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Abstract 
Evidence supports associations between human gut microbiome 
variation and multiple health outcomes and diseases. Despite 
compelling results from in vivo and in vitro models, few findings have 
been translated into an understanding of modifiable causal 
relationships. Furthermore, epidemiological studies have been 
unconvincing in their ability to offer causal evidence due to their 
observational nature, where confounding by lifestyle and behavioural 
factors, reverse causation and bias are important limitations. Whilst 
randomized controlled trials have made steps towards understanding 
the causal role played by the gut microbiome in disease, they are 
expensive and time-consuming. This evidence that has not been 
translated between model systems impedes opportunities for 
harnessing the gut microbiome for improving population health. 
Therefore, there is a need for alternative approaches to interrogate 
causality in the context of gut microbiome research. 
 
The integration of human genetics within population health sciences 
have proved successful in facilitating improved causal inference (e.g., 
with Mendelian randomization [MR] studies) and characterising 
inherited disease susceptibility. MR is an established method that 
employs human genetic variation as natural “proxies” for clinically 
relevant (and ideally modifiable) traits to improve causality in 
observational associations between those traits and health outcomes. 
Here, we focus and discuss the utility of MR within the context of 
human gut microbiome research, review studies that have used this 
method and consider the strengths, limitations and challenges facing 
this research. Specifically, we highlight the requirements for careful 
examination and interpretation of derived causal estimates and host 

Open Peer Review

Approval Status   

1 2

version 3

(revision)
24 Apr 2020

view view

version 2

(revision)
02 Apr 2020

view

version 1
10 Dec 2019 view

Serena Sanna , University of Groningen, 

Groningen, The Netherlands 

Consiglio Nazionale delle Ricerche (CNR), 

Monserrato, Italy

1. 

Kiyoshi Takeda, Osaka University, Osaka, 

Japan

2. 

Any reports and responses or comments on the 

article can be found at the end of the article.

 
Page 1 of 19

Wellcome Open Research 2020, 4:199 Last updated: 23 MAR 2022

https://wellcomeopenresearch.org/articles/4-199/v3
https://wellcomeopenresearch.org/articles/4-199/v3
https://orcid.org/0000-0003-3362-6280
https://orcid.org/0000-0001-8938-5709
https://doi.org/10.12688/wellcomeopenres.15628.1
https://doi.org/10.12688/wellcomeopenres.15628.2
https://doi.org/10.12688/wellcomeopenres.15628.3
https://wellcomeopenresearch.org/articles/4-199/v3
https://wellcomeopenresearch.org/articles/4-199/v3#referee-response-38517
https://wellcomeopenresearch.org/articles/4-199/v3#referee-response-38582
https://wellcomeopenresearch.org/articles/4-199/v2
https://wellcomeopenresearch.org/articles/4-199/v3#referee-response-38333
https://wellcomeopenresearch.org/articles/4-199/v1
https://wellcomeopenresearch.org/articles/4-199/v3#referee-response-37954
https://orcid.org/0000-0002-3768-1749
http://crossmark.crossref.org/dialog/?doi=10.12688/wellcomeopenres.15628.3&domain=pdf&date_stamp=2020-04-24


Corresponding author: Kaitlin H. Wade (kaitlin.wade@bristol.ac.uk)
Author roles: Wade KH: Conceptualization, Data Curation, Investigation, Methodology, Visualization, Writing – Original Draft 
Preparation, Writing – Review & Editing; Hall LJ: Conceptualization, Writing – Original Draft Preparation, Writing – Review & Editing
Competing interests: No competing interests were disclosed.
Grant information: KHW is supported by the Elizabeth Blackwell Institute for Health Research, University of Bristol and the Wellcome 
Trust Institutional Strategic Support Fund [204813]. LJH is supported by a Wellcome Trust Investigator Award [100974], the 
Biotechnology and Biological Sciences Research Council (BBSRC) Institute Strategic Programme Gut Microbes and Health [BB/R012490/1] 
and its constituent project(s) [BBS/E/F/000PR10353 and BBS/E/F/000PR10356].  
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Copyright: © 2020 Wade KH and Hall LJ. This is an open access article distributed under the terms of the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
How to cite this article: Wade KH and Hall LJ. Improving causality in microbiome research: can human genetic epidemiology help? 
[version 3; peer review: 2 approved] Wellcome Open Research 2020, 4:199 https://doi.org/10.12688/wellcomeopenres.15628.3
First published: 10 Dec 2019, 4:199 https://doi.org/10.12688/wellcomeopenres.15628.1 

(i.e., human) genetic effects themselves, triangulation across multiple 
study designs and inter-disciplinary collaborations. Meeting these 
requirements will help support or challenge causality of the role 
played by the gut microbiome on human health to develop new, 
targeted therapies to alleviate disease symptoms to ultimately 
improve lives and promote good health.
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List of abbreviations
AUC = area under the curve; BMI = body mass index;  
CAD = coronary artery disease; CKD = chronic kidney disease; 
FGFP = Flemish Gut Flora Project; GECCO = Genetics and  
Epidemiology of Colorectal Cancer Consortium; GWAS = genome-
wide association study; IBD = inflammatory bowel disease;  
LD = linkage disequilibrium; MI = myocardial infarction;  
MR = Mendelian randomization; OR = odds ratio; RCT = rand-
omized controlled trial; RR = risk ratio; SCFA = short chain fatty 
acid; SD = standard deviation; SNP = single nucleotide polymor-
phism; TMAO = trimethylamine-N-oxide; T2D = type 2 diabetes

Introduction
Evidence from microbiome-wide studies has highlighted rela-
tionships between the gut microbiome and many complex traits 
and diseases – from dietary composition, obesity, rheuma-
toid arthritis and type 2 diabetes (T2D) to Alzheimer’s disease,  
Parkinson’s disease and depression1–9. For example, the 
lower diversity and relative abundances of bacteria within the  
Bacteroidetes vs. Firmicutes phyla in obese vs. lean individuals 
has been observed in studies of mice and humans, with cross- 
sectional, longitudinal and experimental designs10,11. Several  
studies have also demonstrated that the relative bacterial  
abundances in the Bacteroidetes order increases and Firmi-
cutes order decreases with low-calorie diets (e.g., through fat or  
carbohydrate restriction) or surgery-induced weight loss in obese 
individuals, whereby the gut microbiota composition becomes 
similar to that of their lean counterparts10–13. Ostensibly, these stud-
ies suggest that the manipulation of the human gut microbiome  
(e.g., not only through diet and surgery but also via the intake  
of pre- or pro-biotics, antibiotic usage or faecal microbiome  
transplants) may have potential as an approach to develop  
new, targeted therapies and treatments to reduce disease in  
the population.

However, the design of human studies has been largely obser-
vational (with additional potential for experimental biases in 
sample collection, storage and analysis) and, owing to this, 
there are the many inconsistences within the literature, casting  
doubt on the reliability of existing findings. Moreover, causality  
in these relationships is often difficult to ascertain, with a  
concerning lack of robust evidence able to discern correlation 
from causation (despite being called for 14–16). It is particularly  
alarming that, despite this lack of evidence, and with much  
scepticism17, there is a growing market for commercial initia-
tives targeting the microbiome as a consumer-driven intervention  
(e.g., ubiome, Viome, BIOHM and Atlas BioMed), where 
companies ask for, obtain and sequence faecal samples from  
consumers and prescribe “personalised” nutritional information  
based on the, often, only sample. Furthermore, there has  
been an increase in clinical recommendation of pro-biotics –  
“live microorganisms that, when administered in adequate 

amounts, confer a health benefit on the host”18 – for treating 
various diseases or following antibiotic prescription19–21. How-
ever, with the development of such efforts, it is important to 
recognise that the gut microbiome is a dynamic and complex 
ecosystem; therefore, careful investigation of the off-target 
effects of any treatment or intervention intended to alter one  
or a small number of specific bacteria is required.

Some of the current literature comprising in vivo and in vitro  
experiments has provided promising results, which have been 
supported by small-scale observational studies within humans.  
However, many studies have failed to be translated between 
model organisms, and studies within humans have been  
unconvincing in their ability to provide evidence for causality 
in these relationships (even those with compelling results from  
in vivo and in vitro models). Despite the few examples that have 
proved successful in their consistency between model organisms 
and their clinical application in humans (e.g., faecal microbi-
ome transplantation in cases of recurrent Clostridioides difficile  
infection, which has a global success rate of over 80%22),  
evidence that has not been translated between model organ-
isms impedes any opportunity for harnessing the gut microbiome  
for reducing the burden of disease in the population and has  
induced scepticism in its causal relevance in human health23,24.

Reasons for these discrepancies between and within model 
organisms include the challenges in the increasing volume of  
high-dimensional multi-omic data produced and, specifically, 
how these are integrated using complex bioinformatics and  
incorporated into traditional study designs, alongside the sensitive  
experimental models that aim to replicate disease traits in 
humans. Whilst murine models have played a key role in the  
emerging gut microbiota research field (given the inability to 
research all questions within humans), there are important inter-
study variations due to experimental design (e.g., sample collection  
and processing), environmental conditions (i.e., differential  
microbiome composition between rodent housing facili-
ties), genetic differences and chosen analyses25. Despite some  
compelling examples exhibiting consistency and providing 
mechanistic understanding of these relationships within humans 
and animals (e.g., in malnutrition and obesity26,27) and between  
in silico and in vitro models28, it is still debatable as to whether 
animal models of the human gut microbiome (and methods 
used such as germ-free or gnotobiotic mice) are translatable  
to humans, particularly with all scientific questions25,29.

In addition to the limitations of in vitro and in vivo  
experimental design – currently fuelling the “bottom-up” 
approach for assessing causality between model systems – there 
are limitations of the observational human epidemiological study  
designs. Single-sample observational epidemiological studies  
(i.e., population samples in cross-section) or case-control stud-
ies suffer confounding by lifestyle and behavioural factors, biases 
(e.g., error in measures of the gut microbiome and non-random  
or unrepresentative selection of participants) within and between 
studies and may not be generalizable. Indeed, whilst both murine 
and human studies have provided support for a relationship  
between the gut microbiome and diseases such as inflamma-
tory bowel diseases (IBDs) and T2D10,30, these study designs  
usually include the assessment of differential gut microbiome 
compositions within clinical patients (i.e., those who already have 
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the disease of interest) compared to controls. Meta-analyses of  
studies like these can provide some insight into consistency and 
robustness of potential findings, which may lead to greater preci-
sion of observed associations (e.g., with metagenomic signatures 
within colorectal cancer cases31,32), but the direction of causality  
in these relationships is ambiguous. Specifically, is it that dif-
ferences in the gut microbiome protect/exacerbate a disease or  
is it the disease state itself that is leading to variation in the 
gut microbiome composition? Furthermore, if evidence of a 
likely causal effect of a component of the gut microbiome on 
the risk of a disease is provided, this does not imply that the 
same is true for the progression of that disease (and vice versa). 
Specifically, treating individuals who suffer from, say, IBD 
with a pre-/pro-biotic that promotes/contains bacteria found  
to be associated with the risk of developing IBD may not lead to 
better prognosis of IBD after diagnosis.

Given that the gut microbiome is a dynamic system, assess-
ment of the prospective changes in this system alongside the 
development of disease and variation in health outcomes is  
required. Longitudinal cohort studies have developed some under-
standing in the transitional association of the gut microbiome 
and specific health outcomes over a relatively short period of  
time (e.g., with childhood obesity, type 1 diabetes and adult weight 
gain33–36). However, these are still limited by traditional obser-
vational epidemiological complications (i.e., confounding and  
bias) if not designed or conducted well and, usually, by statistical 
power given usually small sample sizes.

Randomized controlled trials (RCTs) in this area have made 
some steps towards understanding the causal role played by 

the gut microbiome in disease. However, many mainly focus on 
alleviating symptoms within patients who have an established  
condition37–39. RCTs have focused on the influence of diet, 
pre- and pro-biotics, or antibiotics on the gut microbiome and 
related traits and have presented an array of conclusions ranging  
from a preventative to detrimental role of these interventions.  
However, most of these RCTs consist of fewer than 50 par-
ticipants, who tend to be selected based on disease status and 
who are often on different medications, which are difficult to  
control40. Only a handful of registered trials to date have  
completed with tangible results and more have been terminated, 
suspended or withdrawn40. Given the current literature, trials 
focusing on disease prevention in healthy individuals or those  
understanding how variations within the gut microbiome can 
promote good health are imperative. Whilst larger efforts are  
ongoing (e.g., as of July 2019, there were approximately 650 
RCTs of the gut microbiome still recruiting), such trials are likely  
not feasible to answer every scientific question and are impor-
tantly expensive, time-consuming and sometimes unethical, par-
ticularly within a healthy human population. The application of  
alternative causal inference methods in this context are needed 
to improve causal inference and help elucidate the role played  
by the gut microbiome in human health and disease.

MR
MR is an approach that uses human genetic variation (usually 
single nucleotide polymorphisms [SNPs], identified in genome-
wide association studies [GWASs]) to act as a “proxy” meas-
ure for exposures of interest (e.g., here, the gut microbiome)41–43. 
Provided a number of key assumptions are met (Figure 1), these  
genetic variants can be argued to have properties that  

Figure 1. Framework, assumptions and example of Mendelian randomization (MR) in the context of gut microbiome research. (A) MR 
relies on the following three core assumptions: (1) the genetic variant(s) being used as an instrument (Z) is associated with the exposure (X); 
(2) the genetic variant(s) are independent of measured and unmeasured confounders (U) of the association between the exposure (X) and 
outcome (Y); and (3) there is no independent pathway between the genetic variant(s) and outcome (Y) other than through the exposure (X) 
– known as horizontal pleiotropy or the exclusion restriction criteria. (B) Example of MR applied to understanding the causal role played by 
Bifidobacterium and obesity using the rs4988235 SNP (i.e., the lactase persistence genetic variant within the MCM6 locus) as an instrument 
(see text for discussion).
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approximate those of “instruments” and thus can be used to esti-
mate the causal effect of a trait on disease or health outcome44. 
Theoretically analogous to arms of an RCT, genetic variants used 
in MR are largely independent of confounding factors, due to the  
random nature of their allocation within a population in the 
absence of any population stratification. These genetic variants 
are also not modified by the later development of disease or health  
outcome and, with very accurate genotyping being common-
place, measurement error is largely reduced. Therefore, at a  
population level, the portion of variance in the modifiable trait 
explained by human genetic variants (unlike the direct meas-
urement of the trait itself) can be used to model situations that  
are free of the aforementioned limitations that would otherwise 
weaken causal inference in observational studies.

MR expands upon traditional genetic analyses (such as candi-
date gene studies, GWAS or aggregating genome-wide vari-
ation to inform characterisation of disease susceptibility) by 
harnessing randomly allocated genetic variation identified as 
being associated with variation in a particular trait to specifically  
interrogate the causal implications of that trait on a disease  
or health outcome, in a manner comparable to RCTs. Such analy-
ses can be done at a fraction of the time and cost required for a 
large-scale RCT, by exploiting data from pre-existing and large-
scale genetic studies, and can be used to ask many of the scientific  
questions that may not be feasible or ethical with RCTs41,42.  
Particularly demonstrative of the advantages of the MR paradigm  
is the example of selenium and prostate cancer (Box 1).

Box 1. Illustration of Mendelian randomization in 
conjunction with randomized controlled trials – the 
SELECT trial

Since the early 2000s, many observational studies have 
implicated the protective role of selenium supplementation 
or intake (usually determined by measured toenail selenium 
levels) on both overall and advanced prostate cancer risk45,46. 
These findings motivated the initiation of the prospective, 
double-blinded Selenium and Vitamin E Cancer Prevention Trial 
(SELECT)47, which randomized the supplementation of selenium, 
along with other antioxidants, by oral dose to understand 
its possible causal role on prostate cancer. Despite initial 
compelling results from observational studies, and after costing 
$114 million to initiate and conduct, SELECT was terminated 
prematurely (after 7 years, as opposed to the 12 planned years), 
as the initial trial results implicated little evidence supporting a 
protective role of higher selenium levels on the risk of prostate 
cancer (hazard ratio (HR): 1.09; 99% confidence interval 
(CI): 0.93-1.27). There was also some evidence to support a 
detrimental role of selenium on advance prostate cancer (HR: 
1.21; 99% CI: 0.90-1.63) and a potentially off-target, detrimental 
effect of selenium supplementation on T2D within 5 years of the 
trial (relative risk (RR): 1.07; 99% CI: 0.94-1.22). More recently, 
complementary MR analyses using 11 SNPs as instruments 
for circulating selenium levels similarly provided little evidence 
of a protective role on prostate cancer risk (odds ratio (OR): 
1.01; 95% CI: 0.89-1.13) and some evidence supporting the 
detrimental impact on the risk of advanced prostate cancer (OR: 
1.21; 95% CI: 0.98-1.49) and T2D (OR: 1.18; 95% CI: 0.97-1.43), 
consistent with the trial but in a fraction of the time and with 
effectively no cost48.

Given the inconsistencies between studies aimed at estimat-
ing the causal role of the gut microbiome in human health and  
disease, MR provides the opportunity to assess causality in 
observed associations not only between the gut microbiome and 
health outcomes but also the impact of various traits on the gut  
microbiome itself, without the need for costly RCTs or lab-based 
study designs in the first instance. Results derived from the appli-
cation of MR in this context also provides a potential mecha-
nism to direct the prioritisation of characteristics of the gut  
microbiome as interventional targets (e.g., via dietary regula-
tion or using pre- and pro-biotics), to inform clinical and public  
health guidelines and to improve population health in an  
efficient and cost-effective manner. For a full description and 
definitions of terminology, methods and assumptions specific to  
MR, please see the online MR Dictionary43.

Current applications of MR
Our understanding of the host (i.e., human) genetic contribu-
tion to the gut microbiome has primarily arisen from candidate 
gene studies and genome-wide screens in model organisms49.  
In recent years, and with the advent of higher-throughput tech-
nologies that are able to capture measurements of the gut micro-
biome at scale, several GWASs in humans have been conducted 
to further uncover host genetic variation that shapes the gut  
microbiome50–57. Together, these initial GWASs have identified 
associations between more than 100 human genetic variants associ-
ated with constituents of the gut microbiome (e.g., microbial diver-
sity, taxon abundance and community structure). However, there 
has been limited overlap of identified host genetic variants impli-
cated as being associated with the gut microbiome across studies.  
With the existence of host genetic variants associated with the 
gut microbiome, we and others have applied MR to appraise  
causality in the relationships between the gut microbiome and 
human health58–61. However, it is of upmost importance for  
careful examination and interpretation of MR-derived causal 
estimates, host genetic effects and the assessment of other  
benefits that the integration of human genetics to this field  
may provide in appraising causality. The current applications  
of MR in microbiome research are described below,  
with pertinent limitations shared between these applications  
discussed.

Microbiota genera and ischemic heart disease, T2D and 
risk factors
In 2018, Yang et al. used MR to assess the causal effect of  
27 component genera of the gut microbiome on ischemic heart 
disease, T2D, adiposity, lipid levels and insulin resistance using  
human genetic variation that had previously been associated 
with these particular bacterial taxa measured with 16S rRNA  
sequencing58. In this case, host SNPs (i.e., human genetic varia-
tion) associated with these 27 genera were obtained from previous  
studies51–53,55,57, with highly correlated SNPs removed based on 
linkage disequilibrium (LD; based on an r2 ≥ 0.8). These were 
also crossed-referenced with Ensembl and the GWAS catalog to 
remove potentially pleiotropic SNPs (i.e., those that may have  
an effect on the outcome other than through the exposure of 
interest) and to reduce possibility of invalidating the third MR  
assumption (Figure 1).
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By using MR to analyse the causal impact of these 27  
genera on cardiometabolic disease and related traits, authors 
found evidence that a greater relative abundance of bacteria in the  
Bifidobacterium genus was associated with a 1.5% lower  
odds of ischemic heart disease (odds ratio [OR]: 0.99; 95%  
CI: 0.97-1.00), a 0.01 standard deviation (SD) lower body 
mass index (BMI; 95% CI: 0.01-0.02) and a 0.03 SD lower  
level of lipoprotein cholesterol (95% CI: 0.02-0.03).

This application of MR provides compelling evidence of the 
causal impact of the gut microbiome on cardiometabolic traits. 
However, these results were not robust when testing whether the  
effects of these genetic variants were independent of Bifidobac-
terium (i.e., “horizontal pleiotropy” – Figure 1), suggesting that 
this bacterial genus may not have been the sole driver of these  
seemingly beneficial metabolic effects. Additionally, many of 
the associations between the human genetic variants and the 
gut microbiome used in the MR analyses were not replicated  
either within or between the studies from which they were  
obtained51–53,55,57, questioning the validity of using them in 
MR analyses, as they may not be reliably associated with the  
exposure (i.e., invalidating the first MR assumption, Figure 1).

Short-chain fatty acids and metabolic diseases
In 2019, authors of another study based on a collection of 
952 normoglycemic individuals from the LifeLines-DEEP  
cohort with genetic, metagenomic sequences and faecal short-
chain fatty acid (SCFA) levels performed bi-directional MR to  
assess the association of 245 metagenomic features describing 
functionality of the gut microbiome (2 of which were linked to  
SCFA production, 57 unique taxa and 186 pathways) with 17 
metabolic and anthropometric traits59,62. Genetic variants were  
chosen by conducting a GWAS within 952 individuals from the 
LifeLines-DEEP cohort. A fairly lenient p-value threshold of  
1×10-5 was used to define host genetic variants independently  
associated with functional features of the gut microbiome. 
These genetic variants selected at the lenient threshold were 
chosen as they explained most variance in the same feature in 
an independent cohort of 445 individuals, compared to other  
variants defined using varying thresholds.

Authors found that the microbial functional pathway  
characterised from metagenomic sequencing involved in  
4-aminobutanoate (GABA) degradation (PWY-5022), of which 
the SCFAs butyrate and acetate are products, was associated  
with improved insulin response after an oral glucose- 
tolerance test (characterised by the ratio of the areas under the 
curve (AUC) for measured insulin and glucose levels, AUC

insulin
/ 

AUC
glucose

). Specifically, by using MR to assess the impact of 
functionality of the gut microbiome, authors found that each 
SD increase in the abundance of the PWY-5022 pathway was  
associated with a 0.16 mU/mmol increase in the AUC

insulin
/ 

AUC
glucose

 (95% CI: 0.08-0.24), which was robust to MR meth-
ods that test validity with regards to horizontal pleiotropy.  
In taxonomic analyses, the bacteria most correlated with 
the PWY-5022 functional pathway were Eubacterium  
rectale and Roseburia intestinalis (both of the Clostridiales 
order), species known to produce butyrate63. The proposed  
mechanism explaining these results suggested that host 

genetic variation influences the gut microbiome composition 
to modulate GABA degradation, thus, increasing the ability of  
the pancreas to secrete insulin in response to a glucose  
challenge.

Whilst the metagenomic features authors used provided more 
insight into the functionality of the gut microbiome (over 
and above measuring relative abundances with 16S rRNA  
sequencing), authors were unable to test the relationship between 
these features and circulating levels of the SCFAs (e.g., butyrate 
and propionate), as these were not measured in the study  
sample. Similar to Yang et al., the associations between the 
genetic variants used in MR analyses and the functional fea-
tures of the gut microbiome were not replicated in other studies.  
Additionally, much of the GWAS summary-level data that authors 
used was adjusted for other covariates (mainly BMI), which  
may induce false correlations between the exposure and out-
come via a certain type of selection bias (i.e., collider bias) and,  
in the most extreme cases, this can reverse the direction of the  
causal effect estimate (which was observed in this study)64,65.

Microbiota-derived metabolites and cardiometabolic health
A further study conducted by Jia et al. used MR to examine 
the association between the trimethylamine-N-oxide (TMAO)  
metabolite, produced by processes specific to gut bacteria when 
metabolising choline from high-fat foods such as eggs and 
beef, and its predecessors with both continuous measures of  
cardiometabolic health and diseases60. This study was motivated 
by the observational epidemiological literature, suggesting  
that choline, TMAO (a derivative of choline) and carnitine 
are associated with an increased risk of heart disease and other 
cardiometabolic diseases, hypothesised through their athero-
sclerotic effects in blood vessels66,67. The authors undertook  
a bi-directional MR analysis to unpick the direction of associa-
tion of circulating levels of these metabolites with traits relating 
to adiposity, glycaemic profile, lipids and kidney function along-
side diseases including T2D, coronary artery disease (CAD), 
myocardial infarction (MI), stroke, atrial fibrillation and chronic 
kidney disease (CKD)60. Genetic variants used in MR analy-
ses as instruments for each of four metabolites (choline, TMAO, 
carnitine and betaine) were obtained from a GWAS of 217  
blood-based metabolites in 2,076 individuals of European 
descent from the Framingham Heart Study (Offspring Cohort)68  
and chosen based on a lenient threshold of “suggestive” genome-
wide significance (P<5×10-5). Given the number of tests 
being performed, authors set an a priori Bonferroni-corrected  
threshold (P<0.0005) to detect evidence for association.

By using MR to assess the causal role of gut microbiome-derived 
metabolites and cardiometabolic health, authors found some 
evidence to suggest that higher circulating levels of choline  
increased the risk of T2D (OR: 1.84 per 10 units; 95% CI: 1.00, 
3.42) and higher circulating levels of betaine reduced the risk of 
T2D (OR per 10 units: 0.68; 95% CI: 0.48, 0.95). There was lit-
tle evidence to suggest that any metabolite had a causal role 
on the continuous measures of cardiometabolic health. In the  
reverse direction, there was evidence suggesting that a higher 
liability to T2D may play a causal role in increasing levels of  
TMAO (0.13 units; 95% CI: 0.06, 0.20). Most of these findings 
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were consistent across multiple MR methods, which test  
robustness with regards to horizontal pleiotropy (i.e., the third  
MR assumption, Figure 1).

Results presented by Jia et al. provided further insight into the 
functional relevance of the gut microbiome on cardiometa-
bolic disease, performing power calculations and utilising a  
selection of appropriate sensitivity analyses that appraise validity 
of derived causal estimates. These results suggested that, by altering  
levels of these microbiome-dependent metabolites, there may 
be an opportunity to modify the potential causal impact of 
the gut microbiome and its metabolic functionality to reduce 
the risk of T2D. However, it is important to clarify firstly that 
authors tested the relationship of circulating levels of metabo-
lites with cardiometabolic traits and not characteristics of the gut 
microbiome itself. Indeed, whilst constituent gut microbiota do  
produce these metabolites naturally and are associated with 
their circulating levels, such metabolites can be introduced 
into the blood stream via other means (e.g., supplementation 
and diet). Thus, the direct causal impact of gut microbiome in 
this instance is uncertain and may, in fact, be irrelevant. Simi-
lar to the other applications of MR described above, the genetic 
variants used as instruments for the microbiota-derived metabo-
lites were not replicated in the original GWAS from which 
they were obtained and were selected based on a fairly lenient 
threshold (similar to Sanna et al.58), questioning the reliability  
of their use.

Genome-wide association of gut microbiome variation and 
causal inference analyses
As is evident from the current applications of MR in the con-
text of microbiome research, one of the main limitations is  
the limited overlap and replication of identified host genetic 
variants associated with the gut microbiome across studies. 
Most recently, a GWAS of the gut microbiome characterised 
with 16S rRNA sequencing was conducted by Hughes et al. in  
over 3800 individuals from three independent studies, including  
a discovery sample comprising the Flemish Gut Flora Project 
and two German replication samples61. Within this analysis,  
13 SNPs reached conventional levels of genome-wide  
significance (P<2.5×10-8), with some showing low heterogeneity  
between studies, and two of these reached a strict study-level  
threshold (P<1.57×10-10). This novel and persistent collection of 
SNPs associated with measures of the gut microbiome enabled  
the application of MR to provide further insight into the causal  
link between these microbial features and a set of metabolic,  
inflammatory and neurological traits previously implicated  
as being associated with the gut microbiome throughout the  
literature61.

These results provided evidence for causality between five 
microbial traits and seven outcomes, including evidence for a 
causal role of bacteria within the Butyricicoccus genus on IBDs  
and bacteria within the Firmicutes phylum on waist circum-
ference. The strongest association indicated that presence (vs. 
absence) of bacteria within the Dialister genus decreased the risk 
of Alzheimer’s disease (risk ratio [RR] with a doubling of the  
genetic liability to presence vs. absence of Dialister: 0.81; 95% 
CI: 0.73, 0.90). In the reverse direction, there was also evi-
dence for causal relationships between four phenotypes and  

three microbial traits, including evidence for a causal role of a 
higher liability to Parkinson’s disease, T2D and Crohn’s dis-
ease on bacteria within the Firmicutes phylum. The strongest  
result suggested that individuals with Alzheimer’s disease 
were more likely to carry bacteria in the Dialister genus within  
their gut (RR for a doubling of the genetic liability to  
Alzheimer’s disease: 1.81; 95% CI: 1.13-2.89).

Focusing on the components of this latter result, the bi-directional  
analyses of the causal relationship between bacteria within the 
Dialister genus and Alzheimer’s disease may seemingly be 
somewhat contradictory (i.e., presence of Dialister reducing 
the risk of Alzheimer’s disease but Alzheimer’s disease pres-
ence increasing likelihood of Dialister). However, there are two 
important points to note. Firstly, there may well be a true pro-
tective role of the Dialister bacteria on the onset of Alzheimer’s  
disease (hence the inverse effect), which is supported by a  
recent study proposing this very notion69. Secondly, the single 
genetic variant used as an instrument in the MR analysis assessing  
the impact of Dialister bacteria on Alzheimer’s disease is 
within SORL1, a gene characterised as being associated with  
Alzheimer’s disease itself70. Therefore, the question arises as 
to whether the SNP is indeed a valid instrument for bacte-
ria within the Dialister genus (as it may be a pleiotropic SNP,  
independently associated with Alzheimer’s disease) or whether 
the mechanism by which the SNP influences Alzheimer’s  
disease is through its impact on bacteria within the Dialister 
genus. At the present time, is difficult to discern without further  
biological, functional and mechanistic knowledge. Therefore, 
there is a requirement for careful examination and interpretation  
of the host (i.e., human) genetic effects on these microbial  
traits before using them in such applied analyses.

One proposed mechanism for examining these complexities 
and unpicking the link between the human gut microbiome 
and various health outcomes is utilizing the plethora of human  
genetic epidemiological methods and sensitivity analyses that 
specifically explore the validity of host genetic variation in 
MR analyses. For example, as proposed by Richardson et al.71,  
methods such as colocalization, bivariate genetic fine mapping 
and bi-directional MR may provide some distinction between  
reverse causality and either direct or LD-induced horizontal  
pleiotropy (Figure 2). As these methods (particularly colocali-
zation and genetic fine mapping) require individual-level and  
genome-wide information on both the exposure and outcome,  
these methods will become more feasible with the growing  
availability of large-scale GWASs of the gut microbiome  
and other traits.

Indeed, the application of such methods in a recent study pro-
vided some insight into the validity of using host genetic vari-
ants associated with the human gut microbiome in examining the 
relationship between gut microbiome variation and colorectal  
cancer (unpublished). For this, the summary statistics from 
the 13 SNPs associated with microbial traits derived from 16S  
rRNA sequencing reported by Hughes et al. were combined 
with those from the Genetics and Epidemiology of Colorectal  
Cancer Consortium (GECCO) in a two-sample MR analysis61.  
Results provided evidence that the presence (vs. absence) of  
uncharacterised bacterial genera within the Bacteroidales order 
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Figure 2. Mechanisms explaining observed associations between genetic variants and the gut microbiome (adapted from Richardson 
et al.)71 testing the association between the gut microbiome and an example health outcome. (A) The genetic variant has an effect on 
the health outcome, mediated through the microbiome (as in Figure 1) – i.e., the relationship of interest; (B) the genetic variant has an effect 
on health outcome through other biological mechanisms, which in turn has a downstream effect on the microbiome (i.e., reverse causation); 
(C) the genetic variant that influences the microbiome is correlated with another genetic variant (i.e., they are in linkage disequilibrium) 
that influences the health outcome; (D) the genetic variant influences both the microbiome and a health outcome through two independent 
biological pathways (i.e., horizontal pleiotropy).

increased the risk of colorectal cancer by approximately 8%  
(95% CI: 2-15%), with no strong evidence that the SNP used  
as an instrument was associated with other traits or the outcome 
itself, reducing the likelihood of horizontal pleiotropy.

Whilst these are first steps in the right direction of under-
standing the utility of host genetic variation in microbiome  
research for improved causality, there is much room for improve-
ment. Importantly, when appreciating the complexity of these 
relationships, the integration of human genetics, genetic epi-
demiological techniques and causal inference methodologies  
to the field of microbiome research holds great potential.

Limitations of the MR approach
With the advent of the application of MR within the context of 
gut microbiome research, and the growing data available for 
such analyses, there are important limitations and complexi-
ties to these applied epidemiological analyses that need to be 
acknowledged and addressed. The general limitations of MR 
have been summarised before41,43, but those most pertinent to 
microbiome research are currently the lack of robust and reli-
able genetic variants associated with the gut microbiome and its  
functionality and the complexity of mechanisms by which 
host genetic variants impact these microbial traits. This latter  
complication includes the possibility that identified genetic vari-
ants associated with components of the gut microbiome are also 
associated with the outcome of interest in an MR study through  
independent mechanisms (Figure 2). In addition, many of the  
current studies utilizing MR have used lenient p-value thresholds 
to define the set of included genetic variants, leading to concerns 

in their instrumental variable quality (via an invalidation of the  
third MR assumption).

As the pool of increasingly larger-scale GWASs and  
meta-analyses grow (e.g., most imminently with the MiBioGen  
initiative72), the number of genetic variants associated with 
the various characterisations of the microbiome (i.e., bacteria- 
specific metabolites, bacterial taxa or functional features) will 
also likely grow. A greater number of genetic variants robustly 
associated with features of the gut microbiome will further ena-
ble the application of the continuously developing plethora of 
MR methods that require multiple instruments to investigate the 
effect of confounding, mediation, pleiotropy and invalidation 
of MR assumptions. However, it seems clear that the environ-
mental contribution to the gut microbiome will be much greater 
than the host genetic contribution8. At the very least, this calls for  
greater sample sizes in individual cohort studies and consor-
tia for adequate statistical power within MR analyses testing 
the causal role of these environmental cues on gut microbiome 
variation (or, indeed, the role of the gut microbiome on dis-
ease). It is important to note that the mechanisms by which these  
genetic variants are associated with the gut microbiome need 
to be carefully considered and will rely on comprehensive func-
tional and biological experiments and knowledge from both 
animal and human models that will only be possible with inter- 
disciplinary collaboration. Furthermore, the application of MR 
will only be relevant to the components of the gut microbi-
ome that are detectibly heritable and, where this is not the case, 
alternative approaches to interrogate causality in relationships  
between the gut microbiome and health traits will be required.
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Understanding the complex mechanisms that link genetic vari-
ation with the gut microbiome will be particularly important 
when interpreting results obtained from MR analyses (Figure 2).  
As an example of this, in the GWAS conducted by Hughes  
et al.61, bacteria in the Bifidobacterium genus were associated 
with the well-characterized rs4988235 lactase persistence variant 
at the MCM6 locus, which is common in European populations 
and the only persistent signal among existing microbiome-wide  
GWASs. Each additional copy of the lactase persistent allele 
decreases the relative bacterial abundance of Bifidobacterium,  
where individuals predisposed to be lactose tolerant are likely 
to have a reduced average Bifidobacterium bacterial abun-
dance within their gut. This observation is supported biologi-
cally as species and strains of Bifidobacterium can metabo-
lise lactose (preferentially over other simple sugars), where  
individuals who are lactose intolerant have higher levels of  
Bifidobacterium to aid digestion, and where supplementation of 
Bifidobacterium has been shown to reduce lactose intolerance  
in humans73,74. In this study, by using the rs4988235 variant  
as an instrument in MR analyses to interrogate the causal 
role of bacteria in the Bifidobacterium genus in the aetiology  
of the collection of metabolic, inflammatory and neurological  
traits, there was suggestive evidence of causal effects with adi-
posity-related traits. Specifically, a greater relative bacterial  
abundance of Bifidobacterium had a potentially causal 
role in lowering waist circumference, BMI and waist-hip  
ratio (where the association with BMI was consistent  
with that described by Yang et al.58).

However, it is currently difficult to determine whether this rela-
tionship with adiposity-related traits is the direct product of  
variations in the relative abundance of Bifidobacterium (i.e., 
via immune modulation or the production of SCFAs, for  
example75,76) or the direct impact of rs4988235 variation on adi-
posity via other exposures such as dietary composition (e.g., 
milk intake), independently of Bifidobacterium (i.e., horizon-
tal pleiotropy – Figure 2D). Therefore, whilst there may appear 
to be a causal effect of Bifidobacterium on adiposity measures, 
this observation may be an artefact resulting in the independent  
impact of the rs4988235 on both Bifidobacterium and adipos-
ity, which is difficult to discern without further functional 
knowledge of the host genetic variants being used as instru-
ments for the gut microbiome in MR analyses. This ambiguity 
is particularly pertinent at a time where there are few genetic 
variants reliably associated with characteristics of the gut  
microbiome.

In addition to these MR-specific limitations, it is worth revisit-
ing the general limitations with microbiome research that have  
likely driven the limited overlap of genetic variants consist-
ently associated with gut microbiota between microbiome-wide  
GWASs. These include (but are certainly not limited to) dif-
ferences in protocols/standards for sample collection and stor-
age, DNA extraction method (including chosen hypervariable  
region for PCR and sequencing methods77), PCR primers, and 
amplicon vs. shotgun sequencing78,79. Whilst 16S rRNA amplicon  

sequencing is useful in providing insight into the types  
of bacteria present within samples, one particular issue in 
current studies is the limited resolution afforded by this  
technology. However, as studies using 16S sequencing combine 
for undertaking harmonized GWASs (e.g., with the MiBioGen  
initiative), the power afforded by larger sample sizes will be  
invaluable for understanding the host genetic contribution to the 
gut microbiome. This, in combination with future studies using 
data from complementary technologies (e.g., shotgun metage-
nomics achieving strain-level resolution, metatranscriptomics,  
proteomics and metabolomics) able to provide more refined  
measures of components and functionality of the gut microbi-
ome, will enable a more comprehensive understanding of the 
role played by these microorganisms in health and disease and 
the mechanisms by which these occur. In addition, whilst most  
studies have focused on the bacterial component of the gut  
microbiome, it is important to interrogate the causal role that  
other integral microorganisms (i.e., fungi, viruses and archaea)  
play in the development and progression of host disease and  
health outcomes over the lifecourse.

Conclusions
MR is an established approach that uses human genetic  
variation to estimate causal associations in observational  
epidemiological relationships and can be used to provide fur-
ther insight into the causal relevance of the gut microbiome 
in human health and disease. The applications discussed here 
currently flag the potential of MR analyses following the  
growing collection of genetic association data for the human  gut 
microbiome, but there are also important issues likely to arise with 
a naïve integration of complex GWAS results to understanding  
causes of health outcomes without in-depth knowledge of the 
host genetic variants themselves and the performance and pit-
falls of MR methodology41,80. Whilst MR was motivated to  
confer certain advantages over traditional epidemiological 
study designs, like any study design within epidemiology, it is  
not exclusively adequate to conclusively demonstrate causal-
ity. Therefore, there is a continued need for triangulation across 
multiple traditional epidemiological approaches and inter- 
disciplinary collaboration to support or challenge causality of 
the role played by the gut microbiome on human health and to 
understand the mechanisms by which these relationships occur. 
Such partnerships are necessary to maximise translation into the  
development of new, targeted therapies to alleviate disease 
symptoms to ultimately improve lives, and promote good health  
whilst preventing ill health81.
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In this review article, the authors discuss how studies on microbiome can be translated into 
human health & diseases, particularly by focusing on the utility of Mendelian randomization (MR) 
studies. The manuscript, describing usefulness and limitation of MR studies, is well written. 
  
It seems that the authors describe the advantage of MR studies based on the concept that 
microbiota composition is influenced by the host genetics. However, environmental factors, 
particularly dietary habits, rather than genetic factors, have a great impact on microbiome. It 
would be better to clearly mention this point. Given that a limited fraction of microbiota is 
influenced by the host genetics, it would also be important to consider the possibility for 
application of MR studies to link the microbiota (influenced by environmental factors) and the 
human diseases (caused by genetic factors). 
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I thank the authors for incorporating my suggestions.  
I only want to get back again at point 4, because I think the explanation given on the study doesn't 
fully reflect the original design. I suggest the following: 
  
“Genetic variants were chosen by conducting a GWAS within 952 individuals from the LifeLines-DEEP 
cohort. A fairly lenient p-value threshold of 1x10-5 was used to define host genetic variants 
independently associated with functional features of the gut microbiome. Genetic variants selected at 
this threshold explained most variance of the same feature in an independent cohort of 445 individuals, 
compared to variants selected with different thresholds”
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This review is clearly written and comprehensive. It explains the urgent need in identifying causal 
relationships between microbiome and diseases before moving to real clinical application and to 
commercial kits, and then introduces the Mendelian Randomization approach that has been 
recently used in this context. The authors present findings and limitations of these studies, and 
also more in general the pros and cons of Mendelian Randomization in application to microbiome.  
  
I have few minor suggestions for further improvement:

Introduction. When discussing the potential role of microbiome modulation as therapy, I 
think it is important to notice that despite causality can be proved (either by MR or 
mechanistic studies in mice/humans), we have to 1) remember that gut microbiome is an 
ecosystem and thus we need to also investigate carefully the side effects of any type 
intervention intended to module one specific bacteria and 2) remember that evidence for 
causal relationship with a disease doesn’t necessarily mean that the scenario is reversible, in 
other words, that modulating that specific bacteria/function will not necessarily cure the 
disease (while remains a valuable information in terms of prevention). 
 

○

MR paragraph. Please remark that MR can be run using limited time and reduced costs 
because it takes advantage of pre-existing large scale genetic studies (otherwise the cost 
and time are not that limited, even if still less than many RCT). 
 

○

MR paragraph – limitations. Please add a note that MR is a great source but only applicable 
to those bacteria that are modulated by genetic of the host – only a small fraction of 
bacteria are, so alternative approaches to detect causality are still much needed.  
 

○

Page 6, please amend the details of the study by Sanna et al. (2019). In this study, the 
number of individuals used to carry out the GWAS was 952. An additional independent 
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cohort of 445 individuals was used to derive the optimal threshold for selecting the 
instruments; specifically this was chosen as the threshold that selected the set of 
independent variants that, when used in a polygenic risk score in the independent cohort, 
explained the most of the variance of the same microbiome feature. [This point explains my 
answer “partly”  to the question “Are all factual statements correct and adequately supported by 
citations?”] 
 
Page 7 second paragraph. Please add the note that some of the complimentary approaches 
to inform MR (for example the bivariate finemapping utilized by Richardson et al.) – require 
individual level data of both the exposure and the outcome, and thus are currently 
impractical to apply to diseases, as there are not such large scale studies of microbiome on 
case-control studies. 
 

○

Page 2, last sentence of the second paragraph. I suggest to add a sentence remarking that 
to solve this ambiguity, large studies are extremely needed as they will likely lead to 
multiple associated SNPs, which will help MR to better investigate effect of confounders.

○
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We wanted to thank the Reviewer for their kind words on the writing and understanding of 
the importance of this area. We hope that this report provides understandable insight into 
the Mendelian randomization approach and how this may help further integrate 
epidemiology and microbiology and interrogate causal relationships between the 
microbiome and health outcomes. We also thank the Reviewer on their suggestions for 
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improvement, which we have addressed below. For each comment made the Reviewer (in 
bold) we have responded and added the italicized excerpt.  
  
1. Introduction. When discussing the potential role of microbiome modulation as 
therapy, I think it is important to notice that despite causality can be proved (either 
by MR or mechanistic studies in mice/humans), we have to 1) remember that gut 
microbiome is an ecosystem and thus we need to also investigate carefully the side 
effects of any type intervention intended to module one specific bacteria and 2) 
remember that evidence for causal relationship with a disease doesn’t necessarily 
mean that the scenario is reversible, in other words, that modulating that specific 
bacteria/function will not necessarily cure the disease (while remains a valuable 
information in terms of prevention). 
 
The Reviewer makes an excellent point regarding the complexity of the gut microbiome and 
the implication of this complexity within possible therapies and interventions. We have 
added a sentence to the introduction to incorporate this point, as follows: 
  
“However, with the development of such efforts, it is important to recognise that the gut 
microbiome is a dynamic and complex ecosystem; therefore, careful investigation of the off-
target effects of any treatment or intervention intended to alter one or a small number of specific 
bacteria is required.” 
  
Additionally, the Reviewer’s point regarding implications of findings to disease prognosis is 
valuable and, indeed, an important consideration when interpreting findings from all 
epidemiological studies focusing on disease risk in comparison to disease prognosis. We 
totally agree that, even if evidence points to a causal impact of the gut microbiome on the 
risk of a disease, this certainly does not imply that the same is true for the progression of 
that disease (i.e., treating individuals who suffer from a disease with, say, a pre-/pro-biotic 
that promotes/contains bacteria associated with the risk of that disease may not lead to a 
better prognosis – or, as the Reviewer states, cure that disease). This is an important 
distinction to make and is only resolved by specifically assessing the association between 
the gut microbiome and disease progression, prognosis or survival (rather than disease 
risk). As it stands, the application of Mendelian randomization to the study of disease 
progression is in its infancy, with methods being developed to address the additional 
caveats of studying populations selected on case-only status, as outlined by Paternoster et 
al. (e.g., that proposed by Dudbridge et al. and the Slope-Hunter method proposed by 
Mahmoud et al.). To address this comment, we have stated the following to emphasize this 
point. 
  
“Furthermore, if evidence of a likely causal effect of a component of the gut microbiome on the 
risk of a disease is provided, this does not imply that the same is true for the progression of that 
disease (and vice versa). Specifically, treating individuals who suffer from, say, IBD with a pre-
/pro-biotic that promotes/contains bacteria found to be associated with the risk of developing 
IBD may not lead to better prognosis of IBD after diagnosis.” 
  
2. MR paragraph. Please remark that MR can be run using limited time and reduced 
costs because it takes advantage of pre-existing large scale genetic studies (otherwise 
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the cost and time are not that limited, even if still less than many RCT).  
 
We have edited a sentence in the MR paragraph to clarify this point: 
  
“Such analyses can be done at a fraction of the time and cost required for a large-scale RCT, by 
exploiting data from pre-existing and large-scale genetic studies, and can be used to ask many of 
the scientific questions that may not be feasible or ethical with RCTs[45, 46].” 
  
3. MR paragraph – limitations. Please add a note that MR is a great source but only 
applicable to those bacteria that are modulated by genetic of the host – only a small 
fraction of bacteria are, so alternative approaches to detect causality are still much 
needed.   
 
We have added the following sentence to the appropriate section: 
  
“Furthermore, the application of MR will only be relevant to the components of the gut 
microbiome that are detectibly heritable and, where this is not the case, alternative approaches 
to interrogate causality in relationships between the gut microbiome and health traits will be 
required.” 
  
4. Page 6, please amend the details of the study by Sanna et al. (2019). In this study, 
the number of individuals used to carry out the GWAS was 952. An additional 
independent cohort of 445 individuals was used to derive the optimal threshold for 
selecting the instruments; specifically this was chosen as the threshold that selected 
the set of independent variants that, when used in a polygenic risk score in the 
independent cohort, explained the most of the variance of the same microbiome 
feature. [This point explains my answer “partly” to the question “Are all factual 
statements correct and adequately supported by citations?”]  
 
We thank the Reviewer for clarifying the sample sizes on this discussed paper. We have 
edited the referenced sentence as follows in light of this information: 
  
“Genetic variants were chosen by conducting a GWAS within 952 individuals from the LifeLines-
DEEP cohort. A fairly lenient p-value threshold of 1x10-5 (identified from an independent cohort of 
445 individuals) was used to define host genetic variants independently associated with 
functional features of the gut microbiome and explained most variance in the same feature.” 
  
5. Page 7 second paragraph. Please add the note that some of the complimentary 
approaches to inform MR (for example the bivariate finemapping utilized by 
Richardson et al.) – require individual level data of both the exposure and the 
outcome, and thus are currently impractical to apply to diseases, as there are not such 
large scale studies of microbiome on case-control studies.  
 
We have added the following sentence to reflect this. 
  
“As these methods (particularly colocalization and genetic fine mapping) require individual-level 
and genome-wide information on both the exposure and outcome, these methods will become 
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more feasible with the growing availability of large-scale GWASs of the gut microbiome and other 
traits.” 
  
6. Page 2, last sentence of the second paragraph. I suggest to add a sentence 
remarking that to solve this ambiguity, large studies are extremely needed as they 
will likely lead to multiple associated SNPs, which will help MR to better investigate 
effect of confounders.  
 
The Reviewer makes an important point and we have added the following sentence to a 
paragraph in the limitations section to address this: 
  
“A greater number of genetic variants robustly associated with features of the gut microbiome 
will further enable the application of the continuously developing plethora of MR methods that 
require multiple instruments to investigate the effect of confounding, mediation, pleiotropy and 
invalidation of MR assumptions.”  
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