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Abstract  31 

Many different emission pathways exist that are compatible with the Paris climate agreement, and many more are possible 32 

that miss that target. While some of the most complex Earth System Models have simulated a small selection of Shared 33 

Socioeconomic Pathways, it is impractical to use these expensive models to fully explore the space of possibilities. Such 34 

explorations therefore mostly rely on one-dimensional impulse response models, or simple pattern scaling approaches to 35 

approximate the physical climate response to a given scenario. Here we present ClimateBench - the first benchmarking 36 

framework based on a suite of CMIP, AerChemMIP and DAMIP simulations performed by a full complexity Earth System 37 

Model, and a set of baseline machine learning models that emulate its response to a variety of forcers. These emulators can 38 

predict annual mean global distributions of temperature, diurnal temperature range and precipitation (including extreme 39 

precipitation) given a wide range of emissions and concentrations of carbon dioxide, methane and aerosols, allowing them to 40 

efficiently probe previously unexplored scenarios. We discuss the accuracy and interpretability of these emulators and 41 

consider their robustness to physical constraints such as total energy conservation. Future opportunities incorporating such 42 

physical constraints directly in the machine learning models and using the emulators for detection and attribution studies are 43 

also discussed. This opens a wide range of opportunities to improve prediction, robustness and mathematical tractability. We 44 

hope that by laying out the principles of climate model emulation with clear examples and metrics we encourage engagement 45 

from statisticians and machine learning specialists keen to tackle this important and demanding challenge. 46 

Plain Language Summary 47 

Many different emission pathways exist that are compatible with the Paris climate agreement, and many more are possible 48 

that miss that target. While some of the most complex Earth System Models have simulated a small selection of possible 49 

futures, it is impractical to use these expensive models to fully explore the space of possibilities. Such explorations therefore 50 

mostly rely on simple approximations of the global mean temperature response to a given scenario. Here we present 51 

ClimateBench - the first benchmarking framework based on a suite of state-of-the-art simulations performed by a full 52 

complexity Earth System Model, and a set of baseline machine learning models that emulate its response to a variety of 53 

forcers. These emulators can predict annual mean global distributions of temperature, diurnal temperature range and 54 

precipitation (including extreme precipitation) given a wide range of emissions and concentrations of carbon dioxide, 55 

methane and aerosols, allowing them to efficiently probe previously unexplored scenarios. We also describe a set of 56 

evaluation metrics which we hope will entice statisticians and machine learning experts to tackle this important and 57 

demanding challenge. 58 



 

 

1. Introduction  59 

Many different emission pathways exist that are compatible with the Paris Agreement of limiting global mean temperatures 60 

to “well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5 °C”, and many 61 

more are possible that miss that target. Sampling possible emissions scenarios is therefore crucial for policy makers to weigh 62 

the economic cost and societal impact of different mitigation and adaptation strategies. While many of the most complex 63 

Earth System Models (ESMs) have simulated a small selection of ‘Shared Socioeconomic Pathways’ (SSPs; self-consistent 64 

emissions scenarios based on assumptions about future socio-economic changes and imperatives) it is impractical to use 65 

these expensive models to fully explore the space of possibilities (O’Neill et al., 2016). Therefore, such explorations mostly 66 

rely on one-dimensional impulse response models, or simple pattern scaling approaches to approximate the physical climate 67 

response to a given scenario (e.g., Millar et al., 2017).  68 

Impulse response models (Smith et al., 2018; Meinshausen et al., 2011; Nicholls et al., 2020) are physically interpretable and 69 

can capture the general non-linear behaviour of the system, but are inherently unable to model regional climate changes, 70 

while pattern scaling approaches rely on a simple scaling of spatial distributions of temperature (e.g., Tebaldi et al., 2014) by 71 

global mean temperature changes. This approach breaks down when considering precipitation, however, because of the 72 

strong non-linearities in its response to temperature (e.g., Cabré et al., 2010). Statistical emulators of the regional climate 73 

have been developed although these have been quite bespoke (Castruccio et al., 2014) or focus on the relatively simple 74 

problem of emulating temperature (Holden and Edwards, 2010). These approaches also do not account for the influence of 75 

aerosol, which can be important for both regional temperature and precipitation (e.g. Kasoar et al. 2018, Wilcox et al. 2020). 76 

As has been noted recently (Watson-Parris, 2021), approaches including non-linear pattern scaling (Beusch et al., 2020) and 77 

Gaussian process (GP) regression of long-term climate responses (Mansfield et al., 2020) suggest the possibility of using 78 

modern machine learning (ML) tools to produce robust and general emulators of future scenarios. However, comparing and 79 

contrasting these approaches is currently hindered by the lack of a consistent benchmark. 80 

ClimateBench defines a set of criteria and metrics for objectively evaluating such climate model emulation; aims to 81 

demonstrate the feasibility of such emulators; and provides a curated dataset that will allow, and hopefully encourage, 82 

broader engagement with this challenge in the same way WeatherBench (Rasp et al., 2020) has achieved for weather 83 

modelling. The target is to predict annual mean global distributions of temperature (T), diurnal temperature range (DTR), 84 

precipitation (PR) and the 90th percentile of precipitation (PR90). These variables are chosen to represent a range of 85 

important climate variables which respond differently to each forcing and include extreme changes (PR90) that might not be 86 

expected to scale in the same way as the mean. For example, while T has been shown to scale roughly linearly with global 87 

mean temperature changes (Castruccio et al., 2014), PR responds non-linearly, and DTR is more sensitive to aerosol 88 

perturbations than global mean temperature changes (Hansen et al., 1995). Four of the main anthropogenic forcing agents are 89 

provided as emulator inputs (predictors): carbon dioxide (CO2), sulphur dioxide (SO2; a precursor to sulphate aerosol), 90 

black carbon (BC) and methane (CH4). To enable spatially accurate emulators ClimateBench includes (annual mean): spatial 91 



 

 

distributions of emissions for the short-lived aerosol species (SO2 and BC), globally averaged emissions of CH4, and global 92 

cumulative emissions of CO2.  93 

The training data which is provided in order to support such predictions is generated from the simulations performed by the 94 

second (and latest) version of the Norwegian Earth System Model (NorESM2; Seland et al., 2020) as part of the sixth 95 

coupled model intercomparison project (CMIP6; Eyring et al., 2016). The provided inputs are constructed from the same 96 

input data that is used to drive the original simulations. While we could have included simulations from multiple different 97 

models, only one model submitted all of the DECK (Diagnostic, Evaluation, and Characterization of Klima), historical, 98 

AerChemMIP (Collins et al., 2017) and ScenarioMIP (O’Neill et al., 2016) experiments required for our purposes, making it 99 

impossible to provide a harmonised dataset. Further, there is no agreed way of robustly combining multiple models, and 100 

while statistically combining multiple different models can lead to improved skill (Pincus et al., 2008) the resulting variance 101 

is not reliable since the models are not truly independent (Knutti et al., 2013). Nevertheless, this single model dataset still 102 

allows us to explore both scenario uncertainty and internal variability. Further, since even very simple models are able to 103 

capture a variety of forcing responses (Smith et al. 2021), there is reason to believe that the response of the models to a given 104 

forcing is more consistent than the range of responses (e.g., Richardson et al. 2019). We thus suggest that an emulator that 105 

works best for NorESM2 will also have the tendency to perform better in emulating other CMIP models, mainly because the 106 

data characteristics are by design similar (CMIP models represent the same physical system). In contrast, variations in the 107 

structure of learning algorithms vary more significantly and follow entirely different ways of building a regression model.  108 

As a demonstration of the variety of possible approaches to tackle this benchmark we also introduce three distinct baseline 109 

emulators trained and evaluated against ClimateBench. These constitute the first data driven models for the projection of 110 

multiple climatic variables and show promising skill in both the global-mean and spatial responses. We discuss the merits 111 

and challenges in using each class of (regression) model and hope these provide a useful starting point for researchers 112 

wishing to develop more advanced emulators. 113 

The remainder of this paper describes the development of the dataset including the underlying ESM and all post-processing 114 

(Section 2), the evaluation metrics used to rank ClimateBench submissions (Section 3), the baseline emulators (Section 4), a 115 

discussion of such approaches and future opportunities for diverse approaches (Section 5) before providing a few concluding 116 

remarks in Section 6. 117 

2. Data set description and preparation 118 

The data provided as part of ClimateBench is a heavily curated version of that publicly available in the CMIP6 data archive. 119 

Here we describe the data extraction and processing steps, but the scripts used to perform this are also freely available (as 120 

described in the data availability statement).   121 



 

 

We use a selection of complementary simulations in order to provide as large a training dataset as possible while attempting 122 

to avoid unnecessary redundancy. Table 1 details the full list of simulations included, the period they cover and a brief 123 

description of their purpose in this context. Given that the primary purpose of ClimateBench is to train emulators over 124 

different emission scenarios, ScenarioMIP simulations are a key component of the dataset. ScenarioMIP prescribes a limited 125 

set of possible future emissions pathways exploring different socio-economic scenarios representing plausible narratives. 126 

These scenarios are designed to span a range of mitigation scenarios (denoted by the first number in each scenario) and end-127 

of-century forcing possibilities (denoted by the last two numbers in each scenario). We include all available simulations, 128 

including the AerChemMIP ssp370-lowNTCF variation of ssp370 which includes lower emissions of near-term climate 129 

forcers (NTCFs) such as aerosol (but not methane). We choose ssp245 as our test dataset against which all ClimateBench 130 

emulators are to be evaluated. This scenario represents a medium mitigation and medium forcing scenario, ensuring trained 131 

emulators are able to interpolate a solution rather than extrapolate (as discussed further in Section 5). The CMIP6 historical 132 

experiment is also included since it provides useful training data at low emissions values.  133 

 134 

Table 1: Details of post-processed simulations provided as part of the ClimateBench dataset. Experiments denoted (*) are ancillary 135 
data that, while potentially useful, are not used in training the baseline emulators presented here. 136 

Protocol Experiment Period Notes

ScenarioMIP 

(O’Neill et al., 

2016) 

ssp126 2015 - 2100 
A high ambition scenario designed to produce significantly less than 2 

degrees warming by 2100. 

ssp245 2015 - 2100 
Designed to represent a medium forcing future scenario. This is the test 

scenario to be held back for evaluation. 

ssp370 2015 - 2100 
A medium-high forcing scenario with high emissions of near-term climate 

forcers (NTCF) such as methane and aerosol. 

ssp370-

lowNTCF 
2015 - 2054 Variation of SSP370 with lower emissions of aerosol and their precursors 

ssp585 2015 - 2100 
This scenario represents the high end of the range of future pathways in the 

IAM literature and leads to a very large forcing of 8.5 Wm-2 in 2100. 

CMIP6 

(Eyring et al., 

2016) 

historical 1850 – 2014 
A simulation using historical emissions of all forcing agents designed to 

recreate the historically observed climate. 
abrupt-

4xCO2* 
500 years 

Idealised simulation in which CO2 is abruptly quadrupled. Other forcing 

agents remain unchanged.  

1pctCO2* 150 years 
Idealised simulation in which CO2 is gradually increased by 1% / year. 

Other forcing agents remain unchanged. 

piControl* 500 years Baseline simulation in which all forcing agents remain unchanged. 



 

 

DAMIP 

(Gillett et al., 

2016) 

hist-GHG 1850 – 2014 
A historical simulation with varying concentrations for CO2 and other long-

lived greenhouse-gases (only). 
hist-aer 1850 – 2014 A historical simulation only forced by changes in anthropogenic aerosol.

ssp245-aer 2015 - 2100 
A medium forcing scenario with only changes in anthropogenic aerosol, 

which provides an alternative test scenario for emulator evaluation. 

 137 

ClimateBench also includes a selection of more idealised simulations which are intended to provide training data at the 138 

‘corners’ of the four-dimensional input space, again helping reduce the chances of extrapolation in the resulting emulators 139 

(as demonstrated in Figure A1). Two simulations that are commonly used to diagnose the equilibrium and transient climate 140 

sensitivity are abrupt-4xCO2 and 1pctCO2, respectively. As the name suggests, the abrupt-4xCO2 includes an abrupt 141 

quadrupling of CO2 over the pre-industrial concentrations while all other forcing agents remain unchanged. This level of 142 

concentration represents the high end of future scenarios, broadly in line with ssp585 but with no contribution from the other 143 

forcers, simplifying its interpretation. The abrupt nature of the forcing also allows the timescale of the responses to be 144 

determined which can be useful for emulators which account for this. The 1pctCO2 simulation gradually increases the 145 

atmospheric concentration of CO2 by 1% per year, again with other forcing agents unchanged. While potentially very useful, 146 

they are not used in the training of the emulators presented in this work. Two other idealised simulations performed as part 147 

of the Detection-Attribution Model Intercomparison Project (DAMIP; Gillett et al., 2016) represent the historical period 148 

forced by only CO2 and other long-lived greenhouse gases (hist-GHG), or only anthropogenic aerosol (hist-aer). These 149 

provide opportunities to train emulators in regions of the input (emissions) space that are at the limits of plausible future 150 

scenarios and were used in training the emulators described in Section 4. 151 

Finally, the piControl simulation provides a baseline simulation with all forcings remaining unchanged from their pre-152 

industrial values. All target variables are calculated as a change against this climatology to simplify the training and 153 

interpretation of the results. This long (500 year) simulation also enables a robust estimation of internal variability of the 154 

climate system for those emulators which are able to represent it in future work, as discussed further in Section 5.1. 155 

2.1 Input variables 156 

The input data for these simulations is prescribed by the experimental protocol and provided by the input4MIPS project 157 

(https://esgf-node.llnl.gov/search/input4mips/), which we collate and pre-process for ease of use. Specifically, we extract the 158 

provided global mean emissions of CO2 and CH4 for each of the realistic (historical, ScenarioMIP and DAMIP) experiments 159 

from the checksum files provided by the Community Emissions Data System (CEDS) dataset (Hoesly et al., 2018). We sum 160 

over each sector and each month in order to derive annual total emissions and convert from Kg to Gt of CO2. Some 161 

historical and future periods are only provided in 5-yearly increments, so we linearly interpolate to yearly values for 162 

consistency. The CO2 emissions are summed cumulatively since, for realistic scenarios, a compensation between forcing 163 



 

 

efficiency and ocean uptake means the temperature response to CO2 is approximately linear in the cumulative emissions 164 

(Matthews and Caldeira 2008; Allen et al. 2009). Figure 1 shows the global mean emissions of each of the forcing agents 165 

under different future emissions scenarios, showing a wide range of possible pathways.  166 

 167 

 168 

Figure 1: Time series of cumulative anthropogenic CO2 emissions since 1850 (a); emissions of CH4 (b); global mean emissions of 169 
SO2 (c) and black carbon (BC; d) derived from NorESM2 ScenarioMIP simulations available within ClimateBench, including the 170 
SSP245 test scenario (shown in black). 171 

 172 

The aerosol (precursor) emissions are derived from the latest version of the spatially resolved CEDS dataset and again 173 

summed over sectors and months to produce maps of annual total emissions, as shown in Figure 2 for SO2 in different years. 174 

While the spatial distribution clearly evolves over the historical period and into the future scenarios, the emissions are fairly 175 



 

 

localised around industrialised regions and dimensionality reduction can be used to reduce the size of these input features (as 176 

discussed for the baseline emulators in Section 4). An area preserving interpolation is performed so that the emission data are 177 

provided on the same spatial grid as the NorESM2 output fields to simplify its use in ML workflows. Again, as used for 178 

NorESM2 the 5-yearly data is interpolated to a yearly frequency for consistency. 179 

 180 

 181 

 182 

Figure 2: Maps showing the evolution of the spatial distribution of anthropogenic SO2 emissions in the pre-industrial era 183 
represented by 1850 (a); the peak emissions era of 1970 (b); current emissions (c); and future emissions under SSP 245 (d). 184 

For the idealised CMIP simulations (abrupt-4xCO2 and 1pctCO2) no emissions files are used and so the cumulative 185 

anthropogenic CO2 emissions are calculated from the difference in the diagnosed CO2 atmospheric mass concentrations in 186 

these and the piControl experiment. Emissions of all other species are also provided but set to zero (as they represent no 187 

change since the pre-industrial).  188 

2.2 Target ESM 189 

We use the output from simulations performed by the NorESM2 model in its low atmosphere-medium ocean resolution 190 

(LM) configuration (Seland et al., 2020). This model consists of a fully coupled earth system with online atmosphere, land, 191 

ocean, ice and biogeochemistry components. It shares many components with the Community Earth System Model Version 192 

2 (Danabasoglu et al., 2020) but has a replaced aerosol and atmospheric chemistry scheme (including their interactions with 193 

clouds) and a different ocean model. It has a relatively low equilibrium climate sensitivity (ECS; equilibrium global mean 194 



 

 

temperature after a doubling of CO2) of 2.5 K, particularly compared to the 5.3K of CESM2 (Gettelman et al., 2019), which 195 

has been attributed to ocean heat uptake and convective mixing in the Southern Ocean (Gjermundsen et al., 2021). This is, 196 

nevertheless, well within the assessed likely range of ECS (90% probability between 2–5°C; Forster et al., 2021) and makes 197 

the emulation task harder than it might be for other CMIP6 models since the warming signal is weaker at the end of SSP245 198 

(by which point CO2 is the dominant forcing), as shown in Fig. A4. The combination of a weak ECS with a relatively strong 199 

aerosol forcing (−1.36 W m-2 for 1850 to 2014), likely accounts for the somewhat anomalous cooling between 1950-1980 in 200 

the historical simulations (Seland et al., 2020), although it has been noted that the combined anthropogenic response in 201 

NorESM is realistic (Gillett et al. 2021). 202 

2.3 Output variables 203 

The output of these simulations are aggregated to annual mean values but kept at their native spatial resolution 204 

(approximately 2°). The temperature (T) and precipitation (P) are exactly equivalent to the archived surface air temperature 205 

(tas) and total precipitation (pr) output variables respectively. The DTR is calculated as the annual mean of the difference in 206 

daily maximum and minimum surface air temperatures: |𝑡𝑎𝑠𝑚𝑎𝑥 − 𝑡𝑎𝑠𝑚𝑖𝑛|௔௡௡. The PR90 is calculated as the 90th 207 

percentile of the daily precipitation in each year.  The annual mean baseline values (from the full piControl simulation) for 208 

each variable are then subtracted from each experiment so that they represent a difference from pre-industrial. Temperature 209 

changes under anthropogenic climate change are routinely reported in this way, and it also makes the downstream emulation 210 

task somewhat easier as it removes an offset. The values are not scaled to have unit variance, but users of the dataset might 211 

choose to do this with certain emulators. Many of the NorESM2 simulations include three ensemble members sampling 212 

internal variability by choosing different initial model states from the start of the piControl simulation at intervals of 30 213 

model years apart. These are included to allow (optional) emulation of internal variability.  214 

Samples of these output fields from the target ssp245 dataset are shown in Figure 3. The relative increase in warming in the 215 

northern polar regions (known as Arctic amplification) is clearly seen in Fig. 3a, as well as the north Atlantic warming hole 216 

(Woollings et al., 2012; Drijfhout et al., 2012; Manabe and Stouffer, 1993), the emergence of which is also affected by 217 

aerosol radiative forcing (Dagan et al., 2020). Figure 3b shows the strong land/sea contrast in DTR, since most of the change 218 

is confined to land, and largely caused by changes in aerosol (particularly sulfate) forcing. Most of the precipitation response 219 

shown in Figure 3c-d is due to the shift in the inter-tropical convergence zone (ITCZ) which results from a shift in the cross-220 

equatorial energy balance under increased warming (Schneider et al., 2014), but some features, particularly in South-East 221 

Asia might be due to local aerosol effects (particularly due to BC; e.g., Bollasina et al. 2014, Wilcox et al. 2020, Mansfield 222 

et al. 2020). 223 



 

 

 224 

Figure 3: Maps of target outputs from the SSP245 held-back test scenario at 2100 (as an anomaly to the pre-industrial control run) 225 
performed by NorESM2: (a) Annual mean surface temperature; (b) annual mean diurnal surface temperature range; (c) annual 226 
mean precipitation; and (d) 90th percentile of the daily precipitation. 227 

Also included in the dataset are the top-of-atmosphere Effective Radiative Forcings (ERFs) for this model for each forcing 228 

agent over the historical period. These are based on diagnostics of the fixed sea-surface temperature experiments of the 229 

Radiative Forcing Model Intercomparison Project (RFMIP; Pincus et al., 2016; Smith et al., 2021) and provide a more direct 230 

estimate of the radiative climate effect of each forcer over this period than simply emissions. It also allows an estimate of the 231 

efficacy of each forcer in this model (the temperature response per unit of forcing). This might be useful for normalising the 232 

inputs by their efficacy or developing more physically interpretable emulators that derive the climate response via the 233 

forcing, but these are not used in the present study.  234 

3. Benchmark task 235 

The task defined by ClimateBench is the prediction of the output variables described in Section 2.3 using only the inputs 236 

available from Section 2.1 under the chosen test scenario - ssp245. Emulators may choose to use as much or as little of the 237 

data presented in Table 1 in order to train their models as appropriate for a given approach. They may also choose to predict 238 

the contemporaneous response to emissions (as used in our RF and GP baseline emulators), account for a lagged response (as 239 

in our baseline NN emulator), or even predict the full time-series simultaneously. 240 

3.1. Evaluation metrics 241 



 

 

The evaluation criteria are a crucial aspect to any benchmark dataset and need to be concretely defined and accurately reflect 242 

the objectives of the machine learning task. Ideally, the criteria are also simple to implement such that they can be used as a 243 

target in any loss function that might be used to train emulators. The global mean changes in temperature and precipitation 244 

are key climatic variables but the spatial characteristics of the outputs in this task also need to be considered if the emulators 245 

are to be used for regional projections. As a primary metric we choose to combine the normalised, global mean root-mean 246 

square error (𝑁𝑅𝑀𝑆𝐸௦) and the NRMSE in the global mean (𝑁𝑅𝑀𝑆𝐸௚), calculated following: 247 

𝑁𝑅𝑀𝑆𝐸௦ = ට〈ቀห𝑥௜,௝,௧ห௧ − ห𝑦௜,௝,௧,௡ห௡,௧ቁଶ〉 ห〈𝑦௜,௝〉ห𝑡,𝑛൘   (1) 

𝑁𝑅𝑀𝑆𝐸௚ = ඨฬቀ〈𝑥௜,௝,௧〉 − 〈ห𝑦௜,௝,௧,௡ห௡〉ቁଶฬ௧ ห〈𝑦௜,௝〉ห𝑡,𝑛൘  (2) 

𝑁𝑅𝑀𝑆𝐸௧ = 𝑁𝑅𝑀𝑆𝐸௦ + 𝛼 ∗ 𝑁𝑅𝑀𝑆𝐸௚, (3) 

where the global mean denoted 〈𝑥௜,௝〉 includes a weighting function that accounts for the decreasing grid-cell area towards 248 

the poles and is defined as: 〈𝑥௜,௝〉 = ଵே೗ೌ೟ே೗೚೙  ∑ ∑ 𝑐𝑜𝑠൫𝑙𝑎𝑡ሺ𝑖)൯𝑥௜,௝ே೗೚೙௝ே೗ೌ೟௜ , and 𝛼 is a coefficient empirically chosen to be 5 so 249 

that each component provides roughly equal weight.  250 

Combining these commonly used metrics in this way provides a single number summarising the mismatch between the 251 

predictions (𝑥) and the target variables (𝑦). By squaring the difference, the RMSE also weighs large discrepancies more 252 

heavily, penalising larger errors. We average the target variables over the three available ensemble members (𝑛) and a 253 

relatively long period of the target scenario (2080 – 2100) in order to minimise the contribution of internal variability. We 254 

choose the final years of the century since the start of the ssp245 is quite similar to some of the training scenarios. We 255 

normalise the RMSEs so that the metrics are broadly comparable across the target variables. 256 

Estimates of this internal variability can be very valuable for climate projections however and since ClimateBench includes 257 

three ensemble members for each training dataset emulators are encouraged to include estimates of it if they are able. A 258 

natural extension of the RMSE for probabilistic estimates commonly used in weather forecasting is the Continuous Ranked 259 

Probability Score (CRPS): 260 

𝐶𝑅𝑃𝑆 = න ൫〈𝐹௜,௝,௧ሺ𝑥)〉 − 〈𝐹௜,௝,௧ሺ𝑦)〉൯ଶ𝑑𝑥௫ୀஶ
௫ୀିஶ , (4) 

where 𝐹ሺ𝑥) and 𝐹ሺ𝑦) are the cumulative distribution functions (CDFs) over the predicted and target ensembles respectively 261 

(Gneiting et al. 2005). This measures the area between the two CDFs so that smaller values are better and has the benefit of 262 

retaining a well-defined interpretation in the case of only a single target observation (whose CDF would be the Heaviside 263 

function). The CDFs can be approximated over finite ensembles using quadrature, or direct integration if the PDFs can be 264 

assumed to be Gaussian. It should be noted that the relatively low number of ensemble members available in ClimateBench 265 



 

 

will likely underestimate full internal variability and a larger ensemble (e.g., 100 members in Rogers et al., 2021) should be 266 

used for robust estimation. Indeed, the formulation above only includes variability in the global mean since such small 267 

ensembles are unlikely to capture regional variability. Methods to calculate both metrics based on the climpred (Brady and 268 

Spring, 2021) package are provided in the example notebooks included with the dataset. While this metric is not included in 269 

the headline ranking of ClimateBench approaches, we include an example approach using GPs which is discussed in more 270 

detail in Section 4.1. 271 

3.2. Baseline evaluation 272 

Before evaluating some baseline statistical emulators, it is useful to consider two cases with which we hope to place the skill 273 

of the data-driven approaches in a broader context. The first is the internal variability of the NorESM2 target ensemble 274 

which provides an upper bound on the predictability of the scenario in the presence of the natural variability of the Earth 275 

system. This is estimated as the standard deviation across the three NorESM2 ensemble members in ssp245. In practice, the 276 

emulators can (and do) outperform this baseline because they target the mean over all three ensemble members, reducing the 277 

effect of internal variability. The second is a comparison against the inter-model spread encountered within CMIP6 for the 278 

variables of interest which, despite (as discussed above) not providing a robust model uncertainty, represents a lower bound 279 

on the accuracy we would like our emulators to achieve. 280 

Additionally, we introduce a linear pattern scaling model which uses independent linear regressions of each of the output 281 

variables at each model grid cell given the global mean temperature response to the emissions (e.g., Tebaldi et al., 2014). 282 

This approach is somewhat simpler than the other data driven models since it assumes access to an accurate impulse 283 

response (or box) model to determine the global mean temperature but provides a useful baseline. We train the regression 284 

models using the same training output data as the other emulators (described in the next section) but the only input is the 285 

global mean temperature. We assume this is available at prediction time as well so that this constitutes a ‘perfect’ pattern 286 

scaling approach.  287 

4. Baseline emulators 288 

Three baseline emulators are developed to demonstrate various potential approaches to tackling the machine learning 289 

problem this dataset provides. These are performed using the Earth System Emulator (ESEm; Watson-Parris et al., 2021) to 290 

provide a simple interface for non-ML experts and permit sampling the emulators for potential use in detection and 291 

attribution workflows (as discussed in the Section 5). All three emulators are trained using all the available training data: the 292 

historical data; ssp126; ssp370; ssp585; and the historical data with aerosol (hist-aer) and greenhouse gas (hist-GHG) 293 

forcings only, leading to 754 training / validation points (which are nevertheless not fully independent). More details on 294 

emulator specific data pre-processing, training procedure and results are described in each of the following subsections.  295 



 

 

The emulators all perform skilfully, as summarised in Table 2 and Figure 4. The emulators also show broadly similar biases, 296 

particularly for precipitation where they all slightly underestimate increases (decreases) in tropical (subtropical) rainfall in 297 

the western Pacific. They also tend to overpredict northern-hemisphere warming while underpredicting warming elsewhere. 298 

This might suggest that these particular changes are driven by different climate forcers or longer time-scale changes than 299 

modelled in this study. A direct comparison of the emulator predictions and NorESM is shown in Figure A2.  Overall, the 300 

neural network emulator performs the best in predicting temperature and precipitation changes, while the Gaussian process 301 

emulator performs best at predicting changes in the diurnal temperature range.  302 

 303 

Table 2: The spatial, global and total NRMSE of the different baseline emulators for the years 2080-2100 against the 304 
ClimateBench task of estimating key climate variables under future scenario SSP245. The best (lowest) emulator scores for each 305 
task are highlighted in bold. The normalised standard deviation in each variable over 22 different CMIP6 models and across the 306 
NorESM ensemble members are also included as indications of inter-model and internal variability, respectively. 307 

  NRMSE surface air 
temperature (1) 

NRMSE diurnal 
temperature range 
(1) 

NRMSE precipitation 
(1) 

NRMSE 90th 
percentile 
precipitation (1) 

  

Spatial 

G
lobal 

Total 

Spatial 

G
lobal 

Total 

Spatial 

G
lobal 

Total 

Spatial 

G
lobal 

Total 

Gaussian Process 0.109 0.074 0.478 9.207 2.675 22.58
2 2.341 0.341 4.048 2.556 0.4

29 
4.7
02 

Neural Network 0.107 0.044 0.327 9.917 1.372 16.77
8 2.128 0.209 3.175 2.610 0.3

46 
4.3
39 

Random Forest 0.108 0.058 0.400 9.195 2.652 22.45
7 2.524 0.502 5.035 2.682 0.5

43 
5.3
99 

Pattern Scaling 0.080 0.048 0.320 8.083 2.327 19.71
9 2.006 0.331 3.662 2.400 0.4

12 
4.4
61 

Variability 0.052 0.072 0.414 2.513 1.492 9.973 1.350 0.268 2.691 1.757 0.4
57 

4.0
43 

CMIP6 - 0.206 - - 0.815 - - 0.417 - - - - 
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 310 

 311 

Figure 4: Maps of the mean difference in the ClimateBench target variables for each baseline emulator against the target NorESM 312 
values under the test ssp245 scenario averaged between 2080-2100. Differences insignificant at the p<5% level are masked from 313 
the plots. 314 

4.1. Gaussian process regression 315 

Gaussian processes (GPs) (Rasmussen and Williams, 2005) are probabilistic models which assume predictions can be 316 

modelled jointly as normally distributed. GPs have been widely used for nonlinear and nonparametric regression problems in 317 

the geosciences (Camps-Valls et al., 2016). A GP is fully determined by the expectation of individual predictions – referred 318 

to as the mean – and the covariance between pairs of predictions. Such covariance is typically user-specified as a bivariate 319 

function of the input data called the kernel function. The choice of the kernel function allows to restrict the functional class 320 

the GP belongs to, offering, for example, control over functional smoothness. GPs for regression solve a supervised problem 321 



 

 

where the observed input-output sample pairs are used to: (1) infer the emulator parameters (typically only the noise variance 322 

and the kernel parameters) by maximising the log-likelihood of the observations under the evidence; and then (2) allow to 323 

obtain its posterior probability distribution that is used to make predictions over unseen inputs. 324 

To prepare the input samples, the dimensionality of the SO2 and BC emission maps are reduced with principal component 325 

analysis, and we only use the 5 first principal components of each as inputs, corresponding to 96% and 98% of the explained 326 

variance, respectively. All input covariates and target outputs are standardised using training data mean and standard 327 

deviation. 328 

The GP is set with a constant mean prior and separate kernels are devised for each species. Automatic relevance 329 

determination (ARD) kernels are used for SO2 and BC, allowing each principal component to be treated independently with 330 

its own lengthscale parameter. The GP covariance function is obtained by summing all kernels together, thus accounting for 331 

multiscale feature relations (see Camps-Valls et al., 2016 for several composite kernel constructions in remote sensing and 332 

geoscience problems). To account for internal variability between ensemble members, we consider an additional white noise 333 

term with constant variance over the output targets, which is also inferred from the training phase. 334 

We use Matérn-1.5 kernels for each input. This guarantees the GP is a continuous, once differentiable function; details are 335 

provided in Section A1. The mean value, kernels parameters and internal variability variance are jointly tuned against the 336 

training data by marginal likelihood maximisation with the limited memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) 337 

optimisation algorithm. The emulators used have 18 parameters in total: 5 lengthscale and one variance parameter for each 338 

aerosol kernel; one lengthscale and one variance for each of the GHG kernels; one mean and one likelihood variance. 339 

As reported in Table 2, the total NRMSE of the mean predictions with the GPs are competitive with the neural network for 340 

all the variables. This is remarkable given the limited number of parameters that are learnt. It suggests the GP prior is an 341 

adequate choice for the purposes of emulation. Study of the inferred kernel variance (not shown) suggests that cumulative 342 

CO2 emissions generally influence all predictions, and unequivocally dominate the predictions for surface air temperature 343 

and diurnal temperature range. CH4 and BC emissions on the other hand appear to have negligible influence on the 344 

predictions. Since the GP also provides posterior estimates of the variance (which will incorporate an estimate of internal 345 

variability) we also calculate the CPRS for this emulator (see Table A5). While we are unable to compare these scores with 346 

the other baseline methods the similarity to the global NRMSE indicates that the GP is also predicting the internal variability 347 

accurately (otherwise it would be penalised in the CPRS relative to the NRMSE).  348 

4.2. Random Forests 349 

Random forests aggregate predictions of multiple decision trees (Ho, 1995; Breiman, 2001). These trees repeatedly split data 350 

into subsets according to its features such that in-subset variance is low and between-subset variance is high. This makes 351 

decision trees good at modelling non-linear functions, in particular interactions between different variables. However, they 352 



 

 

are prone to overfitting (Ho, 1995). This problem is alleviated by ensemble methods which train a large number of different 353 

trees. Weak learners are combined to give strong learners. Bagging, used in Random Forests, describes training different 354 

trees on different subsets of the data or holding back some of the data dimensions for each individual tree. The Forest makes 355 

a prediction by averaging over the predictions of all individual trees.  356 

Two main arguments support an ensemble method approach to climate model emulation: These methods are skillful at 357 

interpolation tasks, but by construction are unable to extrapolate (Breiman, 2001). However, for applications of climate 358 

model emulation, interesting predictions will likely lie inside the hypercube delimited by historical data, low-emissions 359 

(ssp126) and business-as-usual (ssp585) scenarios. A major advantage of ensemble methods over more complex ML 360 

methods such as neural networks (and even ESMs) is their interpretability. This is important as ultimately predictions should 361 

inform decision-making. Being able to provide explanations why a given input led to a prediction helps to understand the 362 

consequences of decisions about emission pathways. 363 

Analogously to the GP emulator, the dimensionality of aerosol emission maps is reduced with principal component analysis. 364 

The first five principal components of SO2 and BC together with the global emission maps of CO2 and CH4 form the input 365 

features of the model. Separate random forest emulators are trained for the four target variables. The following 366 

hyperparameters are tuned using random search of the training data without replacement: number of trees, tree depth, 367 

number of samples required to split a node and to be at each leaf node. The hyperparameters used for each emulator are 368 

indicated in Section A2. 369 

As shown in Table 2, the spatial NRMSE scores of the random forest regressors are comparable to the performance of the 370 

other emulators for all variables but the global NRMSE is significantly worse for temperature and precipitation (as can also 371 

be seen in Figure 6). Discontinuities in the predicted global mean temperature change time series over this period (not 372 

shown) perhaps indicate a deeper tree structure is required. To assess the impact of the four input features on the prediction, 373 

we calculate the permutation feature importance. It is defined as the decrease in a model score when a single feature value is 374 

randomly shuffled (Breiman, 2001). Figure 5 shows that CO2 concentrations dominate the predictions. For temperature 375 

predictions the other features are negligible. SO2 and BC aerosol emissions have a small impact on the global mean 376 

temperature and precipitation predictions. This is in line with the physical understanding that while anthropogenic aerosol 377 

can influence precipitation rates (both radiatively and through aerosol-cloud interactions), aerosol contributions play a 378 

negligible role at the end of the century in the ssp245 test scenario. The regional influences may be more significant however 379 

and this will be explored separately.  380 



 

 

 381 

Figure 5: Permutation importances for the most important component of each variable in predicting global mean 382 

temperature (TAS) and precipitation (PR). Each emulator input variable is shuffled in turn to determine the relative 383 

contribution to prediction skill. Note that these average estimates do not account for potential regional contributions 384 

which may be particularly relevant for aerosol. 385 

4.3. Neural Networks 386 

Artificial Neural Networks (ANNs) are algorithms inspired by the biological neural networks of human brains that have 387 
shown outstanding success in areas like Computer Vision and Natural Language Processing. Two major ANN architectures 388 
are Convolutional Neural Networks (CNNs) (LeCun et al., 1990), that are able to model spatial dependencies, and Recurrent 389 
Neural Networks (RNNs), that are able to process time series and sequential data. ANNs have recently been employed to 390 
tackle a variety of problems in earth system science (Camp-Valls et al., 2021). CNNs are helpful for modeling climate data 391 
with a spatial structure, for instance, precipitation patterns or satellite imagery, and are frequently applied in climate science 392 
and weather forecasting (Trebing et al., 2020, Harder et al., 2020). Long short-term memory (LSTM) networks (Hochreiter 393 
et al., 1997), an advanced type of RNNs, have proven skillful for modeling climate time series, for example, for the 394 
prediction El Niño-Southern Oscillation (Broni-Bedaiko et al., 2019). 395 
 396 
For time series of spatial variables, as in the ClimateBench dataset, we can use the two types of networks in sequence to 397 
model both spatial and temporal dependencies. The chosen architecture consists of a CNN followed by an LSTM built with 398 
the Keras library. The CNN includes one convolutional layer with 20 filters, a filter size of 3, and a ReLU activation 399 
function. The 3x3 pixel filters scan the input images to detect spatial patterns and feed these patterns to the next layer. These 400 
next layers are average pooling layers that reduce the spatial dimensionality ahead of the LSTM layer. The LSTM uses 25 401 
units (i.e., the output dimension of each LSTM cell) and a ReLU activation function. The LSTM is followed by a dense layer 402 
and reshaping layer to (96, 144), i.e., the (latitude, longitude) dimension of the output variables.  403 
 404 
The training data time-series is segmented into 10-year chunks, using a moving-time window in one-year increments, 405 
leading to 754 training samples of shape (10, 96, 144, 4) corresponding to the number of years, latitude, longitude and then 406 
number of variables. We trained four different emulators for the four different output variables. Each emulator is trained for 407 
30 epochs, using a batch size of 16. For this baseline approach, we chose not to do any hyperparameter optimization, and all 408 
the parameters were chosen manually. 409 



 

 

  410 
RMSE scores obtained with the CNN-LSTM architecture are somewhat better than those achieved with the other methods, 411 
particularly in the global-mean. This might be because the LSTM is able to better capture the temporal autocorrelation than 412 
the other emulators which treat the prediction instantaneously. The CNN-LSTM architecture also captures spatial changes in 413 
temperature well (e.g., the Arctic amplification), even though warming at the poles is somewhat underestimated. In general, 414 
warming in the Northern hemisphere is overestimated while it is underestimated in the Southern Hemisphere. Given the 415 
overestimated temperature response in the ssp245-aer simulations shown in Figure A3, this may be due to an overestimation 416 
of the effect of aerosol on the temperature by this emulator. The diurnal temperature range is well predicted, with a lower 417 
performance over land. The CNN-LSTM also captures spatio-temporal changes in precipitation (e.g., the ICTZ shift) quite 418 
well.  419 
 420 

5. Discussion 421 

5.1. Climate-specific challenges 422 

The emulation of future climate states presents particular challenges for machine learning and other statistical approaches. 423 

Chiefly among those is the limited amount of training data that is typically available; current ML approaches are not 424 

prepared to learn such complex scenarios in small data regimes under a covariate shift.  As pointed out, the complex ESMs 425 

that are trusted to model the future climate are extremely computationally expensive to run and the observational record 426 

cannot inform us about unseen future scenarios. By harnessing a large selection of simulations performed as part of CMIP6, 427 

ClimateBench attempts to alleviate this difficulty, but nevertheless only around 500 training points (years) represent realistic 428 

climate states, many of which are not independent (as shown in Fig. A1). This presents a challenge for deep learning 429 

approaches which typically require tens of thousands of training samples to avoid over-fitting. The inclusion of longer 430 

idealised simulations does provide opportunities for pre-training however, particularly the 500-year long piControl 431 

simulations which could be used with contrastive learning to reduce the training samples required for neural network 432 

architectures. 433 

The piControl simulation could also be used to inform emulators more explicitly about the internal variability of climate (as 434 

produced by NorESM2). The signal, particularly for the precipitation target variables, can be small compared to this 435 

variability and this proves challenging for some emulators to reproduce. An explicit model of the internal variability 436 

(Castruccio et al., 2019) could help to alleviate this. 437 

Another challenge in applying statistical learning approaches to this dataset is the relatively high dimensional inputs and 438 

outputs (96 x 144). Most approaches to emulating the regional temperature response to a CO2 forcing have been carried out 439 

at, at most, dozens of locations, but accounting for the spatial correlations is something which CNNs can excel at and have 440 

recently been shown to produce accurate emulations of temperature across similar dimensionality (Beusch et al., 2020). Such 441 

approaches typically assume a regular spacing, however, and neglect the reducing area of each grid-cell towards the poles. 442 



 

 

While more traditional approaches of dimensionality reduction can also be used, such as (weighted) empirical orthogonal 443 

functions (EOFs), these may not be appropriate for the non-linear precipitation fields which might require kernel-based 444 

approximations (e.g., Bueso et al., 2019).   445 

For practical purposes, an estimate of the uncertainty in any prediction would be extremely valuable. This uncertainty should 446 

encompass that due to the internal variability and the emulator approximation (and ideally that of the underlying physical 447 

model). In the ML community, these are known as the epistemic and the model uncertainties, and are being studied 448 

intensively (Kendall et al., 2017).  Quantifying these two uncertainties would allow increased trust (a concept explored in the 449 

next section) in the prediction as well as quantitative comparison to other predictions. We encourage the estimation of 450 

uncertainty wherever possible, using the provided CRPS metric to evaluate such probabilistic projections. The ability to 451 

sample from such distributions would also permit the generation of so-called ‘superensembles’ which can provide very large 452 

ensembles of multiple models under given scenarios (Beusch et al., 2020). 453 

As previously discussed, and shown in Figure A4, there is large inter-model variability in the projected climate variables in 454 

CMIP6, even across a single scenario. Future work should explore the ability of a given emulator to robustly recreate each of 455 

these model responses, and could allow a deeper understanding of their discrepancies. 456 

5.2. Emulator trustworthiness 457 

For climate model emulators to be useful for policy decisions they must be trusted by their users. The trustworthiness of any 458 

model is a subjective concept that broadly represents one's belief that the model faithfully represents some underlying ‘truth’. 459 

Model verification attempts to objectively assert this view (indeed the word derives from the Latin, verus, meaning true) but 460 

is formally impossible for an open system like the Earth (see e.g., Oreskes et al., 1994). While weather models can be 461 

regularly validated against observations, in the climate sciences we often instead resort to necessarily incomplete model 462 

evaluation and rely on underlying physical principles to provide reassurances of broader validity. The ClimateBench 463 

emulators side-step this issue by aiming only to accurately reproduce an existing physical model which is assumed to already 464 

be well evaluated, and therefore attain trustworthiness through proxy. It would nevertheless be reassuring if the emulators 465 

could be demonstrated to respect some of the same physical constraints.  466 

In this spirit, Figure 6 shows the relative change in global mean precipitation as a function of global mean temperature 467 

change (the hydrological sensitivity) of the baseline emulators and NorESM2. While locally precipitation can change in 468 

accordance with the Clausius-Clapeyron relationship (6-7% / K), energy conservation requires that the global changes in 469 

precipitation are balanced by radiative cooling and limited to 2-3% / K (Allen and Ingram, 2002; Pendergrass and Hartmann, 470 

2013; Jeevanjee and Romps, 2018; Dagan et al., 2019). While the RF emulator underestimates the hydrological sensitivity of 471 

NorESM, it is clear that the emulators learn the physical relationship from the underlying model. Since the emulators were 472 

trained on the precipitation and temperature this is to be expected to some degree, but this demonstrates the principle that 473 

emulators trained correctly can retain the physical laws of the underlying models over the range of their training data. Future 474 



 

 

efforts to introduce these invariances directly have the potential to significantly ease the training and improve the inference 475 

of climate model emulators (Beucler et al., 2021), ultimately improving their trustworthiness. 476 

 477 

Figure 6: The relative change in global mean precipitation as a function of global mean temperature change in the 478 

baseline emulators and NorESM2 averaged in 5-year increments to reduce internal-variability. Hollow and solid 479 

points indicate years before and after 2050 respectively. The change predicted by the Clausius-Clapeyron 480 

relationship and energy conservation considerations are shown as dashed lines. 481 

There has been much attention recently given to ‘interpretable’ and ‘explainable’ machine learning models, the former of 482 

which are said to behave in a-priori understandable ways (Barnes et al., 2020), while the latter provide mechanisms to 483 

determine post-hoc understanding (McGovern et al., 2019). While not as robust as physical laws, these techniques provide 484 

useful indications that such models are getting the right answer for the right reasons. Indeed, the physical ESMs currently 485 

considered the ‘gold standard’ of climate modelling are often only interpretable or explainable by expert practitioners and it 486 

is hoped that (interpretable) ClimateBench emulators will be useful in analysing and understanding the response of the 487 

underlying physical models themselves.  488 

5.3. Research opportunities 489 

While the challenges outlined above are mostly surmountable with modern architectures and carefully chosen workflows, 490 

there are also several broader opportunities ClimateBench presents to develop the state-of-the-art in climate model 491 

emulation. 492 



 

 

As already mentioned, one area of particular interest is the use of hybrid modelling whereby statistical or ML based 493 

emulators embed physical equations, constraints or symmetries in order to improve accuracy, robustness and generalisability 494 

(Camps-Valls et al., 2021; Reichstein et al., 2019; Karpatne et al., 2017). One obvious way in which to apply such 495 

approaches to ClimateBench is to marry the simple impulse response models discussed in Section 1 with more complex 496 

methods to predict the spatial response. Such an approach has recently been demonstrated for temperature (Beusch et al., 497 

2021) but could conceivably be extended to modelling each of the fields targeted in ClimateBench. A more unified, and 498 

ambitious, approach would be to model the ordinary differential equations of the response to a forcing directly in the 499 

statistical emulator using either numerical GPs (Raissi et al., 2018) or Fourier neural operators (Li et al., 2020).  500 

Another important open question when using data-driven approaches to emulate the climate is how to ensure predictions are 501 

performed at locations within the distribution of the training data. In other words, how to ensure the emulator is being used 502 

to interpolate existing model simulations rather than extrapolating to completely unseen regions of input space. This can be 503 

easy to test for in low dimensions, but it becomes increasingly difficult in higher dimensions and while the training and test 504 

data in ClimateBench have been chosen to minimise the risk of extrapolation broader use could be hindered by the risk of 505 

inadvertently asking for an out-of-distribution prediction. While the predictive variance of GPs provide such indications (out 506 

of the sample range the GP mean returns to the prior and the covariance is maximised), it is not so easy for other techniques 507 

and the use of modern techniques to detect such occurrences (e.g., Lee et al., 2018; Rabanser et al., 2018) could be of great 508 

value to minimise this risk. 509 

5.4. Application to detection and attribution  510 

The use of an efficient and accurate way of estimating the climate impacts of different emission scenarios is not limited to 511 

exploring future pathways. We may also ask: ‘What observed climate states and events can be attributed to anthropogenic 512 

emissions?’. A whole field, which started with the seminal work of Hasselmann (1993) has developed rapidly in the last 513 

decade (Stott et al., 2016; Barnett et al., 2005; Stott et al., 2010; Shindell et al., 2009; Otto et al., 2016) attempting to answer 514 

this question. A common approach is to use climate model (or ESM) simulations to determine optimal ‘fingerprints’ with 515 

which to test observations as well as the power of such a fingerprint under internal variability. These typically have to make 516 

fairly strong assumptions about the form of the climate response however (often relying on multiple linear regression) and 517 

can incorporate observations of only a few dimensions.  518 

One possible application of the efficient emulators trained using ClimateBench could then be to allow the inference of higher 519 

dimensional attribution problems, incorporating more information (such as the DTR and PR) and potentially providing more 520 

confident assessments. It would be straightforward to implement such an approach using the ESEm package which provides 521 

a convenient interface for such inferences using e.g., approximate Bayesian computation, variational inference or Markov 522 

Chain Monte-Carlo sampling. Future work will investigate these possibilities. 523 



 

 

As a simple demonstration of potential of such an approach we have included a prediction by the emulators compared to the 524 

original NorESM2 simulations of the ssp245-aer DAMIP experiment in which only the aerosol species are emitted, shown in 525 

Figure A3. This is a more challenging scenario than the ssp245 test case due to the much smaller total forcing and the 526 

emulators do not perform as well (see NRMSE in Table A4). It is interesting to note that the emulators particularly struggle 527 

with temperature changes in the North Atlantic where slow ocean circulation changes (e.g., Dagan et al. 2020) may not be 528 

fully captured. They nevertheless capture the main features of the response and show promise for future work disentangling 529 

the forcings and feedbacks in NorESM2, other ESMs and ultimately observations. 530 

6. Conclusions 531 

The application of machine learning to the prediction of future climate states has, perhaps justifiably due to the challenges 532 

laid out above, been cautious to date. Particular applications however, with carefully chosen training data and objectives, can 533 

provide fruitful avenues for research and open exciting opportunities for improvement over the current state-of-the-art. This 534 

paper introduces the ClimateBench dataset in order to galvanise existing research in this area, provide a standard objective 535 

with which to compare approaches and also introduce new researchers to the challenge of climate emulation. It provides a 536 

diverse set of training data with clear objectives and challenging target variables, some of which have been extensively 537 

studied (surface air temperature) and some which have been somewhat neglected (diurnal temperature range and 538 

precipitation).  539 

We also introduce three quite distinct approaches for undertaking this challenge: a random forest; a Gaussian process; and a 540 

neural network model. These different models are based on different principles, have distinct assumptions and rely on quite 541 

different learning paradigms. Each has their strengths and weaknesses but all perform well in the evaluation metrics and 542 

generally reproduce the NorESM2 temperature and precipitation response well in a realistic (but unseen) future scenario, 543 

especially compared to CMIP6 inter-model diversity. The neural network model performs best overall and shows good skill 544 

both in the global mean and spatially. All the models perform less well in the aerosol only test, suggesting that they have not 545 

fully learnt the distinct response due to each forcer and future emulators should aim to rectify this.  546 

Current impact assessments are often based on simple emulators, which are then scaled to match modelled patterns, but 547 

which are unable to predict non-linear responses in e.g., precipitation. A robust, trustworthy emulator which is able to 548 

provide such predictions could be immensely valuable in quantifying and understanding the changes and associated risks of 549 

different socio-economic pathways. Given the importance of faithfully and accurately reproducing the response of ESMs, we 550 

hope the challenge will also spur innovation in nascent physically informed ML techniques. 551 

In order to meet these objectives, we have provided open, easy to access datasets and training notebooks which reproduce 552 

the results shown in this manuscript and demonstrate the use of the different baseline emulators. All software is open-source 553 

and readily available using commonly used package managers. We hope this dataset will provide a focus for climate and ML 554 



 

 

researchers to advance the field of climate model emulation and provide policy makers with the tools they require to make 555 

well informed decisions. 556 

  557 



 

 

5. Data and code availability 558 

The baseline code is available on GitHub (https://github.com/duncanwp/ClimateBench) and a DOI for the specific version, 559 

including that used to generate the plots in this paper, will be made available on acceptance. 560 

The benchmark data is available here: https://doi.org/10.5281/zenodo.5196512. The raw CMIP6 data used here are available 561 

through the Earth System Grid Federation and can be accessed through different international nodes e.g.: https://esgf-562 

index1.ceda.ac.uk/search/cmip6-ceda/.  563 
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9. Appendix 1 790 

 791 

Figure A1: Joint and marginal distributions of annual global mean emissions and concentrations across the ClimateBench training 792 
dataset. Input datasets are classified as Idealised (such as 1pctCO2 and abrupt4xCO2, and including ssp370-lowNTCF), Historical 793 
and Scenario to demonstrate the contribution of each to sampling the full input space. 794 

 795 

 796 

 797 



 

 

 798 

Figure A2: Maps of ClimateBench target variables for each baseline model and the target NorESM values under the test ssp245 799 
scenario averaged between 2080-2100. 800 
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 802 

Figure A3: Maps of the mean difference in the ClimateBench target variables for each baseline emulator against the target 803 
NorESM values under the test ssp245-aer scenario averaged between 2080-2100. Differences insignificant at the p<5% level are 804 
masked from the plots. 805 
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 807 
Figure A4: Global mean NorESM-LM projections under ssp-245 as compared to all other available CMIP6 models for three of the 808 
target variables 809 
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 811 

Table A4: The spatial, global and total NRMSE of the different baseline emulators for the years 2080-2100 against the 812 
ClimateBench task of estimating key climate variables under the idealised future scenario SSP245-aer.  813 

  NRMSE surface air 
temperature (1) 

NRMSE diurnal 
temperature range (1) 

NRMSE precipitation 
(1) 

NRMSE 90th percentile 
precipitation (1) 

  Spatial 

G
lobal 

Total 

Spatial 

G
lobal 

Total 

Spatial 

G
lobal 

Total 

Spatial 

G
lobal 

Total 

Gaussian 
Process 2.138 1.165 7.963 14.298 2.868 28.636 12.100 0.933 16.767 13.486 1.353 20.252 

Neural 
Network 2.116 1.011 7.173 12.387 2.200 23.386 10.316 0.977 15.199 12.224 1.438 19.414 

Random 
Forest 2.977 2.041 13.182 16.222 3.284 32.642 11.562 1.291 18.017 12.302 1.616 20.382 

 814 
Table A5: The CRPS for the Gaussian process emulator for the years 2080-2100 against the ClimateBench task of estimating key 815 
climate variables under future scenario SSP245.  816 

  CRPS surface air 
temperature (K) 

CRPS diurnal 
temperature range (K) 

CRPS precipitation 
(mm / day) 

CRPS 90th percentile 
precipitation (mm / day) 

Gaussian 
Process 0.4765 0.3601 1.0753 1.0029 

 817 

 818 

  819 



 

 

1. Gaussian process model specifications 820 

The GP models kernel k have the same form for all four climate response variables 821 

k = 𝑘஼ைଶ  +  𝑘஼ுସ  +  𝑘஻஼  +  𝑘ௌைଶ 822 

where 𝑘஼ைଶ and  𝑘஼ுସ are kernels that respectively take as inputs CO2 and CH4 emissions. 𝑘஻஼ and 𝑘ௌைଶ are kernels that take 823 

as inputs the 5 principal components of BC and SO2 emission maps respectively, each principal component being rescaled 824 

by an independent length scale term. We choose the Matérn-1.5 class of kernel, 825 𝑘௑ሺ𝑥, 𝑥ᇱ) = ቀ1 + √3𝑑ሺ𝑥, 𝑥ᇱ)ቁ 𝑒𝑥𝑝 ቀ−√3𝑑ሺ𝑥, 𝑥ᇱ)ቁ, 826 

where 𝑋 is a general notation for CO2, CH4, BC or SO2, and 𝑑ሺ𝑥, 𝑥ᇱ) is a distance between inputs typically given by 827 𝑑ሺ𝑥, 𝑥ᇱ) = ∑௜ |𝑥௜ − 𝑥௜ᇱ|/𝑙௜. 828 𝑙௜ is a length scale associated to the 𝑖௧௛ coordinate 𝑥௜. Global CO2 and CH4 emissions are scalar inputs, hence the 829 

corresponding distances only involve one length scale parameter. The principal components decompositions of BC and SO2 830 

emission maps both have 5 coordinates, hence we set each principal component to be a different coordinate with its own 831 

length scale parameter. The Matérn-1.5 kernel guarantees that the corresponding GP lies in a space of continuous functions, 832 

hence providing regularity to the climate response predictions. We refer the reader to Rasmussen and Williams, 2005, 833 

Chapter 4 for more details on the Matérn kernel. Each kernel is multiplied by a variance term 𝜎௑ଶ , which rescales the kernel 834 

in the above sum and allows to balance relative features importance. Variances and length scales are tuned during the 835 

optimization step. 836 

  837 



 

 

2. Random forest model specification 838 

 839 

Hyperparameter number of 
trees 

min samples 
split 

min samples 
leaf maxdepth 

Surface air temperature 250 5 7 5 

Diurnal temperature range 150 15 8 40 

Precipitation 250 15 12 25 

90th percentile of 
precipitation 300 10 12 20 

 840 

3. Neural Network model specification 841 

The parameters are the same for all four models. 842 
 843 
Model architecture  844 

Layer  
Hyperparameter value 
(if not specified, the default 
parameters are used) 

Output Shape Param #   

Time distributed Conv2D 
Number of filters: 20 
Filter size: 3  
Activation function: ReLu  

(None, 10, 96, 144, 20) 740 

Time distributed 
AveragePooling2D Pool size: 2  (None, 10, 48, 72, 20) 0 

Time distributed 
GlobalAveragePooling2D   (None, 10, 20)   0 

LSTM Number of units: 25 
Activation function: ReLu (None, 25) 4600 

Dense Units: 96*144  (None, 13824)    359424 
Activation Activation function: linear (None, 13824)   0 
Reshape   (None, 1, 96, 144)  0 
 845 

Model training  846 
Hyperparameter
   Value 



 

 

Batch size  16 
Epochs 30  
Optimizer Rmsprop  
Metric MSE  
 847 
 848 


