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Abstract

Population structure is a confounding factor in Genome WideAssoci-
ation Studies, increasing the rate of false positive associations. In order to
correct for it, several model-based algorithms such as ADMIXTURE and
STRUCTURE have been proposed. These tend to suffer from the fact that
they have a considerable computational burden, limiting their applicability
when used with large datasets, such as those produced by NextGenera-
tion Sequencing (NGS) techniques. To address this, non-model based ap-
proaches such asSNMF and EIGENSTRAT have been proposed, which
scale better with larger data. Here we present a novel non-model based
approach, PSIKO, which is based on a unique combination of linear kernel-
PCA and least-squares optimisation and allows for the inference of admix-
ture coefficients, principal components, and number of founder populations
of a dataset. PSIKO has been compared against existing leading methods on
a variety of simulation scenarios, as well as on real biological data. We found
that in addition to producing results of the same quality as other tested meth-
ods, PSIKO scales extremely well with dataset size, being considerably (up
to 30 times) faster for longer sequences than even state of the art methods
such asSNMF. PSIKO and accompanying manual are freely available at
https://www.uea.ac.uk/computing/psiko.

INTRODUCTION

Population stratification has been commonly used to investigate the structure of
natural populations for some time and is also recognised as aconfounding factor
in genetic association studies (KNOWLER et al.1988; MARCHINI et al.2004). As
a result, programs for detecting population stratificationhave become a standard
tool for genetic analysis. Such approaches generally separate into two classes.
Model-based approaches such as STRUCTURE (PRITCHARD et al. 2000) and
the closely related ADMIXTURE approach (ALEXANDER et al.2009) are desir-
able in that they return aQ-matrix which for each accession of the (marker) dataset
indicates the proportion of its genotype that came from one of K ≥ 2 assumed
founder populations. This biological interpretability ofQ-matrices conveniently
lends itself to a subsequent use in association studies. On the other hand, such
approaches often suffer from long runtimes, particularly as dataset size increases.
This problem is becoming particularly exacerbated with theincreased use of Next
Generation Sequencing (NGS) and large SNP chips to develop marker datasets
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(K IM et al. 2007; THE INTERNATIONAL HAPMAP CONSORTIUM 2007). Con-
versely, non-model based approaches such as EIGENSTRAT (PRICE et al.2006)
which uses Principal Component Analysis (PCA), tend towards much shorter run-
times making them more convenient when analysing large marker sets. Unfortu-
nately, EIGENSTRAT only returns principal components (PCs) of a dataset and
not aQ-matrix. Some non-model based approaches such as the recently intro-
duced sparse-Non-negative-Matrix-Factorization (SNMF) method (FRICHO et al.
2014), have made advances regarding these issues, and output a Q-matrix for
use in association genetic analysis whilst significantly shortening run-times. Like
EIGENSTRAT,SNMF can be thought of as a feature extraction approach aimed
at reducing the dimensionality of a high dimensional dataset. However the matri-
ces used by both approaches to achieve this reduction have different mathematical
properties (KIM and PARK 2007). Even so,SNMF still suffers from longer run-
times with increased number of markers.

In this paper, we propose the novel PSIKO approach which is linear-kernel
PCA based. Like EIGENSTRAT, PSIKO returns significant principal com-
ponents of a dataset. Contrary to EIGENSTRAT though, it alsogeneratesQ-
matrices and these are of comparable quality to those produced by STRUC-
TURE, ADMIXTURE, andSNMF. In addition PSIKO’s scaling properties are
better thanSNMF’s (and thus STRUCTURE’s and ADMIXTURE’s) when the
dataset size increases, making it particularly attractivefor large datasets.

We rigorously tested the performance of PSIKO using simulated datasets,
designed to evaluate the effects of inbreeding, noise, missing data, and SNP prun-
ing, whilst enabling us to compare runtime and scaling properties in comparison
to leading approaches such as STRUCTURE, ADMIXTURE andSNMF.

Although we simulated a range of biologically motivated scenarios, as a more
realistic test, we also assessed the performance of PSIKO for Q-matrix estima-
tion from two biological datasets. The first of these was a relatively small diversity
panel comprising 84Brassica napuslines which had been previously used to per-
form associative transcriptomics of seed traits (HARPER et al.2012). This dataset
is of particular interest as it could be considered to have a complex evolutionary
history.B. napusis a relatively recently formed species, having arisen fromspon-
taneous hybridisation betweenB. rapaandB. oleraceaas little as 10,000 years
ago. It exhibits considerable phenotypic variation, includes spring, semi- and
winter ecotypes and has been cultivated as both vegetable and oilseed crops. The
most intensive breeding occurred over the last 50-60 years to produce the most
commonly used ‘canola type’ oilseed rape cultivars with both low erucic acid and
low glucosinolate content in the seed. Many of the lines in this biological dataset
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will have been included in these breeding programmes and certain groups (such as
the winter oilseed rape lines) may have a complex breeding history. Despite this,
the wide diversity of accessions in the panel enabled 101,644 SNP markers to be
discovered. Originally the population stratification of this set of accessions was
analysed using STRUCTURE before using the identifiedQ-matrix in a mixed
linear association model (MLM). We decided to compare theQ-matrices from
PSIKO to those of STRUCTURE as well asSNMF and ADMIXTURE, and
determine how theseQ-matrices affect the results of the MLM for the original
seed oil traits.

On its own and in combination with PLINK’s sliding window SNPpruning
procedure, we also tested theQ-matrices produced by PSIKO and the three other
methods under investigation on a subset of the HapMap Phase 3project dataset
(THE INTERNATIONAL HAPMAP CONSORTIUM 2010). This dataset should pro-
vide a more standard random mating model than the Brassica dataset, whilst pro-
viding an excellent real-life example of the very large marker datasets that will
become more common with the advances in sequencing technology.

MATERIALS AND METHODS

In this section, we first provide an outline of PSIKO in terms of a two step ap-
proach and then describe these two steps in detail. This alsoincludes a brief
description of kernel-PCA (SCHOLKOPF et al.1999) as its main underlying tech-
nique. We then present details on the simulation experiments and the real biolog-
ical datasets that we used to assess the performance of PSIKO, where the former
also includes behaviour under noise, missing data, inbreeding, large datasets, and
SNP pruning. A presentation of PSIKO in terms of pseudo code may be found in
Supplementary file 1.

We start with remarking that we follow (ENGELHARDT and STEPHENS2010)
to infer aSNP matrixfrom a dataset given in terms of a sequence ofd ≥ 1 SNPs
andn≥ 1 accessions, that is, ad×n matrix whose entries are 0,1 and 2. For this,
we use a reference sequence, and count for each locus of an accession the number
of copies of the reference allele found at that locus. Such a reference sequence
could, for example, be obtained as in (BANCROFT et al. 2011) or be one of the
accessions present in the dataset.

Method outline: Given a datasetX in the form of ad×n SNP matrix, PSIKO
aims to infer the numberK of founders ofX as well as significant PCs and aQ-
matrix. It consists of two main steps: dimensionality reduction (Step I) and pop-
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ulation structure inference (Step II). The purpose of Step Iis to infer significant
principal components ofX and also obtain an estimate forK. For this we use
a combination of the Tracy-Widom test (PATTERSON et al. 2006) with a power-
ful PCA-based technique called linear-kernel PCA. Due to the centrality of that
technique to PSIKO, we also present an outline of it in that step. The purpose
of Step II is to quickly find good estimates for theancestry coefficients, that is,
the entries of theQ-matrix. For this, we exploit the properties of a PCA-reduced
dataset to cast the problem of inferring population structure within a least squares
optimization framework.

Step I: Dimensionality reductionPCA is a popular dimensionality reduction
method that allows one to reduce the number of variables of the input datasetX
(given in terms ofd), at the same time keeping as much variability in the data as
possible. It has proven very useful in population genetics and found in (PATTER-
SON et al.2006) and (MA and AMOS 2012) to exhibit desirable properties when
applied to datasets containing admixed individuals. However the inner workings
of PCA imply that it does not scale well with increasing number of SNPs. To
overcome this problem and thus obtain a method that is applicable to large NGS
datasets we employ a special kind of PCA called kernel-PCA which is known to
scale well for large numbers of variables (SNPs in our case) (KEVIN P. MURPHY

2012). Rather than carrying out a PCA-analysis directly on agiven dataset, in
kernel-PCA that dataset is first projected to some new higherdimensional (un-
known) feature space, and then classic PCA is applied to the resulting projection
of the dataset. To overcome the problem that this projectionmay be difficult to
compute, a technique calledkernel trickis sometimes used. Due to its centrality
to PSIKO, we next describe it within a kernel-PCA setting (KEVIN P. MURPHY

2012).
For X as above, we start with remarking that if it is centered as described

in (PRICE et al. 2006) then performing PCA on it reduces to finding an eigen-
decomposition of thed×d-dimensional sample covariance matrixXXT . Suppose
W is the matrix of eigenvectors andΛ is the diagonal matrix of eigenvalues of
such a decomposition. ThenW = XUΛ− 1

2 whereU is the matrix of eigenvectors
of then×n-dimensional inner product matrixK = XTX and performing PCA on
X is equivalent to carrying out an eigen-decomposition ofK.

SupposeX is projected into a higher dimensional spaceΦ via a mapφ , and
for all 1 ≤ i ≤ n, put φi := φ(xi). Then performing PCA on the projection ofX
is equivalent to carrying out an eigen-decomposition of theinner product matrix
KΦ = (〈φi,φ j〉)1≤i, j≤n. Computing these inner products directly tends to be dif-
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ficult as the projectionφ is unknown. By replacing the inner products〈φi,φ j〉 of
KΦ with the valuesκ(xi,x j) of a real-valued functionκ on X×X called a kernel
function, the kernel trick overcomes this problem by allowing for computation of
said inner products without having to directly computeφ . Informally speaking,κ
is a proxy for the inner product inΦ.

To obtain the required lower dimensional dataset, letUΦ denote the matrix
of eigenvectors ofKΦ in an eigen-decomposition ofKΦ, let ΛΦ denote the asso-
ciated diagonal matrix of eigenvalues and letx denote an accession ofX. Then the

kernel-PCA projection ofx is kxUΦΛ− 1
2

Φ wherekx =(κ(x,x1),κ(x,x2), . . . ,κ(x,xn)).
The gain in speed of kernel-PCA over PCA (and thus the abilityto cope with
large NGS datasets) is an immediate consequence of the fact that computing
KΦ requiresO(n2d) operations and a furtherO(n3) are required for its eigen-
decomposition, (as opposed toO(d2n) andO(d3) for PCA for the corresponding
tasks) which amounts to considerably fewer operations for kernel-PCA whend is
much larger thann.

Then for Step I we proceed as follows. We first perform a linearkernel-PCA
for X, that is, we take the kernel function to be the inner product between acces-
sions ofX. Subsequent to this we subject the resulting eigenvalues tothe Tracy-
Widom test to identify significant principal components (see e. g. (PERES-NETO

et al.2005) for a survey of attractive alternative approaches). This test has proven
very popular in population genetics and relies on the fact that non-zero eigenvalues
of a matrix follow a Tracy-Widom distribution. Checking whether an eigenvector
is a significant principal component of that matrix or not then reduces to check-
ing whether its associated eigenvalue passes a certain statistical significance test
(PATTERSON et al.2006).

Step II: Population Structure InferenceSimulation studies indicate that a PCA-
reduced datasetX obtained in Step I can be represented in terms of a(K − 1)-
dimensional simplexSK−1 whereK ≥ 2 (see e. g. Figure 2 for examples for the
caseK = 3, and (PATTERSON et al.2006) and (MA and AMOS 2012) where this
phenomenon has also been observed for generalK). The vertices of such a sim-
plex correspond to the putativefoundersof the dataset, that is, its non-admixed
accessions. The position of an accession relative to these vertices encodes the ad-
mixture proportion of that accession in the sense that it canbe uniquely expressed
as a convex combination of the vertices of that simplex. Put differently, with
a1,a2, . . . ,aK denoting the vertices of the simplexSK−1 representing a datasetX
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found in Step I, any of its accessionsx can be expressed as

x =
K

∑
i=1

λiai,

where, for all 1≤ i ≤ K, the quantityλi ≥ 0 is the genetic contribution of founder
ai to x and ∑K

i=1 λi = 1. Thus, the components of theancestry vectorλx =
(λl)1≤l≤K of x can be thought of as the admixture coefficients ofx and com-
puting them is straight forward using standard arguments from linear algebra if
the matrixA = (a1,a2, . . . ,aK) of founders is known. If this is not the case then,
by viewing the matrixAQ as an approximation ofX, the matrixA (and thus the
Q-matrix of X) can be inferred using least squares optimisation. This boils down
to minimizing, for a PCA-reduced SNP matrixX found in Step I, the quantity

||X−AQ||2F , (1)

with respect toA andQ, whereQ = (λx)x∈X, and||B||F =
√

∑k
i=1∑t

j=1b2
i j is the

Frobenius norm of a matrixB = (bi j )1≤i≤k, 1≤ j≤t . A detailed explanation on how
Equation (1) is solved may be found in Supplementary file 1.

Simulated Datasets and performance measure: In this section, we present
an outline of how we generated the various types of datasets underpinning our
simulation study for assessing PSIKO’s performance. In addition, we also briefly
review the Root Mean Squared Error measure which we use as assessment crite-
rion. We start with providing details concerning our simulation study.

Simulated datasets generationWe used the command line-based coalescent
simulatormsms (EWING and HERMISSON 2010) to first simulate founder allele
frequencies and then used them to simulate admixture proportions and genotypes
of admixed individuals. More precisely, we simulatedK = 3,4, . . . ,10 indepen-
dent, randomly mating populations each of which comprised 100 individuals,
where by anindividual we mean a sequence comprising ofL loci evolved over
a period of 10,000 generations (see Supplementary file 1 for exact msmscom-
mands used). Here, the number of generations is biologically inspired and the
number of individuals and the valueK = 3 is based on (ALEXANDER et al.2009).
The values we chose forL were 13,262 (which is as in (ALEXANDER et al.2009))
and, to shed light on to the scalability of PSIKO, also 100,000; 250,000 and 2.5
million. We then used these individuals to calculate founder allele frequencies
fk1, fk2, . . . , fkL for all 1≤ k≤ K.

Once obtained, we simulated the genotype of an individual ona locus by locus
basis using the following two-step process. For a locusl of an individuali, we first
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simulated the founderzl of l by sampling from a multinomial distribution with
parameter the admixture proportions for individuali. The admixture proportions
were sampled from a Dirichlet distribution and represent the contribution of each
founder to the dataset. Subsequent to this, we simulated thegenotype of individual
i at locusl by sampling from a multinomial distribution with parameterfzl l the
allele frequency of populationzl at locusl (see Figure 1 for a summary of this
two-step process).

We repeated this process 1,000 times to obtain an admixed dataset containing
1,000 individuals.

1

2

3

K FK

F3

F2

F1

Simulate K independent
randomly mating popula-
tions for 10,000 genera-
tions.

Compute empirical al-
lele frequencies to form
vector Fk for each pop-
ulation.

xi

qKi

q3i

q2i

q1i

Sample admixture propor-
tions qki (1 ≤ k ≤ K) for xi

from a Dirichlet distribution.

X

Sample genotype from Fk

for each simulated indi-
vidual xi based on qki.

k Fk
qki

Figure 1: A summary of how the datasets underpinning our simulation exper-
iments were generated. Each of the 1,2, . . . ,K encircled values indicates an
founder population generated with themsms software. For all 1≤ k≤ K, the vec-
tor Fk represents empirical allele frequencies computed for eachof theK founder
populations (i. e.Fk = ( fk1, fk2, . . . , fkL)) and the valuesqki represent the propor-
tion populationk contributes to accessionxi of the datasetX.

Performance measureTo assess the performance of the four approaches under
consideration with regards to their ability to recover the knownQ-matrix underly-
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ing a dataset, we used the Root Mean Squared ErrorRMSEbetween twoQ-matrix
Q̂ andQ′, given by:

RMSE=

√

1
nK ∑

i
∑
k

(q̂ik −q′ik)
2 (2)

wheren represents the number of individuals (1,000 in our case) andK repre-
sents the number of founders (K = 3,4, . . . ,10 in our case) and ˆqik andq′ik are the
elements ofQ̂ andQ′ respectively, where 1≤ i ≤ n and 1≤ k≤ K.

Parameter settingsFor all our simulation experiments we used ADMIXTURE
and SNMF with their respective default settings, as suggested bytheir authors.
For STRUCTURE, we used the following settings. We assumed admixed pop-
ulations with independent allele frequencies. We set the length of the burn-in
period to 2,000 iterations and ran the program for an additional 2,000 iterations
after the burn-in period. All remaining parameters were used with default values.
To ensure fairness in runtime comparison between the above three methods and
PSIKO, we only compared their runtimes for the ground truth value ofK, thus
ensuring that a single run of PSIKO was timed against a singlerun of all the other
methods.

Biological Datasets: To assess the performance of PSIKO with challenging
biological datasets, we first performed a comparison of theQ-matrix provided
by PSIKO to those estimated using STRUCTURE, ADMIXTURE andSNMF
for a set of 84 diverseBrassica napusaccessions as described in (HARPER et al.
2012). Over half of these accessions are winter oilseed rapetypes (OSR; 49),
but the rest comprise diverse winter fodder types (5), spring OSR (14), Chinese
semi-winter OSR (5), Japanese kale (2), Siberian kale (2) and swede (7). Q-
matrix estimations were compared directly and subsequently used to perform lin-
ear model association mapping following the method outlined in (HARPER et al.
2012). Briefly, theQ-matrices were used as covariates in general linear mod-
els (GLM), and a mixed linear models (MLM), where a relatedness measure was
included as a random effect for two seed oil traits, i. e. erucic acid and glucosi-
nolate content using the program TASSEL (BRADBURY et al.2007). The results
of these models were then compared to their P-value expectations. Results were
presented as QQ-plots showing observed against expected log10P values for each
of the four stratification methods, and each of the seed oil traits and association
model types.

To also investigate PSIKO in a human population context, we applied it to a
subset of the HapMap Phase 3 dataset (THE INTERNATIONAL HAPMAP CON-
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SORTIUM 2010). That subset comprised 541 individuals spanning the group-
ings with the following sampling scenarios. African ancestry in Southwest USA
(ASW), Yoruban in Ibadan, Nigeria, West Africa (YRI), Utah residents with North-
ern and Western European ancestry from the CEPH collection (CEU) and Mexi-
can ancestry in Los Angeles, California (MEX). Each individual was genotyped
over 1,457,897 SNP loci. We remark in passing that the choiceof dataset is as
in (ALEXANDER et al.2009) noting though that that paper used an older version
of the dataset and that those sequences had been pruned so that each comprised
13,298 genotyped SNP loci (ALEXANDER et al. 2009). The general understand-
ing of the dataset is that the ASW sample is admixed with ancestries from YRI
and CEU and that MEX is admixed with ancestries from CEU and anunsampled
founder population (JAKOBSSON et al. 2008; LI et al. 2008; ALEXANDER et al.
2009). Therefore the number of founders for this dataset is expected to be three.

RESULTS

Bearing in mind that ADMIXTURE has been shown in (ALEXANDER et al.2009)
to be faster than STRUCTURE, FRAPPE (TANG et al.2005) and INSTRUCT (GAO

et al.2007), and that the recently introducedFASTSTRUCTURE approach (RAJ

et al.2014) has runtime comparable to ADMIXTURE (RAJ et al.2014), to asses
PSIKO’s performance we only compared it against ADMIXTURE and SNMF
and, due to its popularity, STRUCTURE. For this, we used a computing cluster
with Intel Sandybridge Dual processor, 8 core E5-2670 2.6GHz CPU’s and 2Gb
of DDR3 memory at 1066Mhz, with Intel Hyper-threading disabled. We simu-
lated different scenarios for how populations might have arisen. These simula-
tion studies are similar in spirit to those performed in (ALEXANDER et al.2009).
Additionally we tested the methods on real biological examples. We start with
describing the results of the simulation study which also includes details on the
parameters we varied and their ranges. We then present our findings for the bio-
logical datasets.

Simulated datasets: As outlined above (see Materials and Methods) the pa-
rameters we varied were the numberK of founders and the respective Dirichlet
distribution parameters for them. Since their choices depend on the values ofK
employed we will detail them as part of a separate treatment of the casesK = 3
andK ≥ 4. Before detailing these cases though, we remark that low values for the
Dirichlet distribution parameters correspond to almost admixture-free populations
whereas values close to one correspond to heavily admixed populations. Thus, our
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simulation study allows us to assess the performances of themethods in question
on highly admixed and highly non-admixed populations. We start our discussion
with remarking that the value forK was correctly recovered by all tested methods
for each of the constructed simulated datasets.

ForK = 3, and datasets with sequence length 13,262 we chose the samevalues
for the three Dirichlet distribution parameters as in (ALEXANDER et al.2009), re-
sulting in six different simulation scenarios. Three of these scenarios were asym-
metric meaning that in each case at least one Dirichlet distribution parameter was
different from the other two and the other three were symmetric meaning that in
each case all Dirichlet distribution parameters were the same. For each of the six
scenarios we generated 100 datasets, resulting in a total of600 datasets. These we
then analysed with regards to their behaviour under PSIKO (see below), and the
average Root Mean Square Error for theQ-matrices found by each of the meth-
ods considered, where the average is taken over all 100 datasets of a scenario (see
Materials and Methods). Furthermore, for each of the three sequence lengths,
100,000; 250,000 and 2.5 million we generated 10 datasets asbefore using the
symmetric Dir(1,1,1) parameter distribution. To assess the effect of SNP-pruning
we also generated a further 100 datasets following a similarprotocol (see below
for details). Additionally, to test PSIKO’s robustness to deviations from our sim-
ulation model, we also simulate scenarios with noise, missing data and inbreeding
present.

Behaviour of a datasetTo investigate the behaviour of PSIKO when applied to
a dataset generated under each of the six scenarios, we randomly chose one dataset
from each. Exploiting the observation that the number of founders of a dataset
equals the number of significant principal components foundfor that dataset in
Step I of PSIKO plus one (see e. g. PATTERSON et al. (2006)), we depict each
chosen dataset in terms of a panel containing a two dimensional coordinate system
whose axes are labelled by the two significant principal components found by
PSIKO for that dataset (Figure 2). For each coordinate system that make up that
figure, its footerDir (x,y,z) encodes the simulation scenario used to generate it
in terms of the valuesx, y, andz for the three Dirichlet distribution parameters.
For example, the footerDir (0.2,0.2,0.5) of the leftmost coordinate system in the
bottom row indicates that two out of the three Dirichlet distribution parameters
had value 0.2 and that the third one had value 0.5.

As expected (see also (PATTERSON et al.2006)), each of the chosen datasets
depicted in Figure 2 (after having applied PSIKO to them) corresponds to a 2-
simplex with the dots inside the simplex representing the dataset’s accessions.
PSIKO infers three founders for each dataset. We indicated them for each dataset
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Figure 2: PCA reduced dataset under different simulation scenarios, each of which
is represented by a separate panel. In each panel, the coordinate axis are the first
two significant principal components - see text for details.

in terms of three ellipses. These are clearly very close to the vertices of the sim-
plex representing that dataset and thus the founders of thatdataset. Also the fig-
ure suggests that the smaller the values for the Dirichlet distribution parameter
are the more the data points get pushed to the simplex’s vertices, which is again
as expected. This holds not only for the asymmetric scenarios but also for the
symmetric ones where the data points get pushed away from thefounder with the
lowest value. An extreme case in this context is the asymmetric scenario corre-
sponding toDir (0.05,0.05,0.01) as it suggests that one of the founders (i.e. the
one corresponding to Dirichlet distribution parameter value 0.01) had very little
contribution to the represented dataset.

Average Root Mean Square ErrorWe next turn our attention to assessing the
estimated accuracy of PSIKO by measuring the average RMSE between the true
and estimatedQ-matrices under each one of the six simulation scenarios. For
this we used the 600 datasets generated as described above asinput to all four
methods in question to obtainQ-matrix estimates from each of them. For each
method and over all 100 datasets of a scenario we then computed the average
RMSE between the true and estimatedQ-matrices. A summary of our results
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in terms of these averages is given in Table 1 which consists of six panels each
of which corresponds to one of our six simulation scenarios.As can be readily
observed, all methods seem to be performing similarly well under all simulation
scenarios, with negligible differences between their estimates for theQ-matrices.

Dir (0.2,0.2,0.5) Dir (0.2,0.2,0.05) Dir (0.05,0.05,0.01)
PSIKO 0.008 0.007 0.005
ADMIXTURE 0.008 0.005 0.002
SNMF 0.008 0.005 0.002
STRUCTURE 0.053 0.022 0.021

Dir (1,1,1) Dir (0.5,0.5,0.5) Dir (0.1,0.1,0.1)
PSIKO 0.011 0.009 0.004
ADMIXTURE 0.018 0.01 0.004
SNMF 0.02 0.013 0.005
STRUCTURE 0.015 0.016 0.03

Table 1: ForK = 3, we present the average RMSEs between the true and the
estimatedQ-matrices for our simulated datasets. -see text for details

Longer SequencesAs can be readily observed from Table 2, PSIKO is faster
than SNMF1 for each of the three sequence lengths used i. e. 100,000; 250,000
and 2.5 million (Materials and Methods). In fact, as the length of the sequences
grows, so too does the difference in run time between PSIKO and SNMF with
that difference being significantly in favour of PSIKO. A possible reason for this
might be that PSIKO is based on kernel-PCA, which is known to scale very well
with the number of variables of a dataset which, in our case, is the number of SNPs
i. e. the sequence length (see also Material and Methods). This behaviour seems
to suggest that PSIKO scales better thanSNMF with increasing sequence length
making it highly attractive for population structure estimation from the very large
datasets that are becoming increasingly more common in modern, whole-genome
studies.

1Since it has been shown in (FRICHO et al.2014) that ADMIXTURE is slower thanSNMF,
we only compared PSIKO againstSNMF.
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Sequence Length100,000 250,000 2,500,000
PSIKO 8s 11s 1m25s
SNMF 55.5s 1m40s 22m28s

Table 2: We summarise the relative runtimes ofSNMF and PSIKO as averages
over all 30 datasets (i. e. 10 datasets for each symmetric Dirichlet distribution
parameter setting given in Table 1).

SNP-pruningA popular way to turn a large SNP dataset into a dataset of
more manageable size is to employ Linkage Disequilibrium (LD) (PURCELL et al.
2007), which is essentially a measure of how frequently SNPsget transmitted to-
gether. This technique however has the potential to remove relevant information
thus introducing bias to a dataset. To test the robustness ofthe three methods with
regards to this we proceeded as follows. ForK = 3 we used msms to simulate 100
datasets each comprising 1,000 individuals and 1 million SNPs per individual.
From the resulting sequences we then randomly removed 90% ofSNPs and then
ran PSIKO, ADMIXTURE, and sNMF on the resulting 100 datasets. We found
that the average RMSE was below 0.025 for all of PSIKO, sNMF and ADMIX-
TURE, corresponding to at most a 2.5% error in ancestry estimates. Once again,
all of the tested methods correctly inferred K=3. The average runtimes were 3s
for PSIKO, 7s for sNMF and 30s for ADMIXTURE.

Larger values for KDue to the combinatorial explosion caused by asymmetric
Dirichlet parameter distributions for increasing values of K, we only considered
symmetric Dirichlet distribution parameters for higher values ofK, that is, forK
ranging between four and ten. For each of these values forK, we chose the same
values for the Dirichlet distribution parameters as for thesymmetric Dirichlet dis-
tribution parameters forK = 3 i.e. all 1, all 0.5 and all 0.1.

We found that the performance of each of the methods is comparable for all of
the resulting 2,100 datasets (see Supplementary file 1). It is worth noting though
that the runtime of PSIKO is much faster than that of ADMIXTURE (and hence
also STRUCTURE), and slightly faster than that ofSNMF, with SNMF tak-
ing on average 7 seconds to complete processing each dataset, PSIKO taking on
average 4s to complete, and ADMIXTURE taking on average 55s to complete.

NoiseDue to the possibility of complex evolutionary processes such as hy-
bridization having confounded the coalescent signal in a dataset, we also tested
the robustness of PSIKO for noisy datasets. These we obtained by employing
a parameterp that governs the amount of noise that we allowed a dataset’s se-
quences to contain. More precisely, we started with a dataset obtained forK = 3
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and Dirichlet distribution parametersDir (1,1,1) (see Materials and Methods for
details), and then, for every one of its sequences, flipped ona locus by locus ba-
sis the allele of that locus with probabilityp. Using this modification process we
generated 100 noisy datasets for 1,000 accessions at 13,262loci with noise level
p set to 0.01, 0.05, 0.1 and 0.15, corresponding to 1%, 5%, 10% and 15% noise
respectively.

As can be readily seen, the difference in the average RMSE between the esti-
mated and true Q-matrix for each approach in question under each of the afore-
mentioned noise level is marginal (Table 3) suggesting thatall methods are equally
robust under the considered simulation scenarios with the observed differences
being marginal.

p 0.01 0.05 0.1 0.15

PSIKO 0.011 0.012 0.013 0.015
SNMF 0.016 0.012 0.012 0.02
ADMIXTURE 0.018 0.013 0.013 0.019

Table 3: Average RMSE between the true and estimatedQ-matrix forDir (1,1,1)
for each approach under each noise levelp.

Missing dataReflecting the fact that even with current NGS technology, miss-
ing data is still a problem (HARPER et al.2012), we also assessed the robustness
of PSIKO for this type of data. To obtain such datasets, we proceeded as in the
previous data experiment only now instead of flipping a locusallele state with
probabilityp, we set it to a missing value character with probabilityp. More pre-
cisely, forK = 3 and Dirichlet distribution parametersDir (1,1,1), we generated
100 datasets for 1,000 accessions each of which 13,262 loci long (Materials and
Methods). We set the missing value character probabilityp to 0.1 and 0.2, cor-
responding to 10% and 20% missing data, respectively. Usingagain the average
RMSE as assessment criterion, we present our findings in Table 4.

As can be readily seen, even with large proportions of data missing all three
methods perform equally well with only marginal differences, a fact that was ob-
served forSNMF and ADMIXTURE also in (FRICHO et al.2014).

16



p 0.1 0.2

PSIKO 0.012 0.012
SNMF 0.013 0.012
ADMIXTURE 0.019 0.021

Table 4: Average RMSE between the true and estimatedQ-matrix forDir (1,1,1)
for each approach under each missing value probability characterp.

InbreedingThe assumption of random mating is frequently violated in natural
populations. To test the robustness of PSIKO under these circumstances, we also
simulated datasets where inbreeding is present. To do this,we first simulated
K = 3 independently mating populations as in the noise experiment. For each
population 1≤ k ≤ 3 and each locusl in such a population, we then computed
the empirical allele frequenciesfkl (Materials and Methods). Subsequent to this
and following (FRICHO et al. 2014), we used a pre-set value for theinbreeding
coefficient FIS (i.e. FIS = 0.25 andFIS = 1) to compute genotype frequenciesgkl at
locusl in populationk. Using the Dirichlet distribution parametersDir (1,1,1), we
then applied the same simulation protocol as above (see Materials and Methods for
details), withgkl taking the place offkl. For each value ofFIS, we simulated 100
datasets comprising 1,000 individuals each with 13,262 genotyped SNP positions.

As can be seen (Table 5), all methods are equally robust to inbreeding being
present in the dataset, although PSIKO seems to be slightly more accurate than
SNMF and ADMIXTURE (see also (FRICHO et al.2014) where a similar trend
was observed forSNMF and ADMIXTURE).

FIS 0.25 1

PSIKO 0.016 0.017
SNMF 0.026 0.027
ADMIXTURE 0.022 0.026

Table 5: Average RMSE between the true and estimatedQ-matrix forDir (1,1,1)
for each approach under each value for the inbreeding coefficient FIS.

Biological datasets: In order to further assess PSIKO, we also subjected it to
the test of two biological datasets, one of which is an oilseed rape dataset that was
originally studied in (HARPER et al. 2012), and the other is from the HapMap 3
project (see Materials and Methods for a brief description of each). We compared
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our findings with that of ADMIXTURE andSNMF, again using the average
RMSE as an assessment measure.

Oilseed rape datasetTwo of the four methods tested predicted two popula-
tion clusters (i. e. K = 2). ADMIXTURE predicted three population clusters,
while SNMF predicted five clusters. For the purposes of comparing the four mod-
els equally, we elected to use theQ-matrices generated forK = 2 from each of
the programs. Similarly and as recommended by their respective authors, we ran
all programs with their default parameter values. Additionally, we ran STRUC-
TURE with a burn-in period of twenty thousand iterations, followed by another
twenty thousand iterations. Direct comparison of the four obtainedQ-matrices
(Figure 3) indicate great similarity, particularly between ADMIXTURE, SNMF
and PSIKO.

Figure 3: Q-matrix plots for the 84 lineBrassica napusdataset comparing the
performance of PSIKO to other leading methods. The proportion of alleles be-
longing to each of the clusters is shown by respective white bars (cluster 1) or
black bars (cluster 2).

The results of the association mapping using each of the fourmatrices were
very similar (Figure 4). As expected, incorporating the relatedness matrix as
a random effect in a mixed linear model (MLM) reduced the supposed Type I
error rate. For the erucic acid trait, the residual error wasminimised by the
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MLM/STRUCTURE model, and for the seed glucosinolates traitthe residual er-
ror was minimised by the MLM/PSIKO model. It is worth noting,however, that
the difference between theQ-matrices was not enough to alter identification of
markers in close proximity to the major causative loci (see (HARPER et al.2012)
for details).

Figure 4: QQ-plots illustrating population structure corrections using the four
methods in GWAS analysis of two traits in the 84 linesBrassica napuspanel, eru-
cic acid (A) and seed glucosinolate content (B). The expected -log10P (x-axis)
are plotted against those observed (y-axis) from either a general linear model
(solid lines) using population structure correction only,and a mixed linear model
(dashed lines) with population structure and relatedness corrections. The diagonal
line is a guide for the perfect fit to the expected-log10P values.

HapMap3 datasetGiven the size of the dataset and thus the prohibitively long
runtime of STRUCTURE, we only investigated it with ADMIXTURE,SNMF,
and PSIKO (again with all parameter values set to default). Since there is no trait
data available, we measured the difference between any two of the three returned
Q-matrices in terms of their RMSE and theirR2 correlation coefficient.

Given the widely accepted fact that the number of founders for this particular
dataset is three, all three methods were run withK = 3. They all found strik-
ingly similar Q-matrices. More precisely the RMSE between any two matrices
was never larger than 0.02 (corresponding to about 2% difference) and theR2 cor-
relation coefficient was always larger than 0.99 (suggesting that they are almost
perfectly correlated). However there was a discrepancy between the methods with
regards to estimating the number of founders for the datasetwith PSIKO and
ADMIXTURE returningK = 3 whereasSNMF returnedK = 4. The very fast
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runtime of 48s for PSIKO (as compared to ADMIXTURE whose runtime was
5212sequating to around 1h and 27minandSNMF whose runtime was 17minand
18s) is strikingly apparent with this large-scale dataset.

Since mapping information is available for this dataset which can be used
for LD based SNP-pruning purposes, we also investigated theperformance of
PSIKO, sNMF, and ADMIXTURE when the sequences are pruned. More pre-
cisely we used the sliding window based SNP-pruning approach implemented in
PLINK (PURCELL et al. 2007) (with default settings) to obtain a pruning of the
HapMap3 dataset. We found that PSIKO, sNMF, and Admixture all correctly in-
fer the widely accepted number of three founders for that dataset, and that the
RMSE between any pair of estimated Q-matrices is never greater than 0.02 (i.e.
a 2% disagreement), suggesting that all tested methods yield very similar results
(data not shown). However, PSIKO took 21 seconds to complete. UsingK = 3 as
input, sNMF took 6 minutes and ADMIXTURE took 36 minutes. Additionally,
we found that the SNP pruning took 52 minutes to terminate resulting in a 52 min
overhead in the total running time of each method for this experiment. This is in
stark contrast to the 48 seconds it took PSIKO to analyse the complete, unpruned
dataset.

DISCUSSION

Population structure is a confounding factor in populationassociation studies,
hampering our understanding of how, for example, agronomically important traits
have been selected for in crop plants or how diseases might have spread through-
out a population (PRICE et al.2006). It is therefore important to be able to correct
for it and this entails gaining insight into a dataset’sQ-matrix as well as the num-
ber of its founders. Popular software packages such as STRUCTURE, FRAPPE,
INSTRUCT and ADMIXTURE infer both. Many of them are based on so-
phisticated models and rely on assumptions such as satisfying Hardy Weinberg
Equilibrium. However if the dataset in question violates such assumptions or is
very large, as would be the case for NGS datasets, these approaches tend to suffer
from long runtimes. To address, among others, the issue of scalability theSNMF
approach has been proposed (FRICHO et al. 2014). Unlike STRUCTURE and
ADMIXTURE, it is not model-based and uses sophisticated algorithmic tech-
niques to ensure fast run-times on large datasets.

Here, we propose the novel and fast PSIKO approach for population struc-
ture inference. By combining linear kernel-PCA with a quick-to-solve optimisa-
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tion problem, it couples the fast runtime and robustness of PCA with the biolog-
ical interpretability ofQ-matrices obtained from model-based approaches such
as STRUCTURE and ADMIXTURE. This allows quick estimation ofthe Q-
matrix underpinning a marker dataset as well as the number offounders of that
dataset. Due to PCA’s few underlying assumptions, PSIKO is widely applicable
and generally has a very low run time, at the same time producing results that are
comparable in quality with those obtained by ADMIXTURE, STRUCTURE
andSNMF.

In order to assess the performance of PSIKO with regards toQ-matrix estima-
tion and inference of founder number, we rigorously tested it on both simulated
and real biological datasets. In our simulation studies, wevaried the number of
founders for a dataset as well as the admixture scenarios forgenerating a dataset.
To help ensure biological relevance, we based our choices for the range of these
parameters on those made in (ALEXANDER et al. 2009). Across a wide range
of simulation scenarios, we found that PSIKO providesQ-matrix estimates that
are very close to the estimates for the respective datasets produced by STRUC-
TURE, ADMIXTURE andSNMF where closeness is measured in terms of the
Root Mean Squared Error between two matrices (ALEXANDER et al.2009). Our
missing data, noise, and inbreeding experiments suggest that PSIKO as well as
ADMIXTURE and SNMF handle these types of data extremely well. However
for large datasets PSIKO seems to be superior, even if such a dataset is pruned
based on e. g. linkage disequilibrium.

The first of our biological datasets comprises 84 oilseed rape accessions, rep-
resenting some seven crop types, genotyped over 101,644 SNPloci. The second
comprises 541 human samples from differing geographic regions, genotyped at
1,457,897 SNP loci. For each dataset, we found that theQ-matrix estimates gener-
ated by PSIKO were very close to those produced by ADMIXTURE and SNMF
for that dataset, using the same measure of closeness as in our simulation study.
However, it is worth pointing out that independent of whether the dataset had been
pruned or not, PSIKO’s runtime was only a fraction of that of ADMIXTURE,
especially on the human dataset, and was also considerably faster thanSNMF.

Although great effort has been put into the development of powerful tools for
deriving the numberK of founders of a population dataset, inferring that number
is still a formidable statistical and computational problem. For example, finding
that number using STRUCTURE can be a very time consuming taskdue to the
fact that it has to be run on a range of different values forK each of which might
take a long time to complete. Even for newer methods such as ADMIXTURE or
SNMF, finding the optimal value ofK relies on running the methods for a range
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of values ofK. In PSIKO, we exploit the behaviour of the eigenvalues returned
by linear-kernel PCA for a dataset to inferK. Due to the algorithmic internals of
PCA this can be done quickly. We are also motivated by a study in (PATTERSON

et al.2006) as well as numerous simulation studies which indicatethat the number
of founders of a dataset equals the number of significant principal components for
that dataset plus one. Our simulation studies as well as our two real biological
examples suggest that PSIKO holds great promise for this.

The speed of PSIKO is similar to that ofSNMF for smaller datasets, and
is faster than that of ADMIXTURE. While for small datasets the differences
in speed between PSIKO andSNMF are negligible, with increasing sequence
length PSIKO proves to be significantly faster thanSNMF and implicitly also
ADMIXTURE. We therefore argue that PSIKO could be a very attractive tool
for analysing the larger datasets that arise from NGS technologies. For smaller
datasets (< 50K SNPs), the differences between the three methods are not as
clear-cut, and the user should choose whichever method would suit their particular
dataset best.

In summary we propose a novel, non-model-based method for inferring pop-
ulation structure. It exploits the advantages of linear kernel-PCA to quickly and
accurately describe a SNP dataset’s population stratification. It is much (up to 300
times) faster than classical, model-based approaches whilst outputs match those
of state-of-the-art methods such asSNMF. Its superior speed for large data sets
makes it particularly attractive for datasets generated byNGS approaches.
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