-		and	family-	
specific	terms):

See	 Supporting	 Information	 (section	 3)	 for	 details	 of	 our	 prior	
specification.

To	assess	our	ability	to	recover	principled	trait-	based	estimates	
of	sensitivity	to	deforestation,	including	for	never-	observed	species,	
we	compared	the	sensitivity	estimates	from	the	model	(i.e.,	the	co-
efficients	 for	 the	 forest/pasture	 term)	 against	 independently	 esti-
mated	forest	dependency	scores	from	BirdLife	International	(2020).	
We	repeated	this	comparison	for	just	species	with	at	least	one	ob-
servation	in	our	data	and	for	just	the	never-	observed	species.

We	then	use	the	bMSOM	to	predict	 the	 local	species	richness	
(including	never-	observed	species)	 in	 forest	and	pasture	across	an	
elevational	gradient	in	the	Colombian	West	Andes.	For	comparison,	
we	also	estimated	species	richness	along	the	elevational	gradient	in	
forest	and	pasture	using	a	data-	augmented	multi-	species	occupancy	
model	including	the	314	observed	species	and	1000	never-	observed	
pseudospecies	(Dorazio	&	Royle,	2005).	To	enable	use	of	the	data-	
augmented	model,	 we	 removed	 all	 species-	specific	 covariates	 (in-
cluding	 information	 about	 range,	 traits,	 dates	 of	 occurrence,	 and	
family-	level	classification)	from	the	analysis.

2.5  |  Model fitting

We	implemented	occupancy	models	using	Hamiltonian	Monte	Carlo	
sampling	 in	 Stan	 (Stan	 Development	 Team,	 2021)	 via	 R	 packages	
brms	(Bürkner,	2017)	for	the	Parulid	warblers	and	cmdstanr	(Gabry	
&	Češnovar,	2021)	 for	 the	Colombian	birds.	We	performed	model	
comparison	using	the	R	package	“loo”	(Vehtari	et	al.,	2020).	For	all	
warbler	models,	we	ran	four	chains	for	1000	warmup	iterations	and	
1000	 sampling	 iterations.	 For	 the	 Colombian	 Andes,	 we	 ran	 four	
chains	for	1500	warmup	iterations	and	1500	sampling	iterations.	For	
the	data-	augmented	model,	we	encountered	substantial	challenges	
in	model	fitting;	we	describe	these	problems	and	their	resolution	in	
the Supporting	 Information	 (section	 4).	We	 ensured	 that	 all	mod-
els	(except	the	data-	augmented	model;	see	Supporting	Information, 
section	4)	converged	with	maximum	r-	hats	less	than	1.03	for	all	pa-
rameters,	no	divergences	in	the	Hamiltonian	trajectories,	and	energy	
fraction	of	missing	information	greater	than	0.2	in	all	chains.

Code	 to	 perform	 these	 analyses	 is	 available	 online	 at	 https://
github.com/jsoco	lar/bmsom_paper/	tree/maste	r/wAndes.

3  |  RESULTS

3.1  |  Warblers of the coterminous United States

The	inclusion	of	the	distance	covariate	in	the	bMSOM	yielded	dra-
matic	 improvements	 in	predictive	performance	 (Figure 1),	with	 an	
improvement	in	expected	log	predictive	density	(ELPD)	of	8558	with	
standard	error	(SE)	127.	Predictive	performance	improved	for	50	out	
of	51	species,	the	only	exception	being	a	marginal	decrease	of	−0.4	
(SE	0.8)	for	Tropical	Parula	(Figure 1a).

logit
(
� ij

)
=aij+�1ielevj+�2ielev

2
j
+�3ihabitatj+�4idistanceToRangeij+�5lowlandi

+�6
(
elevj× lowlandi

)
+�7

(
elev2

j
× lowlandi

)
+�8mtnBarrieri+�9valBarrieri

+�10elevMediani+�11elevBreadthi+�12forestPresenti+�13forestSpecialisti

+�14tfSpecialisti+�15dryForestPresenti+�16floodDrySpecialisti

+�17aridPresenti+�18migratoryi+�19
(
elevMediani× forestPresenti

)

+�20
(
elevMediani× forestSpecialisti

)
+�21massi+�22dietInverti

+�23dietCarni+�24dietFruitNecti+�25dietGrani+�26
(
habitatj×mtnBarrieri

)

+�27
(
habitatj×valBarrieri

)
+�28

(
habitatj×elevMediani

)

+�29
(
habitati×elevBreadthi

)
+�30

(
habitatj× forestPresenti

)

+�31
(
habitatj× forestSpecialisti

)
+�32

(
habitatj× tfSpecialisti

)

+�33
(
habitatj×dryForestPresenti

)
+�34

(
habitatj×floodDrySpecialisti

)

+�35
(
habitatj×aridPresenti

)
+�36

(
habitatj×migratoryi

)

+�37
(
habitatj×massi

)
+�38

(
habitatj×dietInverti

)
+�39

(
habitatj×dietCarni

)

+�40
(
habitatj×dietFruitNecti

)
+�41

(
habitatj×dietGrani

)

logit
(
�ijk

)
= cijk+�1ihabitatj+�2itimejk+�3massi+�4elevMediani+

�5migratoryi+�6dietCarni+�7
(
timejk×elevMediani

)

 20457758, 2022, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9328 by U

niversity O
f E

ast A
nglia, W

iley O
nline L

ibrary on [09/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/jsocolar/bmsom_paper/tree/master/wAndes
https://github.com/jsocolar/bmsom_paper/tree/master/wAndes


6 of 11  |     SOCOLAR et al.

Biogeographic	clipping	delivered	further	gains	in	predictive	per-
formance	at	in-	range	points,	with	an	ELPD	improvement	of	147	(SE	
17).	 Within	 the	 species-	specific	 regions	 that	 were	 retained	 after	
clipping,	predictive	performance	improved	for	33	out	of	51	species	
(Figure 1b).	Among	the	18	species	that	did	not	see	improvements,	we	
observed	the	largest	decrease	in	ELPD	in	Lucy's	Warbler,	but	even	
this	decrease	was	only	marginal	(−0.9;	SE	0.6),	which	is	too	small	to	
conclude	that	the	clipped	model	performs	worse	than	the	unclipped	
model	for	Lucy's	Warbler	or	any	other	species.	Biogeographic	clip-
ping	 also	 yielded	 substantial	 gains	 in	 computational	 efficiency,	
reducing	the	runtime	by	a	factor	of	almost	three,	from	a	mean	per-	
chain	execution	time	of	5.8	h	(worst-	case	chain	6.1	h)	to	2.0	h	(worst-	
case	chain	2.1	h)	on	an	M1	Macbook	Air.

Predicting	the	traditional	MSOM	across	space	yielded	relatively	
uniform	occupancy	probabilities	compared	with	the	bMSOM,	which	
universally	 predicted	 higher	 occupancy	 probabilities	 at	 in-	range	

points	and	lower	probabilities	at	out-	of-	range	points	(Figure 2).	The	
predictions	 of	 the	 clipped	 bMSOM	were	 generally	 quite	 similar	 to	
those	of	the	unclipped	bMSOM,	though	small	differences	were	ap-
parent	for	some	species.	In	these	cases,	the	clipped	model	tended	to	
estimate	steeper	elevational	relationships,	which	reflects	the	clipped	
model's	 flexibility	 to	 fit	 locally	 appropriate	 relationships	 uncon-
strained	by	the	need	for	accurate	prediction	at	severely	out-	of-	range	
sites.	For	example,	the	Mourning	Warbler	is	restricted	to	the	eastern	
United	States,	and	within	this	range,	it	tends	to	occur	at	high	eleva-
tions.	Without	clipping,	the	bMSOM	estimates	only	a	modest	positive	
elevational	relationship	(1.4,	95%	CI	0.8–	2.0),	because	steeper	esti-
mates	yield	unacceptably	high	occupancy	probabilities	 in	 the	high-	
elevation	mountains	of	the	western	United	States	(Figure 3).	Clipping	
allows	the	model	to	estimate	an	appropriately	steep	relationship	(3.2,	
95%	CI	2.1–	4.4)	within	the	species'	northeastern	range.	We	provide	
maps	of	predicted	occupancy	probabilities	for	all	species	in	Figure	S2.

F I G U R E  1 Differences	in	species-	specific	expected	log	pointwise	density	(ELPD)	calculated	by	approximate	leave-	one-	out	cross	
validation	for	the	BBS	data.	Points	represent	species-	specific	posterior	means	and	are	ordered	by	decreasing	ELPD	difference;	lines	
represent ±2	standard	errors.	Positive	values	indicate	superior	predictive	performance	in	the	first	model.	Comparisons	are	performed	across	
all	points	(a)	or	across	just	the	subset	of	points	that	are	retained	in	the	clipped	model	(b).

F I G U R E  2 Predicted	occupancy	
probabilities	for	prothonotary	warbler	
(left-	hand	column),	a	low-	elevation	
eastern	species,	and	red-	faced	warbler	
(right-	hand	column),	a	high-	elevation	
southwestern	species.	Predictions	are	
given	by	the	traditional	MSOM	(a,	b),	the	
bMSOM	(c,	d),	and	the	clipped	bMSOM	
(e,	f).	Equivalent	figures	for	all	species	are	
available	in	Figure	S2.
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    |  7 of 11SOCOLAR et al.

3.2  |  Forest conversion in Colombia's West Andes

The	 bMSOM	 yielded	 reliable	 trait-	based	 inference	 for	 the	 sen-
sitivity	 of	 the	 entire	 avifauna,	 including	 never-	observed	 species	
(Figure 4).	We	provide	a	summary	of	 the	fitted	model	posterior	 in	
Table	S1.	Among	species	with	at	 least	one	observation	and	classi-
fied	by	BirdLife	 International	as	having	either	high	 forest	depend-
ence	or	 low/no	 forest	dependence,	 the	model	universally	 inferred	
that	species	classified	as	highly	forest-	dependent	responded	more	
negatively	to	forest	conversion	than	other	species.	Even	among	spe-
cies	with	no	observations,	the	model	successfully	inferred	that	the	
vast	majority	of	species	classified	as	having	high	forest	dependence	
respond	more	negatively	 to	pasture	 than	species	with	 low/no	 for-
est dependence (Figure 4).	Moreover,	some	of	this	overlap	may	arise	
due	to	the	difficulty	of	accurately	categorizing	forest	dependence	in	
rarely	encountered	species.

The	bMSOM	provided	species-	specific	trait-	based	inference	on	
occupancy	probabilities	in	both	pasture	and	forest,	even	for	never-	
observed	 species.	 While	 the	 data-	augmented	 MSOM	 predicted	
similar	patterns	of	alpha-	diversity	along	the	gradient	 (Figure 5a,b),	
the	data-	augmented	model	also	displayed	specific	pathologies	that	
affect	both	 its	practicality	as	an	 inferential	 tool	and	the	quality	of	
the	resulting	inference.	First,	the	data-	augmented	MSOM	required	
dramatically	more	computational	resources	and	fine-	tuning	of	algo-
rithmic	parameters	to	successfully	fit	(Supporting	Information, sec-
tion	 4).	 Second,	 the	 data-	augmented	model	 implausibly	 estimated	
that	species	were	included	in	the	metacommunity	with	probability	
near	unity	(95%	credible	interval	0.995–	1.000).	The	data-	augmented	
model	accounts	for	the	non-	detection	of	the	1000	never-	observed	
pseudospecies	 species	 by	 ascribing	 to	 them	 extreme	 elevational	
ranges	that	overlap	little	with	the	sampling	points.	Thus,	the	data-	
augmented	 model	 predicts	 that	 never-	observed	 species	 occur	
most	frequently	at	both	the	lower	and	upper	extremes	of	the	gra-
dient (Figure 5c,d).	 At	 the	 lower	 end	 of	 the	 gradient,	 this	 pattern	

is	expected	based	on	the	tendency	for	species	richness	to	increase	
with	increasing	productivity	and	forest	stature	toward	lower	eleva-
tions	and	is	consistent	with	the	predictions	of	the	bMSOM.	At	the	
upper	end,	however,	this	pattern	is	at	odds	with	both	theoretical	ex-
pectations	 and	with	 the	 predictions	 of	 the	 bMSOM.	 In	 particular,	
the	 data-	augmented	model	 estimates	 a	 spurious	 increase	 in	 alpha	
richness	near	the	highest	sampling	points	(all	of	which	are	in	forest;	
Figure 5a)	due	to	an	uptick	in	occupancy	of	never-	observed	species	
(Figure 5c).

4  |  DISCUSSION

Ecologists	 increasingly	seek	 inference	about	occurrence	patterns	for	
multiple	 species	 over	 vast	 spatial	 scales	 (Janousek	 &	 Dreitz,	 2020; 
Jarzyna	&	Jetz,	2018).	We	show	that	it	is	possible	to	leverage	the	exist-
ing	multi-	species	occupancy	model	 framework	 to	provide	principled	
inference	over	 these	 large	scales	simply	by	 including	covariates	 that	
summarize	 the	 positions	 of	 sampling	 points	with	 respect	 to	 species	
ranges.	When	appropriate	range	information	is	available,	the	resulting	
biogeographic	models	deliver	improved	predictive	performance,	trait-	
based	inference	for	unobserved	species,	and	computational	speed-	up	
compared	with	traditional	approaches.	The	application	of	 traditional	
MSOMs	(that	lack	range	covariates)	at	biogeographic	spatial	scales	re-
sults	 in	 lack-	of-	fit	 and	unrealistic	 spatial	predictions,	 suggesting	 that	
modelers	must	 proceed	with	 great	 caution	when	 fitting	 large-	scale	
MSOMs	in	contexts	where	a	priori	range	information	is	unavailable.

4.1  |  Core advantages of the bMSOM

There	 are	 three	 main	 advantages	 of	 bMSOM	 over	 traditional	
MSOMs.	 First,	 we	 get	 better	 inference	 on	 the	 observed	 species	
for	a	range	of	reasons.	 It	 is	unsurprising	that	the	 introduction	of	a	

F I G U R E  3 Predicted	occupancy	probabilities	for	mourning	warbler	from	(a)	the	traditional	MSOM,	(b)	the	bMSOM	without	clipping,	(c)	
the	clipped	bMSOM,	and	(d)	the	clipped	bMSOM	coefficients	projected	across	the	entire	country.	Mourning	warbler	tends	to	occur	at	higher	
elevation	within	its	eastern	range.	Biogeographic	clipping	allows	the	model	to	estimate	appropriately	strong	elevational	relationships	in	the	
eastern	United	States,	without	the	need	to	avoid	predicting	high	occupancy	probabilities	across	the	mountainous	western	United	States.	In	
(d)	the	steep	elevation	relationship	overcomes	the	negative	relationship	with	geographic	distance	to	yield	high	occupancy	probabilities	in	the	
mountains	of	the	western	United	States.
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8 of 11  |     SOCOLAR et al.

covariate	 that	 reliably	 distinguishes	 in-	range	 from	 out-	of-	range	
points	 should	 improve	 predictive	 performance,	 but	 the	 full	 scope	
of	 the	 improvement	 is	broad	and	at	 times	subtle.	For	example,	al-
though	 revising	 extralimital	 occupancy	 probabilities	 to	 zero	 after	
model	 fitting	eliminates	obviously	 erroneous	predictions	of	 extra-
limital	occupancy,	doing	so	does	not	enable	accurate	estimation	of	
within-	range	 occupancy	 probabilities	 (Jarzyna	 &	 Jetz,	 2018).	 The	
traditional	 MSOM's	 conflation	 of	 occupancy	 probabilities	 at	 in-	
range	and	out-	of-	range	points	induces	a	strong	negative	bias	in	oc-
cupancy	probabilities	at	in-	range	points	(Figure 2).	Range	covariates	
additionally	improve	predictive	performance	by	placing	species	on	a	
common	scale,	where	exchangeability	assumptions	are	more	 likely	
to	 hold.	 For	 instance,	 by	 using	 species-	standardized	 elevations	 to	
model	avian	occupancy	in	Colombia's	West	Andes,	we	ensured	that	
the	magnitudes	of	the	quadratic	coefficients	are	likely	to	be	similar	
across	 species,	 irrespective	 of	 heterogeneity	 in	 elevational	 range	

breadth.	 In	 traditional	MSOMs,	heterogeneity	 in	elevational	 range	
breadth	might	be	confounded	with	phylogeny,	traits,	or	other	pre-
dictors	of	interest,	which	could	impede	clear	inference	about	covari-
ate	relationships	(Sólymos	et	al.,	2017).

Likewise,	the	geographic	range	covariates	ensure	that	the	inter-
cepts	for	all	species	correspond	to	occupancy	probabilities	in	their	
core	ranges,	partially	removing	potential	relationships	between	in-
tercepts	 and	 range	 size.	 In	 the	BBS	 analysis,	 the	 bMSOM	yielded	
large	gains	in	predictive	performance	even	for	the	most	widespread	
species	 in	 the	dataset,	 the	Common	Yellowthroat	 (ELPD	gain	153,	
SE	18).	Part	of	this	effect	results	from	principled	handling	of	range	
margins	in	southern	Texas	and	California,	but	part	arises	from	bet-
ter	pooling	of	the	intercept	across	species.	Whereas	the	traditional	
occupancy	 model	 pools	 the	 intercept	 for	 Common	 Yellowthroat	
with	intercepts	for	other	species	that	reflect	a	mixture	of	 in-	range	
and	 out-	of-	range	 occupancy	 probabilities,	 the	 bMSOM	 pools	 the	

F I G U R E  4 Model-	estimated	logit-	scale	effects	of	forest	conversion	to	pasture	on	avian	occupancy	in	the	West	Andes.	The	pasture	index	
is	the	difference	in	the	log-	odds	of	occupancy	between	forest	and	pasture.	Data	points	are	posterior	medians	for	individual	species.	Box	
plots	are	grouped	by	whether	or	not	the	species	was	detected	at	least	once	during	sampling	(observed/never-	observed),	and	by	whether	
BirdLife	international	independently	ascribes	the	species	to	the	“high”	forest	dependency	category	(high)	or	to	the	“low”	or	“not	a	forest	
species”	categories	(low).	Species	ascribed	to	“medium”	or	“unknown”	forest	dependency	categories	are	omitted	from	this	figure.

F I G U R E  5 Predicted	point-	scale	avian	
richness	for	all	species	(a	and	b)	and	only	
never-	observed	species	(c	and	d)	along	the	
west	Andean	elevational	gradient	in	forest	
(a,	c)	and	pasture	(b,	d).	The	bMSOM	is	
shown	in	gray	and	the	data	augmented	
MSOM	is	shown	in	blue	with	80%	credible	
interval	overlaid.	The	data-	augmented	
model	spuriously	infers	an	excess	of	
never-	observed	species	at	points	on	the	
upper	end	of	the	elevational	gradient.
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intercept	for	Common	Yellowthroat	with	intercepts	that	reflect	in-	
range	occupancy	probabilities	across	all	species.	Thus,	the	bMSOM	
estimates	a	larger	intercept	for	Common	Yellowthroat	than	the	naïve	
MSOM,	yielding	better	predictive	performance.

A	second	key	advantage	of	 incorporating	range	covariates	 into	
occupancy	models	 is	their	ability	to	specify	both	the	metacommu-
nity	 size	and	 the	 identity	of	every	 species	 in	 the	metacommunity.	
Doing	so	simplifies	the	formulation	and	 implementation	of	models	
that	 include	 never-	detected	 species,	 enables	 the	 use	 of	 species-	
specific	 covariates	 to	 model	 occupancy	 for	 never-	detected	 spe-
cies,	 and	 eliminates	 uncertainty	 in	 the	 total	 metacommunity	 size	
as	 a	 source	 of	 uncertainty	 in	 point-	level	 species	 richness.	 Thus,	
the	bMSOM	ameliorates	 the	 substantial	 computational	 challenges	
associated	with	 fitting	 the	 data-	augmented	model,	 the	 limitations	
on	 inference	 about	 never-	detected	 species	 inherent	 to	 the	 data-	
augmented	model	(Tingley	&	Beissinger,	2013),	and	a	variety	of	pa-
thologies	 that	 arise	 in	 the	data-	augmented	model	when	detection	
probabilities	are	low	(see	Tingley	et	al.,		2020).	At	the	same	time,	the	
bMSOM	avoids	assuming	that	variation	in	occupancy	across	space	
or	 in	 trait	distributions	affecting	occupancy	or	detection	 is	 readily	
discretized	(Sutherland	et	al.,	2016; Tenan et al., 2017).	In	our	anal-
ysis	of	the	West	Andean	avifauna,	the	bMSOM	was	able	to	recover	
the	forest	dependency	of	never-	observed	bird	species	with	high	fi-
delity	(Figure 4).	By	leveraging	this	ability,	we	were	able	to	predict	
alpha-	richness	in	forest	and	pasture	for	the	full	community	using	a	
procedure	that	avoided	predicting	spurious	patterns	among	never-	
observed	 species	 (Figure 5)	 and	was	 not	 subject	 to	 the	 computa-
tional	challenges	of	 fitting	 the	data-	augmented	model	 (Supporting	
Information,	section	4).

A	third	benefit	associated	with	range	covariates	is	the	ability	to	
perform	biogeographic	clipping,	which	can	substantially	reduce	the	
computational	burden	of	model	fitting	(a	threefold	reduction	in	our	
BBS	analysis)	and	can	improve	model	fit	at	biologically	relevant	sites	
(Figure 3).	Biogeographic	clipping	also	enables	modelers	to	account	
for	biogeographic	barriers	that	produce	abrupt	drops	in	occupancy	
probability,	with	zero	occupancy	probability	on	one	side	of	the	bar-
rier.	Such	drops	are	difficult	to	capture	with	general-	purpose	range	
covariates	that	must	also	account	for	the	more	gradual	decay	in	oc-
cupancy	probability	 at	 other	 range	margins.	By	 removing	 species-	
point	combinations	on	the	wrong	side	of	biogeographic	barriers	from	
analysis,	 these	 out-	of-	range	 detection	 histories	 do	 not	 propagate	
(mis)information	about	 the	distance-	decay	 in	occupancy	probabili-
ties	near	mapped	range	margins	elsewhere.

4.2  |  Application in practice and conclusions

The	importance	of	prior	range	information	highlights	one	potential	
pitfall	in	occupancy	modeling	(including	the	traditional	occupancy	
model)	at	scale:	when	is	a	range	map	good	enough?	While	a	range	
map	does	not	need	to	precisely	reflect	range	margins,	significant	
errors	of	omission	will	carry	through	to	posterior	 inference	with	
zero	occupancy	probabilities	at	locations	where	a	species	is	in	fact	

present.	 In	 our	West	Andes	 dataset,	 for	 example,	we	 identified	
deficiencies	 for	 a	 minority	 of	 species	 (n =	 2),	 requiring	 manual	
adjustment	of	 range	maps	 to	bring	 them	up	to	date	with	known	
species'	occurrences.	While	expert	knowledge	can	be	harnessed	
both	to	assess	the	quality	of	range	maps	as	well	as	make	any	req-
uisite	changes,	this	does	raise	the	danger	of	 inflated	“researcher	
degrees	 of	 freedom”	 (Simmons	 et	 al.,	2011),	 and	manual	 updat-
ing	of	range	maps	based	on	the	observed	data.	Judicious	care	 is	
needed	to	ensure	that	these	choices	do	not	generate	unfounded	
inference.

Overall,	 the	 bMSOM	 carries	 advantages	 that	 are	 especially	
well	suited	for	estimating	covariate	relationships	by	pooling	across	
species	 with	 disparate	 ranges,	 uncovering	 local-	scale	 covariate	
relationships	 while	 controlling	 for	 broad-	scale	 biogeography,	 es-
timating	 alpha-	scale	 species	 richness,	 and	 trait-	based	modeling	 of	
never-	observed	species.	On	the	other	hand,	due	to	the	requirement	
for	preexisting	range	data	the	bMSOM	is	 ill	 suited	for	exploratory	
species-	distribution	modeling	at	biogeographic	 scales	or	 inference	
about	the	effects	of	environmental	predictors	that	are	spatially	au-
tocorrelated	 over	 scales	 comparable	 to	 species	 entire	 ranges.	We	
caution,	 however,	 that	 except	 in	 data-	rich	 contexts	where	 ranges	
can	be	reliably	estimated	from	data	for	all	species	under	study	(and	
thus	multispecies	approaches	are	unlikely	 to	be	necessary	or	use-
ful),	approaches	that	do	not	incorporate	range	information	are	likely	
to	 yield	 poor	 inferences	 about	 occupancy,	 biasing	 in-	range	 occu-
pancy	probabilities	downward	while	also	predicting	non-	negligible	
occupancy	in	many	areas	far	removed	from	a	species'	range.	There	
thus	appear	to	be	general	limitations	to	the	application	of	MSOMs	
at	large	spatial	scales	that	subsume	significant	biogeographic	turn-
over.	In	the	absence	of	major	sampling	efforts	that	allow	range-	wide	
variation	 in	occupancy	 to	be	estimated	 from	the	data	directly,	ap-
plication	of	occupancy	models	 to	species	or	 taxonomic	groups	 for	
which	range	information	cannot	be	included	will	typically	yield	poor	
inference.
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