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RESEARCH PAPER
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ABSTRACT
The gut microbiome’s pivotal role in health and disease is well established. SARS-CoV-2 infection 
often causes gastrointestinal symptoms and is associated with changes of the microbiome in both 
human and animal studies. While hamsters serve as important animal models for coronavirus 
research, there exists a notable void in the functional characterization of their microbiomes with 
metaproteomics. In this study, we present a workflow for analyzing the hamster gut microbiome, 
including a metagenomics-derived hamster gut microbial protein database and a data- 
independent acquisition metaproteomics method. Using this workflow, we identified 32,419 
protein groups from the fecal microbiomes of young and old hamsters infected with SARS-CoV 
-2. We showed age-specific changes in the expressions of microbiome functions and host proteins 
associated with microbiomes, providing further functional insight into the interactions between 
the microbiome and host in SARS-CoV-2 infection. Altogether, this study established and demon-
strated the capability of metaproteomics for the study of hamster microbiomes.
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Introduction

The coronavirus disease 2019 (COVID-19) pan-
demic resulted in significant morbidity and mor-
tality, causing severe social and economic 
disruptions around the world.1 Infection with 
severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) is correlated with observable 
changes in the gut microbiome, including 
a reduction in microbial diversity and alterations 
in the relative abundance of pathogenic bacterial 
species.2–6 These microbiome alterations have been 
associated with disease severity and may play a role 
in immune dysregulation and systemic inflamma-
tion observed in COVID-19 patients.3,7 Functional 

characterization of these taxonomic changes in the 
gut microbiome during SARS-CoV-2 infections 
could provide insights into disease mechanisms 
and potential microbiome-directed therapeutic 
strategies for disease management.

Hamsters have emerged as a prominent animal 
model for infectious diseases, including COVID- 
19, and is often preferred over mice due to several 
advantages, including (1) hamsters are outbred 
animals conferring more genetic diversity over 
mice, and (2) the infectious disease progression 
seen in hamsters is more comparable to that of 
humans.8 For coronavirus disease, the hamster 
angiotensin-converting enzyme 2 (ACE2), the 
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main cellular receptor mediating viral entry, binds 
more strongly with the spike protein than the 
mouse ACE2, which is consistent with observations 
that the hamster experiences mild to severe disease 
with quantifiable clinical signs, weight loss, viral 
shedding, and lung pathology.9,10 Notably, recent 
studies have shown that the SARS-CoV-2 infection 
in hamsters is associated with alteration of gut 
microbial composition, similar to observations in 
human studies. Sencio et al. reported alteration of 
hamster gut microbiota composition along with 
SARS-CoV-2 infection in young-adult animals.11 

The infection and disease severity were associated 
with an increase in opportunistic pathogens such as 
Enterobacteriaceae and Desulfovibrionaceae, and 
a decrease in short-chain fatty acid (SCFA) produ-
cing bacteria such as Ruminococcaceae and 
Lachnospiraceae. On the other hand, Seibert et al. 
showed that the middle-aged hamster microbiome 
infected with SARS-CoV-2 shares some similarities 
with that of critically ill COVID-19 patients.12 

A further study in high fat/high cholesterol diet 
induced obese nonalcoholic steatohepatitis 
(NASH) hamsters demonstrated that more severe 
disease activity was developed following SARS- 
CoV-2 infection in NASH hamsters with 
dysbiosis.13 In the meantime, metabolomic ana-
lyses have also demonstrated the critical role of 
microbiota metabolites such as SCFA and deoxy-
cholic acid in host resistance to SARS-CoV-2 infec-
tion and further host immune responses to 
infection, impacting disease severity.14,15

However, despite its widespread use in hamster 
animal models, there remains a notable gap in the 
study of hamster gut microbiome with functional 
meta-omics methods, including metagenomics and 
metaproteomics. The majority of the current ham-
ster gut microbiome studies were performed using 
the 16S rDNA amplicon sequencing approach. 
Currently, there are no published studies utilizing 
metaproteomics techniques in hamsters, and there 
are no hamster gut microbial gene/protein data-
bases that are needed for metaproteomic identifi-
cations. To fill this knowledge gap, we constructed, 
evaluated, and made publicly available hamster gut 
microbiome protein databases by combining both 
an in-house and a previously published shotgun 
metagenomic sequencing dataset. A remarkable 
advance of quantitative proteomics, including 

metaproteomics, in recent years is the wide appli-
cation of data-independent acquisition mass spec-
trometry (DIA-MS).16–19 Therefore, this study 
utilized the DIA method, incorporating parallel 
accumulation serial fragmentation (PASEF),20 to 
develop a DIA-PASEF metaproteomics workflow 
for studying the hamster microbiome. We estab-
lished a two-stage PASEF metaproteomic work-
flow, including a first stage data-dependent 
acquisition (DDA) PASEF analysis of pre- 
fractionated pooled samples for generating 
a tailored spectral library/database, and a second 
stage of DIA-PASEF analysis for efficiently identi-
fying and quantifying both the gut microbial and 
host proteins in feces of hamsters.

As a proof of concept for the methodology, we 
analyzed stools from young (2-month old) and old 
(22-month old) male Syrian golden hamsters 
infected with SARS-CoV-2 followed by sampling 
at day 0, 7, 15, 30, and 45. The established workflow 
enables in-depth profiling of the fecal microbial 
proteins, taxonomic compositions, and functions 
of the hamster fecal microbiomes, and reveals dis-
tinct clustering patterns at all feature levels for old 
hamsters at day 7 after SARS-CoV-2 infection. The 
hamster gut microbial protein and spectral library 
databases, the DIA-PASEF metaproteomic work-
flow, and the deep metaproteomic dataset of SARS- 
CoV-2 infection provided in this study altogether 
are valuable resources for the microbiome study in 
hamster disease models.

Results

Constructing hamster gut microbial protein 
databases for metaproteomics

A protein sequence database is needed for shotgun 
proteomic or metaproteomic study to efficiently 
interpret mass spectra through peptide-spectrum 
matching (PSM). For the study of gut micro-
biomes, extensive metagenomic sequencing has 
been used to generate gut microbial gene catalogs 
or genome databases in hosts, such as humans and 
mice.21–23 Previous study has shown limited over-
lap between the human and mouse gut microbial 
gene catalogs,22 suggesting a need for host-specific 
gut microbial gene/protein databases for metapro-
teomic identification. Since there is currently no 
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available hamster gut microbial gene catalog or 
genome database, we generated an in-house shot-
gun metagenomic sequencing dataset derived from 
three young (2-month old) and six old hamsters 
(22-month old), consisting of 434 million high- 
quality sequencing reads. This independent cohort 
of animals and the metagenomic sequencing data 
are from our companion study24 and used for the 
establishment of the reference protein database 
only. We used a previously established 
SqueezeMeta (v1.6.4) workflow25 for processing 
the metagenomic sequencing data. Briefly, high- 
quality sequencing reads were first assembled 
using Megahit,26 and open reading frame (ORF) 
or genes were predicted using Prodigal27 to gener-
ate a gene catalog database MGDB-V1, consisting 
of 1,730,340 genes or translated protein sequences 
(Figure 1(a); details in method section). 
Taxonomic annotation and quantitation of the 
shotgun metagenomic sequencing data showed 
that, similar to human and mouse gut microbiota, 

Bacillota and Bacteroidota were the most abundant 
phyla in hamster gut microbiota. Additionally, 
Thermodesulfobacteriota, Pseudomonadota, 
Deferribacterota, and Actinomycetota were among 
the top abundant phyla. The most abundant 
families include Oscillospiraceae, Lachnospiraceae, 
Muribaculaceae, Rikenellaceae, Bacteroidaceae, 
Prevotellaceae, and Desulfovibrionaceae 
(Supplementary Table S1).

Usually, the gene catalog database is sufficient 
for metaproteomics identification, however due to 
the limited sequencing depth of a single metage-
nomic dataset, the coverage of the gene catalog 
database may be suboptimal. To overcome this 
limitation, we applied two strategies to improve 
the established hamster gut microbial protein data-
base. In the first method, we augmented the 
MGDB-V1 with downloaded UniprotKB proteome 
databases for the abundant microbial species based 
on metagenomics data (MGtax1000 for species 
abundance >0.1%, or MGtax10000 for abundance  

Figure 1. Hamster gut microbial gene catalog database construction and metaproteomic evaluation. (a) Gene catalog construction 
workflow using either in-house dataset only (MGDB-V1) or co-assembly (MGDB-V2) with a previous dataset by Shen et al. 2023.28 

metagenomics based taxonomy derived proteome databases (MGtax) were established based on high abundant species and 
UnprotKB reference protein databases. (b-d) Different databases were used for search for four pooled sample metaproteomic data 
generated in this study. The numbers of identified peptides and protein groups for either all samples (b) or individual samples (c-d) are 
shown.
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>0.01% according to contig taxonomic annotation 
and sum abundances for all samples in the in- 
house young/old hamster cohort; Figure 1(a) and 
Supplementary Table S2). In the second method, 
we downloaded a previously published dataset con-
sisting of 90 metagenomes with 2959 million high- 
quality sequencing reads from 30 young hamsters. 
To the best of our knowledge, this dataset is the 
only shotgun metagenomics dataset for hamster 
gut microbiome at the time of this project. We 
therefore performed a co-assembly with both data-
sets to generate contigs and predict genes 
(Figure 1(a)). This co-assembly generated an 
updated version of the hamster gut microbial 
gene catalog database (MGDB-V2) with 8,860,879 
proteins, over five times that of MGDB-V1.

We then used a fractionated DDA-PASEF data-
set of hamster microbiome (i.e., four pooled sam-
ples with eight fractionations per sample) to 
evaluate the performance of the different databases 
(Figure 1(b)). Notable increases in protein identi-
fications were observed when MGtax1000 or 
MGtax10000 were added to the MGDB-V1 data-
base (Figure 1(c–d)). Even higher numbers of pep-
tides and protein groups were identified using 
MGDB-V2 than those with MGDB-V1 with or 
without MGtax augmentation. No obvious benefit 
was observed for MGDB-V2 when augmenting 
with MGtax reference proteomes, indicating suffi-
cient coverage of the database for MGDB-V2. We 
therefore selected MGDB-V2 without augmenta-
tion as the database for further DIA-MS metapro-
teomic workflow development.

DIA-PASEF metaproteomics workflow to study 
hamster microbiome with SARS-CoV-2 infection

In this study, we aimed to demonstrate the cap-
ability of metaproteomics by studying the impacts 
of SARS-CoV-2 infection over time on hamster 
microbiomes. To this end, hamsters were infected 
with the ancestral strain of SARS-CoV-2 
(BetaCoV/hCoV-19_IPL_France strain; NCBI 
MW575140). A total of six young and six old 
male Syrian hamsters were included, with one old 
hamster dying 24 days post-infection. Both groups 
experienced significant weight loss, with the lowest 
body weight recorded on Day 8 for the Old group 
and between Days 6 and 8 for the Young group 

(Supplementary Figure S1). While young hamsters 
began recovering quickly, nearly regaining their 
initial weight by Day 45, the older hamsters showed 
slower recovery and did not fully regain their initial 
body weight. In total, 58 fecal samples were col-
lected spanning five time points (day 0, 7, 15, 30, 
45) post infection for both groups (Figure 2). 
A standard fecal metaproteomic sample processing 
procedure was used, including a differential centri-
fugation to enrich microbial cells, protein extrac-
tion with sodium dodecyl sulfate (SDS) followed by 
SDS removal with acetone precipitation, and an in- 
solution trypsin digestion to obtain peptide sam-
ples for LC-MSMS analysis (Figure 2). To generate 
a reduced database and spectral library for DIA- 
PASEF data analysis, four pooled samples repre-
senting young, old, non-infected, and infected ani-
mals, respectively, were generated, fractionated, 
and analyzed with a DDA-PASEF mode on 
a timsTOF Pro2 MS. Each individual sample was 
analyzed with DIA-PASEF mode.

We have previously reported that database 
reduction with DDA data using MSFragger fol-
lowed by library-free search with DIA-NN per-
formed the best for mouse metaproteomics data.19 

This finding was further validated here with ham-
ster metaproteomics data (Suplementary Figure 
S2), and thereby we chose this workflow for the 
analysis of hamster metaproteomics data in this 
study. The host protein database was appended to 
the reduced.fasta database. In total, DIA metapro-
teomics identified 32,419 proteins and 128,216 
peptides (Figure 2). Of these identifications, 651 
were hamster proteins, and 31,768 were from the 
microbiome. Up to 57,852 precursors were identi-
fied per sample. Eight samples with precursor iden-
tification less than 30,000 (~50% of the maximum 
identification; Supplementary Figure S3) were 
excluded from quantification and subsequent sta-
tistical analysis. Of all the identified protein groups, 
11,627 were quantified in ≥70% samples (present in 
at least 35 out of the 50 samples). Non-supervised 
principal component analysis (PCA) shows a time- 
based change after SARS-CoV-2 infection in both 
young and old hamsters (Figure 3(a) and 
Supplementary Figure S4). At Day 7, 
a perturbation of protein expression in both 
young and old animals is observed, with return to 
baseline at Day 15 and afterward, representing an 
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acute phase at Day 7 and recovery phase after Day 
15 (Figure 3(a)). When analyzing host and micro-
biome proteins separately, obvious changes in host 
proteins were observed only in old hamsters at Day 
7 following SARS-CoV-2 infection (Figure 3(b)). In 
contrast, marked impacts on microbiome proteins 
were observed in both young and old hamsters 
(Figure 3(c)). Interestingly, the old hamsters pre-
sented more extensive changes toward the same 
direction (2nd principal component in PCA score 
plot) with young hamsters for the microbiome 
protein expressions. These metaproteomic obser-
vations align well with the increased disease sever-
ity and more extensive gut microbial changes often 
observed in old hamsters compared to their young 
counterparts.24,29,30 

SARS-CoV-2 infection induced alteration of fecal 
host proteins in old hamsters

Metaproteomics has the advantage of quantifying 
both host and microbiome proteins at the same 
time. In this study, although a differential centrifu-
gation process was included in the sample prepara-
tion to remove debris, large host cells, and proteins 
in the supernatant, we still identified 651 host pro-
teins. These proteins may represent secreted host 
proteins closely associated with the microbial cell 
surface. To further examine the change of host 
proteins with SARS-CoV-2 infection, the relative 
abundance of host proteins for each sample was 
examined, by summing up the intensities of all 
hamster-derived proteins as a percentage of the 
total protein intensity. For young hamsters, 

Figure 2. Experimental design and metaproteomics workflow for analyzing hamster microbiomes following SARS-CoV-2 infection. 
Animal experiment design, sample collection and processing steps are shown in the top panels (1 and 2). LC-MSMS analysis and 
bioinformatic workflow used in this study are shown in panels 3 and 4. Numbers of precursor, peptides and corresponding protein 
groups identified in the whole dataset are shown as well in panel 4.
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a progressive increase in host protein amount is 
seen over the course of the study timeline, achiev-
ing significant differences at Day 30 and 45. 
A significant increase in host protein amount is 
observed for old hamsters on Day 7, but returns 
to baseline (Day 0) by Day 15 (Figure 4). An 

increasing trend is observed in old hamsters from 
Day 15 to Day 45, resembling the pattern observed 
in young hamsters.

We then sought to identify which host proteins 
were differentially regulated following SARS-CoV 
-2 infection. Since unsupervised PCA analysis 

Figure 3. PCA score plots of proteins quantified in hamster feces following SARS-CoV-2 infection. PCA was performed using the 
normalized and log2-transformed protein intensities for all proteins (a), host proteins only (b) and microbiome proteins only (c), 
respectively. Only proteins that were quantified in >70% of the samples were used for analysis and, to maintain stringent quality 
control, 8 samples with precursor identification less than 50% of the maximum identification number were filtered out. The numbers 
of samples included for plotting are as follows: day 0 (young: n=6; old: n=4), day 7 (young: n=6; old: n=5), day 15 (young: n=6; old: 
n=5), day 30 (young: n=3; old: n=5), and day 45 (young: n=5; old: n=5). PCA score plots were generated with R ggplot2 with facet 
according to time points.
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showed that the most significant changes were at 
acute phase (Day 7) for both young and old groups 
(Figure 2 and Supplementary Figure S4), we next 
focused on identifying key proteins, microbial 
functions, or taxa that drive the changes at acute 
phase for Young-Day7 or Old-Day7 groups com-
pared to other samples. We performed partial least 
squares-discriminant analysis (PLS-DA) analysis 
for normalized host protein abundances, which 
achieved a model goodness of prediction (Q2) of 
0.89 and the three clusters can be sufficiently sepa-
rated with the first two PLS components 
(Supplementary Figure S5). Accordingly, 40 host 
proteins with variable importance projection (VIP) 
≥1 in either PLS component 1 or 2 were selected 
(Figure 5 and Supplementary Table S3), among 
which 13 were upregulated and 27 were down- 
regulated in the Old-Day7 group.

The down-regulated host proteins in feces of 
SARS-CoV-2 infected hamsters include a diverse 
array of catabolic enzymes involved in carbohy-
drate metabolism (i.e., alpha-amylases, sucrase- 
isomaltase, alpha-1,4 glucan phosphorylase, and 
UDP-glucose 6-dehydrogenase), protein degrada-
tion (i.e., chymotrypsin-C, trypsin, elastase, chy-
motrypsin-like elastase family protein, 

aminopeptidase, and carboxypeptidase B), lipid 
metabolism and transport (i.e., triacylglycerol 
lipase and ganglioside GM2 activator isoform X1), 
as well as for metabolisms of nucleotide (guanine 
deaminase) and vitamins (biotinidase). 
Additionally, there are also decreases in proteins 
related with intestinal barrier function or immune 
responses to bacteria, such as mucin-5AC, intelec-
tin-1a-like, prolactin-induced protein, and phena-
zine biosynthesis-like domain-containing protein. 
On the contrary, the up-regulated host proteins 
include those involved in recognizing extracellular 
components of Gram-positive and negative bac-
teria, such as peptidoglycan recognition protein, 
pancreatic secretory granule membrane major gly-
coprotein GP2-like protein, and Ly6/plaur domain 
containing protein 8. In addition, we also found the 
up-regulation of proteins related to mitochondrial 
activity, including the voltage-dependent anion- 
selective channels (VDAC) proteins and cyto-
chrome c oxidase. Pregnancy zone protein-like is 
among the most significantly upregulated proteins 
in old hamsters with SARS-CoV-2 infection at Day 
7, and has been reported to be potential biomarker 
for airway or mucosal infections in humans.31 

These alterations of host proteins associated with 

Figure 4. Relative abundances of host proteins in hamster fecal metaproteome. The percentage of sum intensities of all quantified host 
proteins in relation to the total intensity was calculated for each sample. Statistical significance (Wilcoxon test) and plotting were 
performed with ggpubr in R. p values are indicated for comparisons in both young and old groups for those with significance (p < 0.05) in 
either one group of hamsters.
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microbiomes may indicate an aberrant host- 
microbiome crosstalk during SARS-CoV-2 infec-
tion in hamsters.

The PLS-DA analysis for host protein data 
excluding Day 7 samples achieved a Q2 of 0.54 
and demonstrated a gradual shift by time in the 
recovery phase in PLS-DA score plot 
(Supplementary Figure S6). This observation aligns 
with the increasing total amount of host proteins in 
the recovery phase (Day 15–45) in both young and 
old hamsters (Figure 4). A total of 48 proteins were 
identified with VIP threshold of 1 (Supplementary 
Figure S7 and Table S4). Among the 48 differen-
tially abundant host proteins, eight presented 
increasing trend, while 40 showed decreasing 
trends, particularly in Day 30 and 45. We found 

that the abundances of several differentially 
expressed host proteins in the acute phase were 
reversed in the recovery phases, such as peptido-
glycan recognition protein, VDACs, heteroglobin 
B2, and GP2-like proteins. However, some others 
such as Ly6/plaur domain containing 8 and 
Annexin 3 remain at high levels in the recovery 
phase compared to Day 0 (Supplementary Figure 
S7), suggesting potential persistent impacts of viral 
infection on the intestinal epithelium function.

SARS-CoV-2 infection induced alterations of 
microbiome functions in hamsters

We next assessed the impacts of SARS-CoV-2 
infection on microbiome proteins and functions 

Figure 5. Heatmap of differentially abundant host proteins in young-Day7 or old-Day7 groups. Protein intensities were log2 
transformed, scaled and are displayed as colours ranging from blue(low) to red(high) as shown in the key. Heatmap and clustering 
for both rows and columns are performed using the R ComplexHeatmap package. To maintain stringent quality control, 8 samples 
with precursor identification less than 50% of the maximum identification number were filtered out. The numbers of samples included 
for plotting are as follows: day 0 (young: n=6; old: n=4), day 7 (young: n=6; old: n=5), day 15 (young: n=6; old: n=5), day 30 (young: 
n=3; old: n=5), and day 45 (young: n=5; old: n=5).
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by analyzing the normalized microbial protein 
abundance data. To gain functional information, 
we annotated all the identified gut microbial pro-
teins with GhostKOALA32 and calculated the 
abundance of each KEGG Orthology (KO) accord-
ing to the annotation and protein abundances. In 
total, 22,158 (69.7%) out of the 31,768 microbial 
protein groups were annotated into 1571 KOs. 
Non-supervised PCA of the KO abundance data 
shows similar sample clustering to those with pro-
tein group abundances, namely an obvious shift 
only at Day 7 and with an age-dependent manner 
(Supplementary Figure S8).

We then utilized PLS-DA to identify differen-
tially abundant KOs for acute phase in Young- 
Day7 and Old-Day7 groups compared to others. 
A Q2 of 0.93 and distinct separation of samples 
from Old-Day7, Young-Day7, and remainder clus-
ters was achieved at the PLS component 1 
(Supplementary Figure S9). Using a VIP threshold 
of 1, a total of 307 KOs were identified 
(Supplementary Table S5). Of the 307 differentially 
abundant KOs, 183 were enzymes and 52 were 
transporters, indicating significant alteration of 
microbial metabolism pathways induced by SARS- 
CoV-2 infections. Similarly, among the 58 KOs 
with VIP value >2, 31 were enzymes and 11 were 
transporters. There were 26 obviously up-regulated 
KOs and 32 down-regulated in the Old-Day7 
group with the VIP threshold of 2. As can be seen 
in the heatmap (Figure 6), there was also a trend of 
shifting of Young-Day7 toward the Old-Day7 
group direction, which agrees with the sample clus-
tering in the PCA score plot. Among these KOs 
with VIP > 2, six were directly associated with sul-
fide production, and all of them were significantly 
upregulated in Old-Day7 and Young-Day7 groups. 
These KOs include dissimilatory sulfite reductases 
Dsr (K11180, K11181), sulfonate transport system 
permease protein (K15554), and three taurine/ 
hypotaurine metabolism proteins to generate sul-
fite (K03851, K03852, K00259).

We also found an increase in peptidoglycan- 
associated lipoprotein (K03640), a key compo-
nent of Gram-positive cell wall, in both Young- 
Day7 and Old-Day7 groups. This observation is 
in agreement with the upregulation of host pep-
tidoglycan recognition protein in the Old-Day7 
group observed in this study. It has been widely 

recognized that the gut microbiota plays a pivotal 
role in neurological disorders through the gut- 
brain axis.33,34 We found that neurotransmitter: 
Na+ symporter-1 (NSS family, K03308) and 
putrescine aminotransferase (K09251) were upre-
gulated in both Young-Day7 and Old-Day7 
groups. Putrescine is one of the sources of inhi-
bitory neurotransmitter gamma-aminobutyric 
acid (GABA),35 and putrescine aminotransferase 
is the first step of putrescine degradation. The 
upregulation of these proteins indicates that the 
gut microbiota may be involved in the alteration 
of neurotransmitter homeostasis in the gut of 
hamsters with SARS-CoV-2 infection. 
Additionally, we also found a significant change 
in vitamin degradation-related functions, namely 
L-ascorbate 6-phosphate lactonase (K03476), 
being upregulated in COVID-19 hamsters, sug-
gesting potential impacts of SARS-CoV-2 infec-
tion in shaping host intestinal homeostasis from 
various aspects.

A total of 32 KOs were downregulated (with 
VIP > 2) at both Young-Day7 and Old-Day7 
groups. In addition to the enzymes involved in 
amino acid and polysaccharide metabolisms, these 
downregulated KOs include two type-IV pilus 
assembly proteins, PilA and PilC; three flagellar- 
related proteins, Flif, FliM, and FliG; as well as 
chemotaxis protein CheD that is closely associated 
with flagellar motility. These observations suggest 
potential significant impacts of SARS-CoV-2 infec-
tion on the gut microbial cellular motility function 
in hamsters.

We next sought to identify microbial functions 
altered during the recovery phase of SARS-CoV-2 
infection (Day 15–45). PLS-DA analysis, excluding 
Day 7 samples, yielded a Q2 of 0.66 and identified 
45 KOs with VIP scores >2 (Supplementary Table 
S6 and Supplementary Figure S10). Heatmap of the 
differentially abundant microbial KOs revealed the 
most pronounced changes on Day 30 and Day 45 
(Supplementary Figure S11). The majority of these 
significantly changed functions were associated 
with carbohydrate (sugars) transport and metabo-
lism, alongside changes in amino acid metabolism 
(involving aspartate, glycine and glutamate) and 
ribosomal proteins. Additionally, a significant 
decrease in anaerobic sulfite reductases (K16950 
and K16951) was observed at Day 30 and 45, 

GUT MICROBES 9



despite no changes at Day 7 and 15 timepoints 
(Supplementary Figure S11).

Metaproteomics revealed extensive taxonomic 
alterations in COVID-19 hamsters

This study identified 128,217 peptides, with 66,997 
of them being mapped to unique taxa, which were 
then used for taxonomic analysis using a peptide- 
centric workflow in MetaLab.36 By using 

a threshold of a minimum of three distinct pep-
tides, all four superkingdoms can be identified with 
62 phyla, 109 classes, 183 orders, 264 families, 401 
genera, and 419 species (Figure 7(a) and 
Supplementary Table S7). Here we focus on micro-
organisms, so we removed all sequences assigned to 
Eukaryota (except for Fungi) and calculated rela-
tive abundances at each taxonomic rank level. 
Similar to gut microbiomes of other mammals, 
Bacilota and Bacteroidota are the main bacterial 

Figure 6. Heatmap of differentially abundant microbial functions. KEGG orthology (KO) intensities were calculated by summing all 
protein intensities annotated to that KO. KO intensities are then log2 transformed, scaled and displayed as colours ranging from 
blue(low) to red(high) as shown in the key. Heatmap and clustering for both rows and columns are performed using the 
R ComplexHeatmap. To maintain stringent quality control, 8 samples with precursor identification less than 50% of the maximum 
identification number were filtered out. The numbers of samples included for plotting are as follows: day 0 (young: n=6; old: n=4), day 
7 (young: n=6; old: n=5), day 15 (young: n=6; old: n=5), day 30 (young: n=3; old: n=5), and day 45 (young: n=5; old: n=5).
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phyla in the hamster fecal microbiome 
(Figure 7(b)). An obvious increase of Bacteroidota 
and Pseudomonadota and decrease of Bacillota can 
be observed in the Old-Day7 group. These shifts 
persisted in the recovery phase, particularly on 
Days 30 and 45, in both young and old groups. 
These findings are in agreement with observations 
with shotgun metagenomic sequencing analysis of 
microbiomes in an independent hamster cohort 
study.24 Family-level analysis also showed that 
Bacteroidaceae and Tannerellaceae, the two abun-
dant Bacteroidota families, are the most obviously 
increased in the Old-Day7 group compared to 
others (Supplementary Figure 12). We also 
observed a significant decrease in species diversity, 
richness, as well as evenness in the Old-Day7 group 

compared to Day 0, while no significant difference 
was observed for young hamsters (Supplementary 
Figure 13).

To identify statistically significant differences of 
taxa at acute phase, we performed MaAsLin2 
analysis37 based on a general linear model comparing 
Young-Day7 and Old-Day7 with the other groups. In 
total, 277 taxa were identified as significantly changed 
in either Young-Day7 or Old-Day7 group, including 
five phyla (Elusimicrobiota, Basidiomycota, 
Pseudomonadota, Thermodesulfobacteriota, and 
Thermoproteota), 11 classes, 23 orders, 42 families, 
90 genera, and 105 species (Figure 7(c) and 
Supplementary Table S8). As shown in Figure 7(d), 
the majority of the significantly different families 
were observed for the Old-Day7 group. Eight families 

Figure 7. Metaproteome-based taxonomic composition and alterations in hamsters with SARS-CoV-2 infection. (a) Number of taxa 
identified at each rank level with a minimum of one or three distinctive peptides. Taxa with a minimum of three distinctive peptides 
were kept for further analysis in this study. (b) Phylum level composition for each group; (c) Numbers of significantly changed taxa at 
each rank level identified using MaAsLin2; (d) Significantly changed families identified with MaAsLin2. The heatmap shows the effect 
size with colors ranging from blue (down-regulated) to red (up-regulated) as shown in the key. Left side annotation bar plot shows the 
number (log10-transformed) of distinctive peptides for each family, while the right-side annotation shows the phylum assignment for 
each family as shown in the phylum legend.
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showed significant changes in both groups, and all of 
them exhibited the same changing direction of 
changes in both young and old groups. 
Fulvivirgaceae was the most significantly down- 
regulated in both infection groups, while 
Anaerotignaceae (including Anaerotignum faecicola 
and A. lactatifermentans) was the most significantly 
up-regulated family in both groups. Bacteroidaceae is 
among the most significantly changed family and has 
the highest number of distinctive peptides (n = 1396). 
Eleven species from Bacteroidaceae were identified as 
significantly changed in the Old-Day7 group and only 
two were decreased. Tannerellaceae (including 
Parabacteroides distasonis and P. goldsteinii), 
Enterobacteriaceae (mainly Escherichia coli, belong 
to Pseudomonadota) and Desulfovibrionaceae 
(mainly Candidatus Bilophila faecipullorum, 
Bilophila wadsworthia, Mailhella massiliensis, and 
Desulfovibrio legallii) are also significantly increased 
in the Old-Day7 group and have high numbers of 
distinctive peptides (228, 199, and 110, respectively). 
Interestingly, all four Desulfovibrionaceae species 
were significantly up-regulated in the Old-Day7 
group, and three of them (except for D. legallii) 
were up-regulated in the Young-Day7 group as well. 
Desulfovibrionaceae species are known as sulfate- 
reducing bacteria.38 These observations are in agree-
ment with the findings that the KEGG functions 
related to sulfite reduction were up-regulated in 
both Young-Day7 and Old-Day7 groups.

Additionally, we also identified three fungal 
families that are significantly changed in either 
the Young-Day7 or Old-Day7 group, including 
Mollisiaceae and Cryptococcaceae that were down- 
regulated, and Bionectriaceae that are up-regulated 
(Figure 7(d)).

MaAsLin2 analysis comparing each individual 
group in the recovery phase to their corresponding 
baseline group (Day 0) identified 64 significantly 
changed taxa in young hamsters and 47 in old ham-
sters across Day 15, 30 or 45, using an adjusted 
P-value threshold of 0.05 (Supplementary Table S9). 
In the young group, the most significantly changed 
taxa included a decrease in Ligilactobacillus (Day 15), 
Lachnospira and Roseburia inulinivorans (Day 45), 
and an increase in Bacteroides fragilis (Day 45). In 
the old group, the most significant changes included 
an increase in Ustilaginaceae (belong to fungal phy-
lum Basidiomycota, Day 30), and a decrease in 

Coprococcus catus and Yeguia homins (Day 30). 
Additionally, in young hamsters, significant increases 
were observed in the kingdom Fungi as well as fungal 
phyla Ascomycota and Basidiomycota on Days 15 
and 45, along with a notable increase in the bacterial 
phylum Pseudomonadota and an archaeal phylum 
Euryarchaeota on Day 45.

Co-occurrence analysis reveals taxon-specific 
functional alterations induced by SARS-CoV-2 
infection

To examine the relationship between the host, 
microbial taxa, and function alterations at acute 
phase, we performed a correlation analysis which 
identified 115 correlations with an absolute 
Spearman’s correlation coefficient (|r|) greater than 
0.7 and an adjusted p-value threshold of 0.05. The 
most positive correlation is between Tannerellaceae 
and Bacteroidaceae (r = 0.91, p = 0), and the most 
negative correlation is between Bacteroidaceae and 
ATP5A1 (r = 0.86, p = 2.66E–15). With these signif-
icant correlations, three sub-networks were estab-
lished (Figure 8(a)). The largest network is Network 
A, where Tannerellaceae, Bacteroidaceae, 
Enterobacteriaceae, and Elusimicrobiaceae were 
negatively correlated with a cluster of co-occurring 
down-regulated microbial functions, taxa, and host 
proteins. In particular, the microbial cellular moti-
lity function-related KOs (K03411, K02409, 
K02416) are positively correlated with each other 
and negatively correlated with Tannerellaceae and 
Bacteroidaceae.

Network B is characterized by a close co- 
occurrence of the sulfate reducing bacteria 
Desulfovibrionaceae and KOs related to sulfite 
reduction (K11180 and K11181), taurine metabo-
lism (K03851 and K03852), and putrescine amino-
transferase (K09251). As mentioned above, 
putrescine is an important source of GABA, in 
both bacteria and mammalian cells.35 The correla-
tion between sulfate-reducing bacteria and func-
tion with putrescine aminotransferase may 
indicate the role of sulfate-reducing microbiota 
species in aberrant gut-brain axis homeostasis in 
SARS-CoV-2 infection. The hub of Network C is 
Saprospiraceae, which is among the most signifi-
cantly up-regulated families in Old-Day7 hamsters 
and is worth further investigation.
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To further explore the relationship between 
Desulfovibrionaceae and KOs related to sulfate 
metabolism, we then performed a taxon-function 
association analysis using MetaX at genome level.39 

The latter establishes associations between taxa and 
functions in metaproteomics based on the opera-
tional taxon-function unit (OTF) that is derived 
from linked peptides. By searching all OTFs with 
the five Desulfovibrionaceae-associated KOs in 
Network B, we showed that the four KOs related 

to sulfite reduction and taurine metabolism are 
derived from five genomes, four of which belong 
to Desulfovibrionaceae (Figure 8(b)). K09251 is 
uniquely associated with genome metabat2.606, 
a strain from genus Hominibacterium. The genome 
concoct.136 (Desulfovibrio sp.) expresses all four 
KOs related to sulfur metabolism, and the genome 
GCA_910585945.1 (Bilophila sp.) expresses three 
KOs except for K03852. Interestingly, the two gen-
omes belonging to Taurinivorans muris express 

Figure 8. Correlation network of identified differentially abundant host proteins, microbial functions and taxa. (a) Pairwise Spearman 
correlations are calculated, and only correlations with a correlation |r| >0.7 and an adjusted p < 0.05 were used for network 
visualization using Cytoscape. Three sub-networks with >4 nodes were shown. Color and shape of the nodes show host protein, 
microbial taxa or function type. The color and thickness of edges shows the direction (red as positive correlation, while blue as 
negative correlation) and coefficient (|r|) of correlation, respectively. (b) Sankey plot showing the OTF links between genomes, their 
taxonomic lineage and KEGG KOs positively associated with Desulfovibrionaceae in Network B.
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different functions, with GCA025232395.1 only 
associated with taurine metabolism KOs, while 
metabat2.61 only with sulfite reduction KOs. By 
examining the relative abundance of each OTF, 
we observed a consistent increase for all the 
selected OTFs in the Old-Day7 group 
(Supplementary Figure S14). These observations 
indicate potential inter- and intra-species strain 
interactions in sulfur metabolism that may be 
involved in SARS-CoV-2-induced dysbiosis of 
hamster microbiome functions.

Discussion

Although the COVID-19 pandemic has subsided, 
the disease is expected to persist as an endemic 
virus with seasonal surges, similar to influenza. 
Ongoing research into the disease’s mechanisms, 
vaccine efficacy, and long-COVID will continue to 
rely on hamsters as key model organisms. In addi-
tion to coronavirus diseases, hamsters have also 
been considered as a preferred small animal 
model for pathological and vaccine research for 
many emerging and reemerging infectious diseases 
due to its ability to better meet regulatory guide-
lines for an appropriate animal model.8 Previous 
hamster microbiome analysis primarily with 16S 
rDNA sequencing has demonstrated composi-
tional changes that are associated with SARS-CoV 
-2 infection.11–13 However, to the best of our 
knowledge, there has been no hamster fecal meta-
proteomic study to date. The lack of a hamster 
microbiome reference protein database is among 
the first challenges hampering the application of 
metaproteomics in hamster studies. In the current 
study, we have established a gene catalog as well as 
genome databases for the hamster gut microbiome 
using an in-house as well as a published shotgun 
metagenomic sequencing dataset of both young 
and old hamsters. We also reported 
a comprehensive metaproteomic workflow with 
advanced DIA-MS methods, a multi-step database 
search strategy, and comprehensive downstream 
data analysis, enabling an in-depth functional char-
acterization of hamster microbiomes. The applica-
tion to a time course study of microbiomes in 
young and old hamsters with SARS-CoV-2 infec-
tion offers valuable insights into the dysbiosis and 
aberrant crosstalk between the microbiome and 

host, implicating elevated host antibacterial func-
tions, opportunistic pathogen colonization, meta-
bolic functions, and their potential roles in 
impaired gut-brain homeostasis.

A major challenge for studying microbiomes 
using proteomics is the accurate and efficient iden-
tification of microbiome proteins.39 This is parti-
cularly challenging for model organisms that are 
not well characterized for their microbiomes. Most 
of the current bioinformatic workflows for meta-
proteomic analysis are based on gene and/or gen-
ome catalogs that are derived from massive 
shotgun metagenomic sequencing. Increasing 
numbers of gene catalog or genome databases 
have been made available along with the commu-
nity efforts. For example, EMBL-EBI MGnify has 
made available 12 comprehensive gut microbial 
genome catalog databases for common model and 
non-model organisms.21 These are invaluable 
reference resources enabling post-genomic applica-
tions, including metaproteomics. Unfortunately, so 
far, no hamster microbiome gene catalog or gen-
ome databases are available, despite the critical 
importance of hamster animal model and the gut 
microbiomes in COVID-19 research. Here, we 
address this knowledge gap by establishing 
a hamster gut microbial reference database, includ-
ing 8.86 million genes/proteins and 926 genomes, 
through co-assembly of both young and old ham-
sters, in-house and published shotgun metage-
nomic data. The size of the gene catalog database 
established here is close to the well-established 
integrated human gut microbial gene catalog 
(IGC, with 9.9 million non-redundant genes).23 

We demonstrated that the established gene catalog 
database provided sufficient coverage for metapro-
teomics protein identification, achieving >30,000 
protein groups and >120,000 peptides with up to 
57,000 peptides per sample. This depth of identifi-
cation is also equivalent to the deepest metaproteo-
mics application studies of human18 or mouse40 

microbiomes so far.
We then performed the very first hamster meta-

proteomic study and examined the impacts of 
SARS-CoV-2 infection on the microbiome func-
tionality in young and old hamsters over 45 days 
post infection (covering acute and recovery phase 
of diseases). Interestingly, we found that the ham-
ster metaproteome significantly changed at Day 7 
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but by Day 15 mostly returned to baseline. This 
observation aligns well with the fact that the phe-
notype recovery and viral clearance are completed 
2 ~ 3 weeks after infection in both hamsters and 
humans.3,24 More interestingly, the current meta-
proteomics study also demonstrated that the 
microbiome responses in young and old hamsters 
were not the same, with a notably higher extent of 
changes in old hamsters than those of young ani-
mals. These observations also agree with the shot-
gun metagenomics as well as the plasma 
metabolomics analyses for samples collected in an 
independent cohort of hamsters.24 These age- 
specific alterations include a significant decrease 
in microbial diversity only for Old-Day7 group 
(Supplementary Figure S13), more taxa that are 
significantly changed in the Old-Day7 group than 
the Young-Day7 group (Figure 7), as well as 
a greater extent of abundance alterations of key 
microbial functions (Figure 6). The observations 
in this hamster metaproteomic study align well 
with the more severe microbiome dysbiosis in 
elderly as well.41 In humans, the elderly population 
is more severely impacted by COVID-19 due to 
age-related changes in metabolism and immune 
function. This demographic typically experiences 
high levels of inflammation, stress, catabolism, and 
increased energy and protein needs in their gastro-
intestinal tract,42 thereby leading to more vulner-
able microbiomes.

One advantage of metaproteomics over genomic 
approaches is that it permits simultaneous identi-
fication and quantification of both host and micro-
biome proteins. This advantage enables the 
exploration of the crosstalk between the micro-
biome and the host immune system as a result of 
SARS-CoV-2 infection. We showed that while 
there is a general increasing trend of microbiome 
cell-associated host proteins in both young and old 
hamsters after SARS-CoV-2 infection, 
a remarkable elevation of host mucosal protein 
secretion into the gut was observed in the Old- 
Day7 group (Figure 4). SARS-CoV-2 infects and 
replicates within enterocytes in the small intestine, 
specifically targeting the intestinal mucosa.43 

A healthy mucus layer is essential for maintaining 
intestinal homeostasis by supporting the symbiotic 
relationship between the host and gut microbiota. 
This mucus layer not only provides spatial 

separation between microbes and the intestinal 
epithelium but also acts as a selective filter, facil-
itating crucial host–microbe interactions. Further 
looking at the significantly altered host proteins, 
this study demonstrated a wide spectrum of down- 
regulation of catabolic enzymes and barrier func-
tion-related proteins, while up-regulating antibac-
terial and mitochondria activity-related proteins. 
For example, we found the up-regulation of Ly6/ 
plaur domain-containing protein 8 and peptidogly-
can recognition protein in the Old-Day7 group, 
both of which are bacterial extracellular compo-
nent-binding proteins and play key roles in main-
taining the mucosal barrier by preventing the 
invasion of bacteria into the inner mucus layer of 
the colon epithelium.44 These observations of 
altered host protein secretion into the gut indicate 
significant disruption of intestinal homeostasis in 
old hamsters with SARS-CoV-2 infection.

Metaproteomics can provide biomass-based 
taxonomic compositions as well as taxon-specific 
protein or functional expressions. In this study, 
with a metaproteome-based taxonomic analysis, 
we see a decrease in microbial diversity and an 
increase in opportunistic pathogens 
Enterobacteriaceae (mainly Escherichia coli), 
families in Bacteroidota, and sulfate-reducing 
Desulfovibrionaceae in Old-Day7 hamsters with 
SARS-CoV-2 infection. These taxonomic altera-
tions also align with those of human patients with 
COVID-19 which showed significantly decreased 
bacterial diversity with enrichment of opportunis-
tic pathogens, such as Streptococcus, Veillonella, 
Fusobacterium, and Escherichia.1 In addition, the 
elevation of sulfate-reducing bacteria has also been 
reported to be implicated in many diseases, includ-
ing inflammatory bowel disease. Mottawea et al. 
demonstrated that a bacterium Atopobium parvu-
lum in the gut of pediatric IBD patients can pro-
duce H2S, which leads to the onset of colitis, while 
administering H2S scavenger can mitigate 
A. parvulum-induced colitis in animal models.45 

Depletion of sulfate-reducing Desulfovibrionaceae 
is also commonly associated with beneficial effects 
of dietary intervention for alleviating metabolic 
disorders in humans.46 By using a co-occurrence 
analysis as well as taxon-function linking with 
MetaX, the current study demonstrated the upre-
gulation of Desulfovibrionaceae specific 
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dissimilatory sulfite reductase and taurine metabo-
lism pathways in SARS-CoV-2 infected hamsters. 
More interestingly, these sulfur metabolism-related 
functions were also found to be significantly corre-
lated with Anaerotignaceae-specific putrescine 
aminotransferase, which can lead to putrescine 
degradation and thereby reduce GABA synthesis 
from the microbiome. Significant positive correla-
tions between sulfate-reducing bacteria and putres-
cine aminotransferase may indicate a potential role 
of these bacteria in the aberrant gut-brain axis and 
the development of neurological symptoms in 
COVID-19 patients.

In summary, this study established a reference 
database as well as a comprehensive workflow 
based on advanced DIA-MS for hamster metapro-
teomic study. The application to study the micro-
biomes in hamsters with SARS-CoV-2 infection 
demonstrates age- and time-specific alterations of 
host proteins, microbial taxonomy, and functions, 
as well as their cross-talks. The multi-layered func-
tional information provided by metaproteomics 
enhances the preclinical evaluation of therapeutics, 
such as vaccines and microbiome-directed thera-
pies, using hamsters as a model. This study also 
underscores the potential benefits of applying 
metaproteomics to clinical microbiome samples 
to better understand the viral-host-microbiome 
interactions in COVID-19 patients. The limitations 
of the current infection study include the small 
sample size and insufficient sampling density, as 
our primary focus was to establish and validate the 
metaproteomics workflow as a proof of concept. 
Applying this workflow to a more comprehensive 
experimental design with denser time points, 
a longer monitoring period, and a larger sample 
size will lead to more conclusive biological find-
ings. Given the prominent role of the microbiome 
in diseases and the well-recognized suitability of 
the hamster model for research on emerging and 
reemerging high-consequence infectious diseases, 
the methodology developed in this study offers 
a valuable framework for investigating micro-
biome-related disease or therapeutic mechanisms. 
Altogether, the hamster microbiome protein data-
bases and the tailored metaproteomic workflow are 
significant contributions to the disease and drug 
research with hamsters as animal models, enabling 
the opportunity to examine the associations of gut 

microbiota composition and functions with the 
host responses.

Methods

Animal experiment and sample collection

This animal study was conducted in the biosafety 
level 3 laboratory (BSL3) at the Institut Pasteur de 
Lille. Experimental procedures adhered to national 
and institutional guidelines and received approval 
from the local biological risk evaluation committee 
(Institut Pasteur de Lille/B59–350009). Ethical 
approval was obtained from the “Comite´ 
d’Ethique en Experimentation Animale (CEEA) 
75, Nord Pas-de-Calais” and authorized by the 
“Education, Research and Innovation Ministry” 
(APAFIS#25041-2020040917227851v3). Young 
(2-month-old, N = 6) and old (22-month-old, 
N = 6) male Syrian golden hamsters (Mesocricetus 
auratus) were purchased from the Janvier 
Laboratory (Le Genest-Saint-Isle, France). 
Animals were housed three per cage and were fed 
a chow diet (5.1% fat, 19.3% protein, 55.5% carbo-
hydrates, minerals 4.6%, fiber 4%, and humidity 
11.5%, SAFE Diets, Augy, France) with access to 
regular laboratory animal drinking water. Infection 
was carried out via intranasal administration of 
100 µl of DMEM containing 2 × 104 TCID50 (50% 
of the tissue culture infectious dose) of BetaCoV/ 
hCoV-19_IPL_France strain of SARS-CoV-2 
(NCBI MW575140) as described previously.11,29 

This strain contains the D614G spike mutation 
that appeared early in the pandemic and increases 
viral entry. One old hamster died at 24-day post- 
infection (missing Days 30 and 45). Therefore, 
a total of 58 fresh fecal samples were collected 
directly from the animal on day 0, 7, 15, 30 and 
45, and stored in −20°C until processing.

Protein extraction, trypsin digestion, and desalting

Stool pre-processing
Enrichment of bacterial cells was performed by dif-
ferential centrifugation as previously described.47 

Briefly, fecal samples were combined with 0.5 mL 
of glass beads and cold phosphate-buffered saline 
(PBS) per gram. After thorough vortexing, the mix-
ture was centrifuged at 300 × g for 5 min at 4°C to 
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isolate the supernatant. The remaining pellets were 
subjected to two additional extractions with cold 
PBS. The collected supernatant was then clarified 
through three sequential centrifugations at 300 × g 
for 5 min each, all at 4°C. Subsequently, the bacterial 
cells were pelleted by centrifugation at 14,000 × g for 
20 min at 4°C. The resulting pellet was washed twice 
with cold PBS, with resuspension and centrifugation 
steps at 14,000 × g for 20 min at 4°C, and finally 
frozen for future analysis.

Lysis and trypsin digestion
Frozen microbial pellets from differential centrifuga-
tion were lysed by resuspending them in 200 µL of 
lysis buffer containing 4% (w/v) SDS, 8 M urea, and 
100 mm TEAB. The lysates were subjected to sonica-
tion using a Bioruptor® Plus (Diagenode, Cat# 
B01020001) at 50% amplitude with a cycle of 10-s 
pulses on/off for 20 min at 8°C. Following sonication, 
the samples were centrifuged at 16,000 × g for 10 min 
at 8°C to remove debris. To precipitate the proteins, 
six volumes of ice-cold acetone were added to the 
supernatant, mixed by inversion, and incubated over-
night at −20°C. After centrifuging at 16,000 × g for 
25 min at 4°C, the supernatant was discarded, and the 
resulting pellet was washed twice with 1 mL of ice- 
cold acetone. After the final wash, the protein pellets 
were briefly air-dried and stored for further proces-
sing. The protein pellets were dissolved in 100 µL of 
buffer containing 0.5% SDS, 8 M urea, and 100 mm 
TEAB. Protein concentrations were measured using 
the Pierce BCA Protein Assay Kit (Thermo Fisher 
Scientific, Cat# 23225), with BSA standards for cali-
bration, according to the manufacturer’s instructions. 
For each sample, 100 µg of protein was reduced with 
10 mm DTT at 56°C for 90 min at 500 rpm. 
Following reduction, proteins were alkylated with 
20 mm IAA for 30 min at room temperature in the 
dark, and the reaction was quenched by adding 
another 20 mm DTT. To remove SDS, proteins 
underwent acetone precipitation as previously 
described. The resulting protein pellets were briefly 
air-dried and reconstituted in 100 µL of 0.6 M urea in 
100 mm TEAB. Trypsin digestion was performed 
overnight at 37°C with 4 µg of trypsin (Promega, 
Cat# V511B) at a 1:25 enzyme-to-protein ratio, with 
continuous shaking at 500 rpm. The reaction was 
terminated by adding 10 µL of 10% formic acid, 
adjusting the sample pH to 2–3.

Desalting of tryptic digest
Desalting was carried out using C18 columns 
(Waters Sep-Pak C18, Cat# 186002318) on 
a vacuum manifold, maintaining a constant pres-
sure of 5 psi. The C18 plate was first conditioned 
twice with 200 µL of 50% acetonitrile (ACN) and 
then equilibrated three times with 200 µL of 5% 
ACN containing 0.5% trifluoroacetic acid (TFA). 
Samples were loaded onto the plate, followed by 
two washes with 5% ACN/0.5% TFA and three 
additional washes with 0.1% formic acid (FA). 
Desalted peptides were eluted twice with 100 µL 
of 75% ACN/0.1% FA. The resulting eluates con-
taining tryptic peptides were dried using 
a centrivap (Labconco, Cat# 7810010). The dried 
peptides were resuspended in 30 µL of 0.1% FA, 
and their concentration was determined using the 
Pierce Colorimetric Peptide Assay (Cat# 23275) 
according to the manufacturer’s instructions. 
Finally, the samples were diluted to 
a concentration of 2 µg/µL in 0.1% FA.

Pooling samples and fractionation
Four pooled samples representing four biological 
categories (Young Pre-infection, Old Pre-infection, 
Young Post-infection, Old Post-infection) were 
created by combining samples as follows: Pool 
1–10  µl each of Young Day 0; Pool 2–10 µl each 
of Old Day 0; Pool 3–2 µl each of Young 7, 15, 30, 
45, Pool 4–2 µl each of Old Day 7, 15, 30, 45. These 
pools were fractionated into eight fractions each 
using High pH Reversed Phase fractionation kit 
(Pierce cat # 84868) according to the manufac-
turer’s directions. Fractions were dried on 
a centrivap and resuspended in 15 µl 0.1% FA for 
LC-MSMS analysis.

LC-MSMS analysis

LC-MS analysis was performed using a Bruker 
timsTOF Pro 2 mass spectrometer connected to 
a Bruker nanoElute 2 UPLC system (Bruker 
Daltonik, Bremen, Germany). Prior to the analysis, 
the instrument was calibrated using the Chip Cube 
High Mass Reference Standard (Agilent, 
G1982–85001). An HPLC setup with two columns 
was employed, comprising a C8 trap column fol-
lowed by a PepSep Twenty-five analytical column 
(25 cm × 75 µm, packed with 1.9 µm C18 particles) 
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from Bruker Daltonik. Peptides were separated 
chromatographically at a flow rate of 0.5 µL/min 
over a 48-min gradient. The gradient program (sol-
vent A: 0.1% formic acid in water; solvent B: 0.1% 
formic acid in acetonitrile) was as follows: 2% B at 
the start, increasing to 35% B by 40 min, followed by 
a rapid increase to 95% B at 40.5 min, and main-
tained at 95% B until 48 min. The peptides eluted 
from the column were analyzed on the timsTOF Pro 
2 mass spectrometer, operated in either DDA- 
PASEF or DIA-PASEF mode. In DDA-PASEF 
mode, the timsTOF mass spectrometer conducted 
an initial scan across a mass-to-charge (m/z) range 
of 100–1700 and an ion mobility window of 
0.85–1.30 Vs/cm2. The MS/MS data acquisition 
included four PASEF ramps with an intensity 
threshold set at 2,500, a target intensity of 20,000, 
and a maximum precursor charge of 5. The trapped 
ion mobility spectrometry (TIMS) analyzer operated 
continuously with a duty cycle featuring 100 ms for 
both ion accumulation and ramp time, resulting in 
a total cycle duration of 0.53 s. Collision energy was 
applied linearly, decreasing from 59 eV at 1/K₀ = 1.6 
Vs/cm2 to 20 eV at 1/K₀ = 0.6 Vs/cm2. In DIA- 
PASEF mode, a scan covered the m/z range from 
100 to 1700 with an ion mobility range of 0.6–1.60 
Vs/cm2. The TIMS analyzer also maintained a 100% 
duty cycle, with 100 ms for accumulation and ramp 
times, and an estimated total cycle time of 1.8 s. For 
MS/MS acquisition, precursors within the m/z range 
of 400–1200 were segmented into 16 scans, each 
comprising 32 ion mobility steps. Each step had an 
isolation window of 26 Da, with a 1 Da overlap 
between adjacent windows. The collision energy 
ranged from 59 eV at 1/K₀ = 1.3 Vs/cm2 to 20 eV at 
1/K₀ = 0.85 Vs/cm2, following a linear gradient 
based on ion mobility.

Metagenomic database generation

This study utilized an in-house shotgun metage-
nomic sequencing dataset from our companion 
study with an independent cohort of three young 
(2 months old) and six old hamsters (22 months 
old) for the establishment of a reference protein 
database for metaproteomics. Details on fecal sam-
ple collections, DNA extraction, library generation, 
and sequencing were described in the study by 
Rodrigues et al.24

Low-quality sequences were first removed with 
fastp (version 0.23.4)48 with default parameters, 
and host sequences were removed with Kneaddata 
workflow (https://huttenhower.sph.harvard.edu/ 
kneaddata/) with Bowtie 249 and the hamster gen-
ome as reference (GCF_017639785.1_BCM_ 
Maur_2.0). The high-quality sequences were then 
subjected to assembly, gene prediction, taxonomic 
annotation and quantification, and binning with 
a previously published SqueezeMeta (v1.6.4) 
workflow.25 Briefly, the sequence assembly was per-
formed using Megahit, retaining contigs with >200 
bpd. PRINSEQ (0.20.4 lite) was used to quality con-
trol for the contigs.50 tRNA and ribosomal RNA 
sequences were removed with Aragorn51 and 
Barrnap,52 respectively, prior to gene prediction 
with Prodigal.27 Contig abundances were used for 
quantitative taxonomic analysis. Taxonomic anno-
tation of contigs was performed by DIAMOND53 

against the GenBank nr database. Top abundant 
microbial species were selected based on the calcu-
lated taxonomic abundances (MGtax1000 for spe-
cies with abundance >0.1%, and MGtax10000 for 
abundance >0.01%). To improve the coverage of 
the gene catalog database, representative proteome 
sets were downloaded from UniprotKB Proteomes 
(45 proteomes for MGtax1000, and 111 proteomes 
for MGtax10000; Supplementary Table S2) and each 
was concatenated with gene catalog databases for 
further evaluations.

To generate a more comprehensive gene catalog 
database, we downloaded a hamster shotgun meta-
genomic dataset consisting of 90 metagenomes 
previously published by Shen et al.28 and per-
formed a co-assembly for gene prediction with 
the same workflow as described above. High- 
quality contigs were further used to construct 
draft genomes using Metabat2.54 A total of 926 
bins were obtained, and GTDB-Tk (v2.4.0)55 was 
used for taxonomic annotation. Of these, 706 bins 
were annotated as bacteria, with 251 classified at 
the species level and 423 at the genus level. Whole 
genomes for the 251 species were downloaded from 
GenBank and combined with the assembled bins. 
The 706 annotated genomes, along with the 251 
downloaded genomes, were then digested in silico 
using Rapid Peptides Generator (RPG) v2.0.5 with 
trypsin.56 After filtering out peptides with lengths 
outside the range of 7–30 amino acids, a total of 
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82,350,794 peptides were retained for database 
construction for MetaX analysis. The workflow 
was illustrated in Supplementary Figure S15.

Reduced protein database generation with DDA 
dataset

To generate a reduced protein database, DDA- 
PASEF data of pooled fractions were searched 
against the MGDB-V2 database with MSFragger 
(version 4.0)57 implemented in FragPipe (v21.1). 
The default workflow was used with the following 
changes: a database split factor of 20, no mass 
calibration and parameter optimization for 
MSFragger search, and spectral library generation 
with ciRT for RT calibration. An FDR threshold of 
1% was used for both peptide and protein identifi-
cations. The sequences of all identified proteins 
from the MSfragger search, including indistin-
guishable proteins, were extracted from original 
MGDB-V2 using an in-house Perl script to gener-
ate a reduced FASTA database.

DIA-NN search for identification and quantitation of 
DIA-MS dataset

DIA-PASEF data were processed with DIA-NN 
(v1.9.1)58 in library-free mode using the reduced 
FASTA database generated through MSFragger 
searches as described above. To identify and quan-
tify host proteins, we appended the Golden hamster 
proteome (Mesocricetus auratus with 20,389 entries; 
downloaded from UniProtKB on July 24, 2024) to 
the reduced database. Default settings were used for 
the DIA-NN search with a precursor and protein 
level FDR threshold of 1%. MaxLFQ intensities of 
the identified proteins or peptides were used for all 
the downstream data analysis.

Downstream taxonomic and functional analysis

Taxonomic annotation and analysis were per-
formed using MetaLab (v2.3.2)59 with the peptide 
data matrix (report.pr_matrix.tsv) as input and 
UniPept for taxonomic assignment.60 

A minimum of three distinctive peptides was 
required for confident identification of taxa. The 
taxon intensity was calculated with sum intensity of 

all distinctive peptides assigned to it and then nor-
malized at each taxonomic rank level to obtain 
relative abundances for further statistical analysis.

For microbiome functional analysis, all host pro-
teins were first excluded from the quantitative data 
matrix (report.pg_matrix.tsv) and the remaining 
microbiome protein abundances were then nor-
malized for further analysis. Functional annotation 
of microbial proteins was performed using 
GhostKOALA with default parameters.32 The 
KEGG GENES database file was set as “genus_pro-
karyotes + family_eukaryotes + viruses”. The nor-
malized intensities of microbial proteins 
annotated with the same KO were summed up to 
obtain KO abundance for further statistical 
analysis.

Statistical data analysis and visualization

In this study, we kept proteins or microbial func-
tions with valid non-zero values in at least 70% 
samples for statistical analysis, including principal 
component analysis (PCA) and partial least- 
squares-discriminant analysis (PLS-DA). The 
intensities were log2-transformed and the missing 
values were imputed with k-nearest neighbor 
(KNN) algorithm when needed. PCA was per-
formed in R with the princomp function and visua-
lized with ggplot2. PLS-DA was performed in 
MetaboAnalyst 5.061 to calculate the variable 
importance in projection (VIP) of each protein. 
VIP is a normalized value, and a VIP > 1 indicates 
a significant contribution to the PLS-DA model. 
Hierarchical clustering and heatmap of identified 
VIP proteins or functions were performed using 
the R package ComplexHeatmap.62

Statistical analysis of taxonomic composition 
was performed using MaAsLin2 (Galaxy Version 
1.8.0).37 Young-Day7 and Old-Day7 groups were 
set as fixed effects and the others were set as refer-
ence group. The abundance data were log trans-
formed prior to analysis using the LM (linear 
model) method. Statistical p values were corrected 
with Benjamini–Hochberg method and a corrected 
p-value < 0.05 was deemed as significant in this 
study.

Diagrams in Figures 1 and 2 were created in 
BioRender (Zhang, X. (2023) BioRender.com/ 
f82w697). Co-occurrence analysis was performed 
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using iMetaShiny63 (https://shiny.imetalab.ca/) 
and visualized using Cytoscape (v3.10.2).64 The 
Sankey plot was generated using SankeyMATIC 
(https://sankeymatic.com/).
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