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Abstract 

Objective: Biomarkers are defined as anatomical, biochemical, or physiological traits that are 

specific to certain disorders or syndromes. The objective of this paper is to summarize the 

current knowledge of biomarkers for anxiety disorders, obsessive–compulsive disorder 

(OCD), and posttraumatic stress disorder (PTSD).  

Methods: Findings in biomarker research were reviewed by a task force of international 

experts in the field, consisting of members of the World Federation of Societies for Biological 

Psychiatry (WFSBP) Task Force on Biological Markers and of the European College of 

Neuropsychopharmacology Anxiety Disorders Research Network (ADRN).  

Results: The present article (Part II) summarizes findings on potential biomarkers in 

neurochemistry (neurotransmitters such as serotonin, norepinephrine, dopamine or GABA, 

neuropeptides such as cholecystokinin, neurokinins ANP, or oxytocin, the HPA axis, 

neurotrophic factors such as NGF and BDNF, immunology, and CO2 hypersensitivity), 

neurophysiology (EEG, heart rate variability), and neurocognition. The accompanying paper 

(Part I) focuses on neuroimaging and genetics.  

Conclusion: Although at present, none of the putative biomarkers is sufficient and specific as 

a diagnostic tool, an abundance of high quality research has accumulated that will improve 

our understanding of the neurobiological causes of anxiety disorders, OCD and PTSD. 

 
Keywords: Anxiety disorders, neuroimaging, genetic, neurochemistry, neurobiology, review 
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Abbreviations 

Abbreviation  Explanation 
5-HIAA 5-Hydroxyindoleacetic acid 
5-HT Serotonin 
5-HTP Hydroxytryptophan 
5-HTT Serotonin transporter 
5-HTTLPR Serotonin-transporter-linked polymorphic region 
A-SepAD Adult Separation Anxiety Disorder 
ACC Anterior cingulate cortex 
ACTH Adrenocorticotropic hormone or corticotropin 
ADRN Anxiety Disorders Research Network 
ANP Atrial natriuretic peptide 
ASLO Anti-streptolysin O 
BDD Body Dysmorphic Disorder 
BDNF Brain-derived neurotrophic factor 
C-SepAD Childhood Separation Anxiety Disorder 
CBT Cognitive-behaviour al therapy 
CCK Cholecystokinin 
COMT Catechol-O-methyltransferase 
CRH Corticotropin-releasing hormone 
CRP C-reactive protein 
CSF Cerebro-spinal fluid 
DHEAS Dehydroepiandrosterone sulfate 
DAT Dopamine transporter 
DSM Diagnostic and Statistical Manual of Mental Disorders 
DST Dexamethasone suppression test 
ECNP European College of Neuropsychopharmacology 
EEG Electroencephalography 
ELISA Enzyme-linked immunosorbent assay 
ERN Error-related negativity 
ERP Event-related potential 
fMRI Functional magnetic resonance imaging 
GABA γ-Aminobutyric acid 
GABHS Group A beta haemolytic streptococci  
GAD Generalized Anxiety Disorder 
GWAS Genome-wide association study 
HF High frequency (high frequency oscillation is a frequency-domain heart rate variability measure) 
HPA axis Hypothalamic-pituitary-adrenal axis 
HPLC High-performance liquid chromatography 
HRV Heart rate variability 
IL Interleukin 
LF Low frequency (low frequency oscillation is a frequency-domain heart rate variability measure) 
MAO Monoamine oxidase 
MDD Major Depressive Disorder  
mPFC Medial prefrontal cortex 
mRNA Messenger ribonucleic acid 
NE Norepinephrine (noradrenalin) 
NET Norepinephrine transporter 
NGF Nerve growth factor 
NK  Neurokinin 
OCD Obsessive-Compulsive Disorder 
OC-RD Obsessive-Compulsive-Related Disorders 
OFC Orbitofrontal cortex 
PANDAS Pediatric autoimmune neuropsychiatric disorder associated with streptococcal infections 
PANS Pediatric acute-onset neuropsychiatric syndrome 
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PDA Panic disorder with or without Agoraphobia 
PFC Prefrontal cortex 
POMC Proopiomelanocortin  
PSG Polysomnography 
PTSD Posttraumatic Stress Disorder 
RMSSD Root mean square of successive differences 
SAD Social Anxiety Disorder 
SDNN Standard deviation of normal sinus intervals 
SNRI Serotonin norepinephrine reuptake inhibitor 
SSRI Selective serotonin reuptake inhibitor 
SSRT Stop signal reaction task 
TNF Tumor necrosis factor  
TSPO Translocator protein 
WFSBP World Federation of Societies for Biological Psychiatry 
 

Introduction 

The present consensus statement of biological markers of anxiety disorders was organized by 

members of the WFSBP Task Force on Biological Markers and of the Anxiety Disorders 

Research Network (ADRN) within the European College of Neuropsychopharmacology 

Network Initiative (ECNP-NI) (Baldwin et al. 2010), an initiative intended to meet the goal of 

extending current understanding of the causes of central nervous system disorders, thereby 

contributing to improvements in clinical outcomes and reducing the associated societal 

burden. 

The present article (Part II) summarizes the findings on potential biomarkers in 

neurochemistry, neurophysiology, and neurocognition. Part I (Bandelow et al. submitted) 

focuses on neuroimaging and genetics.  

Neurochemistry 

The plasma appears to be a rational source for proteomic and metabolomic measurements in 

psychiatric conditions because it is easily accessible, and several molecules from the brain are 

transported across the blood-brain barrier and reach the circulation. However, it is difficult to 

draw conclusions from the neurochemical composition of plasma on the situation in brain 

cells. Spinal tap is an invasive method, and the composition of the cerebrospinal fluid (CSF) 

does not reflect exactly the neurochemistry in brain cells. Nevertheless, as a biomarker 

measure, such recourses are highly valuable, and several evidences in the literature points to 

6 
 



possible link between central nervous system and periphery. In the following sections, some 

of these findings are listed and described.  

Neurotransmitters 

Monoaminergic systems have long been suggested to play a major role in depression and 

anxiety disorders. While the “reward system” is modulated by endogenous dopamine and 

opioids (Bandelow and Wedekind 2015; Barbano and Cador 2007; Berridge and Aldridge 

2008; Le Merrer et al. 2009), the “punishment system” is mainly driven by serotonin (5-HT) 

(Daw et al. 2002; Stein 1971). Goal-directed behaviours are stimulated by dopamine and 

dopamine neurons have been suggested to be a substrate for intracranial self-stimulation 

(Aboitiz 2009; Mason and Angel 1984; Wise and Bozarth 1982). Norepinephrine 

(noradrenaline) has been connected to “emotional memory” and the consolidation and 

retrieval of the emotional arousal induced by particular behaviours (Goddard et al. 2010; van 

Praag et al. 1990).  

Serotonergic system 

Findings on brain imaging and genetics of the serotonin system are summarized in Part I 

(Bandelow et al. submitted).  

Serotonin (5-hydroxytryptamine; 5-HT) is a monoamine, which is found in the CNS, in blood 

platelets, and the gastrointestinal tract. The principal source of serotonin release in the brain 

are the raphe nuclei in the brainstem. It is hypothesized to have a dual role in aversive 

contingencies (Deakin 2013; Deakin and Graeff 1991). 5-HT can inhibit periaqueductal gray 

matter-medicated fight/flight responses from threats, while it can also facilitate amygdala-

mediated anxiety responses. The latter mechanism has been demonstrated both in animals 

(Deakin 2013; Deakin and Graeff 1991) and humans (Blanchard et al. 2001; Feinstein et al. 

2013; Mobbs et al. 2007). Such differences may explain partly the different types of emotions 

(Mobbs et al. 2007) and anxiety disorders seen in humans (Deakin and Graeff 1991). 

Therefore, reaction to threat, mediating periaquaeductal-grey-mediated threats, related to the 

emotion named “fear”, may be more closely related with phobic, escape-dominant 

behavioural syndromes, such as specific phobias, social anxiety disorder (SAD) and panic 

disorder with or without agoraphobia (PDA) (Gray and McNaughton 2000; McNaughton and 

Corr 2004), while amygdala-mediated threats seem to be linked to the emotion named 

“anxiety” such as general anxiety disorder (GAD) and obsessive-compulsive disorder (OCD) 
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(Gray and McNaughton 2000; McNaughton and Corr 2004). Recently, 5-HT functional 

difference between fear and anxiety disorder was demonstrated using an acute tryptophan 

depletion technique that transiently lowers brain 5-HT (Corchs et al. 2015). In the study, the 

authors could demonstrate that decreasing the function of the 5-HT system, using tryptophan 

depletion, in patients in clinical remission leads to psychological and physiological 

exacerbation in response to stressors in PDA, SAD, and PTSD, while not in the GAD and 

OCD. This difference might be due to long-lasting neuronal changes, needed in anxiety 

disorders after serotonin-mediated therapeutics, in which acute 5-HT depletion does not cause 

such effects (Graeff and Zangrossi 2010). In the following paragraphs, the 5-HT involvement 

in the various disorders is discussed in more details. 

PDA 

5-HT plasma levels measured by high-performance liquid chromatography (HPLC) were 

found to be significantly lower in PDA patients compared to control volunteers (Schneider et 

al. 1987b). Furthermore, in a study of males with PDA, serum 5-HT concentrations were 

measured via enzyme-linked immunosorbent assay (ELISA). The authors reported lower 

serum 5-HT in patients compared to control group at baseline, which was further decreased 

after treatment with the SSRI paroxetine, although symptom improvements were observed 

(Shutov and Bystrova 2008).  

Platelet 5-HT binding was found to be decreased in PDA patients in two studies (Iny et al. 

1994; Lewis et al. 1985), while most studies reported no difference comparing to controls 

(Butler et al. 1992; Innis et al. 1987; Norman et al. 1989a; Norman et al. 1989b; Nutt and 

Fraser 1987; Pecknold et al. 1987; Schneider et al. 1987a; Uhde et al. 1987). Moreover, 

platelet 5-HT concentration was reported also not to change in PDA patients (Balon et al. 

1987; McIntyre et al. 1989), except one report, in which decreased 5-HT concentrations were 

observed (Evans et al. 1985). Two studies have reported increased platelet 5-HT uptake in 

PDA patients (Norman et al. 1986; Norman et al. 1989b), while two studies reported 

decreased platelet 5-HT uptake in panic disorder group compared to controls (Butler et al. 

1992; Pecknold et al. 1988). Moreover, platelet aggregation in respond to 5-HT was 

significantly lower in panic patients compared to controls (Butler et al. 1992).  

CSF levels of the 5-HT metabolite 5-hydroxyindoleacetic acid (5-HIAA) were not different 

between PDA patients and healthy controls; nevertheless, in a small study with PDA patients 

responding to clomipramine or imipramine for at least 2 months, CSF 5-HIAA levels 

decreased significantly compared to baseline levels (Eriksson et al. 1991). Nevertheless, in 
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female major depressive disorder patients comorbid with PDA, CSF 5-HIAA levels were 

significantly higher than in major depressive patients without PDA and healthy volunteers 

(Sullivan et al. 2006). Higher CSF 5-HIAA in women with comorbid major depressive 

disorder and lifetime panic disorder is indicative of greater 5-HT release, increased 5-HT 

metabolism, and/or decreased 5-HIAA clearance in this group. Esler and colleagues (2004) 

measured brain 5-HT turnover via measurement of 5-HIAA levels in plasma from internal 

jugular veins that has a direct overflow from brain neurons and not from the cerebrovascular 

sympathetic nerves (Lambert et al. 1995). A significant increase in brain 5-HT turnover, 

estimated from the jugular venous overflow of 5-HIAA, was observed in non-medicated PDA 

patients compared with healthy subjects (Esler et al. 2004).  

Another approach measuring 5-HT disruption is via measurement of antibodies directed at the 

5-HT system, such as anti-serotonin and 5-HT anti-idiotypic antibodies (directed at the 

serotonin receptors). Using this approach, Coplan et al. (1999) could show significantly 

elevated levels of plasma anti-serotonin and serotonin anti-idiotypic antibodies in panic 

disorder patients compared to controls. These finding suggest an autoimmune mechanisms 

interrupting the 5-HT system in PDA. 

GAD 

Platelet 5-HT binding was found to be decreased in GAD patients (Iny et al. 1994). 5-HT 

binding in lymphocytes did not differ in GAD patients compared to controls (Hernandez et al. 

2002). Moreover, both 5-HT and 5-HIAA in platelet-rich and -poor plasma as well as 

lymphocytes did not differ between GAD patients and controls (Hernandez et al. 2002).  

SAD 

The therapeutic efficacy of SSRIs or SNRIs strongly suggests that 5-HT plays a crucial role in 

SAD. Patients with SAD show exaggerated cortisol response to the serotonin-releasing 

compound fenfluramine, indicating supersensitivity of the post-synaptic serotonin receptors 

(Tancer 1993). In a similar study, SAD patients received challenges for serotonergic 

(fenfluramine), dopaminergic (levodopa), and noradrenergic (clonidine) systems in a double-

blind study. They had an increased cortisol response to fenfluramine administration, 

compared with healthy volunteers. Neither the prolactin response to fenfluramine, the growth 

hormone or norepinephrine response to clonidine, nor the prolactin or eye-blink responses to 

levodopa, differed between patients with SAD and healthy volunteers (Tancer et al. 1994b). 
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Platelet 5-HT2 receptor density did not differentiate between the SAD patients and controls, 

but was associated with severity (Chatterjee et al. 1997).  

Patients with SAD, healthy control subjects, and OCD control subjects were challenged with 

single doses of the partial serotonin agonist oral m-chlorophenylpiperazine (m-CPP) and 

placebo. SAD patients did not significantly differ from normal or OCD control subjects in 

prolactin response to m-CPP. Female patients with SAD had more robust cortisol responses to 

the m-CPP challenge (Hollander et al. 1998). 

SAD patients, who were successfully treated with an SSRI, underwent a tryptophan depletion 

challenge combined with a public speaking task. Salivary alpha-amylase, a marker of 

autonomic nervous system response, and HPA-axis response, as measured with salivary 

cortisol, were assessed. The tryptophan depletion group showed a significant larger salivary 

alpha-amylase response to the public speaking task as compared to the placebo group, 

whereas no differences were seen in cortisol responses (van Veen et al. 2009). 

OCD 

The measuring of peripheral serotonergic parameters, like whole-blood 5-HT concentration, 

CSF concentration, platelet 5-HT transporter (5-HTT), 5-HT2A receptor binding 

characteristics and platelet inositol 1,4,5-triphosphate content, is the oldest classical approach, 

which has identified some predictors of clinical outcome of the treatment in OCD patients 

medicated with SSRIs.  

In an early study, Thoren et al. (1980) showed initially elevated 5-HIAA levels in the CSF 

and a decrease during treatment were associated with better clinical outcome in patients 

treated with clomipramine (Flament et al. 1985). 

There was no difference in blood 5-HT content between children and adolescents with severe 

OCD and the normal controls. However, OCD patients with a family history of OCD had 

significantly higher blood 5-HT levels than did either the OCD patients without family history 

or the healthy controls (Hanna et al. 1991). Blood 5-HT levels were decreased after treatment 

with SSRIs (Humble et al. 2001; Humble and Wistedt 1992; Kremer et al. 1990), and higher 

5-HT concentrations were associated with better outcome after treatment of OCD (Aymard et 

al. 1994; Delorme et al. 2004).  

Serotonin platelet binding capacity was found to be reduced in children and adolescents with 

OCD, but not in Tourette syndrome (Sallee et al. 1996). The binding capacity of the 5-HTT 

for SSRIs and the tricyclic antidepressant imipramine decreased in untreated OCD patients 
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(Marazziti et al. 1996; Sallee et al. 1996). After treatment with the tricyclic antidepressant 

clomipramine, binding was decreased (Black et al. 1990), whereas another study has found 

increased binding after treatment with the SSRI with fluvoxamine and or clomipramine. 

(Marazziti et al. 1992).  

PTSD 

In an early review of trauma-related studies involving epinephrine, norepinephrine, and 

serotonin, evidence of serotonergic dysregulation in PTSD was reported, including frequent 

symptoms of aggression, impulsivity, depression and suicidality, decreased platelet paroxetine 

binding, blunted prolactin response to fenfluramine, exaggerated reactivity to m-chloro-

phenyl-piperazine (mCPP), and clinical efficacy of SSRIs (Southwick et al. 1999).  

No change in 5-HT1A receptor binding was found in a study by Bonne et al. (2005). Lower 

number of platelet {3H}-paroxetine binding sites and a lower dissociation constant for {3H}-

paroxetine binding in combat veterans with PTSD compared to normal control subjects was 

reported (Fichtner et al. 1995). Platelet 5-HT concentration was significantly lower in suicidal 

PTSD and non-PTSD patients compared to non-suicidal patients or healthy controls (Kovacic 

et al. 2008). Compared with the control subjects, the PTSD patients showed significantly 

lower platelet-poor plasma 5-HT levels, elevated platelet-poor plasma norepinephrine levels, 

and significantly higher mean 24-hour urinary excretion of all three catecholamines 

(nroepinephrine, dopamine, and HVA) (Spivak et al. 1999).  

During presentation of a trauma-related video, CSF concentrations of 5-HIAA diminished, but 

there was only a trend for statistical significance of this finding (Geracioti et al. 2013).  

Dopaminergic system 

Dopamine is a neurotransmitter, which is involved in reward-motivated behaviour and motor 

control. Findings on brain imaging and genetics of the dopamine system are summarized in 

Part I (Bandelow et al. submitted). Similarly as for the serotonergic system, in the following 

paragraph the current findings related to the dopaminergic system are described. 

PDA  

Eriksson et al. (1991) reported no significant change in CSF levels of HVA, the major 

metabolite of dopamine in patients with PDA compared to healthy controls. Nevertheless, 

another study in both PDA and SAD, low CSF HVA levels were observed (Johnson et al. 

1994).  

11 
 



SAD 

In a study evaluating eye-blink response to administered levodopa, no dysfunction of the 

dopaminergic system has been reported (Tancer et al. 1994a). 

PTSD 

In the aforementioned study by Geracioti (2013), CSF HVA concentrations diminished 

significantly after the traumatic video. Compared with control subjects, PTSD subjects 

showed significantly higher mean 24-hour urinary excretion of dopamine (Spivak et al. 1999). 

Noradrenergic system  

Norepinephrine (noradrenaline; NE) is a catecholamine produced mainly in the locus 

coeruleus in the pons. It is an important neurotransmitter in the autonomic nervous system. 

The metabolism and functions of norepinephrine have been studied in extent in depression 

and anxiety disorders. A hypofunction is postulated for the former, a hyperfunction for the 

latter. Findings on brain imaging and genetics of the noradrenergic system are summarized in 

Part I (Bandelow et al. submitted).  

PDA 

Stimulation of noradrenergic systems produces abnormal changes in measures of anxiety, 

somatic symptoms, blood pressure and plasma NE metabolite and cortisol levels in patients 

with PDA but not in patients with GAD, OCD, depression or schizophrenia, indicating 

specificity of abnormality in the regulation of the NE system in patients with PDA (Boulenger 

and Uhde 1982; Heninger and Charney 1988).  

There is a body of evidence for NE involvement in anxiety in humans; e.g. anxiety can be 

induced using NE neuronal activators such as piperoxane and yohimbine (Redmond and 

Huang 1979). In patients with PDA, peripheral markers, including platelet aggregation to NE 

and to 5-HT, platelet ɑ2-receptor density, lymphocyte ß-receptor density, {3H}-ketanserin 

binding to platelet 5-HT2 receptors and {3H}-serotonin-transporter uptake into platelets, 

largely remained abnormal during six months treatment with either clomipramine or 

lofepramine suggest that, despite clinical improvement (Butler et al. 1992). Therefore, these 

peripheral markers have been suggested to be trait markers in patients with PDA. Adrenergic 

receptor function has been measured in several clinical studies. Platelet ɑ2-adrenoceptors have 

been studied in PDA patients using clonidine and yohimbine binding assays and correlated to 

symptom ratings and measurement of lying and standing plasma adrenaline and NE levels 
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(Cameron et al. 1996). Tritiated clonidine binding was decreased and lying heart rate was 

increased in PDA patients before treatment (fluoxetine, tricyclics or alprazolam). The 

magnitude of decrease in receptor binding was correlated with symptom severity and standing 

plasma NE (Cameron et al. 1996). In a similar approach, Gurguis et al. (1999) showed that 

patients with PDA had high ɑ2-adrenoceptor density in both conformational states. 

Stimulation of the locus coeruleus, an area containing most of the noradrenergic cell bodies of 

the brain, has been shown to induce anxiety and to raise the concentration of the main central 

NE metabolite, 3-methoxy-4-hydroxyphenyl glycol (MHPG) in patients with panic attacks; 

the decrease in plasma MHPG concentrations was found to parallel the response of patients 

with PDA to treatment (Charney et al. 1983). However, this could not be confirmed in a study 

of the effects of imipramine in PDA by Nutt and Glue (1991). Similarly, CSF levels of 

MHPG were not changed significantly in patients with PDA (Eriksson et al. 1991). On the 

other hand, Lista (1989) reported short time urine sampling to measure NE excretion as a 

marker for monitoring sympathetic activity. Norepinephrine excretion was highest in major 

depression, followed by “minor” depression, anxiety disorders and healthy controls. Although 

plasma catecholamines (NE and epinephrine), blood pressure and heart rate were only 

partially found to be statistically significantly correlated with salivary ɑ-amylases, Kang 

(2010) proposed ɑ-amylase as a measure of stress sensitivity causing an increase in anxiety 

scores. Recently, it was shown that epinephrine (24 hour urine collection) was positively 

correlated with anxiety but not with depression, whereas 24-hour urinary NE excretion was 

neither correlated with anxiety nor depression (Paine et al. 2015). 

A low pre-treatment β-adrenoceptor affinity was found to predict the treatment response to 

paroxetine in patients with PDA and was suggested as a biomarker of pharmacological 

outcome in PDA (Lee et al. 2008).  

PTSD 

Compared with control subjects, PTSD patients showed significantly elevated platelet-poor 

plasma NE levels, and significantly higher mean 24-hour urinary excretion of all three 

catecholamines (NE, dopamine, and HVA) (Spivak et al. 1999).  

Gamma-aminobutyric acid (GABA) 

There is ample evidence that the pathogenesis of anxiety disorders is in part linked to a 

dysfunction of central inhibitory mechanisms. With regard to neurotransmission, the gamma-
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amino-butyric acid (GABA) system serves as the most important inhibitory neurotransmitter 

system (Domschke and Zwanzger 2008). According to both preclinical and clinical studies, 

this system has been suggested to be strongly involved in the pathophysiology of anxiety and 

anxiety disorders. For example, benzodiazepines, which act at the GABA system, are used to 

treat anxiety. GABA is synthesized by a specific enzyme, glutamate acid decarboxylase 

(GAD) from glutamate. Released in the synaptic cleft, it either binds on GABA receptors or is 

removed by the main degradative enzyme GABA-transaminase (GABA-T) (for a review, see 

Olson, 2002). 

So far, three major subtypes of GABA receptors have been identified: GABAA, GABAB and 

GABAC receptors. GABAA and C receptors belong the class of ligand-gated ion channels, 

GABAB receptors serve as transmembrane receptors, coupled with G-proteins and activate 

second messenger systems (Chebib and Johnston 1999). However, the fast inhibitory action of 

the neurotransmitter GABA is mediated through GABAA receptors. A large variety of 

GABAA receptor subtypes has been characterized so far: α 1-6, β 1-3, γ 1-3, δ, ε 1-3, θ, π 

(Jacob et al. 2008); see Figure 1. 

 

Insert Figure 1 

 

 

GABAA receptors consist of two α subunits, two β subunits and one γ or δ subunit (Jacob et 

al. 2008). Moreover, there are two distinct binding sites on the GABAA receptor: whereas 

GABA itself bindes on the GABA binding side, which is located at the interface between the 

α and γ subunit, anxiolytic agents such as benzodiazepines bind at the benzodiazepine binding 

site at the interface between the α and the γ subunit. According to several preclinical studies, 

anxiolytic effects of benzodiazepines have been shown to be mostly mediated by the α2-

subunit of the GABAA receptor (Low et al. 2000). 

Therefore, also a specific role of distinct GABAA receptor subunits can be hypothesized with 

regard to the pathogenesis of anxiety. However, research on specific subunit selective 

psychopharmacological compounds targeting the α2-subunit of the GABAA receptor and 

lacking sedative or other associated side effects of benzodiazepines is still underway. 
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PDA 

Neurochemistry 

An interesting approach investigating the role of GABAA receptors on the pathogenesis of 

panic attacks stems from Nutt and colleagues (1990) who suggested alterations in 

benzodiazepine receptor sensitivity in patients with PDA. After intravenous challenge, 

subjects suffering from panic disorder exhibited panic attacks after flumazenil injection, a 

phenomen which has been interpreted as a possible shift of the “receptor setpoint” (Nutt et al. 

1990). However, these results have not been replicated so far (Ströhle et al. 1999). 

There is also evidence for a dysfunction of GABAA receptor modulatory neuroactive steroid 

regulation in panic disorder patients (Rupprecht 2003). It has been demonstrated that panic 

disorder patients show increased concentrations of GABA agonistic 3α-reduced neuroactive 

steroids (Ströhle et al. 2002), which has been interpreted as a counter-regulatory mechanism 

against the occurrence of spontaneous panic attacks. In contrast, during experimentally 

induced panic induction with lactate or cholecystokinin-tetrapeptide (CCK-4) panic disorder 

patients show a significant decrease of GABA agonistic 3α-reduced neurosteroids along with 

an increase of the antagonistic 3α-reduced isomer compared with healthy controls (Ströhle et 

al. 2003). 

Translocator protein (TSPO) is a 18 kilodalton protein in the mitochondrial membrane, which 

was first thought to be a peripheral binding site for benzodiazepines. However, recent 

research has found that it is not only expressed in the body but also in the brain. Ligands of 

this protein may promote the synthesis of endogenous neurosteroids. Some metabolites of 

progesterone are potent, positive allosteric modulators of γ-aminobutyric acid type A 

receptors. Their concentrations are reduced during panic attacks in patients with PDA (Ströhle 

et al. 2003). Unexpectedly, patients with PDA had significantly greater concentrations of the 

agonistic 3α-reduced neuroactive steroids (Ströhle et al. 2002). The translocator protein ligand 

XBD173 enhanced GABA-mediated neurotransmission and exerted antipanic activity in 

humans. In contrast to benzodiazepines, the drug did not cause withdrawal symptoms or 

sedation. Thus, translocator protein ligands are promising candidates for novel anxiolytic 

drugs (Rupprecht et al. 2009). 
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Neuroimaging studies found a reduction of GABA concentrations and benzodiazepine 

binding in patients with PDA (see chapter Neuroimaging, Part I, (Bandelow et al. submitted). 

A few genetic studies tried to elucidate role of GABA in anxiety disorders (see chapter 

Genetics, Part I (Bandelow et al. submitted). 

Pharmacological modulation of the GABA system 

From a clinical point in view, the significance of the GABA system in the pathophysiology of 

panic and anxiety has also been derived from beneficial effects on clinical symptoms 

following selective GABAergic treatment. Apart from the rapid and strong anxiolytic 

properties of benzodiazepines, targeting the benzodiazepine binding side of the GABAA 

receptor also modulation of GABA metabolism has been shown to reduce anxiety and the 

occurrence of panic attacks. Among anticonvulsants tiagabine and vigabatrin both increase 

GABA availability via a reduction of GABA degradation by inhibition of the GABA 

transaminase (vigabatrin) or the inhibition of GABA reuptake via blockade of the GABA 

transporter GAT-I (tiagabine). For both compounds, anxiolytic action has been suggested in 

clinical studies and studies using pharmacological panic induction with cholecystokinin-

tetrapeptide (for a review, see Zwanzger & Rupprecht, 2005 ).  

Also, other drugs that enhance GABAergic tone (e.g. barbiturates, ethanol, valproate) have 

anxiolytic effects, while negative modulators produce anxiogenic-like effects (Kalueff and 

Nutt 2007; Zwanzger et al. 2001; Zwanzger et al. 2009). 

SepAD and benzodiazepines 

Several studies favour the role of the TSPO as a useful biological marker of A-SepAD. The 

TSPO is involved in the secretion of neurosteroids, whose levels are reported to be changed in 

several diseases and to be implicated in the pathogenic mechanisms of anxiety and mood 

disorders in humans. A reduction of platelet expression of TSPO density was found to relate 

specifically to the presence of A-SepAD in samples of patients with PDA (Pini et al. 2005) or 

major depression (Chelli et al. 2008) or bipolar depression (Abelli et al. 2010). Furthermore, 

Costa et al. (2012) found Ala147Thr substitution in TSPO to be associated with A-SepAD in 

patients with depression.  

16 
 



Neuropeptides 

Cholecystokinin (CCK) 

Cholecystokinin is one of the most abundant neurotransmitter peptides in the brain and has 

been shown to induce excitation of central neurons as well as inhibitory postsynaptic effects 

(Bourin and Dailly 2004). CCK-1 and 2 receptors (G protein-coupled receptors) (recently 

reclassified as A and B) are widely distributed throughout the CNS. A large body of evidence 

suggests that the neuropeptide CCK might be an important modulator of the neuronal 

networks that are involved in anxiety, in particular in PDA.  

PDA 

In humans, CCK-induced anxiety may be mediated via CCK-B receptors (vs. CCK-B and A 

in mice) (Li et al. 2013). Intravenous administration of exogenous CCK-4, CCK-8 or the CCK 

agonist pentagastrin produced panic-like attacks in healthy volunteers within one minute, and 

these effects were attenuated by pretreatment with benzodiazepines (Bradwejn et al. 1991b; 

de Montigny 1989). The most common clinical effects observed after administration of 

intravenous CCK-4 were dyspnea, palpitations/tachycardia, chest pain/discomfort, faintness, 

dizziness, paresthesia, hot flushes/cold chills, nausea/ abdominal distress, 

anxiety/fear/apprehension and fear of losing control – a cluster of symptoms similar to those 

observed in spontaneous panic attacks in PDA.  

In addition, the dose-response to intravenous CCK-4, reliably differentiates PDA patients 

from healthy controls with no personal or family history of panic attacks (Bradwejn et al. 

1992). Furthermore, an effect-dose ranging was found in healthy volunteers (Bradwejn et al. 

1991a). While the panic rate after injection of 25 μg of CCK-4, was 91% for patients as 

compared to only 17% for controls; 50 μg induced a full-blown panic attack in 100% of 

patients vs. 47% of controls. 

In contrast to the findings in patients with PDA, in CCK-4-sensitive healthy volunteers, 

treatment with an antipanic SSRI did not cause a reduction of CCK-4-induced panic attacks 

beyond the effect of placebo (Toru et al. 2013). However, significant reduction of CCK-

induced anxiety was observed after administration of the benzodiazepine alprazolam and the 

GABAergic anticonvulsant vigabatrin (Zwanzger et al. 2001; Zwanzger et al. 2003). Baseline 

anxiety is a not a major determinant of the subjective panic response to CCK-4, emphasizing 

the importance of neurobiological factors (Eser et al. 2008). It was proposed that 
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benzodiazepine-mediated antagonism of CCK-induced excitation might be an important 

mechanism by which benzodiazepines exert their clinically relevant actions.  

Moreover, in PDA patients, decreased concentrations of CCK-8 in the CSF have been 

reported as compared to control subjects (Lydiard et al. 1992). Concentrations of CCK-8 in 

lymphocytes were also significantly reduced in patients with PDA compared with healthy 

controls (Brambilla et al. 1993). Finally, CCK-B receptor expression and binding are 

increased in animal models of anxiety. These findings are in favour of abnormalities in the 

CCK system in PDA patients. 

The key regions of the fear network, such as basolateral amygdala (Del Boca et al. 2012), 

hypothalamus, periaqueductal grey, or cortical regions such as the anterior cingulate cortex 

seem to be connected by CCK-ergic pathways (Dieler et al. 2008). Moreover, these effects 

seem to be modulated by molecular mechanisms, since neurochemical alterations were 

dependent on neuropeptide S genotype (Ruland et al. 2015). In humans, amygdala activation 

may be involved in the subjective perception of CCK-4-induced fear (Eser et al. 2009). More 

recent work suggests that, in the amygdala, CCK may act in concordance with the 

endogenous cannabinoid system in the modulation of fear inhibition and extinction (for 

review, see (Bowers et al. 2012). In addition, CCK-4-induced panic is accompanied by a 

significant glutamate increase in the bilateral anterior cingulate cortex (ACC) (for review, see 

Bowers et al., 2012). In contrast to placebo, alprazolam abolished the activation of the rostral 

ACC after challenge with CCK-4 and increased functional connectivity between the rostral 

ACC and other anxiety-related brain regions such as the amygdala and the prefrontal cortex. 

Moreover, the reduction in the CCK-4 induced activation of the rostral ACC correlated with 

the anxiolytic effect of alprazolam (Leicht et al. 2013). Finally, social stress-induced 

behaviour al deficits are mediated partly by CCK-B receptors as a molecular target of ΔFosB 

in the medial prefrontal cortex (mPFC) and by molecular adaptations in the mPFC involving 

ΔFosB and CCK through cortical projections to distinct subcortical targets. In fact, CCK in 

mPFC-basolateral amygdala projections mediates anxiety symptoms (Vialou et al. 2014).  

CCK also interacts with several anxiety-relevant neurotransmitters such as the serotonergic, 

GABAergic and noradrenergic systems, as well as with endocannabinoids, neuropeptides Y 

and S; for a review, see Zwanzger et al., (Zwanzger et al.). For a review of CCK genes in 

anxiety disorders, see Part I (Bandelow et al. submitted).  

In conclusion, experimental panic induction with CCK-4 has been established as a model to 

study the pathophysiology of PDA and might serve as a tool to assess the anti-panic potential 
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of novel anxiolytic compounds if the challenge procedure is carried out according to strictly 

comparable conditions (Eser et al. 2007).  

Neurokinins (tachykinins) 

Central neurokinins (tachykinins) have been shown to play a role in the modulation of stress-

related behaviours and anxiety. Different forms exist, termed neurokinins 1, 2 and 3. 

Substance P, a ligand of the neurokinin 1 (NK1) receptor, is released in reponse to stress, 

anxiety, and pain (Carrasco and Van de Kar 2003; Ebner and Singewald 2006; Saria 1999). 

PDA 

In a positron emission tomography (PET) study, decreased neurokinin (NK1) receptor binding 

was found in patients with PDA (Fujimura et al. 2009); see Part I (Bandelow et al. submitted). 

It was tried to develop neurokinin antagonists for the treatment of anxiety disorder. The NK1 

receptor antagonist vestipitant showed anxiolytic effects in a preliminary study (Poma et al. 

2014). However, vofopitant, a NK1 antagonist, and onasetant, a NK3-receptor antagonist, 

were not effective (Kronenberg et al. 2005; Poma et al. 2014).  

Specific phobia 

In a PET study with women with specific phobias, the uptake of the labeled NK1 receptor 

antagonist {11C}GR205171 was significantly reduced in the right amygdala during phobic 

stimulation (Michelgard et al. 2007). 

Atrial natriuretic peptide  

PDA 

Atrial natriuretic peptide (ANP) is not only synthesized by atrial myocytes and released in the 

circulation (de Bold 1985), but is also found in different brain areas where specific receptors 

have been found. ANP has been shown to inhibit the CRH-stimulated release of 

adrenocorticotropic hormone (ACTH) (Kellner et al. 1992) and cortisol (Ströhle et al. 1998a). 

Also, peripheral and central administration of ANP has an anxiolytic activity in different 

animal models of anxiety (Ströhle et al. 1997). In patients with PDA, ANP reduced CCK-4-

induced panic attacks (Ströhle et al. 2001) and an activation of the HPA system (Wiedemann 

et al. 2001). Furthermore, a significantly accelerated ANP release has been described in 

patients with lactate-induced panic attacks (Kellner et al. 1995), and it has been suggested that 

this increase also contributes to the paradoxical blunting of ACTH and cortisol secretion 
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during lactate-induced and possibly spontaneous panic attacks. As physical activity increases 

ANP concentrations, it has been suggested that the anxiolytic activity of exercise might be 

associated with increased ANP concentrations. And indeed, the anxiolytic activity of a single 

exercise bout was correlated with the increased ANP concentrations (Ströhle et al. 2006).  

Although there have been major efforts to develop small-molecule, non-peptide receptor 

ligands acting as CRH1 antagonists, NK-antagonists or ANP agonists, we still lack convincing 

clinical proof-of-concept studies with peptidergic treatment approaches in patients with 

anxiety disorders.  

Oxytocin 

SAD 

In humans, the anxiety modulation of oxytocin has been demonstrated by showing reduced 

amygdala responses to aversive stimuli. Moreover, intranasal oxytocin promotes trust, and 

reduces the level of anxiety, possibly at the level of the amygdala (Heinrichs et al. 2009; 

Kirsch et al. 2005; Kosfeld et al. 2005; Zak et al. 2005). The dysregulation of oxytocin as a 

putative mechanism underlying social attachment has been examined widely in animal 

studies, e.g. (Williams et al. 1994), and recently has become of interest in human studies. 

In a study examining oxytocin as add-on to exposure therapy in patients with SAD, 

participants administered with oxytocin showed improved positive evaluations of appearance 

and speech performance, but these effects did not generalize to improve overall treatment 

outcome from exposure therapy (Guastella et al. 2009).  

A role of oxytocin in SAD has also been shown in neuroimaging studies (chapter 

Neuroimaging, Part I (Bandelow et al. submitted)). 

SepAD 

Genetic studies have shown a possible role of oxytocin in SePAD (chapter Genetics, Part I, 

(Bandelow et al. submitted)).  

PTSD 

In Vietnam veterans with PTSD, no beneficial effects of intranasal oxytocin on physiological 

responses to combat imagery were observed (Pitman et al. 1993). 
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Hypothalamic-pituitary-adrenal (HPA) axis 

PDA 

There has been a growing number of studies aiming to delineate the possible role of HPA axis 

function in the pathophysiology of the anxiety disorders, mainly through the use of plasma, 

urine, or saliva cortisol levels in basal conditions or after pharmacological or psychological 

challenge test as a potential biological marker (Elnazer and Baldwin 2014).  

Basal levels 

Baseline plasma levels of cortisol in PDA patients were reported to be elevated during the day 

(Goetz et al. 1989; Nesse et al. 1984; Roy-Byrne et al. 1986) or during the night (Abelson et 

al. 1996) by some authors, but to be normal by others (Brambilla et al. 1995; Cameron et al. 

1987; Stein and Uhde 1988). Urinary free cortisol in PDA patients was found to be normal 

(Uhde et al. 1988), elevated (Bandelow et al. 1997) or elevated only in patients with 

complicated PDA (Lopez et al. 1990) when compared with healthy controls.  

Baseline ACTH concentration in plasma was found to be increased in patients compared to 

controls (Brambilla et al. 1992). HPA axis stimulation tests showed significantly lower ACTH 

responses to corticotropin-releasing hormone (CRH) in patients compared to normal control 

subjects in three studies (Brambilla et al. 1992; Holsboer et al. 1987; Roy-Byrne et al. 1986) 

and normal responses in one (Rapaport et al. 1989). Cortisol release after CRH was found to 

be lower in two (Brambilla et al. 1992; Roy-Byrne et al. 1986) and normal in two other 

studies (Holsboer et al. 1987; Rapaport et al. 1989). 

HPA axis response during panic attacks 

Cameron et al.(1987) measured cortisol during spontaneously occurring panic attacks while 

patients stayed at bedrest with an indwelling venous catheter for sampling of blood. They 

found non-significantly elevated plasma cortisol levels during attacks. 

During naturally occurring panic attacks, a significantly increased salivary cortisol secretion 

could be shown in PDA patients compared to values of the same individuals obtained at 

comparable daytime on panic-free days (Bandelow et al. 2000). The salivary method used in 

this study turned out to be a useful non-invasive method to measure HPA function in anxiety 

disorders, which was often used in subsequent research.  
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During exposure to feared situations, PDA patients did not show increased levels of 

concentrations of cortisol and ACTH (Siegmund et al. 2011). In order to investigate cortisol 

levels during panic attacks, panic provocation tests have been performed. In most studies, 

patients who panicked during lactate infusion did not show elevations in ACTH or cortisol 

(Carr et al. 1986; Den Boer et al. 1989; Gorman et al. 1989; Levin et al. 1987; Ströhle et al. 

1998b; Targum 1992). In a study by Liebowitz et al. (1985), only patients who rapidly 

developed panic attacks after lactate infusion had marginally higher cortisol levels than 

controls. In contrast to these findings, Hollander et al. (1989) found that cortisol levels fell 

significantly during lactate-induced panic in patients and controls. Interestingly, patients who 

panicked after lactate had higher plasma cortisol levels before the infusion than controls 

(Coplan et al. 1998). 

Inhalation of carbon dioxide did not induce a significant increase in plasma or salivary cortisol 

in panickers (Gorman et al. 1989; van Duinen et al. 2004). However, subsequent studies 

suggested that 35% CO2 significantly increases plasma levels of ACTH and cortisol in PDA 

patients (van Duinen et al. 2007) and of cortisol in healthy subjects (Argyropoulos et al. 2002). 

Nevertheless, in PDA patients, no specific association emerged between the 35% CO2-induced 

panic attacks and the HPA-axis’ activation observed after this challenge (van Duinen et al. 

2007). Patients reporting yohimbine-induced panic attacks had significantly larger increases in 

plasma cortisol than healthy subjects (Charney et al. 1987). M-chlorophenylpiperazine 

(mCPP) or oral caffeine increased plasma cortisol in both patients and controls (Charney et al. 

1985; Klein et al. 1991). However, a placebo-controlled study suggested that the significant 

increases in plasma cortisol, ACTH and dehydroepiandrosterone sulfate observed after oral 

caffeine (400 mg) administration in PDA patients are not associated with the occurrence or not 

of a panic attack at post-challenge (Masdrakis et al. 2015). Pentagastrin (CCK-4) induced 

panic attacks were associated with a pronounced rise of plasma cortisol levels (Abelson et al. 

2007). 

HPA axis response to treatment 

Some studies investigated the effect of treatment on the HPA axis in patients with PDA. 

Nocturnal urinary cortisol excretion did not change during treatment with paroxetine vs. 

placebo combined with relaxation training or aerobic exercise (Wedekind et al. 2008). On the 

contrary, exercise training was associated with lowered salivary cortisol levels in PDA 

patients (Plag et al. 2014). 
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HPA axis suppression tests 

Findings with the dexamethasone suppression test were summarized by Isinget al. (2012). 

Most studies found a normal reaction in the dexamethasone suppression test in PDA patients, 

e.g.Cameron & Nesse (1988), while cortisol non-suppression after dexamethasone was found 

in at least some patients in some other investigations (Avery et al. 1985; Erhardt et al. 2006; 

Petrowski et al. 2013). Results of studies employing the CRH stimulation test in PDA were 

heterogeneous. While two studies suggest an abnormal CRH response pattern in terms of a 

blunted ACTH response and a reduced ACTH/cortisol ratio, three studies were negative or 

showed inconsistent findings (Ising et al. 2012). Also, combined dexamethasone 

suppression/CRH tests supported the assumption of an impaired HPA axis regulation in PDA 

(Ising et al. 2012). Demiralayet al. (2012) found a blunted response of ACTH release 

following CCK-4 injection only after hydrocortisone pre-treatment.  

 

HPA axis and neurotrophic factors 

According to a review, early stressful life events may provoke alterations of the stress 

response and the HPA axis, which can endure until adulthood (Faravelli et al. 2012). 

Glucocorticoids suppress brain-derived neurotrophic factors (BDNF) at messenger 

ribonucleic acid (mRNA) and protein level. Activated glucocorticoid and mineralocorticoid 

receptors repress the transcription activity of the BDNF promoter site. Neurogenesis in the 

human brain is in fact most prominent in the dentate gyrus of the hippocampus. 

Hypercortisolism caused by prolonged stress can suppress this neuroplasticity process. Acute 

stress, however, activates BDNF, stimulates neuroplasticity and hence improves learning and 

memory.Therefore, under chronic stress conditions such as in PDA, an increasing loss of 

neural plasticity may emerge and consequently the ability to appropriate coping (Bandelow 

and Wedekind 2006). The role of neurotrophic factors is reviewed in the next chapter 

(Neurotrophic factors, page 33).  

GAD 

Basal levels and HPA axis response to stressors 

It is uncertain, as yet, whether untreated GAD is associated with abnormally increased cortisol 

levels. Thus, some studies suggest that GAD patients and controls demonstrate similar 

baseline cortisol levels and cortisol responses to challenge tests. More precisely, baseline 
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urinary free cortisol levels between patients with “chronic moderate-to-severe anxiety” and 

normal controls did not differ significantly (Rosenbaum et al. 1983). Twenty GAD male 

adolescents and normal controls displayed similar cortisol plasma levels after a stressful test, 

but anxious subjects had demonstrated greater pre-stress ACTH concentrations (Gerra et al. 

2000). In an extensive study with 1427 anxious patients and normal controls, GAD patients 

demonstrated significantly greater cortisol awakening response than controls, only when also 

suffering major depressive disorder (MDD) (Vreeburg et al. 2010). Among 4256 Vietnam-era 

veterans, those suffering from GAD and normal controls showed similar cortisol and 

dehydroepiandrosterone sulfate (DHEAS) plasma levels and cortisol/DHEAS ratio (Phillips et 

al. 2011). Corresponding to younger subjects, baseline cortisol levels of 201 elderly subjects 

with at least one anxiety disorder (including GAD and phobias) were comparable to those of 

normal controls. However, under stress, males showed a slower decline rate of post-stress 

cortisol increases compared to controls, while clinical severity was associated with larger 

post-stress cortisol increases and lower recovery capacity in females (Chaudieu et al. 2008). 

Administration of 7.5% carbon dioxide did not significantly change salivary cortisol levels in 

medication-free GAD patients (Seddon et al. 2011). Finally, 7- to 11-year-old children with 

GAD did not differ from controls concerning pre-sleep salivary cortisol, despite the presence 

of sleep disturbances (Alfano et al. 2013).  

On the contrary, other studies report abnormal – either increased or decreased – HPA axis 

activity in GAD. Thus, in elderly GAD patients, compared to non-anxious controls, cortisol 

levels were overall significantly more elevated, were higher during morning hours and were 

positively associated with GAD symptoms (Mantella et al. 2008). Moreover, not only 

untreated but also SNRI-treated GAD patients demonstrated significantly higher cortisol 

levels compared to normal controls (Hood et al. 2011). A recent development is the analysis 

of hair cortisol concentrations, which reflect the long-term cortisol levels independently of the 

acute HPA axis responses in the laboratory context. GAD patients demonstrate up to 50-60% 

lower hair cortisol concentrations compared to healthy controls (Staufenbiel et al. 2013; 

Steudte et al. 2011). These results are in accordance with the notion that chronic anxiety – an 

essential clinical feature of GAD – may result in down-regulation of HPA axis activity. Thus, 

older adults (≥65 year-old) suffering from long-lasting anxiety disorders demonstrated a lower 

cortisol awakening response than normal controls. This association was most prominent in 

GAD patients, however, irrespectively of the duration of illness (Hek et al, 2013). Likewise, 

chronic anxiety may finally exhaust the capacity for increase in serotonin transporter due to 
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the chronically elevated plasma cortisol levels, e.g. GAD patients could not increase serotonin 

uptake in their lymphocytes after cortisol administration (Tafet et al. 2001). 

HPA axis suppression tests 

Non-suppression in the dexamethasone suppression test (DST) in GAD patients (up to 27%) 

is comparable to that of MDD outpatients, but seems to have little value in distinguishing 

between GAD and other disorders, including PDA, MDD and agoraphobia (Avery et al. 1985; 

Okasha et al. 1994; Schittecatte et al. 1995; Schweizer et al. 1986; Tiller et al. 1988). 
HPA axis response to treatment 

Some studies report that successful psychological or pharmacological treatment of GAD is 

associated with post-treatment cortisol level reductions. Thus, after successful CBT treatment 

for GAD, significant decreases in both anxiety symptoms and (the elevated at baseline) 

plasma cortisol levels were observed (Tafet et al. 2005). GAD patients over 60 years of age 

displayed greater reductions in both peak and total salivary cortisol after escitalopram 

treatment, compared to placebo-treated patients (Lenze et al. 2011). Furthermore, cortisol 

reductions were positively associated with improvements in anxiety, although this was limited 

to subjects with elevated (above the median) baseline cortisol levels. Of note, genetic 

variability at the serotonin transporter promoter predicted these cortisol changes. Furthermore, 

in the escitalopram (but not in the placebo) treatment group, salivary cortisol changes were 

significantly associated with changes in immediate and delayed memory tasks, suggesting that 

targeting HPA axis dysfunction may improve memory in older GAD patients (Lenze et al, 

2012). Tiller et al. (1988) reported that all GAD patients who were DST non-suppressors at 

pre-treatment were suppressors after successful behaviour al treatment. Finally, refocusing 

GAD patients’ attention (and thus distracting them from their anxious thoughts) seems to 

reduce cortisol levels (Rosnick et al (2013). 

However, other studies report no association between a positive treatment outcome and post-

treatment changes in cortisol levels, or no change of cortisol levels at all. Thus, effective 

treatment of GAD either with buspirone (Cohn et al. 1986) or with alprazolam (Klein et al. 

1995) did not significantly alter cortisol levels. Intravenous administration of diazepam in 

eight GAD patients was associated with post-challenge reductions in cortisol (dose-

dependently) and ACTH (dose-independently) (Roy-Byrne et al. 1991). There was no 

interaction with diagnosis for any of these endocrine measures, indicating no differential 

effects of diazepam on ACTH or cortisol in the GAD and control groups. Subsequently, in a 

larger study in GAD patients and healthy controls, diazepam reduced plasma cortisol levels 
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both when acutely administered at baseline and during chronic treatment and this effect was 

most apparent in the elderly (60–79 years) compared with the young adults (19–35 years) 

(Pomara et al. 2005). However, this effect was not associated with the presence of GAD.  

SAD 

The HPA axis is an important stress system concerning social interaction. Primates with 

higher baseline HPA axis activity and greater reactivity to stressful stimuli demonstrate 

increased social avoidances (Kalin et al. 1998; Sapolsky and Plotsky 1990). Consequently, 

research concerning the pathophysiology of SAD has focused on the potential role of cortisol 

in regulating cognitive processes and behaviour al responses (e.g. avoidances) to social 

stressors (de Kloet et al. 1999; Elnazer and Baldwin 2014; Roelofs et al. 2009; Sapolsky 

1990; van Peer et al. 2010). 

Basal levels and HPA axis response to stressors 

Some studies suggest that baseline cortisol levels or cortisol responses after pharmacological 

or psychological challenges are similar between SAD patients and controls. Thus, no evidence 

of HPA axis hyperactivity in SAD patients compared to healthy controls was observed, as this 

is reflected in urinary free cortisol levels or in the free cortisol/creatinine ratio (Potts et al, 

1991), as well as in the 24-hour excretion of urinary free cortisol and in post-dexamethasone 

cortisol levels (Uhde et al. 1994). Additionally, diurnal saliva cortisol levels and cortisol 

increases observed both before attending school and before a Trier Social Stress Test were 

similar between 27 adolescent girls with SAD and healthy controls (Martel et al. 1999). 

Moreover, SAD patients, compared to controls, demonstrated significantly greater ACTH and 

cortisol responses to stress (Young et al. 2004) and a significantly greater cortisol awakening 

response (Vreeburg et al. 2010), only when suffering major depression as well. Intravenous 

administration of CCK-4 in SAD or OCD patients, or normal controls failed to find any 

significant between-groups differences concerning post-challenge ACTH, cortisol, growth 

hormone and prolactin responses (Katzman et al. 2004). Intravenous administration of 

citalopram in SAD patients and healthy controls resulted in significantly greater increases in 

cortisol and prolactin plasma levels compared to placebo administration, which were yet 

similar between the two groups (Shlik et al. 2002). Although a rapid intravenous meta-

chlorophenylpiperazine (m-CPP) challenge resulted in significantly greater rate of panic 

attacks in PDA patients (85%) compared to generalized SAD patients (14%) and healthy 
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controls (0%), yet post-challenge changes in cortisol levels were comparable between these 

groups (Van Veen et al. 2007).  

In SAD patients evaluated at baseline and after dexamethasone, no differences were found 

concerning cortisol awakening response, post-dexamethasone and other cortisol 

measurements, in contrast to the observed elevations in diurnal and post-dexamethasone 

levels of salivary alpha-amylase, a marker of autonomic nervous system function (van Veen 

et al. 2008). Subsequently, SAD patients successfully treated with a SSRI underwent either a 

tryptophan depletion challenge or a placebo-test, combined with a public speaking-challenge. 

The tryptophan depletion group showed a significant larger salivary α-amylaseresponse 

compared to the placebo-group, yet the two groups demonstrated similar salivary cortisol 

responses (van Veen et al. 2009). Accordingly, SAD patients who underwent an electrical 

stimulation test demonstrated significantly greater baseline and post-challenge salivary α-

amylase levels compared to controls. Concerning salivary cortisol levels, neither within-

subject nor group differences were observed (Tamura et al. 2013). These findings have led 

some researchers to suggest that pathological vulnerability of the autonomic nervous system –

and not of the HPA axis– may underlie SAD psychopathology (Tamura et al. 2013; van Veen 

et al. 2009; van Veen et al. 2008). However, both salivary cortisol and α-amylase levels were 

similar between SAD children (aged 8–12 years) and healthy controls after undergoing the 

Trier Social Stress Test for Children, although the former demonstrated significantly higher 

reactivity compared to the latter (Kramer et al. 2012).  
On the contrary, other studies suggest that SAD patients differ significantly from controls 

concerning baseline cortisol levels and/or cortisol responses to pharmacological or 

psychological challenges. Thus, in SAD patients, administration of fenfluramine (Tancer et al. 

1994b) or m-CPP (Hollander et al. 1998) resulted in significantly greater cortisol responses 

compared to controls. Furlan et al (2001) reported different dichotomies in magnitude and in 

distribution of cortisol responses to a speech-stressor between SAD patients and normal 

controls. Thus, seven patients and 14 controls demonstrated post-challenge cortisol increases 

(90% and 50% respectively), while in the remaining 11 patients and three controls, cortisol 

decreased. Of note, both patients’ groups were significantly more anxious at post-challenge 

compared to controls. On the contrary, SAD patients and controls showed similar cortisol 

responses to a physical exercise-challenge, suggesting that distinct biological processes 

underlie responses to different stressors in SAD (Furlan et al. 2001). Patients with SAD, 

compared to healthy controls, had a significantly larger cortisol response when performing an 
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arithmetic/working memory task in front of an audience (Condren et al. 2002). Baseline 

ACTH and cortisol, as well as post-challenge ACTH responses were all similar between the 

two groups. Exaggerated cortisol response to a speech-stressor was suggested to be a potential 

neurobiological marker for pre-pubertal SAD children (van West et al. 2008). Moreover, an 

elevated afternoon salivary cortisol level at the age of 4.5 years was one of the four risk 

factors (the rest being female gender, early exposure to maternal stress and early 

manifestation of behaviour al inhibition) mediating the association between chronic high 

inhibition in school age and SAD occurrence during adolescence (Essex et al. 2010). 

Additionally, in adolescents, a higher baseline cortisol awakening response significantly 

predicted increased first onsets mainly of SAD (among other anxiety disorders) over a six-

year follow-up (Adam et al. 2014). Finally, recent data suggest that 8–12-year-old children 

with an anxiety disorder (including SAD, GAD, specific phobia and SePAD) demonstrate 

psychophysiological characteristics resembling those of chronic stress, i.e. a baseline pattern 

comprising reduced HPA axis functioning and elevated sympathetic and lowered 

parasympathetic activity compared to controls (Dieleman et al. 2015). 

Increased cortisol stress-responsiveness may be linked to increased social avoidance 

behaviour s in SAD patients. Indeed, SAD patients showed larger cortisol responses to a 

social stressor, compared to healthy controls. Most crucially, cortisol responses correlated 

positively to avoidance behaviour s displayed during the social-stressor and, furthermore, 

predicted them irrespectively of blood pressure and anxiety (Roelofs et al. 2009). The authors 

speculate that some studies failed to find an increased HPA axis response to social stressors in 

SAD patients due to protocol violations – e.g. manipulations that reduce a patient’s 

experimentally-induced stress in order to avoid drop-out of the patient – which might 

critically reduce their cortisol responses. 

The potential role of cortisol in threat processing in SAD remains unclear. Event-related 

potential analysis indicated that in SAD patients, cortisol administration prior to a social 

stress-related reaction time task increases early processing of social stimuli (particularly angry 

faces) during avoidance (van Peer et al. 2009). A subsequent event-related potential study 

suggested a highly specific effect of cortisol on early motivated attention to social threat in 

SAD (van Peer et al. 2010). 

HPA axis response to treatment 

Clinical improvement after fluvoxamine treatment in SAD patients was not associated with 

baseline and post-treatment plasma cortisol responses to a speech-test (DeVane et al. 1999).  
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Glucocorticoids in the treatment of SAD 

Elevated glucocorticoid levels might inhibit the retrieval of fear-related memories and, 

thereby, reduce phobic fear. Thus, in SAD patients, cortisone administered orally one hour 

before a social stressor significantly reduced social fear (but not general anxiety) during the 

anticipation, exposure and recovery phase of the stressor. Moreover, the stress-induced 

release of cortisol in placebo-treated subjects correlated negatively with fear ratings, 

suggesting that endogenously released cortisol in a phobic context buffers fear symptoms 

(Soravia et al. 2006). 

Specific Phobia 

Basal levels and HPA axis response to stressors 

Most related studies suggest that specific phobia is characterized by exaggerated cortisol 

increases during exposure to phobic stimuli. Thus, in patients with specific phobia, exposure 

to phobic slides elicited larger cortisol excretion (as well as greater distress and skin-

conductance responses), compared to neutral exposures (Fredrikson et al. 1985). Likewise, in 

women with animal phobias, cortisol levels (as well as levels of epinephrine, norepinephrine, 

growth hormone and insulin) significantly rose during in vivo exposure sessions, together with 

increases in anxiety, blood pressure and pulse (Nesse et al. 1985). Moreover, in two patients 

who underwent exposure therapy for height phobia, increased cortisol responses remained 

over the course of treatment despite behaviour al and subjective improvements 

(“desynchrony”) (Abelson and Curtis 1989). Subjects with driving phobia, compared to 

healthy controls, had significantly greater cortisol increases during driving and its anticipation 

one hour before driving. Cortisol levels were similar between the two groups on a non-driving 

day and on morning awakening (Alpers et al. 2003). Pregnant women suffering blood-

injection phobia, compared to healthy pregnant women, had a higher output of cortisol, 

although both groups demonstrated similar diurnal cortisol rhythms (Lilliecreutz et al. 2011). 
Of note, van Duinen et al. (2010) reported that – although during exposure to phobic stimuli 

spider phobic patients demonstrated significantly stronger fear reaction compared to controls 

– yet cortisol levels were similar between both groups, suggesting thus a “desynchrony” in 

patients’ response systems.  
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 HPA axis response to treatment 

In army recruits with protective mask phobia, exaggerated salivary cortisol secretion was 

observed at both baseline and post-treatment, as well as in the morning. After successful two-

day intensive CBT, significant reductions in cortisol levels were observed (Brand et al. 2011). 

Of note, it has been suggested that phobic patients may not respond uniformly regarding HPA 

axis function when exposed to phobic stimuli and that this should be taken into consideration 

when tailoring individualised psychotherapeutic interventions. Hence, only two-thirds of 

women with spider phobia showed increased cortisol responses when exposed to spider 

photographs, while the rest, defined as “low-responsive”, showed lower cortisol responses 

compared to “medium-to-high responsive” non-phobic individuals (Knopf and Possel 2009). 

Glucocorticoids in the treatment of specific phobia 

Glucocorticoid treatment seems to acutely reduce symptoms of specific phobia and might 

have a prolonged effect concerning fear extinction, especially in combination with exposure 

therapy (de Quervain and Margraf 2008; Soravia et al. 2006). Thus, in subjects with spider 

phobia, repeated oral administration of cortisone (25 mg) one hour before exposure to spider 

photographs reduced phobic (but not general) anxiety significantly more than placebo, and 

this effect was maintained for two days (Soravia et al. 2006). Additionally, patients fearing 

heights who underwent a three-session virtual-reality exposure therapy after receiving cortisol 

(20 mg) one hour before each session, demonstrated significant fear reduction, as well as 

reductions in acute anxiety and in skin conductance during exposures to phobic stimuli (de 

Quervain et al. 2011). 

OCD 

Basal levels and HPA axis response to stressors 

Research data suggest abnormal HPA axis function at baseline and after stress in OCD 

patients. More precisely, children and youths with OCD displayed higher early-morning 

cortisol values, compared to healthy controls. Moreover, the cortisol levels in the OCD group 

diminished in response to a psychological stressor, while a positive response was observed in 

the reference group (Gustafsson et al. 2008). In adults with OCD, similar diurnal secretion 

patterns were found when compared to healthy controls; however, an overall increase in HPA 

axis activity was found in OCD patients (Kluge et al. 2007). Exposure with response 
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prevention was used as a stressor in patients with OCD. Despite considerable psychological 

stress, no increase of salivary cortisol was observed (Kellner et al. 2012).  

PTSD 

Some studies have found lower cortisol excretion in PTSD patients. According to a review by 

Yehuda (2005), most studies demonstrate alterations consistent with an enhanced negative 

feedback inhibition of cortisol on the pituitary, an overall hyper-reactivity of other target 

tissues (adrenal gland, hypothalamus), or both in PTSD. However, findings of low cortisol 

and increased reactivity of the pituitary in PTSD are also consistent with reduced adrenal 

output. The possible clinical applications of HPA biomarkers have been reviewed by Lehrner 

& Yehuda (2014).  

Basal levels 

Low urinary cortisol excretion was found in combat veterans with PTSD as compared to 

controls (Yehuda et al. 1990). Holocaust survivors with PTSD showed significantly lower 

mean urinary cortisol excretion than subjects without PTSD (Yehuda et al. 1995). In a small 

study, patients with PTSD were compared to patients with PDA and healthy controls. PTSD 

patients had lower cortisol and marginally reduced cortisol volatility compared to patients 

with panic disorder (Marshall et al. 2002). Low cortisol levels in the immediate aftermath of 

trauma have been found to predict the development of PTSD (Delahanty et al. 2005; 

Delahanty et al. 2000; Yehuda et al. 1998). A meta-analysis of 47 studies revealed that daily 

cortisol output was lower for PTSD patients relative to healthy controls without trauma; 

subjects who were exposed to trauma but did not develop PTSD did not differ from healthy 

controls without trauma (Morris et al. 2012).  

However, in a recent study assessing hair cortisol – which reflects long-term cortisol changes 

–, PTSD patients and traumatized control subjects without PTSD exhibited lower hair cortisol 

than non-traumatized control subjects suggesting that trauma exposure per se, either in the 

absence or presence of PTSD is a correlate of long-term lower basal cortisol levels (Steudte et 

al. 2013). 

Glucocorticoids in the treatment of PTSD 

Based on the above-mentioned findings of decreased cortisol concentrations in PTSD, it has 

been hypothesized that glucocorticoid administration may benefit patients. Indeed, individuals 

who received a high dose of hydrocortisone within 6 hours of a traumatic event had a reduced 
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risk for the development of PTSD, compared to individuals who received placebo (Zohar et 

al. 2011).  

In summary, although the clinical picture of anxiety disorders suggest a potential prominent 

role of a disturbed stress response regulation, yet there are more inconsistencies than 

consistencies in the relevant research findings.  

In PDA, findings are inconsistent regarding baseline cortisol and ACTH levels, response to 

spontananeously occurring panic attacks, response to exposure to feared situations, 

chemically provoked panic attacks or response to the dexamethasone suppression or CRH 

challenge.  

In GAD, findings are inconsistent regarding whether baseline cortisol levels are normal or 

pathologically elevated, while findings from hair cortisol analysis – a recently developed 

technique, which reflects the long-term cortisol levels –  suggest significantly lower hair 

cortisol concentrations. Although dexamethasone non-suppression in GAD patients is 

comparable to that of MDD outpatients, yet it seems to be of little value in the differential 

diagnosis of GAD from other mental disorders. Most – but not all – related studies suggest 

that successful psychotherapy or pharmacotherapy of GAD is associated with post-treatment 

reductions in cortisol concentrations.  

With regard to patients with SAD, some – but not all – studies suggest that they differ 

significantly from normal controls concerning baseline cortisol levels, and/or demonstrate 

exaggerated cortisol stress-responsiveness possibly linked to increased social avoidances.  

Regarding specific phobia, most studies suggest inflated cortisol responses during exposure to 

phobic stimuli, which are yet amenable to behaviour therapy. 

Overall, it seems that various pathological findings are found in HPA axis function across the 

anxiety disorders. Nevertheless, it is not clear, as yet, whether this reflects reality, or is due to 

methodological weaknesses of current research. In order to more vigorously evaluate the 

potential role that HPA axis function plays in the pathophysiology of anxiety disorders, a 

number of strategies have been previously proposed, such as achieving greater consensus on 

study objectives and on clinical features of patients’ groups and designing meticulous 

methodological protocols (Baldwin et al. 2010; Elnazer and Baldwin 2014). 
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Neurotrophic factors 

Neurotrophins are proteins involved in neurogenesis. Although most of the neurons in the 

brain are formed prenatally, some parts of the adult brain have the ability to form new neurons 

from neural stem cells, a process named neurogenesis. Neurotrophins include nerve growth 

factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3, neurotrophin-4, and 

artemin.  

Nerve Growth Factor (NGF)  

Nerve growth factor (NGF) is a neuropeptide involved in the regulation of neuron growth. On 

the one hand, NGF may be involved in the alert mechanism associated with homeostatic 

adaptations (Cirulli and Alleva 2009), on the other hand, it might modulate sympathetic 

neurons and therefore it keeps a key position in controlling the responsiveness of immune-

competent cells (Levi-Montalcini et al. 1995). Furthermore, NGF, via the hypothalamus 

(Scaccianoce et al. 1993), can activate the HPA axis (Otten et al. 1979) and plays a role in 

adaptive responses. More importantly, there is evidence that NGF might be an 

autocrine/paracrine factor for the development and regulation of immune cells (Levi-

Montalcini et al. 1995). NGF is produced by T and B lymphocytes (Lambiase et al. 1997), 

which display functional NGF receptors (Franklin et al. 1995). Furthermore, NGF promotes 

the proliferation and differentiation of T and B lymphocytes (Brodie and Gelfand 1992), and 

acts as a survival factor for memory B lymphocytes (Torcia et al. 1996). 

An association between trait anxiety and a genetic variation of NGF was found in healthy 

volunteers (Lang et al. 2008). In soldiers making their first parachute jump, NGF was 

increased during and after the jump (Aloe et al. 1994).  

While a reduction of NGF in depression has been consistantly reported (Wiener et al. 2015), 

NGF has not been studied widely in patients with anxiety disorders. In one GAD study, NGF 

was increased after successful CBT (Jockers-Scherubl et al. 2007).  

Brain-Derived Neurotrophic Factor (BDNF)  

BDNF is a protein that acts on neurons in the brain and the peripheral nervous system, 

involved in neurogenesis and in the forming of new synapses. It was assumed that BDNF is 

implicated in the aetiologies of depression and anxiety. Data on brain BDNF levels in anxiety 

disorders are controversial.  
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PDA 

The serum BDNF levels of the PDA patients with poor response to CBT were significantly 

lower than those of the patients with good response (Kobayashi et al. 2005). Moreover, BDNF 

serum levels increased after 30 minutes of aerobic exercise in subjects with panic but not in 

healthy controls (Ströhle et al. 2010).  

GAD 

In a treatment study with GAD patients, no significant association was found between 

baseline plasma BDNF levels and GAD severity. Patients who received the SNRI duloxetine 

had a significantly greater mean increase in plasma BDNF level compared with patients who 

received placebo (Ball et al. 2013). In a sample of 393 patients with panic disorder, 

agoraphobia, GAD or SAD, no differences in BDNF levels were found when compared to 

382 healthy controls (Molendijk et al. 2012).  

A small study comparing patients with GAD or major depressive disorder to healthy subjects 

showed doubled levels of BDNF and artemin, a glial cell-line derived neurotrophic factor 

family member, in GAD patients compared to normal controls, while depressed patients 

showed a reduction (Pallanti et al. 2014).  

 

In summary, neurotrophic factors seem to play a different role mood disorders and anxiety. 

While brain atrophy and growth factor reduction have been observed in mood disorders the 

opposite has been demonstrated in anxiety disorders. One hypothesis could be that the 

increase of neurotrophic factors and inflammatory factors observed in anxiety disorders are 

related to brain volume increase observed in brain areas such as the dorsal midbrain by some 

studies on anxiety disorders (Fujiwara et al. 2011; Uchida et al. 2008) (see also Chapter 

neuroimaging, Part I (Bandelow et al. submitted)).  

Immunological markers 

Neurobiological research on anxiety disorders has shown the possible relevance of 

neuroplasticity and inflammation processes in the pathophysiology of these disorders. The 

high rate of comorbidity between anxiety disorders and several inflammatory medical 

conditions has been interpreted as the result of specific inflammatory pathways. Anxiety has 

been linked to cardiovascular risk factors and diseases such as atherosclerosis (Seldenrijk et 

al. 2010), metabolic syndrome (Carroll et al. 2009), and coronary heart disease (Roest et al. 
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2010), which are also associated with low-grade systemic inflammation (Libby 2002). While 

depressive disorders, which are highly comorbid with anxiety disorders, have repeatedly been 

associated with the immune system (Kim et al. 2007; Myint and Kim 2014), only a few 

studies have investigated the relationship between anxiety disorders and inflammation 

(Vogelzangs et al. 2013). These have suggested that certain inflammatory markers are 

elevated in anxiety disorders (Weik et al. 2008). 

The immune system 

The immune system is divided into the innate and the acquired immune system. The latter 

again is divided into the cellular and the humoral immune system. The humoral system is 

based on antibodies, while the cellular immune system involves the phagocytes, cytotoxic T-

lymphocytes, and cytokines. Lymphocytes are white blood cells in the lymph that include 

thymus cells (T cells), which can produce enzymes that destroy pathogenic cells, bone 

marrow cells (B cells), which produce antibodies for the humoral immune system to fight 

bacteria and viruses, and natural killer cells, which defend the host from tumor cells and virus 

infections. Inflammatory responses are characterized by a complex interaction between pro- 

and anti-inflammatory cytokines (Pavlov and Tracey 2005). Cytokines are small proteins, 

including the interleukins (ILs) such IL1, -2, -6, -10, -18 and others, tumor necrosis factors 

(TNFs) and interferons (IFNs) such as IFN α, β and γ. Interferons are released by cells that 

have been infected by a virus, and are used as drugs (e.g. α-interferon for the treatment of 

hepatitis C or cancer, β-interferon for multiple sclerosis or interleukin 2 for cancer). 

Interferons also activate natural killer cells. 

Epinephrine and norepinephrine modulate the release of cytokines and inflammation through 

α- and β-adrenoceptors on immune cells (Hasko and Szabo 1998). Results of in vitro and in 

vivo studies have suggested that norepinephrine enhances TNF production (Bertini et al. 1993; 

Spengler et al. 1994). TNF is an early cytokine mediator of local inflammatory response that 

causes inflammation and secondary tissue damage when released in excess (Tracey 2002). 

Both catecholamines have been reported to stimulate IL-6 release by immune cells and other 

peripheral cells (Chrousos 2000). Norepinephrine augments macrophage phagocytosis and 

tumoricidal activity (Koff and Dunegan 1985). In contrast, acetylcholine dose-dependently 

inhibit the release of TNF and other pro-inflammatory cytokines such as IL1, IL6, and IL18, 

from endotoxin-activated primary human macrophages (Borovikova et al. 2000). However, 

the production of IL10, which is an anti-inflammatory cytokine, was unaffected by 
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acetylcholine. Inhibition of acetyl-cholinesterase activity, which increases acetylcholine levels 

in the central nervous system, resulted in the suppression of the immune response, indicating 

that acetylcholine has an immunoinhibitory role in the brain (Pavlov et al. 2009). When 

stressful situations are prolonged, adrenergic agents can increase and acetylcholine can 

decrease, due to continuous sympathetic activation and the lack of parasympathetic 

counteractivation. Therefore, pro-inflammatory cytokines such as TNF, IL1, and IL6 can 

increase in prolonged stressful situations, such as anxiety disorders. 

The autonomic nervous system and the immune system 

Although stress initially activates both the sympathetic nervous system and the hypothalamic-

pituitary-adrenal (HPA) axis, the role of the autonomic nervous system and its interactions 

with stress and the immune system has received much less attention than the HPA axis 

(Elenkov et al. 2000). Stress-induced interactions between nervous, endocrine and immune 

systems are depicted in Figure 2.  

 

Insert Figure 2 

 

Mental arithmetic and public speaking tasks applied as brief laboratory stressors induce 

increases in natural killer cell activity (Breznitz et al. 1998). These increases were potentiated 

in individuals who were cardiovascularly more reactive to stress (Cacioppo et al. 1995). In 

other words, individuals who showed the greatest sympathetic nervous system and endocrine 

response to brief psychological stressors, also showed increased immune system alterations. 

Thus, the effect of stress on the neuroendocrine system and the mechanism by which that 

effect influences the immune system has become a subject of interest in recent years (Larson 

et al. 2001). 

Cellular Immunity 

PDA 

In PDA patients, peripheral lymphocyte subsets did not differ initially from control subjects. 

However, after three months of treatment with the SSRI paroxetine, the percentages of some 

lymphocyte subsets were significantly increased, while others were decreased (Kim et al. 

2004). This finding suggests that pharmacological treatment may affect immune function in 

panic disorder patients. In a study by Schleifer et al. (2002), drug-free patients with PDA 
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showed decreased percentages and total circulating CD19+ B lymphocytes, but no differences 

in other lymphocyte measures. Natural killer cell activity did not differ between PDA patients 

and healthy control subjects in this study.  

GAD 

In a study by Wingo and Gibson (2015), anxiety as a symptom of GAD was associated with 

blood gene expression profiles in 336 community participants (157 anxious subjects and 179 

controls). Findings did not show a significant differential expression in females, but 631 genes 

were differentially expressed between anxious male and healthy controls. Gene set 

enrichment analysis revealed that genes with altered expression levels in anxious men were 

involved in response of various immune cells (B-cells, myeloid dendritic cells and 

monocytes) to vaccination and to acute viral and bacterial infection (peripheral blood 

mononuclear cells). In addition, this analysis also identified a network affecting traits of 

metabolic syndrome. These results suggest potential molecular pathways that can explain the 

negative effects of GAD on physical health that are observed in epidemiological studies. 

Remarkably, even mild anxiety, which most of the study participants had, was associated with 

observable changes in immune-related gene expression levels. 

OCD 

In OCD, circulating natural killer cells were either increased, decreased or not changed 

compared to controls. In one study, circulating natural killer cells were elevated 

predominantly in males which persisted after 12 weeks of SSRI treatment, possibly reflecting 

either characteristic of the illness, or a lack of true remission (Ravindran et al. 1999). Another 

study found that patients with childhood onset of OCD had significantly more natural killer 

cells than patients with late onset OCD (Denys et al. 2004). A subsequent study reported that 

the percentage and absolute numbers of natural killer cells measured as CD56 lymphocyte 

subpopulations, were unchanged (Marazziti et al. 1999). Patients with first-degree relatives 

with OCD also had significant lower natural killer cell activity compared to patients who had 

no relative with OCD (Denys et al. 2004). In a study by Marazziti et al. (1999), OCD patients 

had increased CD8+ T cells, both in terms of percent values and absolute number, and 

decreased CD4+ T cells. The CD3+, CD19+, and CD56+ lymphocyte subpopulations were 

unchanged.  
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Cytokines 

PDA 
Patient with PDA had reduced cell-mediated functions compared to healthy controls before 

pharmacological treatment. After treatment, no significant differences were seen (Koh and 

Lee 2004). One study showed increased levels of 18 cytokines in subjects with PDA and 

PTSD, leading the authors to suggest that a generalized inflammatory state may be present in 

these diseases (Hoge et al. 2009). However, small studies on cytokines in PDA showed non-

significant elevations of TNF-α, IL1-α, IL2, and IL3 but a significant increase of IL1 β 

(Brambilla et al. 1994; Rapaport and Stein 1994; Weizman et al. 1999). In a study conducted 

on PDA patients and healthy controls, plasma concentrations of TNF-α, IFN-γ, IL1β, IL2, 

IL6, and IL12 were measured. Decreased levels of IFN-γ and IL12 were observed, which 

suggested a correlation between levels of IFN-γ and anxiety-like behaviour , as seen in animal 

models (Tukel et al. 2012).  

GAD 
In GAD, C-reactive protein was increased in some studies (Bankier et al. 2008; Copeland et 

al. 2012). A pilot study measured peripheral levels of relevant cytokines (alpha-MSH, IL2 and 

IL10) in small cohorts of GAD and MDD patients and compared them to healthy controls. 

They found increases in plasma concentrations of IL10 and alpha-MSH, but no significant 

variations in IL2 (Tofani et al. 2015). One study conducted on patients with GAD and PDA 

measured cell-mediated immune functions through the lymphocyte proliferative response to 

phytohemagglutinin (PHA), interleukin-2 (IL2) production and natural killer cell activity. 

This study suggested a reduction in this function when compared to healthy controls (Koh and 

Lee 1998).  

SAD 

Among individuals with an anxiety disorders, those with SAD, females in particular, had 

lower levels of C-reactive protein (CRP) and IL6. The highest CRP levels were found in those 

with an older age at anxiety disorder onset (Vogelzangs et al., 2013). CRP is an acute-phase 

protein produced in the liver that increases stimulated by IL6, which is in turn secreted by 

macrophages and T cells. 

OCD 
Different methodologies, including ex vivo production and peripheral blood or CSF 

measurements via a variety of techniques, make comparisons difficult. Several studies 
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(Fluitman et al. 2010; Mittleman et al. 1997) have shown that cytokine levels may depend on 

factors such as age, and the content of obsessions. For example, a study by Fluitman et al. 

(2010) showed that norepinephrine levels increased while lipopolysaccharide-stimulated 

TNF-α and IL6 production by peripheral leucocytes decreased during exposure to disgust-

related objects in OCD patients, but not in healthy controls. These data suggest that symptom 

provocation in OCD patients with contamination fear is accompanied by alterations in the 

immune and neuroendocrine systems, but does not affect cortisol levels.  

In OCD, several studies demonstrated diminished production of TNF-α (Brambilla et al. 

1997; Denys et al. 2004; Fluitman et al. 2010). One of the first studies in the field (Brambilla 

et al. (1997) showed lower plasma concentrations of IL1β and TNF-α in OCD patients 

compared to controls, which has been related to hyperactivity of the noradrenergic system and 

of the HPA axis. In a study by Denys et al. (2004), the ex vivo production of TNF-α in whole 

blood cultures was significantly decreased in medication-free patients with OCD compared to 

controls. The same study showed reduced natural killer cells activity. The reduction in both 

TNF-α and natural killer cells activity suggests a potential role of altered immune function in 

the pathophysiology of OCD. Other studies have revealed normal cytokine production in 

OCD patients (Weizman et al. 1996). On the other hand, the possible involvement of the 

immune system in certain subtypes of OCD is supported by the relationship between the 

severity of the disorder and the IL6/IL6 receptor levels (Maes et al. 1994). However, 

childhood OCD appears to differ from that occurring at other ages, as increased CSF levels of 

cell-mediated cytokines have been reported in children with OCD, when compared to children 

with schizophrenia or attention deficit hyperactivity disorder (Mittleman et al. 1997). Hounie 

et al. (2008) reported a genetic association between the -308 G/A and -238 G/A TNF-α 

polymorphisms and OCD in a Brazilian sample.  

PTSD  

Cytokines levels appea to be constantly elevated in PTSD. Some studies have reported higher 

plasma IL6 and TNF (Gill et al. 2008; von Kanel et al. 2007), and CSF IL6 levels (Baker et al. 

2001) among PTSD. Higher levels of IL6 are linked to PTSD vulnerability following trauma 

(Gill et al. 2009; Pervanidou et al. 2007; Sutherland et al. 2003). Higher levels of stimulated 

TNF and IL6 were reported in PTSD patients. In a study by Rohleder et al. (2004), LPS-

stimulated production of IL6, but not TNF-α, was markedly increased in patients. Spivak et al. 

(1997) showed that serum ILlβ levels (but not slL-2R) were significantly higher in PTSD 

patients than in controls. As these levels correlated significantly with the duration of PTSD 
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symptoms, it was proposed that desensitization of the HPA axis in chronic PTSD patients 

counteracted the stimulatory effect of ILlβ on cortisoI secretion. Another study showed that 

levels of TNF-α and of IL1β were higher in patients than in controls, while C-reactive protein 

(CRP), IL4, and IL10 were not significantly different (von Kanel et al. 2007). One study 

found higher IL1 β and lower IL2R levels in PTSD patients than in control subjects (Tucker et 

al. 2004). In all subjects, TNF-α was correlated with PTSD severity. IL4 correlated with total 

hyperarousal symptoms, and PTSD total symptom score, after controlling for systolic blood 

pressure and smoking status. PTSD patients showed a low-grade systemic proinflammatory 

state that was related to disease severity suggesting one mechanism by which PTSD could 

contribute to atherosclerotic disease. A study by Miller et al. (2001) reported a positive 

relationship between posttraumatic psychological disturbances and serum levels of receptors 

to interleukin 6 (sIL6r) and CRP, which provides the basis for further research on the effects 

of psychological disturbance on physical recovery after injury.  

Humoral Immunity 

PDA 

Mannan-binding lectin (MBL) and mannan-binding lectin-associated serineprotease-2 

(MASP-2) represent important arms of the innate immune system, and different deficiencies 

may result in infections or autoimmune diseases. Although PDA was associated with 

increased inflammatory response, infections and high comorbidity, the basis for these findings 

is not clear. A study by Fodager et al. (2014) investigated associations with MBL, MASP-2 or 

the gene MBL2 (which codes for MBL) with PDA. A large proportion (30%) of MBL 

deficient individuals was observed along with significantly lower levels of MBL and MASP-2 

plus association with the MBL2 YA two- marker haplotype. Since MBL deficiency is highly 

heterogeneous and associated with both infectious and autoimmune states, more research is 

needed to identify which complement pathway components could be associated with PDA.  

Antibodies  

PANDAS (PANS/CANS) 

OCD is a clinically heterogeneous disorder with several possible subtypes. It has been 

hypothesized that one of these subtypes is associated with autoimmune disorders triggered by 

streptococcal infections (e.g. rheumatic fever and Sydenham’s chorea) (Miguel et al. 2005). 

Children who develop acute OCD after a group A streptococcal (GABHS) infection were first 
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described by Swedo (2002), who coined the acronym PANDAS (Pediatric Autoimmune 

Neuropsychiatric Disorders Associated with Streptococci). However, as the etiology of the 

syndrome remains controversial, new descriptions have been proposed, including pediatric 

acute-onset neuropsychiatric syndrome (PANS) and idiopathic childhood acute 

neuropsychiatric syndrome (CANS) (APA 2013). 

Children with PANDAS showed OCD symptoms and tics, but did not have rheumatic fever or 

Sydenham’s chorea. It has also been reported that 4% of parents and grandparents of 

Sydenham’s chorea patients and 6.7% of the parents and grandparents of PANDAS patients 

developed rheumatic fever compared to 1.4% of parents and grandparents of controls. This 

suggests a common liability between rheumatic fever and OCD triggered by streptococcus 

infections (Swedo 2002). The presence of autoantibodies due to molecular mimicry 

mechanisms is one potential explanation for the association between OCD and rheumatic 

fever, following the autoimmune model for Sydenham’s chorea.  

Infections with group A β-hemolytic streptococci might result in PANDAS, viral infections 

might trigger the autoimmune process that leads to OCD (Allen et al. 1995; Khanna et al. 

1997). Furthermore, patients with rheumatic fever show a high level of antineural antibodies 

against the caudate (Husby et al. 1976). They also have high levels of a monoclonal antibody 

called D8/D17, which reacts with a particular antigen in B lymphocytes (Zabriskie 1986). The 

search for the trait marker for susceptibility (Singer and Loiselle 2003) showed that this 

antigen is also present in patients with childhood OCD, Tourette syndrome, and chronic tic 

disorder (Murphy et al. 1997). This D8/D17 antibody has expanded expression in individuals 

with Sydenham’s chorea (89%) compared with healthy children (17%). Preliminary studies of 

the D8/17 antibody in individuals with PANDAS also found that 85% of children with 

PANDAS compared with 17% of healthy children have this antibody (Swedo et al. 1997). The 

exact significance of these finding and how this marker is related to the disease process is 

remain unclear, especially since it has been reported in patients with other neuropsychiatric 

disorders of childhood onset, including autism (Hollander et al. 1999; Murphy et al. 1997).  

The autoimmune hypothesis has been suggested for early onset OCD and Tourette syndrome. 

Antineural antibodies have been studied and found in the sera of some patients with these 

disorders, and they are thought to cross-react with streptococcal and basal ganglia antigens 

(Morer et al. 2008). Positive anti-basal ganglia antibodies were found in 64% of PANDAS 

patients but in only 9% of controls with a documented streptococcal infection but no 

neuropsychiatric symptoms (Pavone et al. 2004). Immunoblotting has identified multiple 
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bands against the caudate supernatant fraction in PANDAS with primary tics that are different 

from the control group (Church et al. 2004). The presence of antibrain antibodies was 

reported in 42% of a group of children with OCD compared with rates between 2% and 10% 

in three different pediatric control (autoimmune, neurological and streptococcal) groups 

(Church et al. 2004). In addition, antibodies from a Sydenham’s chorea patient reacted against 

lysoganglioside and N-acetyl-beta-D-glucosamine, a neuronal antigen that is also found on 

the GABHS surface (Kirvan et al. 2003). In a second study of the same group (Kirvan et al. 

2006), antibodies in PANDAS reacted with the neuronal cell surface and the caudate–

putamen and induced calcium–calmodulin dependent protein (CaM) kinase II activity in 

neuronal cells. Depletion of serum IgG abrogated CaM kinase II cell signaling and reactivity 

of CSF was blocked by streptococcal antigen N-acetylbeta-D-glucosamine (GlcNAc). 

Antibodies against GlcNAc in PANDAS sera were inhibited by lysoganglioside GM1. Results 

suggest that antibodies from an infection may signal neuronal cells in some behaviour al and 

movement disorders. 

Dale et al. (2006) have identified antibodies against neuronal glycolytic enzymes (NGE) 

autoantigens (pyruvate kinase M1, aldolase C, neuronal-specific and non-neuronal enolase) in 

20 unselected post-streptococcal patients with central nervous diseases compared to 20 

controls. These enzymes are multifunctional proteins that are expressed intracellularly and on 

the neuronal cell surface. On the neuronal plasma membrane, NGEs are involved in energy 

metabolism, cell signaling and synaptic neurotransmission. GABHS also expresses glycolytic 

enzymes on cell surfaces that have 0–49% identity with human NGE. This suggests molecular 

mimicry and autoimmune cross-reactivity may be the pathogenic mechanism in post-

streptococcal CNS disease. Kansy et al. (2006) identified the M1 isoform of the glycolytic 

enzyme pyruvate kinase (PK) as an autoimmune target in Tourette syndrome and associated 

disorders. Antibodies to PK reacted strongly with surface antigens of infectious strains of 

streptococcus, and antibodies to streptococcal M proteins reacted with PK. Moreover, 

immunoreactivity to PK in patients with exacerbated symptoms who had recently acquired a 

streptococcal infection was 7-fold higher compared to patients with exacerbated symptoms 

and no evidence of a streptococcal infection. These data suggest that PK can also function as 

an autoimmune target and that this immunoreactivity may be associated with Tourette 

syndrome, OCD, and associated disorders. 

Further support for the autoimmune hypothesis comes from evidence of induced stereotypic 

movements in rats after infusion of IgG of sera from patients with PANDAS (Taylor et al. 
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2002). The pathogenic role of these antibodies remains unclear. Specific binding with 

molecules from the GABHS surface, such as lysoganglioside or glucosamine, and more 

neuronal glycolytic enzymes as piruvate kinase, aldolase or enolase support the notion of an 

autoimmune brain disease (Dale et al. 2006; Kirvan et al. 2003). However, these antibodies 

might not be pathogenic, but may instead result from local damage.  

It should be acknowledged that some studies do not support the autoimmune hypothesis. If 

proved true, this hypothesis gives rise to new therapeutic approaches. In fact, some studies 

suggest that immuno-modulating strategies are effective in children with PANDAS (Garvey et 

al. 1999; Murphy and Pichichero 2002; Perlmutter et al. 1999; Snider et al. 2005). A study by 

Perlmutter et al. (1999) has demonstrated an improvement of obsessive–compulsive 

symptoms after plasmapheresis or intravenous immunoglobulin treatment. Twenty-nine 

children with PANDAS recruited from a nationwide search were randomized in a partially 

double-blind fashion (no sham apheresis) to an immunoglobulin, “immunoglobulin placebo” 

(saline), and plasmapheresis group. One month after treatment, the severity of obsessive-

compulsive symptoms improved by 58% and 45% in the plasmapheresis and immunoglobulin 

groups, respectively, compared with only 3% in the saline control group. In contrast, tic 

scores significantly improved only after plasmapheresis treatment, but not in the 

immunoglobulin and the control group. Improvements in both tics and obsessive-compulsive 

behaviour s were sustained for one year.  

Even though PANDAS is by definition a paediatric disorder, patients with adult onset (after 

the age of 27) OCD or tic disorders related to streptococcal infections have been described. 

These cases support the hypothesis that streptococcal disease may result in adult-onset OCD 

in some patients. It is possible that GABHS infection just serves as a trigger in childhood, and 

that autoimmune antibodies directed against neuronal structures later maintain obsessive–

compulsive symptoms without new infections. In such cases, adult OCD with childhood onset 

may show anti-brain antibodies without elevated ASLO titres or other signs of recent 

streptococcal infections. For a small proportion of OCD patients, autoimmune reactions 

towards neuronal structures are present, but further investigations are needed to demonstrate 

their etiopathogenetic relevance (Maina et al. 2009). The vast majority of OCD patients are 

diagnosed and treated for the first time while they are already adults; the mean time from 

initial symptom manifestation to seeking professional care is approximately 10 years (Maina 

et al. 2009). 
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Immunologic alterations appear to be different in pediatric and adult patients and probably 

reflect different pathophysiologic mechanisms, such as primary processes in the first case, and 

perhaps, secondary alterations in adulthood (Marazziti et al. 1999). 

A study by Maina et al. (2009) showed that the proportion of subjects with tic comorbidity or 

positive ASLO titre (>200 IU/ml) was significantly greater in OCD than in major depressive 

disorder patients. No other differences in antibody parameters were found. Four of 74 OCD 

patients (5.4%) and none of the controls were positive for anti-brain antibodies. The majority 

of adult OCD patients do not seem to have autoimmunity disturbances. However, a greater 

percentage of subjects with OCD have positive ASLO titers. For a small proportion of OCD 

patients, autoimmune reactions towards neuronal structures are present although further 

investigations are needed to demonstrate their etiopathogenetic relevance. 

Two studies evaluated antineuronal antibodies or other markers of autoimmunity in samples 

of adult OCD patients; Black et al. (1998) found no humoral evidence of autoimmunity, but 

the study has certain limitations. The sample was small and heterogeneous, the severity of 

symptoms was not assessed at the time that blood was drawn, and an age- and gender-

matched control group was not utilized. In a second study, child onset OCD was associated 

with higher mean ASLO titers and higher frequencies of tic disorders and tonsillitis in 

childhood, while no differences were found in D8/17 antibody titers or in other autoimmune 

parameters (Morer et al. 2006). This study suggested that OCD in adults is a heterogeneous 

disorder and that only child onset OCD is related to an autoimmune etiology. This topic needs 

further investigation, as the possible autoimmune etiopathogenesis in some OCD patients 

could lead to new therapeutic scenarios for adults similar to those already suggested for the 

children. In fact, as a significant proportion of adult OCD patients do not respond to 

conventional treatment strategies, the search for alternative and hypothesis-driven treatments 

is critical. 

Early detection of these conditions through serum search of antibodies against human brain 

enolase, neural tissue and Streptococcus can provide valuable information regarding 

etiopathogenesis and suitable therapies (Nicolini et al. 2015). While prophylactic antibiotic 

therapy is marginally helpful in preventing symptom exacerbation, intravenous 

immunoglobulin therapy, plasmapheresis and immunosuppressive doses of prednisone may 

be effective treatments in select individuals (Allen et al. 1995; Nicolini et al. 2015; Swedo et 

al. 2001).  
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In conclusion, elevated levels of pro-inflammatory cytokines such as TNF, IL1, and IL6 could 

serve as biological markers of anxiety disorders. TNF, IL1, and IL6 trigger the activation of 

both the HPA axis and the sympathetic nervous system (Chrousos 1995), which could prolong 

the inflammatory state. The effects of these cytokines are synergistic when produced in 

combination (Chrousos 2000). In accordance with our current understanding of how anxiety 

disorders represent a state of inflammation, previous studies have attempted to investigate 

whether anti-inflammatory drugs have treatment effects on anxiety disorders or other 

psychiatric disorders deeply related to stress and anxiety. Several human and animal studies 

have suggested that certain anti-inflammatory drugs might play an important adjunctive role 

in the treatment of major depression, bipolar disorder, and OCD (Najjar et al. 2013). Although 

only a few studies have reported positive results for the efficacy of anti-inflammatory drug 

treatment on anxiety disorders (Rodriguez et al. 2010; Sayyah et al. 2011), such results do 

illuminate the pro-inflammatory nature of anxiety disorders. As such inflammatory conditions 

are considered to be triggered by an over-driven sympathetic nervous system together with an 

under-driven parasympathetic nervous system, treatments that increase parasympathetic tone 

and hence strengthen the cholinergic anti-inflammatory pathway (Pavlov 2008) could be 

useful in treating anxiety related disorders. This may explain why methods that increase 

parasympathetic tone, such as vagus nerve stimulation, may be effective in treating anxiety 

disorders (George et al. 2008). 

CO2 hypersensitivity 

Inhalation of air ‘enriched’ with an increased proportion of carbon dioxide (CO2) can be used 

to induce anxiety in non-clinical (healthy volunteers) and clinical (patients) groups, and 

represents a human translational model aiding development of potential new treatments for 

anxiety disorders. CO2 inhalation has become one of the most frequently used experimental 

approaches to investigating panic, although studies employ varyiable challenge procedures, 

altering the CO2 concentration, the duration of inhalation, the population sample, and the 

range of outcome measures.  

Anxiety induction via CO2 challenge was first performed in a small sample of patients with 

PDA undergoing 5% CO2 inhalation, and was found to induce panic attacks (Gorman et al. 

1984). This finding was confirmed in a larger sample of PDA patients, who experienced a 

greater incidence of panic attacks during challenge than did healthy controls or patients with 

other anxiety disorders (Gorman et al. 1988). Brief inhalation of air with high concentrations 
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of CO2 (such as single vital capacity inhalations of 35% CO2) is associated with the 

experience of acute severe anxiety, which often includes panic attacks. A single vital capacity 

breath of air enriched with 35% CO2 was found to induce panic and so was suggested as an 

approach for conducting exposure therapy in patients with PDA (Van den Hout and Griez 

1984): the same group reported that patients with panic disorder were more sensitive to CO2 

challenge than were healthy controls (Griez et al. 1987). Findings from subsequent studies in 

a range of diagnostic groups indicated that panic disorder patients were more sensitive to the 

panicogenic effects of CO2 challenge than were patients with other diagnoses (Leibold et al. 

2015; Vollmer et al. 2015).  

The mechanisms underlying the provocation of anxiety by CO2 challenge are not fully 

established, although findings from animal models and human pharmacological intervention 

studies provide many insights (Leibold et al. 2015; Vollmer et al. 2015). Twin studies suggest 

an association between genetic factors and CO2 hypersensitivity (Battaglia et al. 2007; 

Battaglia et al. 2008). Inhalation of air enriched with a high proportion (35%) of CO2 may be 

associated with increased cortisol secretion (Argyropoulos et al. 2002; Kaye et al. 2004), 

although it is unclear how specific the cortisol response is to CO2 challenge, rather than to 

other aspects of the experimental procedure (Leibold et al. 2015): most studies employing 

lower CO2 concentrations find no increase in cortisol levels, when compared to baseline 

(Coplan et al. 2002; Kaye et al. 2004; Woods et al. 1988). The potential role of disturbances 

in respiratory physiology in panic attack induction through CO2 inhalation is not fully 

clarified, but experimentally induced panic attacks are associated with low end-tidal CO2 and 

high ventilation variance at baseline (Papp et al. 1997). 

Serotonergic mechanisms may influence the panic response to CO2 challenge. Although 

tryptophan depletion does not have panicogenic effects (Goddard et al. 1994), depletion can 

enhance the panic response to CO2 inhalation (Schruers et al. 2000), and administration of the 

5-HT precursor L-5-hydroxytryptophan can reduce the panic response (Schruers et al. 2002). 

Correlations between increases in subjective anxiety, heart rate and blood pressure in healthy 

volunteers following 35% CO2 challenge suggest a common and presumably noradrenergic-

mediated mechanism underlying CO2 sensitivity (Bailey 2003). Most norepinephrine (NE) in 

the brain is synthesised by neurones originating in the locus coeruleus, and afferent locus 

coeruleus neurones project to components of the limbic system that are known to be 

overactive in anxiety disorders (Martin et al. 2010). Changes in CO2 saturation may act upon 

pH or CO2-dependent chemoreceptors within the locus coeruleus and thereby increase the 
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release of NE, as 5% CO2 increases locus coeruleus neuronal firing rate in rat brain slices 

(Martin et al. 2010). This CO2-induced release of NE may mediate autonomic and subjective 

features of anxiety through afferent projections to brain centres involved in cardiovascular 

control and the limbic system; and endocrine responses may be mediated by altered 

noradrenergic input into the paraventricular nucleus, thereby causing release of corticotrophin 

releasing factor (CRF) and anti-diuretic hormone, and triggering subsequent cortisol 

secretion.  

There are limitations in an explanation of the anxiogenic effects of CO2 challenge which is 

based solely on altered NE function. For example, autonomic arousal is not consistently 

observed, and the effect of 7.0–7.5% CO2 on plasma cortisol is inconsistent. The attenuating 

effect of benzodiazepines and certain SSRIs on self-report anxiety but not on physiological 

markers suggest alterations in autonomic function may lie upstream of psychological anxious 

responding (Bailey et al. 2011a). Drugs which affect noradrenergic function have shown little 

effect on subjective responses to CO2 (Pinkney et al. 2014). Overall, it appears that while 

norepinephrine may be important in mediating anxiety provoked by 35% CO2 challenge, there 

is persisting uncertainty about the exact mechanism underlying 7.5% CO2-induced anxiety in 

humans.  

Chemosensors within the amygdala are known to be directly linked to CO2 reactivity in mice 

(Ziemann et al. 2009). The most well-characterized chemosensor is the acid-sensing ion 

channel 1 (ASIC-1a) which is a voltage-insensitive H+-gated cation channel, highly expressed 

in the amgydala, dentate gyrus, cortex, striatum and nucleus accumbens (Wemmie 2011). 

Inhalation of 2–20% CO2 elicits normal mouse fear behaviour in the presence of fully 

functioning acid-sensing ion channels (ASIC1a), which are expressed in the amygdala, but 

pharmacological blockade or elimination of ASIC1a in knockout mice impairs fear responses 

to CO2, whereas subsequent amygdala-localised re-expression restores fear behaviour. Other 

potentially relevant chemosensitive structures include orexin neurones in the hypothalamus, 

serotonergic neurones in the medullary raphe (Wang et al. 1998), T-cell death-associated 

gene-8 receptors in the subfornical organ, and hypoxia-sensitive chemosensory neurones in 

the periaqueductal gray (Vollmer et al. 2015). Perturbations in the activities of chemosensors 

may not fully explain the physiological effects of changes accompanying CO2 challenge and 

may not translate to humans, but suggest potential additional mechanisms which operate 

alongside CO2-provoked alterations in noradrenergic activity.  
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Low dose (less than 15%) CO2 inhalation in healthy volunteers and patients 

More prolonged (typically 15–20 minutes) inhalation of CO2 at lower concentration (between 

5.0–7.5%) does not frequently result in panic, but reliably induces an experience which 

resembles the symptoms of GAD, with increased subjective and physiological features of 

anxiety, but no accompanying changes in cortisol secretion. Studies in healthy volunteers 

support the use of 20-minute, 7.0–7.5% CO2 challenge to induce subjective and autonomic 

responses and neurocognitive changes which resemble the features of generalised anxiety. 

Increases in heart rate and systolic blood pressure are consistently seen but an increase in 

diastolic blood pressure is less frequently observed.  

Low-dose (7.5%) but prolonged (20 minutes) CO2 inhalation was first found to induce anxiety 

in a double-blind, placebo-controlled trial involving healthy volunteers: when compared to 

normal (placebo) air inhalation, CO2 inhalation was associated with increased heart rate and 

blood pressure and heightened subjective anxiety (Bailey et al. 2005). A single-blind, 

placebo-controlled healthy volunteer study found that when compared to air, 7% CO2 

inhalation increased respiratory rate, minute volume and end-tidal CO2, skin conductance and 

subjective feelings of anxiety: a sub-group of participants who experienced marked anxiety 

underwent a subsequent identical inhalation with good test-retest repeatability. However, the 

study findings highlight potential limitations of the model, as 30% of participants were ‘non-

responders’, and 10% of participants experienced significant anxiety during (placebo) air 

inhalation (Poma et al. 2005). 

The effect of CO2 inhalation on attentional biases, which characterize anxiety states, has also 

been investigated. For example, 20-minute 7.5% CO2 challenge is associated with 

performance deficits in an emotional anti-saccade task, similar to those seen in individuals 

with high levels of generalised trait anxiety (Garner et al. 2011). As twenty minutes of 7.5% 

CO2 inhalation has been found to significantly modulate attention, with increased alerting and 

orienting network function in the Attention Network Task, this suggests that CO2 challenge 

facilitates hypervigilance to threat and alters attention network function in a manner 

consistent with that seen in GAD (Garner et al. 2012).  

Inhalation challenges with less than 15% CO2 provoke significantly more panic attacks in 

patients with PDA than in healthy controls (Bailey et al. 2011a), but it is uncertain whether 

altered sensitivity to ‘low dose’ CO2 inhalation is also seen in patients with GAD. A single-

blind, randomised, cross-over design study in medication-free GAD patients which employed 

a repeated 7.5%, 20-minute inhalation paradigm found CO2 inhalation increased subjective 
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anxiety and systolic blood pressure, when compared to air: a qualitative assessment indicated 

participants’ experiences resembled their usual symptoms, more closely for physiological 

rather than cognitive symptoms (Seddon 2011). The findings should be viewed cautiously 

given the small sample (n=12)and discontinuation of three participants due to panic 

responses.  

Attenuation of CO2-induced anxiety by pharmacological interventions 

The effectiveness of psychotropic medication (benzodiazepines, antidepressants, novel 

compounds) in attenuating CO2-evoked anxiety, has been assessed in a number of studies, 

with variable findings. In general terms, acute benzodiazepine administration reduces 

subjective CO2-provoked anxiety but has little impact on the physiological response. 

Administration of selective SSRIs, the SNRI venlafaxine, tricyclic antidepressants, and the 

monoamine oxidase inhibitor toloxatone can all attenuate the panic response to CO2 challenge 

(Leibold et al. 2015). Administration of 2mg of lorazepam was found to attenuate subjective 

anxiety (with no accompanying change in autonomic measures) when compared to placebo in 

healthy participants undergoing 20 minute 7.5% CO2 inhalation (Bailey et al. 2007). These 

findings were replicated when lorazepam was employed as a control in studies using the same 

inhalation procedure to assess novel anxiolytic compounds (Bailey et al. 2011b; de Oliveira et 

al. 2012). Both alprazolam (1mg) and the partial benzodiazepine receptor antagonist zolpidem 

(5mg) attenuated subjective anxiety in healthy volunteers after 20 minutes of 7.5% CO2 

inhalation (Bailey et al. 2009). However, a subsequent double-blind, placebo-controlled cross-

over study which investigated dose-response relationships with lorazepam and which used the 

same experimental paradigm and measures found no attenuation of subjective or autonomic 

responses (Diaper et al. 2012).  

Certain SSRIs and SNRIs are licensed for the treatment of GAD and their effect in attenuating 

the anxiogenic effects of CO2 inhalation is a marker of the predictive validity of the model. 

Investigations in small groups of patients with panic disorder found that treatment with 

different SSRIs and SNRIs reduced subjective anxiety following 5% and 7% CO2 challenge, 

when compared to baseline, pre-treatment inhalation (Gorman et al. 2004). However, a larger 

study involving 3 minutes of 5% CO2 in individuals ‘at high risk of panic disorder’ found that 

two-week administration of the SSRI escitalopram had no effect on self-report or autonomic 

indicators of anxiety (Coryell and Rickels 2009). Given that SSRIs typically take 2–4 weeks 
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to exert notable therapeutic effects in GAD, longer drug administration may be needed to 

generate valid results.  

Studies involving SSRI or SNRI administration in healthy volunteers using a 20-minute 7.5% 

CO2 challenge have generated variable findings. Placebo-controlled administration of the 

SSRI paroxetine for 21 days reduced subjective anxiety (Bailey et al. 2007). A placebo-

controlled investigation of three-week administration of the SNRI venlafaxine or the 

anxiolytic pregabalin found no significant effect on change from baseline to post-treatment 

ratings of subjective anxiety or autonomic response in the venlafaxine group (Diaper et al. 

2013). A two-week randomised double-blind, placebo-controlled study of the SNRI 

duloxetine in healthy subjects found it had little attenuating effect on subjective anxiety or 

autonomic arousal following 20 minute, 7.5% CO2 challenge, though duloxetine 

administration was associated with improved accuracy in the anti-saccade task and reduction 

in negative thought intrusions (Pinkney et al. 2014). 

As with benzodiazepines, SSRI or SNRI administration has a limited effect on physiological 

responses to CO2 challenge, and drugs within the same class may act variably on subjective 

anxiety, which raises questions about the validity of the model. However, a study involving 

the beta-blocker propranolol (40mg) found it had no attenuating effect on self-report anxiety 

in healthy volunteers undergoing 20 minutes of 7.5% CO2 (Papadopoulos et al. 2010), which 

accords with its lack of efficacy in anxiety disorders (Gorman et al. 1988; Steenen et al. 

2015); and the same study also found the anti-histamine hydroxyzine (25mg) had only limited 

effects, which accords with its questionable efficacy in relieving symptoms of GAD (Gorman 

et al. 1988).  

From current knowledge to potential clinical applications 

The response to CO2 inhalation could also be useful in predicting the likelihood of response to 

treatment, but this potential application has not been examined extensively. Investigation of 

the effects of double 35% CO2 vital capacity inhalations in a small sample of patients with 

PDA after 1 hour, 2 weeks and 6 weeks of clonazepam treatment found that when compared 

to placebo both acute and chronic clonazepam administration reduced objectively rated panic 

attacks after CO2 inhalation (Valenca et al. 2002).  

Inhalation of air ‘enriched’ with 7.5% CO2 is an experimental tool for inducing anxiety 

without features of panic in healthy volunteers, the anxious response being composed of 

replicable changes in autonomic arousal (increased heart rate and systolic blood pressure), 
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neurocognitive function (impaired performance in emotional antisaccade and attention control 

tasks) and subjective experience. The CO2 inhalation experimental model of anxiety disorders 

may therefore be useful for signalling the potential efficacy of novel therapeutic agents: and 

has been utilised in investigations of the CRF1 receptor antagonist R317573 (Bailey et al. 

2011a) and the NK1 receptor antagonists vestipitant and vofopitant (Poma et al. 2014). The 

model may be suitable for testing putative anxiolytics (Bailey et al. 2007), and compounds 

which are found to attenuate CO2-induced anxiety have potential clinical relevance. Studies 

with compounds which target chemosensory mechanisms may be informative in the 

development of anxiolytics with a novel mechanism of action: for example with the ASIC ion 

channel antagonist amiloride, which has been found to have neuroprotective effects (Arun et 

al. 2013); with orexin receptor antagonists, which can attenuate anxiety-like responses to CO2 

challenge in rats (Johnson et al. 2012); and with the carbonic anhydrase inhibitor 

acetazolamide, which blocks the conversion of CO2 to carbonic acid and thence to hydrogen 

and bicarbonate ions (Vollmer et al. 2015). 

SepAD  

CO2 hypersensitivity was investigated in adult SepAD because children of adults with PDA 

experience elevated rates of SePAD and because C-SepAD was found to be associated with 

adult PDA (Bandelow et al. 2001). Support for this hypothesis comes from a study in which 

104 children (aged 9–17 years), of whom 57 had an anxiety disorder, underwent 5% CO2 

inhalation (Pine et al. 1998; Pine et al. 2000). In this study, CO2 hypersensitivity was clearly 

present for SepAD, as indicated by: (1) enhanced respiratory rate response during CO2 

breathing; (2) elevated minute ventilation; (3) lower end-tidal CO2 during room-air breathing. 

These correlates were also observed – albeit to a much lesser degree – in GAD, and were 

absent in SAD. Similarly, in a study of 212 offspring from 135 families, abnormal respiratory 

physiology in response to CO2 exposure was found in offspring with both SepAD and 

parental PDA relative to offspring with either of these features alone (Roberson-Nay et al. 

2010). Given the common physiological perturbations of PDA and SepAD (i.e. physiological 

abnormalities, respiratory dysregulation, and reaction to inhalated CO2), the specificity of this 

biological correlate need further confirmatory research data.  
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Neurophysiology 

Electroencephalography (EEG) and event-related potentials (ERP) in 

wakefulness 

Basal instability of the cortical arousal system was reported in quantitative EEG studies as a 

common feature of most patients with anxiety disorders (Clark et al. 2009). This manifests as 

excess of specific EEG frequency bands in the theta (4–8 Hz) and alpha (8–13 Hz) ranges 

throughout most of the brain areas and beta range (above 13 Hz) especially in frontal and 

central brain regions. While none of the quantitative electroencephalography (qEEG) 

alterations are specific for anxiety disorders and can be used as diagnostic tests, they are 

regarded as related to anxiety symptoms and are targeted e.g. by neurofeedback training 

(Simkin et al. 2014).  

PDA 

Studies in patients with PDA showed abnormalities in cortical arousal during waking, sensory 

gating, and heightened cerebral processing of panic-relevant stimuli, as reflected in elevated 

CNV and P3 components over frontal regions (Clark et al. 2009).  

GAD 

Electrophysiological studies in GAD found increases in power, sensory processing deficits, 

and other alterations (Clark et al. 2009). Generally, sleep EEG (polysomnography) findings in 

anxiety disorders are in line with findings from wake EEG showing altered EEG-vigilance 

regulation in these patients. Patients with anxiety disorders typically have prolonged sleep 

latency, reduced sleep efficiency, shortened total sleep time, decreased amount of slow wave 

sleep and normal sleep latency. Such sleep pattern is most typical for patients with GAD, and 

is less expressed in PDA, as long as depressive symptoms are absent.  

SAD 

In SAD, generally indicate tonic hyperarousal, as reflected in reduced low frequency and 

increased high frequency EEG power and an elevated PI component were found (Clark et al. 

2009).  
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Specific phobias 

There are indications for cortical hypervigilance in specific phobias, with indications of 

enhanced P3 and contingent negative variation components to phobic stimuli. One study has 

shown that the P3 amplitude can be normalized following successful behaviour al therapy 

(Clark et al. 2009). 

PTSD 

Frontal asymmetry belongs to the frequently studied biomarkers in PTSD. It is calculated as a 

difference in mean alpha band power between the left and right frontal cortex over a time 

span of several minutes. Relatively greater left frontal activity is regarded as related to 

appetitive motivation, and lower levels of depression and anxiety in PTSD patients (Meyer et 

al. 2015). However, this biomarker is not specific for the anxiety disorders, as it has also been 

reported in depression, premenstrual dysphoric disorder, and schizophrenia. Moreover, in 

some studies, no deviance in alpha asymmetry from the normative control group was found in 

anxiety disorders (Gordon et al. 2010).  

Patients with PTSD, when compared to controls, were found to have decreased resting-state 

EEG frontal connectivity, which was significantly correlated with PTSD symptom severity, 

but also with depressive and increased arousal symptoms (Lee et al. 2014). In a review, 

significant associations have been described between PTSD symptoms not only for alpha 

EEG rhythm but also for P200 and P300 ERP components (Lobo et al. 2015). Moreover, 

alterations of ERP components (N200 and P300 amplitudes) while performing an inhibitory 

control task (Stop Task) were reported to classify veterans with mild traumatic brain injury 

associated or not associated with the development of PTSD with high accuracy (Shu et al. 

2014). 

In PTSD, sleep disturbances shortly after trauma exposure predict the development of PTSD 

at follow-up assessment, however, the evidence is less clear regarding objective 

polysomnographic indices (Babson and Feldner 2010).  

OCD  

Over the past two decades, performance monitoring has been extensively studied using 

different methodologies, such as source localization and simultaneous EEG, intracerebral 

recording, magnetoencephalography and EEG-informed fMRI, and valuable results obtained.  

53 
 



Research on ‘performance monitoring’ and ‘error processing’ has been extensively 

investigated in OCD patients. Clinically, it is recognized that patients with OCD appear to 

monitor their thoughts and actions most carefully to avoid losing control or committing errors. 

Theoretically, error processing involves both recognizing that an error has occurred and 

adjusting future responses. Deficits in either of these abilities could contribute to rigid, 

repetitive behaviour. Enlarged error signals have been consistently found in patients with 

OCD (Endrass and Ullsperger 2014). The introduction of specific task paradigms and 

emotional challenge conditions in such research has been shown to enhance individual 

differences, which can be more reliable than resting state measurements (Zambrano-Vazquez 

and Allen 2014).  

Error processing is thought to be associated with activity in anterior/posterior medial frontal 

cortex, anterior insula/operculum, ventrolateral prefrontal cortex, dorsolateral prefrontal 

cortex, and lateral parietal cortex (Grutzmann et al. 2014). The mid-cingulate cortex is 

specifically recognized to signal the need for adjustment of cognitive control to prevent 

subsequent errors (Ullsperger et al. 2014). In particular, the error-related negativity (ERN), a 

response-locked event-related potential (ERP), is defined as a negative voltage deflection that 

occurs 50–100 ms after an error or conflict response and is thought to specifically reflect 

activity of the response monitoring system (Gehring 1990).  

Numerous EEG studies have found larger ERN amplitudes in patients with OCD, including 

adult (Endrass et al. 2008; Endrass et al. 2010; Gehring et al. 2000; Klawohn et al. 2014; 

Riesel et al. 2011; Riesel et al. 2014; Stern et al. 2010; Xiao et al. 2011) as well as pediatric 

(Carrasco et al. 2013; Hajcak et al. 2008; Hanna et al. 2012) samples. Enhancement of the 

ERN in OCD seems to be independent of pharmacologic or psychological interventions 

(Endrass et al. 2010; Stern et al. 2010) and occurs among all major symptom dimensions 

(Riesel et al. 2014). Moreover, the same results have been identified in individuals with 

subclinical OCD symptoms (O'Toole et al. 2012; Santesso et al. 2006) and non-affected first-

degree relatives of patients with OCD (Carrasco et al. 2013; Riesel et al. 2011). 

Globally, these findings have identified increased ERN amplitudes as a promising candidate 

vulnerability marker for OCD. However, to date, its sensitivity and specificity it is not clearly 

defined (Manoach and Agam 2013). For example, some studies have also found an enhanced 

negativity on correct trials (sometimes referred to as the correct-related negativity), 

suggesting the presence of an overall hyperactivity during response monitoring in people with 

OCD (Maltby et al. 2005; Ursu et al. 2003). Broadly, amplified error signals in OCD might 
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reflect hyperactive cortico-striatal circuitry during action monitoring (Agam et al. 2014; 

Grutzmann et al. 2014). Convergent results suggest the existence of a self-monitoring 

imbalance involving inhibitory deficits and executive dysfunctions in OCD (Melloni et al. 

2012). In this model, the imbalance might be triggered by an excitatory role of the basal 

ganglia (associated with cognitive or motor actions without volitional control) and inhibitory 

activity of the OFC as well as excessive monitoring of the ACC to block excitatory impulses. 

This imbalance would simultaneously interact with the reduced activation of the parietal-

dorsolateral prefrontal cortex network, leading to executive dysfunction (Melloni et al. 2012). 

Further electrophysiological data suggests that the candidate network might be extended and 

include specific additional regions in the medial frontal cortex involved in performance 

monitoring, such as anterior insula or the pre-supplementary motor area (Bonini et al. 2014; 

Grutzmann et al. 2014; Ullsperger et al. 2014); posterior mid-cingulate regions (Agam et al. 

2011); and sub-genual anterior cingulate cortex regions, for which increased activity has been 

found in OCD (Agam et al. 2014). Thus, subjects with OCD might tend to evaluate errors as 

being disproportionately salient. This would support the theory that inappropriate and 

exaggerated error signalling leads to a pervasive sense of incompleteness and self-doubt and 

triggers compulsions to repeat behaviour s (Maltby et al. 2005). Other theories hypothesize 

that the ERN is not only associated with error detection, but may be modulated by the 

affective significance of an error (Hajcak et al. 2005). Hence, other factors that can potentially 

characterize the overactive response monitoring observed in individuals with OCD, such as 

error significance, have been also investigated. However, the results have been equivocal with 

some studies showing no difference in ERN amplitude between conditions with punishment 

and no punishment after error in participants with OCD but a significant difference in controls 

(Endrass et al. 2010); others have found that punishing errors leads to an enhanced ERN and, 

moreover, that it has long-lasting effect on the ERN (Riesel et al. 2012).  

In the analysis of the activity of intracortical EEG sources in patients with OCD with the use 

of low-resolution electromagnetic tomography (LORETA) and independent component 

analysis, both methods provided evidence for medial frontal hyperactivation in OCD 

(Koprivova et al. 2011). 

OCD patients present moderate, but significant disturbances of sleep continuity measures but 

frequently no abnormalities of slow wave sleep or REM sleep. Many of the sleep disturbances 

were characteristic of depression. Severe OCD symptoms were consistently associated with 

greater sleep disturbance (Paterson et al. 2013). 
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Other Obsessive-Compulsive-Related Disorders (OC-RDs) 

Electrophysiological studies in other OC-RDs are still scarce. One study has attempted to 

explore the ERN as a measure of response monitoring capabilities in trichotillomania 

(Roberts et al. 2014). Results reported that individuals with hair pulling symptomatology 

might have significantly smaller ERNs than the control group, supporting the idea that 

trichotillomania is distinct from OCD. Smaller ERNs are believed to reflect deficits in error 

checking that contribute to difficulty monitoring one’s own actions, and such results might 

indicate that individuals with symptoms of trichotillomania have shortfalls in self-monitoring, 

perhaps related to more impulsive tendencies (Roberts et al. 2014). One other study has used 

meta-analysis to further characterise the ERN in OCD, and pooled data across studies to 

examine the ERN in OCD with or without hoarding (Mathews et al. 2012). When stratified, 

OCD showed a significantly enhanced ERN only in response conflict tasks. However, OCD 

with hoarding showed a marginally larger ERN than OCD without hoarding, but only for 

probabilistic learning tasks. These results suggest that the abnormal ERN in OCD might also 

be task-dependent, and that OCD with hoarding might show different ERN activity from 

OCD without hoarding, perhaps suggesting different pathophysiological mechanisms of error 

monitoring across these clinical dimensions.  

In summary, as neurophysiological examinations belong to the most sensitive tests in 

psychiatry, many alterations in EEG, ERP or PSG were found in patients with anxiety 

disorders. While some of these alterations can be used as biomarkers for specific research 

questions, especially in treatment studies looking at hyperarousal in anxiety disorders, they 

are not specific and cannot be used as diagnostic tests for anxiety disorders. Moreover, many 

of reported neurophysiological findings are influenced by depressive symptoms and co-

existing pharmacological treatment. 

Heart rate variability 

Cardiologists have long held the view that a heart rate, which fluctuates over time, in contrast 

to a heart beating to a strict metronomic rhythm, is a marker of good cardiovascular health. 

Heart rate variability (HRV), the extent to which the interval between beats varies with time, 

is reduced in several cardiovascular disorders such as after myocardial infarction (Bigger et 

al. 1992; Carney et al. 2001), in coronary artery disease (Wennerblom et al. 2000) and in 

hypertension (Singh et al. 1998) and is a predictor of mortality (Dekker et al. 2000; La Rovere 

et al. 2003). As will be described in this section, heart rate variability is thought to be closely 
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linked to the function of the autonomic nervous system and its sympathetic and inhibitory 

parasympathetic influences.  

Anxiety, cardiovascular disorders and autonomic dysfunction 

Anxiety disorders are associated with cardiovascular disease (Davies and Allgulander 2013; 

Roest et al. 2010) and may be a risk factor in sudden cardiac death (Kawachi et al. 1994). The 

leap from employing HRV as a marker in cardiovascular disorders to anxiety disorders relies 

on the hypothesis that there may be shared dysfunctions in the autonomic nervous system, 

which underlie, or at least are measurable in, many disorders in both fields. 

PDA 

Taking a specific example, an association of panic attacks or PDA with hypertension has been 

reported both in clinical samples (Davies et al. 1999) and in population based data (Davies et 

al. 2012), and the possibility that this association is due to shared autonomic dysfunction has 

been explored (Davies et al. 2007). Symptoms of autonomic activation, such as racing heart, 

sweating and flushing are included in diagnostic criteria for PDA. Several authors have 

suggested that autonomic nervous system dysfunction may be an important aetiological factor 

in PDA, for instance, Klein (1993) categorised panic attacks into two distinct types; attacks 

caused by false suffocation alarms and those attributable to autonomic surges or 

hypothalamus-pituitary-adrenal axis activation.  

Esler’s group studied norepinephrine and adrenaline release (spillover) from major organs in 

patients with PDA using invasive methods requiring cannulation of large vessels. Spillover of 

adrenaline from the heart was significantly greater in patients with PDA than in controls at 

rest. During panic attacks, whole body adrenaline spillover was markedly increased with 

proportionally smaller increases in norepinephrine spillover (Wilkinson et al. 1998). This 

finding supports several studies which report evidence of sympathetic over-reactivity in PDA 

such as enhanced noradrenergic volatility during clonidine challenge (Coplan et al. 1997) and 

excess blood pressure overshoot on standing (Coupland et al. 1995). The latter effect was not 

observed in patients with autonomic failure (Mathias 2002) suggesting that the autonomic 

nervous system is essential in mediating this response. Others have examined central 

autonomic system function and reported catecholamine or adrenoceptor function as being 

altered centrally in PDA (Nutt 1989; Tancer et al. 1993). Esler has demonstrated excess 

catecholamine spillover in hypertension (Esler et al. 2001) and autonomic dysfunction is now 

understood to be a core aetiology of what was previously termed ‘essential’ hypertension. 
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PDA and hypertension may share a failure of control of sympathetic activation, perhaps 

through compromise of centres which control the C1-adrenergic cell group in the rostral-

ventrolateral medulla, which include the raphe pallidum and ventrolateral periaqueductal 

grey, the latter under the influence of the pre-frontal cortex (Davies et al. 2007; Johnson et al. 

2004). 

HRV measures 

Heart rate variability allows an estimation of autonomic nervous system input to the heart to 

be ascertained speedily and non-invasively. There are both parasympathetic (cholinergic) and 

sympathetic (noradrenergic) influence on the heart. The sympathetic nervous system is linked 

to mobilisation behaviours, often in response to stressors, which may induce the classic ‘flight 

or fight response’ requiring cardiac activation, whereas the parasympathetic system, mediated 

through the vagus nerve, is linked to immobilisation and disengagement (Porges 2001). 

Frequency of heart rate fluctuations are decreased when sympathetic tone is increased (Pagani 

et al. 1984) and with parasympathetic blockade (Akselrod et al. 1985). 

The most commonly utilized measures HRV measures are ‘frequency-domain’ and ‘time-

domain’ variables. Frequency-domain measures are based on power spectral analysis, which 

allows detection of low frequency (LF) and high frequency (HF) oscillation. HF oscillation 

relates to the activity of the parasympathetic system, mainly mediate through the vagus nerve, 

while LF oscillation is thought to be linked to variation in sympathetic tone. The LF/HF ratio 

was previously employed as a proxy measure of sympatheto-vagal balance (Pagani et al. 

1984), having the advantage of being influenced by change in both sympathetic and 

parasympathetic nervous system cardiac input but the problem that simultaneous change in 

both parameters might be undetected. 

Time-domain measures of HRV fall into two categories. The first are derived from the 

differences between adjacent beat intervals, the most frequently used being RMSSD (root 

mean square of successive differences) and pNN50 (mean occasions per hour where change in 

consecutive normal sinus (NN) intervals exceeds 50 milliseconds (Ewing et al. 1984)). 

RMSSD and pNN50 are highly correlated with frequency domain derived HF oscillation 

(Stein et al. 1994). A second category, derived from observing beat to beat intervals over 

time, includes SDNN which represents the standard deviation of ‘NN’ intervals (Sztajzel 

2004). Since SDNN varies with the total recording time, comparisons between values 

obtained over widely differing time periods are problematic.  
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HRV – association of frequency domain and time domain measures with anxiety 
disorders 

While the possibility of HRV being a biomarker in anxiety disorders has been considered for 

more than a decade (Gorman and Sloan 2000), a systematically organised meta-analysis of the 

relation of HRV to the presence of anxiety disorders has only recently been published. 

Chalmers et al. (2014) identified 36 studies meeting criteria requiring a comparison in HRV 

outcomes between patients with anxiety disorders and controls. The studies had 2086 

participants with anxiety disoders and 2204 controls and employed a variety of 

methodologies. Recording periods ranged from two minutes to 24 hours and studies used 

frequency domain measures such as LF and HF, time domain measures or other approaches 

including detection of respiratory sinus arrhythmia. The authors chose not to extract data on 

LF/HF ratio given its questionable utility and gave RMSSD preference over other time 

domain measures.  

Across all anxiety disorders, the frequency domain HF oscillation variable, reported in 34 

studies, was strongly and significantly associated with having an anxiety disorder. The 

association of time domain measures, reported in 20 studies, was of borderline significance 

but became highly significant after exclusion of one outlying study. The LF oscillation 

variable, reported in 22 studies, was a poor predictor of anxiety disorders. When specific 

anxiety disorders were considered, PDA featured in the most studies with 24 of the 34 

manuscripts having some participants with this disorder, in comparison to 13 for PTSD, five 

for GAD, four for SAD, two for OCD and one for specific phobia. The meta-analysis revealed 

that time domain measures were strong predictors of PDA, PTSD, and GAD and weaker but 

still significant predictors of SAD and specific phobia. HF was strongly associated with GAD 

and SAD and had weaker but significant relations with PDA and PTSD. Neither measure was 

associated with OCD. LF was not associated with any of the anxiety disorders. The strength 

of association of both HF and time domain measures of HRV in generalised anxiety disorder, 

is of interest for the conceptualization of this disorder. Although both analyses rely on only 

three studies, the results suggest that despite DSM-IV and DSM-5 excluding clinical features 

suggestive of autonomic dysfunction from the list of symptoms contributing to the diagnosis, 

GAD may be associated with autonomic dysfunction after all (Thayer et al. 1996).  
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Response of HRV to treatment and experimental neurotransmitter manipulation 

Treatment of anxiety disorders may be associated with a restoration in HRV, especially when 

the treatment involves modulation of serotonin. Reduced HRV demonstrated in PDA was 

reversed by a serotonin promoting antidepressant (Yeragani et al. 1999) but not by 

nortriptyline, which primarily promotes central norepinephrine transmission (Tucker et al. 

1997). However, serotonin-modulating drugs are not essential for improvement in HRV on 

treating anxiety disorders, as demonstrated by Prasko et al. (2011) who illustrated that 

cognitive behaviour therapy and SSRIs were equally capable of increasing HRV. In healthy 

individuals, HRV is reduced during panic provoking challenges but SSRI treatment appears to 

blunt this response (Agorastos et al. 2015). The involvement of the serotonin system in the 

neurobiology of anxiety disorders has also been examined using the technique of tryptophan 

depletion (Hood et al. 2005). When this method is applied in subjects who have recovered 

from anxiety disorders, depletion is associated with a transient return of anxiety symptoms 

and exaggerated response to stress challenges (Davies et al. 2006). In one study in remitted 

patients with depression, HRV was measured before and during tryptophan depletion (Booij 

et al. 2006). Tryptophan depletion was associated with a significant reduction in HRV 

(ascertained using both time domain measures and the frequency domain HF measure) 

although this effect was limited to subjects who had experienced suicidal ideation. Notably, 

these patients experienced increased anxiety during the tryptophan depletion period.  

The therapeutic effect of modulating serotonin in anxiety disorders appears, in the majority of 

studies, to ameliorate autonomic function as reflected in improving heart rate variability. One 

exception is a study reporting that CBT alone increased HRV in PDA, but that a CBT/SSRI 

combination did not (Garakani et al. 2009). Nevertheless, the potential for serotonin to 

influence autonomic function (and thereby HRV) has a neurobiological basis (Davies et al. 

2007), since animal studies suggest that pH-dependent serotonergic neurons projecting to the 

RVLM may tonically inhibit sympathetic outflow (Richerson et al. 2001). Clinically, the 

enhanced noradrenergic volatility in PDA described during clonidine challenge was 

attenuated after successful treatment with selective serotonin reuptake inhibitor (SSRI) 

antidepressants (Coplan et al. 1997).  

Utility of HRV as a biomarker 

Heart rate variability, whether ascertained using the frequency-domain measure of HF 

oscillation or by time domain measures, has advantages over other potential biomarkers of 
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being non-invasive and easy to administer with valid data being obtainable in a matter of 

minutes. As such, it has potential use in case detection and in large population-based cohorts. 

As it is ameliorated by treatments that are effective in anxiety disorders and reduced by 

neurotransmitter manipulations known to provoke anxiety, it offers the possibility of 

identification of treatment response.  

The proliferation of differing outcome measures is receding in importance as a disadvantage 

since the frequency domain HF measure, and time domain measures (RMSSD, pNN50 and 

SDNN) appear to be preferable to LF or the LF/HF ratio. However, several common disorders 

beyond the realm of anxiety are also associated with reduced HRV, including the 

cardiovascular disorders discussed earlier, depression, Alzheimer’s disease, fibromyalgia and 

diabetes, and indeed any disorder where autonomic nervous system dysfunction is typically 

present. This reduces specificity for detection of anxiety disorders. Furthermore, HRV is 

known to decrease with age (Liao et al. 1995), which may complicate its interpretation. 

Finally, standard HRV measurements cannot be used in subjects who are not in sinus rhythm 

(Sztajzel 2004). 

In summary, HRV appears to offer a degree of sensitivity but limited specificity in anxiety 

disorders.Ease of ascertainment and the ability to detect treatment related changes are clear 

strengths. To exploit its utility fully we await population-based longitudinal studies in larger 

sample sizes where more invasive approaches may be impractical.  

Neurocognition 

PDA 

In a review of the literature investigating the neuropsychological disturbances PDA, limited 

support for impairment in short term memory among individuals with PD was found in some 

but not all studies. Morevoer, the studies did find some evidence for impairment in other areas 

of cognitive functioning, including executive function, long-term memory, visuospatial or 

perceptual abilities and working memory (O'Sullivan and Newman 2014). The review 

included 14 studies (total 439 patients, 510 healthy controls), the majority of which had 

average to high methodological quality. Studies with a sample size of less than 15 participants 

per group were excluded.  
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GAD 

In a study including 112 patients with different anxiety disorders, no differences in 

neuropsychological functions were found in 7 patients with GAD compared to healthy 

controls; of course, such a study would only have been powered to detect group differences 

with massive effect size (Airaksinen et al. 2005). Another study found that performance on 

executive and non-verbal memory tasks of GAD patients (n=40) was largely worse than in 

healthy controls (n=31). These cognitive deficits seemed to be more marked in patients taking 

antidepressants than in drug-naïve patients (Tempesta et al. 2013). However, the study was 

not randomized with regard to medication intake; therefore, it is problematic to assume a 

causal relationship between antidepressants and cognitive functioning.  

SAD 

Cognitive models of SAD assume that patients with SAD have cognitive biases regarding 

their interpretation of ambiguous social situations. A systematic review of 30 studies on the 

neuropsychological performance in SAD (698 patients) revealed that individuals with SAD 

consistently showed decreased performance on tests of verbal memory functions. In 

particular, the studies showed decreased performance regarding visal scanning and 

visuoconstructional ability as well as some indication for verbal memory difficulties (O'Toole 

and Pedersen 2011). Since this review was published, a study compared 25 subjects with SAD 

and 25 healthy controls and reported no significant between-group differences, based on a 

composite analysis of variance test (Sutterby and Bedwell 2012). In post hoc tests, patients 

had worse visual working memory performance than controls, but this finding did not 

withstand Bonferroni correction. In a subsequent study, SAD (n=42 patients) performed 

worse than healthy controls (n=42) on processing speed, visuospatial construction, 

visuospatial memory, verbal learning and word fluence (O'Toole et al. 2015).  

OCD 

A plethora of evidence has accumulated showing that behavioural performance during 

cognitive tests, and related functional activations, are abnormal when OCD patients are 

probed on domains dependent upon the integrity of fronto-striatal circuitry.  

Response inhibition. The ability of response inhibition can be measured by means of go/no-go 

tasks (GNG) and stop signal reaction time tasks (SSRT). Both types of paradigm require the 
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participants to make a motor response on some trials and to withhold the response on some 

other trials, with the SSRT being more sophisticated in using stepwise tracking to measure 

inhibitory control. Deficits in response inhibition have been suggested as a candidate 

cognitive endophenotype for OCD (n=20 patients versus n=20 controls) (Chamberlain et al. 

2007b). Moreover, impaired response inhibition was shown to be associated with reduced 

grey matter volume in the OFC and right inferior frontal regions, as well as increased grey 

matter volume in the cingulate, parietal and striatal regions in OCD patients (n=31) and 

matched-relative groups (n=31), as compared to controls (n=31) (Menzies et al. 2008); and 

these combined behavioural-structural MRI measures were significantly heritable. Inhibition 

difficulties were also pinpointed at the functional level, whereby successful inhibition on an 

SSRT task was associated with greater activation in the supplementary motor area in OCD 

patients (n=41) and their siblings (n=17), versus controls (n=37) (de Wit et al. 2012). 

Impaired performance on response inhibition tasks was found to have a moderate effect size 

(0.49) in a meta-analysis on adult OCD patients as compared with control participants 

(Abramovitch et al. 2013). This meta-analysis comprised 115 studies (total 3452 patients) 

overall, although only a subset of these related to response inhibition.  

Cognitive flexibility. The clinical manifestation of OCD is commonly represented by 

repetitive compulsive acts that might be linked to impaired cognitive flexibility (Chamberlain 

et al. 2005). The Intradimensional/Extradimensional set shifting paradigm allows a fine-

grained examination of different cognitive processes germane to flexible responding including 

reversal learning, set formation and the ability to inhibit and shift attention between stimuli. 

By employing this multiple stage paradigm, it was shown that OCD patients were generally 

able to form an attentional-set but impaired in their ability to switch their focus to a new, 

previously irrelevant dimension (extradimensional stage, ED shift) (Chamberlain et al. 2006; 

Veale et al. 1996; Watkins et al. 2005). Considering that impaired performance was unrelated 

to symptom severity and present irrespective of treatment, ED deficits might represent a trait 

marker of the disorder (Chamberlain et al. 2006). More conclusively, non-affected first-

degree relatives (n=20) exhibited impairments as well, versus controls (n=20) (Chamberlain et 

al. 2007b).  

Across species, the ability to flexibly adjust behaviour al responses in face of negative 

feedback is sub served by the OFC and can be assessed by reversal learning tasks. As such 

reversal of responses is normally relatively easy for humans to manage, reversal learning 

abnormalities are mainly identified using imaging rather than behavioural tests, due to ceiling 

effects for the latter. Dampened OFC activation during reversal learning was reported in one 
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fMRI study of OCD patients (n=20), as compared to controls (n=27) (Remijnse et al. 2006). 

Controlling for the potential confounding effect of comorbid depression, Chamberlain and 

colleagues (Chamberlain et al. 2008) showed that patients with OCD (n=14) and unaffected 

relatives (n=12) had extensive clusters of hypo-activation in the lateral OFC, lateral PFC and 

parietal cortices, versus controls (n=15). Task switching abilities, strongly relying on the 

cross-talk between basal ganglia and prefrontal cortex (Cools et al. 2004), have separately 

been assessed in OCD patients. Significantly higher error rates in task-switching trials and 

reduced activation of dorsolateral prefrontal cortex lateral OFC, ACC and caudate body were 

observed in 21 OCD patients versus 21 controls (Gu et al. 2008). 

Planning. Executive planning entails the ability of attaining a goal through intermediate steps, 

which do not necessarily lead directly to that goal. It is tested by means of the Tower of 

London task and its variants, for which MRI versions are also often available. Studies in OCD 

patients revealed lengthened responses times (Nielen and Den Boer 2003; Veale et al. 1996) 

and, on more difficult task versions, impaired performance (Chamberlain et al. 2007a). 

Planning deficits have been linked with dorsolateral prefrontal cortex and basal ganglia 

(caudate, putamen) hypo-activation in OCD patients, in a study conducted in 22 medicatio-

freee patients and 22 healthy controls (van den Heuvel et al. 2005). Behavioural impairment –

fewer correct responses and increased response times- was also found in unaffected relatives 

of OCD patients compared with normal participants (Delorme et al. 2007), suggesting that 

planning deficits constitute a vulnerability measure for OCD.  

Goal-directed system and habit learning. Convergent evidence from the animal and human 

literature suggests that fronto-striatal loop circuits mediate the balance between purposeful, 

goal-directed actions and habitual, automatic behaviours. Considering the literature linking 

fronto-striatal loops to OCD symptomatology, it was proposed that OCD could be 

characterised as a disorder of maladaptive habit learning (Rauch et al. 2002). The hypothesis 

has been formally tested in a series of experiments that led to the conclusion that a defective 

‘goal-directed system’ may bias OCD patients to heavily rely on habits (Gillan and Robbins 

2014). More specifically, it was first shown using an appetitive instrumental learning task that 

OCD patients (n=21) were not able to refrain from responding to outcomes no longer 

associated with reward, as compared to controls (n=30) (Gillan et al. 2011). Similarly, in an 

aversive context, OCD patients were trained to avoid mildly aversive electrical shocks by 

performing the correct response to a predictive stimulus. Following a training period, 

participants were instructed that the cable delivering the shock had been disconnected from 

one of their wrists. Patients (n=25) on average made significantly more responses to the 
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stimuli no longer associated with any shock than did controls (n=25) (Gillan et al. 2014). An 

fMRI-compatible version of the task showed that excessive caudate activity was associated 

with increased performance of the avoidance habits in 37 OCD patients, compared to 33 

healthy comparison subjects (Gillan et al. 2015). The finding that aberrant activation in the 

caudate nucleus occurred more in patients showing a bias towards the premature development 

of habits suggested that, in OCD, reliance on repetitive, habit-like behaviours might stem 

from dysfunction within goal-directed behaviour loci within the dorsal striatum (Yin and 

Knowlton 2006). 

Despite the existence of some discordant findings, deficits related to behavioural inhibition, 

cognitive flexibility and executive functioning seem to represent core traits of OCD, and hold 

face validity considering the clinical manifestation of the disorder. Neuropsychological and 

imaging studies demonstrate that non-affected first-degree relatives show, to some extent, 

similar abnormalities to patients. On the one hand, these shared findings represent valuable 

tools for investigating the effect of specific genetic variants on both cognitive and neural 

substrates and importantly for investigating the disorder across species, possibly leading to 

better treatment. On the other hand, the similarity between affected and non-affected relatives 

demonstrates that our understanding of the steps leading from an ‘at risk’ or vulnerable state 

to the development of ‘state’ OCD is limited; as is our understanding of protective or 

resilience-related biological factors. Multi-modal investigation, providing convergent 

evidence and guided by specific theoretical hypotheses, might help to address these issues.  

Other OC-RDs 

Trichotillomania has been associated with impaired stop-signal inhibitory control in multiple 

studies compared to controls, while set-shifting has generally been reported to be intact 

(Chamberlain et al. 2006; Odlaug et al. 2014). The sample sizes were 17 patients and 20 

controls in the former study; and 12 patients and 14 controls in the latter study.  

However, there do appear to be some differences in subtypes: in people with childhood onset 

trichotillomania (<11 years of age, n=42), the neuropsychological profile appears to be more 

like OCD; i.e. impaired set-shifting and lesser stop-signal impairments; compared to later 

onset trichotillomania (n=56) (Odlaug et al. 2012).  

Patients with excoriation (skin picking) disorder (n=20) showed impaired stop-signal 

inhibition but intact set-shifting versus controls (n=20) (Odlaug et al., 2010). Impaired 

response inhibition on a stop-signal task was found in patients with trichotillomania (n=12) 

and their clinically asymptomatic first-degree relatives (n=10) versus controls (n=14) in a 
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more recent study, suggesting that it may represent a vulnerability or predisposing factor 

(Odlaug et al. 2014). In a head-to-head comparison of skin picking disorder (n=31 patients) 

against trichotillomania (n=39 patients), stop-signal impairments were more marked in the 

former group (Grant et al. 2011). 

As is the case for imaging, cognitive studies in relation to compulsive hoarding have mostly 

been undertaken in the context of other disorders, rather than in ‘hoarding disorder’ as a 

discrete entity. One exception to this is a recent study that compared cognition in people with 

hoarding disorder without OCD (n=22), people with OCD plus hoarding (n=24), and healthy 

controls (n=28) (Morein-Zamir et al. 2014). Deficits in cognitive flexibility were common to 

both clinical groups, arguing against hoarding disorder having a distinct neuropsychological 

profile from that of OCD-hoarding, and highlighting the importance of cognitive rigidity in 

relation to these two disorders.  

There are very few cognitive studies of body dysmorphic disorder (BDD). One study found 

that subjects with BDD exhibited deficits in cognitive flexibility in comparison to controls 

(Jefferies et al., submitted for publication). Consistent with this proposition, patients with 

comorbid skin picking disorder and BDD (n=16) had disproportionately impaired set-shifting 

compared to subjects with non-comorbid skin picking disorder (n=39) (Grant et al. 2015). 

Other research suggests that individuals with BDD may have abnormalities in visual 

processing (Feusner et al. 2010). The sample size was 17 patients and 16 controls. In sum, 

caution is warranted due to the small numbers of studies, but there is some evidence that the 

grooming disorders (trichotillomania, excoriation disorders) are commonly associated with 

impaired response inhibition; while hoarding disorder and BDD appear more OCD-like in 

their neuropsychological profiles.  

PTSD 

Research on the neuropsychology of PTSD has identified several neurocognitive deficits that 

co-occur with the disorder (Everly and Horton 1989; Levy-Gigi et al. 2012; Sachinvala et al. 

2000; Vasterling et al. 1998). In one study, subjects with PTSD (n=38), trauma-exposed 

subjects without PTSD (n=108) and healthy control subjects (n=89) did not differ 

significantly on a number of neuropsychological tests; however, the study was done in a non-

clinical sample of undergraduate students (Twamley et al. 2004). In a double-blind study with 

18 PTSD patients, treatment with the SSRI paroxetine resulted in a significant increase in 

verbal declarative memory function (Fani et al. 2009). It remains unclear whether the memory 

deficits in PTSD can only be attributed to stress-related alterations. As there is a genetic 
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vulnerability for developing PTSD, cognitive dysfunctions may have existed before the 

trauma and may have been, at least in part, the reason why vulnerable individuals develop 

PTSD after a trauma. Cognitive impairments in PTSD have also been attributed to 

comorbidity with substance abuse or other psychiatric disorders. However, in a study 

reporting memory function in rape victims with PTSD (n=15), compared to rape victims 

without PTSD (n=16), deficits were mild and not attributable to comorbid depression, anxiety, 

or substance abuse (Jenkins et al. 1998).  

One DSM-5 criterion for PTSD is the “inability to remember an important aspect of the 

traumatic event (typically due to dissociative amnesia)”. One may speculate that dissociative 

amnesia is associated with the memory impairments generally found in PTSD. However, it is 

contentious whether the phenomenon of dissociative amnesia exists at all (for a discussion, 

see McNally, 2007).  

Gender issues 

In international epidemiological surveys, the female to male ratio of the prevalence rates of 

anxiety disorders varied between 1.5:1 and 2.1:1 % (Bandelow and Michaelis 2015). 

Psychosocial contributors (e.g. childhood sexual abuse and chronic stressors), but also genetic 

and neurobiological factors have been discussed as possible causes for the higher prevalence 

in women. Identification of the causes of gender-specific susceptibility for anxiety disorders 

may be useful for better understanding the etiology of anxiety disorders in general. It is most 

likely that higher anxiety susceptibility in women is due to a delicate interplay between 

psychosocial and neurobiological factors. Hypotheses about the role of gender-specific 

stressors, and gender differences in the expression of fears warrant further investigation. Sex-

specific variance has been identified in numerous neurotransmitter systems. The serotonin 

system may be of particular importance, as most drugs used in the treatment of anxiety 

disorders enhance serotonin neurotransmission and alterations in the serotonergic system have 

been found in anxiety patients relative to healthy controls. It seems likely that female sex 

hormones are involved, as periods of fluctuating levels of estrogen and progesterone have 

been linked to increase or decrease of symptomatology in patients with PDA. Moreover, a 

plausible explanation for the gender-specific risk is a genetic one. For example, in PDA, the 

COMT and MAOA genes have been associated with the higher risk of women to develop 

PDA (Bandelow and Domschke 2015).  
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Discussion 

To our knowledge, there has been no comparable consensus initative that put together all 

major research lines in the field of biomarkers for anxiety, OCD and PTSD. However, it is a 

challenge to summarize the incredible amount of findings collected in this paper and the 

accompanying article (see Part I, (Bandelow et al. submitted)) in a simple way.  

First, a change in paradigms has been observed. In the 1980s and 1990s, “wet research” 

predominated, meaning that blood or CSF samples were taken from patients and healthy 

controls, either in resting state or after challenge tests with anxiety-provoking agents, e.g. 

lactate or carbon dioxide. Blood-based biomarkers of treatment response in psychiatric 

disorders remain in early stages of development and none has demonstrated reliability for 

predicting pharmacological outcome. Although research efforts in the past decades definitely 

increased our knowledge of the neurobiological underpinnings of pathological anxiety, we 

still not have the proof that a certain dysfunction of a neurotransmitter system, e.g. the 

serotonergic system, is the main cause for anxiety disorders. Still, the most robust evidence 

for an involvement of serotonin derives from the fact that a large number of drugs that are 

effective in anxiety disorders, OCD and PTSD have a common denominator, i.e. that they 

have an impact on serotonergic neurotransmission. Serotonin reuptake inhibition is the main 

mechanism of action of these antidepressants but there also some drugs that have agonist 

properties at serotonin receptors. Other medications that can treat anxiety act at the GABA 

binding site. However, as these binding sites are widespread in the brain and have unspecific 

inhibitory effects, the efficacy of benzodiazepines in anxiety disorders cannot be taken as 

evidence that a dysfunction of GABA function is the cause of pathological anxiety.  

Since the end of the 1990s, there was a strong shift to neuroimaging and genetic studies –

which are summarized in Part I of this consensus paper (Bandelow et al. submitted) –, while 

the publication output in neurochemistry studies seems to have declined.  

Interpreting the abundant number of results of neuroimaging studies in anxiety disorders is a 

difficult task. The existing studies have found abnormalities in many different regions of the 

brain, and it is a challenge to synopsize the often contradictory findings in a uniform theory. 

A problem is the high number of statistical comparisons that are possible, and if the results are 

not corrected for multiple testing, there is a high chance for false-positive findings. The main 

methodological problem in most of the studies is the small sample size, making it difficult to 

reliably separate artefacts from substantiate findings.  
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Likewise, there is a plethora of genetic studies. In association studies, a large number of 

candidate genes have been investigated. The only clear result that we can derive from these 

studies is that anxiety disorders are not based on a single gene but are multigenic, while the 

contribution of single genes is only small. Genome-wide association studies (GWAS) may be 

a future possibility to separate relevant findings from findings by chance. Again, correction 

for multiplicity is crucial, and this again requires larger sample sizes that are often used in 

genetic research. International cooperation is needed to collect large enough samples for this 

kind of research. Despite the manifold methodological shortcomings, the neuroimaging and 

genetics fields are two of the most promising areas of neurobiological research. In the future, 

neurochemistry, neurophysiology, neuropsychology, neuroimaging, genetics and other fields 

will have to be integrated on order to elucidate the neurobiological causes of anxiety. There is 

increasing efforts are made to find reliable biomarkers for diagnostic procedures of for 

prediction of treatment outcome in anxiety disorders, OCD and PTSD. However, as with 

research in other mental disorders such as depression, there are still not any biologic or 

genetic predictor of sufficient clinical utility to inform the selection of specific 

pharmacological compound for an individual patient, because of low sensitivity and 

specificity of the suggested biomarkers. Ideally, in the future, we will be possibly be able to 

diagnose a mental disorder simply by taking a blood test and to chose a personalized 

medication or psychological treatment for this special patient (precision medicine).  
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Figures 

Figure 1. GABA-A receptor and subunit structure; GABA and benzodiazepine (BZD) 
binding site 
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Figure 2. Stress-induced interactions between nervous, endocrine and immune systems 
The hypothalamus secrets CRH in response to stress, and from the paraventricular nucleus of 

the hypothalamus. CRH-containing neurons have projections to the locus coeruleus. The 

locus coeruleus sends direct projections to the sympathetic and parasympathetic 

preganglionic neurons, increasing sympathetic activity and decreasing parasympathetic 

activity through the activation of adrenoceptors. In turn, the activation of the sympathetic 

nervous system stimulates the release of CRH. The products of sympathetic and 

parasympathetic nervous system activity are NE and E, and Ach, respectively. When stress is 

prolonged, as in anxiety disorders, the sympathetic nervous system continues to be activated 

with a lack of parasympathetic counteractivity. As a result, NE and E levels are increased and 

ACh levels are decreased, which leads to an increased release of pro-inflammatory cytokines 

from immune cells. Pro-inflammatory cytokines such as TNF, IL1 and IL6 then trigger the 

activation of the sympathetic nervous system.  

CRH, corticotropin-releasing hormone; NE, norepinephrine; E, epinephrine; ACh, 

acetylcholine, TNF, tumor necrosis factor; IL1, interleukin-1; IL6, interleukin-6; +, 

stimulation; -, inhibition 
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