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Abstract Phylogenetic networks generalize evolutionary trees, and are commonly used to rep-
resent evolutionary histories of species that undergo reticulate evolutionary processes such as
hybridization, recombination and lateral gene transfer. Recently, there has been great interest in
trying to develop methods to construct rooted phylogenetic networks from triplets, that is rooted
trees on three species. However, although triplets determine or encode rooted phylogenetic trees,
they do not in general encode rooted phylogenetic networks, which is a potential issue for any
such method. Motivated by this fact, Huber and Moulton recently introduced trinets as a natu-
ral extension of rooted triplets to networks. In particular, they showed that level-1 phylogenetic
networks are encoded by their trinets, and also conjectured that all “recoverable” rooted phy-
logenetic networks are encoded by their trinets. Here we prove that recoverable binary level-2
networks and binary tree-child networks are also encoded by their trinets. To do this we prove
two decomposition theorems based on trinets which hold for all recoverable binary rooted phy-
logenetic networks. Our results provide some additional evidence in support of the conjecture
that trinets encode all recoverable rooted phylogenetic networks, and could also lead to new
approaches to construct phylogenetic networks from trinets.
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1 Introduction

Phylogenetic trees are routinely used in biology to represent the evolutionary relationships be-
tween a given set of species. More formally, for a set X of species, a rooted phylogenetic tree is

Leo van Iersel
Centrum Wiskunde & Informatica (CWI), P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
E-mail: l.j.j.v.iersel@gmail.com

Vincent Moulton
School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
E-mail: vincent.moulton@cmp.uea.ac.uk



2 Leo van Iersel, Vincent Moulton

a

b

a

b c

c

ba a c a c

N1 N2 N3 T1 T2

c

bb

Fig. 1 Three non-isomorphic tree-child, level-1 networks that all have the same set of rooted triplets, that is,
Tr(N1) = Tr(N2) = Tr(N3) = {T1, T2}. Blue is used to illustrate how T1 is contained in N1, N2 and N3.

a rooted (graph theoretical) tree that has no indegree-1 outdegree-1 vertices, and in which the
leaves are bijectively labelled by the elements in X (Semple and Steel, 2003); a (rooted) triplet
is a phylogenetic tree with three leaves. Given a rooted phylogenetic tree T and three of its
leaves, there is unique triplet spanned by those leaves that is contained in T . A fundamental
result in phylogenetics states that T is in fact encoded by its triplets, that is, T is the unique
phylogenetic tree containing the set of triplets that arises from taking all combinations of three
leaves in T (Dress et al., 2012). This result is important since it has led to various approaches
to constructing phylogenetic trees from set of triplets cf. e.g. Aho et al. (1981); Ranwez et al.
(2007); Scornavacca et al. (2008).

Recently, there has been some interest in using networks rather than trees to represent evolution-
ary relationships between species that have undergone reticulate evolution (Huson et al., 2011;
Morrison, 2011). This is motivated by the fact that processes such as hybridization, recombina-
tion and lateral gene transfer can lead to evolutionary histories which are not best represented
by a tree. Formally, a (rooted phylogenetic) network for a set X of species is a directed acyclic
graph that has a single root, has no indegree-1 outdegree-1 vertices, and has its leaves bijectively
labelled by X (see Section 2 for full definitions concerning networks). Such a network is called
binary if all vertices have indegree and outdegree at most two and all vertices with indegree two
have outdegree one. In addition, a binary network is called level -k (Gambette et al., 2009, 2012;
Gambette and Huber, 2012; Habib and To, 2012; van Iersel et al., 2009a; van Iersel and Kelk,
2011a) if each biconnected component has at most k indegree-2 vertices, and it is called tree-child
(Cardona et al., 2010, 2009c; van Iersel et al., 2010; Willson, 2012) if each non-leaf vertex has at
least one child which has indegree 1. Note that a rooted phylogenetic tree is a network, but that
networks are more general since they can represent evolutionary events where species combine
rather than speciate.

As with phylogenetic trees, efficient algorithms have been developed which, given a set of triplets,
aim to build a network that contains this set (see e.g. Byrka et al. (2010); Habib and To (2012);
Huber et al. (2011); Jansson et al. (2006)). However, these algorithms share a common weakness
in that, even if all of the triplets within a given network are taken as input, there is no guarantee
that the original network will be reconstructed. This is because, in contrast to trees, the triplets
in a network do not necessarily encode the network (Gambette and Huber, 2012). For example,
Figure 1 presents three different networks that all contain the same set of triplets. Note that a
similar observation has been made concerning the set of trees and set of clusters displayed by a
network (see e.g. Huson et al. (2011); van Iersel and Kelk (2011b)).

Motivated by this problem, Huber and Moulton (2012) recently proposed a possible alternative
way to encode rooted phylogenetic networks by introducing a natural extension of rooted triplets



Trinets encode tree-child and level-2 phylogenetic networks 3

a

b

c

e

f

g
h

i

N

c

e

b c
a

f
i

c

h
i

d

d a

Fig. 2 Example of a rooted phylogenetic network N (left) and four of the trinets exhibited by N (right). The
network N is binary, recoverable, has level 3 and has the tree-child property. Blue is used to illustrate how N
exhibits the pictured trinet on {c, h, i}.

to networks. More specifically, a trinet is a rooted phylogenetic network on three leaves. As with
the triplets in a tree, a network contains or “exhibits” a trinet on every three leaves (see Section 2).
For example, Figure 2 presents a phylogenetic network and four of the trinets that it exhibits.
The main result of Huber and Moulton (2012) implies that level-1 networks are encoded by their
trinets. Moreover, it is conjectured that any “recoverable” network (a network that satisfies some
relatively mild condition which we recall below) is also encoded by its trinets. Here, we provide
some evidence in support of this conjecture by showing that recoverable level-2 and tree-child
networks are also encoded by their trinets.

We now give an overview of the rest of this paper, in which all networks are assumed to be
binary. After presenting some preliminaries in Section 2, we begin by studying the relationship
between the structure of a network and the trinets that it exhibits. In particular, in Section 3
we present two decomposition theorems for general networks. Essentially, these two theorems
state that the cut-arcs of a network (that is, arcs whose removal disconnect the network) can
be directly deduced from its set of trinets (Theorem 1), and that a network is encoded by its
trinets if and only if each of its biconnected components is encoded by its trinets (Theorem 2).
In tandem, these theorems essentially restrict the problem of deciding whether or not trinets
encode networks to the class of networks that do not have any cut-arcs apart from pendant arcs
(so-called “simple” networks).

By restricting our attention to simple networks, in Section 4 we show that a recoverable level-2
network is always encoded by its trinets (Corollary 1). To do this, we use the concept of “gener-
ators” for level-k networks, introduced by van Iersel et al. (2009a) and van Iersel et al. (2009b).
In Section 5, we then use alternative techniques to prove that tree-child networks are also en-
coded by their trinets (Theorem 4). Note that this class of networks includes the class of regular
networks (Baroni et al., 2004). Thus it is interesting to note that a regular network is encoded
by the set of trees1 that it contains (Willson, 2010), but that this is not the case for tree-child
networks (e.g. all of the networks in Figure 1 contain the same set of trees). In Section 6, we con-

1 Note that all of these trees have the same leaf-set as the network.
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clude the paper with two corollaries and a discussion of our results and possible future research
directions.

Ultimately, it is hoped that the results presented in this paper will lead to new methods for
constructing phylogenetic networks. In principle it should be straight-forward to infer low-level
trinets for biological datasets consisting of molecular sequences using existing methods to con-
struct phylogenetic networks. For example, given a multiple sequence alignment, the most parsi-
monious or most likely level-1 or level-2 trinet for every sub-alignment of three sequences could be
computed using, e.g., methods described by Jin et al. (2006, 2009), which becomes computation-
ally tractible since there are a bounded number of such trinets (under certain natural restrictions,
see Sections 2 and 6). The structural results in this paper, such as the decomposition theorems
presented in Section 3, could then be used to help design algorithms to construct networks from
the trinets inferred in this way. Note that this has the potential advantage that ‘breakpoints’
need not be computed for the multiple alignment, a first (and sometimes quite difficult) step that
is commonly required for constructing phylogenetic networks from phylogenetic trees or clusters
(cf. e.g. Nakhleh (2011, Section 2)).

2 Preliminaries

Throughout the paper, X is a finite set. As mentioned in the introduction, a rooted phylogenetic
network on X is a directed acyclic graph with a single indegree-0 vertex (the root) and a bijective
labelling of its outdegree-0 vertices (leaves) by the elements of X. We identify each leaf with its
label. A phylogenetic network is binary if all vertices have indegree and outdegree at most 2 and
all vertices with indegree 2 have outdegree 1. We will often refer to a rooted phylogenetic network
simply as a phylogenetic network or a network for short. See Figures 1, 2 and 3 for examples.
Let u and v be two vertices of a phylogenetic network N . If (u, v) is an arc of N , then we say
that u is a parent of v and that v is a child of u. Furthermore, we write u ≤N v and say that v
is below u, if there is a directed path from u to v in N , or u = v. For two leaves x and y, we say
that x is below y if the parent of x is below the parent of y. For an arc a = (u, v) and a vertex w,
we say that w is below a if w is below v.

Let D be a directed graph with a single root ρ. The indegree of a vertex v of D is denoted δ−(v)
and v is said to be a reticulation vertex or a reticulation if δ−(v) ≥ 2. The reticulation number
of D is defined as

r(N) =
∑
v 6=ρ

(δ−(v)− 1).

Hence, the reticulation number of a binary network is simply the number of its reticulation
vertices.

We say that a vertex v of D is a cut-vertex if its removal disconnects the underlying undirected
graph of D. Similarly, an arc a of D is a cut-arc if its removal disconnects the underlying undi-
rected graph of D. A directed graph is called biconnected if it has no cut-vertices. A biconnected
component is a maximal biconnected subgraph (i.e. a biconnected subgraph that is not contained
in any other biconnected subgraph). Note that, by this definition, each cut-arc is a biconnected
component. We call these the trivial biconnected components. Thus, rephrasing the definitions
given in the introduction, a phylogenetic network is level-k if each biconnected component has
reticulation number at most k, it is tree-child if every non-leaf vertex of the network has at least
one child that is not a reticulation, and it is simple if the head of each cut-arc is a leaf.
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Fig. 3 The phylogenetic network on the left is not recoverable because it has a strongly redundant biconnected
component. The phylogenetic network on the right is recoverable, because its only nontrivial biconnected compo-
nent, although redundant, is not strongly redundant.

As explained in the introdution, in this paper we are mainly concerned with extending a result
by Huber and Moulton (2012) from level-1 networks to level-2 and tree-child networks. Level-1
networks have a relatively simple and well-understood structure (Gambette and Huber, 2009;
Gambette et al., 2009; Jansson et al., 2006). Level-2 networks are more general and the underlying
topologies of their biconnected components can be more complicated (van Iersel et al., 2009a; van
Iersel and Kelk, 2011a). The class of tree-child networks is a different generalization of the class of
level-1 networks that is not directly comparable to the class of level-2 networks. On the one hand,
tree-child networks can have complicated biconnected components with many reticulations. On
the other hand, tree-child networks can not have any “invisible vertices”, i.e. vertices from which
all paths lead to reticulations.

Given a nontrivial biconnected component B, we say that B is redundant if it has only one
outgoing arc and we say that B is strongly redundant if it has only one outgoing arc (u, v) and
all leaves of the network are below v. We say that a phylogenetic network N is recoverable if
it has no strongly redundant biconnected components (see e.g. Figure 3). We remark that all
level-1 networks are recoverable (Huber and Moulton, 2012). Moreover, neither level-1 nor tree-
child networks can have any redundant biconnected components. On the other hand, there are
level-2 networks that do have redundant (and strongly redundant) biconnected components (see
Figure 3).

A trinet is a phylogenetic network with three leaves. Ignoring leaf-labels, there are 14 distinct
level-1 trinets, 8 of which are binary (Huber and Moulton, 2012). Note that there is an infinite
number of level-2 trinets, and even of recoverable level-2 trinets. On the other hand, it is not too
difficult to see that the number of level-2 trinets without redundant biconnected components is
finite. In the appendix, we show that there are 220 such trinets (restricting to binary trinets).
Moreover, we show that the number of level-k trinets without redundant biconnected components
is bounded by a function of k. We shall also return to this point in Section 6.

Given a network N on X and X ′ ⊆ X, a lowest stable ancestor LSA(X ′) is defined as a
vertex w /∈ X ′ of N for which all paths from the root to any x ∈ X ′ pass through w, and such
that no vertex below w has this property. A lowest common ancestor of X ′ in N is a vertex w
such that w ≤N x for all x ∈ X ′ and no vertex below w has this property. Note that the lowest
stable ancestor is unique but that this not necessarily the case for a lowest common ancestor
(Fischer and Huson, 2010). If a lowest common ancestor of X ′ is unique, then we denote it by
LCA(X ′). Keep in mind that, even if the lowest common ancestor is unique, it is not necessarily
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equal to the lowest stable ancestor. For two vertices u, v, we write LSA(u, v) as shorthand for
LSA({u, v}) and LCA(u, v) as shorthand for LCA({u, v}). The following easily proven fact will
be useful later on.

Observation 1 If N is a phylogenetic network on X and X ′ ⊆ X with X ′ ≥ 2, then there exist
x, y ∈ X ′ such that LSA(x, y) = LSA(X ′).

Given a phylogenetic network N on X and {x, y, z} ⊆ X, the trinet on {x, y, z} exhibited by N
is defined as the trinet obtained from N by deleting all vertices that are not on any path from
LSA({x, y, z}) to x, y or z and subsequently suppressing all indegree-1 outdegree-1 vertices and
parallel arcs. See Figure 2 for some examples. We note that this definition is equivalent to the
definition of “display” of Huber and Moulton (2012) but we call it “exhibit” to clearly distinguish
it from other usages of “display” (in particular, the definition of when a network displays a tree
or triplet). We will often (implicitly) use the following observation.

Observation 2 Given a phylogenetic network N on X and {x, y, z} ⊆ X, the trinet on {x, y, z}
exhibited by N can be obtained from N by removing all leaves except x, y and z and repeatedly
applying the following operations until none is applicable:

– deleting all unlabelled outdegree-0 vertices;

– deleting all indegree-0 outdegree-1 vertices;

– suppressing all indegree-1 outdegree-1 vertices;

– suppressing all parallel arcs; and

– suppressing all strongly redundant biconnected components.

By suppressing parallel arcs, we mean replacing each set of parallel arcs by a single arc. By sup-
pressing strongly redundant biconnected components, we mean replacing each such component
by a single vertex.

The following observation, linking lowest common ancestors in networks and their exhibited
trinets, will be used in the proof of Theorem 4.

Observation 3 Suppose that u is the unique lowest common ancestor of two leaves x and y in
a network N and that P is a trinet exhibited by N that contains x and y. Then, P contains u
(where we consider P as being obtained from N as described in Observation 2) and u is the
unique lowest common ancestor of x and y in P .

We now make a definition that will be crucial for the decomposition theorems in Section 3 (note
that a somewhat related definition was used by Habib and To (2012)).

Definition 1 Let N be a phylogenetic network on X and A ⊆ X. Then, A is a CA-set (Cut-Arc
set) of N if there exists a cut-arc (u, v) of N such that A = {x ∈ X | v ≤N x}.

For example, the CA-sets of networkN in Figure 2 are {d, e}, {g, h} and all singletons {a}, {b}, {c},
{d}, {e}, {f}, {g}, {h}, {i}. In the next section, we will make use of the following easily proven
fact that relates the CA-sets of a network to the CA-sets of its exhibited trinets.

Observation 4 Let N be a phylogenetic network on X and P the trinet on {x, y, z} ⊆ X
exhibited by N . If A ⊆ X is a CA-set of N , then A ∩ {x, y, z} is a CA-set of P .

The lowest stable ancestor of a CA-set has the following interesting property.
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Observation 5 If N is a phylogenetic network on X and A ⊆ X a CA-set of N , then the arc
entering LSA(A) is a cut-arc. Moreover, A = {x ∈ X | LSA(A) ≤N x}.

Given two phylogenetic networks N and N ′ on X, we write N = N ′ if there is a graph iso-
morphism between N and N ′ that preserves leaf labels, i.e. if there exists a bijective function
f : V (N)→ V (N ′) such that f(x) = x for each leaf x of N and such that for every u, v ∈ V (N)
holds that (u, v) is an arc of N if and only if (f(u), f(v)) is an arc of N ′.

We use Tn(N) to denote the set of all trinets exhibited by a phylogenetic network N . A phylo-
genetic network N is encoded by its set of trinets Tn(N) if there is no recoverable phylogenetic
network N ′ 6= N with Tn(N) = Tn(N ′).

3 Decomposition theorems for trinets

It is well known that any graph can be decomposed into its biconnected components. We begin by
showing that trinets can be used to recover this decomposition of binary phylogenetic networks.
Note that similar results have been proven for triplets by van Iersel and Kelk (2011a) and for
quartets in unrooted phylogenetics networks by Gambette et al. (2009).

Theorem 1 Let N be a recoverable binary phylogenetic network on X, and A ⊂ X. Then, A is
a CA-set of N if and only if |A| = 1 or, for all z ∈ X \ A and x, y ∈ A with x 6= y, {x, y} is a
CA-set of the trinet on {x, y, z} exhibited by N .

Proof Let A ⊂ X. If |A| = 1 then the theorem clearly holds since each leaf of a binary network
has a cut-arc entering it and thus forms a singleton CA-set. Hence, we assume |A| ≥ 2.

To prove the “only if” direction, assume that A is a CA-set of N . Let z ∈ X \ A and x, y ∈ A
with x 6= y. There exists a unique trinet P on {x, y, z} in Tn(N). Since A is a CA-set of N , it
follows from Observation 4 that {x, y} is a CA-set of P and we are done.

It remains to prove the “if” direction. Assume that for all z ∈ X \ A and x, y ∈ A with x 6= y,
{x, y} is a CA-set of the trinet on {x, y, z} exhibited by N . Assume that A is not a CA-set of N .

First assume that the arc entering LSA(A) is a cut-arc a. By Observation 1, there exist x, y ∈ A
such that LSA(x, y) = LSA(A). Moreover, there exist z ∈ X \A below a because A is not a
CA-set. Consider the trinet P on {x, y, z} exhibited by N . By the definition of “exhibit”, all
paths from LSA({x, y, z}) and hence from LSA(x, y) to x, y and z are retained in P , although
vertices on the paths might be suppressed and several paths might be collapsed into single paths.
It follows that z is also below LSA(x, y) in P . Then it follows from Observation 5 that {x, y} is
not a CA-set of P , which is a contradiction. Hence, there is no cut-arc entering LSA(A), which
implies that LSA(A) is in a nontrivial biconnected component.

Now, let B be the nontrivial biconnected component of N containing LSA(A). It is not too
difficult to show that B has a single vertex with no ancestors in B. We call this vertex rB the root
of B. Choose x, y ∈ A that are below different cut-arcs leaving B such that LSA(x, y) = LSA(A).
First, we observe that there is no leaf z ∈ X \ A below LSA(x, y), because otherwise we could
argue as before that the trinet on {x, y, z} exhibited by N does not have {x, y} as a CA-set. Pick
z ∈ X \ A arbitrarily below a cut-arc leaving B. Note that neither x nor y is below this cut-arc
because otherwise z would be below LSA(x, y).
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Fig. 4 Illustration of network N in the proof of Theorem 1. Dashed arcs denote directed paths. Arc a′ corresponds
to cut-arc a of trinet P on {x, y, z}, while a′ is not a cut-arc of N .

By assumption, the trinet P on {x, y, z} exhibited by N has {x, y} as a CA-set. This means
that P has a cut-arc a such that x and y are below a but z is not. Consider the arc a′ = (u, v)
of N corresponding to cut-arc a of P . Observe that v is the lowest stable ancestor of x and y in N ,
because all paths from LSA(x, y), to x and y are retained in P (although vertices on the paths
might be suppressed and several paths might be collapsed into single paths). Also observe that a′

is not a cut-arc in N because x, y and z are below three different cut-arcs leaving a biconnected
component B. Thus, a′ is some arc of B and the operations from Observation 2 that turn N
into P destroy the biconnectivity of B. Observe that the only one of these operations that does
not preserve biconnectivity is the deletion of unlabelled outdegree-0 vertices in case they have
indegree greater than 1. We claim that there then exists a reticulation r in N with directed paths
from v to r and from some ancestor of u to r not passing through a′ (see Figure 4).

To prove this claim, first note that, since a′ is not a cut-arc of N , there is some undirected path U
in N from v to u not passing through a′. Consider the last vertex r of U that is below v. Clearly, r
is a reticulation. Let p be the next vertex on path U . Then p is not below v. Clearly, p is below
the root and, since p is not below v, the path from the root to p does not pass through a′. It
follows that r is a reticulation with directed paths from v to r and from some ancestor of u to r
not passing through a′.

Now, consider any leaf y′ below r. First observe that y′ ∈ A because no leaves z ∈ X \ A are
below LSA(x, y). However, then we obtain a contradiction because LSA(x, y′) is closer to the
root than LSA(x, y) = v. ut

Note that we could have used Lemma 3 of van Iersel and Kelk (2011a) in the proof of the
last result. However, we presented the above proof since it is shorter, self-contained and provides
some insight into how to make arguments using trinets. We also note that for an arbitrary binary
recoverable network N there is not necessarily a bijection between the cut-arcs of N and the
CA-sets of N because different cut-arcs might correspond to the same CA-set. However, it is
easy to see that the following related observation does hold.

Observation 6 If N is a binary phylogenetic network without redundant biconnected compo-
nents, then there is a bijection between the cut-arcs of N and the CA-sets of N .

We now turn to showing that, roughly speaking, a binary network is encoded by its trinets if
and only if each of its biconnected components is encoded by its trinets. To this end, let N
be a phylogenetic network and B a nontrivial biconnected component with b outgoing cut-
arcs a1 = (u1, v1), . . . , ab = (ub, vb). Consider the phylogenetic network NB obtained from N
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by deleting all biconnected components except for B, a1, . . . , ab and labelling v1, . . . , vb by new
labels y1, . . . , yb that are not in X. We call NB a restriction of N to B. Note that NB is unique
up to the choice of the new labels y1, . . . , yb. Furthermore, NB is a simple network.

Theorem 2 A recoverable binary phylogenetic network N on X, with |X| ≥ 3, is encoded by
its trinets Tn(N) if and only if, for each nontrivial biconnected component B of N with at least
four outgoing cut-arcs, NB is encoded by Tn(NB).

Proof To prove the “only if” direction of the theorem, suppose that N is a recoverable binary
phylogenetic network on X that is encoded by its trinets Tn(N). Consider any nontrivial bi-
connected component B of N with at least four outgoing cut-arcs. For contradiction, suppose
that NB is not encoded by Tn(NB), i.e. there exists a recoverable network N ′B 6= NB such that
Tn(NB) = Tn(N ′B). By Theorem 1, N ′B has the same CA-sets as NB . Hence, all CA-sets of N ′B
are singletons. In addition, we claim that N ′B has no redundant biconnected components. If it
had one, then there would be only one leaf, say x, below it. However, then all trinets containing x
would have a redundant biconnected component with x directly below it. This is not possible
because Tn(NB) = Tn(N ′B) and it is easily checked that for each leaf x there exists a trinet
in Tn(NB) with no such redundant biconnected component. Hence, N ′B has no redundant bi-
connected components. Combining this with the previous observation that all CA-sets of N ′B are
singletons, it now follows that N ′B consists of one nontrivial biconnected component with leaves
attached to it by cut-arcs, i.e. it is a simple network. Let B′ be the nontrivial biconnected compo-
nent of N ′B . Let N ′ be the result of replacing B by B′ in N . We will show that Tn(N) = Tn(N ′),
which will contradict the fact that N is encoded by Tn(N), since N ′ is clearly recoverable.

To show that Tn(N) = Tn(N ′), let P ∈ Tn(N) and let x, y and z be the leaves of P . If x, y and z
are all below different cut-arcs, or all below the same cut-arc leaving B, then clearly P ∈ Tn(N ′)
since the only difference between N and N ′ is that B is replaced by B′, and Tn(NB) = Tn(N ′B).
Now suppose that P contains leaves x, y that are below the same cut-arc leaving B and a leaf z
below a different cut-arc leaving B. Then consider a fourth leaf q that is below a third cut-arc
leaving B. Since Tn(NB) = Tn(N ′B), the trinets on {x, z, q} exhibited by N and N ′ are the
same. Hence, the binet (phylogenetic network on two leaves) on {x, z} exhibited (defined in the
same way as for trinets) by N and by N ′ is the same. Hence, the trinet on {x, y, z} exhibited
by N and by N ′ is the same, and so P ∈ Tn(N ′). The case that P contains one or more leaves
that are not below B can be handled similarly. It therefore easily follows that Tn(N) = Tn(N ′),
as required.

To prove the “if” direction, let N be a recoverable phylogenetic network on X such that for
each nontrivial biconnected component B with at least four outgoing cut-arcs the network NB
is encoded by Tn(NB). Let N ′ be a recoverable network on X with Tn(N) = Tn(N ′). We will
show that N = N ′.

First observe that, for a biconnected component B with precisely 3 outgoing cut-arcs, NB is
trivially encoded by Tn(NB), since in that case NB is isomorphic to the single trinet in Tn(NB).

The rest of the proof is by induction on |X|. If |X| = 3, then, since N and N ′ are recoverable,
they are both equal to the single trinet in Tn(N) and we are done. Assume |X| ≥ 4. Consider
the root ρ of N . We shall assume that ρ is in some nontrivial biconnected component Bρ and
that a1 = (u1, v1), . . . , ab = (ub, vb) are the cut-arcs leaving Bρ. The case that ρ is not in a
nontrivial biconnected component can be handled in a similar way, with arcs a1, . . . , ab being the
arcs leaving ρ (and b = 2 since N is binary).
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Let N1, . . . , Nb be the networks rooted at v1, . . . , vb. More precisely, for 1 ≤ i ≤ b, let Ni be the
network obtained from N by deleting all vertices that are not below vi. Suppose that Xi is the
leaf-set of Ni. Then, since b ≥ 2, we have |Xi| < |X|. Note that Ni is not necessarily recoverable.

Now, by Theorem 1, N ′ has the same CA-sets as N . Thus, Xi is a CA-set of N ′ for i = 1, . . . , b.
Since the root ρ of N is in some nontrivial biconnected component Bρ, it follows quite easily that
also the root ρ′ of N ′ is in some nontrivial biconnected component B′ρ. Let a′1 = (u′1, v

′
1), . . . , a′b =

(u′b, v
′
b) be the cut-arcs leaving B′ρ. Let N ′1, . . . , N

′
b be the networks rooted at v′1, . . . , v

′
b. Assume

without loss of generality that N ′i is a network on Xi for i = 1, . . . , b. To show that N = N ′, it
remains to show that NBρ

= NB′
ρ

and that Ni = N ′i for i = 1, . . . , b.

First, we show that NBρ
= NB′

ρ
. Observe that Tn(NBρ

) = Tn(NB′
ρ
) (if for any three leaves

yj , yk, y` the trinet in Tn(NBρ
) and the trinet in Tn(NB′

ρ
) would be different then, for any three

leaves xj , xk, x` below aj , ak, a` respectively, the trinet in Tn(N) and the trinet in Tn(N ′) would
be different). If b ≥ 4, then it is clear that NBρ = NB′

ρ
because Tn(NBρ) = Tn(NB′

ρ
) and by

assumption NBρ is encoded by Tn(NBρ). Moreover, b ≥ 2 since N is recoverable. For b = 3
the statement NBρ

= NB′
ρ

is trivially true. Hence, the only case left is b = 2. Consider two
leaves x, y of N that are below the same cut-arc leaving Bρ and a leaf z that is below the other
cut-arc leaving Bρ. These leaves exist since |X| ≥ 3. Consider the trinet P in Tn(N) on {x, y, z}.
Let Bρ(P ) be the biconnected component of P containing the root of P . Then, NBρ(P ) = NBρ .
Moreover, since N ′ also exhibits P , NBρ(P ) = NB′

ρ
. It follows that NBρ = NB′

ρ
.

Now, let i ∈ {1, . . . , b}. We will show that Ni = N ′i . Observe that Tn(Ni) = Tn(N ′i) for similar
reasons as we used in the previous paragraph. Since |Xi| < |X|, the statement Ni = N ′i follows by
induction if (a) Ni and N ′i are recoverable and (b) |Xi| ≥ 3. To show the general case, consider the
networks Ri and R′i obtained from Ni and N ′i respectively by suppressing all strongly redundant
biconnected components. Then, Ri and R′i are recoverable. Hence, if |Xi| ≥ 3, Ri = R′i by
induction. If |Xi| = 1, then clearly Ri = R′i because both consist of a single leaf. The only case
left is |Xi| = 2. Consider any leaf z ∈ X \Xi and the trinet P on Xi∪{z}. By Observation 4, Xi

is a CA-set of P . Let P ∗ be the result of deleting all vertices that are not below LSA(Xi). Then,
P ∗ = Ri since Ri is recoverable. Moreover, since P is exhibited by N ′ and R′i is recoverable, we
also have P ∗ = R′i. Hence, in all cases, Ri = R′i. So, to complete the proof that Ni = N ′i , it
remains to show that Ni and N ′i have the same strongly redundant biconnected components, in
the same order. To prove this, we distinguish the cases |Xi| = 1 and |Xi| ≥ 2.

First, suppose |Xi| = 1, say Xi = {x}. Let y, z ∈ X \Xi such that LSA(ui) ≤N z. (Note that
there must be at least one leaf z below LSA(ui) in N since otherwise the arc entering LSA(ui)
would be a cut-arc and there are no cut-arcs above ui.) Consider the trinet P on {x, y, z}. Let a
be the cut-arc in P such that x is below a, such that y and z are not below a and such that there
is no cut-arc a′ with this property with a below a′. Arc a corresponds to arc (ui, vi) of N . To
see this, note that a cannot be above LSA(ui) because z is below LSA(ui). Moreover, a cannot
be between LSA(ui) and ui because then it would not be a cut-arc. Consider the network Px
obtained from P by deleting all vertices that are not below a. Then, Px = Ni = N ′i .

Now suppose that |Xi| ≥ 2. Let z ∈ X \Xi such that LSA(ui) ≤N z and let x, y ∈ Xi such that
LSA(x, y) = LSA(Xi) (such x, y exist by Observation 1). Consider the trinet P on {x, y, z}.
Consider the cut-arc a of P such that x and y are below a, z is not below a and such that there
is no cut-arc a′ with this property with a below a′. Then, for similar reasons as in the previous
paragraph, a corresponds to arc (ui, vi) of N . Let D be the directed graph obtained from P
by deleting all vertices that are not below a and deleting all vertices that are below LSA(x, y).
Then, D is isomorphic to the strongly redundant biconnected components of Ni and of N ′i . Now,
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Fig. 5 The four level-2 generators. Each side is labelled by a capital letter.

since Ri = R′i and Ni and N ′i have the same strongly redundant biconnected components, in the
same order, as required. ut

4 Trinets encode level-2 networks

In this section we show that binary recoverable level-2 networks are encoded by their trinets.
To do this, we will consider each biconnected component of such a network separately, and will
apply some structural results concerning these components that were presented by van Iersel
et al. (2009a). Throughout the section, we restrict to binary networks.

We begin by recalling some relevant definitions. A level-k phylogenetic network is called a simple
level -k network if it contains one nontrivial biconnected component B containing exactly k retic-
ulations and no cut-arcs other than the ones leaving B (see the left of Figure 6 for an example of
a simple level-2 network). A (binary) level-k generator is a directed acyclic biconnected multi-
graph with exactly k reticulations with indegree 2 and outdegree at most 1, a single vertex with
indegree 0 and outdegree 2, and apart from that only vertices with indegree 1 and outdegree 2.
The arcs and outdegree-0 vertices of a generator are called its sides. For example, all level-2
generators are depicted in Figure 5.

Note that deleting all leaves of a simple level-k network N gives a level-k generator GN . We
call GN the underlying generator of N . Conversely, N can be reconstructed from GN by “hanging
leaves” from the sides of GN as follows (van Iersel et al., 2009a):
– for each arc a of GN , replace a by a directed path with ` ≥ 0 internal vertices v1, . . . , v` and,

for each such internal vertex vi, add a leaf xi ∈ X and an arc (vi, xi); and

– for each indegree-2 outdegree-0 vertex v, add a leaf x ∈ X and an arc (v, x).

We say that a leaf x “is on side” s if it is hung on side s in this construction of N from GN . More
precisely, for a leaf x ∈ X of a simple level-k network N with underlying generator GN and a
side s of GN , we say that x is on side s if s is an indegree-2 outdegree-0 vertex of GN and (s, x)
is an edge of N or if s is an edge (u, v) of GN and the parent of x in N lies on the directed path
from u to v in N .

Now, given a level-k generator G, we call a set of sides of G a set of crucial sides if it contains
all vertices with indegree 2 and outdegree 0 together with at least one arc of each pair of parallel
arcs. Consider any simple level-k network N on X with underlying generator G and a trinet P
on X ′ ⊆ X. We say that P is a crucial trinet of N if X ′ contains at least one leaf on each side in
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some set of crucial sides of G. For example, Figure 6 depicts a simple level-2 network, one crucial
trinet and two non-crucial trinets. The following observation can be verified by inspecting all
level-2 generators in Figure 5.

Observation 7 If G is a level-2 generator, then it has a set of crucial sides of size at most 2.
Hence, every simple level-2 network N has at least one crucial trinet. Moreover, for every leaf x
of N , there exists a crucial trinet of N containing x.

Note that for k ≥ 4 there exist level-k networks that have no crucial trinets, e.g. networks that
have at least four leaves whose parents are reticulations.

Before proving the main result of this section, we prove one other useful fact.

Lemma 1 Let N be a simple level-k network, G its underlying generator and P ∈ Tn(N).
Then, P is a crucial trinet of N if and only if P is a simple level-k network. Moreover, if P is
a crucial trinet of N then G is its underlying generator.

Proof First assume that P is a crucial trinet. Then, if P is obtained from N as in the construction
in Observation 2, no reticulations are deleted because P contains a leaf below each reticulation.
Moreover, no parallel arcs are suppressed because P contains a leaf for each set of parallel arcs
of G. Hence, P is, like N , a simple level-k network with underlying generator G.

Now assume that P is not a crucial trinet. Then there are two cases. The first case is that there
is some leaf that is the child of a reticulation in N but that is not contained in P . Then, if P is
obtained from N as in the construction in Observation 2, at least one reticulation is deleted. The
second case is that there is some pair of parallel arcs in G for which P does not contain a leaf
that is on any of the corresponding sides of N . Then parallel arcs are suppressed in obtaining P
from N . In both cases, the reticulation number of P is strictly smaller than the reticulation
number of N . It follows that P is not a simple level-k network because such networks have
exactly k reticulations. ut

Theorem 3 Every binary, simple level-2 network on X, with |X| ≥ 3, is encoded by its trinets.

Proof Let N be any binary, simple level-2 network on X, with |X| ≥ 3. Assume that Tn(N ′) =
Tn(N) for some recoverable network N ′. We will show that N ′ = N .

We begin by showing that N ′ is a binary, simple, level-2 network. First, N ′ is simple network
because its set of CA-sets equals the set of CA-sets of N by Theorem 1 and it has no redundant
biconnected components for similar reasons as in the proof of Theorem 2. Second, observe that
any simple level-k network with k > 2 has a level-k′ trinet with k′ > 2. (If there are at least
three leaves whose parent is a reticulation, take three such leaves. Otherwise, take all leaves
whose parent is a reticulation and take the remaining leaves on sides that form parallel arcs in
the underlying generator of N , choosing at most one leaf per pair of parallel arcs. The trinet on
the chosen three leaves has at least 3 reticulations.) It follows that N ′ is a level-2 network since
Tn(N ′) = Tn(N) contains only level-2 trinets. Third, N ′ is binary. Indeed, assume that N ′ has
a vertex with outdegree greater than 2 and let c1, c2, c3 be three of its children. Then, consider
three (not necessarily different) leaves x1, x2 and x3 below c1, c2 and c3 respectively. Then, any
trinet containing x1, x2 and x3 exhibited by N ′ is not binary, while all trinets in Tn(N ′) = Tn(N)
are binary.

Now, let G be the underlying generator of N . First, we show that G is also the underlying
generator of N ′. By Observation 7, N has at least one crucial trinet Pc. By Lemma 1, Pc is a
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Fig. 6 The underlying generator of simple level-2 network N is 2b (see Figure 5). Leaf x is on side G, y is on
side H, z and z′ are on side E and q and q′ are on side A. Trinet Pc, the trinet on {x, y, z}, is one of the four
crucial trinets, which determine the side each leaf is on. Trinet P1 on {x, z, z′} and trinet P2 on {y, q, q′}, which
are non-crucial trinets, determine the order of the leaves on each side. This is Case “G = 2b” in the proof of
Lemma 3.

simple level-2 network and its underlying generator is G. Since Tn(N) = Tn(N ′), Pc is also a
trinet of N ′. Moreover, Pc is a crucial trinet of N ′ by Lemma 1 because N ′ is a simple level-2
network and Pc is a simple level-2 network. Hence, G is the underlying generator of N ′, again
by Lemma 1.

The remainder of the proof is divided into four cases, based on the four level-2 generators 2a, 2b,
2c and 2d (see Figure 5 for these generators and the labels of their sides).

Case G = 2a. First, observe that there are no symmetries, i.e. no relabelling of the sides of 2a
gives an isomorphic generator. Let x be the leaf on side F in N . Since x is then the leaf on side F
in every crucial trinet of N , and since these crucial trinets are exhibited by N ′, and since there
are no symmetries, it follows that x is also the leaf on side F in N ′. Now consider any side s 6= F
of N and any leaf y on that side. Consider any crucial trinet Pc of N containing y. Then y is on
side s in Pc and, since Pc is exhibited by N ′ and there are no symmetries, y is on side s in N ′.
Hence, each leaf is on the same side in N ′ as it is in N . It remains to show that the leaves on
each side are in the same order in N and N ′. Consider a side s with at least two leaves and two
leaves y, z on that side such that z is below y. It follows that z is below y in the crucial trinet
on {x, y, z} and from that it follows that z is below y in N ′. We conclude that N ′ = N since
both networks have the same underlying generator, the same leaves on each side, and the same
order of the leaves on each side.

Case G = 2b. Again, there are no symmetries. Let x be the leaf on side G, y the leaf on side H
and z a leaf on some other side s (see Figure 6). Then, the trinet Pc on {x, y, z} is crucial and,
since there are no symmetries, it follows that leaves x, y, z are, respectively, on sides G,H, s in Pc
and hence in N ′. Consequently, all leaves are on the same side in N ′ as in N . To see that they
are in the same order, first consider two leaves z, z′ that are both on side C,D or E and consider
the (non-crucial) trinet P1 on {x, z, z′}. Observe that P1 is a simple level-1 network and that z
and z′ are on the same side of P1. Moreover, if z is below z′ in N , then z is below z′ in P1, and
hence z is below z′ in N ′. Now consider leaves q, q′ both on side A,B or F . Then the trinet P2

on {y, q, q′} is a simple level-1 network and, as before, if q is below q′ in N , then q is below q′

in P2 and hence in N ′. It follows that N = N ′ as required.
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Case G = 2c. In this case there is some symmetry since sides A,C and E can be interchanged
with B,D and F , respectively, to obtain an isomorphic generator. Similarly, sides C,H,D can
be interchanged with E,G, F , respectively, again yielding an isomorphic generator. Let x be on
side G, y on side H and z on some other side s in N . Then, the crucial trinet Pc on {x, y, z}
implies that x and y are on side G and H in N ′. Assume without loss of generality that x is on
side G and y on side H in N ′. Then, again using trinet Pc, it follows that z is on side A or B
in N ′ if it is on side A or B in N . Similarly, z is on side C or D in N ′ if it is on side C or D
in N and z is on side E or F in N ′ if it is on side E or F in N .

Now, consider two leaves z, z′ that are both on side A,B,C or D of N . In view of the trinet on
{y, z, z′}, z and z′ are also on the same side of N ′ and in the same order as in N . Similarly, for
two leaves z, z′ that are both on side E or F . Also, the trinet on {x, z, z′} implies that z and z′

are on the same side of N ′ and in the same order. Thus, leaves that are on the same side in N
are on the same side in N ′ and in the same order. First assume that there is at least one leaf on
side A in N and that the leaves that are on side A in N are on side A in N ′. Let a be one such
leaf on side A. Then, any leaf c that is on side C in N is on side C in N ′ by the trinet on {a, c, y}
(because a and c are on the same side of this trinet, which is a simple level-1 network). Similarly,
for leaf z on side s ∈ {B,D} in N holds that z is on side s in N ′ by the trinet on {a, z, y} and for
leaf z on side s ∈ {E,F} in N holds that z is on side s in N ′ by the trinet on {a, z, x}. It follows
that N = N ′ because all leaves are on the same side, in the same order. Now assume that the
leaves that are on side A in N are not on side A in N ′. Then these leaves are on side B in N ′.
Then we can argue in exactly the same way that the leaves that are on sides B,C,D,E, F in N
are on sides A,D,C, F,E in N ′. Hence, again N = N ′ by relabelling the sides appropriately.
Finally, if there is no leaf on side A, then there is a leaf on one of the sides B,C,D,E, F (since
|X| ≥ 3) and we can apply similar arguments based on that leaf.

Case G = 2d. In this case, the only symmetry is that sides B and C can be interchanged with C
and B, respectively. Let x be the leaf on side F , y a leaf on side B or C and z a leaf on some
side s ∈ {A,B,C,D,E} in N . Note that there exists at least one such leaf z since |X| ≥ 3.
Then, by the crucial trinet on {x, y, z}, x is on side F and y is on side B or C. Without loss of
generality, y is on the same side in N ′ as in N . So it follows that z is on side s in N ′. Hence,
without loss of generality (i.e. by relabelling sides B and C if necessary), each leaf is on the
same side in N ′ as in N . Now consider two leaves z, z′ that are on the same side of N . Then
the trinet on {x, z, z′} implies that the order of z and z′ is the same in N ′ as in N . We can
conclude that N ′ = N , since (after possibly relabelling sides B and C) both networks have the
same leaves on the same sides in the same order. ut

Corollary 1 Every binary recoverable level-2 network N on X, with |X| ≥ 3, is encoded by its
set of trinets Tn(N).

Proof Follows from Theorem 2, Lemma 3 and the fact that level-1 networks are encoded by their
trinets (Huber and Moulton, 2012). ut

5 Trinets encode tree-child networks

In this section we show that tree-child networks are encoded by their trinets. We begin by
presenting a definition, a lemma, and an observation. A directed path in a network is called a
tree path if it does not contain any reticulations apart from possibly its first vertex. It is easily
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seen that from every vertex of a tree-child network there is a directed tree path that ends at
some leaf.

Lemma 2 Suppose that a network N has an arc (u, v) such that v is a reticulation and such
that there is no directed path from u to the other parent of v. Suppose that there are tree paths
from u to a leaf x and from v to a leaf y. Then, x and y are distinct and u is their unique lowest
common ancestor in N .

Proof Let P xu be the tree path from u to x and P yv the tree-path from v to y. Then P xu and P yv
cannot intersect since they are tree paths. Hence, x and y are distinct. Moreover, u is clearly a
common ancestor of x and y. Let w 6= u be any common ancestor of x and y. Then it remains
to prove that u is below w. Since w is an ancestor of x, there exists a directed path P xw from w
to x. Since P xu is a tree path, P xw is either completely contained in P xu or P xw joins P xu in u. In
the latter case, we are done. Hence, assume that P xw is completely contained in P xu . Then w lies
on P xu . However, there is also a directed path P yw from w to y. This path can join P yv only in v
because P yv is a tree path. Moreover, since P yw cannot pass through u (it would lead to a directed
cycle), it passes through the other parent of v. However, that means that there is a directed path
from u to the other parent of v. ut

Observation 8 Suppose that a network N contains a tree path from a reticulation r to a leaf x.
Then, r is the only reticulation with a tree path to x. Moreover, suppose that p1 and p2 are the
parents of r and that there is a directed path from p1 to p2 and a tree-path from p1 to a leaf y.
In addition, suppose that P is a trinet exhibited by N that contains x and y. Then, P contains r
and a tree path from r to x.

Notice that, in Observation 8, the presence of leaf y in trinet P ensures that, in the process of
obtaining P from N , the incoming arcs of r do not become parallel arcs, which would have to
be suppressed. We are now ready to prove the main result of this section.

Theorem 4 Every binary tree-child network N on X, with |X| ≥ 3, is encoded by its set of
trinets Tn(N).

Proof The proof is by induction on the level k of the network. The induction basis for k = 1 has
been shown by Huber and Moulton (2012).

Let k ≥ 2 and assume that every binary, tree-child, level-(k − 1) network with at least three
leaves is encoded by its trinets. Let N be a binary tree-child level-k network on X, with |X| ≥ 3,
and let T = Tn(N). If |X| = 3, the theorem is obviously true, hence we can assume |X| ≥ 4.
By Theorem 2, we may assume that N is a simple level-k network, i.e. it has a single nontrivial
biconnected component B and no cut-arcs except for the ones leaving B. Consequently, for each
cut-arc (u, v) of N , the vertex v is a leaf.

Now, let N ′ be any recoverable network on X exhibiting T . We will show that N ′ = N . Suppose
that x is a leaf of N at maximum distance from the root.

We first claim that the parent of x is a reticulation r such that there is no arc between the
parents of r. To see this, first assume that r is not a reticulation. Then it has some other child s,
which must be a leaf because otherwise there would be a tree-path from s to some leaf at greater
distance from the root than x. However, in that case, the arc entering r would be a cut-arc,
which is not possible because N is a simple level-k network. Hence, r is a reticulation. Now let p1

and p2 be the parents of r and assume that there is an arc (p1, p2). Since p2 is not a reticulation
by the tree-child property, it has a second child s. Observe that, by the tree-child property, s
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cannot be a reticulation. Moreover, if s is not a leaf then it has two children, which must be
leaves because x has maximum distance from the root. But, this is not possible because then
the arc entering s would be a cut-arc. Hence, s is a leaf. However, then there are only two leaves
below p1. Since |X| ≥ 4, there must be some arc entering p1 and this is a cut-arc. This is again a
contradiction to the fact that N is a simple level-k network. Thus, we conclude that the parent r
of x is a reticulation and that there is no arc between the parents of r, as claimed.

Now, let T ∗ be the result of removing all trinets containing x from T and let N∗ be the result of
removing x from N and “cleaning up” the network by repeatedly deleting unlabelled outdegree-
0 vertices and indegree-0 outdegree-1 vertices and suppressing indegree-1 outdegree-1 vertices,
until a valid network is obtained. Note that it is not necessary to suppress parallel arcs and
redundant biconnected components because these cannot arise by the described modifications
since N is a tree-child network. Moreover, it can easily be seen that N∗ is again a tree-child
network and has level k−1. Since N has at least four leaves, N∗ has at least three leaves. Hence,
by induction, N∗ is encoded by its trinets. It follows that removing x from N ′, and cleaning up
in the same way as we did in N , also gives N∗. Hence it only remains to show that the location
of x in N and N ′ is the same.

To this end, consider again the reticulation r in N of which x is the child and the parents p1

and p2 of r in N and in N ′. We need to show that the location of p1 and p2 is the same in N
and N ′. We consider p1 and note that the same arguments can be applied to p2. By the tree-child
property, there is a tree path in N from p1 to a leaf y. Thus, p1 has outdegree 2 and hence it is
not a reticulation. We distinguish three cases: (1) the parent g1 of p1 in N is a reticulation, (2)
the parent g1 of p1 in N has outdegree 2, and (3) p1 is the root ρ of N . See Figure 7 for some
illustrations of these cases.

Case (1): The parent g1 of p1 in N is a reticulation. Let h be a parent of g1 such that there exists
no directed path from h to the other parent of g1. Then there is a tree path from h to some
leaf q. Observe that q and y must be distinct and that h must be their unique lowest common
ancestor in N by Lemma 2. Moreover, the same holds in N∗ and consequently in N ′ because
removing leaf x and cleaning up as specified does not affect lowest common ancestors of other
leaves. Consider the trinet Pxyq ∈ T on {x, y, q}. In Pxyq, h is also the unique lowest common
ancestor of q and y by Observation 3. Moreover, in Pxyq also, x is below the reticulation-child



Trinets encode tree-child and level-2 phylogenetic networks 17

(which we can also call g1) of h. This means that, because N ′ exhibits Pxyq, p1 is below g1 in N ′.
We will show that p1 is in fact the child of g1 in N ′ (just as it is in N).

Let s be the child of p1 other than r, in N . Note that s cannot be a reticulation by the tree-child
property. If s is a leaf, then s = y is the child of g1 in N∗ and, since we know that p1 is below g1
in N ′, p1 can only be the child of g1 in N ′. Now suppose that s is not a leaf in N . Then it has two
children, and one of these children is y because otherwise y would be at greater distance from
the root than x. Let n be the other child of x. Note that n may or may not be a reticulation but
that n cannot be equal to r because there is no arc between the parents of r (by the choice of x).
In either case, there is a tree path from n to some other leaf y′. If n is not a reticulation, then
it is clear that s is the unique lowest common ancestor of y and y′ in N , in N ′ and in N∗. If n
is a reticulation, then this follows from Lemma 2. In view of the trinet on {y, y′, x}, it follows
that LCA(x, y) ≤N ′ LCA(y, y′), i.e. p1 ≤N ′ s. Since s is below p1 and we already know that p1

is below g1, we conclude that p1 is the child of g1 in N ′, as required.

Case (2): The parent g1 of p1 has outdegree 2. Then g1 has some child a other than p1. Note
that a cannot be equal to r because there is no arc between the parents of r. From a there is a
tree path to some leaf q. As before, let s be the child of p1 other than r, in N . There is again
a tree path from s to some leaf y. If s is a leaf, then again s = y and, in view of the trinet
on {x, y, q}, p1 is the parent of y in N ′. Now we distinguish three subcases: (2.1) a 6= n and there
is no directed path from s to a, (2.2) a 6= n and there is a directed path from s to a and (2.3)
a = n (and consequently there is no directed path from s to a).

In Case (2.1), q and y are distinct. If a is not a reticulation, then g1 is clearly the unique lowest
common ancestor of q and y. If a is a reticulation, then g1 is the unique lowest common ancestor
of q and y by Lemma 2. We can now use similar arguments as in Case (1) to show that, in N ′, p1

is the child of g1 on the directed path to y.

In Case (2.2), a is the unique reticulation from which there is a tree path to q and g1 is its
parent from which there is a directed path to the other parent, in N,N∗, N ′ and in the trinet
on {q, y, x}, by Observation 8 applied to reticulation a. In view of this trinet, p1 is below g1, on
the directed path to y. We can now use similar arguments as in Case (1) to show that, in N ′, p1

is the child of g1 on the directed path to y.

In Case (2.3), s is the unique lowest common ancestor of y and y′ in N,N∗, N ′ and in any trinet
containing y, y′ by Observation 3 and Lemma 2. Also, g1 is the parent of s in N∗. In view of the
trinet on {y, y′, x}, p1 has to be the parent of s = LCA(y, y′) in N ′. Thus, the location of p1 is
the same in N and N ′.

Case (3): p1 is the root ρ of N . We define s, n, y, y′ as before. In this case, s is the root of N∗.
Hence, s cannot be a leaf since |X| ≥ 3. We can argue as in Case (1), concluding that p1 is the
root of N ′.

After applying exactly the same arguments to p2 as we did to p1, it follows that, in all cases, the
location of p1 and p2 is the same in N and N ′. Hence, the location of x is the same in N and N ′.
It follows that N = N ′. ut
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6 Discussion

We have proven that binary, recoverable level-2 and binary tree-child networks are encoded by
their trinets, using two distinct methods of proof. We expect that our results could also hold for
non-binary networks, and it would be of interest to verify this.

For settling the question if all recoverable phylogenetic networks are encoded by their trinets, the
decomposition theorems in Section 3 will be useful since they essentially show that it is sufficient
to answer this question for simple networks (i.e. networks having no cut-arcs apart from pendant
arcs). It would be interesting to investigate whether there are constructive results for recovering
these decompositions and, if so, to try to develop algorithms for their computation.

The proof for level-2 networks might be extended to show that higher level networks are encoded
by their trinets (or be used to provide a counter-example). However, a new technique would
have to be developed for k ≥ 4 since, for such k, there exist level-k networks that have no
crucial trinets. Another difficulty is that the number of generators for level-k networks grows
very rapidly (the number of level-k generators is at least 2k−1 (Gambette et al., 2009)) making
a similar case analysis impossible in general. To prove that tree-child networks are encoded by
trinets, we heavily depended on special properties of such networks, and we have not been able
to find a way to extend our proof to even slightly more general networks (e.g. reticulation-visible
networks (Huson et al., 2011)).

We note that a natural extension to the definition of “exhibit” is to define it as in Observation 2
but to suppress not only strongly redundant biconnected components, but all redundant bicon-
nected components. If one then changes the definition of “recoverable” accordingly (i.e. to not
having any redundant biconnected components), then it can be checked that all proofs in this
paper still hold. This could be relevant when reconstructing phylogenetic networks via trinets,
because the number of recoverable trinets then becomes bounded by a function of k (see the
appendix).

It is also worth noting that Theorem 2, Theorem 3 and Theorem 4 can be combined to provide
the following more general result.

Corollary 2 If X is a finite set with |X| ≥ 3 and N is the set of binary recoverable phylogenetic
networks N on X for which each biconnected component of N either

– has at most two reticulations; or

– is tree-child; or

– has at most three outgoing cut-arcs,

then each N ∈ N is encoded by Tn(N).

In addition, we note that our results also yield some new metrics on level-2 and tree-child net-
works. These are of potential intesest since several metrics have been recently developed for
special classes of networks (see e.g. Cardona et al. (2008, 2009a,b, 2011); Huber and Moulton
(2012)). More specifically, Corollary 2 immediately implies the following result (where ∆ denotes
the symmetric difference of two sets).

Corollary 3 If X is a finite set with |X| ≥ 3 and N is as in Corollary 2, then the map
d : N ×N → R defined by

d(N,N ′) := |Tn(N)∆Tn(N ′)|,
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for all N,N ′ ∈ N , is a metric on N .

Finally, it could be of some interest to study some algorithmic issues related to the results that
we have presented. For example, it would be interesting to know whether or not it is possible
to reconstruct a recoverable (level-2 or tree-child) network from a set of trinets in polynomial
time. Hopefully shedding light on this and related complexity problems could help provide new
algorithms for constructing phylogenetic networks.

Finally, it could be of some interest to study some algorithmic issues related to the results that
we have presented. For example, it would be interesting to know whether or not it is possible
to reconstruct a recoverable (level-2 or tree-child) network from a set of trinets in polynomial
time. Hopefully shedding light on this and related complexity problems could help provide new
algorithms for constructing phylogenetic networks. In addition, although trinets encode level-2
and tree-child networks, it will be important in practice to develop ways to deal with noisy data
where some trinets might not be correct. This might involve combining trinet approaches with
triplet approaches, or devising ways to identify or possibly filter out seemingly incorrect trinets.
In pratice, the strategy of computing and combining trinets could become very complicated for
large k, but it could still be of some interest to develop systematic approaches to at least construct
low level networks from trinet data.
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G. Cardona, M. Llabrés, F. Rosselló, and G. Valiente. Metrics for phylogenetic networks II:
Nodal and triplets metrics. IEEE ACM T. Comput. Bi., 6:454–469, 2009b.
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Fig. 8 The two types of level-k trinets without redundant biconnected components: simple and complex.

Appendix

Throughout this appendix, we only consider trinets that are binary and have no redundant
biconnected components, and we will not mention this restriction again. We show that the number
of nonisomorphic unlabelled level-2 trinets is 220. Subsequently, we will bound the number of
nonisomorphic unlabelled level-k trinets.

First note that a trinet can have at most two nontrivial biconnected components. We say that
a trinet is complex if it is not simple, i.e. if it contains some cut-arc whose head is not a leaf.
Hence, there are two types of trinets: simple and complex, see Figure 8.

The number of unlabelled simple level-2 trinets is easily calculated using the four level-2 gener-
ators from Figure 5, by considering all possible ways of adding three leaves to the generators.
There are 25 simple level-2 trinets of type 2a, 6 of type 2b, 2 of type 2c and 5 of type 2d and
there are 2 simple level-1 trinets. Hence, there are 40 unlabelled, simple level-2 trinets.

We now turn to computing the number of unlabelled, complex level-2 trinets. We say that a
network is a binet if it has two leaves. A complex level-2 trinet can be build from two level-2
binets, see Figure 8. For the bottom binet the leaf-labelling is irrelevant, but for the top binet
the leaf labelling is important. The number of unlabelled level-2 binets is 10 (5 of type 2a, 1 of
type 2b, 1 of type 2c, 1 of type 2d, 1 level-1 binet with a single reticulation and 1 level-0 binet).
Furthermore, the number of leaf-labelled level-2 binets is 18 (for the binet of type 2c and for
the level-0 binet the two possible leaf-labellings give isomorphic networks). Hence, the number
of unlabelled complex level-2 trinets is 18× 10 = 180.

We conclude that the total number of nonisomorphic unlabelled level-2 trinets is 40 + 180 = 220.

We now extend the above calculations to level-k trinets. That this number is a function of k can
be seen from the fact that Gambette et al. (2009) proved that the number of level-k generators is
a function of k, say f(k), and the number of arcs of each level-k generator is bounded by 4k. To
compute the number of simple level-k trinets with exactly k reticulations, for a fixed generator,
first observe that the each trinet needs to have a leaf below each outdegree-0 vertex of the
generator and each generator has at least one such vertex. The other (at most) two leaves can
each be on one of the 4k arcs of the generator. Hence, for a fixed generator, the number of simple
level-k trinets with exactly k reticulations is bounded by (4k)2. The total number of simple
level-k trinets is then at most 16(12 + 22 + . . .+ k2)f(k) ≤ 16k3f(k).
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To compute the number of complex level-k trinets, we first compute the number of level-k binets.
All level-k binets are simple, and we can use similar arguments as in the previous paragraph to
show that there are at most 4k2f(k) unlabelled level-k binets. The number of leaf-labelled level-k
binets is at most twice as large and hence at most 8k2f(k). Now we can compute the number of
complex level-k trinets in the same way as we computed the number of complex level-2 trinets,
and their number is at most 32k4f(k)2.

It was shown by Gambette et al. (2009) that 2k−1 ≤ f(k) ≤ k!250k. Hence, we can conclude that
the total number of nonisomorphic unlabelled level-k trinets is at most 16k3f(k) + 32k4f(k)2 ≤
16k3k!250k + 32k4k!4502k. Note that this upper bound might be quite crude.

Finally, note that using the systematic way of constructing level-k generators given by Gambette
et al. (2009), level-k trinets can be constructed systematically using the above strategy.


