
UNIVERSITY OF EAST ANGLIA COMPUTER SCIENCE TECHNICAL REPORT CMPC14-03 1

Technical Report CMP-C14-01: Finding Motif
Sets in Time Series

Anthony Bagnall, Jon Hills and Jason Lines,

Abstract—Time-series motifs are representative subsequences that occur frequently in a time series; a motif set is the set of
subsequences deemed to be instances of a given motif. We focus on finding motif sets. Our motivation is to detect motif sets in
household electricity-usage profiles, representing repeated patterns of household usage.
We propose three algorithms for finding motif sets. Two are greedy algorithms based on pairwise comparison, and the third
uses a heuristic measure of set quality to find the motif set directly. We compare these algorithms on simulated datasets and
on electricity-usage data. We show that Scan MK, the simplest way of using the best-matching pair to find motif sets, is less
accurate on our synthetic data than Set Finder and Cluster MK, although the latter is very sensitive to parameter settings. We
qualitatively analyse the outputs for the electricity-usage data and demonstrate that both Scan MK and Set Finder can discover
useful motif sets in such data.

Index Terms—Time series, Motifs, Electricity profiles

F

1 INTRODUCTION

T IME-SERIES motifs are subsequences that occur
frequently in a time series [1]. They can be used

to characterise the typical behaviour of a time series
to allow for classification or anomaly detection (e.g.
[1]), or as a primitive in, for example, association
rule mining (e.g. [2]). Areas of application include
medicine [1], image processing [1], and robotics [3].
Our interest lies in finding motifs in household
electricity-usage profiles, and using them to disaggre-
gate the data in terms of devices [4].

The key contributions to the study of motifs are
presented in [1], [5], [6]. The algorithm described in
[1] operates on discretised time series. This approx-
imate approach is inappropriate for our problem, as
the electricity-usage data is already aggregated into
15-minute periods, a time frame that makes device
disambiguation difficult. Further compression would
make detection impossible. The emphasis of the later
works is on finding best-matching pairs of subse-
quences. Our contribution is directed at exact discov-
ery of frequently occurring subsequences, rather than
best-matching pairs. We propose three algorithms for
this purpose. Two (Sections 3.1 and 3.2) use the MK
pair-matching algorithm as a subroutine (although
any pair-finding algorithm could be used), and the
other finds motif sets based on whole set quality,
rather than pair matching (Section 3.3). We assess
their performance (Sections 5 and 6) on both real and
synthetic data, described in Section 4. All of the code

• J. Hills, J. Lines, and A.Bagnall are with the School of Computing Sci-
ences, University of East Anglia, Norwich, Norfolk, United Kingdom.
E-mail: {ajb,j.hills,j.lines}@uea.ac.uk

Fig. 1. A simulation of an electricity demand profile,
with three motif sets.

and data used in this paper can be found at [7]; the
password for the zipped files is ‘motset13’.

2 BACKGROUND

A time series is a sequence T =< t1, t2, ..., tm > of
m real-valued numbers. Images and spectrographs
[8], and other sequential data, as well as temporally-
ordered data, may be regarded as time series. Time-
series data-mining research is concerned predomi-
nantly with discovering similarities between subse-
quences of time series, rather than between whole
time series, see e.g. [1]. A subsequence of length
n of a time series T is a time series Sa =<
ta, ta+1, ..., ta+n−1 > where 1 ≤ a ≤ m − (n − 1).
A sliding window produces the set S of all possible
subsequences Si of size n of T . The cardinality of S
is m− (n− 1).

We use the term motif to refer to a single sub-
sequence (which can be a concrete instance, or the
average of the members of its motif set), and the
term motif set to mean the set of subsequences that
are associated with a given motif. The 1-motif set
problem is to find the largest subset of S whose
members are considered to match one another, where
two series match if the distance between them is less

UNIVERSITY OF EAST ANGLIA COMPUTER SCIENCE TECHNICAL REPORT CMPC14-03 2

than some threshold parameter, r, and the match is
non-trivial. As shown in [9], failing to prevent trivial
matching renders motif detection meaningless. There
are alternative definitions of a trivial match; we adopt
the definition used in [9], and take it that two series
cannot match if they overlap.

The K-motif set is defined as the Kth most
commonly-occurring subsequence that does not over-
lap with the previous (K − 1)-motif sets. Finding K
motif sets requires that we enforce a separation of at
least 2r between each motif set and all previous motif
sets [1].

2.1 Mueen-Keogh (MK) Best-matching Pair Algo-
rithm.
An exact pair-finding algorithm called Mueen-Keogh
(MK) is proposed in [5]. MK finds closest matches be-
tween time-series subsequences using a form of early
abandon that dramatically speeds up the matching
process in the average case. Finding best-matching
pairs is of less interest to us than detecting the daily
repeating pattern of, for example, a washing machine
or oven. This is an important point because the best-
matching pair are not necessarily members of a high-
cardinality motif set; for example, in Fig. 1, the red
subsequences form the best-matching pair, but the
blue and green motif sets have higher cardinality. A
formal description of MK is given in [5]; we use the
algorithm to find best-matching pairs as one stage
in the motif-set discovery process; any pair-finding
algorithm can be substituted for MK, however.

3 FINDING THE K-MOTIF SETS

In this section, we describe three algorithms for find-
ing the K-motif sets. Two are based on constructing
sets using pairs, the other constructs motif sets di-
rectly. MK is a fast way of finding matching pairs;
however, this does not in itself provide a way of
finding motif sets.

3.1 Scan MK.
We have extended the method for finding the range
motif outlined in [6] to find approximate K-motif
sets. We iterate the process of finding closest pairs
and their matches, adding them to a motif set and
removing members and their trivial matches from the
list of candidates after each iteration. The algorithm
is described in Fig. 2. We assume a distance function
d(Si, Sj) is defined (we use Euclidean distance for all
experiments).

MK is used to find the best-matching pair of subse-
quences in S (line 7); if the distance between them is
greater than 2r, the algorithm terminates. Otherwise,
the best-matching pair is added to a motif set, the
trivial matches of the best-matching pair are removed
from S (lines 8-16), and the remaining subsequences

are scanned. Any subsequences within 2r of both
members of the best-matching pair are added to the
motif set (lines 17-22).

The condense function operates as follows. For
each set of contiguously-indexed subsequences, the
non-trivial match is taken to be the subsequence with
the smallest total distance between it and each of the
members of the motif set. The contiguously-indexed
subsequences are taken to be trivial matches, and
are excluded from the motif set. The motif set is
further condensed by removing one subsequence of
any pair whose members are more than 2r apart. We
choose which subsequence to exclude based on the
number of clashes. For example, if a subsequence that
clashes with three others is greater than 2r from a
subsequence that clashes with two others, the first
subsequence is removed, maximising the cardinality
of the set. Ties are decided based on average linkage;
the subsequence with the shortest total distance to
the other members of the set is retained. Once the
motif set is established, its members and their trivial
matches are removed from the candidate set, and the
process is repeated until no more subsequences are
within 2r of each other.

3.2 Cluster MK.
The second algorithm we develop is based on hierar-
chical clustering of best-matching pairs. Hierarchical
clustering is a widely used clustering approach, see
for example [9], based on finding best-matching pairs
of series. We use MK to find the pairs, and an adapted
form of bottom-up hierarchical clustering described in
Fig. 3.

We find the closest pair of subsequences, then
merge this pair to form a new cluster (motif set). The
cluster is represented by a new subsequence found
by averaging the input subsequences, weighted by
the number of subsequences that have already been
combined to make each candidate. This ensures the
cluster centre accurately reflects the members of the
cluster. The process is repeated until the distance
between the best-matching pair is greater than r. At
this point the subsequence set S will contain the
motifs, and the motif sets can be recovered from the
clustering data structure.

3.3 Set Finder.
We propose an algorithm to find the K-motif sets di-
rectly, based on counting and separating (Fig. 4). Each
subsequence is compared to every other subsequence,
and the non-trivial matches are counted. The set of
counts is sorted. The sorted set is then input to the
function separate, which checks each subsequence
with a non-zero count in order to ensure that it is
at least 2r apart from subsequences with a greater
number of matches. Subsequences that fail the test are
removed from the set. An early abandon based on the

UNIVERSITY OF EAST ANGLIA COMPUTER SCIENCE TECHNICAL REPORT CMPC14-03 3

Fig. 2. Scan MK
Input: T : a time series.

q: the number of subsequences for MK.
r: half the maximum width of a motif set.
n: the width of the sliding window.

Output: M : a set of motif sets.
1: M ← ∅
2: F ← slidingWindow(T, n)
{F is the full set of subsequences of length n}

3: S ← F
4: k ← 0
5: while end = false do
6: end← true
7: {L1, L2} ← MK(S, q) {L1 and L2 are indexes in F}
8: if d(FL1

, FL2
) ≤ 2r then

9: end← false
10: k ← k + 1
11: Mk ← {FL1 , FL2}
12: D ← ∅
13: for i← 1 to |S| do
14: if trivialMatch(FL1

, Si)
∨ trivialMatch(FL2

, Si) then
15: D ← D ∪ Si

16: S ← S −D
17: for i← 1 to |S| do
18: if d(FL1

, Si) ≤ 2r∧d(FL2
, Si) ≤ 2r∧Si /∈ D

then
19: Mk ←Mk ∪ Si

20: for j ← 1 to |S| do
21: if trivialMatch(Si, Sj) then
22: D ← D ∪ Sj

23: S ← S −D
24: Mk ← condense(Mk, r)
25: if k > 0 then
26: M ← {M1, ...,Mk}
27: sort(M)
28: return M

Fig. 3. Cluster MK
Input: T : a time series.

q: the number of subsequences for MK.
r: the radius of the motif clusters.
n: the width of the sliding window.

Output: S: a set of motifs.
1: F ← slidingWindow(T, n)
2: S ← F
3: while end = false do
4: end← true
5: {L1, L2} ← MK(S, q)
6: if d(FL1

, FL2
) ≤ r then

7: end← false
8: S ← S − {FL1 , FL2}
9: c← merge(FL1

, FL2
)

10: S ← S ∪ c
11: return S

value of r is built into the distance function to speed
up the algorithm.

Fig. 4. Set Finder
Input: T : a time series.

r: the maximum distance between matches.
n: the width of the sliding window.

Output: M : a set of motif sets.
1: S ← slidingWindow(T, n)
2: C ←< 0, . . . , 0 >
{C is counts vector of length |S| initialised to 0}

3: for i← 1 to |S| do
4: for j ← i+ 1 to |S| do
5: if d(Si, Sj) ≤ r ∧

trivialMatch(Si, Sj)= false then
6: Ci ← Ci + 1
7: Cj ← Cj + 1
8: sort(C, S)
9: M ← separate(C, S)

10: return M

The storing and recovery of the motif sets is omitted
for clarity, but is easily achieved by retaining refer-
ences to subsequences in addition to count data (see
[7]).

4 DATA

Section 4.1 describes the synthetic datasets we gener-
ate in order to test for statistically significant differ-
ences between the algorithms. Section 4.2 describes
the electricity-usage profiles we mine for motif sets.

4.1 Synthetic Data.
We specify a parameterised data space from which
datasets are drawn, and randomly generate inde-
pendent datasets for a given set of parameters. The
simulated data is white noise (observations of i.i.d.
normally-distributed random variables with µ = 0
and σ = 1) with shapes added to the noise at random
intervals (see [7] for more details).

The minimum and maximum time series length,
number of distinct shapes, and instances of each
shape, are fixed parameters of the data, as are the
length and amplitude of each instance. To generate
a dataset, we randomly select one or two different
shapes, and a number of instances for each shape.
The shapes are added to the white noise at random
locations, and do not overlap. An example of this
distorted motif data is shown in Figure 5.

4.2 Electricity-usage Data.
The electrical device data originate from a trial of
smart meters in 187 homes across the United King-
dom (see [10], [8]). The equipment was used to mon-
itor the electricity consumption of each household in

UNIVERSITY OF EAST ANGLIA COMPUTER SCIENCE TECHNICAL REPORT CMPC14-03 4

Spike

Step

Spike

Step Step

Spike

Step

Spike

Fig. 5. An example simulated motif problem, with two
motif sets, a Spike set (highlighted in red), and a Step
set (highlighted in green).

Watt Hours (Wh) at 15-minute intervals. Each series
corresponds to the entire consumption of a household
over the duration of the trial. The motivation for using
this data is that the UK government has mandated
that all households must be equipped with smart
metering equipment by 2020. As a consequence, there
will be very large quantities of data that must be
processed in an efficient manner.

One confounding factor is that devices of a simi-
lar nature have very similar usage profiles. Devices
such as fridges and freezers, or computers and tele-
visions, are very difficult to distinguish. In addition,
the device-specific data is user-orientated. There is no
central control over the devices that are monitored;
the consumers have direct access to the monitoring
equipment and all device labels are user-specified.
Hence, labelling is potentially unreliable. Because of
these confounding factors, it would be beneficial to
have a reliable, automated method of detecting and
identifying specific device use.

5 SYNTHETIC DATA RESULTS

Our primary aim is to assess how accurately the
algorithms discover motif sets; we include timing re-
sults on the companion website [7] for completeness.
Cluster MK is slower than the other two algorithms
on the synthetic data; Set Finder is slower on the
electricity data, though the difference is marginal.

5.1 Performance Evaluation.

For synthetic data containing only one motif set, we
assess performance by calculating the number of true
positives (TP), false positives (FP), and false negatives
(FN). A TP occurs when the algorithm returns an
index within n

2 of any shape, where n is the length
of the shape (in this case, fixed at 29). Any index
returned by the algorithm that is not a TP is an
FP, and any shape in the data that is not associated
with a TP is an FN. We use two standard mea-
sures of accuracy: precision = TP/(TP + FP), and
sensitivity = TP/(TP + FN).

For synthetic data containing two motif sets, the
sets of indexes generated by the algorithm are paired
with the indexes of the motif sets in the data, giving
a combination we refer to as a matching. A score is
calculated for each matching as follows. Each index
that is not paired with another index adds the value

of n (the length of the shape in the data) to the
score. In our experiments, n was fixed at 29. For each
pair of indexes, the absolute value of the difference
between the two is calculated, with a ceiling fixed at
the value of n. Hence, pairing an index of 13 with an
index of 21 gives a score of 8. The scores are tallied
for each possible combination of indexes within sets,
and of matchings between sets. Our measure rewards
close matches, and punishes false negatives and false
positives equally.

To assess significance for differences between algo-
rithms at a given value of r, we perform a two-sample
T-test with an alpha value of 0.05.

We compare the algorithms on two problems: find-
ing a single set of shapes inserted into random noise,
and finding two sets of shapes inserted into random
noise. The second problem is more complex, and more
representative of real-life applications. We use a range
of r values for two reasons. First, we are interested
in discovering the value of r that is appropriate for
various situations. Second, we are interested in how
the algorithms compare to one another over a range
of values; if we used a single value for r, our results
might be misleading.

5.2 r value.

For the synthetic data, all algorithms perform best
when r is around n

2 for motif length n. We speculate
that the high level of noise in the data prevents
successful discovery of motifs with smaller values of
r. For noisy data, we recommend setting r at this level
as a heuristic. If r is higher than n

2 on our synthetic
data, performance begins to degrade.

The electricity data is much less noisy than the
synthetic data. On that data, we achieve good results
with r = n

8 . This equates to an r value of 3.6 for the
synthetic data, a value at which the sensitivity is 0.
The synthetic data is too noisy to tolerate such a low
value of r. As a general rule, we suggest indexing r to
n, and decreasing the value of r as the level of noise
in the data decreases.

5.3 Problems with a single motif set.

For the experiments using a single shape, we tested
the three algorithms over 1000 datasets containing
three to five instances of the shape, using different
values of r in the range r = 5 − 25. Figure 6 shows
the results of these experiments. The statistically sig-
nificant differences are listed below:

• Cluster MK is significantly more sensitive than
the other algorithms in the range r = 9− 15, and
less sensitive in the range r = 21 − 25. It is less
precise than the others in the range r = 21− 25.

• Set Finder is significantly more precise than the
other two in the range r = 16 − 25, and more
sensitive than Scan MK in the range r = 10− 20.

UNIVERSITY OF EAST ANGLIA COMPUTER SCIENCE TECHNICAL REPORT CMPC14-03 5

0

0.25

0.5

0.75

1

5 10 15 20 25

S
e
n
si
ti
v
it
y

r

Cluster

MK

Set Finder

Scan MK

0

0.25

0.5

0.75

1

5 10 15 20 25

P
re
c
is
io
n

r

Set Finder

Scan MK

Cluster MK

Fig. 6. The mean sensitivity (left) and precision (right),
with standard error, over a random sample of 1000
instances of the single shape datasets for Scan MK,
Cluster MK, and Set Finder, with values of r in the
range 5 to 25.

• Scan MK is less sensitive than the other two
algorithms in the range r = 10 − 25, and more
sensitive in the range r = 22− 25.

We conclude that Cluster MK and Set Finder are
more accurate than Scan MK; Cluster MK is better for
finding motifs, and Set Finder is better for avoiding
false positives. Cluster MK has the disadvantage that
it is very sensitive to the value of r, and its per-
formance degrades quickly outside of the optimum
range. Scan MK is significantly more sensitive at high
values of r, but the concomitant loss of precision
suggests that it will give many false positives in this
range, which may be unsuitable for certain tasks.

5.4 Problems with two motif sets.

Finding multiple motif sets is more complex, not least
because the algorithms must distinguish between the
subsequences that belong to different sets (see Section
5.1). For the single shape problem, we permitted mul-
tiple sets to be aggregated; for the two-shape problem,
each set returned by the algorithm is assigned to at
most one of the motif sets in the data. Hence, an
output of a single set containing all of the instances
of both shapes is rewarded only for finding one
motif set, and punished for missing the other set and
for false positives. Equally, if the algorithm finds all
instances of both motif sets, but splits them into many
different sets, it is punished accordingly.

The results of the two-shape experiment are shown
in Figure 7. The statistically significant differences are
listed below:

• Set Finder is significantly better than Scan MK in
the range r = 11−15 and significantly better than
Cluster MK in the range r = 15− 18.

• Cluster MK is significantly better than Scan MK
in the range r = 9 − 12; this is reversed in the
range r = 16− 18.

120

140

160

180

200

220

240

5 6 7 8 9 10 11 12 13 14 15 16 17 18

S
c
o
r
e

r

Scan MK

Set Finder

Cluster MK

Fig. 7. The mean difference score (as defined in Sec-
tion 5.1) and standard error over a random sample of
100 instances of the two shape datasets for Scan MK,
Cluster MK, and Set Finder with values of r in the range
5 to 18. Lower scores indicate better performance.

• The best values of r for all algorithms are in the
range r = 14− 16, when r is approximately n

2 .
Our results suggest that Set Finder is the most

accurate algorithm when r is approximately n
2 , which

we suggest is an appropriate value for noisy data.
Once again, Cluster MK is very sensitive to the
value of r, which is a weakness of the algorithm, as
small differences in r (which is difficult to estimate
precisely), can cause the algorithm’s performance to
deteriorate.

6 ELECTRICITY-USAGE DATA

In this section, we present qualitative analysis on the
performance of Set Finder and Scan MK on household
electricity-usage data. We use a window size of 4,
as this represents one hour. Our results show that
analysis in terms of motif sets is likely to be fruitful
for profiling device usage.

We first analyse the performance of the Set Finder
algorithm on a usage profile. The usage profile con-
tains usage instances of three devices: a dishwasher,
a washing machine, and an oven. Using the values
r = 0.5 and n = 4, the algorithm returns two sets
of indexes. Unsurprisingly, the larger set contains all
instances of four consecutive zeros, representing the
instances of no device usage. More interestingly, the
other set consists of indexes that closely resemble
the usage profile of the washing machine. Figure 8
shows the usage profile with the discovered motif set
highlighted in red. The 2-motif set found by the algo-
rithm correctly identifies all instances of the washing
machine in this usage profile, and no other devices.

The precision is 1 (no false positives), and for the
washing machine device, sensitivity is also 1 (no false
negatives). The sensitivity measured over all devices
is 0.21; while this may appear to be fairly poor, it
is better than some of the results obtained on the
synthetic data.

The electricity-usage problem has an added level of
complexity because the motif sets representing differ-
ent devices contain subsequences of different lengths;

UNIVERSITY OF EAST ANGLIA COMPUTER SCIENCE TECHNICAL REPORT CMPC14-03 6

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0
1

1
0
6

1
1
1

1
1
6

1
2
1

1
2
6

1
3
1

1
3
6

1
4
1

1
4
6

1
5
1

1
5
6

1
6
1

1
6
6

1
7
1

1
7
6

1
8
1

1
8
6

1
9
1

1
9
6

2
0
1

2
0
6

2
1
1

2
1
6

2
2
1

2
2
6

2
3
1

Fig. 8. A household electricity-usage profile; the subsequences returned by the Set Finder algorithm as members
of the two-motif set are highlighted in red, and represent the washing machine device.

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0
1

1
0
6

1
1
1

1
1
6

1
2
1

1
2
6

1
3
1

1
3
6

1
4
1

1
4
6

1
5
1

1
5
6

1
6
1

1
6
6

1
7
1

1
7
6

1
8
1

1
8
6

1
9
1

1
9
6

2
0
1

2
0
6

2
1
1

2
1
6

2
2
1

2
2
6

2
3
1

Fig. 9. A household electricity-usage profile; the subsequences returned by the Scan MK algorithm are
highlighted as follows: 4-motif set (red) and 5-motif set (green), are instances of the dishwasher device. The
6-motif set (purple) is two instances of the oven device.

this necessitates variation in the values of n and r,
and explains why the algorithm found one device
perfectly, while missing the others. An appropriate ap-
proach for such data would involve producing output
for many values of n and r, and post-processing the
discovered motif sets to find the set of devices in the
data.

We turn now to the performance of the Scan MK
algorithm. Again, we use fixed values of n = 4 and
r = 0.5. As identified by the algorithm, the 1-motif
set is largely 0 elements. As with the Set Finder algo-
rithm, we disregard this set. We also disregard the 2-
motif set and 3-motif set, as they contains very similar
data that would be post-processed as belonging with
the 1-motif set. The other sets of indexes returned by
the algorithm are interpretable as follows. The algo-
rithm has been reasonably successful at finding the
dishwasher device, although post-processing would
be required to combine the 4-motif set (highlighted
in red on Figure 9) and the 5-motif set (highlighted
on Figure 9 in green). The precision of the combined
set is 1 (no false positives); the sensitivity for the
dishwasher is 0.56. The overall sensitivity is 0.24; this
value includes the two oven devices identified as
the 6-motif set (highlighted in purple in Figure 9).
It should be noted that the device-specific sensitiv-
ity of Scan MK was lower than that of Set Finder,
even though Scan MK benefited from generous post-
processing.

7 CONCLUSION

Finding motif sets in time series is essentially a form
of clustering, and it is necessary to define a heuristic
search technique to find motif sets, as the problem
is NP-complete. We have proposed and compared
three such algorithms for motif-set discovery: Scan

MK, Cluster MK, and Set Finder. Extensive experi-
mentation shows that Set Finder is significantly more
accurate than Scan MK on synthetic data containing
one and two shapes, for the values of the range
parameter r for which the algorithms perform best.
Cluster MK is competitive providing that appropriate
values of r are used; however, it is very sensitive to
the value of r.

Finding motif sets is applicable to problems in a
wide range of domains, including medicine, image
processing, and robotics. We have extended our exper-
iments to investigate the problem of profiling device
usage from household electricity-consumption data.
We found the motif set approach showed promise for
identifying specific devices from data; we can reason-
ably expect to improve this performance dramatically
on less aggregated data, and by using varying values
of n and r followed by post-processing.

REFERENCES

[1] J. Lin, E. Keogh, S. Lonardi, and P. Patel, “Finding motifs in time
series,” in Proc. of the 2nd Workshop on Temporal Data Mining,
2002, pp. 53–68.

[2] G. Das, K. Lin, H. Mannila, G. Renganathan, and P. Smyth,
“Rule discovery from time series,” Knowledge Discovery and Data
Mining, pp. 16–22, 1998.

[3] T. Oates, M.D. Schmill, and P.R. Cohen, “A method for cluster-
ing the experiences of a mobile robot that accords with human
judgments,” in Proc. of the 17th National Conference on Artificial
Intelligence, 2000, pp. 846–851.

[4] J. Froehlich, E. Larson, G. Sidhant, G. Cohn, M. Reynolds, and
P. Shwetak, “Disaggregated end-use energy sensing for the
smart grid” in Pervasive Computing, IEEE, vol. 10, no. 1, pp.
28–39, 2011.

[5] A. Mueen, E. Keogh, Q. Zhu, S. Cash, and B. Westover, “Exact
discovery of time series motifs,” in Proceedings of the SIAM
international conference on data mining, 2009, pp. 473–484.

[6] A. Mueen, E. Keogh, Q. Zhu, S. Cash, M. Westover, and
N. Bigdely-Shamlo, “A disk-aware algorithm for time series
motif discovery,” Data Mining and Knowledge Discovery, vol. 22,
no. 1, pp. 73–105, 2011.

UNIVERSITY OF EAST ANGLIA COMPUTER SCIENCE TECHNICAL REPORT CMPC14-03 7

[7] https://sites.google.com/site/timeseriesmotifs
ets/.

[8] A. Bagnall, L. Davis, J. Hills, and J. Lines, “Transformation
based ensembles for time series classification,” in Proceedings of
the SIAM International Conference on Data Mining, pp. 307–319.

[9] E. Keogh and J. Lin, “Clustering of time-series subsequences
is meaningless: implications for previous and future research,”
Knowledge and Information Systems, vol. 8, no. 2, pp. 154–177,
2005.

[10] J. Lines, A. Bagnall, P. Caiger-Smith, and S. Anderson, “Clas-
sification of household devices by electricity usage profiles,”
in Intelligent Data Engineering and Automated Learning, 2011, pp.
403–412.

