
Classification of Household Devices by
Electricity Usage Profiles

Jason Lines1, Anthony Bagnall1, Patrick Caiger-Smith2, and Simon Anderson2

1 School of Computing Sciences
University of East Anglia

Norwich
UK

{j.lines,anthony.bagnall}@uea.ac.uk

http://www.uea.ac.uk/cmp
2 Green Energy Options

Hardwick
Cambridge

UK
{paddy,simon}@greenenergyoptions.co.uk

http://www.greenenergyoptions.co.uk

Abstract. This paper investigates how to classify household items such
as televisions, kettles and refrigerators based only on their electricity
usage profile every 15 minutes over a fixed interval of time. We address
this time series classification problem through deriving a set of features
that characterise the pattern of usage and the amount of power used
when a device is on. We evaluate a wide range of classifiers on both the
raw data and the derived feature set using both a daily and weekly usage
profile and demonstrate that whilst some devices can be identified with
a high degree of accuracy, others are very hard to disambiguate with this
granularity of data.
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1 Introduction

This paper investigates how to classify household items such as televisions, ket-
tles and refrigerators based only on their electricity usage profile over a fixed
interval of time. This research is part of a wider project investigating data min-
ing electricity usage patterns generated by ‘smart meters’. Smart meters record
and transmit data on electricity usage of a whole home, a specific circuit or even
an individual plug.

This project is supported by Cambridge based company Green Energy Op-
tions (GEO), who have developed a range smart metering devices. GEO have
conducted a preliminary trial of the technology. Their monitoring devices were
installed in 187 homes across East Anglia and the usage of individual devices
and total household power consumption was recorded at 15 minute intervals
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for approximately a year in each household. The resulting data is described in
Section 3.

One of the key components of the UK’s strategy to reduce carbon emissions
is the national plan to roll out smart metering devices to the 27 million homes in
the country within the next decade. The cost of this program has been estimated
to be 10 billion [8].

This cost is justified by the commonly cited statistic that smart meters reduce
electricity usage by around 2.5% [2]. This source also states an example where
a reduction of 20% is recorded. If this is accurate, smart meters offer a cost
effective way of significantly reducing carbon emissions. However, this oft cited
statistic has little basis in data and very little is known about the actual effect
of smart meters and whether any observed initial reduction can be sustained in
the medium or long term. Clearly, the act of collecting power usage data is in
itself unlikely to modify long term behaviour; all smart meters are required to
have an in-home display that describes usage. Very little is known about how
people will react to smart meters and how best to use their output to encourage
reduced consumption without a detrimental effect on a household’s lifestyle. The
success of a smart meter in altering consumer behaviour will thus be strongly
influenced by:

1. what information can be extracted from the usage data;
2. how this information is presented to best inform the consumer; and
3. whether the consumer can be encouraged to interact with the device in order

to act on this information.

GEO have included a range of features in their devices to help achieve these
goals. Whilst our primary concern is how to extract knowledge from the data
collected from smart meters, the nature of the models we form from the data are
influenced by the second and third factors and thus ultimately help GEO provide
the consumer with useful information. For example, one of the secondary uses
of a smart meter could be to notify the consumer when a monitored device is
malfunctioning or using more power than necessary. This offers the potential for
saving the consumer money through reduced consumption and is a good way of
demonstrating the utility of the device. A prerequisite for identifying faulty or
inefficient behaviour is the classification of the type of device being monitored
and a description of normal/efficient behaviour. Whilst it is possible to require
the consumer to manually identify every device monitored, it is thought that
this level of engagement will be hard to achieve. It is far more consumer friendly
to be able to automatically identify a device through its usage profile. Hence we
consider the time series classification problem of identifying device type through
a daily or weekly demand profile. The main contribution of this paper is to define
a new time series classification problem and to evaluate a range of strategies for
best solving it.

To our knowledge this problem has not been addressed before. The rest of
this paper is structured as follows. Section 2 provides background into time series
classification and an overview of the strategies we have adopted for this problem.
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Section 3 details the trial data used to form the classification problem and the
preprocessing steps required. Section 4 presents the results of our experiments.
Finally, we conclude with Section 5.

2 Time Series Classification

Suppose we have a set of n time series, T = {t1, . . . , tn} where each series has
m ordered real valued observations ti = {ti1, . . . , tim} and a class label ci (note
for simplicity we assume the series are of equal length, but this is not a require-
ment). Time series classification involves finding a function from the space of
possible time series to the space of possible class labels. This differs from tra-
ditional classification problems in that the discriminating factors are assumed
to be primarily embedded within the auto-correlation structure. All time series
data mining relies to some degree on a measure of similarity between series.
There are essentially three types of similarity: similarity in time (correlation
based); similarity in shape (shape based) and similarity in change (autocorre-
lation based). A fuller discussion can be found in the literature [4, 7]. Section 3
details the trial data used to form the classification and the preprocessing steps
required. There are a variety of approaches to time series classification, which
can be summarised as follows:

Ignore the time element. If the series are of equal length and interval, it
is possible to simply ignore the ordering and treat the problem as a traditional
classification problem. This approach puts the onus on the classifier to model the
interdependency between the attributes. It is potentially useful when attempting
to classify based on correlation, but shape based similarity will be hard to de-
tect and autocorrelation similarity impossible. One problem with this approach
is that time series tend to have many features, hence some form of attribute
selection or more usually feature creation is often employed.

Specialised similarity measure. Recent data mining research has focused on
using specialised similarity measures such as dynamic time warping (DTW) [5]
in conjunction with lazy classifiers [4] to capture both correlation based and
shape based similarity. DTW is is a natural generalisation of using Euclidean
distance based methods and is often seen as a means of compensating against
slight phase shift rather than capturing phase independent similarity.

Extract bespoke features. The most common approach in the machine learn-
ing literature is to derive a set of summary features prior to classification (for
example, see [10]). This can include time independent summary measures such
as mean, variance, kurtosis and skewness and series characterisations such as
slope and runs measures. Clearly, the nature of similarity captured is dependent
on the features extracted.
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Transform into a different feature space. An alternative approach seen in
both the machine learning and data mining literature is to use transformations
such as Spectral transforms, Autocorrelation function or Wavelets and classify
in the transformed space. The aim of such as transformation is either dimen-
sionality reduction to better approximate Euclidean distance [6] or to allow for
the detection of shape based or change based similarity [3].

Construct a model The final commonly used approach is to construct a gen-
erative model of each series such as an autoregressive moving average (ARMA)
model or hidden Markov model (HMM) and then to use the model parameters
as features for classification [1, 9]. The generative model based schemes are best
suited for detecting similarity in change and are hence the the least used ap-
proach, since most problems used in research are more suited to similarity in
shape.

Clearly the approaches can be mixed. The main distinction is whether to
preprocess the data to capture the different types of similarity or to embed the
method within the classification algorithm, This is analogous to the difference
between a filter and a wrapper approach to feature selection/creation. In this
paper we concentrate on bespoke feature extraction.

3 The Data

The trial involved measuring the power consumption of 187 households for a
variety of devices as identified by the participants. We extracted data on the ten
most commonly identified devices: immersion heater; washing machine; fridge;
freezer; fridge/freezer; oven/cooker; computer; television; and dishwasher. We
created two classification problems: For the first set a case consisted of the daily
measurements of the specified device (96 attributes), for the second set we used a
week of readings (672 attributes). After data cleansing and validation, the daily
set has 78,869 cases, the weekly set 9,215 cases. Figure 1 gives some examples
of the resulting demand profiles.

This problem has several confounding factors that will make classification
difficult. Firstly the fact that measurements are summed over 15 minutes makes
it harder to detect devices that peak over a short period. For example, a kettle
will consume a large amount of power whilst on, but will only be on for a two
or three minutes; when summed over 15 minutes it will be harder to distinguish
from a device such as a dish washer or washing machine which consume lower
power but will be on for the whole period. Secondly, there will be a seasonal
variation in the use of devices such as immersion heaters. Thirdly, we would
also expect it to be hard to distinguish between similar devices such as a fridge
and a fridge/freezer and finally, we would expect considerable variation between
different devices of the same class.

Since our objective is to be able to identify a device for a new user with no
labelled usage history we need to design our experiment to avoid a potential
bias into our experiments. It will surely be easier to identify a device for a
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Fig. 1: Examples of daily profiles for the ten devices considered.

single household than across all households, thus if measurements from a single
household appear in both the training and testing sets, our accuracy estimates
are liable to be over optimistic for unseen households. Hence we design all cross
validation experiments so that the test and train splits are always composed of
different households.

An examination of Figure 1 highlights the nature of the similarity measures
this problem will require and hence the transformations we consider. Firstly,
when a device is on and the level of power used are clearly important. Hence
our first approach is to simply use the raw data. However, it seems unlikely that
a correlation based approach will be sufficient, given the variability of usage
pattern within each class. Our second approach is to derive a set of features
describing the distribution of power used when a device is on and the distribution
of length of time on. Table 1 lists these features and presents the summary
statistics averaged over all devices of each class of device. The mean values in
Table 1 shows that there are clusters of power consumption over a 15 minute
interval, which can be characterised as low (computer, freezer, fridge, fridge, TV
and kettle) and high (dishwasher, immersion heater, oven and washing machine).
There is also a wide variation between classes in the duration of usage; the
average time on for computers is approximately 7 hours, for cookers 42 minutes
and for kettles 16 minutes (skewed because the minimum on-time is 15 minutes).
This indicates that these statistics may be useful in constructing classifiers.

4 Results

Table 2 gives the accuracy results for a ten fold cross validation (where no single
household appears in both the training and testing fold) using five different
classifiers on the daily and weekly data sets. For the daily data, we observe
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Table 1: Summary statistics for the daily data set. The proportion of the data
in each class is given in brackets. Each data is average over all cases of the given
class. So, for example, the minimum power usage in any one 15 minute period
for a computer is 26.35 Wh when we average across all computers, assuming any
power is being used at all.

Computer Dish Freezer Fridge Fridge/ Immersion Kettle Oven/ Television Washing
Washer Freezer Heater Cooker Machine

Summary statistics for power usage when a device is in use (Wh)
min 26.35 276.01 17.61 12.34 19.07 151.07 61.44 252.05 29.65 274.96
max 39.79 457.92 37.34 27.07 45.42 245.49 113.98 423.94 45.24 375.88
mean 33.13 365.13 27.14 20.10 28.91 201.80 84.94 328.79 39.36 324.14

std dev 6.42 102.69 8.11 4.55 7.28 75.65 27.10 114.63 11.67 81.13
skewness 0.07 0.03 -0.22 -0.55 0.45 0.11 0.17 0.26 -1.08 0.03
kurtosis 2.62 -1.44 1.35 0.64 5.05 0.53 -0.94 -0.73 3.42 -1.04

Summary stats of device usage tendancies
percentage of time on 0.40 0.04 0.47 0.39 0.45 0.20 0.05 0.06 0.25 0.03

first time on 33.73 51.57 1.69 1.83 5.87 28.88 32.34 61.15 45.09 45.78
Summary stats of the number of time steps a device is on for

nos runs 3.03 2.13 23.18 17.91 14.27 6.55 4.55 1.94 2.71 1.70
run min 28.00 1.61 5.99 2.30 5.86 3.58 1.02 2.45 8.04 1.32
run max 33.68 2.17 9.60 5.90 13.17 7.99 1.27 3.36 16.80 1.59
run mean 30.54 1.88 6.97 3.55 8.73 5.43 1.07 2.84 11.82 1.44

Table 2: Classification accuracy (and standard deviation) for a ten fold cross
validation on the daily and weekly data sets.

Daily data set

Naive Bayes C4.5 Random Forest

Raw Data 38.40% (4.69) 56.60% (4.17) 61.34% (4.67)
Derived Features 44.01% (4.74) 58.89% (5.01) 59.04% (4.11)

SMO (SVM) NN (k = 21) NN (k = 51)

Raw Data 43.52% (5.38) 56.72% (4.85) 53.82% (5.36)
Derived Features 59.46% (4.24) 60.86% (5.82) 60.95% (6.3)

Weekly data set

Naive Bayes C4.5 Random Forest

Raw Data 41.43% (3.16) 46.42% (4.46) 55.81% (6.27)
Derived Features 44.80% (6.44) 62.90% (4.62) 64.81% (5.5)

SMO (SVM) NN (k = 21) NN (k = 51)

Raw Data 48.79% (6.81) 31.50% (6.89) 26.48% (6.51)
Derived Features 54.40% (5.73) 63.25% (6.44) 63.17% (6.28)
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that using the derived features improves the performance of all the classifiers
except random forest, but that this improvement is small and the best overall
performance is with random forest on the raw data. This suggests that the
inbuilt ensemble mechanism of the random forest classifier is at least as good at
capturing the inherent similarity as our derived features. Further experiments
(not reported here) showed that there was also no improvement with dynamic
time warping and FFT derived feature sets. However, for multi class problems
such as this accuracy tends not to tell the whole story. Tables 3 and 4 show the
confusion matrices for the random forest classifier on the daily raw and derived
data sets. These tables demonstrate that the confusion for the raw data seems
to be more widely distributed between all the classes, whereas on the derived
feature set random forest is more systematic in it’s mistakes.

Table 3: Confusion matrix for Random Forest on the daily raw data
a b c d e f g h i j

a = computer 4471 36 520 126 39 280 69 273 3649 156
b = dishwasher 174 5021 5 5 2 121 16 928 28 320
c = freezer 596 3 4060 2016 318 12 56 33 173 12
d = fridge 108 9 2403 3801 385 4 3 9 35 7
e = fridgeFreezer 93 2 1177 755 49 2 0 13 122 0
f = immersionHeater 631 263 188 98 18 520 583 409 543 146
g = kettle 28 26 36 7 0 72 8000 668 40 145
h = ovenCooker 564 600 268 80 29 139 1066 8166 632 305
i = television 4547 81 206 167 167 310 82 504 9392 284
j = washingMachine 66 358 11 13 0 30 323 547 118 4897

Table 4: Confusion matrix for Random Forest on the daily derived features
a b c d e f g h i j

a = computer 2912 0 388 20 76 332 173 90 2825 2
b = dishwasher 0 3785 1 0 0 52 0 1414 6 932
c = freezer 306 8 3704 2106 369 12 154 6 65 1
d = fridge 66 0 1952 3717 486 1 2 0 222 0
e = fridgeFreezer 272 0 447 907 166 5 126 0 96 0
f = immersionHeater 734 169 10 3 16 814 379 481 211 103
g = kettle 78 0 205 5 13 145 7954 72 97 32
h = ovenCooker 52 1100 5 0 0 486 71 6158 37 1802
i = television 2950 12 41 125 20 168 159 103 7789 36
j = washingMachine 0 1217 0 0 0 30 103 1990 40 2230

The results for the weekly data set are more clear cut, in that the classifiers
trained on the derived features clearly outperform those trained on the raw data.
The random forest confusion matrices given in Table 5 and 6 further demonstrate
the improved performance.

The largest source of confusion is the expected problem of distinguishing
between fridge, freezer and fridge freezer. Computer and television are also often
confused. Table 7 shows the accuracy on the daily data set when we merge the
classes fridge, freezer and fridge freezer (cold group) and computer and television
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Table 5: Confusion matrix for Random Forest on the weekly raw data
a b c d e f g h i j

a = computer 360 13 85 22 2 31 5 24 437 26
b = dishwasher 14 389 0 6 0 25 25 243 27 160
c = freezer 49 1 409 177 34 1 10 4 32 2
d = fridge 39 4 245 352 17 1 3 3 11 0
e = fridgeFreezer 9 1 98 78 6 0 0 1 16 0
f = immersionHeater 48 61 21 21 2 35 76 39 63 32
g = kettle 4 27 1 0 0 14 733 69 20 113
h = ovenCooker 48 94 40 3 2 8 56 1169 87 79
i = television 365 56 41 35 15 23 19 58 985 42
j = washingMachine 7 124 0 0 0 7 99 146 26 705

Table 6: Confusion matrix for Random Forest on the weekly derived features
a b c d e f g h i j

a = computer 382 0 45 0 3 32 18 1 358 1
b = dishwasher 0 520 2 0 0 2 0 125 3 220
c = freezer 23 1 375 184 62 2 24 1 3 0
d = fridge 2 0 201 358 69 1 0 0 14 0
e = fridgeFreezer 24 0 72 70 22 7 0 0 1 0
f = immersionHeater 86 18 1 1 5 71 53 48 34 5
g = kettle 8 0 24 1 2 17 886 3 4 5
h = ovenCooker 9 61 1 0 4 69 1 1233 14 150
i = television 271 25 4 14 1 32 2 17 952 4
j = washingMachine 2 207 0 0 0 0 12 178 4 668

into screen group. Unsurprisingly, the accuracy is much higher. For the daily
data, we again observe that the derived features improve accuracy across all
reported classifiers except random forest, which again recorded the best accuracy
using the raw data. Tables 8 and 9 show the confusion matrices for the random
forest classifier on the daily raw and derived data sets. These tables demonstrate
that confusion has been significantly reduced when compared to using the full set
of classes, and the difference between the confusion of raw and derived features
has also been reduced.

The results of the weekly data are again much more clear cut, with derived
features clearly outperforming raw data. Tables 10 and 11 show the confusion
matrices for the random forest classifier on the raw and derived feature data.
They demonstrate a pattern similar to the first round of experiments, where
the confusion for the raw data appears to be more widely distributed than the
derived features.

Table 7: Classification accuracy using cold and screen groups
Weekly data set

C4.5 Random Forest SMO (SVM) NN (k = 21)
Raw Data 77.09% (3.92) 81.27% (4.62) 56.47% (7.18) 74.08% (5.20)
Derived Features 78.25% (4.18) 77.38% (3.69) 74.90% (4.19) 78.56% (4.20)

Weekly data set
C4.5 Random Forest SMO (SVM) NN (k = 21)

Raw Data 65.36% (4.52) 72.96% (5.56) 60.53% (9.10) 39.89% (6.40)
Derived Features 78.19% (4.11) 80.32% (4.69) 69.02% (3.57) 78.03% (4.95)
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Table 8: Confusion matrix for Random Forest on the daily raw data with cold
and screen groups

a b c d e f g
a = tvGroup 22614 88 1174 443 127 554 359
b = dishwasher 244 5029 19 100 14 888 326
c = coldGroup 1033 8 15096 8 59 36 16
d = immersionHeater 1347 215 309 425 594 355 154
e = kettle 105 23 44 73 7980 661 136
f = ovenCooker 1443 605 262 116 988 8117 318
g = washingMachine 257 339 34 42 323 535 4833

Table 9: Confusion matrix for Random Forest on the daily features with cold
and screen groups

a b c d e f g
a = tvGroup 16746 10 625 370 237 192 41
b = dishwasher 6 3781 1 48 0 1442 912
c = coldGroup 1125 8 13900 13 145 4 1
d = immersionHeater 961 170 50 705 365 560 109
e = kettle 232 0 215 136 7913 73 32
f = ovenCooker 70 1137 2 509 69 6148 1776
g = washingMachine 50 1195 1 28 93 2018 2225

Table 10: Confusion matrix for Random Forest on the weekly raw data with
screen and cold groups

a b c d e f g
a = screenGroup 22614 88 1174 443 127 554 359
b = dishwasher 244 5029 19 100 14 888 326
c = coldGroup 1033 8 15096 8 59 36 16
d = immersionHeater 1347 215 309 425 594 355 154
e = kettle 105 23 44 73 7980 661 136
f = ovenCooker 1443 605 262 116 988 8117 318
g = washingMachine 257 339 34 42 323 535 4833

Table 11: Confusion matrix for Random Forest on the weekly features with screen
and cold groups

a b c d e f g
a = screenGroup 16746 10 625 370 237 192 41
b = dishwasher 6 3781 1 48 0 1442 912
c = coldGroup 1125 8 13900 13 145 4 1
d = immersionHeater 961 170 50 705 365 560 109
e = kettle 232 0 215 136 7913 73 32
f = ovenCooker 70 1137 2 509 69 6148 1776
g = washingMachine 50 1195 1 28 93 2018 2225
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5 Conclusions and Future Work

In this paper we have proposed the time series classification problem of clas-
sifying household goods based solely on the electricity usage of the device as
measured by a GEO smart meter. The ability to automatically detect the type
of a device gives insights into the breakdown of the household usage pattern and
offers the potential for providing useful feedback to the consumer, both in terms
of minimizing their usage and in fault detection. We have assessed alternative
classifiers and transformation for this problem and conclude that with a weekly
profile we can accurately discriminate between classes of device by deriving a set
of descriptive features and using a random forest or nearest neighbour classifier.

Data mining of smart meter data is going to be crucial in order to get the best
value out of the massive investment required for the national role out program.
This problem represents just one potential secondary use of the data. We may
be able to achieve improved classification performance through consideration of
more complex transformations and ensemble classifiers.
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