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This Letter investigates the influence, on the molecular absorption of light, of surrounding chromophores.
Two novel rate contributions are identified - one vanishing for a medium with no static dipole moment.
The other, dynamic term is used to model a system of primary absorbers and secondary chromophores
distributed in a host medium. Further modification provides a basis for modelling a case where the

medium is, itself, marginally absorptive, thus accounting for optical losses as the input propagates
through the surrounding host. The results facilitate tailoring of secondary chromophore and host effects
in the pursuit of materials with specific absorption features.
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1. Introduction

It is well-known that the optical properties of atoms and mole-
cules can be influenced by their electronic environment. Local field
effects on spontaneous emission rates within nanostructured
photonic materials for example are familiar, and have been well
summarized [1]. Optical processes, including resonance energy
transfer are similarly dependent on the local environment of
molecular chromophores [2-4]. Many biological systems are
known to contain complex organizations of molecules with
absorption bands shifted due to the electronic influence of other,
nearby optical centres. For instance, in widely studied light-
harvesting complexes, there are two identifiable forms of the
photosynthetic antenna molecule bacteriochlorophyll, with
absorption bands centred on 800 and 850 nm; it has been shown
that the most efficient forms of energy transfer between the two
occurs when there is a neighbouring carotenoid species 5-7. Until
now, research on the broader influence of a neighbouring, off-
resonant, molecule on photon absorption has mostly centred on
the phenomenon of induced circular dichroism, where both
quantum electrodynamic (QED) calculations [8-10] and
experimental procedures [11-13] predict and verify that a chiral
mediator confers the capacity for an achiral acceptor to exhibit
circular differential absorption.

In this Letter, we investigate the influence of one or more
secondary chromophores, to be labelled M, on the absorption of
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light by a primary absorber molecule, A. The secondary species is
assumed to have an electronic energy level that is slightly above
the input photon energy - i.e. its optical absorption is blue-shifted
compared to the primary absorber - to rule out M as a competing
acceptor. It emerges that there is a dynamic contribution to the
absorption rate that can be extended by integrating over all
possible positions and orientations of the mediators, thereby
modelling a continuous medium in which both absorbers and sec-
ondary chromophores are embedded. Further refinement enables
this model to account for a wider range of materials in which, like
the biological materials mentioned above, the primary absorbers
and the secondary species are distributed within a marginally
absorptive host material with its own optical characteristics.
Developing such a theory is shown to provide wider links with
both the molecular and bulk properties of materials.

2. Background theory

Molecular QED is the analytical tool of choice for analysis of the
interactions of light with molecules, and their electromagnetic
interactions with each other [10,14]. Quantizing the whole system
under consideration, particles and fields alike, this formulation of
theory introduces the virtual photon to describe the couplings
between particles of matter [15,16]. Where molecules are not in
direct contact, all intermolecular interactions must be mediated
by virtual photon exchange; ensuring a fully retarded, causal
framework. In such a framework, the non-relativistic Hamiltonian
is promoted to operator form and, for a system comprised of inter-
acting molecules, indexed by ¢, is exactly expressible as:

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).


http://crossmark.crossref.org/dialog/?doi=10.1016/j.cplett.2014.01.028&domain=pdf
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.cplett.2014.01.028
http://creativecommons.org/licenses/by/3.0/
mailto:d.l.andrews@uea.ac.uk
http://dx.doi.org/10.1016/j.cplett.2014.01.028
http://www.sciencedirect.com/science/journal/00092614
http://www.elsevier.com/locate/cplett

152 M.M. Coles et al./Chemical Physics Letters 595-596 (2014) 151-155

H= Hradiation + ZHmatter (5) + ZHinteraction (é)> (] )

where the sum over the discrete index, ¢, denotes the individual
optical centres. Furthermore, the rate, I', of an identified transition
process is given by the Fermi ‘Golden Rule’. For a system proceeding
from initial state i to final state f:

T = 27h™" py My (2)

where f is the reduced Planck’s constant, p; is the density of states,
and Mj is the quantum amplitude for the event. A process consist-
ing of N interactions is described by Nth-order perturbation theory,
such that its quantum amplitude Mg is given by the Nth term of the
perturbation expansion [17]:
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Elementary absorption by individual chromophores generally
entails the annihilation of single photons, and is accordingly repre-
sented by the first order term in Eq. (3). The analysis of optical pro-
cesses involving two or more coupled centres - electronically
distinct in the sense of being separated beyond significant wave-
function overlap - invokes higher order terms; it is these that for-
mally require a QED treatment cast in terms of virtual photon
coupling. Since every discrete molecular transition is a local mat-
ter-radiation interaction event, for each exchange of a virtual pho-
ton there has to be one photon creation and one corresponding
photon annihilation event.

In the following, we first develop in precise QED terms, the
mathematical modelling of photon absorption, and then extend
this analysis to a medium-modified case. In every case the initial
and final system states are given by:

liy = vy ws") In(k,m)); (4)
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where / designates the wavefunction of either the acceptor, A, or
inert mediator, M. Moreover, the subscript of y/ corresponds to
either: the electronic ground state 0, or the excited state o (in the
case of A). The radiation is modelled as a number state of wave-vec-
tor k and polarization label #, with photon population given by n.
Moreover, the photon energy is necessarily such that
E,—Ey=Eyn~ hck.

3. Locally modified absorption

The probability amplitude for the process of photon absorption,
modified by the presence of a secondary chromophore is given by
the sum of three terms:

My = M + M™ + MY, (6)

where M is the amplitude for absorption by the acceptor mole-
cule, A, alone the second term, M< A corresponds to the mediator
molecule absorbing a photon and then transferring the energy to
the acceptor molecule, and My denotes the absorption of a pho-
ton by A, which then interacts with M. Each of the three possible
configurations is represented diagrammatically in Figure 1.

According to the Feynman prescription, the contributions to the
matrix element are terms corresponding to all topologically
distinct Feynman diagrams, examples of which are displayed in
Figure 2 [18]. We determine the rate from the Fermi rule, equation
(2), which now depends on the square modulus of Eq. (6):
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Figure 1. Diagrams (a), (b) and (c) represent the A, AM and MA absorption
configurations respectively. The input photon is labelled with wave-vector k and
polarization #: (K,n’) represents the mode of a virtual photon mediator between
molecular centres. All diagrams represent A and M in arbitrary positions relative to
each other.
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Figure 2. Example Feynman diagrams for the medium-independent (a), static (b),
and dynamic (c) absorption events described by first- and third-order perturbation
theory. The molecular virtual intermediate state is labelled r.
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in which numbering has been introduced so that terms may be
tackled individually. The leading order term is term (1), which
corresponds to absorption in the absence of the mediator. The terms
(2) and (3) are obtained from third-order perturbation theory, and
are therefore small in comparison to term (1), which, implies
that term (6) is also small. Thus, the first correction terms to the
absorption rate are terms (4) and (5).

3.1. Medium-independent absorption

Firstly, we calculate the leading order term, where no other
molecule is involved. In the electric dipole approximation, the
interaction Hamiltonian is given by Hj, = —salu-d{ with the
transverse electric field given by:

d-(r) = iz (h;l:f())?{e(ﬂ) (K) a® (k)e — & (k) at(ﬂ)(k)e,ik.,}.

k.
8)

where V is the quantization volume, while e (k)and a (k) are the
polarization vector and photon annihilation operator respectively
for a mode with polarization # and wave-vector k. The right-most
term in Eq. (8) is the Hermitian conjugate of the term on the left,
with a'® (k)defined as the photon creation operator. Thus, we have:

<f|Hmt|l =

nhck
2Ve

> u A)o0 e(n (k) 1l(rA, (9)

where r, is the position vector of the acceptor molecule. We assume
the wavefunctions are real. The square modulus of the above - term
(1) from Eq. (7) - is:



M.M. Coles et al./Chemical Physics Letters 595-596 (2014) 151-155 153

2 nhck o 2
- (e e

which, by substituting into the Fermi rule and performing a three-
dimensional isotropic rotational average [10,19,20], yields:
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This well-known result [10] is presented for later comparison with
the modifications to the rate introduced by secondary (mediator)
chromophores.

3.2. Static correction term

To begin calculation of the correction terms, we compute

“Mfrom third-order perturbation theory. The third term of Eq.
(3) and a programme of contour integration delivers a contribution
to the quantum amplitude as dependent on a molecular interaction
tensor:

(AM) _
Mg™ =

i nhck
2Ve
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where Ry is the distance between the absorber and secondary
chromophore and Vj;(k, Rua) is the general form of the fully retarded
dipole-dipole interaction tensor given as [21,22]:
ikR
Vii(k,R) = ——
l]( ) o 3
In Eq. (12), the polarizability tensor for the acceptor model is
labelled o which is duly presented in the following general
form:

3 0 (10
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The static interference term of the probability - term (5) of Eq.
(7) - follows as:

(1 —ikR)(65 — 3RiR)) — K’R*(6; —RR})|.  (13)
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Depending explicitly on ,ul , we now assume that the second-
ary chromophores have no static dlpole moment, causing this term
to vanish.

3.3. Dynamic correction term

To begin calculation of the remaining correction term, we com-
pute M}MA), as before, from third-order perturbation theory, which
delivers this term of the quantum amplitude as:

hick o
M(MA) _ (n Cl ) e‘r]) MOO)Vkl(k RMA),U;‘( 07 (16)
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where o®)is the polarizability tensor for the molecule M. Thus,
term (4) from Eq. (7) becomes:

nth = 0 — A(c0) ~M(00) {7
Ve, eﬂ e] ):”;( ) 4 (o0 )O‘jk( )Vkl(l<7RMA) ,

(17)

It is worth noting that in the multipolar formulation of QED the
interaction tensor can be generalized to couplings between electric
and magnetic multipoles of any order [23-25]. Therefore, the form
of Eq. (17) can be modified to permit calculation of modifications
to absorption in a medium with strong magnetic dipole or electric
quadrupole transition moments. In fact, it is through involvement

ZWE{M};“)M}TMA)} = iRe{

of the magnetic transition dipole moments that an achiral mole-
cule may display induced circular dichroism in the presence of a
neighboring chiral molecule [9].

4. Absorption modified by secondary chromophores in a host
medium

We now turn attention to the case of a material in which there
is a distribution of secondary chromophores, variously located at
different distances from, and relative orientations with respect
to, each primary absorber. Represented by Figure 3, it is to be
assumed that both species are held within a host matrix that is
essentially transparent in the wavelength region of interest, and
which can to that extent be represented as a continuous medium
characterized by a refractive index n, with a non-zero but essen-
tially negligible imaginary component (the assumption is to be
revised in Section 4.1.). The presence of this host medium intro-
duces a modification to the equations given in the previous section.

First, assuming for simplicity that the group velocity is equal to
the phase velocity c/n,,, the electric displacement field expansion
of Eq. (8) is adapted to the following form [17,26,27]:

at (r) = IZ (ﬁCkSo) <le + 2> {e ) (K)a™ (K)e'T — e (K)ai" (k)e’ik"}.

(18)

The matrix element for absorption independent of M is accord-
ingly also modified as:

1
s (mhck\? m2 4+ 2\ 40
My = ’(2Vs0) 3n, M

Furthermore, the transfer tensor given in Eq. (13), which is the
form appropriate for species interacting in a vacuum, also now
accommodates the effects of the continuous surrounding medium:

" 1 (n2+2)\°
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Therefore the host-influenced equivalent of Eq. (16) is duly:
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Figure 3. Representation of a system of primary and secondary chromophores
incorporated within a host matrix (the latter depicted as a notional cube for
illustrative purposes only). All components of the continuous host media display
negligible absorption in the wavelength region of both A and M.
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To be clear, we are assuming that the surroundings, character-
ized by n,, are comprised of neither A nor M. Now, the effects of
every secondary chromophore in the system must be taken into ac-
count. To effect an analytically tractable calculation, and to avoid
unnecessarily complicated results, we assume that the secondary
species have random orientations; this justifies performing a
three-dimensional isotropic rotational average with respect to
the orientation of M. Substituting Eq. (13) and (20) into (17) and
enacting the rotational average, enables the expression to be writ-
ten as:

In e-imokRn /2 2\ (A2 +2\°
2R M(A M(MA Rel — « (0] (0]
e{ } ]2cnagzM: R13vm 3n, 31,

M0

MO0 5 (@ pACO)[(1+if,,kRya)
((e Py — (e RMA) (pACO ‘RMA))
—2 K Riya{ (€ 1AC0) — (@ Rua) (™0 R )}, (22

where Greek subscripts denote laboratory-frame co-ordinates. The

pre-factor has been cast in terms of mean irradiance I, where

nhc?k
I NV "

To aid interpretation of the mathematical result, let us assume
that the input radiation propagates at an angle y to the dipole mo-
ment of the acceptor molecule. Working in spherical coordinates
with r, ¢ and 0 being the radial, azimuthal and polar coordinates
respectively, we model a continuous medium by re-expressing
the sum over all mediators as the product of the mediator concen-
tration, Cyy and an integral over all positions of M.

gied Mo Cu ///e mokius (2 42\ (72 + 2\ 0 |
12crca2 R3MA 31, 31, w

X COSY [1 + (ing,kRua)(cosy — 3cos(0 — y)cos0) — ﬁfuszf,,A

(cosy — cos(6 — y)cos@)}RZMAsin0898¢8RMA} (23)

where the integration is performed over every point in R® by a triple
integral with standard limits, and RZMA sin(0)d0d¢dRya is the volume
element [28]. Implementing the 0 integral, the R-independent terms
and others that are dependent on R™! all vanish, and further inte-
gration over the azimuthal angular coordinate introduces a factor
of 27t. By imposing a minimum distance, Ry, between the acceptor
molecule and the mediator molecules in the continuum we can use
the following identity:

e~ i kRinin (ln()kRmm + 1)
n2 k*

/ eiiﬁ‘”kRMARMA ORva = (24)
Rpnin

Given that the wavenumber is real and the overbar denotes
complex conjugation, this identity is valid for Im(n,) > 0, i.e.
when the medium has at least a marginal absorption over the
wavelength range of concern - which in practice will always be
the case. Before developing this further, we first take the first
two terms of a power series expansion of the exponential e~k
such that Eq. (24) is re-expressed as:

1

e (25)
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We then obtain the following medium-induced correction to
the absorption rate:

In,Cy(1 + A2 KPR%,, ) cos?y (2 + 2\ (A2 + 2 ? _M(00) . Aa0) 2
9 & « 0 i (0)
2 Re{ 9ce? 3n, J\73m, ) % W

(26)

The zeros of Eq. (26) can be readily identified as y = mn — /2,
where m represents any integer value. Now, we can take the limit
when Ry,;n tends to zero. This assumption is readily shown to have
minimal impact on the quantitative values delivered by the above
expression — based on an optical input where k =10’m-!, the
value of R, would realistically need to exceed 100 nm before
delivering a 1% additive contribution to the overall result of
Eq. (26). Finally, by rotational averaging with respect to the prop-
agation angle of the input radiation or, equivalently, the orienta-
tion of the absorber molecule A, we obtain:

C T 2In,Cy (12, + 2\ (72 +2\>
(A) y7(MA) _ oM ) o) M(OO) A(20) 2 )
ZSRe{MF, M } ‘Re{ Trec? ( o )( o > MO0 o)) 27)

It is now possible to compare the free-field term and the dy-
namic correction. It is clear that for the modification of absorption
to become significant, the medium requires a polarizability tensor
with large diagonal components. The transition dipole of the
acceptor molecule does not affect the ratio of these two terms,
since the square modulus of this vector appears in both the free-
space expression, Eq. (10), and the dynamic correction, Eq. (27).

4.1. Absorption modified by secondary chromophores in an absorptive
host medium

In the previous section, photon absorption at a primary chromo-
phore has been shown to be modified by the proximity of a second-
ary chromophore. Assuming the secondary mediators to be non-
polar, the lead correction to the absorption process was expressed
as either Egs. (17), (27), representing isolated systems or those
embedded within a host material, respectively. The theory in the
previous section is consistent with the concept that radiative loss
as light propagates through the host medium is minimal, i.e. the
host is essentially transparent for photons of energy hw. By revis-
iting this assumption, equations of wider application are now to be
derived for a system in which the primary and secondary chro-
mophores are held within a host material that exhibits more signif-
icant absorptive loss. The lead matrix element contribution - term
4in Eq. (7) - is now developed from Eq. (23) upon the substitution
of n, = n,, —in], for all cases of n,. Here, n/, is the real part of the
refractive index and n/, is a small but non-zero constant, physically
representing a host with low optical density. Hence, we obtain:

2910 1K Cu(n, —in,)(n (,)+mw) cos?y [ (n, — mw) +2
9ce? 3(n, —in})

3

n, +in 2 i vin 5

(n, + u)) //+ / e—1(nw-Hnw)kRMARMAaRMA&%(OO)|uA(¢O)|2 (28)
3( w + ln(U) Rmm

In the above expression, separate integrations over 6 and ¢ have
already been implemented, again delivering a result dependent on
R™!, however the integration over R now requires an alternative
identity to that employed in Eq. (24), namely:

e i, Jr'"m)kRmm( (n/ + in” )kRmin + ])

I (2 + 2in) n’, — n'2)

oo
/ e~ i(n,, +ing,) kRMARMA ORyp =
Rl“ln

(29)

Again using the first two terms of a power series expansion of the
exponential e-i+nw)kR  equation (29) can be re-expressed as:
1

o0
e iU MR R R2 . (30)
/Rmm ™R (n2 + 2in ) — n2)

w’ " w
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Substituting the right hand side of Eq. (30) into (28), and per-
forming the rotational average with respect to the propagation an-
gle of the input radiation, the emerging expression is equivalent to:

ICu(n2 +2)° [
37ce3 (n + 4in5ny,)

+in’n” ((Sn;f, +2) -+ n2kPR2, (Tn? + 6))] aﬁ<°°>|uﬂ<“°>|2}. (31)

2Re

n2(n2 +2) <1 +n2k’R2 >

(@] min

(OO} (0] min (0]

Since n/, is small, all terms that are non-linear in n’, in the above
and any subsequent expression are negligible, and can thus be dis-
carded. Following a geometric series expansion, Eq. (31) is re-
expressible as:

ICy (nizz) + 2)3 / 2 21,2 p2
Ziﬁe{w [nw(nw +2) (1 +nZk Rmm)
in, ((n2 - 6) + n2K°Rey, (302 - 2)) |2l e |, (32)
Continuing with the procedure established in the previous sec-

tion, as Ry, tends to zero, the final expression for the correction to
the absorption rate - in an absorptive host medium, follows as:

[n/ (n/2 +2)a!_M(OO)

w\"w I

e T} = 2 05 2]
3'cednA
o+, (n — 6)a %, (33)
The preceding result is expressed as a sum of both real and
imaginary contributions, having implemented a re-expression of
the molecular polarizability tensor such that &} = oM _
iM% " All non-zero, real and imaginary terms in Eq. (32) have
been collated with oY and «Y"®”, which respectively represent
the real and imaginary parts of &%wo). It is rewarding to note that in
the limit where o® and n” are zero, Eq. (33) reduces to the ear-
lier result (27). Notably, the extent to which the difference is signif-
icant depends on a product of terms representing low-level
absorption by both the host and the secondary chromophore
species M. Lastly, it is interesting to note that while the presented
results are analytically tractable, the broadly analogous modifica-
tion of resonance energy transfer through interaction with a
secondary chromophore is not as tractable, requiring the use of
numerical methods [29,30].

5. Conclusion

Using a fully quantized radiation formalism it has been shown
that, in a host material containing two or more types of molecular
chromophore, the rate of single photon absorption by a primary
chromophore is significantly influenced by others that absorb at
a shorter wavelength. Corrections to the absorption rate are pre-
dicted - and subsequently characterized - as a result of intermo-
lecular coupling between the primary and secondary centres.
Upon the basis that such coupling is mediated by virtual photons,
the lead correction term to the photon absorption rate emerges as
a quantum interference contribution, dependent on the molecular
polarizability of the molecular mediators. In considering the more
experimentally feasible conditions where such a system of primary
and secondary chromophores is incorporated within a host matrix

or molecular scaffold, the dependence on the refractive index of
the surrounding molecular environment is duly identified. Finally,
the effect of partial absorption by the host itself is accommodated,
to give a result of wider applicability.

In application to the most complex types of optical media,
determining the optimum criteria for modified optical absorption
will require account to be taken of other, possibly competing
acceptors; it can be anticipated that the emerging result will
exhibit a sensitive dependence on the ratio of acceptors to media-
tors. To further extend the analysis, it may also be desirable to
model the set of mediators as having some alignment preference.
Such a situation would require use of weighted rotational averag-
ing [31], with explicit calculation of the static correction terms if
the chromophores are polar; this may demand the implementation
of computational techniques. The prospect represents scope for
future work.

Acknowledgment

The authors would like to thank EPSRC for funding this
research.

References

[1] K. Dolgaleva, RW. Boyd, Adv. Opt. Photonics 4 (2012) 1.

[2] G.J. Daniels, D.L. Andrews, J. Chem. Phys. 116 (2002) 6701.

[3] M. Lunz, X. Zhang, V.A. Gerard, Y.K. Gun’ko, V. Lesnyak, N. Gaponik, A.S. Susha,
A.L. Rogach, A.L. Bradley, ]. Phys. Chem. C 116 (2012) 26529.

[4] A. Salam, J. Chem. Phys. 136 (2012) 014509.

[5] J.L. Herek, N.J. Fraser, T. Pullerits, P. Martinsson, T. Polivka, H. Scheer, R)].
Cogdell, V. Sundstréom, Biophys. J. 78 (2000) 2590.

[6] G.D. Scholes, G.R. Fleming, J. Phys. Chem. B 104 (2000) 1854.

[7] S. Jang, M.D. Newton, R}]. Silbey, J. Phys. Chem. B 111 (2007) 6807.

[8] D.P. Craig, E.A. Power, T. Thirunamachandran, Chem. Phys. Lett. 27 (1974) 149.

[9] D.P. Craig, E.A. Power, T. Thirunamachandran, Proc. R. Soc. Math. Phys. Eng. Sci.
348 (1976) 19.

[10] D.P. Craig, T. Thirunamachandran, Molecular Quantum Electrodynamics: An
Introduction to Radiation—-Molecule Interactions, Dover Publications, Mineola,
N.Y., 1998.

[11] D. Krois, U.H. Brinker, J. Am. Chem. Soc. 120 (1998) 11627.

[12] K. Tanaka, M. Kato, F. Toda, Chirality 13 (2001) 347.

[13] S. Allenmark, Chirality 15 (2003) 409.

[14] A. Salam, Molecular Quantum Electrodynamics: Long-Range Intermolecular
Interactions, Wiley, Hoboken, N.J., 2010.

[15] PW. Milonni, The Quantum Vacuum: An Introduction to Quantum
Electrodynamics, 1st ed., Academic Press, Massachusetts, 1993.

[16] D.L. Andrews, D.S. Bradshaw, Eur. ]. Phys. 25 (2004) 845.

[17] D.L. Andrews, P. Allcock, Optical Harmonics in Molecular Systems: Quantum
Electrodynamical Theory, Wiley-VCH, Weinheim, 2002.

[18] R.D. Mattuck, A Guide to Feynman Diagrams in the Many-Body Problem, 2nd
ed., Dover Publications, New York, 1992.

[19] D.L. Andrews, T. Thirunamachandran, J. Chem. Phys. 67 (1977) 5026.

[20] S.S. Andrews, ]. Chem. Educ. 81 (2004) 877.

[21] D.L. Andrews, Structured Light and Its Applications, 1st ed., Academic Press,
Massachusetts, 2008.

[22] L.C. Davila Romero, D.L. Andrews, ]. Phys. B At. Mol. Opt. Phys. 42 (2009)
085403.

[23] G.D. Scholes, D.L. Andrews, J. Chem. Phys. 107 (1997) 5374.

[24] A. Salam, J. Chem. Phys. 122 (2005) 044112.

[25] D.L. Andrews, Phys. Rev. A 81 (2010).

[26] G. Juzeliunas, Phys. Rev. A 53 (1996) 3543.

[27] G. Juzeliunas, Chem. Phys. 198 (1995) 145.

[28] E. Kreyszig, Advanced Engineering Mathematics, 9th ed., Wiley, Chichester,
2005.

[29] D.L. Andrews, ].S. Ford, J. Chem. Phys. 139 (2013) 014107.

[30] J.M. Leeder, ].S. Ford, M.M. Coles, and D.L. Andrews, Proc. SPIE (in press).

[31] D. Andrews, M. Harlow, Phys. Rev. A 29 (1984) 2796.


http://refhub.elsevier.com/S0009-2614(14)00037-2/h0005
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0010
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0015
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0015
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0020
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0025
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0025
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0030
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0035
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0040
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0045
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0045
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0050
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0050
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0050
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0050
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0055
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0060
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0065
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0070
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0070
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0070
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0075
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0075
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0075
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0080
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0085
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0085
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0085
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0090
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0090
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0090
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0095
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0100
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0105
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0105
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0105
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0110
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0110
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0115
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0120
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0125
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0130
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0130
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0135
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0135
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0140
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0140
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0140
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0145
http://refhub.elsevier.com/S0009-2614(14)00037-2/h0155

	Static and dynamic modifications to photon absorption: The effects  of surrounding chromophores
	1 Introduction
	2 Background theory
	3 Locally modified absorption
	3.1 Medium-independent absorption
	3.2 Static correction term
	3.3 Dynamic correction term

	4 Absorption modified by secondary chromophores in a host medium
	4.1 Absorption modified by secondary chromophores in an absorptive host medium

	5 Conclusion
	Acknowledgment
	References


