A Novel and Fast Approach for Population
Structure Inference using Kernel-PCA and
Optimisation (PSIKO)

Andrei-Alin Popescl, Andrea L. Harpet, Martin Trick!, lan
Bancroff, and Katharina T. Hubér

"School of Computing Sciences, University of East Anglia, UK
8Centre for Novel Agricultural Products (CNAP) Departmeht o
Biology, University of York, UK
TDepartment of Computational and Systems Biology, Johndnne
Centre, UK

October 24, 2014



Running title: Population Structure Inference using PSIKO

Keywords: admixture inference, kernel-PCA, population structuren@ne-wide
Association Studie€-matrix

Corresponding Author: Dr. Katharina T. Huber

School of Computing Sciences, University of East Anglia, UK
Email:katharina.huber@cmp.uea.ac.uk



Abstract

Population structure is a confounding factor in Genome \Widsoci-
ation Studies, increasing the rate of false positive aaioais. In order to
correct for it, several model-based algorithms such as ARMJRE and
STRUCTURE have been proposed. These tend to suffer fromatteHat
they have a considerable computational burden, limitirggy thpplicability
when used with large datasets, such as those produced byGémdra-
tion Sequencing (NGS) techniques. To address this, norehtmbed ap-
proaches such ea8NMF and EIGENSTRAT have been proposed, which
scale better with larger data. Here we present a novel natehlzased
approach, PSIKO, which is based on a unique combinatiomeatikernel-
PCA and least-squares optimisation and allows for the emfeg of admix-
ture coefficients, principal components, and number of deupopulations
of a dataset. PSIKO has been compared against existingnteamithods on
a variety of simulation scenarios, as well as on real bicialgiata. We found
that in addition to producing results of the same qualitythsiotested meth-
ods, PSIKO scales extremely well with dataset size, beimgiderably (up
to 30 times) faster for longer sequences than even statee@rttmethods
such assNMF. PSIKO and accompanying manual are freely available at
https://www.uea.ac.uk/computing/psiko.

INTRODUCTION

Population stratification has been commonly used to inyatithe structure of
natural populations for some time and is also recognisedcasif@unding factor
in genetic association studiesNKWLER et al. 1988; MARCHINI et al.2004). As

a result, programs for detecting population stratificahame become a standard
tool for genetic analysis. Such approaches generally agparto two classes.
Model-based approaches such as STRUCTURET@®HARD et al. 2000) and
the closely related ADMIXTURE approach (AXANDER et al.2009) are desir-
able in that they return@-matrix which for each accession of the (marker) dataset
indicates the proportion of its genotype that came from dnK & 2 assumed
founder populations. This biological interpretability @matrices conveniently
lends itself to a subsequent use in association studies.h®other hand, such
approaches often suffer from long runtimes, particulaslylataset size increases.
This problem is becoming particularly exacerbated withititeeased use of Next
Generation Sequencing (NGS) and large SNP chips to devetwkemdatasets



(KiM et al. 2007; THE INTERNATIONAL HAPMAP CONSORTIUM 2007). Con-
versely, non-model based approaches such as EIGENSTR®&ACTERt al.2006)
which uses Principal Component Analysis (PCA), tend towandch shorter run-
times making them more convenient when analysing large enadts. Unfortu-
nately, EIGENSTRAT only returns principal components (P&s dataset and
not aQ-matrix. Some non-model based approaches such as thelyeicera-
duced sparse-Non-negative-Matrix-FactorizateM F) method (RICHO et al.
2014), have made advances regarding these issues, and au@smatrix for
use in association genetic analysis whilst significantly&ming run-times. Like
EIGENSTRAT,sNMF can be thought of as a feature extraction approach aimed
at reducing the dimensionality of a high dimensional ddtddewever the matri-
ces used by both approaches to achieve this reduction Héseedt mathematical
properties (KM and ARk 2007). Even sosNMF still suffers from longer run-
times with increased number of markers.

In this paper, we propose the novel PSIKO approach whichmesalikernel
PCA based. Like EIGENSTRAT, PSIKO returns significant pipat com-
ponents of a dataset. Contrary to EIGENSTRAT though, it glsoerate€-
matrices and these are of comparable quality to those peadbyg STRUC-
TURE, ADMIXTURE, andsNMF. In addition PSIKO'’s scaling properties are
better tharsNMF’s (and thus STRUCTURE's and ADMIXTURE’s) when the
dataset size increases, making it particularly attradtvéarge datasets.

We rigorously tested the performance of PSIKO using sinedlatatasets,
designed to evaluate the effects of inbreeding, noise ings&ata, and SNP prun-
ing, whilst enabling us to compare runtime and scaling pritgin comparison
to leading approaches such as STRUCTURE, ADMIXTURE aNMF.

Although we simulated a range of biologically motivatedrsn@s, as a more
realistic test, we also assessed the performance of PSIKQ-foatrix estima-
tion from two biological datasets. The first of these was atietly small diversity
panel comprising 88rassica napusines which had been previously used to per-
form associative transcriptomics of seed traita @RER et al.2012). This dataset
is of particular interest as it could be considered to haverapiex evolutionary
history.B. napuss a relatively recently formed species, having arisen fspon-
taneous hybridisation betwe&h rapaandB. oleraceaas little as 10,000 years
ago. It exhibits considerable phenotypic variation, ides spring, semi- and
winter ecotypes and has been cultivated as both vegetathleilseed crops. The
most intensive breeding occurred over the last 50-60 yeapsdduce the most
commonly used ‘canola type’ oilseed rape cultivars witthidotv erucic acid and
low glucosinolate content in the seed. Many of the lines is fiiological dataset
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will have been included in these breeding programmes andicgroups (such as
the winter oilseed rape lines) may have a complex breedstgiyi Despite this,
the wide diversity of accessions in the panel enabled 1@13P markers to be
discovered. Originally the population stratification oistset of accessions was
analysed using STRUCTURE before using the identif@chatrix in a mixed
linear association model (MLM). We decided to compare @amatrices from
PSIKO to those of STRUCTURE as well aBIMF and ADMIXTURE, and
determine how thes®-matrices affect the results of the MLM for the original
seed oil traits.

On its own and in combination with PLINK’s sliding window SN¥Puning
procedure, we also tested tQematrices produced by PSIKO and the three other
methods under investigation on a subset of the HapMap Phpsge€tt dataset
(THE INTERNATIONAL HAPMAP CONSORTIUM 2010). This dataset should pro-
vide a more standard random mating model than the Brassiaaetawhilst pro-
viding an excellent real-life example of the very large neairdatasets that will
become more common with the advances in sequencing teayiolo

MATERIALS AND METHODS

In this section, we first provide an outline of PSIKO in ternisadwo step ap-
proach and then describe these two steps in detail. Thisiattades a brief
description of kernel-PCA (&HoLkoPF et al. 1999) as its main underlying tech-
nigue. We then present details on the simulation experisreamd the real biolog-
ical datasets that we used to assess the performance of R 3i&e the former
also includes behaviour under noise, missing data, inbrgethrge datasets, and
SNP pruning. A presentation of PSIKO in terms of pseudo codg Ioe found in
Supplementary file 1.

We start with remarking that we follow (8sELHARDT and STEPHENS2010)
to infer aSNP matrixfrom a dataset given in terms of a sequencd of 1 SNPs
andn > 1 accessions, that is,dax n matrix whose entries are 0,1 and 2. For this,
we use a reference sequence, and count for each locus ofessantthe number
of copies of the reference allele found at that locus. Sucdkference sequence
could, for example, be obtained as inAIBCROFT et al. 2011) or be one of the
accessions present in the dataset.

Method outline: Given a dataseX in the form of ad x n SNP matrix, PSIKO
aims to infer the numbef of founders ofX as well as significant PCs and
matrix. It consists of two main steps: dimensionality redct (Step ) and pop-



ulation structure inference (Step Il). The purpose of Steptd infer significant
principal components oK and also obtain an estimate f&r. For this we use
a combination of the Tracy-Widom test{PFERSON et al. 2006) with a power-
ful PCA-based technique called linear-kernel PCA. Due ®déntrality of that
technique to PSIKO, we also present an outline of it in thep stThe purpose
of Step Il is to quickly find good estimates for thacestry coefficientghat is,
the entries of th&-matrix. For this, we exploit the properties of a PCA-rediice
dataset to cast the problem of inferring population stmgctuithin a least squares
optimization framework.

Step I: Dimensionality reductioRCA is a popular dimensionality reduction
method that allows one to reduce the number of variableseoiriput datasex
(given in terms oM), at the same time keeping as much variability in the data as
possible. It has proven very useful in population geneticsfaund in (RTTER-
SoN et al. 2006) and (Mx and Avios 2012) to exhibit desirable properties when
applied to datasets containing admixed individuals. H@wéwe inner workings
of PCA imply that it does not scale well with increasing numbe&SNPs. To
overcome this problem and thus obtain a method that is agpédo large NGS
datasets we employ a special kind of PCA called kernel-PCihwis known to
scale well for large numbers of variables (SNPs in our casey(N P. MURPHY
2012). Rather than carrying out a PCA-analysis directly agivan dataset, in
kernel-PCA that dataset is first projected to some new higiaensional (un-
known) feature space, and then classic PCA is applied toethdtmg projection
of the dataset. To overcome the problem that this projectiag be difficult to
compute, a technique callé@rnel trickis sometimes used. Due to its centrality
to PSIKO, we next describe it within a kernel-PCA settinge(kN P. MURPHY
2012).

For X as above, we start with remarking that if it is centered asritssd
in (PRICE et al. 2006) then performing PCA on it reduces to finding an eigen-
decomposition of the x d-dimensional sample covariance matiX ™. Suppose
W is the matrix of eigenvectors amdl is the diagonal matrix of eigenvalues of
such a decomposition. Thél = XUA~Z whereU is the matrix of eigenvectors
of then x n-dimensional inner product matrk = X' X and performing PCA on
X is equivalent to carrying out an eigen-decompositioK of

SupposeX is projected into a higher dimensional spakeia a mapg, and
forall 1 <i<n, put@ := @(xj). Then performing PCA on the projection Xf
is equivalent to carrying out an eigen-decomposition ofitimer product matrix
Ko = ((@,¢))1<i,j<n. Computing these inner products directly tends to be dif-



ficult as the projectiomp is unknown. By replacing the inner productg, ¢;) of
Ko with the valuesc(x;, x;j) of a real-valued functior onX x X called a kernel
function, the kernel trick overcomes this problem by allogvfor computation of
said inner products without having to directly compgtdnformally speakingk
is a proxy for the inner product i.

To obtain the required lower dimensional datasetUgtdenote the matrix
of eigenvectors oK ¢ in an eigen-decomposition &4, let Agp denote the asso-
ciated diagonal matrix of eigenvalues anddetenote an accession ¥f Then the

1
kernel-PCA projection of is kxyUap/Ag,? whereky = (K(X,X1),K(X,X2), ..., K(X,Xn)).
The gain in speed of kernel-PCA over PCA (and thus the alititgope with
large NGS datasets) is an immediate consequence of thehi@ictomputing
Ko requiresO(n?d) operations and a furthed(n®) are required for its eigen-
decomposition, (as opposed®@d?n) andO(d3) for PCA for the corresponding
tasks) which amounts to considerably fewer operationsdondd-PCA wherd is
much larger tham.

Then for Step | we proceed as follows. We first perform a lineanel-PCA
for X, that is, we take the kernel function to be the inner prodetiveen acces-
sions ofX. Subsequent to this we subject the resulting eigenvaluteetdracy-
Widom test to identify significant principal componentsgqgeg. (BERESNETO
et al.2005) for a survey of attractive alternative approacheBiis #est has proven
very popular in population genetics and relies on the faadtribn-zero eigenvalues
of a matrix follow a Tracy-Widom distribution. Checking wther an eigenvector
is a significant principal component of that matrix or notrtreduces to check-
ing whether its associated eigenvalue passes a certastistdtsignificance test
(PATTERSON et al. 2006).

Step II: Population Structure Inferen&@mulation studies indicate that a PCA-
reduced dataset obtained in Step | can be represented in terms fa 1)-
dimensional simplex#k 1 whereK > 2 (see e.g. Figure 2 for examples for the
caseK = 3, and (RTTERSON et al. 2006) and (M» and AMos 2012) where this
phenomenon has also been observed for ge@ral he vertices of such a sim-
plex correspond to the putatifeundersof the dataset, that is, its non-admixed
accessions. The position of an accession relative to trertiees encodes the ad-
mixture proportion of that accession in the sense that itbbeamniquely expressed
as a convex combination of the vertices of that simplex. Rifgréntly, with
a1, ay,...,ak denoting the vertices of the simplex« 1 representing a datas¥t



found in Step |, any of its accessiorngan be expressed as

K
Xzi;)\iah

where, for all 1<i1 <K, the quantityA; > 0 is the genetic contribution of founder
a; to x and ZiK:l/\i = 1. Thus, the components of tlecestry vectoy =
(A1)1<1<k of x can be thought of as the admixture coefficientsxaind com-
puting them is straight forward using standard argumeis finear algebra if
the matrixA = (a3, ay, ...,ax) of founders is known. If this is not the case then,
by viewing the matrixAQ as an approximation of, the matrixA (and thus the
Q-matrix of X) can be inferred using least squares optimisation. Thils blown

to minimizing, for a PCA-reduced SNP matifound in Step I, the quantity

IX - AQ|3, @)

with respect toA andQ, whereQ = (Ax)xex, and||B||r = /5K, ztj:lbﬁ- is the
Frobenius norm of a matri® = (bjj)1<i<k 1<j<t- A detailed explanation on how
Equation (1) is solved may be found in Supplementary file 1.

Simulated Datasets and performance measure: In this section, we present
an outline of how we generated the various types of dataseterpginning our
simulation study for assessing PSIKO’s performance. Intewid we also briefly
review the Root Mean Squared Error measure which we use assasent crite-
rion. We start with providing details concerning our siniida study.

Simulated datasets generatitve used the command line-based coalescent
simulatormsms (EWING and HERMISSON 2010) to first simulate founder allele
frequencies and then used them to simulate admixture propstand genotypes
of admixed individuals. More precisely, we simulatéd= 3,4, ...,10 indepen-
dent, randomly mating populations each of which comprised ihdividuals,
where by anndividual we mean a sequence comprisinglofoci evolved over
a period of 10,000 generations (see Supplementary file 1xactensmscom-
mands used). Here, the number of generations is biologigabpired and the
number of individuals and the vallie= 3 is based on (AEXANDER et al.2009).
The values we chose farwere 13,262 (which is as in (&£XANDER et al.2009))
and, to shed light on to the scalability of PSIKO, also 100;0@50,000 and 2.5
million. We then used these individuals to calculate fouraliele frequencies
fi1, feo, ..., fu forall L < k < K.

Once obtained, we simulated the genotype of an individuallocus by locus
basis using the following two-step process. For a ldafsan individuali, we first
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simulated the foundez; of | by sampling from a multinomial distribution with
parameter the admixture proportions for individual'he admixture proportions
were sampled from a Dirichlet distribution and represeatdbntribution of each
founder to the dataset. Subsequent to this, we simulateyetietype of individual
i at locusl by sampling from a multinomial distribution with parametigf the
allele frequency of population at locusl (see Figure 1 for a summary of this
two-step process).

We repeated this process 1,000 times to obtain an admixedetatontaining
1,000 individuals.

Compute empirical al-

lele frequer}cies to form Sample admixture propor-
vector Fy for each pop- tions q; (1 < k < K) for x;
ulation. from a Dirichlet distribution.

Simulate K independent

randomly mating popula- Fy
tions for 10,000 genera-
tions. /
\ Fk
Xi— X
F;
Sample genotype from F,
for each simulated indi-
F, vidual x; based on qy;.
F,

Figure 1: A summary of how the datasets underpinning our lsitiaun exper-
iments were generated. Each of the21.. K encircled values indicates an
founder population generated with thens software. For all K k <K, the vec-
tor Fy represents empirical allele frequencies computed for e&tie K founder
populations (i. e.Fx = (fk1, fko, - . ., fk)) @nd the valuesy; represent the propor-
tion populatiork contributes to accessiof of the datasex.

Performance measuiBo assess the performance of the four approaches under
consideration with regards to their ability to recover thewnQ-matrix underly-
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ing a dataset, we used the Root Mean Squared RiEEbetween twd-matrix
Q andQ, given by:

RMSE= \/%Zg(qik_qifk)z )

wheren represents the number of individuals (1,000 in our case)kamepre-
sents the number of foundets & 3,4,...,10 in our case) andandgj, are the
elements of) andQ’ respectively, where £i <nand 1< k <K.

Parameter settingBor all our simulation experiments we used ADMIXTURE
and sSNMF with their respective default settings, as suggestethbyr authors.
For STRUCTURE, we used the following settings. We assumeuaixati pop-
ulations with independent allele frequencies. We set thgtle of the burn-in
period to 2,000 iterations and ran the program for an additi@,000 iterations
after the burn-in period. All remaining parameters weredusith default values.
To ensure fairness in runtime comparison between the alboge methods and
PSIKO, we only compared their runtimes for the ground trudlug ofK, thus
ensuring that a single run of PSIKO was timed against a smuglef all the other
methods.

Biological Datasets. To assess the performance of PSIKO with challenging
biological datasets, we first performed a comparison of@hmatrix provided
by PSIKO to those estimated using STRUCTURE, ADMIXTURE ahNMF
for a set of 84 diversBrassica napusiccessions as described inARRPER et al.
2012). Over half of these accessions are winter oilseed tygyEs (OSR; 49),
but the rest comprise diverse winter fodder types (5), gp@®R (14), Chinese
semi-winter OSR (5), Japanese kale (2), Siberian kale (8)savede (7). Q-
matrix estimations were compared directly and subsequas#d to perform lin-
ear model association mapping following the method outlime(HARPER et al.
2012). Briefly, theQ-matrices were used as covariates in general linear mod-
els (GLM), and a mixed linear models (MLM), where a relatestneeasure was
included as a random effect for two seed oil traits, i.e. ieracid and glucosi-
nolate content using the program TASSELR@EBURY et al.2007). The results
of these models were then compared to their P-value expatsatResults were
presented as QQ-plots showing observed against expecigf lealues for each
of the four stratification methods, and each of the seed aiilstand association
model types.

To also investigate PSIKO in a human population context, pmied it to a
subset of the HapMap Phase 3 dataset§ TNTERNATIONAL HAPMAP CON-
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SORTIUM 2010). That subset comprised 541 individuals spanning thepy
ings with the following sampling scenarios. African ancgst Southwest USA
(ASW), Yoruban in Ibadan, Nigeria, West Africa (YRI), Utadsidents with North-
ern and Western European ancestry from the CEPH collec@i&uj and Mexi-
can ancestry in Los Angeles, California (MEX). Each induatiwas genotyped
over 1,457,897 SNP loci. We remark in passing that the cholicataset is as
in (ALEXANDER et al. 2009) noting though that that paper used an older version
of the dataset and that those sequences had been pruned sadhaomprised
13,298 genotyped SNP loci (AXANDER et al. 2009). The general understand-
ing of the dataset is that the ASW sample is admixed with dnessrom YRI
and CEU and that MEX is admixed with ancestries from CEU andresampled
founder population @KOBSSON et al. 2008; L et al. 2008; ALEXANDER et al.
2009). Therefore the number of founders for this datasetpe@ed to be three.

RESULTS

Bearing in mind that AMIXTURE has been shown in (&XANDER et al. 2009)
to be faster than SRUCTURE, FRAPPE (TANG et al. 2005) and NSTRUCT (GAO
et al.2007), and that the recently introducessTSTRUCTURE approach (R
et al.2014) has runtime comparable to ADMIXTURE ARet al.2014), to asses
PSIKO’s performance we only compared it against ADMIXTURBdaNMF
and, due to its popularity, lTRUCTURE For this, we used a computing cluster
with Intel Sandybridge Dual processor, 8 core E5-2670 2.6GRU’s and 2Gb
of DDR3 memory at 1066Mhz, with Intel Hyper-threading digab We simu-
lated different scenarios for how populations might havesesr. These simula-
tion studies are similar in spirit to those performed inEXANDER et al. 2009).
Additionally we tested the methods on real biological exksp We start with
describing the results of the simulation study which alsdudes details on the
parameters we varied and their ranges. We then present durgsfor the bio-
logical datasets.

Simulated datasets:. As outlined above (see Materials and Methods) the pa-
rameters we varied were the numikeof founders and the respective Dirichlet
distribution parameters for them. Since their choices dépm the values oK
employed we will detail them as part of a separate treatnmetiteocaseK = 3
andK > 4. Before detailing these cases though, we remark that |twesdor the
Dirichlet distribution parameters correspond to almostixture-free populations
whereas values close to one correspond to heavily admiygdaitons. Thus, our
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simulation study allows us to assess the performances ohétieods in question
on highly admixed and highly non-admixed populations. Veetsiur discussion
with remarking that the value fd€ was correctly recovered by all tested methods
for each of the constructed simulated datasets.

ForK = 3, and datasets with sequence length 13,262 we chose thevahres
for the three Dirichlet distribution parameters as inEXANDER et al.2009), re-
sulting in six different simulation scenarios. Three ofdbdacenarios were asym-
metric meaning that in each case at least one Dirichletidigion parameter was
different from the other two and the other three were symimeateaning that in
each case all Dirichlet distribution parameters were tiheesdor each of the six
scenarios we generated 100 datasets, resulting in a t@d@0Dadatasets. These we
then analysed with regards to their behaviour under PSIKg@ kglow), and the
average Root Mean Square Error for @ematrices found by each of the meth-
ods considered, where the average is taken over all 100adaitafsa scenario (see
Materials and Methods). Furthermore, for each of the thezpisnce lengths,
100,000; 250,000 and 2.5 million we generated 10 datasdiefase using the
symmetric Dir(1,1,1) parameter distribution. To assesffect of SNP-pruning
we also generated a further 100 datasets following a similtatocol (see below
for details). Additionally, to test PSIKO'’s robustness &vitions from our sim-
ulation model, we also simulate scenarios with noise, mgsdata and inbreeding
present.

Behaviour of a dataséio investigate the behaviour of PSIKO when applied to
a dataset generated under each of the six scenarios, wembntimse one dataset
from each. Exploiting the observation that the number ohfters of a dataset
equals the number of significant principal components folandhat dataset in
Step | of PSIKO plus one (see e.gATRERSON et al. (2006)), we depict each
chosen dataset in terms of a panel containing a two dimealstoordinate system
whose axes are labelled by the two significant principal comepts found by
PSIKO for that dataset (Figure 2). For each coordinate syshat make up that
figure, its footerDir (x,y,z) encodes the simulation scenario used to generate it
in terms of the valueg, y, andz for the three Dirichlet distribution parameters.
For example, the footddir (0.2,0.2,0.5) of the leftmost coordinate system in the
bottom row indicates that two out of the three Dirichlet dizition parameters
had value ® and that the third one had valu&0

As expected (see alsoAPrERSON et al. 2006)), each of the chosen datasets
depicted in Figure 2 (after having applied PSIKO to themyegponds to a 2-
simplex with the dots inside the simplex representing theas’'s accessions.
PSIKO infers three founders for each dataset. We indicieah for each dataset
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Dir(0.2,0.2,0.5)

Dir(0.2,0.2,0.05)

Dir(0.05,0.05,0.01)

Figure 2: PCA reduced dataset under different simulatienacos, each of which
is represented by a separate panel. In each panel, the wat@dixis are the first
two significant principal components - see text for details.

in terms of three ellipses. These are clearly very closedovértices of the sim-
plex representing that dataset and thus the founders oflttaset. Also the fig-
ure suggests that the smaller the values for the Dirichitidution parameter
are the more the data points get pushed to the simplex'sesrtivhich is again
as expected. This holds not only for the asymmetric scemdnit also for the
symmetric ones where the data points get pushed away frofouhder with the
lowest value. An extreme case in this context is the asymengtenario corre-
sponding toDir (0.05,0.05,0.01) as it suggests that one of the founders (i.e. the
one corresponding to Dirichlet distribution parameteeaDd.01) had very little
contribution to the represented dataset.
Average Root Mean Square Errve next turn our attention to assessing the
estimated accuracy of PSIKO by measuring the average RM&teba the true
and estimated)-matrices under each one of the six simulation scenarios. Fo
this we used the 600 datasets generated as described abionmitato all four
methods in question to obtaf@-matrix estimates from each of them. For each
method and over all 100 datasets of a scenario we then cothfheeaverage
RMSE between the true and estima@dmatrices. A summary of our results

13



in terms of these averages is given in Table 1 which consfss&x@anels each
of which corresponds to one of our six simulation scenarids.can be readily
observed, all methods seem to be performing similarly wedlar all simulation
scenarios, with negligible differences between theimestes for theQ-matrices.

Dir (0.2,0.2,0.5) | Dir (0.2,0.2,0.05) | Dir (0.05,0.05,0.01)

PSIKO 0.008 0.007 0.005
ADMIXTURE 0.008 0.005 0.002
SNMF 0.008 0.005 0.002
STRUCTURE 0.053 0.022 0.021
Dir (1,1,1) Dir (0.5,0.5,0.5) Dir (0.1,0.1,0.1)

PSIKO 0.011 0.009 0.004
ADMIXTURE 0.018 0.01 0.004
SNMF 0.02 0.013 0.005
STRUCTURE 0.015 0.016 0.03

Table 1: ForK = 3, we present the average RMSEs between the true and the
estimated)-matrices for our simulated datasets. -see text for details

Longer Sequencess can be readily observed from Table 2, PSIKO is faster
thansSNMF?! for each of the three sequence lengths used i. e. 100,0000®50
and 2.5 million (Materials and Methods). In fact, as the tengf the sequences
grows, so too does the difference in run time between PSIK®Os&MF with
that difference being significantly in favour of PSIKO. A gdde reason for this
might be that PSIKO is based on kernel-PCA, which is knowrctdesvery well
with the number of variables of a dataset which, in our casag number of SNPs
i. e. the sequence length (see also Material and Methods3. bEaviour seems
to suggest that PSIKO scales better ts&iMF with increasing sequence length
making it highly attractive for population structure estition from the very large
datasets that are becoming increasingly more common in mpg&éole-genome
studies.

1Since it has been shown ingFcHO et al. 2014) that ADMIXTURE is slower thasNMF,
we only compared PSIKO agairsfiMF.
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Sequence Length100,000| 250,000| 2,500,000
PSIKO 8s 11s 1m25s
SNMF 55.5s | 1m40s| 22m28s

Table 2: We summarise the relative runtimesbfMF and PSIKO as averages
over all 30 datasets (i.e. 10 datasets for each symmetrichgt distribution
parameter setting given in Table 1).

SNP-pruningA popular way to turn a large SNP dataset into a dataset of
more manageable size is to employ Linkage DisequilibriuB)((PURCELL et al.
2007), which is essentially a measure of how frequently SR $ransmitted to-
gether. This technique however has the potential to remale®ant information
thus introducing bias to a dataset. To test the robustndke tiiree methods with
regards to this we proceeded as follows. Kot 3 we used msms to simulate 100
datasets each comprising 1,000 individuals and 1 millioPSIger individual.
From the resulting sequences we then randomly removed 9®kIBE and then
ran PSIKO, ADMIXTURE, and sNMF on the resulting 100 datas&® found
that the average RMSE was belowd5 for all of PSIKO, sNMF and ADMIX-
TURE, corresponding to at most 862 error in ancestry estimates. Once again,
all of the tested methods correctly inferred K=3. The avemagtimes were 3s
for PSIKO, 7s for sSNMF and 30s for ADMIXTURE.

Larger values for KDue to the combinatorial explosion caused by asymmetric
Dirichlet parameter distributions for increasing valuéso we only considered
symmetric Dirichlet distribution parameters for highefues ofK, that is, forK
ranging between four and ten. For each of these valuds fare chose the same
values for the Dirichlet distribution parameters as forgimmetric Dirichlet dis-
tribution parameters fd = 3i.e. all 1, all 0.5 and all 0.1.

We found that the performance of each of the methods is cabjefor all of
the resulting 2,100 datasets (see Supplementary file 19 wbrth noting though
that the runtime of PSIKO is much faster than that of ADMIXTHBRand hence
also STRUCTURE), and slightly faster than thatsMMF, with SNMF tak-
ing on average 7 seconds to complete processing each &&3&IO taking on
average 4s to complete, and ADMIXTURE taking on average 68smplete.

NoiseDue to the possibility of complex evolutionary processeshsas hy-
bridization having confounded the coalescent signal intasdd, we also tested
the robustness of PSIKO for noisy datasets. These we obtéiypemploying
a parametep that governs the amount of noise that we allowed a dataset’s s
guences to contain. More precisely, we started with a datddained forK = 3
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and Dirichlet distribution parameteBir (1,1,1) (see Materials and Methods for
details), and then, for every one of its sequences, flipped loous by locus ba-
sis the allele of that locus with probabilify Using this modification process we
generated 100 noisy datasets for 1,000 accessions at 18 @&@th noise level

p set to 001, 005, 01 and 015, corresponding to 1%, 5%, 10% and 15% noise
respectively.

As can be readily seen, the difference in the average RMSkeleet the esti-
mated and true Q-matrix for each approach in question uratdr ef the afore-
mentioned noise level is marginal (Table 3) suggestingdthatethods are equally
robust under the considered simulation scenarios with bsemwed differences
being marginal.

p | 0.01 | 005 | 01 | 015
PSIKO 0.011] 0.012] 0.013] 0.015
SNMF 0.016] 0.012[ 0.012] 0.02

ADMIXTURE | 0.018]| 0.013| 0.013| 0.019

Table 3: Average RMSE between the true and estim@teahatrix for Dir (1,1,1)
for each approach under each noise lgxel

Missing dataReflecting the fact that even with current NGS technologgsmi
ing data is still a problem (WRPER et al. 2012), we also assessed the robustness
of PSIKO for this type of data. To obtain such datasets, wegeded as in the
previous data experiment only now instead of flipping a loallsle state with
probability p, we set it to a missing value character with probabiityMore pre-
cisely, forK = 3 and Dirichlet distribution paramete¥r (1,1, 1), we generated
100 datasets for 1,000 accessions each of which 13,262ologi(Materials and
Methods). We set the missing value character probaklity 0.1 and 02, cor-
responding to 10% and 20% missing data, respectively. Usgain the average
RMSE as assessment criterion, we present our findings ire #abl

As can be readily seen, even with large proportions of dassimg all three
methods perform equally well with only marginal differeaca fact that was ob-
served fosNMF and ADMIXTURE also in (RiIcHO et al.2014).
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p | 01 | o2
PSIKO 0.012] 0.012
SNMF 0.013/0.012
ADMIXTURE | 0.019] 0.021

Table 4: Average RMSE between the true and estim@teahatrix for Dir (1,1,1)
for each approach under each missing value probabilityacherp.

InbreedingThe assumption of random mating is frequently violated iturad
populations. To test the robustness of PSIKO under theserostances, we also
simulated datasets where inbreeding is present. To dow®djrst simulated
K = 3 independently mating populations as in the noise exp@&timEor each
population 1< k < 3 and each locukin such a population, we then computed
the empirical allele frequenciefg; (Materials and Methods). Subsequent to this
and following (FRRICHO et al. 2014), we used a pre-set value for thbreeding
coefficient ks (i.e. s = 0.25 andRs = 1) to compute genotype frequencigsat
locusl in populatiork. Using the Dirichlet distribution parametdd# (1,1, 1), we
then applied the same simulation protocol as above (seeisdlatend Methods for
details), withgy, taking the place ofy,. For each value dfs, we simulated 100
datasets comprising 1,000 individuals each with 13,262tyged SNP positions.

As can be seen (Table 5), all methods are equally robust teealing being
present in the dataset, although PSIKO seems to be sligluitg accurate than
SNMF and ADMIXTURE (see also (RicHO et al. 2014) where a similar trend
was observed fosNMF and ADMIXTURE).

Fis | 0.25 | 1
PSIKO 0.016]| 0.017
SNMF 0.026| 0.027

ADMIXTURE | 0.022| 0.026

Table 5: Average RMSE between the true and estim@teahatrix for Dir (1,1,1)
for each approach under each value for the inbreeding cieeifig s.

Biological datasets: In order to further assess PSIKO, we also subjected it to
the test of two biological datasets, one of which is an odsape dataset that was
originally studied in (HA\RPER et al. 2012), and the other is from the HapMap 3
project (see Materials and Methods for a brief descriptiogach). We compared
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our findings with that of ADMIXTURE andsNMF, again using the average
RMSE as an assessment measure.

Oilseed rape datasefwo of the four methods tested predicted two popula-
tion clusters (i.e. K = 2). ADMIXTURE predicted three population clusters,
while SNMF predicted five clusters. For the purposes of compariadabr mod-
els equally, we elected to use tRematrices generated f&¢ = 2 from each of
the programs. Similarly and as recommended by their relspemtithors, we ran
all programs with their default parameter values. Adddilbn we ran STRUC-
TURE with a burn-in period of twenty thousand iterationgldwed by another
twenty thousand iterations. Direct comparison of the footamedQ-matrices
(Figure 3) indicate great similarity, particularly betuee&DMIXTURE, sSNMF
and PSIKO.

1l

STRUCTURE

Ny
|

ADMIXTURE

sSNMF

T
T

Figure 3: Q-matrix plots for the 84 lineBrassica napuslataset comparing the
performance of PSIKO to other leading methods. The propomi alleles be-

longing to each of the clusters is shown by respective whais icluster 1) or

black bars (cluster 2).

The results of the association mapping using each of therfairices were
very similar (Figure 4). As expected, incorporating theatetiness matrix as
a random effect in a mixed linear model (MLM) reduced the sigen Type |
error rate. For the erucic acid trait, the residual error wasimised by the
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MLM/STRUCTURE model, and for the seed glucosinolates ttatresidual er-
ror was minimised by the MLM/PSIKO model. It is worth notifggwever, that
the difference between th@-matrices was not enough to alter identification of
markers in close proximity to the major causative loci (¥¢aKPER et al. 2012)
for details).

Figure 4: QQ-plots illustrating population structure @mtions using the four
methods in GWAS analysis of two traits in the 84 ligrsissica napupanel, eru-
cic acid (A) and seed glucosinolate content (B). The expkdtgoP (x-axis)
are plotted against those observeebkis) from either a general linear model
(solid lines) using population structure correction omlyd a mixed linear model
(dashed lines) with population structure and relatednesssctions. The diagonal
line is a guide for the perfect fit to the expectéad,oP values.

HapMap3 dataseGiven the size of the dataset and thus the prohibitively long
runtime of SRUCTURE, we only investigated it with ADMIXTURE SNMF,
and PSIKO (again with all parameter values set to defauitceSthere is no trait
data available, we measured the difference between anyftthe three returned
Q-matrices in terms of their RMSE and th&f correlation coefficient.

Given the widely accepted fact that the number of founderthis particular
dataset is three, all three methods were run Witk 3. They all found strik-
ingly similar Q-matrices. More precisely the RMSE between any two matrices
was never larger than@ (corresponding to about 2% difference) andrRReor-
relation coefficient was always larger tha99 (suggesting that they are almost
perfectly correlated). However there was a discrepanaydxat the methods with
regards to estimating the number of founders for the datagbtPSIKO and
ADMIXTURE returning K = 3 whereassNMF returnedK = 4. The very fast
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runtime of 4& for PSIKO (as compared to ADMIXTURE whose runtime was
5212 equating to aroundHland 2 fninandsNMF whose runtime was Xidsinand
18s) is strikingly apparent with this large-scale dataset.

Since mapping information is available for this datasetowhtan be used
for LD based SNP-pruning purposes, we also investigategpénmrmance of
PSIKO, sNMF, and ADMIXTURE when the sequences are prunedreNpoe-
cisely we used the sliding window based SNP-pruning appraaplemented in
PLINK (PURCELL et al. 2007) (with default settings) to obtain a pruning of the
HapMap3 dataset. We found that PSIKO, sSNMF, and Admixtureaatectly in-
fer the widely accepted number of three founders for thaas#dt and that the
RMSE between any pair of estimated Q-matrices is never gréaan 0.02 (i.e.

a 2% disagreement), suggesting that all tested methodsweey similar results
(data not shown). However, PSIKO took 21 seconds to complsmgK = 3 as
input, SNMF took 6 minutes and ADMIXTURE took 36 minutes. Attehally,
we found that the SNP pruning took 52 minutes to terminataltiag in a 52 min
overhead in the total running time of each method for thiseexpent. This is in
stark contrast to the 48 seconds it took PSIKO to analysedimplete, unpruned
dataset.

DISCUSSION

Population structure is a confounding factor in populatassociation studies,
hampering our understanding of how, for example, agronaltgionportant traits
have been selected for in crop plants or how diseases mightdpaead through-
out a population (RICE et al.2006). It is therefore important to be able to correct
for it and this entails gaining insight into a datas€snatrix as well as the num-
ber of its founders. Popular software packages such as STIRIRE, FRAPPE,
INSTRUCT and ADMIXTURE infer both. Many of them are based an s
phisticated models and rely on assumptions such as satisRardy Weinberg
Equilibrium. However if the dataset in question violatestsassumptions or is
very large, as would be the case for NGS datasets, thesesmhy@otend to suffer
from long runtimes. To address, among others, the issueatdlsiity theSNMF
approach has been proposea(EHo et al. 2014). Unlike STRUCTURE and
ADMIXTURE, it is not model-based and uses sophisticateatlgmic tech-
nigues to ensure fast run-times on large datasets.

Here, we propose the novel and fast PSIKO approach for populatruc-
ture inference. By combining linear kernel-PCA with a quioksolve optimisa-
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tion problem, it couples the fast runtime and robustnessGA Rith the biolog-

ical interpretability ofQ-matrices obtained from model-based approaches such
as STRUCTURE and ADMIXTURE. This allows quick estimationtbé Q-
matrix underpinning a marker dataset as well as the numbfuofders of that
dataset. Due to PCA's few underlying assumptions, PSIKOidehy applicable

and generally has a very low run time, at the same time produeisults that are
comparable in quality with those obtained by ADMIXTURE, SOURTURE
andsNMF.

In order to assess the performance of PSIKO with regar@snaatrix estima-
tion and inference of founder number, we rigorously testemhiboth simulated
and real biological datasets. In our simulation studiesyarged the number of
founders for a dataset as well as the admixture scenariggefaerating a dataset.
To help ensure biological relevance, we based our choicethdéorange of these
parameters on those made inL@ANDER et al. 2009). Across a wide range
of simulation scenarios, we found that PSIKO provi@ematrix estimates that
are very close to the estimates for the respective datasedsiged by STRUC-
TURE, ADMIXTURE andsNMF where closeness is measured in terms of the
Root Mean Squared Error between two matricesE)ANDER et al. 2009). Our
missing data, noise, and inbreeding experiments suggasP®IKO as well as
ADMIXTURE and sSNMF handle these types of data extremely well. However
for large datasets PSIKO seems to be superior, even if sucltaget is pruned
based on e. g. linkage disequilibrium.

The first of our biological datasets comprises 84 oilseed eaqgessions, rep-
resenting some seven crop types, genotyped over 101,64408NH he second
comprises 541 human samples from differing geographioregigenotyped at
1,457,897 SNP loci. For each dataset, we found tha@theatrix estimates gener-
ated by PSIKO were very close to those produced by ADMIXTURBSNMF
for that dataset, using the same measure of closeness assmuaudation study.
However, it is worth pointing out that independent of whetihe dataset had been
pruned or not, PSIKO'’s runtime was only a fraction of that dMIXTURE,
especially on the human dataset, and was also consideesgr tharsNMF.

Although great effort has been put into the development afgrtul tools for
deriving the numbeK of founders of a population dataset, inferring that number
is still a formidable statistical and computational prableFor example, finding
that number using STRUCTURE can be a very time consumingdasko the
fact that it has to be run on a range of different valuesdaach of which might
take a long time to complete. Even for newer methods such adiXOOURE or
SNMF, finding the optimal value oK relies on running the methods for a range
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of values ofK. In PSIKO, we exploit the behaviour of the eigenvalues regdr
by linear-kernel PCA for a dataset to infér Due to the algorithmic internals of
PCA this can be done quickly. We are also motivated by a sta@iATTERSON
et al.2006) as well as numerous simulation studies which inditetethe number
of founders of a dataset equals the number of significantipahcomponents for
that dataset plus one. Our simulation studies as well asvaureal biological
examples suggest that PSIKO holds great promise for this.

The speed of PSIKO is similar to that sSNMF for smaller datasets, and
is faster than that of ADMIXTURE. While for small dataset® ttifferences
in speed between PSIKO arsiNMF are negligible, with increasing sequence
length PSIKO proves to be significantly faster tredMF and implicitly also
ADMIXTURE. We therefore argue that PSIKO could be a veryadttive tool
for analysing the larger datasets that arise from NGS tdogies. For smaller
datasets € 50K SNPs), the differences between the three methods are not as
clear-cut, and the user should choose whichever method\saoitltheir particular
dataset best.

In summary we propose a novel, non-model-based methodfenrimy pop-
ulation structure. It exploits the advantages of lineank&PCA to quickly and
accurately describe a SNP dataset’s population stratdicalt is much (up to 300
times) faster than classical, model-based approachestvauitputs match those
of state-of-the-art methods such sldMF. Its superior speed for large data sets
makes it particularly attractive for datasets generateN®yp approaches.
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