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AIRMEASURER: open-source software to quantify static and
dynamic traits derived from multiseason aerial phenotyping
to empower genetic mapping studies in rice
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e Low-altitude aerial imaging, an approach that can collect large-scale plant imagery, has
grown in popularity recently. Amongst many phenotyping approaches, unmanned aerial vehi-
cles (UAVs) possess unique advantages as a consequence of their mobility, flexibility and
affordability. Nevertheless, how to extract biologically relevant information effectively has
remained challenging.

e Here, we present AIRMEASURER, an open-source and expandable platform that combines
automated image analysis, machine learning and original algorithms to perform trait analysis
using 2D/3D aerial imagery acquired by low-cost UAVs in rice (Oryza sativa) trials.

¢ We applied the platform to study hundreds of rice landraces and recombinant inbred lines
at two sites, from 2019 to 2021. A range of static and dynamic traits were quantified, includ-
ing crop height, canopy coverage, vegetative indices and their growth rates. After verifying
the reliability of AirMeasurer-derived traits, we identified genetic variants associated with
selected growth-related traits using genome-wide association study and quantitative trait loci
mapping.

e We found that the AiRMEeasurer-derived traits had led to reliable loci, some matched with
published work, and others helped us to explore new candidate genes. Hence, we believe that
our work demonstrates valuable advances in aerial phenotyping and automated 2D/3D trait
analysis, providing high-quality phenotypic information to empower genetic mapping for crop
improvement.
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phenotyping approaches have been introduced (Zhao er al,

Introduction 2019; Yang ef al, 2020).

Rice (Oryza sativa) is one of the key staple foods, feeding >
50% of the global population (Muthayya ez al., 2014). Breeding
for rice improvements in yield potential, grain quality and resis-
tance to stresses is vital for its climate-change adaptation and,
thus, food security in many rice-consuming nations (Nakashima
et al., 2007; Jagadish er al, 2012). This relies on selecting
favourable phenotypes of agronomic traits from thousands of
varieties in the field, which in turn heavily relies on specialists’
visual assessment (Bevan et al., 2017; Roitsch et al., 2019). To
help accelerate the selection procedure, many field-based
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Additionally, as agronomically important traits are controlled
by the expression of multiple genes and modulated by the envi-
ronment, phenotyping can assist researchers to understand
underlying biological mechanisms that contribute to genetic gain
(Hartung & Schiemann, 2014; Furbank ez 4/, 2019). Through
genome-wide association studies (GWAS), the genetic architec-
ture of some agronomic traits in rice has been dissected (Huang
et al., 2010; Yang er al, 2014; Tang et al., 2019), laying the
foundation of identifying functional diversity of alleles to dis-
cover valuable genes (Xing & Zhang, 2010). These contributions
have led to advances in rice genetics and the development of new
varieties with desired qualities, including high yield potential,
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resistance to stresses and increased resource-use efficiency
(Barabaschi et al., 2015; Du ez al., 2018; Li et al., 2018).

Certain traits such as plant height can be phenotyped at a
specific time point; however, for growth- and yield-related traits
that are genetically complex and influenced heavily by environ-
mental factors, their phenotypes need to be examined dynami-
cally (Naito ez al, 2017; Mu et al., 2022). Nevertheless, to
achieve this target, consistent data collection and trait analysis
are required, which has posed significant challenges in develop-
ing reliable solutions for practical breeding programmes and
field-based plant research (Shakoor ez 4/, 2017; Pieruschka &
Schurr, 2019). In essence, several problems need to be
addressed, including: (1) scalabilizy, trials are normally large-
scale and at multiple sites; (2) affordability, resources are usually
limited and solutions need to be cost-effective; (3) accuracy and
repeatability, analysis results should be consistent and repro-
ducible in other trials; (4) processing cycle, the duration between
breeding cycles or multiseason experiments is often brief, requir-
ing data to be processed, analyzed and fed-back promptly to
enable timely decisions (GroBkinsky er al, 2015; Atkinson
et al., 2018). Recently, several advances have been adopted by
breeders and plant researchers, but many attempts remain at
early stages (White ez al., 2012; Juliana et al, 2019). New tools
derived from some academic research have often worked at rela-
tively small scale and with limited accessibility as a result of
bespoke hardware, proprietary software and specialized packages,
preventing them from being employed easily (Yang ez al., 2020,
2021). Furthermore, to exploit genomic resources, traits of
interest and genetic diversity need to be assessed across sites and
seasons, demanding accessible data collection and analysis toolk-
its (Naito et al., 2017; Atkinson et al., 2018). Hence, method-
ological advances shall intend to address the above challenges,
which is the emphasis of this study.

One of the most exciting advances recently was the rapid
development of unmanned aerial vehicles (UAVs, also known
as unmanned aircraft systems) and their applications in crop
monitoring resulting from their mobility, throughput and
affordability (Shi et al, 2016; Maimaitijiang et al., 2017; Jang
et al., 2020). There are numerous examples in the literature
reporting UAV-based phenotyping using sensors such as red-
green-blue (RGB) cameras, multi- and hyperspectral devices,
Light Detection and Ranging (LiDAR), and thermal and
infrared sensors (Kachamba ez al, 2016; Gracia-Romero
et al., 2017; Harkel er al., 2020; Hyyppd et al., 2020). Some
work also reported quantitative trait loci (QTL) mapping of
traits including plant height and vegetation fraction (Hassan
et al., 2019; Wang er al., 2019; Ogawa et al., 2021). Neverthe-
less, most of these studies focused on estimating static traits col-
lected at specific time points (Shakoor er al, 2017; Rodene
et al., 2022), which often missed the dynamic nature of plant
growth and development. Key agronomic traits (e.g. senescence
and stem elongation) vary in time and space, which require
new approaches to collect and analyse (Xu er @/, 2018; Ander-
son et al., 2020). In fact, in a trial containing diverse geno-
types, each line grows at a different pace, and thus dynamic
analysis can provide meaningful comparisons between the
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genotypes (Hartung & Schiemann, 2014). Finally, changing
behaviours of target traits, within or across seasons, can charac-
terize the plant’s complex responses to external stimuli, which
are direct evidence to reveal spatial and temporal changes in the
expression of genes and their regulators (Roitsch ez al, 2019;
Mu et al., 2022).

To extract meaningful information from UAV-collected
imagery, many analytic solutions have been developed to mea-
sure traits related to yield, stress tolerance and growth patterns,
using morphological, spectral and textural properties (Perez-
Sanz er al, 2017; Jiang et al, 2021), most of which have
focused on dryland crops. For example, Easy MPE (Tresch
et al., 2019) combined excess green (ExG) and automatic
thresholding to study soybean; AIRSURF (Bauer er al, 2019)
employed deep learning to count and classify lettuces; GRID
(Chen & Zhang, 2020; Tang ez al., 2021) utilized pixel-wise K-
means clustering to delineate irregular (e.g. zigzag) or regular
(e.g. grid-based) trial layouts for wheat trials; R/UAS::PLOTSH-
PCREATE (Anderson & Murray, 2020) created polygon shapefiles
using parameters (e.g. field direction and plot size) to study
maize; FIELDIMAGER (Matias er 4/, 2020) incorporates manual
inputs (e.g. row and column numbers) into the extraction of
plot-based traits for potato.

Still, limited tools are available for nonexperts to examine
multigenic traits and develop markers for paddy field crops (e.g.
rice), which are complex as a consequence of changing water
levels (e.g. resulting from rainfall and draining) and many volun-
tary plants (e.g. duckweed) compared with dryland crops (Ogawa
et al., 2021). Moreover, few research groups have the resources to
process large-scale aerial images, or to develop complex algo-
rithms to address problems in automated trait analysis (Roitsch
et al., 2019; Zhu er al., 2021). Hence, along with the develop-
ment of open-source computer vision, machine learning and data
science libraries (Howse, 2013; Virtanen e al., 2020), open solu-
tions will be valuable to equip plant researchers with new toolkits
to study complicated crops.

In order to address some of the challenges, we have developed
AirMeasurer, an open-source platform that automates trait analy-
sis for rice trials using 2D orthomosaics and 3D point clouds
acquired by low-cost UAVs. First, we established tailored proto-
cols for regular flight missions and data pre-processing. Secondly,
varied 2D/3D analysis algorithms were integrated into the plat-
form to quantify static traits such as seedling number, plant
height, canopy coverage and vegetative indices, using morpholog-
ical, spectral and textural signals. Thirdly, we developed an origi-
nal algorithm to compute dynamic traits based on static traits,
including growth rates of the target traits and their rapid growth
phases, which were time-consuming or impossible to score previ-
ously. To ensure that our work could reach the broader research
community, we created a graphical user interface (GUI) for non-
experts to use. Finally, to validate the platform and its udlity in
research, we applied the AIRMEASURER-derived traits collected
from hundreds of rice landraces and recombinant inbred lines
(RILs) in a multiseason case study (2019-2021) to genetic map-
ping studies (i.e. GWAS and QTL mapping) and identified reli-

able loci.

© 2022 The Authors
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Materials and Methods

Plant materials and field experiments

In order to develop a UAV-based imaging protocol for multisite
phenotyping, we established two experiments (2019-2021; Sup-
porting Information Fig. S1a): (1) one focused on 254 landraces
(Huang ez al, 2012) in Shanghai (the 2019/2020 seasons), includ-
ing 103 japonica, 40 intermedia and 111 indica types; (2) the other
studied 191 homozygous RILs in Hainan (the 2020/2021 seasons),
derived from the crossing parents Nipponbare (Oryza sativa ssp.
Japonica) and 93—11 (Oryza sativa ssp. Indica), two popular varieties
(Huang et al, 2010). In 2019, 177 RILs were used for manual
assessment as a consequence of agronomic issues with some RILs
during grain-filling. The sites were chosen owing to their geography
and weather conditions. Crops at both sites were managed using
standard husbandry and agronomic inputs according to local condi-
tions. Landraces (Fig. S1b) and RILs (Fig. Slc) were sown in 2 X
1.1 m plots, 18 plants per plot. To maximize the efficient use of
field space and facilitate initial selection (Payne, 2006), we did not
introduce plot-level replicates; however, the same lines were repeat-
edly used in this multiseason case study. Details of the trial design,
plant materials and geo-locations are provided in Notes S1.

Ground truthing

In-field ground truth measurements to validate AIRMEASURER-
derived traits were conducted by field workers. Maximum plant
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height was measured with a metre ruler in the late reproductive
phase. After grain-filling, six plants in a plot were straightened
and the distance from ground level to the top of rice spikes was
measured. Heading date was scored manually, when there were
five plants with panicles emerging 25 mm above the flag leaf
sheath. To verify traits such as ExG and canopy coverage used for
dynamic trait analysis, images of 29-30 randomly selected plots
at six growth stages between early vegetation and early ripening
(177 plots in total) were analyzed manually using the Fiji/IMAGE]
software (Schindelin ez al, 2012), through which plot-based
green-channel intensity values (0-255; measured from linear his-
togram) and canopy coverage (in pixels; using the auto-
thresholding function) were obtained. To validate AIRMEASURER-
derived plant height at different growth stages, technicians manu-
ally measured calibrated 3D point clouds (with unwanted terrain
features removed) to obtain plot-level canopy height at eight time
points throughout the 2019 season (177 per point, 1416 in
total).

Workflow of UAV-based phenotyping

When carrying out aerial phenotyping, we implemented a four-
step workflow (Fig. 1a): (1) experiment setups — including trial
design (e.g. field layouts, target traits) and ground control points
(GCPs; Figs 1b, S1d); (2) aerial imaging — providing guidelines
to pilots to execute flight plans (Figs 1c, Sle); (3) data pre-
processing — producing 2D field-level orthomosaic images (in
TIFF) and 3D point cloud files (in LAS) from acquired aerial
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Fig. 1 A general workflow of unmanned aerial vehicle (UAV) based field phenotyping and phenotypic analysis established for collecting 2D/3D aerial
images, processing 3D point clouds, and measuring plot-based morphological, spectral and textural traits. (a) A high-level workflow established to perform
UAV-based field phenotyping and phenotypic analysis at multiple sites and over the course of multiple seasons. (b) Field experiments designed based on
biological questions concerning plant varieties, target traits, treatments, trial layouts and in-field setups (e.g. ground control points, GCPs). (c) The selection
of imaging protocols to collect aerial image series with 3D- or geo-referencing information. (d) Data pre-processing to produce 2D orthomosaics and 3D
point clouds for the experimental field with plot-level plant resolution. (e) Automated trait analysis using a combination of 2D/3D image processing, spec-
tral analysis, and machine learning techniques to perform plot segmentation and plot-based trait analysis using morphological, spectral, and textural signals

(all the traits produced by AiRMeasurer are listed in Table 1).
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images using the Pix4DMmappER software (Pix4D, Lausanne,
Switzerland; Fig. 1d); and (4) phenotypic analysis — combining
spectral, textural and morphological properties of plants to per-
form automated trait analysis (Fig. le).

Aerial imaging using low-cost UAVs

At each site, in-field settings (Fig. 1b) such as GCPs, height refer-
ence panels, spectral reflectance mats, or real-time kinematic posi-
tioning (RTK) were applied according to recommended practices
published previously (Watanabe er 4/, 2017). To ensure that the
imaging protocol could be adopted easily, we chose to use low-cost
drones (e.g. Mavic 2 Pro; DJI, Shenzhen, China). Because smaller
UAVs generated less downdraft, they could limit wind disruption
of plant canopies during the low-altitude imaging. We designed
two mission plans: (1) field-level imaging (25-35 m altitude), col-
lecting RGB images speedily to limit colour distortion caused by
natural illuminance (e.g. Fig. 1b left); (2) plot-level imaging, con-
ducting flights with tailored flight parameters at low altitudes (10—
15 m). Flights were normally carried out 10-12 times per season,
among which eight flights were selected for time series measures
(detailed mission plans, imaging protocols and guidelines are
included in Notes S2).

3D point cloud processing and canopy height model

There can be unwanted noise in 3D point clouds generated by
the Structure-from-Motion (SfM) algorithm (Singh & Fra-
zier, 2018). To measure morphological features reliably (Fig.
2a), we first denoised the SfM-generated 3D points (e.g. for a
0.1-ha field, low-density 3D reconstruction could produce >
30 million points). Second, we implemented the Statistical
Outlier Removal (SOR) algorithm (Hodge & Austin, 2004) to
remove outliers (red-coloured points, Fig. 2b). Third, a
ground-level filter was developed based on the Cloth Simula-
tion Filter (CSF) algorithm (Zhang er al., 2016), classifying
denoised 3D points into ground-level and aboveground
groups. Because the CSF was designed for ultra-large land
surveillance, we optimized the filter by reducing its grids and
nodes (Fig. 2¢). Finally, we removed unwanted terrain features
(e.g. the field-level slope) using geo- or 3D-coordinates
recorded from GCPs (saved in a shapefile, SHP). The proce-
dure to correct geometric distortion is included in Notes S2
and S3, which shows the improved height measurements after
removing field-level slopes.

Next, we generated a digital surface model (DSM, i..
ground-level points) and a digital elevation model (DEM, i.e.
aboveground points) using the LidarTinGridding function
(Lindsay, 2016) in WHrteBoxTooLs (Fig. 2d). We defined
region of interest (ROI) according to the SHP file (red mark-
ers, Fig. 2¢). The DSM was subtracted from the DEM to
retain aboveground plant information, resulting in a canopy
height model (CHM) representing plant spatial signals with
greyscale values (i.e. the brighter a pixel, the higher the point).
Finally, we combined the CHM with spectral signals using the
getPerspective Transform function (Mezirow, 1978) in OPeNCV,
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which realigned the CHM (Fig. 2f, upper) with the field-level
orthomosaic (Fig. 2f, lower). Spatial features were pseudo-
coloured (Fig. 2g, upper), ranging from 0 (dark blue, for bare
plots) to 1504+ cm (dark red, for tall plants). PyTHON-based
software implementation for the above algorithms is given in

Notes S4.

Plot segmentation

In order to acquire plot-based trait information routinely, plant
plots should be identified consistently. Recent solutions such as
Easy MPE, GRID, AmRSURF, R/UAS::PLOTSHPCREATE and
FIELDIMAGER have been applied to segment plots or plant
blocks for species such as soybean, wheat and maize, which were
valuable advances for dryland crops. We trialled them in our
paddy rice experiments and encountered segmentation issues as a
consequence of unclear plot boundaries, changing water levels
and overlapped rice plants during ripening (Notes S5).

Consequently, we developed an optimized plot segmentation
algorithm (Notes S6): (1) applied an iterative self-organizing data
thresholding (Irvin ez al., 1997) to a field-level CHM and gener-
ated a global mask to represent plot edges (Fig. 2g, lower); (2)
the Hough transform (Duda ez al., 1972) was employed to seck
horizontal and vertical lines in the mask, respectively (Fig. 2h,
upper); (3) when some boundaries were undetectable, vertical
and horizontal lines could be drawn manually to improve plot
delineation via the GUI; (4) as most of the plots were not dis-
tanced evenly even with RTK-assisted seed drilling, we merged
the adjacent lines; (5) after detecting plot boundaries, we assem-
bled the remained lines to generate plot masks (Fig. 2h, lower),
based on which all the plots were labelled according to the trial
design for indexing and cross-referencing purposes (Fig. 2i,
upper left); (6) to minimize edge effects and remove overlapped
plants between neighbouring plots, a scaling function was
designed to rescale the plot masks to measure different traits (e.g.
scale = 0.25-0.3 for height measurements, depending on the
degree of plant overlapping; Fig. 2i, upper right); and (7) finally,
the refined masks were used to generate plot-level sampling
regions (Fig. 2i, lower).

Automated trait analysis

Rice growth and development can be associated with stem elonga-
tion (i.e. changes in height) over time (Hosoi & Omasa, 2012).
We utilized both spatial and spectral signals to analyze growth-
related traits. For different morphological traits, varied vertical
levels of spatial signals were used. For example, we chose the top
10% height values (Hogu,, i.e. top 10% of the 3D points; see rea-
soning in Notes S7) in the CHMs (scale = 0.25-0.3) to compute
canopy plant height after grain-filling. For early establishment, as
colour or textural signals were unreliable in identifying seedlings
owing to weedy plants and changing water levels, we therefore first
segment plant signals from CHMSs (scale = 0.9; Fig. 3a); then,
seedling masks were generated using Hosy, as a result of short
seedlings (Fig. 3b, left); after removing noisy objects (e.g. nongreen
pixels) based on ExG values, we separated seedling objects from

© 2022 The Authors
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Fig. 2 Algorithmic steps for processing unmanned aerial vehicle (UAV) collected 3D point clouds to generate aligned canopy height model (CHM) within
region of interest (ROI) together with plot segmentation for plot-based trait analysis. (a) A 3D point cloud file produced from pre-processing (in LAS for-
mat). (b) Outliers (red) removed in the point clouds using the Statistical Outlier Removal (SOR) algorithm. (c, d) The Cloth Simulation Filter (CSF) algorithm
applied to differentiate ground-level and aboveground 3D points, resulting in a digital elevation model (DEM) and a digital surface model (DSM). (e)
Region of interest (ROI), denoted by four red markers recorded from ground control points (GCPs) with 3D- or geo-coordinates; then, DSM subtracted

from DEM to generate a canopy height model (CHM), which uses greyscale values (0-255) to present plant height values. (f) A 2D perspective transforma-
tion applied to produce aligned red-green-blue (RGB) and CHM images using the ROl markers. (g) Pseudocolour applied to the aligned CHM according to
a unified height scale bar (0-150+ cm; right); then, the iterative self-organizing data (ISODATA) thresholding algorithm employed to produce a field-level
mask from the CHM. (h) The Hough transform algorithm used to detect horizontal and vertical lines separately, followed by the assembly of detected lines
to produce initial plot masks. (i) All of the plots labelled based on the trial design; then, the scaling function applied to remove edge effects and overlapping

plants among neighbouring plots, resulting in refined sampling regions for height (scale = 0.25-0.3) and colour-related measures in all the plots.

their surrounding pixels using morphological erosion (Fig. 3b,
middle), followed by indexing seedlings (Fig. 3b, right; Fig. S2).

Comparably, we applied similar steps to measure canopy cov-
erage before canopy closure: (1) using Hsog, to represent plot
canopy as canopy density was low during early vegetative phase
(Fig. 3c, left); (2) applying the local adaptive thresholding (Singh
et al., 2012) to generate a field-level mask (Fig. 3¢, right); (3)
overlapping the mask with 2D orthomosaic (Fig. 3d, left); (4)
removing plot edges as some gaps between plots were unclear at
canopy closure (scale = 0.7; Fig. 3d, middle); (5) using the Lab
colour space (McLaren, 1976) to filter nongreen pixels (Fig. 3d,
right); and (6) computing normalized canopy coverage index
(CCIL 0 to 1, where 1 stands for 100% coverage; Notes S8).

According to a recent report (Svensgaard ez al, 2021), RGB
sensors can be applied to perform reliable spectral analysis with-
out radiation calibration. Hence, we used RGB sensor to com-
pute growth-related vegetation indices in the study. A series of
vegetative indices and textural traits (e.g. canopy uniformity)
were produced (Notes S9). All of the traits produced by AIRMEA-
SURER are listed in Table 1.

© 2022 The Authors
New Phytologist © 2022 New Phytologist Foundation.

Analysis of dynamic traits

Because dynamic or longitudinal phenotypes can be more infor-
mative in revealing plant—environment interactions (Campbell
et al., 2019), we derived dynamic traits from static traits collected
at different growth stages, rather than using values scored at arbi-
trary time points to represent growth patterns. Inspired by previ-
ous research (Anderson et al, 2019), we chose to measure
dynamic phenotypes from the fitted curves even if some pheno-
typing points might be missing. The following section describes
steps to compute dynamic phenotypes for an example trait,
canopy height growth:

(1) Eight height values were used between sowing and grain-
filling for a given japonica landrace (red dots in Fig. 4a). The
eight points were relatively evenly distanced between 10 and
115 d after sowing (DAS). Because the height of rice canopy
tends to decrease during the later grain-filling period, we
tested several fitting functions (e.g. stepwise regression) and
chose the Gaussian function to fit plant height changes (green
curve, Fig. 4a).
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Fig. 3 Algorithmic steps for quantifying plot-based morphological traits such as rice seedling number and canopy-related traits using both spatial and spec-
tral signals. (a) Plot masks rescaled (scale = 0.9) to segment a canopy height model (CHM) image collected at 93 d after sowing (DAS); the segmented
CHM (right) pseudocoloured according to the unified height scale bar (0-150+ cm). (b) The rescaled plot masks applied to divide a field-level CHM
acquired at early establishment (21 DAS) with a new height scale bar (0-20 cm; left), displaying height differences for short rice seedlings. Top 5% of 3D
points (Hos) in a plot utilized to produce a plot-based seedling mask, followed by overlapping the mask with 2D orthomosaic (collected at 21 DAS; mid-
dle); finally, excess green index (ExG) computed to remove nonseedling objects, resulting in the quantification of seedling number per plot (right). (c) A
field-level CHM (69 DAS) used to compute canopy coverage index (CCl; left); top 10% of 3D points (Haotn) in a plot used to create plot-based canopy
masks (right). (d) After overlapping the canopy masks with 2D orthomosaic (69 DAS; left), edges of the canopy removed using the scaling function (scale =
0.7; middle), resulting in refined plot-based canopy regions for computing canopy coverage and canopy ExG indices.

(2) The Gaussian-fitted height curve f(x) g, then was used
to generate a growth-difference curve f(x)y; (black dash
curve, Fig. 4a) through the KneedLocator function (Satopii
et al., 2011), which measures value changes on f(x)height’ sig-
nifying the rate of plant height changes (i.e. increasing,
decreasing or constant).

(3) Turning points (i.e. knee points, KPs; red crosses, Fig. 4a) were
located on f'(x) 4, indicating height change phases. To locate theses
KPs, we found the first (' (x) 4) and second (" (x) ) derivatives
on f(x)ggs KP1 was detected when f'(x)ys = 0 and £ (x) g
> 0, whereas KP2 was detected when f'(x) ¢ = 0 and " (x) ¢
< 0. We named the phase between KP1 and KP2 as rapid height
growth phase (RGP ;g5 in days), denoting the period of rapid stem
elongation.

(4) Within the RGPy, we found the first derivative
f '(x)height (green curve) to locate the day when canopy height
was changing at the fastest growth rate (i.e. the FGR iy, day,
in DAS; light-green cross; Fig. 4a) together with computing
average growth rate (AGRjg; %), between 0 DAS and the
FGR peigpy day.
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Then, we applied the above steps to analyze indica and intermedi-
ate landraces (e.g. GP014 and GP543; Fig. 4b). RGP g, values for
the genotypes were identified together with the FGR)y, days and
AGR iy To assess phenotypic changes for other growth-related
traits, we employed the algorithm to study variables such as ExG (i.e.
RGPExg, FGRE,CG and AGRE,CG) and CCI (i.e. RGPCC[, FGRCC[
and AGRccy). We also applied f(x)y,q, (green curves, Fig. 4c) to
estimate Max i, and other key growth stages (e.g. the beginning of
ripening) using a normalized-curvature curve f'(x)_,, (dotted blue,
Fig. 4c). The maximum curvature on f'(x),,, was located to repre-
sent the Max g, day (blue crosses, Fig. 4c), followed by the estima-
tion of the beginning of ripening (purple crosses, Fig. 4c) using the
minimum curvature. Moreover, AGR g, AGREG and AGR ¢y
(all in %) between 0 DAS and the Max .y, day also were quanti-
fied. To compute f(x),,, we used the equation below:

|fl/(xi)height |

(14 (o))

K = Eqn 1

3
2
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Table 1 All of the traits that can be produced by the AiRMeasurer platform (their equations, normalization, references and biological relevance are provided

in Supporting Information Notes S9).

Signals Name (plot-based static traits)

Dynamic traits (based on static traits)

Morphological traits 1. Canopy plant height?® (all growth stages)

2. Canopy coverage index?® (CCl), from O d after sowing (DAS)

to canopy closure

. Seedling number® (early establishment)

. 3D canopy index® (3DCI, stem elongation — ripening)
. 3D leaf area index®? (tillering — ripening)

. Excess green? (ExG; all stages)

. Excess red® (ExR,; all stages)

. Normalised vegetative index® (NVI; all stages)

. Green leaf index® (GLI; all stages)

Spectral traits

OV oONOL A~ W

18. Rapid growth phaseb (RGP), for traits measured from
0 DAS to ripening.

19. Fastest growth rate® (FGR), within the RGP of traits
measured.

10. Visible atmospherically resistant index® (VARI; all stages)
11. Normalized difference yellowness index® (NDY/; all stages)

Textural traits 12. Greyscale co-occurrence matrices® (GLCMs; stem

elongation - ripening)

13. Angular second moment?® (ASM, canopy uniformity; canopy

closure — ripening)

14. GLCM-based canopy dissimilarity® (canopy closure —

ripening)
Model-predicted
traits (based
on static &
dynamic traits)

20. Average growth rate® (AGR), the duration is changeable
(e.g. 0 DAS — the Maxpeign day, O DAS — the FGR day, or
within the RGP).

15. Heading date® (predicted using supervised machine learning techniques)
16. The Maxyait dayb (estimated using the dynamic trait analysis)
17. The beginning of ripening® (estimated using the dynamic trait analysis)

dIntegrated in the GUI software.

bExecuted via modules or trained models through JupvTer notebooks or PyTHoN scripts.

(f (i) peighe> Gaussian-fitted height curve; 7is between 10 and 115
DAS).

PvTHON-based software implementation

A relative lack of open analytic solutions impedes researchers
from exploiting newly introduced methods. Hence, we chose to
develop the AIRMEASURER GUI using PYTHON programming lan-
guage together with a modular design, so that each function or
module in the platform could be accessed and modified indepen-
dently. We used the TKINTER toolkit (Shipman, 2013) to develop
a cross-platform GUI (in EXE). Open-source libraries such as
SciPy, OPENCV and ScIKiT-LEARN were employed to develop
2D/3D trait analysis algorithms and machine-learning based pre-
dictive modelling. The GUI software, executable JUPYTER note-
books, and wuser guides are provided for academic use
(Availability and Requirements).

GWAS analysis and QTL mapping

The AirMeasurer-measured and manual-scored traits collected
from landraces were used to perform GWAS analysis to find
the associated-loci controlling phenotypes. The RIL population
was used to verify the static and dynamic traits through QTL
mapping. For GWAS analysis, an efficient mixed-model associ-
ation eXpedited (EMMAx) was performed (Kang er 4/, 2010).
Single-nucleotide polymorphisms (SNPs) with minor allele fre-
quency (MAF) < 0.05 were excluded. Lines with missing phe-
notypes as a result of agronomic reasons were excluded. In

© 2022 The Authors
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total 254 landraces (2019/2020 seasons) were used to conduct
GWAS. The matrix of pairwise genetic distances obtained by
the simple SNP matching coefficients was employed to model
the variance—covariance matrix of the random effect. Permuta-
tion tests were applied to help define the threshold of associa-
tion signals (Churchill & Doerge, 1994). For each trait, we
reshuffled the phenotypic data and performed association anal-
ysis using EMMAx with same parameters. To determine the
significant threshold in GWAS, we accomplished 100 permuta-
tion analyses for each trait. Manhattan and quantile-quantile
(QQ) plots were produced by using the PERL scripts (Migi &
Morris, 2010). For the 191 homozygous RILs (2020/2021 sea-
sons), sequencing and genotyping were conducted using the
published pipeline and SEG-MaP (Zhao ez al., 2010). Windows
QTL CARTOGRAPHER v.2.5 (Wang, 2007) was employed for
QTL analysis of composite interval mapping. LOD value was
computed to indicate the possibility of QTLs based on likeli-
hood ratio tests.

Results

Collected 2D/3D aerial images

Using low-cost UAVs to monitor rice experiments between 2019
and 2021, many series of 2D/3D aerial images were generated.
For example, eight flights conducted in the 0.1-ha trial in Shang-
hai generated 10 GB 2D/3D imagery from over 100 GB raw
images in a season. For the 0.2-ha trial in Hainan, 13 GB 2D/
3D imagery was created from eight flights (145 GB raw images).

New Phytologist (2022)
www.newphytologist.com



New

I Methods Phytologist
&
@) A japonica landrace (GP629) (b) An indica landrace (GP014)
. 05 160 — i 0e
160 L ’ 140 Rapid growth | 03
® UAV-measured height values 0.4 Q 120 (39-87 DAS) -3¢~ gf
~ 140 ] 1o P i
£ — Gaussian-fitted height curve 03 2 B0 e  Saan g ; Y 0 9
8120 | 02 2 % .FG}i 0 §
€ --- Growth difference curve =3 T height
5100 | 0.1 =R 8§ N day {67 DAS) 2 a
© N 0 g = o P Lo A 05 F
~ 10 30 50 70 90 110
=80 T ./ FGRyeignt N 2 3 : : g
a Seo P \ 018 < An intermediary type (GP543) 3
o 60 r ‘~--*-_-’ day (70 DAS) AN 1 - 160 05 o
0.4
§ 40 ’ \ 0.2 IQ §' 140 Rapid growth 03 g
L . L] -
KP1 ® Rapid growth 03 ¢ S (46-98DAS) __ 9"" o @
“1 / (45-96 DAS) -0.4 : 80 Tsg % N 001 t
~ 60 Sl M- 0.1 ~—
0 . — & . ...y w0 08 s / ‘ FGRheight g;
10 30 50 70 90 110 20 e day (74 DAS) 04
- . ! r
Day after sowing (DAS; d) % © © 7 w
Day after sowing (d)
(c)
A japonica landrace (GP629) An indica landrace (GP014) An intermediary type (GP543)
PR [l g e e e e 1 160 i 1 160 i 1 z
; f 118.8 cm i
E 140 ®  UAV-measured height values Z.Z 140 x M‘ax ?Iant height E 09 L ‘ i ZZ §
£ ' )| — Gaussian-itted height curve o 120 [ | Ripening starts : . il or &
'% 100 0] e Normalised curvature curve HH 06 100 5 : 5 S E
£ i 05 B mmm—m——————— d o5 L g-
> i 0.4 ¢ ~
e o Loy e
£ / ! N A—— l = | on / | B
O 2 20 y <
o[.«%--_w_._--;ﬁux.. - 21 " o ®

10 30 50 70 90 110 10 30 50

Day after sowing (DAS, d) Day after sowing (d) Day after sowing (d)

Fig. 4 Algorithmic steps for quantifying dynamic phenotypes of an example trait, canopy height growth rate; three types of rice landraces are shown to
illustrate the procedure and the capability of estimating growth-related traits. (a) Eight canopy height values (red dots) recorded between sowing and
grain-filling for a given japonica landrace, which were relatively evenly distanced during key growth stages, between 10 and 115 d after sowing (DAS).
The Gaussian function applied to produce a growth curve of canopy height (f(x)pe;gnt: green colour), based on which a growth-difference curve (f(x)
black dash curve) was created. f(x)q; measures value changes on f(x)pgh, indicating the rate of canopy height change during the season. Turning points
(i.e. knee points, KPs; red crosses) on f(x) 4 located to represent the rapid growth phase of canopy height (RGPpeight; in days; red shading area), indicating
the most rapid period of stem elongation. Within the RGPyeight, the fastest growth rate (FGRpeigne; the light-green cross) located by computing the first
derivative of f(X)eigne Within the RGPpeignt period. (b) The same algorithmic steps followed to analyze dynamic phenotypes for two indica and intermediate
landraces. (c) The maximum canopy height (Maxpeign¢; in cm), its associated DAS, and key growth stages such as the beginning of ripening estimated using

maximum and minimum curvature values on a normalized-curvature curve f(x)

We uploaded a series of testing files to our GitHub repository (10
GB in total) for researchers to test and improve AIRMEASURER.

The GUI software

The initial GUI window of AIRMEASURER software consists of an
input (red dash rectangle) section and a unified workspace (green
dash rectangle; Fig. 5a). Users can select 2D/3D image series and
a SHP file to begin the processing, including: (1) ‘tab a’ shows
the central portion of the input orthomosaics within several sec-
onds so that users can choose one image to proceed (Fig. 5b); (2)
‘tab b’ defines ROI and aligns the selected orthomosaic (Fig. 5¢);
(3) ‘tab ¢’ generates a CHM using the associated 3D point clouds
and performs initial plot segmentation (Fig. 5d); (4) if some plot
boundaries fail to delineate, users can use a mouse to draw hori-
zontal and vertical lines to improve the plot delineation (yellow
circles; Fig. 5¢); (5) users can refine the plot masks using the scale
function (0-1, where 1 stands for 100% of the original masks;
Fig. 5d right); and (6) ‘tab d’ visualizes initial results and a but-
ton for batch processing with a progress bar and a checkbox for
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cuv (dotted blue) derived from the f(x)pignt for three types of rice landraces.

generating a performance matrix for genotypes (Fig. 5f). A differ-
ent image can be reselected in ‘tab a’ to repeat the above proce-
dure. The initial plot masks will be used to benchmark all the
input images during batch processing. Finally, plot-based trait
analysis and processed plot-level images can be downloaded.
Using an ordinary computer (Intel Core i7 CPU, 16 GB RAM
with integrated graphics), 16 2D/3D images (10 GB) took 3 h
to process. A detailed step-by-step user guide is provided in Notes
§10 and Video S1.

Multiseason plant height analysis

We applied the AIRMEASURER system to process flights conducted
in multiseason rice trials. For visual display, we selected three 2D
orthomosaics to present overhead imagery and three 3D point
clouds to exhibit field-level plant spatial features, from a 30° per-
spective, on 53, 73 and 103 DAS in the 2019 season, when lan-
draces entered vegetative, reproductive and ripening phases
(Fig. 6a—c, left). Pseudocoloured height maps (Fig. 6a—c, right;
with a unified scale bar) were created using AIRMEASURER-derived

© 2022 The Authors
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Fig. 5 Graphic user interface (GUI) of AiRMeasurer developed for nonexpert users to readily use, which is capable of batch processing a series of 2D
orthomosaics and 3D point clouds for 2D/3D trait analysis. (a) Initial GUI window of AIRMEasURER, consisting of input and analysis sections. A series of 2D
orthomosaics, 3D point clouds, and 3D- or geo-coordinates (in SHP format) could be selected in the input section to initiate the initial analysis. (b) ‘tab a'
used to select an image with relatively clear gaps between plots from a list of input 2D orthomosaics. (c) ‘tab b’ used to define region of interest (ROI) of
the field experiment using 3D- or geo-coordinates. (d and e) ‘tab ¢’ used to generate a field-level plant canopy height model (CHM) and plot masks. If the
generated masks failed to delineate all the plot boundaries, an ‘Optimize plot segmentation’ button (coloured green) could be used to draw horizontal or
vertical lines using a mouse (yellow circles); also, the ‘Scale plot mask’ input box could be used to scale down the plot masks (0-1, where 1 stands for 100%
of the original mask), removing plot edges and overlapping plants. (f) ‘tab d' used to visualise pre-processing results, a ‘Batch processing’ button to initiate
automated trait analysis together with a progress bar and a checkbox for generating a performance matrix for all the rice genotypes. After the batch pro-
cessing, trait analysis results (in comma-separated values, CSV), plot-based red-green-blue and CHM images (in JPG format) could be downloaded via the

GUI. GUI-produced traits are listed in Table 1.

height measures, showing height changes of the 254 landraces
during the season. We applied the Gaussian-fitted curves and cat-
egorised the landraces into three groups according to their
domestic types (i.e. indica, japonica and intermediary), with
coloured shading areas denoting 15t-gs5™ percentile confidence
intervals (Fig. 6d).

The fitted curves roughly followed a sigmoid pattern but with
dissimilar developmental rates. For example, the intermediary
group peaked on 91 DAS (Max )i, = 1.18 m), followed by the
Japonica group (93 DAS; Max )iy, = 0.97 m) and the indica
group (94 DAS; Max ig, = 0.82 m). For the 2020 height mea-
sures, three flights (on 52, 70 and 100 DAS) were selected to
visualize plot-based height differences (Fig. 6e—g). The Gaussian-
fitted curves identified similar growth patterns (Fig. 6h); for
example, the Max )iz, days are between 95 and 110 DAS, and
the 2020 lines were 5-10 cm shorter than the same lines studied
in 2019. Complete height measurements for the two seasons
(Datasets S1, S§2), 2D orthomosaics and pseudocoloured height
maps for the 191 RILs are provided (Fig. S3).

© 2022 The Authors
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Performance matrix and dynamic trait analysis

In order to analyze dynamic traits effectively, we created a new
function to help reorganize plant genotypes. For example, by
extracting plot-level images from the 254 rice landraces and
inserting them into a matrix according to their domestic groups,
a ‘performance matrix’ was created using eight orthomosaics col-
lected between 20 July and 8 October 2019 (Fig. 7a). In the
matrix, each cell was an overhead image of a rice genotype, such
that genotypes were columns and phenotyping timepoints were
rows (see the entire 2019 performance matrix in Notes S11).

We used the matrix to examine different traits. The first row
was utilized to quantify plot-based seedling number (Dataset S3;
Fig. S2). To perform dynamic analysis of traits such as CCI, we
used Gaussian-fitted curves to study the increase of CCI until
100% coverage was reached (Fig. 7b), based on which FGR¢¢y,
AGRccr and the Maxcc; day were computed (Dataset S4). For
spectral traits such as ExG and visible atmospherically resistant
index (VARI), their associated dynamic traits were also quantified
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Fig. 6 A series of 2D orthomosaics, pseudocoloured height maps and 3D point clouds collected by low-cost unmanned aerial vehicles (UAVs) in the 2019
and 2020 seasons from 254 rice landraces in Shanghai. (a—c) 3D point clouds (from a 60° perspective) and overhead 2D orthomosaic of 254 landraces gen-
erated from a series of UAV phenotyping conducted over the 2019 season in Shanghai (to the left). Pseudocoloured height maps (to the right), showing
plot-based canopy plant height values for all the plots in the field. (d) Quantification of growth curves using ARMEasurer-measured canopy height values
for three types of rice landraces (i.e. indica, japonica and intermediary) over the 2019 season. Coloured shading areas denote confidence intervals
(1585 percentiles). The three coloured dashed arrows indicate when the average maximum height values of the three types of landraces were reached
(in days after sowing, DAS). (e-h) Experiments of the same 254 landraces repeated in the 2020 season, producing 3D point clouds, 2D orthomosaics, the
height maps and derived growth curves. The unified height scale bar (0-150+ cm) for the subfigures is shown.

(Fig. 7¢,d; Datasets S5, S6). Likewise, the matrix was employed
to estimate dynamic changes for other indices (Dataset S7; Fig.
S4). Noticeably, to estimate height-related traits (e.g. AGRighs
RGP jeighs and FGR),;g); Dataset §9), both the matrix and associ-
ated CHMs were used.

Estimation of heading date

Based on dynamic traits, we explored the estimation of a complex
trait, heading date. We predicted the trait using multiple dynamic
traits (e.g. height, CCI and VARI) and machine-learning modelling
(Notes S12), including: trait selection (Fig. S5a), dynamic trait
analysis (Fig. S5b), feature engineering and selection (Fig. S5c¢),
model training and selection (Fig. S5d), and model validation (Fig.
S5e). Among many models tested, support vector regression (SVR)
obtained the best coefficient of determination (B = 0.725; with P
< 0.001 in linear regression; Notes S12).

Validation of AIRMEeasurer-derived traits

AIRMEASURER-derived traits were validated by a range of ground
truth data. The correlation between the 2019-AIRMFASURER-
derived Max iy, and the 2019-manual-scored Max gy, was
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visualized using 177 landraces (R = 0.8848, P < 0.001; root
mean square error, RMSE = 16.041; Fig. 8a), showing a very
strong positive correlation. We repeated the validation with
254 landraces measured in the field in 2020. A similar R was
obtained (0.8926, P < 0.001, RMSE = 21.163; Fig. 8b).
Owing to different methods, AIRMEASURER-derived height val-
ues were consistently shorter than manual scoring, which was
expected as plants were straightened in manual scoring. The
result indicates that AIRMEASURER could soundly estimate max-
imum plant height among diverse rice genotypes (including
landraces) with a high accuracy. We also verified the
AIRMEASURER-measured  height at eight time points (35-115
DAS) using 1416 plots (177 plots per time point) against
plot-based canopy height that was measured manually from
eight 3D point clouds (R = 0.9651, P < 0.001, RMSE =
6.675; Fig. 8c), as well as against the Gaussian-fitted canopy
height (2= 1416 plots; R = 0.9649, P < 0.001, RMSE =
6.092; Fig. 8d). Significant positive correlations were obtained,
indicating the reliability of the AIRMEASURER-estimated height
trait throughout the season. For traits such as ExG and CCI
that also were used for genetic mapping, 177 plots (at six
growth stages, with 29-30 plots per stage) were used to com-
pare the two traits obtained by manual and AIRMEASURER-based

© 2022 The Authors
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Fig. 7 Matrix generated to provide a comprehensive overview of the performance of 254 rice landraces in the 2019 season, through which dynamic
analysis of normalized canopy coverage index (CCl), excess green (ExG) and visible atmospherically resistant index (VARI) were performed. (a) Eight 2D
orthomosaics collected between 20 July and 8 October 2019 used to generate the performance matrix, where each cell was an example canopy image of a
rice genotype, such that genotypes were columns and UAV phenotyping timepoints were rows. In the performance matrix, the 254 rice landraces
rearranged according to three domestic types, i.e. indica (blue), japonica (red) and intermediary (green). (b—d) Using the matrix, dynamic analysis was
performed to study traits such as CCl, ExG and VARI, demonstrating their different growth patterns and the time points when their maximum values were
reached, e.g. Maxcc, (85-95 d after sowing, DAS), Maxgxg (73-79 DAS) and Maxyars (74-78 DAS).

approaches, both resulting in strong correlations: R = 0.9497
for CCI (P < 0.01; Fig. 8¢) and R = 0.9091 for ExG (P <
0.001; Fig. 8f).

QTL mapping using height-related traits

In order to evaluate the biological relevance of AirMeasurer-
derived traits in genetic mapping studies, we first used the over-
lapped 191 homozygous RILs in 2020 and 2021 season for
genetic linkage analysis. The AIRMEASURER-derived Max pig, trait
was used to map QTLs in the population, with the x-axis repre-
senting the genetic distance of 12 chromosomes and jy-axis the
LOD value. The threshold (red horizontal line) was set as 2.5
and known loci were indicated with red arrows. Two QTLs
related to Max iy, were identified (Fig. 9a), among which one
significant QTL (LOD = 15.7; chromosome 1) indicated a locus
controlling rice plant height in the two seasons, consistent with
the QTL mapping using the 2021 manual data and reported pre-
viously using the same population (Wang ez al, 2011). In fact,
there is a known gene sd/ that shortens rice stems (Sasaki
et al., 2002), ¢. 100-210 kb from the locus. The second highest
peak located using the Max ey, trait was on chromosome 7
(LOD =7.3), c. 0 kb from Ghd.1, a gene plays an important
role in grain productivity and rice heading (Yan ez al, 2013);
however, the second peak identified with the manual scoring was

¢. 1 Mb from Ghd7.1 (LOD = 7.9; Fig. 9b).

© 2022 The Authors
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Besides the static trait, we applied the dynamic trait, AGR g,
to map QTLs and several QTLs were detected. Using the 2020
AGRpeigp: (0 DAS — the Maxey, day), two QTLs were
identified (Fig. 9¢): ¢. 110 kb from s41 (LOD = 18.6) and
¢. 0.97 mb from Ghd7.1 (LOD = 6.5). The 2021 AGRigy, (0
DAS — the FGR,y, day) was used and located same QTLs
(Fig. 9d): ¢. 100 kb from s41 (LOD = 9.3) and ¢ 30 kb from
Ghd7.1 (LOD = 3.2). In particular, we identified four loci
with the 2020 RGP),jg, trait (Fig. 9¢), two strong signals are:
(1) e 250 kb from SUI2 (LOD = 4.9), which regulates rice
stem development (Vitlet ez al., 2017); (2) ¢. 3.7 Mb on chro-
mosome 12 (LOD = 7.4), which is not associated with any
known gene.

QTL mapping using growth-related traits

Then, we mapped QTLs using other AIRMEASURER-derived
growth traits such as CCI and ExG. The 2021 AGR¢¢; (0 DAS
— the FGRc¢; day) was used to locate two QTLs (Fig. 91),
including Oshox4 (c. 0 kb; LOD = 7.9), overexpressing the gene
leads to dwarfing and increased tillers, and thus the canopy size
(Dai ez al, 2008). One strong locus was identified on chromo-
some 9 (LOD = 9.6; Fig. 9g) using the 2021 AGR¢¢; trait (0
DAS - the Maxccr day), indicating a locus linking to canopy
expansion. Actually, TACI (Yu et al, 2007) is ¢. 10 kb away,
which controls a spread-out or compact plant architecture. The
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Fig. 8 Coefficient of determination (R?) computed to evaluate correlations between ARMeasurer-derived and manually scored maximum plant height, nor-
malized canopy coverage index (CCl) and normalized excess green index (ExG). The correlations between AiRMeasurer-derived, Gaussian-fitted and manu-
ally measured canopy height values also are provided. (a) Plot-based correlation between the maximum height measured by AiRMeasurer and manual
scoring using 177 rice landraces in the 2019 season. (b) Correlation between the maximum height trait measured by AiRMeasurer and manual scoring using
254 landraces in the 2020 season. (c) Correlation between AiRMeasurer-derived canopy height values (based on calibrated 3D point clouds) and manual
scoring of point cloud data to derive canopy height values using 177 landraces measured at eight time points (35-115 d after sowing (DAS)) across the
2019 season, 1416 plots in total; and (d) correlation between AiRMeasurer-derived canopy height values and Gaussian-fitted values. (e) Correlation
between normalized canopy coverage index (0-1) measured by AiRMEeasurer and the manually scored canopy area of plot images (in pixels) using 177 plots
in 2019. (f) Correlation between normalized ExG index (0-1) measured by AiRMeasurer and manually measured green values (0-255) using 177 plot images
(35-115 DAS) in 2019.

QTL (19.2-21.6 Mb) had three peaks: 20.05 Mb, 21.05 Mb QTLs were identified on chromosome 1 (LOD = 6.1; Fig. 9h),
and 21.55 Mb, respectively (detailed in Fig. 9g); besides TACI, including: (1) SLBI and SLB2 (Cardoso et al., 2014), controlling
there is a gene at 20.07 Mb, LGDI (Thangasamy et al., 2012), tillering, and (2) D61 (Yamamuro et al., 2000), connected with
which regulates vegetative growth. By mapping QTLs using the  internode elongation. All of the QTLs identified through QTL
2020 AGRE. (0 DAS — Max g, day), several vegetation-related mapping are listed in Table 2.

Fig. 9 Genetic linkage analysis of various AiRMeasurer-derived growth-related traits and manually scored maximum plant height, collected from 191
homozygous recombinant inbred lines (RILs) trialled in 2020 and 2021. For the significant single-nucleotide polymorphisms (SNPs) identified, known genes
are indicated by red arrows. (a) Chromosomal location of significant quantitative trait locus (QTLs) identified using ARMeasurer-derived Maxpeign; trait in
2020. The x-axis denotes the genetic distance of 12 chromosomes and y-axis the logarithm of the odds (LOD) value, with a significant threshold set at 2.5
(red horizontal line). The QTLs are close to the sd7 gene (chromosome 1) and the Ghd7.7 gene (chromosome 7). (b) Height QTLs identified using manually
measured maximum plant height in the 2021 season; these also were located close to the sd7 and Ghd7.7 genes. (c) QTL for the AGRyejg: trait, between

0 d after sowing (DAS) and the Maxpeign: day, in 2020. (d) QTL for the AGRpeignt trait (O DAS — the FGRpeign: day) in 2021. (e) Four loci associated with the
RGPheign: trait collected in the 2020 season, including one located near SUI2 (chromosome 5), and another significant locus on chromosome 12 that is not
associated with any known gene. (f) Two QTLs for the AGRc; in 2021, determined over the period between O DAS and the FGRc¢ day. The major QTL
co-locates with Oshox4. (g) QTL for the average growth rate of CClin 2021 determined over the period between O DAS and the Maxc¢; day. One strong
locus on chromosome 9 (three peaks between 19.2 Mb and 21.6 Mb) co-locates with a known gene (TACT) that controls canopy structure, and LGD7 that
regulates vegetative growth in rice. (h) QTLs for the AGRgy trait for the interval 0 DAS — the Maxg, day. The major QTL co-locates with SLB7/SLB2 and
D61. Table 2 summarizes the QTLs associated with the above growth-related traits. Abbreviations: maximum canopy height (Maxpeign:; cm), average
growth rate for a target trait (AGRyit; %), the fastest growth rate of canopy height (FGRyeight; %), the rapid growth phase (RGPpeignt; days), canopy cover-
age index (CCl), excess green (ExG), maximum CCl (Maxcc), maximum ExG (Maxgxc) and the fastest growth rate of CCl (FGRccy; %).
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GWAS using height-related traits

Besides QTL mapping, we utilized AIRMEASURER-derived traits
in GWAS analysis with the 254 rice landraces. We identified

(@)

LOD

(b)

LOD

(d)

()

(h)

LOD
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several significant SNPs associated with the two-season height-
related traits and presented them in the Manhattan plot and QQ

plot, with a grey dotted line indicating the threshold of the
genome-wide significant P-value (Table S1) and a false detection
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Table 2 Quantitative trait loci (QTLs) identified using the height- and growth-related traits in the recombinant inbred line (RIL) population of 191 homozy-

gous lines.
Traits Year chr. Peak gent. pos. IRGSP4.0 (Mb) LOD  R? Genes
Maxpeight (€M), AIRMEASURER 2020 1 374.0 40.25 12.8 22.3% sd7 (40.14 Mb)
195.3 30.20 9.4 15.4% Ghd7.1 (30.28 Mb)
12 162.6 17.70 29 41%
Maxpeigh (cm), ARMEASURER 2021 1 374.0 40.25 157  255%  sd1(40.14 Mb)
195.3 30.20 73 10.9% Ghd7.7 (30.28 Mb)
12 195.7 22.05 4.0 5.9%
Maximum plant height 2021 1 3743 40.35 15.9 24.2% sd1 (40.14 Mb)
(cm), manual 187.7 29.25 7.9 10.7% Ghd7.1 (30.28 Mb)
12 190.2 21.10 3.4 43%
195.7 22.05 3.3 4.3%
AGRpeight (%; 0 DAS — the 2020 1 374.0 40.25 18.6 30.0% sd1 (40.14 Mb)
MaXhpeign: day), 188.7 29.30 6.5 8.9% Ghd7.1 (30.27 Mb)
AIRMEASURER 12 162.6 17.70 3.5 4.6% Xa25/0s12g0476200 (17.4 Mb)
AGRpeight (%; 0 DAS — the 2021 1 374.0 40.25 93 16.8% sd1 (40.14 Mb)
FGRpeight day), 7 196.3 30.30 3.2 53% Ghd7.1 (30.27 Mb)
AIRMEASURER 12 191.2 21.25 3.5 5.8% OsVIL2/0s12g0533500 (21.39 Mb)
RGPreign: (days), 2020 2 216.7 26.40 3.4 6.0% OsYABBY4/0s02g0643200 (26.7 Mb)
AIRMEASURER 5 225.4 27.85 4.9 8.9% SUI2/0s05g0554400 (27.6 Mb)
7 0.0 0.50 3.3 5.9% OsGA20x5/0s07g0103500 (0.2 Mb)
12 499 3.70 7.4 14.6% Unknown
AGRexG (%; 0 DAS — the 2020 1 301.7 30.60 6.1 12.4% SLB1(30.77 Mb), SLB2(30.8 Mb), D617
Maxey day) (31.6 Mb)
5 216.6 27.30 4.1 8.0% SUI2/0s05g0554400 (27.6 Mb)
AGRccr (%; 0 DAS — the 2021 9 145.1 20.05 10.0 17.4% LGD1/0s09g0502100 (20.07 Mb)
Maxcc day) 9 149.5 20.95 9.7 16.9% OsMADS7/0s09g0507200 (20.3 Mb)
9 154.3 21.55 9.6 16.8% TACT (21.56 Mb)
1M1 72.2-72.9 6.4-6.8 3.1 4.8% Pia/Os11g0225100 (6.5 Mb)
AGRccr (%; 0 DAS — the 2021 3 264.0-264.4 31.35-31.6 35 6.1% OsIAA13/0s03g0742900 (31.24 Mb)
FGRcc day) 9 131.7 18.55 79 14.5% OsZHD1 (18.35 Mb), Oshox4

(18.55 Mb), OsbZIP73 (18.77 Mb)

rate (FDR) of 0.2. For example, using the 2019 Max g, trait,
the strongest signal on chromosome 1 (—log;o(P) = 12, indi-

10c, right) and reproduced two SNPs that close to sdI (—logl0
(P) = 8.29; c. 188 kb) and OsGSK2 (—logl0(P) = 8.07; c. 373

cated with a blue arrow; Fig. 10a, left) was ¢. 208 kb from sd1.
On chromosome 3, the strongest signal (—log;o(#) = 6.42) iden-
tified was ¢. 10.7 kb from the OsHox32 gene, which is known for
pleiotropic effects on plant architecture and leaf development
(Chen er al., 2021). We repeated the analysis using the 2020
Max peigpy trait and produced similar results on chromosome 1 (c.
208 kb from sdI; —logo(P) = 7.14; Fig. 10a, right). The find-
ings were consistent with the GWAS analysis using the two-
season manual Max g, scoring (c. 202-208 kb from sd1;
—logi0(P) = 6.91-6.63; Fig. 10b).

Next, we chose the 2019 AGRigp: (0 DAS — the Max)ig),
day) and identified four significant SNPs associated with the trait
(Fig. 10c, left). Besides the strongest signal (—log;o(P) = 10.62;
¢. 208 kb from sd1), the second strongest signal (—logl0(P) =
6.98) was c. 11 kb from OsHox32 on chromosome 3, followed
by a strong signal (—logl0(P) = 6.6) ¢. 122 kb from NOGI on
chromosome 1, and the last one ¢ 373 kb from OsGSK2 on
chromosome 5. The NOGI gene increases rice grain production
(Huo er al., 2017), whereas OsGSK2 regulates the mesocotyl
length (Sun e# al, 2018), both genes relate to plant growth and
development. We repeated the analysis using the 2020 data (Fig.

New Phytologist (2022)
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kb). To test other height-related dynamic traits, we used the two-
season AGR iz (0 DAS — the FGR)jg); day) and obtained simi-
lar results (Fig. 10d), with a significant SNP on chromosome 5
repeatedly located (—loglO(P) = 8.28-10.28; ¢ 306.106—
372.984 away from OsGSK2). Table 3 lists all the significant sig-
nals associated with the above traits.

GWAS using other growth-related traits

Finally, we chose the AIRMEASURER-derived CCI and ExG traits
to perform GWAS and found three SNPs (Table S2). Using
the 2020 AGR ¢y trait (0 DAS — the Maxcc; day), two signals
were identified (Fig. 10e): (1) one signal (—logio(P) = 7.4) was
c. 329 kb from the Pit gene on chromosome 1, a disease resis-
tance gene (Hayashi & Yoshida, 2009); (2) another
(—logio(P) = 6.49) was c. 224 kb from the PFPp gene on chro-
mosome 6, which associates with carbon metabolism during
grain-filling (Duan ez al, 2016). Using the 2019 AGRp trait
(0 DAS - the FGRp day), the strongest signal
(=logio(P) = 6.07) was c. 304 kb from the CCPI gene on

chromosome 1 (Fig. 10f), which functions palea development

© 2022 The Authors
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Fig. 10 Manhattan plots and quantile-quantile (QQ) plots for ARMeasurer-derived traits subjected to a genome-wide association study (GWAS) of 254 rice
landraces trialled in 2019 and 2020. The significance threshold is shown by the horizontal grey dotted line. Known genes that co-locate with significant loci
are indicated by blue arrows. See Fig. 9 legend for trait abbreviations. (a) Manhattan plot and a QQ plot for the AIRMEeasuRer-derived Maxpeign: trait mea-
sured in 2019. The strongest signal on chromosome 1 was close to the sd7 gene and a strong signal on chromosome 3 was close to the OsHox32 gene. (b)
Manhattan plot for the manually scored maximum plant height trait collected in the 2019 and 2020 seasons. (c) The 2019 AGRyejgh: (O DAS — the Maxeight
day) was used to identify four significant SNPs, co-locating with known genes: sd7, OsHox32 (chromosome 3), NOG7 (chromosome 1) and OsGSK2
(chromosome 5). Analysis repeated using the same trait collected in 2020 and reproduced two SNPs, close to sd7 and OsGSK2. (d) GWAS performed with
the trait AGRpeight (0 DAS — the FGRpeigit day). Similar results were obtained in both seasons. (e) Plots for the 2020 AGR¢¢; (0 DAS - the Maxc¢; day) trait.
Two signals were identified, one close to the Pit gene on chromosome 1 and the other near the PFPS gene on chromosome 6. (f) In the analysis of the 2019
AGRgyG trait (0 DAS — the FGRg day), the strongest signal co-located with the CCP7 gene on chromosome 1. Table 3 lists all of the significant association
signals of the above growth-related traits. DAS, days after sowing.
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Table 3 Genome-wide significant association signals of height-related traits collected from 254 rice landraces using EMMAX.
Trait Yr. Chr. Position® —logoP Distance® (kb) Candidate genes Gene symbol
Maxpeight (cm), 19 1 40 349 753 12 208.421 0Os01g0883800 sd1
AirMeasurer 3 25 428 611 6.42 10.659 0Os03g0640800 OsHox32
20 1 40 349 753 7.14 208.421 0Os01g0883800 sd1
3 2178 057 7.03
9 15190 326 7.46
Maximum plant 19 1 33179 314 9
height (cm), 1 40 343 458 6.91 202.126 0Os01g0883800 sd1
manual 20 1 35 921 458 6.21
1 40 349 753 6.63 208.421 0Os01g0883800 sd1
AGRpeight (% 0 19 1 33 186 547 6.6 122.199 0s01g0752200 NOGT
DAS - the 1 40 349 753 10.62 208.421 0Os01g0883800 sd1
Maxpeign: day), 3 25 429 147 6.98 11.195 050380640800 OsHox32
AirMeasurer 3 27 284 658 6.44
5 6266 446 6.09 373.094 05050207500 OsGSK2
20 1 40 329 637 8.29 188.305 0Os01g0883800 sd1
2 19 202 188 6.97
3 2178 057 7.53
5 6266 556 8.07 372.984 0Os05g0207500 OsGSK2
AGRpeight (%; 0 19 1 33 186 547 7.76 122.199 0s01g0752200 NOGT1
DAS - the 1 40 349 753 12.57 208.421 0Os01g0883800 sd1
FRGpeight day), 3 25 417 528 7.21 0.424 0Os03g0640800 OsHox32
AirMeasurer 5 5013 282 8.28 306.106 0s05g0207500 OsGSK2
5 24 055 973 7.14
20 1 40 329 637 9.56 188.305 0Os01g0883800 sd1
2 19 202 188 9.53
3 2178 057 9.1
5 626 656 10.28 372.984 0s05g0207500 OsGSK2
7 6156 842 9.01

#Position in bp according to IRGSP 4.0.
bThe distance between SNP and candidate gene. DAS, d after sowing.

(Yan ez al., 2015). Furthermore, GWAS was attempted with the
2019-heading-date trait estimated by both manual and AIRMEa-
SURER approaches (Notes S13).

Discussion

In order to exploit available genomic resources to address climate
change challenges, selected traits need to be assessed under field
conditions across locations and years. Conventional phenotyping
requires making many measurements of target traits, which is
arduous and difficult to implement at busy periods of the season,
resulting in newly developed methods (Pieruschka & Schurr,
2019; Jang et al., 2020). This study demonstrates that the use of
low-cost UAVs can acquire larger and regular plant data from the
field, based on which high-quality 2D/3D aerial imagery with
field- and plot-level resolutions can be generated to enable auto-
mated analysis of static and dynamic traits that are biologically
relevant. Furthermore, this approach is potentially valuable for
assessing rates of genetic gain in larger trials, facilitating the calcu-
lation of heritability for agronomic traits and accurate genetic
mapping for developing molecular markers. Nevertheless, metrics
such as economic costs, scalability, analysis accuracy and
throughput, or processing time need to be considered to evaluate
the above research objectives, which is beyond the scope of this
study but important for future studies.

New Phytologist (2022)
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Static and dynamic traits

The use of AIRMEASURER helped us analyze target traits coher-
ently, which was achieved by removing unwanted field-level
terrain features, transferring 3D to 2D signals for efficient pro-
cessing, analyzing 3D points at different vertical levels and
identifying plots consistently. These methodological advances
were proved to be useful in examining static traits (e.g. height,
CCI and ExG) at different growth stages for paddy rice (in par-
ticular the landraces), which was complex to study during the
season.

Inspired by previous work (Wiirschum ez 4/, 2014; Anderson
er al., 2019), we developed a bespoke approach to estimate
dynamic traits derived from time series measures of static traits,
enabling us to gain insights into dynamic features (e.g. growth
rate and RGP) of target traits, without excessive phenotyping.
Instead of using phenotypes measured at arbitrary time points,
dynamic analysis helped us evaluate phenotypic variation reliably
with hundreds of genotypes.

Additionally, through integrating dynamic traits into
machine-learning modelling, we predicted a complex trait,
heading date, which could lead to new estimates of QTL X
Environment interactions. Recent studies (Lowry ez al., 2019;
Mu ez al., 2022) have reported similar approaches that used
multi-location traits in QTL mapping. Also, we demonstrated

© 2022 The Authors
New Phytologist © 2022 New Phytologist Foundation.



New
Phytologist

that AIRMEASURER-derived traits could be used for multiseason
QTL discovery, which was confirmed by the results highlighting
the locations of known QTLs. Although the main objective of
this study was #ot to discover novel QTLs, nor to validate robust-
ness of such QTLs across different germplasm sets and environ-
ments, it would only require simple adjustments to trial designs
(e.g. more replicates) and greater repetition of trials across loca-
tions and years in order to produce reliable estimates of trait heri-

tability and QTLs.

AIRMEASURER as a research tool

Genetic mapping of dynamic or longitudinal traits can be a power-
ful tool for developing novel molecular markers that cannot easily
be revealed using static measurement, partly because of temporal
regulation of gene expression (Harder ez al, 2019). We explored
the use of AIRMEASURER-derived traits to identify associated loci.
For example, QTLs were mapped for traits such as Max gy,
AGR pigh during RGP g, or at the FGR),pig day. If the QTLs are
shown to be robust across years, locations and different germplasm
sets, these then could be used to develop growth-related molecular
markers. Some of the identified loci were co-located with known
genes, as well as with other genes within the interval had unknown
functions, which could lead to new candidate genes. QTLs located
using traits derived from CCI and ExG (e.g. Max,,, FGR,,, and
Max ) also indicate potentially useful loci.

Likewise, we used AIRMEASURER-derived traits in GWAS analysis.
Comparable loci were identified from rice landraces. Height-related
trait (e.g. AGR eigp) led to the consistent identification of signals such
as the nearby genes (e.g. 541, OsHox32, NOGI and OsGSK2) relevant
to plant height, architecture and growth regulation, indicating the
value of dynamic traits in studying genetically diverse landrace popu-
lations. Moreover, using dynamic traits such as AGR g, Max
and FGRp,, we located some previously unknown strong signals,
which may be valuable for identifying small effects of individual allelic
differences (e.g. loci on Chromosome 2; Fig. 10c,d) that jointly con-
tribute to the regulation of trait expressions. Finally, AIRMEASURER-
estimated heading date traits could bring a new perspective to GWAS
analysis. Loci identified using a small number of #ndica landraces (n =
97) were just ¢ 17.14 kb from OsSOCI gene on chromosome
3 (—logio(P) = 5.79) and ¢ 30.24 kb from the Hd3a gene on chro-
mosome 6 (—log;o(P) = 4.65), both of which are heading-date
related (Notes S13).

Limitations of the platform

We have encountered problems that are not uncommon when
applying drones in aerial phenotyping: (1) weather conditions —
small UAVs cannot be operated in unstable weather such as high
or gusty wind (> 15 ms™'), rainfall, or heavy fog (Tmusi¢
et al., 2020); (2) geo-referencing — GPS modules installed on low-
cost drones had metre-level deviation and thus geo-referencing
errors needed to be rectified; (3) nature ilfuminance — image colour
and contrast could vary noticeably with changing light conditions,
and we mitigated this issue by conducting a field-level imaging;
and (4) aviation regulations — the change in aviation regulations
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casts uncertainty on aerial phenotyping, requiring regular commu-
nications with local civil air traffic control authorities; without offi-
cial authorization, the payload capacity of a drone was restricted,
indicating the advantage and practicality in using small drones for
routine phenotyping. In the study, we used an RGB camera for
growth-related spectral analysis as a low-cost alternative to more
costly hyper- or multispectral sensors. It is worth noting that visible
spectra are limited in early diseases detection and sensing abiotic
stress responses as accurate spectral information is key to assess
plant responses to certain external stimuli (Tmusié ez a/, 2020).

For data pre-processing, we used the proprietary Prx4DMAPPER
software to generate 3D point clouds and 2D orthomosaics. We have
tested several open-source software types (e.g. VISUALSEM, MESH-
ROOM) for the same task and encountered technical problems such as
prolonged computational time, incorrect geo-referencing, and mis-
matched 2D/3D patches. Another problem during the processing
was to denoise large-scale 3D point clouds. We used the SOR for the
task, which required 1520 min to denoise 60+ million 3D points.
Hence, algorithms such as local-outier and cluster-based outlier
detection (Kriegel er al, 2009), and deep-learning (DL) methods
(Casajus ez al., 2019) should be considered to speed up this task.
Although the AIRMEASURER’s plot segmentation algorithm could reli-
ably be applied to field experiments with regular gridded plot layout
designs (Notes S10), it cannot be extended to analyze irregular plot
layouts (e.g. zigzag arrangements). DL approaches such as multlayer
perceptron that can incorporate multidimensional ground/plant sig-
nals might be more useful for this mission.

Future applications

Further developments could include the analysis of high-density 3D
point clouds. Rice flowering starts 1 d after the heading, during
which anthers (1-1.5 mm in diameter) can be observed on different
panicles. By flying smaller UAVs (e.g. DJI Mini) at a 4-m altitude,
we could achieve a ground-sampling-distance (GSD) of 1-1.5 mm
per pixel. Thus, it is feasible to measure anther extrusion using high-
density 3D points acquired by smaller drones, which could find
applications in hybrid breeding programmes where the selection of
male parents with certain flowering characteristics is crucial.

Low-cost UAVs and dynamic trait analysis also could be
applied to examine traits such as grain-filling, which are challeng-
ing to quantify using conventional approaches. By conducting
daily flights during ripening, fitted curves could enable the esti-
mation and eventually the prediction of the initiation and dura-
tion of this key trait. However, it is expected that the Gaussian
function might not be suitable for such growth patterns, and thus
other fitting methods shall be explored.

Although we did not thoroughly test AIRMEASURER to analyze
other crops, we have successfully applied the platform to examine
wheat trials with limited parametric changes (Notes S10, S14),
suggesting potential applications of AIRMEASURER for other plant
species. As the modular-designed AIRMEASURER was developed in
PyTHON, which is widely supported, we trust that this platform
could be shared, extended and upgraded by the community rela-
tively easily, providing open and readily accessible solutions for
the broader research community.
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