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Abstract. Quasi-median graphs are a tool commonly used by evolutionary
biologists to visualise the evolution of molecular sequences. As with any graph,
a quasi-median graph can contain cut vertices, that is, vertices whose removal
disconnect the graph. These vertices induce a decomposition of the graph into
blocks, that is, maximal subgraphs which do not contain any cut vertices. Here
we show that the special structure of quasi-median graphs can be used to com-
pute their blocks without having to compute the whole graph. In particular
we present an algorithm that, for a collection of n aligned sequences of length
m, can compute the blocks of the associated quasi-median graph together with
the information required to correctly connect these blocks together in run time
O(n2m2), independent of the size of the sequence alphabet. Our primary mo-
tivation for presenting this algorithm is the fact that the quasi-median graph
associated to a sequence alignment must contain all most parsimonious trees
for the alignment, and therefore precomputing the blocks of the graph has the
potential to help speed up any method for computing such trees.

1. Introduction

Quasi-median graphs are a tool commonly used by evolutionary biologists to
visualise the evolution of molecular sequences, especially mitochondrial sequences
(Schwarz and Dür [19]; Ayling and Brown [1]; Bandelt et al. [6]; Huson et al. [15,
Chapter 9]). They were introduced by Mulder [18, Chapter 6] and their application
to molecular sequence analysis was introduced for binary sequences in (Bandelt et
al. [6]) and for arbitrary sequences in (Bandelt et al. [5]). A quasi-median graph
can be constructed for an alignment of sequences over any alphabet (Bandelt and
Dür [4]); for binary sequences they are also known as median graphs (Bandelt
et al. [6]). An example of a quasi-median graph associated to the hypothetical
alignment of sequences s1–s9 is presented in Figure 1.1 (see Bandelt and Dür [4]
for more details on how to construct such graphs).
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1 2 3 4 5 6 7 8 9 10 11 12

s1 G T A T C A G T A T A T

s2 G T G T C A G T A C G T

s3 A T G T C A A C G C A T
s4 A T G T C A C C A C A C

s5 A C A C T C G C A C A T

s6 A C A C T G G C A C A T
s7 G C G T C A G C A C A T

s8 G T G T C A G T A C A T
s9 A T G T C A C C A C A G

s10 A C A C C G G C A C A T
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Figure 1.1. An alignment of hypothetical DNA sequences and the
associated quasi-median graph. The sequences correspond to the
black vertices and the columns correspond to the sets of edges, as
indicated by the labels.

Here we are interested in computing the cut vertices of a quasi-median graph as
well as an associated decomposition of the graph. Recall that given a connected
graph G = (V(G), E(G)), consisting of a set V = V(G) of vertices and a set E = E(G)
of edges, a vertex v ∈ V is called a cut vertex of G if the graph obtained by deleting
v and all edges in E containing v from G is disconnected (for the basic concepts in
graph theory that we use see, for example, (Diestel [9])). For example, in quasi-
median graph in Figure 1.1 the cut vertices are precisely the white vertices and
the black vertex s8. As with any graph, the cut vertices of a quasi-median graph
decompose it into blocks, that is, maximal subgraphs which do not contain any
cut vertices themselves. These blocks in turn, together with the information on
how they are linked together, give rise to the block decomposition of the graph (see
Section 5 for a formal definition of this decomposition that we shall use which is
specific to quasi-median graphs). It is well known, that the block decomposition of
a given graph can be computed in linear time from its vertices and edges, however,
the size of a quasi-median graph is usually exponential in the size of the sequence
alignment. Therefore, the main purpose of this paper is to provide an algorithm
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for computing the block decomposition of a quasi-median graph without having to
compute the whole graph.

The results in this paper complement the well-developed theory of quasi-median
networks (cf., e.g., (Bandelt et al. [2]; Imrich and Klavžar [16])). However, our pri-
mary motivation for computing the block decomposition of quasi-median graphs is
provided by their close connection with most parsimonious trees (see, e.g., Felsen-
stein [13] for an overview of parsimony). Indeed, Bandelt and Röhl [8] showed
that the set of all most parsimonious trees for a collection of (aligned, gap-free)
sequences must be contained in the quasi-median graph of the sequences (see also
(Bandelt [3]) for a proof of this result for median networks). More specifically, they
showed that the most parsimonious trees for the sequences are in one-to-one cor-
respondence with the Steiner trees for the sequences considered as a subset of the
vertices of the quasi-median graph. It easily follows that the block decomposition
of a quasi-median graph can be used to break up the computation of most parsi-
monious trees into subcomputations on the blocks. Of course, the quasi-median
graph of an arbitrary collection of sequences may not contain any cut vertices
but, as computing most parsimonious trees is NP-hard (Foulds and Graham [14]),
it could still be a useful pre-processing step to compute the cut vertices of quasi-
median graphs before trying to compute most parsimonious trees. Similarly, Misra
et al. [17] propose an integer linear programme for computing a most parsimonious
tree, which is based on the structure of the quasi-median graph (called the gener-
alised Buneman graph by the authors). A computation of the block decomposition
could be used to decompose the problem into smaller subproblems.

We now summarise the contents of the rest of this paper. We begin by pre-
senting some preliminaries concerning quasi-median graphs in the next section.
Then, in Section 3, we recall a characterisation of the vertices of a quasi-median
graph given in (Bandelt et al. [7]), which we use in Section 4 to prove a key
structural result for quasi-median graphs (Theorem 4.1). This result is a direct
generalisation of Theorem 1 of (Dress et al. [7]) for median graphs, and states
that the blocks in a quasi-median graph are in bijection with the connected com-
ponents of a certain graph which can be associated to an alignment that captures
the degree of “incompatibility” between its columns. Using this result, we also de-
rive a characterisation of the cut vertices of a quasi-median graph (Theorem 4.6).
After defining the block decomposition of a quasi-median graph in Section 5, we
present our algorithm for its computation in Section 6 (Algorithm 1). In partic-
ular, we prove that this algorithm correctly computes the block decomposition
(Theorem 6.1) and also show that, for a collection of n aligned sequences of length
m, the algorithm’s run time is O(n2m2), independent of the size of the sequence
alphabet (Theorem 6.3). We have implemented the algorithm and it is available
for download at http://www.uea.ac.uk/computing/quasidec.

Acknowledgments The authors would like to thank the anonymous referees
for their helpful comments, especially to one of them for pointing out the argument
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used in Lemma 6.2. We would also like to thank Andreas Spillner for providing
some useful observations concerning this argument.

2. Preliminaries

In the following we shall define quasi-median networks in terms of partitions
rather than sequences, as explained in (Bandelt et al. [7]). It is quite natural to
do this since, given a multiple sequence alignment as in Figure 1.1, each column
of the alignment gives rise to a partition of the set of sequences in which all those
sequences having the same nucleotide in the column are grouped together (note
that columns with only one nucleotide are usually ignored). In particular, by also
recording the number of columns giving rise to a specific partition, alignments can
be recoded in terms of sets of partitions of the sequences. This whole process is
described in more detail in, for example, (Bandelt and Dür [4]).

We now recall how quasi-median networks can be defined in terms of partitions.
For the rest of this paper let X denote an arbitrary, non-empty finite set. A
partition P of the set X is a collection of non-empty subsets of X whose union is X
and for which A ∩ B = ∅ for all A , B ∈ P. For x ∈ X we set P(x) to be the unique
element of P that contains x.

Example 2.1. Consider the set X = {s1, s2, . . . , s10} of sequences given in Fig-
ure 1.1. The columns labelled 1, . . . , 12 give rise to the partitions P1, P2, . . . , P12 of
X, respectively. For example,

P1 =
{
{s1, s2, s7, s8}, {s3, s4, s5, s6, s9, s10}

}
,

P4 =
{
{s1, s2, s4, s5, s7, s8, s9}, {s5, s6, s10}

}
,

P6 =
{
{s1, s2, s3, s4, s7, s8, s9}, {s5}, {s6, s10}

}
and the element of P7 containing s6 is given by

P7(s6) = {s1, s2, s5, s6, s7, s8, s10}.

Let P be an arbitrary set of partitions of X, also called partition system on X.
A P-map is a map v : P → 2X that maps every partition in P to one of its parts.
Note that, given any x ∈ X, the map vx : P → 2X given by setting vx(P) = P(x) for
P ∈ P is a P-map. In particular, we obtain a map π : x 7→ vx from X to the set of
all possible P-maps.

Now, given any three P-maps v1, v2, v3, the quasi-median q(v1, v2, v3) is defined
to be the P-map

P 7→

v2(P), if v2(P) = v3(P),
v1(P), otherwise

for P ∈ P. The quasi-median hull H(Φ) of a set Φ of P-maps is the smallest set of
P-maps closed under taking quasi-medians, or, more formally, H(Φ) =

⋃
i≥0 Hi(Φ),

where
H0(Φ) = Φ and Hi(Φ) = {q(v1, v2, v3) | v1, v2, v3 ∈ Hi−1(Φ)} .
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The quasi-median graph Q(P) of a partition system P on X has vertex set H(π(X))
and edge set consisting of all those pairs {v1, v2} of P-maps in H(π(X)) that differ
on precisely one partition, that is, |{P ∈ P | v1(P) , v2(P)}| = 1. By this definition,
for each edge E = {v1, v2} of Q(P), there exists precisely one partition P(E) ∈ P
with v1(P(E)) , v2(P(E)) and, on the other hand, given a partition P ∈ P we find
an associated set E(P) = {{v1, v2} ∈ E(Q(P)) | v1(P) , v2(P)} of edges of Q(P) [7].
Removing all E ∈ E(P) (without removing any vertices of Q(P)) yields a graph
with k := |P| connected components K1, . . . ,Kk, such that{

{x ∈ X | vx ∈ V(Ki)} | 1 ≤ i ≤ k
}

= P.

Example 2.2. The quasi-median graph of the partition system described in Ex-
ample 2.1 is depicted in Figure 1.1; the map π gives the labelling of the black
vertices in the graph by the sequences s1 to s10. For example, the vertex e4

maps partition P3 to {s1, s5, s6, s10}, P4 to {s1, s2, s3, s4, s7, s8, s9} and partition P6

to {s1, s2, s3, s4, s7, s8, s9}.
The vertex e6 maps P4 to {s5, s6, s10}, showing, that P({e4, e6}) = P4 and one can

check that there is no other E ∈ E(Q(P)) with P(E) = P4. So E(P) = {{e4, e6}}

and removing the edge {e4, e6} from the graph gives to connected components
corresponding to the two elements of P4.

3. Strong compatibility and quasi-median graphs

We now consider a concept that is useful for understanding the structure of
quasi-median graphs (cf. (Bandelt et al. [7])). Two partitions P,Q of X are called
strongly compatible if either P = Q or there exist A ∈ P, B ∈ Q such that A∪ B = X
(see Dress et al. [12, p.3]). Obviously, if distinct partitions P,Q of X are strongly
compatible, then the sets A and B are necessarily unique; we set B(P,Q) = A and
B(Q, P) = B. The following observation concerning these sets will be useful later.

Lemma 3.1. Let P,Q,R be distinct partitions of a set X such that P and Q are not
strongly compatible and P,Q are both strongly compatible with R. Then B(R, P) =

B(R,Q).

Proof. Since R and P are strongly compatible, we have B(R, P) ∪ B(P,R) = X.
If B(R,Q) , B(R, P), this implies B(R,Q) ⊆ B(P,R). So we get B(Q,R) ∪ B(P,R) ⊇
B(Q,R)∪B(R,Q) = X; a contradiction to P and Q not being strongly compatible. �

A partition system P on X is called strongly compatible if each P,Q ∈ P are
strongly compatible. The following result, which is shown in the proof of Dress et
al. [11, Lemma 3.1], will be useful later on for obtaining bounds on the number of
cut vertices in a quasi-median graph.

Proposition 3.2. Let X be a set of cardinality n ≥ 2 and P be a strongly compatible
set of partitions of X. Then |P| ≤ 3n − 5.
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We now consider a graph that will be key for our description of the block de-
composition of a quasi-median graph. The non-strong-compatibility graph for a
partition system P on X (Bandelt and Dür [4])) is the graph with vertex set P and
edge set

{{P,Q} | P and Q are not strongly compatible} .

Properties of this graph have also been considered in (Schwarz and Dür [19]).

Example 3.3. We continue Example 2.1. The non-strong-compatibility graph
of the partition system is depicted in Figure 3.1. For example, the partitions P1

and P5 are strongly compatible with B(P1, P5) = {s3, s4, s5, s6, s9, s10}, B(P5, P1) =

{s1, s2, s3, s4, s7, s8, s9, s10}. Similarly, P1 and P6 are not strongly compatible and –
as required by Lemma 3.1 – B(P1, P6) = B(P1, P5). On the other hand, P3 and P8

are not strongly compatible, as we cannot find elements of the partitions whose
union is X, which gives the edge {3, 8} in the non-strong-compatibility graph.
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Figure 3.1. The non-strong-compatibility graph for the set of par-
titions in Example 2.1. A vertex labelled i corresponds to partition
Pi, 1 ≤ i ≤ 12.

We now present some useful links between strong compatibility and quasi-
median graphs. The following result was proved in ([7, Theorem 1]).

Theorem 3.4. Let P be a set of partitions of X. Then a P-map ϕ is a vertex
of the quasi-median graph Q(P) if and only if for every pair of distinct, strongly
compatible partitions P1, P2 ∈ P either ϕ(P1) = B(P1, P2) or ϕ(P2) = B(P2, P1).

Denote the complete graph on n vertices by Kn, and, for two graphs G,H, let
G�H denote the (Cartesian) product of G and H, that is, the graph with vertex
set V(G)× V(H) and edge set {{(u, v), (u,w)} | {v,w} ∈ E(H)} ∪ {{(u,w), (v,w)} | {u, v} ∈
E(G)}. In the extreme case of pairwise strong-compatibility and non strong-
compatibility for a set of partitions, we have the following descriptions of the
quasi-median graph (see Bandelt et al. [7, Theorem 2, Corollary 1]).

Theorem 3.5. Let P be a set of partitions of X. Then

(i) If every pair P,Q ∈ P is strongly compatible, then Q(P) is a block graph,
that is, every block in Q(P) is isomorphic to a complete graph.

(ii) If no distinct P,Q ∈ P are strongly compatible, then Q(P) is isomorphic to
�P∈PK|P|.
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4. Cut vertices and blocks in the quasi-median graphs

We now turn to understanding the cut-vertices and blocks of a quasi-median
graph. By definition, for each edge e = {v1, v2} of the quasi-median graph of a set
of partitions P of X, there exists exactly one P ∈ P such that v1(P) , v2(P). We say
that P is the partition corresponding to e. Given a block B of Q(P) we denote by
P(B) the set of all P ∈ P that correspond to some edge of B. The following result
that relates the connected components of the non-strong-compatibility graph of P
with the blocks of Q(P) is the key component to all that follows. Note that it has
been proved in the special case where all partitions in P(B) have cardinality two
in Dress et al. [10].

Theorem 4.1. Let X be a finite set and P be a partition system on X. Then the
blocks of the quasi-median graph of P are in bijection with the connected compo-
nents of the non-strong-compatibility graph of P. More specifically, a bijection is
given by mapping each block B of the quasi-median graph Q(P) to the (necessarily)
connected component of the non-strong-compatibility graph whose vertex set equals
P(B).

Proof. We prove the theorem by induction on |P|. In the base case |P| = 1, it
follows from Theorem 3.5 that Q({P}) is isomorphic to a complete graph with |P|
vertices; the non-strong-compatibility graph of {P} is just an isolated vertex.

Now let |P| > 1 and choose some P ∈ P and set P′ = P \ {P}. By the induction
hypothesis, the blocks of Q(P′) are in bijection with the connected components
of the non-strong-compatibility graph of P′. First suppose that P is strongly
compatible to all P′ ∈ P′. Obviously, the non-strong-compatibility graph of P
is derived from the non-strong-compatibility graph of P′ by adding the isolated
vertex P. By Theorem 3.4, the vertices of Q(P) are either just vertices of the
subgraph isomorphic to Q(P′) or those P-maps v defined by

v(Q) =

B(Q, P), if Q ∈ P′,
A, otherwise,

for some A ∈ P. There can be only one vertex which is of both types, and this is
the cut vertex separating the two types of vertices and hence the new block where
all edges correspond to P from the other blocks. The existence of the bijection
now follows from the induction hypothesis.

Now suppose P is not strongly compatible to some Q ∈ P′. For the non-strong-
compatibility graph of P, this means the new vertex P will be part of a new
connected component that is the union of {P} with all connected components of
the non-strong-compatibility graph of P′ that contains some Q ∈ P′ not strongly
compatible to P. By the induction hypothesis, these connected components are
in bijection with blocks of Q(P′) and it follows that all those blocks are combined
to create a new block B of Q(P). What remains to be shown is that there does
not exist a block B′ of Q(P′) that is joined to B and that does not contain any
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edge corresponding to some Q ∈ P′ that is not strongly compatible to P. Suppose
that would be the case. This would imply the existence of an edge E of B′ that
is on the shortest path between elements of two other blocks B1, B2 of Q(P′) that
are joined into B. Let P(E) = Q and let R be in the block B1 with P and R not
strongly compatible and, similarly, S in the block B2 with P and S not strongly
compatible. As P and R are not strongly compatible and, by assumption, Q is
strongly compatible to both P and R, it follows from Lemma 3.1 that B(Q, P) =

B(Q,R). Similarly, we get B(Q, P) = B(Q, S ) which implies B(Q,R) = B(Q, S ). This,
however, implies that the edges corresponding to R and S lie in the same connected
component of the graph obtained from Q(P′) by removing E(Q), contradicting the
fact that E is on the shortest path between elements of B1 and B2. �

Example 4.2. Considering Example 2.1, we see that the non-strong-compatibility
graph in Figure 3.1 has eight connected components: One whose vertex set consists
of the partitions P1, P2, P3 and P8, one containing the partitions P5 and P6, and six
isolated vertices corresponding to the remaining partitions. This is in accordance to
the eight blocks of the quasi-median graph in Figure 1.1, these being the large block
in the middle of the graph, corresponding to P1, P2, P3 and P8, the block on the
left isomorphic to the Cartesian product of an edge and a triangle, corresponding
to P5 and P6, two triangular blocks corresponding to the partitions P7 and P12

each having three parts, and five edges corresponding to partitions P4, P9, P10 and
P11 each having two parts.

It follows from Theorem 4.1 that the collection of sets P(B) over all blocks B of
Q(P) defines a partition Part(P) of P, and that the following result holds that will
be useful later.

Corollary 4.3. Let P be a partition system of X with |P| > 1, P ∈ P, P′ := P\ {P}
and I(P′, P) := {Q ∈ P′ |Q not strongly compatible to P}. Then we have

Part(P) = {R ∈ Part(P′) | I(R, P) = ∅} ∪
{⋃
{R ∈ Part(P′) | I(R, P) , ∅} ∪ {P}

}
.

In particular, if I(P′, P) = ∅, we have Part(P) = Part(P′) ∪ {{P}}.

Also, by Theorem 4.1 and Proposition 3.2, the following bounds on the number
of cut vertices and blocks in a quasi-median graph must hold; this will be useful
for establishing run time bounds for our main algorithm.

Corollary 4.4. Let X be a set of cardinality n ≥ 2 and P be a set of partitions of
X. Then Q(P) has at most 3n − 5 blocks and at most 3n − 6 cut vertices.

We conclude this section by presenting a characterisation for the cut vertices in
a quasi-median graph that is of independent interest, and will not be used later.
First we prove a useful observation.

Lemma 4.5. Let P be a partition system of X and v a cut vertex of Q(P). Suppose
that P1, P2 ∈ P are distinct and that Pi corresponds to an edge in the subgraph
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induced by Q(P) on the set V(Ci) ∪ {v}, i = 1, 2, where C1,C2 are two distinct
connected components of the graph Q(P) with v removed. Then P1, P2 are strongly
compatible, and v(P1) = B(P1, P2), v(P2) = B(P2, P1) both hold.

Proof. Since P1, P2 must be contained in distinct blocks of Q(P), it immediately
follows by Theorem 4.1 that P1 and P2 are strongly compatible.

Now, by Theorem 3.4 we can assume without loss of generality that v(P1) =

B(P1, P2). Let {w,w′} be an edge in Q(P) that corresponds to P1. Without loss of
generality, we can assume that there is path in Q(P) from w to v such that no edge in
this path corresponds to P1 or P2. In particular, we have w(P1) = v(P1) = B(P1, P2).
Moreover, w′(P1) , B(P1, P2) and so by Theorem 3.4 w′(P2) = B(P2, P1). But,
w′(P2) = v(P2) as, by Theorem 4.1, the block containing all edges corresponding
to P2 must be contained in the subgraph induced by Q(P) on the set V(C2) ∪ {v}.
This completes the proof of the lemma. �

We now present the aforementioned characterisation of cut vertices. Note that
it generalises a characterisation of cut vertices in median graphs given in Dress et
al. [10].

Theorem 4.6. Let P be a partition system of X and v be a vertex of Q(P). Then
v is a cut vertex of Q(P) if and only if the graph Gv with vertex set P and edge set
{{P,Q} | P,Q ∈ P, P , Q and v(P) ∪ v(Q) , X} is disconnected.

Proof. Suppose that v is a cut vertex of Q(P). Then it follows immediately by
Theorem 4.1 and Lemma 4.5 that Gv is disconnected.

Conversely, suppose that Gv is disconnected, and, for contradiction, that v is
not a cut vertex of Q(P). Note that the non-strong compatibility graph of P is a
subgraph of Gv. Hence the non-strong compatibility graph of P is disconnected.
Therefore, by Theorem 4.1 there are at least two blocks in Q(P).

Now, suppose B is the block of Q(P) containing v. By Theorem 4.1 there must
exist some block B′ , B of Q(P) such that P(B′) is contained in the vertex set of
some connected component of Gv that is not equal to the connected component of
Gv whose vertex contains P(B). Let w be the cut vertex of Q(P) contained in B
which lies on a shortest path from v to some vertex in B′. Let P ∈ P correspond to
the edge on this path incident with w (which must exist as v is not a cut vertex),
and let P′ ∈ P(B′). Then, by Lemma 4.5, w(P) = B(P, P′) and w(P′) = B(P′, P).
Moreover, by Theorem 4.1, w(P′) = v(P′) and w(P) , v(P). Hence v(P)∪ v(P′) , X,
which is a contradiction as P and P′ are in distinct components of Gv. �

5. The block decomposition of a quasi-median graph

As stated in the introduction, we want to determine the blocks of the quasi-
median graph Q(P) of a partition system P without having to compute Q(P) itself.
To do this, rather than computing the blocks of Q(P) directly, we shall compute
some sets associated with each block which we now define.
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Given a block B of Q(P), we let X(B) = V(B)∩ π(X) denote the set of vertices in
B labelled by elements in X, P(B) the set of partitions in P corresponding to edges
of B and S (B) the set of cut vertices of Q(P) that are in B but not in X(B). Note
that X(B) or S (B) can be empty, but that X(B)∪S (B) is never empty. We will also
consider the set Pr(B) of partitions of the set X(B) ∪ S (B) that is induced by, for
each P ∈ P(B), removing all those edges in B that correspond to P.

Example 5.1. For the large block B in the middle of the quasi-median graph in
Example 2.1, we have X(B) = {s7, s8}, S (B) = {e1, e4, e5}, P(B) = {P1, P2, P3, P8} and
Pr(B) = {P′1, P

′
2, P

′
3, P

′
8}, where

P′1 = {{s7, s8, e5}, {e1, e4}}, P′2 = {{e1, e5, s8}, {s7, e4}} ,

P′3 = {{s7, s8, e1}, {e4, e5}}, P′8 = {{s7, e1, e4}, {s8, e5}} .

Now, we define the block decomposition B(P) of the quasi-median graph of a
partition system P on the set X to be the set

{(X(B), S (B),Pr(B)) | B is a block of Q(P)} .

Our main aim is to compute this decomposition without having to compute Q(P).
Note that in view of the following lemma we can always reconstruct Q(P) from
B(P).

Lemma 5.2. Given a partition system P and a block B of Q(P), the quasi-median
graph Q(Pr(B)) is isomorphic to B.

Proof. By definition, a P-map v is a vertex of the block B if and only if v is
contained in some edge of Q(P) corresponding to an element of P(B). Consider
now the Pr(B)-map v′ that maps a partition P′ ∈ Pr(B) to that A′ ∈ P′ that
corresponds to the part A = v(P) ∈ P. This is a vertex of Q(Pr(B)) and it can be
easily seen that the map v 7→ v′ induces the desired isomorphism between B and
Q(Pr(B)). �

Remark 5.3. In [19, Theorem 3], Schwarz and Dür define what they call the Block
Decomposition of a Quasi-Median Network. However, they do not use the notion
of block in the usual graph theoretical way. Instead, they work with a notion that
is suitable for their aim of visualising quasi-median graphs. In particular, their
blocks depend on an arbitrary vertex of the quasi-median graph which can be
chosen in a suitable way to obtain improved visualisations.

In what follows, we shall not directly compute the block decomposition of Q(P),
but instead some closely related data from which the block decomposition can be
easily computed.

To this end, let S (P) denote the union of all S (B) with B a block of Q(P); we call
any element in S (P) an extra vertex. For v ∈ S (P) we denote the set of all blocks
B in Q(P) with v ∈ S (B) by B(v). An element x ∈ X is in the direction of B with
respect to v ∈ S (B) if every path from x to v has an edge in B. Note that since all
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vertices of Q(P) are elements of the quasi-median hull of π(X), there always exists
such an element x(v, B) although this element is not necessarily unique.

Lemma 5.4. Suppose that P is a partition system on X and B is a block of Q(P).
If we are given the sets X(B), S (B), P(B) and, for each v ∈ S (B) and some C ∈
B(v) \ {B}some element x(v,C) in the direction of C with respect to v, then we can
obtain the set Pr(B) from the set P(B) in time O(nm), where n = |X|, m = |P|.

Proof. For each partition P ∈ P(B) we construct a partition P′ of X(B) ∪ S (B) as
follows. Elements of X(B) are in that part of P′ that they are in P. For each
v ∈ S (B) we choose some C ∈ B(v) \ {B} and put v in that part of P′ that x(v,C)
is in P. Repeating this for all partitions P ∈ P(B) gives us the set Pr(B). This
procedure can be carried out in time O(mn), giving the desired run time bound. �

Example 5.5. To compute Pr(B) from P(B) and the information x(v, B) for all
v ∈ S (B) for the block B in Example 5.1, assume that x(e1, B7) = s3, x(e4, B4) = s5

and x(e5, B10) = s1, where, for this moment, we denote by Bi the block containing
the (sole) partition Pi.

Now, we start out with partition P1 and have to check in which part of the
partition the extra points e1, e4 and e5 are contained. Since x(e1, B7) = s3, we
substitute s3 for e1 in P1 and, similarly, we substitute s5 for e4 and s1 for e5.
Deleting all x ∈ X \ X(B) in the remaining partition yields the partition P′1. After
performing the same process for P2, P3 and P8, we obtain the set Pr(B).

So, to compute the block decomposition of the quasi-median graph of a partition
system P it suffices to compute, for each block B of Q(P), the sets X(B), S (B) and
P(B), and also, for each v ∈ S (B) and B ∈ B(v), some element x(v, B) in the direction
of B with respect to v. In the next section we shall present an algorithm for doing
precisely this.

6. Computing the block decomposition of a quasi-median graph

We now present our approach to computing the block decomposition of a parti-
tion system P following the strategy presented at the end of the last section. We
start with the block decomposition of an empty set of partitions on X (which is
itself empty) and iteratively add each P ∈ P to build up the decomposition. In
particular, at each stage, for each block B (either existing or new) we compute the
sets X(B), S (B), P(B), together with elements x(v, B), v ∈ S (B), B ∈ B(v). To do
this we use Algorithm 1, the main elements for which are as follows.

First, for each given block B, we check whether or not there exists some partition
in P(B) that is not strongly compatible to the newly added partition P and thereby
also compute which elements of X must be added to our new block. This is done
in the function is_compatible described in Algorithm 2. This function returns
TRUE if the new partition P is strongly compatible to all partitions Q in the block
B. All blocks B with is_compatible(P, B)=TRUE remain blocks for the new block



12 SVEN HERRMANN AND VINCENT MOULTON

Algorithm 1: Algorithm to add a partition.

Input: The set B = {(X(B), S (B),P(B)) : B a block of Q(P)} for a partition
system P and, for each v ∈ S (B) and B ∈ B(v), some element x(v, B) in
the direction of B with respect to v, together with some partition
P < P.

Output: The same data for P ∪ {P}.
1 Create a new block C with X(C) = X, S (C) = ∅, P(C) = {P};
2 Create a new extra vertex v;
3 Bincomp ← ∅;
4 foreach B ∈ B do
5 if !is_compatible(P, B) then
6 Add B to Bincomp;
7 end
8 else
9 Choose some Q ∈ P(B);

10 X(B)← X(B) ∩ B(P,Q);
11 if X(C) ∩ X(B) = ∅ then
12 Choose some x ∈ B(P,Q) and some y ∈ B(Q, P);
13 if There exists some v ∈ S (C) such that x(v, B) and x are in the

same part of P then
14 w← v;
15 end
16 else if There exists some v ∈ S (B) such that x(v,C) and y are in

the same part of Q then
17 w← v;
18 end
19 else
20 w←new extra vertex;
21 end
22 x(w, B)←add_extra_vertex(w,B);
23 x(w,C)←add_extra_vertex(w,C);
24 end
25 end
26 end
27 if Bincomp , ∅ then
28 add_blocks(C,Bincomp);
29 end
30 return B ∪ {(X(C), S (C),P(C))} and the elements x(w,C);
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decomposition, and all other blocks are joined (together with P) to form a new
block that is added to the decomposition. This is done in the function join_blocks

outlined in Algorithm 3.
We now prove that this approach really works:

Theorem 6.1. Algorithm 1 is correct.

Proof. We first show that if the sets P(B) and X(B) have been computed correctly
for all blocks B of the quasi-median graph of the partition system P \ {P}, then
they are correct for all blocks Q(P).

To see that all P(B) are correct, note that the set P(C) for the new block C is
initialised as {P} and in the function add_blocks all partitions of blocks containing
partitions not strongly compatible to P are added and the corresponding blocks
deleted. Hence, it follows from Corollary 4.3 that P(B) is correct for all blocks of
Q(P).

We now turn to the correctness of the set X(B). Consider first a block B for
which every partition Q ∈ P(B) is strongly compatible with P. The elements of
X(B) stay in X(B) if they are in B(P,Q), and similarly move to X(C) for the new
block C if they are in B(Q, P). But, by Theorem 3.5 (i), the quasi-median graph
Q({P,Q}) has two blocks B1, B2 with P(B1) = {P}, X(B1) = B(P,Q) and P(B2) = {Q},
X(B2) = B(Q, P). It follows that X(B) is correct. Otherwise, if some Q ∈ P(B) is not
strongly compatible to P, then the corresponding block is deleted and all elements
are simply joined to those in X(C), as required. So, using a similar argument for
Q({P,Q}), it follows that X(C) is also correct.

It remains to show that the blocks are added in a proper way, that is, all of
the extra vertices are contained in the blocks that they really belong to. This is
taken care of by the condition in Line 11 of Algorithm 1: There is no need to
add extra vertices for adding two blocks if they already share an element of X and
having X(B) * B(P,Q) ensures that blocks are only added if needed. Moreover,
Algorithm 4 ensures that elements in the direction of some block are computed.
Indeed, suppose all existing x(·, ·) are correct. To see that Algorithm 4 returns an
element of x that is in the direction of B first note that if x ∈ X(B) and X(B) , ∅,
then x is clearly in the direction of B with respect to v. Furthermore, every
w ∈ S (B) \ {v} is in the direction of B with respect to v and so every element in
the direction of any C ∈ B(w) \ {B} with respect to w is in the direction of B with
respect to v. This completes the proof of the theorem. �

We conclude with an analysis of the run time of Algorithm 1. First, we compute
the time needed to check whether two partitions are strongly compatible.

Lemma 6.2. Let P and Q be partitions of X with |X| = n. Then checking strong
compatibility and computing B(P,Q) and B(Q, P) in case they are strongly compat-
ible can be done in time O(n).



14 SVEN HERRMANN AND VINCENT MOULTON

Algorithm 2: Check if a partition is strongly compatible with all partitions
arising from a block.

1 is_compatible(P, B)
2 foreach Partition Q ∈ P(B) do
3 if P and Q are strongly compatible then
4 X(C)← X(C) ∩ B(Q, P);
5 end
6 else
7 return FALSE;
8 end
9 end

10 return TRUE;

Algorithm 3: Add all blocks not strongly compatible to P.

1 add_blocks(C,Bincomp)
2 X(C)← ∅;
3 foreach B ∈ Bincomp do
4 Remove B from B;
5 X(C)← X(C) ∪ X(B);
6 P(C)← P(C) ∪ P(B);
7 foreach w ∈ S (B) do
8 Add w to S (C);
9 x(w,C)← x(w, B);

10 end
11 end
12 foreach w ∈ S (C) do
13 if B(w) ⊆ Bincomp ∪ {C} then
14 Delete the extra vertex w from S (C);
15 end
16 end

Proof. We can rename the elements of X in such a way that X = {s1, . . . , sn} and
the elements of P are all intervals of the sequence s1, . . . , sn, that is, of the form
{si, si+1, . . . , s j−1, s j} for some 1 ≤ i ≤ j ≤ n. This relabelling can be done in time
linear in n. Next, we fix some order ϕ (that is a bijection ϕ : Q → |Q|) on Q and
define a sequence S Q of length n where the ith element of the sequence is ϕ(A), if
i ∈ A ∈ Q. By going through the elements of Q, we can construct this sequence in
time linear in n and independent of |Q|.
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Algorithm 4: Add an extra vertex to a block.

1 add_extra_vertex(v,B)
2 Add v to S (B);
3 if X(B) , ∅ then
4 Choose some x ∈ X(B);
5 return x;
6 end
7 Choose some w ∈ S (B) \ {v};
8 Choose some C ∈ B(w) \ {B};
9 return x(w,C);

By the construction of this sequence, we have that for any element A = {si, si+1,
. . . , s j−1, s j} ∈ P, there exists some B ∈ Q with A∪ B = X if and only if all α < i and
α > j have the same value in the sequence S Q, that is, if S Q has a constant prefix
of length at least i − 1 and a constant suffix of length at least n − j and those two
have the same value. Hence, to check whether P and Q are strongly compatible,
it now suffices to compute the maximum length constant prefixes and suffixes of
S Q and then check for each A ∈ P whether the above condition is fulfilled; both
can be done in time linear in n. In case one A ∈ P fulfilling the condition is found,
we also know that B(P,Q) = A and B(Q, P) = ϕ−1(c) where c is the constant of the
prefix/suffix of S Q �

Theorem 6.3. The algorithm computes the block decomposition of a partition
system P on X in time O(n2m2), where n = |X| and m = |P|.

Proof. We claim that Algorithm 1 runs in time O(n2m). Since this algorithm is
executed once for each partition, the theorem then follows by Lemma 5.4 and
Corollary 4.4.

It follows from Lemma 6.2 that the function is_compatible in Algorithm 2
runs in time O(n · |P(B)|). The rest of the first loop in Algorithm 1 is dominated by
the conditions in Lines 13 and 16. However, since the number of extra vertices of
Q(P) is linear in n by Proposition 4.4, this test can be performed in O(n2). Since
each partition can only be in one block, this shows that the loop in Algorithm 1
needs O((n + n2)m) = O(n2m) time. For the function add_blocks the run time of
the first loop is bound by O(n2), taking into account that by Proposition 4.4 the
number of extra vertices and the number of blocks are linear in n. The same holds
for the second loop, so add_blocks runs in time O(n2). Altogether, we get that
Algorithm 1 runs in time O(n2m), as claimed. �

Note that, translated into the language of sequences used in the introduction,
this results implies that the block decomposition of the quasi-median graph of n
aligned sequences of length m can be computed in time O(n2m2),



16 SVEN HERRMANN AND VINCENT MOULTON

References

1. Sarah C. Ayling and Terence A. Brown, Novel methodology for construction and pruning of
quasi-median networks, BMC Bioinformatics 9 (2008), 10 pp.

2. Hans-Jürgen Bandelt, Henry Martyn Mulder, and Elke Wilkeit, Quasi-median graphs and
algebras, Journal of Graph Theory 18 (1994), no. 7, 681–703.

3. Hans-Jürgen Bandelt, Median hulls as Steiner hulls in rectilinear and molecular sequence
spaces, Graph-Theoretic Concepts in Computer Science (Andreas Brandstädt and Van Le,
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