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Abstract. Let R be a discrete valuation domain with field of fractions Q
and maximal ideal generated by π. Let Λ be an R-order such that QΛ is
a separable Q-algebra. Maranda showed that there exists k ∈ N such that
for all Λ-lattices L and M , if L/Lπk ' M/Mπk then L ' M . Moreover,
if R is complete and L is an indecomposable Λ-lattice, then L/Lπk is also
indecomposable. We extend Maranda’s theorem to the class of R-reduced
R-torsion-free pure-injective Λ-modules.

As an application of this extension, we show that if Λ is an order over a
Dedekind domain R with field of fractions Q such that QΛ is separable then the
lattice of open subsets of the R-torsion-free part of the right Ziegler spectrum
of Λ is isomorphic to the lattice of open subsets of the R-torsion-free part of
the left Ziegler spectrum of Λ.

Further, with k as in Maranda’s theorem, we show that if M is R-torsion-
free and H(M) is the pure-injective hull of M then H(M)/H(M)πk is the
pure-injective hull of M/Mπk. We use this result to give a characterisation of
R-torsion-free pure-injective Λ-modules and describe the pure-injective hulls
of certain R-torsion-free Λ-modules.
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1. Introduction

Let R be a discrete valuation domain with maximal ideal generated by π and
field of fractions Q. Let Λ be an order over R (i.e. an R-algebra that is finitely
generated and projective as an R-module) such that QΛ is a separable Q-algebra.
For example, Λ = RG where G is a finite group and R is a discrete valuation
domain whose field of fractions is characteristic zero. Maranda’s theorem (see [13]
and [5, 30.14]) states that there exists k0 ∈ N such that for all k ≥ k0 + 1 and
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Λ-lattices L,M , L/Lπk ∼= M/Mπk implies L ∼= M and if R is complete then L
indecomposable implies L/Lπk is indecomposable.

For any M ∈ Mod-Λ, M/Mπk may be naturally viewed as a module over the
R/Rπk-Artin algebra Λk := Λ/Λπk. In this paper we study the functor from the
category of R-torsion-free Λ-modules to the category of Λk-modules which sends M
to M/Mπk for k sufficiently large. In particular, in section 3, we extend Maranda’s
theorem to a class of R-reduced R-torsion-free pure-injective Λ-modules and show
that this functor preserves pure-injective hulls.

Pure injective modules generalise injective modules, they are “injective relative
to pure embeddings”. They correspond, via the tensor embedding, exactly to the
injective objects in the category of additive functors from the category of finitely
presented modules to abelian groups. Topologically, they are characterized as direct
summands of compact Hausdorff modules. Pure-injective modules play a promi-
nent role in the model theory of modules because every module is an elementary
substructure of its pure-injective hull. Every module is elementarily equivalent to a
direct sum of indecomposable pure-injective modules, so the indecomposable pure-
injective modules may be viewed as the building blocks of the module category up
to elementary equivalence.

The set of isomorphism types of (right) indecomposable pure-injective modules
over a ring S is equipped with the topology whose closed sets correspond to definable
subcategories of Mod-S. The resulting space is called the (right) Ziegler spectrum
ZgS of S. This space captures the majority of model theoretic information about
Mod-S.

From the perspective of model theory of modules, the natural non-finitely-
presented generalisation of a Λ-lattice is an R-torsion-free Λ-module. This is be-
cause the smallest definable subcategory of Mod-Λ containing all (right) Λ-lattices
is exactly the category, TfΛ, of (right) R-torsion-free Λ-modules. We write ΛTf for
the category of R-torsion-free left Λ-modules. Furthermore, the closed set of inde-
composable pure-injective modules which are R-torsion-free is called the torsion-free

part of the Ziegler spectrum of Λ and is denoted by ZgtfΛ (This space is studied in
[14], [19] and [8]).

An alternative non-finitely-presented version of a Λ-lattice, the generalised lat-
tice, was introduced in [4] and further studied in [23] and [20].

We must exclude the R-divisible R-torsion-free Λ-modules from our generalisa-
tion of Maranda’s theorem because if D is divisible then D/Dπk = 0. However,
every R-torsion-free Λ-module decomposes as a direct sum D⊕N of an R-divisible
module D and an R-reduced module N i.e.

⋂
i∈NNπ

i = 0. Thus, by restricting our
generalisation of Maranda’s theorem further to the class of R-reduced R-torsion-free
Λ-modules we don’t lose anything since the R-divisible R-torsion-free Λ-modules
are just QΛ-modules and by assumption, QΛ is semi-simple.

In section 3, with k0 as in the classical version of Maranda’s theorem, we prove
the following theorems.

Theorem 3.4. Let M,N be R-torsion-free R-reduced pure-injective Λ-modules. If
M/Mπk ∼= N/Nπk for some k ≥ k0 + 1 then M ∼= N .

Theorem 3.5. Let k ≥ k0 +1. If N is an indecomposable R-torsion-free R-reduced
pure-injective Λ-module then N/Nπk is indecomposable.
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Unlike in the classical version of 3.5, we do not need to assume that R is complete.
However, Λ-lattices are pure-injective if and only if R is complete. So this is not
unexpected.

Using results from [8], which are applications of Maranda’s theorem for Λ-
lattices, we get the following.

Theorem 3.8. Let k ≥ k0 +1. Suppose that M is R-torsion-free and R-reduced. If
u : M → H(M) is the pure-injective hull of M then u : M/Mπk → H(M)/H(M)πk

is the pure-injective hull of M/Mπk.

Our proofs of these theorems and their applications rely on the fact that the
functor taking M ∈ TfΛ to M/Mπk ∈ Mod-Λ/Λπk, which, for k sufficiently large,
we will refer to as Maranda’s functor, is an interpretation functor. The original
definition (see section 2) of an interpretation functor came out of the model theoretic
notion of an interpretation. However, from an algebraic perspective, interpretation
functors are just additive functors which commute with direct limits and direct
products.

Thanks to Maranda’s theorem, in order to get information about the category
of Λ-lattices we may instead study a subcategory of the category of modules over
the Artin algebra Λ/Λπk. The drawback of both the classical version of Maranda’s
theorem and our extended version is that mod-Λk, respectively Mod-Λk, is almost
always significantly more complicated than the category of Λ-lattices, respectively
TfΛ. For instance, the order Z(p)C(p2) is of finite lattice type (see [3]) but the

category of Z(p)/p
2Z(p)-free finitely generated Z(p)/p

2Z(p)C(p2)-modules is wild [1].
Despite the above, we will see in sections 4 and 5 that being able to move from

TfΛ to a module category over an Artin algebra has useful applications.
We now describe the applications in sections 4 and 5, which are largely inde-

pendent of each other. Section 4 presents applications of 3.8 to pure-injectives and
pure-injective hulls in TfΛ. We give the following characterisation of pure-injective
R-torsion-free Λ-modules.

Theorem 4.6. Let M ∈ TfΛ. Then M is pure-injective if and only if

(1) M/Mπk is pure-injective for all k ∈ N and
(2) M is pure-injective as an R-module.

We also give information about the pure-injective hull of an R-reduced R-torsion-
free module M in terms of pure-injective hulls of M/Mπk for all k ≥ k0 + 1. In
particular, when M is reduced, R-torsion-free and M/Mπk is pure-injective for all
k ∈ N, we show, Theorem 4.7, that the pure-injective hull of M is the inverse limit
of the Λ-modules M/Mπk along the canonical projections.

We use these results to answer the questions at the end of [19]. In particular,
we describe the pure-injective hulls of the Prüfer like modules, denoted T in [19].
We show that these pure-injective hulls are indecomposable and hence are points of

the Ẑ(2)-torsionfree part of the Ziegler spectrum of the Ẑ(2)-order Ẑ(2)C2 ×C2. As

far as we are aware, until now, the only points of ZgtfΛ , for any order Λ, which have

been explicitly described as modules are Λ̂-lattices, where R̂ is the completion of R

and Λ̂ := R̂ ⊗ Λ, and the R-divisible modules, which are just the indecomposable
QΛ-modules.

The theme of section 5 is connections between TfΛ and ΛTf. Here we extend our
setting to include the case where R is a Dedekind domain with field of fractions
Q and Λ is an R-order such that QΛ is a separable Q-algebra. We write SZg for
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the left Ziegler spectrum of S and ΛZgtf for the torsion-free part of the left Ziegler
spectrum of Λ.

Ivo Herzog [9] showed that for any ring S, the lattice of open subsets of ZgS and
the lattice of open subsets of SZg are isomorphic. Applying Herzog’s result directly

to ZgΛ, shows that the lattice of open subsets of ZgtfΛ is isomorphic to the lattice
of open subsets of the closed subset of R-divisible modules in ΛZg. Despite this, we

are able to show, 5.18, that the lattice of open subsets of ZgtfΛ is also isomorphic,

in a natural way, to the lattice of open subsets of ΛZgtf . This is the main result of
section 5.

We finish section 5 by showing, 5.21, that the m-dimension of the lattice of (right)
pp formulas of Λ with respect to the theory of TfΛ is equal to the m-dimension of
the lattice of (left) pp formulas of Λ with respect to the theory of ΛTf. As a
consequence, we show, 5.22, that the Krull-Gabriel dimension of (LattΛ,Ab)fp is
equal to the Krull-Gabriel dimension of (ΛLatt,Ab)fp where LattΛ is the category
of right Λ-lattices and ΛLatt is the category of left Λ-lattices.

Before starting the main body of the paper, the reader should be warned that
the word lattice has two meanings in this paper; the first, a particular type of Λ-
module and the second a partially ordered set with meets and joins. Since these
objects are so different in character, it shouldn’t cause confusion.

2. Preliminaries

We start by introducing some notation and basic definitions relating to orders. For
a general introduction to orders and their categories of lattices we suggest [5].

Let R be a Dedekind domain. We assume throughout that R is not a field.
An R-order Λ is an R-algebra which is finitely generated and R-torsion-free as an
R-module. A Λ-lattice is a finitely generated Λ-module which is R-torsion-free. We
will write LattΛ (respectively ΛLatt) for the category of right (respectively left)
Λ-lattices and TfΛ (respectively ΛTf) for the category of right (respectively left)
R-torsion-free modules.

Let MaxR denote the set of non-zero prime ideals of R. If P ∈ MaxR then ΛP ,

the localisation of Λ at the multiplicative set R\P , is an RP -order. Let R̂P and

Λ̂P denote the P -adic completions of RP and ΛP respectively. Note that Λ̂P is an

R̂P -order. If L ∈ LattΛ and P ∈ MaxR then LP will denote RP ⊗RL. If L ∈ LattΛ

then L̂P will denote the P -adic completion of L. Note that if L ∈ LattΛ then LP
is a ΛP -lattice and L̂P is a Λ̂P -lattice.

We will assume that QΛ is a separable Q-algebra. This is used in two principal
ways, firstly it is an assumption of Maranda’s theorem for lattices over orders (see [5,

30.12]) and secondly it implies that for all non-zero prime ideals P CR, Q̂Λ̂P = Q̂Λ

is a semi-simple Q̂-algebra where Q̂ denotes the field of fractions of R̂P .
We now give a summary of the notions from model theory of modules that will

be used in this paper. For a more detailed introduction the reader is referred to
[15] and [17].

We will write x for tuples of variables and likewise m for tuples of elements in a
module.

Let S be a ring. A (right) pp-n-formula is a formula in the language of S-
modules of the form

∃y (y,x)A = 0
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where A is an (l + n)×m matrix with entries from S, y is an l-tuple of variables,
x is an n-tuple of variables and l, n,m are natural numbers.

If M ∈ Mod-S and ϕ is a pp-n-formula then we write ϕ(M) for the solution set
of ϕ inM . For any pp-n-formula ϕ and S-moduleM , ϕ(M) is a End(M)-submodule
of Mn under the diagonal action of End(M) on Mn.

After identifying (right) pp-n-formulas ϕ,ψ such that ϕ(M) = ψ(M) for all
M ∈ Mod-S, the set of pp-n-formulas becomes a lattice under inclusion of solution
sets i.e. ψ ≤ ϕ if ψ(M) ⊆ ψ(M) for all M ∈ Mod-S. We denote this lattice by ppnS
and the left module version by Sppn. If X is a collection of (right) S-modules then
we write ppnSX for the quotient of ppnS under the equivalence relation ϕ ∼X ψ if
ϕ(M) = ψ(M) for all M ∈ X.

For ϕ,ψ ∈ ppnS , we will write ϕ+ ψ for the join (least upper bound) of ϕ and ψ
in ppnS and ϕ∧ψ for the meet (greatest lower bound) of ϕ and ψ in ppnS . Note that,
for all M ∈ Mod-S, (ϕ+ψ)(M) = ϕ(M) +ψ(M) and (ϕ∧ψ)(M) = ϕ(M)∩ψ(M).

A pp-n-pair, written ϕ/ψ, is a pair of pp-n-formulas ϕ,ψ such that ϕ(M) ⊇
ψ(M) for all S-modules M . If ϕ/ψ is a pp-n-pair then we write [ψ,ϕ] for the
interval in ppnS , that is, the set of σ ∈ ppnS such that ψ ≤ σ ≤ ϕ. If X is a collection
of (right) S-modules, we will write [ψ,ϕ]X for the corresponding interval in ppnSX.

If m is an n-tuple of elements from a module M then the pp-type of m is the
set of pp-n-formulas ϕ such that m ∈ ϕ(M). If M ∈ mod-S and m is an n-tuple
of elements from M then, [17, 1.2.6], there exists ϕ ∈ ppnS such that ψ is in the
pp-type of m if and only if ψ ≥ ϕ. In this case, we say that ϕ generates the
pp-type of m.

For each n ∈ N, Prest defined a lattice anti-isomorphism D : ppnS → Sppn (see
[17, section 1.3.1] and [15, 8.21]). As is standard, we denote its inverse Sppn → ppnS
also by D. Apart from the fact that for a ∈ S, D(xa = 0) is a|x and D(a|x) is
ax = 0, we will not need to explicitly take the dual of a pp formula here, so we will
not give its definition.

An embedding f : M → N is a pure-embedding if for all ϕ ∈ pp1
S , ϕ(N) ∩

f(M) = f(ϕ(M)). Equivalently, for all L ∈ S-mod, f ⊗− : M ⊗ L→ N ⊗ L is an
embedding. We say N is pure-injective if every pure-embedding g : N →M is a
split embedding. Equivalently, N is pure-injective if and only if it is algebraically
compact [17, 4.3.11]. That is, for all n ∈ N, if for each i ∈ I, ai ∈ N is an n-tuple
and ϕi is a pp-n-formula then

⋂
i∈I ai + ϕi(N) = ∅ implies there is some finite

subset I ′ of I with
⋂
i∈I′ ai + ϕi(N) = ∅.

We will write pinjS (respectively Spinj) for the set of (isomorphism types of)
indecomposable pure-injective right (respectively left) S-modules.

We say a pure-embedding i : M → N with N pure-injective is a pure-injective
hull of M if for every other pure-embedding g : M → K where K is pure-injective,
there is a pure-embedding h : N → K such that hi = g. The pure-injective hull of
M is unique up to isomorphism over M and we will write H(M) for any module
N such that the inclusion of M in N is a pure-injective hull of M .

The following lemma will be used in section 5. Its proof is exactly as in [14, 3.1].

Lemma 2.1. Let M be a Λ-lattice. The pure-injective hull of M is isomorphic to∏
P∈MaxR M̂P .

A full subcategory of a module category Mod-S is a definable subcategory if
it satisfies the equivalent conditions in the following theorem.
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Theorem 2.2. [17, 3.4.7] The following statements are equivalent for X a full
subcategory of Mod-S.

(1) There exists a set of pp-pairs {ϕi/ψi | i ∈ I} such that M ∈ X if and only
if ϕi(M) = ψi(M) for all i ∈ I.

(2) X is closed under direct products, direct limits and pure submodules.
(3) X is closed under direct products, reduced products and pure submodules.
(4) X is closed under direct products, ultrapowers and pure submodules.

For an R-order Λ, a particularly important definable subcategory is, TfΛ, the
class of all R-torsion-free Λ-modules. It is the class of Λ-modules such that for all
non-zero r ∈ R, the solution set of xr = 0 in M is equal to the solution set of x = 0
in M .

Given a class of modules C, let 〈C〉 denote the smallest definable subcategory
containing C. Since all modules in TfΛ are direct unions of their finitely generated
submodules and a finitely generated R-torsion-free module is a Λ-lattice, 〈LattΛ〉 =
TfΛ.

If C ⊆ Mod-S then we will write pinj(C) for the set of (isomorphism types of)
indecomposable pure-injective S-modules contained in C. By [17, 5.1.4], definable
subcategories of Mod-S are determined by the indecomposable pure-injective S-
modules they contain i.e. C = 〈pinj(C)〉.

The (right) Ziegler spectrum of a ring S, denoted ZgS , is a topological space
whose points are isomorphism classes of indecomposable pure-injective (right) S-
modules and which has a basis of open sets given by:

(ϕ/ψ) = {M ∈ pinjS | ϕ(M) ) ψ(M) ∧ ϕ(M)}
where ϕ,ψ range over (right) pp-1-formulas. We write SZg for the left Ziegler
spectrum of S.

The sets (ϕ/ψ) are compact, in particular, ZgS is compact.
From (i) of 2.2, it is clear that if X is a definable subcategory of Mod-S then

X ∩ pinjS is a closed subset of ZgS and that all closed subsets of ZgS arise in this
way. Since definable subcategories are determined by the indecomposable pure-
injective modules they contain, if X ,Y definable subcategories of Mod-S, then
X ∩ ZgS = Y ∩ ZgS if and only if X = Y. Thus there is an inclusion preserving
correspondence between the closed subsets of ZgS and the definable subcategories
of Mod-S. If X is a definable subcategory of Mod-S then we will write Zg(X )
for the Ziegler spectrum of X , that is, X ∩ ZgS with the topology inherited from

ZgS . When Λ is an R-order, we will write ZgtfΛ (respectively ΛZgtf ) for Zg(TfΛ)
(respectively Zg(ΛTf)).

We finish this section by introducing interpretation functors and proving a result
about them which we will need in section 5.

Let C ⊆ Mod-S and D ⊆ Mod-T be definable subcategories. Let ϕ/ψ be a
pp-m-pair over S and for each t ∈ T , let ρt(x, y) be a pp-2m-formula such that for
each M ∈ C, the solution set ρt(M,M) ⊆Mm×Mm defines an endomorphism ρMt
of the abelian group ϕ(M)/ψ(M) and such that ϕ(M)/ψ(M) is a T -module in D
when for all t ∈ T , the action of t on ϕ(M)/ψ(M) is given by ρMt . In this situation
(ϕ/ψ; (ρt)t∈T ) defines an additive functor I : C → D. Following [16], we call any
functor equivalent to one defined in this way an interpretation functor.

From the definition it is clear that for k ∈ N, the functor I : TfΛ → Mod-Λ/πkΛ
which sends M ∈ TfΛ to M/Mπk is an interpretation functor. We will consider
another interpretation functor, Butler’s functor, at the end of section 4.
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The following theorem, due to Prest in full generality and Krause in a special
case, gives a completely algebraic characterisation of interpretation functors.

Theorem 2.3. [18, 25.3][11, 7.2] An additive functor I : C → D is an interpretation
functor if and only if it commutes with direct products and direct limits.

There are many ways to see that interpretation functors preserve pure-injectivity.
Working with pp formulas, it is easiest to show that interpretation functors pre-
serve algebraic compactness by translating systems of cosets of solution sets of pp
formulas for IN into a system of cosets of solution sets of pp formulas for N via
I. For the more categorically minded, the most direct route is to use the fact,
[17, 4.3.6], that a module M is pure-injective if and only if for any cardinal κ, the
summation map ΣM : M (κ) →M factors through the canonical embedding of M (κ)

into Mκ. Note that since interpretation functors are additive and commute with
direct limits, they commute with infinite direct sums. One sees that IΣM is the
summation map ΣIM : IM (κ) → IM because it is the unique map which is the
identity when composed with the component maps IM into IM (κ).

Define ker I to be the definable subcategory of objects L ∈ C such that IL = 0.
For D′ a definable subcategory of D, let I−1D′ be the definable subcategory of
objects L ∈ C such that IL ∈ D′.

The following lemma is used in various places in the literature. It follows easily
from (3) of 2.2.

Lemma 2.4. Let I : C → D be an interpretation functor and C′ a definable subcat-
egory of C. Then the closure of IC′ under pure-subobjects is a definable subcategory
of D.

Lemma 2.5. Let I : C → D be an interpretation functor such that for all N ∈
pinj(C), IN = 0 or IN ∈ pinj(D) and if N,M ∈ pinj(C), IN, IM 6= 0 and IN ∼=
IM then N ∼= M .

(i) If C′ is a definable subcategory of C containing ker I then I−1〈IC′〉 = C′.
(ii) If D′ is a definable subcategory of 〈IC〉 then 〈I(I−1D′)〉 = D′.

Proof. (i) Suppose M ∈ C′. Then IM ∈ 〈IC′〉. So M ∈ I−1〈IC′〉.
Suppose N ∈ pinj(C) and N ∈ I−1〈IC′〉. If IN = 0 then N ∈ C′ since ker I ⊆ C′.

So we may assume that IN 6= 0 and IN is a pure-subobject of IL for some L ∈ C′
by 2.4. Since N is pure-injective, so is IN . Hence IN is a direct summand of IL.
By the hypotheses on I, IN is indecomposable. So by [17, 18.2.24], there exists
L′ ∈ pinj(C′) such that IN is a direct summand of IL′. By the hypothesis on I,
IL′ is indecomposable and hence IN ∼= IL′. By the other hypothesis on I, L′ ∼= N .
Thus N ∈ C′ as required.

Since definable subcategories are determined by the indecomposable pure-
injective modules they contain, I−1〈IC′〉 ⊆ C′.

(ii) Suppose D′ is a definable subcategory of 〈IC〉. Since D′ is a definable sub-
category, 〈I(I−1D′)〉 ⊆ D′ if and only if I(I−1D′) ⊆ D′. Take M ∈ I−1D′. By
definition, IM ∈ D′. So I(I−1D′) ⊆ D′.

We now show that D′ ⊆ 〈I(I−1D′)〉. Suppose N ∈ pinj(D′). Since D′ ⊆ 〈IC〉,
by 2.4, there exists L ∈ C such that N is pure-subobject of IL. Thus N is a direct
summand of IL. By [17, 18.2.24], we may assume L is also indecomposable pure-
injective. Thus N ∼= IL. So L ∈ I−1D′ and N ∼= IL ∈ I(I−1D′) as required. �
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Corollary 2.6. Let I : C → D be an interpretation functor such that for all
N ∈ pinj(C), IN = 0 or IN ∈ pinj(D) and if N,M ∈ pinj(C), IN, IM 6= 0 and
IN ∼= IM then N ∼= M . The maps

ker I ⊆ C′ ⊆ C 7→ 〈IC′〉
and

D′ ⊆ 〈IC〉 7→ I−1D′

give a inclusion preserving bijective correspondence between definable subcategories
in 〈IC〉 and definable subcategories of C containing ker I.

Proof. We have shown that if C′ is a definable subcategory of C containing ker I then
I−1〈IC′〉 = C′ and if D′ is a definable subcategory of 〈IC′〉 then 〈I(I−1D′)〉 = D′.

That this correspondence is inclusion preserving follows directly from its defini-
tion. �

The following is very close to [17, 18.2.26], [16, 3.19] and [11, 7.8] but our hy-
potheses are slightly different. This statement will be needed in section 5.

Proposition 2.7. Let I : C → D be an interpretation functor such that for all
N ∈ pinj(C), IN = 0 or IN ∈ pinj(D) and if N,M ∈ pinj(C), IN, IM 6= 0 and
IN ∼= IM then N ∼= M . The assignment N 7→ IN induces a homeomorphism
between Zg(C)\ ker I and its image in Zg(D) which is closed.

Proof. Suppose L ∈ 〈IC〉∩Zg(D). Then L is a pure-subobject of some IN for some
N ∈ Zg(C). By hypothesis on I, IN is indecomposable. So L ∼= IN . Thus the
closed set 〈IC〉 ∩ Zg(D) is the image of Zg(C)\ ker I under I.

Suppose X is a closed subset of Zg(D) contained in IZg(C). Let X be the
definable subcategory of D generated by X. Let Y := I−1X and Y := Y ∩ Zg(C).
Since X ⊆ 〈IC〉, IL ∈ X if and only if L ∈ Y by 2.5. So N ∈ Y if and only if
IN ∈ X. Thus N 7→ IN is continuous.

Suppose Y is a closed subset of Zg(C). We may replace Y by the closed subset
Y ∪ (ker I ∩ Zg(C)) without changing its intersection with Zg(C)\ ker I. Let Y be
the definable subcategory of C generated by Y and let X = 〈IY〉 ∩ Zg(D). Now
N ∈ Y if and only N ∈ I−1〈IY〉 by 2.5. So N ∈ Y if and only if IN ∈ X. Thus
the inverse of N 7→ IN is continuous. �

3. Maranda’s functor

Throughout this section, R will be a discrete valuation domain with field of fractions
Q and maximal ideal generated by π, and Λ will be an R-order such that QΛ is a
separable Q-algebra.

The basis of Maranda’s theorem is the existence[1] of a non-negative integer l
such that for all Λ-lattices L and M ,

πlExt1(L,M) = 0.

Throughout this section, let k0 be the smallest such non-negative integer. We will
call this natural number Maranda’s constant (for Λ as an R-order).

Note that since Λ is noetherian, Ext1(L,−) is finitely presented as a functor
in (mod-Λ,Ab) (see [17, 10.2.35]). Hence πk0Ext1(L,−) is also finitely presented.

[1]The existence of such a non-negative integer is implied by the fact that QΛ is separable, see
[5, 29.5] and the discussion just after [5, 30.12].
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Since TfΛ is the smallest definable subcategory containing LattΛ, πk0Ext1(L,N) =
0 for all L ∈ LattΛ and N ∈ TfΛ.

Throughout this section, when k ∈ N is clear from the context, for M ∈ Mod-Λ
and m ∈ M , we will often write M for M/Mπk and m for m + Mπk. If f : M →
N ∈ Mod-Λ then we will write f for the induced homomorphism from M/Mπk to
N/Nπk. This is to allow us to use subscripts on modules as indices and to ease
readability. We will write Λk for the ring Λ/πkΛ.

The proof of the next lemma can easily be extracted from the proof of [5, 30.14].

Lemma 3.1. Let L ∈ LattΛ and M ∈ TfΛ. If k ≥ k0 + 1 then for all g ∈
HomΛk

(L/Lπk,M/Mπk) there exists h ∈ HomΛ(L,M) such that for all m ∈ L,

πk−k0 + Λπk|h(m)− g(m).

The following proposition is key to proving both parts of our extension of
Maranda’s theorem.

Proposition 3.2. Let M,N be R-torsion-free Λ-modules with N pure-injective. If
k ≥ k0 + 1 then for all g ∈ HomΛk

(M/Mπk, N/Nπk) there exists h ∈ HomΛ(M,N)

such that for all m ∈M , πk−k0 + Λπk|h(m)− g(m).

Proof. Since M ∈ TfΛ, there exists a directed system of Λ-lattices Li for i ∈ I and
σij : Li → Lj for i ≤ j ∈ I such that M is the direct limit of this directed system.
Let fi : Li →M be the component maps.

Our aim is to find hi : Li → N for all i ∈ I such that hi = hjσij and for all

a ∈ Li, πk−k0 + Λπk|hi(a)− g(fi(a)).
If we can do this then there exists h : M → N such that hi = hfi for all i ∈ I.

This homomorphism is then as required by the statement of the proposition for the
following reasons. For all m ∈M , there exist i ∈ I and a ∈ Li such that fi(a) = m.
So

h(m)− g(m) = hfi(a)− g(fi(a)) = hi(a)− g(fi(a))

is divisible by πk−k0 + Λπk.
For each i ∈ I, let εi : Li → N be such that for all a ∈ Li, πk−k0 + Λπk divides

εi(a)− g(fi(a)). Such an εi exists by 3.1 since Li is a Λ-lattice.
Let ci := (ci1, . . . , cili) generate Li as an R-module and ϕi generate the pp-type

of ci. Note that m ∈ ϕi(N) if and only if there exists a q : Li → N such that
q(ci) = m.

Let

χi(x1, . . . , xli) := ϕi(x1, . . . , xli) ∧
li∧
j=1

πk−k0 |xj .

We now show that m− εi(ci) ∈ χi(N) if and only if there exists a homomorphism
q ∈ Hom(Li, N) such that q(ci) = m and for all a ∈ Li, π

k−k0 + Λπk divides

q(a)− g(fi(a)).
Suppose m − εi(ci) ∈ χi(N). Since εi(ci) ∈ ϕi(N), m ∈ ϕi(N) and hence

there exists q ∈ Hom(Li, N) such that q(ci) = m. For each 1 ≤ j ≤ li, π
k−k0

divides q(cij) − εi(cij) = mj − εi(cij). By definition of εi, π
k−k0 + Λπk divides

εi(cij)− g(fi(cij)). So πk−k0 + Λπk divides q(cij)− g(fi(cij)) for 1 ≤ j ≤ li. Since

ci generates Li, π
k−k0 + Λπk divides q(a)− g(fi(a)) for all a ∈ Li.

Now suppose that q ∈ Hom(Li, N) is such that q(ci) = m and that for all a ∈ Li,
πk−k0 + Λπk divides q(a) − g(fi(a)). Then m − εi(ci) = (q − εi)(ci) ∈ ϕi(N). By
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definition of εi, π
k−k0 + Λπk divides εi(a)− g(fi(a)) for all a ∈ Li. So πk−k0 + Λπk

divides q(a)− εi(a) for all a ∈ Li. Since k ≥ k − k0, πk−k0 divides q(a)− εi(a) for
all a ∈ Li. So, in particular, πk−k0 divides q(cij) − εi(cij) = mj − εi(cij) for all
1 ≤ j ≤ li. Thus m− εi(ci) ∈ χi(N) as required.

For i ≤ j ∈ I, let tij ∈ Rlj×li be such that σij(ci) = cj · tij.
Consider the system of linear equations and cosets of pp-definable subsets

(1)i xi ∈ εi(ci) + χi(N)

for i ∈ I and

(2)ij xi = xj · tij
for i ≤ j ∈ I.

Let I0 ⊆ I be a finite subset of I. Since I is directed, by adding an element to
I0 if necessary, we may assume that there is a p ∈ I0 such that i ≤ p for all i ∈ I0.

Let mp = εp(cp) and for i ∈ I0, let mi = mp · tip. Then

mi = εp(cp) · tip = εp(cp · tip) = εp(σip(ci))

for all i ∈ I0.
Suppose that i ≤ j ∈ I0. Then σip = σjp ◦ σij . So

mi = εp(σjp ◦ σij(ci)) = εp(σjp(cj · tij)) = εp(σjp(cj)) · tij = mj · tij.
Thus (mi)i∈I0 satisfies (2)ij for all i ≤ j ∈ I0.

We now need to show that for all i ∈ I0, mi − εi(ci) ∈ χi(N). Let q := εp ◦ σip.
Then q(ci) = εp(σip(ci)) = mi; furthermore by definition of εp, for all a ∈ Li,

πk−k0 + Λπk divides εp(σip(a)) − g(fp(σip(a))) = q(a) − g(fi(a)). Thus, using the
characterisation of the solution set of χi(N) proved earlier, mi − εi(ci) ∈ χi(N).

Since the system of equations (1)i, (2)ij is finitely solvable and N is pure-
injective, there exists (mi)i∈I with mi ∈ N satisfying (1)i and (2)ij for all i ≤ j ∈ I.
For each i ∈ I, let hi : Li → N be the homomorphism which sends ci to mi.
Condition (2)ij ensures that for all i ≤ j ∈ I, hi = hj ◦ σij . This is because
hj(σij(ci)) = hj(cj · tij) = hj(cj) · tij = mj · tij = mi. Condition (1)i ensures that

πk−k0 + Λπk divides hi(a)− g(fi(a)) for all a ∈ Li. �

Lemma 3.3. Let N ∈ Mod-Λk and g, σ ∈ EndN . Suppose that for all m ∈ N ,
π + Λπk|σ(m). Then g − σ is an isomorphism if and only if g is an isomorphism.

Proof. Suppose that g is an isomorphism. Then (g − σ)g−1 = IdN − σg−1. Let
h := σg−1 and f := IdN + h + . . . hk−1. Since π + Λπk|σ(m) for all m ∈ N ,
hk = 0. Thus (IdN − h) ◦ f = f ◦ (IdN − h) = IdN . So (g − σ)g−1f = IdN and
g−1f(g−σ) = g−1f(g−σ)g−1g = IdN . Therefore g−σ is an isomorphism. For the
converse, note that for all m ∈ N , π + Λπk| − σ(m). Thus the implication we have
just proved also shows that if g − σ is an isomorphism then g = (g − σ)− (−σ) is
an isomorphism. �

Theorem 3.4. Let M,N ∈ TfΛ be R-reduced and pure-injective. If M/Mπk ∼=
N/Nπk for some k ≥ k0 + 1 then M ∼= N .

Proof. We first show that if f : M → N is such that f : M → N is an isomorphism,
then f is an isomorphism.

Suppose f is an isomorphism and f(m) = 0. If m 6= 0 then, since M is reduced,
there exists n ∈ M and l a non-negative integer such that m = nπl where π does
not divide n. Since N is R-torsion-free f(m) = f(n)πl = 0 implies f(n) = 0. So
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f(n) = 0. Therefore n = 0. This implies π divides n contradicting our assumption.
So m = 0. Therefore f is injective.

We now show that f is surjective. Since f is surjective, for all n ∈ N there exists
m ∈ M such that n − f(m) ∈ Nπk. Suppose ml is such that n − f(ml) ∈ Nπlk.
Let aπlk = n− f(ml). There exists b ∈M such that a− f(b) ∈ Nπk. Thus aπlk −
f(b)πlk ∈ Nπ(l+1)k. So n− f(bπlk +ml) ∈ Nπ(l+1)k and (bπlk +ml)−ml ∈Mπlk.
So there exists a sequence (ml)l∈N in M such that for all l ∈ N, n− f(ml) ∈ Nπlk
and ml+1−ml ∈Mπlk. Since M is pure-injective, there exists an m ∈M such that
m−ml ∈ Mπkl for all l ∈ N. Thus f(m)− n = f(m−ml)− (n− f(ml)) ∈ Nπkl
for all l ∈ N. Since N is reduced, f(m) = n.

Suppose that g : M → N is an isomorphism with inverse h : N → M . There
exists e ∈ HomΛ(M,N) such that for all m ∈M , πk−k0 + Λπk divides e(m)− g(m)

and f ∈ HomΛ(N,M) such that for all m ∈ N , πk−k0 + Λπk divides f(m)− h(m).
Since f ◦ e = (f − h) ◦ (e − g) + (f − h) ◦ g + h ◦ (e − g) + h ◦ g, 3.3 implies that
f ◦ e is an isomorphism. Similarly, we can show that e ◦ f is an isomorphism. Thus
e and f are both isomorphisms. So the above arguments imply that e and f are
both isomorphisms. �

Theorem 3.5. Let k ≥ k0 +1. If N is an indecomposable R-torsion-free R-reduced
pure-injective Λ-module then N/Nπk is indecomposable.

Proof. We will show that for all f ∈ EndN , either f is an isomorphism or 1− f is
an isomorphism. Hence EndN is local.

Proposition 3.2 implies that the homomorphism sending f ∈ EndN to f ∈ EndN
induces a surjective ring homomorphism from EndN to EndN/{g ∈ EndN | g(n) ∈
Nπ for all n ∈ N}.

Suppose f ∈ EndN is not an isomorphism. There exists g ∈ EndN and σ ∈
EndN such that f = g + σ and σ(n) ∈ Nπ for all n ∈ N . By 3.3, g is not an
isomorphism and hence neither is g. Since EndN is local, IdN−g is an isomorphism.
Thus IdN − g is an isomorphism. So by 3.3, IdN − f = IdN − (g + σ) is an
isomorphism, as required. �

We now show that Maranda’s functor preserves pure-injective hulls. The proof
uses somewhat different techniques to those used so far and relies on [8, 4.6]. In
order to avoid introducing various definitions that will not be used in the rest of
this paper, we state only the part of that proposition which we need.

Proposition 3.6. Let k ≥ k0 + 1. For all ψ ∈ [πk−k0 |x,x = x] ⊆ ppnΛ there

exists ψ̂ ∈ [πk−k0 + Λπk|x,x = x] ⊆ ppnΛk
such that for all M ∈ TfΛ and m ∈ M ,

m ∈ ψ(M) if and only if m +Mπk ∈ ψ̂(M/Mπk).

The following useful lemma was communicated to me by Mike Prest.

Lemma 3.7. Let M ∈ Mod-S, H(M) be its pure-injective hull and b ∈ H(M) be

an n-tuple. Suppose that b ∈ ϕ(H(M))\
⋃l
i=1 ψi(H(M)) where ϕ,ψ1, . . . , ψn are

pp-n-formulas. There exists an n-tuple b′ ∈ M and a pp-n-formula θ such that
θ(b′ − b) holds and

H(M) |= θ(b′ − y)→ ϕ(y) ∧
n∧
i=1

¬ψi(y).
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Proof. Let b ∈ H(M). Suppose that b ∈ ϕ(H(M)) and b /∈
⋃l
i=1 ψi(H(M)).

By [15, 4.1] and [15, 4.10 (c)], there exists a ∈M and a pp formula χ(x,y) such
that χ(a,b) holds in H(M) and

H(M) |= χ(a,y)→ ϕ(y) ∧
n∧
i=1

¬ψi(y).

Since H(M) is an elementary extension of M , there exists b′ ∈ M such that
χ(a,b′) holds in M and hence in H(M). Thus χ(0,b′ − b) holds in H(M). Set
θ(z) := χ(0, z). So θ(b′ − b) holds in H(M).

Suppose c ∈ H(M) and θ(b′ − c) holds in H(M). Then χ(a, c) holds in H(M).

Thus ϕ(c) ∧
∧l
i=1 ¬ψi(c) holds in H(M). So θ(b′ − b) holds and

H(M) |= θ(b′ − y)→ ϕ(y) ∧
l∧
i=1

¬ψi(y). �

The following theorem is motivated by [16, 3.16].

Theorem 3.8. Let k ≥ k0 + 1 and M ∈ TfΛ. If u : M → H(M) is a pure-injective
hull of M then the induced map u : M/Mπk → H(M)/H(M)πk is a pure-injective
hull for M/Mπk.

Proof. We identify M with its image in H(M). Our aim is to show that for all
b ∈ H(M) with b 6= 0 there exists a ∈M and χ(x, y) ∈ pp2

Λk
such that χ(a, b) holds

in H(M)/H(M)πk and χ(a, 0) does not hold in H(M)/H(M)πk.
Suppose that π does not divide b ∈ H(M). Since H(M) is the pure-injective hull

of M , by 3.7, there exists a ∈ M and a pp formula θ(x) ∈ pp1
Λ such that θ(a − b)

holds in H(M) and θ(a−x)→ ¬π|x. Let ∆(x) := θ(x) +π|x. Then ∆(a− b) holds

in H(M) and for all c ∈ H(M), ∆(a − cπ) does not hold. Let ∆̂ be as in 3.6. So

∆̂(a− b) holds in H(M)/H(M)πk.
Now suppose that e ∈ H(M)\H(M)πk, e = bπn and π does not divide b. Note

that this implies n < k. Let ∆ and a ∈ M be as in the previous paragraph i.e.
∆ ≥ π|x, ∆(a − b) holds in H(M) and for all c ∈ H(M), ∆(a − cπ) does not

hold. Let χ(x, y) := ∃z ∆̂(x − z) ∧ y = zπn ∈ pp2
Λk

. Suppose that χ(a, 0) holds.

Then there exists d ∈ H(M) such that dπn = 0 and ∆̂(a − d) holds. But then
dπn ∈ H(M)πk. Since M and hence H(M) is R-torsion-free, d ∈ H(M)πk−n. This
contradicts the definition of ∆. Thus χ(a, e) holds and χ(a, 0) does not hold in
H(M)/H(M)πk.

Suppose that H(M)/H(M)πk = N ⊕ N ′ and M/Mπk ⊆ N . If c ∈
H(M)/H(M)πk is non-zero then we have shown that there exist a ∈ M and
χ(x, y) ∈ pp2

Λk
such that χ(a, c) holds and χ(a, 0) does not hold. Since the so-

lution sets of pp formulas commute with direct sums, this implies that if c ∈ N ′
then c = 0. Thus N ′ is the zero module and H(M)/H(M)πk is the pure-injective
hull of M/Mπk. �

4. Pure-injectives and pure-injective hulls

As in the previous section, R will be a discrete valuation domain with field of
fractions Q and maximal ideal generated by π, and Λ will be an R-order such that
QΛ is a separable Q-algebra.
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We start this section by showing that the pure-injective hull of an R-reduced
R-torsion-free Λ-module is R-reduced. The proof of the following remark is the
same as [14, Claim 2, p. 1128].

Remark 4.1. If M ∈ TfΛ is R-divisible then M is injective as a Λ-module.

This allows us to deduce that all M ∈ TfΛ decompose as the direct sum of the
divisible part DM of M and an R-reduced module. Explicitly, let

DM := {m ∈M | πn|m for all n ∈ N}.

It is easy to check that DM is R-divisible. So, since R-divisible R-torsionfree Λ-
modules are injective, DM is a direct summand of M . Hence M ∼= DM ⊕M/DM .
Now note that if m ∈ M and πn|m + DM for all n ∈ N then πn|m for all n ∈ N.
Thus M/DM is R-reduced.

Lemma 4.2. Let S be a ring, C,M,E ∈ Mod-S and E injective. Suppose that
C,E ⊆M and C ∩E = {0}. There exist N ′ ⊆M such that C ⊆ N ′ and N ′⊕E =
M .

Proof. Using injectivity of E, there is an f : M → E such that f |C = 0 and
f |E = IdE . So C ⊆ ker f and M = E ⊕ ker f . �

Lemma 4.3. If C ∈ TfΛ is R-reduced then H(C) is R-reduced.

Proof. Since QΛ is separable, H(C) = N ⊕ DH(C). Since C is pure in H(C)
and C is reduced, C ∩ DH(C) = {0}. By 4.2, there exists N ′ ⊆ H(C) such that
N ′ ⊕DH(C) = H(C) and C ⊆ N ′. Since N and N ′ are isomorphic, N ′ is reduced.
Since N ′ is a direct summand of H(C) and C ⊆ N ′ ⊆ H(C), N ′ = H(C). Thus
H(C) is R-reduced. �

Definition 4.4. If M is a Λ-module then let M∗ denote the inverse limit along the
canonical maps M/Mπn+1 →M/Mπn.

Remark 4.5. If M ∈ Mod-Λ is R-reduced and pure-injective as an R-module then
the canonical map v : M →M∗, induced by the quotient maps from M to M/Mπn,
is an isomorphism of Λ-modules.

Proof. Since M is R-reduced, v is an embedding. Since M is pure-injective as an
R-module (equivalently algebraically compact), v is surjective. �

Theorem 4.6. Let M ∈ TfΛ. Then M is pure-injective if and only if

(1) M/Mπk is pure-injective for all k ∈ N and
(2) M is pure-injective as an R-module.

Proof. Certainly, if M is pure-injective then conditions (1) and (2) hold.
So suppose that (1) and (2) hold. We know that M is isomorphic to DM⊕N and

that DM is injective. Thus M is pure-injective if and only if N is pure-injective.
Moreover, if conditions (1) and (2) hold for M then they also hold of N . Let H(N)
be the pure-injective hull of N . Since N/Nπk is pure-injective, 3.8 implies that
H(N)/H(N)πk = N/Nπk. By 4.3, H(N) is reduced and hence is isomorphic to
H(N)∗ ∼= N∗. Since N is reduced and pure-injective as an R-module, N ∼= N∗.
Thus N ∼= H(N) and is hence pure-injective. Thus M = DM ⊕ N is also pure-
injective. �
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Theorem 4.7. Let M ∈ TfΛ be R-reduced and suppose that M/Mπn is pure-
injective for all n ∈ N. Then the canonical map v : M → M∗ is the pure-injective
hull of M .

Proof. Let u : M → H(M) be a pure-injective hull of M . For each k ∈ N, let
uk : M/Mπk → H(M)/H(M)πk be the homomorphism induced by u. For each
k ≥ k0 + 1, uk : M/Mπk → H(M)/H(M)πk is the pure-injective hull of M/Mπk.
Since M/Mπk is pure-injective, uk is an isomorphism. The maps uk induce an
isomorphism w : M∗ → H(M)∗. Since M and hence, by 4.3, H(M) is reduced,
H(M) ∼= H(M)∗. Viewing H(M)∗ as a submodule of

∏
i∈NH(M)/H(M)πi, for all

m ∈M , wv(m) = (u(m) +H(M)πi)i∈N. Thus v = w−1u. �

The same argument as used in the proof above shows that for any R-reduced
M ∈ TfΛ, the pure-injective hull of M is lim←−H(M/Mπi) along some surjec-

tive homomorphisms pi : H(M/Mπi+1) → H(M/Mπi). Unfortunately, it is
not clear how to explicitly describe the homomorphisms pi beyond saying that
ker pi = H(M/Mπi+1)πi.

For the rest of this section we focus on an application of 4.7. We will calculate
the pure-injective hull of the direct limit at the “top” of a generalised tube in

LattΛ. This will allow us to describe certain points of ZgtfΛ as modules when

Λ = Ẑ(2)C2 × C2 and answer the questions at the end of [19].
Following Krause in [12], we define a generalised tube in mod-S to be a se-

quence of tuples T := (Mi, fi, gi)i∈N0 where Mi ∈ mod-S, M0 = 0, fi : Mi+1 →Mi

and gi : Mi →Mi+1 such that for every i ∈ N

Mi

gi
��

fi−1 // Mi−1

gi−1

��
Mi+1

fi // Mi

is a pushout and a pullback.
We will show that if T is a generalised tube in LattΛ then its image, denoted

Tk, in mod-Λk is a generalised tube.
Recall that a diagram

B

a
��

b // L

g
��

M
f // P

is a pushout and a pullback if and only if

0 // B
( ab )
// M ⊕ L

( f −g ) // P // 0

is an exact sequence.
We say a generalised tube (Mi, fi, gi)i∈N0 is trivial if Mi = 0 for all i ∈ N0.

Remark 4.8. If (Mi, fi, gi)i∈N0 is a non-trivial generalised tube then there exists
n ∈ N such that gi is not an epimorphism for all i ≥ n.

Proof. Let n ∈ N be least such that Mn 6= 0. Then gn−1 is not an epimorphism.
Since the pushout of an epimorphism is an epimorphism, gi is not an epimorphism
for all i ≥ n− 1. �
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The following remark seems like it should be false because certainly Maranda’s
functor does not send monomorphisms between lattices to monomorphisms. Con-
sider the exact sequence below. Since M is projective as an R-module and β is
surjective, there exists γ ∈ HomR(M,N) such that βγ = IdM . Thus the exact
sequence is split when viewed as an exact sequence of R-modules. Therefore the
second sequence is a split exact sequence of Rk-modules. Hence it is an exact
sequence of Λk-modules.

Remark 4.9. If

0 // L
α // N

β // M // 0

is an exact sequence of Λ-lattices then

0 // Lk
α // Nk

β // Mk
// 0

is an exact sequence of Λk-modules.

It follows that if T is a generalised tube of Λ-lattices then Tk := ((Mi)k, fi, gi)i∈N0

is a generalised tube of finitely presented Λk-modules.
Given a generalised tube T = (Mi, fi, gi)i∈N0

, define T [∞] to be the direct limit
along the embeddings gi : Mi →Mi+1. Note that if T is trivial then T [∞] = 0.

Recall that a module M ∈ Mod-S is Σ-pure-injective if M (κ) is pure-injective
for every cardinal κ. Equivalently, [17, 4.4.5], M is Σ-pure-injective if and only if
pp1

SM has the descending chain condition.

Proposition 4.10. Let T = (Mi, fi, gi)i∈N0
be a non-trivial generalised tube in

LattΛ. Then

(i) T [∞] is R-torsion-free and R-reduced,
(ii) T [∞] is not pure-injective,

(iii) for all k ∈ N, T [∞]/T [∞]πk is Σ-pure-injective, and
(iv) T [∞]∗ is the pure-injective hull of T [∞].

Proof. (i) & (ii): As a direct limit of lattices, T [∞] is R-torsion free. Each gi is
split when viewed as a homomorphism of R-modules. Since T is non-trivial there
exists an n ∈ N such that gi is not an isomorphism for all i ≥ n. Therefore T [∞]
is isomorphic to R(ℵ0) as an R-module. So T [∞] is reduced. Since R is not Σ-
pure-injective as a module over itself, [17, 4.4.8], R(ℵ0) is not pure-injective as an
R-module and hence T [∞] is not pure-injective as a Λ-module.

(iii): Krause shows, [12, 8.3], that if T is a generalised tube in the category
of finitely presented modules over an Artin algebra then T [∞] is Σ-pure-injective.
Since Maranda’s functor commutes with direct limits and sends generalised tubes
to generalised tubes, if T = (Mi, fi, gi)i∈N0

is a generalised tube in LattΛ then
Tk[∞] = T [∞]/T [∞]πk. Thus T [∞]/T [∞]πk is Σ-pure-injective.

(iv): Follows directly from (i), (iii) and 4.7. �

When R is complete and QΛ is a separable Q-algebra, the category of Λ-lattices
has almost split sequences (see [22]). A stable tube is an Auslander-Reiten compo-
nent of the form ZA∞/τn and we call n the rank of the tube. Explicitly, a stable
tube of rank n has points Si[j] for 1 ≤ i ≤ n and j ∈ N. We read the index i mod n.
For all i, j ∈ N, a stable tube has a single (trivially valued) arrow Si[j]→ Si[j + 1]
and a single (trivially valued) arrow Si[j+1]→ Si+1[j]. We will identify the points
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with (the isomorphism type of) the Λ-lattice they represent. As for Artin alge-
bras, generalised tubes can be constructed from stable tubes using the following
two facts.

• If A,B,C ∈ LattΛ are indecomposable and pairwise non-isomorphic and,
u : A→ B and v : A→ C are irreducible morphisms then there is w : A→
D such that (u v w)T : A→ B ⊕ C ⊕D is left minimal almost split.
• If u : Si[j] → Si[j + 1] is an irreducible map, w : Si[j] → W and W ∈

LattΛ is indecomposable and is not isomorphic to any of Si[j], Si+1[j −
1], . . . , Si+(j−1)[1] then there exists γ : Si[j + 1]→W such that w = γu.

Krause [12, 9.1] showed that if T is a stable tube (of rank n) in the module category
of an Artin algebra, with the labelling of modules as above, then for each 1 ≤ i ≤ n,
the direct limit lim−→Si[j] is an indecomposable pure-injective. For stable tubes

in categories of lattices we know, 4.10, that ⊕ni=1 lim−→Si[j] has pure-injective hull

(⊕ni=1 lim−→Si[j])
∗. Hence, the pure-injective hull of lim−→Si[j] is (lim−→Si[j])

∗. This
raises the following question.

Question 1. Let R be a complete discrete valuation domain with field of fractions
Q and let Λ be an order R such that QΛ is a separable Q-algebra. If T is a direct
limit up a ray of irreducible monomorphisms in a stable tube in LattΛ then is T ∗

indecomposable?

We are able to answer this question positively for the Ẑ2-order Γ := Ẑ2C2 ×C2.
The torsion-free part of the Ziegler spectrum of Γ was described in [19]. However,
the points were not described as modules.

We start by explaining the set up. Let e1, e2, e3, e4 be the primitive orthogonal
idempotents as in [19]. Using these idempotents, Butler [2], defined a full functor ∆
from the category of b-reduced Γ-lattices to the category of finite-dimensional vector

spaces over F2 with 4 distinguished subspaces. A Ẑ2-torsion-free Γ-module M is

b-reduced if M ∩Mei = 2Mei for all 1 ≤ i ≤ 4. Note that, since ei /∈ Ẑ2C2 × C2,

Mei and M2ei are calculated inside Q̂2M . Puninski and Toffalori extended this

functor to the category of b-reduced Ẑ2-torsion-free modules and showed, [19, 5.4],

that it is full on Ẑ2-torsion-free b-reduced pure-injective Γ-modules.

Let M be a b-reduced Ẑ2-torsion-free Ẑ2C2 × C2-module. Define M? := Me1 ⊕
. . .⊕Me4. Then ∆(M) := (V ;V1, V2, V3, V4) where V := M?/M and Vi := Mei +
M/M ∼= Mei/M ∩Mei = Mei/2Mei.

The category of finite-dimensional vector spaces over F2 with 4 distinguished
subspaces may be identified with a full subcategory of modules over the path al-

gebra F2D̃4. The only indecomposable representations which are not in this full

subcategory are the simple injective F2D̃4-modules. We will make this identification

and consider ∆ as a functor to Mod-F2D̃4.
As observed by Puninski and Toffalori, just from the construction, one can see

that ∆ is an interpretation functor. Note that if M is b-reduced and Ẑ2-torsion-free

then ∆(M) = 0 if and only if M is Ẑ2-divisible.
Dieterich, in [6], showed that ∆ induced an isomorphism from the Auslander-

Reiten quiver of F2D̃4 with all projective points removed and all simple injective
modules removed and the Auslander-Reiten quiver of LattΓ restricted to the b-
reduced lattices. Using this he was able, [6, 3.4], to compute the full Auslander-
Reiten quiver of LattẐ2C2×C2

. Moreover, see the proof of [6, 2.2] and [6, 3.4], ∆
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induces a bimodule isomorphism between IrrLattΓ
(M,L) and IrrF2D̃4

(∆(M),∆(L))
for all L,M indecomposable b-reduced Γ-lattices. In particular, ∆ sends irreducible
morphisms between indecomposable b-reduced Γ-lattices to irreducible morphisms

in mod-F2D̃4. This implies that the Auslander-Reiten quiver of LattẐ2C2×C2
has

infinitely many stable tubes of rank 1 and 3 stable tubes of rank 2 and ∆ sends

each stable tube in LattẐ2C2×C2
to a stable tube in mod-F2D̃4.

Keeping our notation as above, let Si[j] be the lattices in a stable tube of rank
n = 1 or n = 2 in LattẐ2C2×C2

. Fix 1 ≤ i ≤ n and for each j ∈ N let wj : Si[j] →
Si[j + 1] be an irreducible map. Let Si[∞] := lim−→Si[j] be the direct limit along

the maps wj . Then ∆Si[∞] = lim−→∆Si[j] is pure-injective and indecomposable

by [12, 9.1] since ∆ sends stable tubes to stable tubes. Since ∆ is full on pure-

injective modules, by [16, 3.15 & 3.16][2], it preserves pure-injective hulls. Thus
∆(Si[∞]) ∼= ∆(Si[∞]∗). Since Si[∞]∗ is reduced and ∆(Si[∞]∗) is indecomposable,
Si[∞]∗ is indecomposable.

So finally, for each quasi-simple S at the base of a tube (i.e. Si[1] for some stable
tube), the S-prüfer point in [19, 6.1] is S[∞]∗ where S[∞] is the direct limit up a
ray of irreducible monomorphisms starting at S.

The module T in question 6.2 of [19] is indecomposable but not pure-injective

however its pure-injective hull is indecomposable (and Ẑ2-reduced).

5. Duality

Throughout this section, let R be a Dedekind domain which is not a field, Q its
field of fractions, Λ an R-order and QΛ a separable Q-algebra. The main aim

of this section is to show that the lattice of open sets of ZgtfΛ is isomorphic to

the lattice of open sets of ΛZgtf . We will also show, by other methods, that the
m-dimension of pp1

Λ(TfΛ) is equal to the m-dimension of Λpp1(ΛTf) and that the
Krull-Gabriel dimension of (LattΛ,Ab)fp is equal to the Krull-Gabriel dimension
of (ΛLatt,Ab)fp.

5.1. Duality for the R-reduced part of ZgtfΛ when R is a discrete valuation
domain. Throughout this subsection R will be a discrete valuation domain, k will
be a natural number strictly greater than Maranda’s constant for Λ as an R-order
and I : TfΛ → Mod-Λk (respectively I : ΛTf→ Λk-Mod) will be Maranda’s functor.

Maranda’s functor I : TfΛ → Mod-Λk is an interpretation functor. The kernel of
I is the definable subcategory of R-divisible modules. Since QΛ is separable, by 4.1
and the discussion just below it, all indecomposable pure-injective modules in TfΛ
are either R-reduced or R-divisible modules. When Λ is an order over a discrete
valuation domain R, we will write ZgrtfΛ for the subset of R-reduced modules in

ZgtfΛ . We have shown in section 3 that if N,M ∈ TfΛ are R-reduced and pure-
injective then IN ∼= IM implies N ∼= M and that if N is also indecomposable then
so is IN . Thus 2.7 gives us the following theorem.

Theorem 5.1. The map which sends N ∈ ZgrtfΛ to N/Nπk ∈ ZgΛk
induces a

homeomorphism onto its image which is closed.

[2]The proof of the required part of [16, 3.16] is a little unclear. Lemma 3.7 clears this up.
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In theory, the above theorem could be used to give a description of ZgrtfΛ and

hence ZgtfΛ based on a description of ZgΛk
. But, as explained in the introduction

to this paper, ZgΛk
is generally much more complicated than ZgtfΛ .

Based on Prest’s duality for pp formulas, Ivo Herzog defined a lattice isomor-
phism between the lattice of open subsets of ZgS and the lattice of open subsets of

SZg.

Theorem 5.2. [9] There is a lattice isomorphism D between that lattice of open
subsets of ZgS (respectively SZg) and the lattice of open subsets of SZg (respectively
ZgS) which is given on basic open sets by

(ϕ/ψ) 7→ (Dψ/Dϕ)

for ϕ,ψ pp-1-formulas. Moreover D2 is the identity map.

It is unknown if this lattice isomorphism is always induced by a homeomorphism.
If X is a closed subset of ZgS then we will write DX for SZg\D(ZgS\X). Since

closed subsets of ZgS are in correspondence with the definable subcategories of
Mod-S, this isomorphism also defines an inclusion preserving bijection between
the definable subcategories of Mod-S and S-Mod. If X ⊆ Mod-S is a definable
subcategory then we will write DX for the corresponding definable subcategory of
S-Mod.

Herzog’s duality can be applied to closed subspaces of ZgS as follows. Let X
be a closed subset of ZgS . Open subsets of ZgS containing ZgS\X are in bijective
correspondence with open subsets of X equipped with the subspace topology via
the map U 7→ U ∩X. If U is an open subset of ZgS containing ZgS\X then DU is
an open subset of SZg containing SZg\DX. Thus D induces a lattice isomorphism
between the lattice of open sets of X and the lattice of open sets of DX both
equipped with the appropriate subspace topology.

Herzog’s isomorphism D sends the definable subcategory TfΛ to the definable
subcategory of R-divisible Λ-modules. Thus, directly applying Herzog’s duality

does not give an isomorphism between the open subsets of ZgtfΛ and ΛZgtf . With
this in mind, we instead use the right module version of Maranda’s functor I to
move to Mod-Λk, we then apply D there and then use the left module version of
Maranda’s functor to move back to ΛTf. This will give us an isomorphism between

the lattice of open subsets of ZgrtfΛ and ΛZgrtf .
Our first step is to show that 〈ITfΛ〉 = D〈IΛTf〉.
The contravariant functor

HomR(−, R) : Mod-Λ→ Λ-Mod

induces an equivalence between the category of right Λ-lattices and the opposite of
the category of left Λ-lattices, see [21, sect. IX 2.2]. If M is right Λ-lattice, denote
the left Λ-lattice, HomR(M,R) by M†.

The ring Λ/πnΛ is a R/πnR-Artin algebra. For all S-Artin algebras A, there
is a duality between mod-A and A-mod given by HomS(−, E) where E is the
injective hull of S/rad(S). We will write M∗ for Hom(M,E). If S = R/πnR then
S/rad(S) = R/πR. One can check, using Baer’s criterion, that R/πnR is injective
as an S-module. The map which sends a+ πR ∈ R/πR to aπn−1 + πnR ∈ R/πnR
embeds R/πR into the socle of R/πnR which is simple. Thus E = R/πnR is the
injective hull of S/rad(S) = R/πR.

We will now show that if L is a right Λ-lattice then (IL)∗ = IL†.
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Lemma 5.3. If M is a right Λ-lattice and n ∈ N then

HomR(M,R)/πnHomR(M,R) ∼= HomR/πn(M/Mπn, R/πnR).

Proof. For f ∈ HomR(M,R), let f : M/Mπn → R/πnR ∈ HomR/πnR(M/Mπn, R/πnR)
be the homomorphism which sends m+Mπn to f(m) + πnR.

Let Φ : HomR(M,R) → HomR/πnR(M/Mπn, R/πnR) be defined by Φ(f) = f .
It is clear that Φ is a homomorphism of left Λ-modules. Since M is projective as
an R-module, Φ is surjective.

If Φ(f) = 0 then for all m ∈M , πn|f(m). For all m ∈M , let g(m) ∈M be such
that g(m)πn = f(m). Since M is R-torsion-free, the choice of g(m) is unique. From
this it follows easily that g is a homomorphism of R-modules. Thus, if Φ(f) = 0
then f ∈ πnHomR(M,R). �

The next remark follows from the fact, see [17, 1.3.13] for instance, that if A
is an Artin algebra, ϕ/ψ is a pp-pair and M is a finite length A-module then
ϕ(M) = ψ(M) if and only if Dϕ(M∗) = Dψ(M∗).

Remark 5.4. Suppose that A is an Artin algebra and {Mi | i ∈ I} is a set of finite
length right A-modules. Then

D〈Mi | i ∈ I〉 = 〈M∗i | i ∈ I〉.

Lemma 5.5. The following equalities hold.

〈ITfΛ〉 = 〈IL | L is an indecomposable right Λ-lattice〉(1)

= 〈IM† | M is an indecomposable left Λ-lattice〉(2)

= 〈(IM)∗ | M is an indecomposable left Λ-lattice〉(3)

= D〈IM | M is an indecomposable left Λ-lattice〉(4)

= D〈IΛTf〉(5)

Proof. (1) and (5). These hold because all N ∈ TfΛ are direct limits of Λ-lattices,
all Λ-lattices are direct sums of indecomposable Λ-lattices and I commutes with
direct limits.
(2) For all (right) Λ-lattices L†† ∼= L and L† is a (left) Λ-lattice. (3) holds by 5.3
and (4) holds by 5.4. �

Herzog’s duality D gives an isomorphism from the lattice of open sets of
Zg(〈ITfΛ〉) to the lattice of open sets of Zg(D〈ITfΛ〉). By 5.5, D〈ITfΛ〉 = 〈IΛTf〉.

If U is an open subset of ZgrtfΛ (resp. ΛZgrtf ) then write IU for the set of all
IN where N ∈ U .

Definition 5.6. Let U be an open subset of ZgrtfΛ . Define

dU := {N ∈ ΛZgrtf | IN ∈ DIU}.

By 5.1, IU is an open subset of Zg(〈ITfΛ〉). So DIU is an open subset of

Zg(〈IΛTf〉). Again by 5.1, the set of N ∈ ΛZgrtf such that IN ∈ DIU is an open

subset of ΛZgrtf .

Proposition 5.7. The map d between the lattice of open sets of ZgrtfΛ and ΛZgrtf

is a lattice isomorphism.
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Proof. The homeomorphism from 5.1 sends an open subset U of ZgrtfΛ to IU ⊆
Zg(〈ITfΛ〉). So the map sending U to IU is a lattice isomorphism. By 5.5, Herzog’s
duality gives a lattice isomorphism between the open subsets of Zg(〈ITfΛ〉) and the
lattice of open subset of Zg(〈IΛTf〉). Thus the map which sends an open subset U

of ZgrtfΛ to DIU ⊆ Zg(〈IΛTf〉) is a lattice isomorphism. Finally the inverse of the
of the homeomorphism from 5.1 sends an open subset of W ⊆ Zg(〈IΛTf〉) to the

set of all N ∈ ΛZgrtf such that IN ∈W . So this map is also a lattice isomorphism.
Since d is the composition of these three lattice isomorphisms, d is also a lattice
isomorphism. �

If Λ is an order over a complete discrete valuation domain then the Λ-lattices are
pure-injective (see [8, 2.2] for instance). When R is not complete, we can instead

consider the lattices over the R̂-order Λ̂. Then the Λ̂-lattices are pure-injective

as Λ̂-modules and hence also as Λ-modules. Moreover, if L is an indecomposable

Λ̂-lattice then, since L is R-reduced, L is also indecomposable as a Λ-module (see
[14, Remark 1] for a proof over group rings that also works in our context).

Proposition 5.8. Let R be a discrete valuation domain and Λ an R-order. If L

is an indecomposable right Λ̂-lattice then for all open sets U ⊆ ZgrtfΛ , L ∈ U if and

only if L† ∈ dU where L† := HomR̂(L, R̂).

Proof. First note that IL is finite-length as a Λk-module. Since Λk is an Artin
algebra, if M ∈ Zg(〈ITfΛ〉) is finite-length then for all open subsets U of Zg(〈ITfΛ〉),
M ∈ U if and only if M∗ ∈ DU , see [17, 1.3.13]. So, if L is an indecomposable

right Λ̂-lattice then L ∈ U if and only if IL ∈ IU and IL ∈ IU if and only if
(IL)∗ ∈ DIU . By 5.3, (IL)∗ = IL†, so (IL)∗ ∈ DIU if and only if L† ∈ dU . So
L ∈ U if and only if L† ∈ dU . �

5.2. Duality for ZgtfΛ . We now work to extend 5.7 in two ways concurrently. We
extend the isomorphism to an isomorphism between the lattices of open subsets of

ZgtfΛ and ΛZgtf and we extend the statement to the case where R is a Dedekind
domain (which is not a field).

In order to do this we need to recall some key features of ZgtfΛ from [8]. As
explained in [8, Section 3], for each P ∈ MaxR, the canonical homomorphism

Λ → ΛP induces, via restriction of scalars, an embedding of ZgtfΛP
into ZgtfΛ and

the image of this embedding is closed. We identify ZgtfΛP
with its image. Moreover,

for all N ∈ ZgtfΛ , there exists a P ∈ MaxR such that N ∈ ZgtfΛP
. So

ZgtfΛ =
⋃

P∈MaxR

ZgtfΛP
.

Finally, if N ∈ ZgΛP
for all P ∈ MaxR then N is R-divisible and hence may

be viewed as a module over QΛ. Since QΛ is separable, hence semi-simple, all
indecomposable R-divisible modules, when viewed as QΛ-modules, are simple.

For each P ∈ MaxR, let P |x denote the pp formula ∃y1, . . . , yn x =
∑n
i=1 yiri

where r1, . . . rn generate P . In all Λ-modules M , P |x defines the subset MP . If
P, P ′ ∈ MaxR are not equal then (x = x/P |x) ∩ (x = x/P ′|x) is empty. For all

N ∈ ZgtfΛ , either N is R-divisible or N ∈ (x = x/P |x) for some P ∈ MaxR. So

ZgtfΛ = ZgQΛ ∪
⋃

P∈MaxR

(x = x/P |x) .
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Note that (x = x/P |x) = ZgtfΛP
\ZgQΛ. Under the assumption that QΛ is a

semi-simple Q-algebra, this means that (x = x/P |x) is the set of RP -reduced in-

decomposable pure-injective ΛP -modules. For this reason, we will write ZgrtfΛP
for

this set. Note that this notation matches that of the previous section when Λ is an
order over a discrete valuation domain.

Theorem 5.9. [8, 3.1] Let R be a Dedekind domain with field of fractions Q, and

Λ an R-order such that QΛ is semisimple. If N ∈ ZgtfΛ , then either

• N is a simple QΛ-module, or

• there is some maximal ideal P of R such that N ∈ Zgtf
Λ̂P

and N is RP -

reduced.

Moreover, if N ∈ Zgtf
Λ̂P

is RP -reduced then N ∈ ZgtfΛ .

This theorem means that if QΛ is separable then the RP -reduced points of ZgtfΛ
can be identified with the R̂P -reduced (equivalently RP -reduced) points of Zgtf

Λ̂P
.

Following [14], it is shown in [8, 3.3] that the topology on the set of RP -reduced

points of ZgtfΛ is the same whether it is viewed as a subspace of ZgtfΛP
or Zgtf

Λ̂P
.

Thus we may identify ZgrtfΛP
and Zgrtf

Λ̂P
.

We have already mentioned in Section 5.1 that a Λ̂P -lattice is pure-injective.

Therefore the restrictions of indecomposable Λ̂P -lattices to Λ are points in ZgtfΛ .
From now on, if P ∈ MaxR then let dP denote the isomorphism between the

lattice of open subsets of ZgrtfΛP
and of ΛP

Zgrtf induced by d for ΛP . Patching the dP
together as P ∈ MaxR varies will give us an isomorphism between the open subset of⋃
P∈MaxR ZgrtfΛP

⊆ ZgtfΛ and the open subsets of
⋃
P∈MaxR ΛP

Zgrtf ⊆ ΛZgtf . Thus,
we just need to know what to do with open subsets which contain R-divisible points.

Let e1, . . . , en be a complete set of centrally primitive orthogonal idempotents

for QΛ. For each 1 ≤ i ≤ n, eiQΛ is isomorphic as a right QΛ-module to S
(αi)
i for

some simple right QΛ-module Si and if Si ∼= Sj then i = j.

Lemma 5.10. [8, 2.7] Let N ∈ ZgtfΛ and S ∈ ZgQΛ. If S is a direct summand of

QN then S is in the closure of N . In particular, if N is a closed point in ZgtfΛ then
N ∈ ZgQΛ.

Lemma 5.11. Let D be a Dedekind domain with field of fractions Q and let Λ be
an order over D such that QΛ is semisimple. Let e ∈ QΛ be a centrally primitive
idempotent, S the simple right QΛ-module corresponding to e and suppose that

d ∈ D is such that ed ∈ Λ. The following are equivalent for all N ∈ ZgtfΛ .

(1) N ∈ (xd(1− e) = 0/x = 0)
(2) S is a direct summand of QN
(3) S is in the closure of N

Proof. (1) ⇒ (2) Suppose md(1 − e) = 0 and m 6= 0. Then, as an element of
QN viewed as a QΛ-module, m(1 − e) = 0. Thus m = me. The kernel of the
homomorphism from QΛ to QN sending 1 to m contains (1 − e)QΛ and thus
induces a non-zero homomorphism from eQΛ to QN . Thus S is a submodule and
hence a direct summand of QN .

(2)⇒ (3) This is 5.10.
(3) ⇒ (1) Suppose S is in the closure of N . Since eQΛ(1 − e)d = 0, S ∈

(xd(1− e) = 0/x = 0). Thus N ∈ (xd(1− e) = 0/x = 0). �
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Note that the above shows that the set of points specialising to a closed point

in ZgtfΛ is an open set. For S ∈ ZgQΛ, we will write V(S) for the open set of points
whose closure contains S.

Corollary 5.12. Let U be an open subset of ZgtfΛ . Then

U =
⋃
P

(U ∩ ZgrtfΛP
) ∪

⋃
S∈λ(U)

V(S)

where λ(U) := U ∩ ZgQΛ.

Proof. If N ∈ ZgtfΛ then either N ∈ ZgrtfΛP
for some P ∈ MaxR or N ∈ ZgQΛ. So,

since for all S ∈ ZgQΛ, S ∈ V(S), U ⊆
⋃
P (U ∩ ZgrtfΛP

) ∪
⋃
S∈λ(U) V(S).

Suppose S ∈ λ(U) and N ∈ V(S). Then S is in the closure of N . Hence N ∈ U .

Thus V(S) ⊆ U . So U ⊇
⋃
P (U ∩ ZgrtfΛP

) ∪
⋃
S∈λ(U) V(S). �

For each simple QΛ-module S, we now consider where to send the open set V(S).

In particular, we need to calculate the image of V(S) ∩ ZgrtfΛP
under dP for each

P ∈ MaxR.

Lemma 5.13. Let R be a discrete valuation domain and Λ an R-order. For all
M ∈ LattΛ, QHomR(M,R) and HomQ(MQ,Q) are isomorphic as QΛ-modules.

Proof. Let ∆ : HomR(M,R)→ HomQ(MQ,Q) be defined by setting ∆(f)(m ·q) =
f(m) · q for all m ∈ M and q ∈ Q. A quick computation shows that for all
f ∈ HomR(M,R), ∆(f) is a well-defined element of HomQ(MQ,Q) and ∆ is an
injective homomorphism of left Λ-modules. Since HomQ(MQ,Q) is Q-divisible, ∆
extends to an injective homomorphism ∆′ from QHomR(M,R) to HomQ(MQ,Q).

Suppose that M is rank n. Then dimQMQ = dimQ HomQ(MQ,Q) =
dimQQHomR(M,R) = n. Thus ∆′ is an injective homomorphism between two
n-dimensional Q-vector spaces and hence is surjective. �

Lemma 5.14. Let R be a discrete valuation domain. Let L ∈ LattΛ, e a central
idempotent of QΛ and d ∈ R be such that ed ∈ Λ. Then L ∈ (x(e− 1)d = 0/x = 0)
if and only if L† ∈ ((e− 1)dx = 0/x = 0).

Proof. Suppose L ∈ (x(e− 1)d = 0/x = 0). Then there exists a ∈ QL\{0} such
that a(e − 1) = 0. By 5.13, QHomR(L,R) ∼= HomQ(QL,Q). Thus we need to
show that there exists 0 6= f ∈ HomQ(QL,Q) such that (e − 1) · f = 0. Since
e is central, QL = QLe ⊕ QL(e − 1) and QLe 6= 0. Take f ∈ HomQ(QL,Q)
such that f is zero on QL(e − 1) and non-zero on QLe. Then for all m ∈ QL,
(e − 1) · f(m) = f(m(e − 1)) = 0 but f 6= 0. Thus there exists b ∈ QL†\{0} such
that (e− 1) · b = 0. There exists r ∈ R\{0} such that rb ∈ L† and (e− 1)d · rb = 0.
So L† ∈ ((e− 1)dx = 0/x = 0). �

Lemma 5.15. Let a ∈ Λ. The set of indecomposable Λ̂P -lattices, as P ∈ MaxR

varies, is dense in ZgtfΛ \ (xa = 0/x = 0).

Proof. Suppose that (ϕ/ψ) ∩ (ZgtfΛ \ (xa = 0/x = 0)) 6= ∅. Pick N ∈ (ϕ/ψ) ∩
(ZgtfΛ \ (xa = 0/x = 0)). Since N is a direct union of its finitely generated submod-
ules, there exists a finitely generated submodule L of N such that ϕ(L) ) ψ(L).
Since L is a submodule of N , L is R-torsionfree and annLa = 0. Thus ϕ(H(L)) )
ψ(H(L)) and annH(L)a = 0. Since H(L) is isomorphic to

∏
P∈MaxR L̂P by 2.1, for
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all P ∈ MaxR, ann
L̂P
a = 0 and there exists P ∈ MaxR such that ϕ(L̂P ) ) ψ(L̂P ).

Thus there exists a P ∈ MaxR and a Λ̂P -lattice M such that ϕ(M) ) ψ(M) and

annMa = 0. Since the category of Λ̂P -lattices is Krull-Schmidt, it follows that there

exists an indecomposable Λ̂P -lattice with the required properties. �

The following is proved in the case that R is a discrete valuation domain in [14].

Corollary 5.16. The set of indecomposable Λ̂P -lattices, as P ∈ MaxR varies, is a

dense subset of ZgtfΛ and each Λ̂P -lattice is isolated in ZgtfΛ . Therefore, all isolated

points in ZgtfΛ are Λ̂P -lattices for some P ∈ MaxR.

Proof. Density is a special case of 5.15. It is shown in [8, 2.4] that the indecompos-

able Λ̂P -lattices are isolated in Zgtf
Λ̂P

. As explained just after 5.9, we may identify

Zgrtf
Λ̂P

with ZgrtfΛP
. Thus the Λ̂P -lattices are isolated in ZgrtfΛP

. Finally, viewed as a

subspace of ZgtfΛ , ZgrtfΛP
is equal to the open set (x = x/P |x). Thus the indecom-

posable Λ̂P -lattices are isolated in ZgtfΛ . The final statement follows from the first
two statements. �

Recall that for each P ∈ MaxR, dP is the isomorphism between the lattice of

open subsets of ZgrtfΛP
and of ΛP

Zgrtf defined in section 5.1.

Lemma 5.17. For all simple QΛ-modules S and all P ∈ MaxR,

dP (V(S) ∩ ZgrtfΛP
) = V(S∗) ∩ ΛP

Zgrtf .

Proof. We first show that if L is an indecomposable right Λ̂P -lattice and S is
a simple right QΛ-module then L ∈ V(S) if and only if L† ∈ V(S∗). Let e
be a centrally primitive idempotent of QΛ corresponding to S. Note that e is

central and idempotent as an element of Q̂P Λ̂. We have shown in 5.14 that
L ∈ (x(e− 1)d = 0/x = 0) if and only if L† ∈ ((e− 1)dx = 0/x = 0). So it is
enough to show that ((e− 1)dx = 0/x = 0) = V(S∗). But this is clear because cer-
tainly (e − 1)S∗ = 0 and thus e is a centrally primitive idempotent corresponding
to S∗.

Since, by 5.15, the indecomposable right Λ̂P -lattices are dense in the closed

subset ZgrtfΛP
\ (x(e− 1)d = 0/x = 0) of ZgrtfΛP

,

ZgrtfΛP
\ (x(e− 1)d = 0/x = 0) ⊆ ZgrtfΛP

\dP (((e− 1)dx = 0/x = 0) ∩ ΛP
Zgrtf ).

So dP (((e− 1)dx = 0/x = 0) ∩ ΛP
Zgrtf ) ⊆ (x(e− 1)d = 0/x = 0). The same argu-

ment using left Λ̂P -lattices shows that

dP ((x(e− 1)d = 0/x = 0) ∩ ZgrtfΛP
) ⊆ ((e− 1)dx = 0/x = 0) .

So, since d2
P is the identity,

dP ((x(e− 1)d = 0/x = 0) ∩ ZgrtfΛP
) = ((e− 1)dx = 0/x = 0) ∩ ΛP

Zgrtf . �

Definition 5.18. Let U be an open subset of ZgtfΛ . Define

dU :=
⋃

P∈MaxR

dP (U ∩ ZgrtfΛP
) ∪

⋃
S∈λ(U)

V(S∗)

where λ(U) := U ∩ ZgQΛ.

We will also use d to denote the analogous map for open subsets of ΛZgtf .



24 LORNA GREGORY

Theorem 5.19. Let R be a Dedekind domain, Q its field of fractions and Λ an
R-order with QΛ a separable Q-algebra.

The mapping d is an isomorphism between the lattice of open sets of ZgtfΛ and

ΛZgtf such that

(1) if L is an indecomposable right Λ̂P -lattice then for all open sets U ⊆ ZgtfΛ ,
L ∈ U if and only if L† ∈ dU , and

(2) for all open sets U ⊆ ZgtfΛ , if S is a simple QΛ-module then S ∈ U if and
only if S∗ ∈ dU .

Proof. Let U be an open subset of ZgtfΛ . We start by showing that for all open

subsets U ⊆ ZgtfΛ , d2U = U . So

d2U = d[
⋃
P

dP (U ∩ ZgrtfΛP
) ∪

⋃
S∈λ(U)

V(S∗)]

=
⋃
P

dP [dP (U ∩ ZgrtfΛP
) ∪

⋃
S∈U
V(S∗) ∩ ΛP

Zgrtf ] ∪
⋃

S∈λ(U)

V(S)

=
⋃
P

d2
P (U ∩ ZgrtfΛP

) ∪
⋃
P

⋃
S∈λ(U)

dP [V(S∗) ∩ ΛP
Zgrtf ] ∪

⋃
S∈λ(U)

V(S)

=
⋃
P

(U ∩ ZgrtfΛP
) ∪

⋃
S∈λ(U)

V(S)

= U

The first two equalities follow from the definition of d. The third is true because
each dP is a lattice homomorphism. The fourth follows from 5.17 and the fifth
follows from 5.12.

Thus d gives a bijection between the lattice of open subsets of ZgtfΛ and ΛZgtf .
We now just need to show that d preserves inclusion.

Suppose U ⊆W are open subsets of ZgtfΛ . Then λ(U) ⊆ λ(W ) and U ∩ ZgrtfΛP
⊆

W∩ZgrtfΛP
for all P ∈ Max(R). So dP (U∩ZgrtfΛP

) ⊆ dP (W∩ZgrtfΛP
) for all P ∈ MaxR.

For all open sets U , S ∈ λ(U) if and only if S∗ ∈ λ(dU). So λ(U) ⊆ λ(W ) implies
λ(dU) ⊆ λ(dW ). Therefore dU ⊆ dW .

Finally, (1) holds for d by 5.7 and (2) holds by definition of d. �

We finish this section with a different aspect of duality.

Corollary 5.20. Let R be a discrete valuation domain with maximal ideal generated
by π. The lattices [π|x, x = x]TfΛ and [π|x, x = x]

ΛTf are anti-isomorphic.

Proof. Let k > k0 and let p = π + πkΛ. By 3.6, [π|x, x = x]TfΛ is isomorphic to
[p|x, x = x]〈ITfΛ〉 and [π|x, x = x]

ΛTf is isomorphic to [p|x, x = x]〈IΛTf〉. So, it is
enough to show that [p|x, x = x]〈ITfΛ〉 is anti-isomorphic to [p|x, x = x]〈IΛTf〉.

We have seen in 5.5 that D〈ITfΛ〉 = 〈IΛTf〉. Thus Prest’s duality for pp for-
mulas gives an anti-isomorphism between pp1

Λk
(〈ITfΛ〉) and Λk

pp1(〈IΛTf〉). Thus
[p|x, x = x]〈ITfΛ〉 is anti-isomorphic to [x = 0, px = 0]〈IΛTf〉.

The formula y = xpk−1 induces a lattice isomorphism between the intervals
[xpk−1 = 0, x = x] and [y = 0, pk−1|y] of pp1

Λk
defined by

ϕ(x) 7→ ∃x(y = xpk−1 ∧ ϕ(x)),
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see the proof of Goursat’s lemma [24, 8.9]. On 〈IΛTf〉, pk−1x = 0 is equivalent to
p|x and pk−1|y is equivalent to py = 0. Thus [x = 0, px = 0]〈IΛTf〉 is isomorphic to
[p|x, x = x]〈IΛTf〉. �

For the definition of the m-dimension of a modular lattice see [17, Section 7.2].

Corollary 5.21. Suppose R is a Dedekind domain with field of fractions Q, Λ is
an R-order and QΛ is separable. The m-dimension of pp1

Λ(TfΛ) and Λpp1(ΛTf) are
equal.

Proof. For each P ∈ MaxR, by [8, 3.8], the m-dimension of pp1
ΛP

(TfΛP
) is equal

to the m-dimension of [P |x, x = x]TfΛP
plus 1. Since RP is discrete valuation

domain, by 5.20, the m-dimension of [P |x, x = x]TfΛP
is equal to the m-dimension

of [P |x, x = x]
ΛP

Tf. Thus, by [8, 3.8], ΛP
pp1(ΛP

Tf) has m-dimension equal to the m-

dimension of [P |x, x = x]TfΛP
plus 1 i.e. equal to the m-dimension of pp1

ΛP
(TfΛP

).

By [8, 3.9], the m-dimension of pp1
Λ(TfΛ) (respectively Λpp1(ΛTf)) is equal to the

supremum of the m-dimensions of pp1
ΛP

(TfΛP
) (respectively ΛP

pp1(ΛP
Tf)) where

P ∈ MaxR. �

We now translate the above corollary into a result about the Krull-Gabriel di-
mensions of (LattΛ,Ab)fp and (ΛLatt,Ab)fp. See [7, 2.1] for a definition of the
Krull-Gabriel dimension of a (skeletally) small abelian category.

Recall that a full subcategory C ⊆ mod-S which is closed under isomorphism,
finite direct sums and direct summands is covariantly finite in mod-S if for each
M ∈ mod-S there exists a homomorphism fM : M → MC with MC ∈ C such that
all homomorphisms g : M → L with L ∈ C, factor through fM . For M ∈ mod-Λ,
let torM denote the submodule {m ∈ M | there exists r ∈ R\{0} with mr = 0}
consisting of R-torsion elements of M . Then M/torM ∈ LattΛ and for any L ∈
LattΛ and g : M → L, torM ⊆ ker g. Hence g factors through the canonical
surjection fM : M →M/torM . Therefore LattΛ is covariantly finite in mod-Λ.

If C ⊆ mod-S is a covariantly finite subcategory then (C,Ab)fp is equivalent to
(mod-S,Ab)fp/S(C), the Serre localisation of (mod-S,Ab)fp at the Serre subcate-
gory

S(C) := {F ∈ (mod-S,Ab)fp | FC = 0 for all C ∈ C}.

See [10] for details.
By [17, 13.2.2], the Krull-Gabriel dimension of (C,Ab)fp/S(C) is equal to the

m-dimension of pp1
S(〈C〉).

Applying this to LattΛ as a covariantly finite subcategory of mod-Λ, we get
that the Krull-Gabriel dimension of (LattΛ,Ab)fp is equal to the m-dimension of
pp1

ΛTfΛ. Thus we get the following corollary to 5.21.

Corollary 5.22. Suppose R is a Dedekind domain with field of fractions Q, Λ is
an R-order and QΛ is separable. The Krull-Gabriel dimension of (LattΛ,Ab)fp is
equal to the Krull-Gabriel dimension of (ΛLatt,Ab)fp.
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