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Bacterial microcompartments are prokaryotic organelles
comprising encapsulated enzymes within a thin protein shell.
They facilitate metabolic processing including propanediol,
choline, glycerol, and ethanolamine utilization, and they
accelerate carbon fixation in cyanobacteria. Enzymes targeted
to the inside of the microcompartment frequently possess a
cargo-encapsulation peptide, but the site to which the peptide
binds is unclear. We provide evidence that the encapsulation
peptides bind to the hydrophobic groove formed between
tessellating subunits of the shell proteins. In silico docking
studies provide a compelling model of peptide binding to this
prominent hydrophobic groove. This result is consistent with
the now widely accepted view that the convex side of the shell
oligomers faces the lumen of the microcompartment. The
binding of the encapsulation peptide to the groove between
tessellating shell protein tiles explains why it has been difficult
to define the peptide binding site using other methods, pro-
vides a mechanism by which encapsulation-peptide bearing
enzymes can promote shell assembly, and explains how the
presence of cargo affects the size and shape of the bacterial
microcompartment. This knowledge may be exploited in en-
gineering microcompartments or disease prevention by
hampering cargo encapsulation.

Bacterial microcompartments are prokaryotic organelles
consisting of encapsulated enzymes within a thin protein shell.
The first bacterial microcompartments, observed as polyhedral
structures in electron micrographs, were the carboxysomes of
cyanobacteria (1) which enhance carbon dioxide fixation via
encapsulation of rubisco and carbonic anhydrase (2). Later,
similar structures were observed in heterotrophs, but only
when grown on the substrate of the microcompartment e.g.,
ethanolamine or 1,2-propanediol (3). The majority of the
bacterial microcompartments break down a metabolic sub-
strate and are called metabolosomes. The bacterial micro-
compartment shell functions as a semipermeable membrane
for substrates and products and segregates the encapsulated
enzymes (4). A recent paper catalogs the increasing known
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diversity and ubiquity of bacterial microcompartments (5).
The shell confines toxic and reactive intermediates and en-
hances catalysis by increasing the concentration of enzymes
and substrates. Off-pathway reactions are minimized by the
segregation of the enzymes within the microcompartment.
Targeting of enzyme cargo to the lumen of the bacterial
microcompartment is typically by a 15 to 20 amino-acid res-
idue amphipathic a-helix that is connected to the N- or
C-termini of the cargo protein via a flexible linker (6, 7).

In the Pdu microcompartment, the encapsulated enzymes
convert 1,2-propanediol to propionaldehyde via a cobalamin-
dependent catalytic mechanism catalyzed by PduCDE
(Fig. 1A). The aldehyde is subsequently converted to
propionyl-CoA by PduP (8) before the CoA is regenerated by
PduL during the production of propionyl-phosphate (9). There
is evidence that the aldehyde dehydrogenase (PduP) and the
diol dehydratase (PduCDE) are within the lumen of the
microcompartment (10, 11). The requirement for PduL to
regenerate CoA for PduP would imply that it too is localized to
the microcompartment lumen (12). Several other enzymes
(PduGHOS and PduQ) are involved in regenerating the
cobalamin and NAD+ cofactors. Recombinant production of
bacterial microcompartments has shown that in the presence
of encapsulation peptide-bearing metabolic enzymes, the
microcompartments are larger compared to empty shells (11).

The propanediol utilization (Pdu) metabolosome from Sal-
monella comprises eight shell proteins (PduA, B, B0, J, K, N, U,
T) of which PduA, B, B0, J are major and PduK, T, U (and N)
are minor components of the shell (13). The shell protein
PduA consists of a single Pfam00936 domain that assembles
into a cyclic homohexamer with a convex and concave side
(Fig. 1, B and C) (14, 15). PduB is a tandem fusion of two
Pfam00936 domains that assemble into a cyclic homotrimer
which closely resembles the size and shape of the PduA hex-
amer (16–18). Except for the vertex-capping pentamer, PduN
(19), the shell proteins are either hexamers or pseudo-
hexamers. Several thousand of these hexamers and pseudo-
hexamers tessellate to form the facets of the bacterial
microcompartment.

In this work, we use the hexameric shell protein PduA from
Citrobacter freundii. PduA has been shown to transport the
substrate 1,2-propanediol to the lumen of the Pdu micro-
compartment (14). While PduA comprises only 19% of the
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Figure 1. The Pdu microcompartment and tessellating PduA hexamers which form the shell. A, schematic representation of the cobalamin dependent
1,2-propanediol utilization (Pdu) microcompartment and the encapsulated enzymes. Enzymes with known encapsulation sequences, PduCDE, PduL, and
PduP, are highlighted in blue. B, three tessellating PduA shell protein hexamers viewed looking down on to the convex face of the hexamers. C, a central
slab of the tessellating PduA molecules rotated about the horizontal axis by 90� and enlarged compared to panel (B) to show the concave and convex
surfaces of the hexamers, the thin hexamer-hexamer interface can be clearly seen between tessellating hexamers. The hydrophobic groove formed be-
tween the tessellating PduA protein tiles is indicated on the convex side of the PduA hexamer. The three hexamers shown were generated using the crystal
structure (Protein databank code: 3NGK) and the crystallographic symmetry.
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shell proteins present in the microcompartment shell its
sequence is closely homologous (80% sequence identity) to
PduJ which accounts for 54% of the shell proteins (20). The
structure of PduJ is nearly identical to PduA and the pduA
gene complements the growth phenotype of a pduJ deletion
mutant (21). Remarkably, given the substrate channel of PduJ
is identical to that of PduA, it is the genomic position of the
pduJ gene in the operon that determines its ability to act as a
pore for 1,2-propanediol transport (21). Together then PduA
and PduJ account for 73% of the tiles forming the micro-
compartment facet (20). We therefore argue that sheets of
tessellated PduA hexamers and assembly intermediates
involving PduA hexamers are reasonable proxies for the facet
of the microcompartment.

Enzymes encapsulated within the Pdu microcompartment
have a short, typically 15 to 20 residue, encapsulation sequence
(22). These sequences form amphipathic helices (23) with
small hydrophobic residues clustered on one side of the helix
and are found at the N-terminus or C-terminus of the enzyme
cargo (24). Within the Pdu metabolosome, the acylating
propanol dehydrogenase, PduP has an 18-residue N-terminal
sequence that facilitates encapsulation. Several computational
methods have predicted that the encapsulation peptide of
PduP binds to the concave surface of PduA, thus requiring the
concave side of the PduA tile to be luminal (25, 26). However,
there is now convincing evidence that the concave surface of
the PduA tile is external both from structural studies of a
2 J. Biol. Chem. (2024) 300(6) 107357
recombinantly generated metabolosome (27) and from our
own previous work (28). While there is some affinity for the
concave (external) surface of the tile, the work we report here
reveals the encapsulation peptide has a greater affinity for the
hydrophobic groove on the internal convex side of the hex-
amer formed between tessellating tiles. Enzymes bearing
encapsulation peptides are not essential for microcompart-
ment assembly, but they do influence microcompartment as-
sembly (11, 29). The binding of the encapsulation peptide
between tessellating tiles therefore has important conse-
quences for understanding the nucleation of bacterial micro-
compartment assembly in the presence of enzyme cargo and
provides an explanation of how cargo influences micro-
compartment size and shape.
Results

PduA tessellation intermediates

PduA hexamers tessellate to produce protein sheets and
nanotubes (15, 28). Substitution of key residues at the tessel-
lation interface, lysine 26 and arginine 79, reduces the pro-
pensity of PduA to tesselate (15). Here, we use sonication to
disrupt the sheets and nanotubes and produce assembly in-
termediates. Glutaraldehyde cross-linked samples of sonicated
PduA were analyzed by size-exclusion chromatography and
native gel electrophoresis (Fig. 2AB). The native gel from a
typical cross-linked sample shows evidence for three distinct
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species in addition to higher molecular mass species too large
to enter the gel (Fig. 2B). It is plausible that the three species
are the PduA hexamer with the highest mobility, the dimer of
hexamers, and the trimer of hexamers with the lowest mobility
on the gel. Making this assumption then the two peaks from
the size exclusion chromatography are mainly dimer and
trimer of hexamers (Peak 1) and mainly monomer (Peak 2).
Dynamic light scattering measurements from samples of peaks
1 and 2 have hydrodynamic radii of 6.68 nm and 3.71 nm,
respectively. These values are not easy to replicate from simple
calculations using the structures of the hexamer and trimer of
hexamers suggesting there are some larger oligomers also
present after cross-linking. Mass-spectrometry of cross-linked
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Figure 2. Identifying early-stage tessellation intermediates. A, after sonicat
be separated using size-exclusion chromatography. The first peak corresponds
the PduA hexamer. B, the native gel is consistent with peak 2 comprising m
sample contains all three components, monomer, dimer, and trimer. The Pdu
dominantly trimers of hexamers (first lane of gel). C, the mass of the peaks from
spectrometry. D, cross-linked samples run on SDS-PAGE gives molecular ma
spectrometry. Some lanes were cropped from the gel images shown in pane
PduA revealed masses of 88 kDa, 176 kDa, and 264 kDa
(Fig. 2C) which is consistent with a ladder of one, two, and
three assembling oligomers although the cross-linked hexamer
is presenting at higher mass than the PduA hexamer mass of
64 kDa. SDS-PAGE of the glutaraldehyde-modified PduA gives
bands at approximately 60 kDa, 120 kDa, and 190 kDa
(Fig. 2D) which is closer to multiples of the PduA hexamer
(64 kDa). It is plausible the smaller oligomers that enter the
native gel are hexamer, dimer of hexamers, and trimer of
hexamers. The cyclic trimer of hexamers is shown in the
cartoon in Figure 2 because the cyclic trimer is stabilized by
three interfaces rather than only two interfaces in the linear
arrangement. PduA without cross-linking tends to assemble
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ion and cross-linking, low molecular mass oligomers of PduA hexamers can
to dimers and trimers of hexamers while the second peak is predominantly
ostly monomer, peak 1 trimer and dimer. The glutaraldehyde cross-linked
A samples used for the work described here were checked and were pre-
the glutaraldehyde cross-linked sample was confirmed by MALDI-TOF mass-
sses in agreement with the results of dynamic light scattering and mass-
ls (B) and (D) at the position indicated by the dotted lines.
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into a trimer of hexamers although the band always smears
suggesting there is heterogeneity in assembly present (Fig. 2B).
PduL binds to tessellating PduA

We explored the binding of PduL to tessellating and
mutated non-tessellating variants of PduA. A distinct band
shift is observed on the native gel when PduL is titrated into
tessellating PduA hexamers but not when added to the non-
tessellating mutant, K26D PduA (Fig. 3A). As expected, the
non-tessellating K26D PduA has higher mobility than the
tessellating native PduA because of its lower mass and greater
negative charge. The increase in the mobility of PduA with the
addition of PduL was not expected. It is plausible that PduL
L
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Figure 3. PduL binds only to tessellating PduA hexamers. Tessellating Pdu
blue line on the figure and the band shifts when PduL is added, non-tessellat
PduA variants without and with the addition of equimolar PduL (molarity c
tessellating variant, K26D with the interfacial lysine 26 replaced by aspartate
the acidic PduL dimer has a profound influence on the mobility of the PduA trim
PduL bands are unchanged. B, a similar result to that presented in the first pan
does not tessellate and comprises six fused subunits in a single polypeptide
sponding to non-interacting PduA variant A6 and PduL are seen indicating no b
replaced by aspartate, tessellates slowly, over several days. Here is a sample th
mobility), some is still non-tessellating (high mobility). What is striking here is
while the non-tessellating species remains unchanged. Native PduA behave
confirmation that on the titration of PduL into PduA the mobility of PduA in
mobility can be seen in the Native-PAGE (upper gel) and the anti-His antibody
binding of PduL dimer to the PduA hexamer saturates at 1:1. We know there a
also be three dimers of PduL. The 1:1 stoichiometry of PduL dimer to PduA hex
images shown in panels (B) and (C) at the position indicated by the dotted lin
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binds to the tessellating hexamers and pulls the complex
further into the gel. PduA has a pI of 8.0 and the gel is run at
pH 8.5 while PduL with pI of 6.2 confers a negative charge and
higher mobility to the complex. Another possibility is that
PduL is breaking up the tessellating PduA hexamers while still
binding to the individual hexamers. This is a less likely
explanation as PduL would bind to both tessellating and non-
tessellating forms of PduA. However, it might be argued that
the mutation K26D might prevent the binding of PduL to the
hexamer. A non-tessellating concatenated PduA, A6, and a
slowly tessellating A6 variant were also used to explore this
possibility. In the A6 variant, the six chains of the PduA
hexamer are concatenated into a single polypeptide chain with
linkers between the six concatenated subunits. When PduL is
+
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(K26D)4
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Western blot using an
antibody to His-tag of PduA
shows PduA is a part of the
higher mobility complex

Molar ratio of 
PduL dimer to PduA hexamer
(see also Fig. 5A)

Higher mobility of 
PduA/PduL complex

A has lower mobility on native PAGE and is observed above the horizontal
ing PduA has higher mobility and is seen below the blue line. A, PduA and
alculated on the basis of the PduA hexamer and PduL dimer). The non-
, has a lower mass and correspondingly higher mobility. The addition of
er of hexamers, but not on that of the K26D mutant, where both PduA and

el is seen when the concatenated A6 PduA variant is used. This PduA variant
chain, the individual subunits joined by linkers. Two distinct bands corre-
inding. C, the (K26D)4 mutant of PduA, in which four of the six lysine 26’s are
at has been left for 2 days (lane 2). Some of the protein has tessellated (low
that the tessellating species binds PduL and is pulled further into the gel,
s as usual and shows the usual band shift on the addition of PduL. D,
creases. Here His-tagged PduA and tagless PduL are used. The increase in
Western blot confirms that PduA has increased mobility in the complex. The
re three hexamers of PduA from the results described above, so there must
amer can be seen also in Figure 5A. Some lanes were cropped from the gel
es.
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titrated into A6 no complex is formed, and the proteins
migrate independently (Fig. 3B). This result again links
tessellation to PduL-binding. The behavior of the slowly
tessellating PduA A6 variant, (K26D)4, is interesting (Fig. 3C).
This variant has four of the six concatenated PduA copies with
aspartate in place of lysine 26 and two retain the original
lysine. Due to the addition of PduL, the tessellating fraction of
the sample undergoes a band-shift, but the non-tessellating
component of the sample does not (Fig. 3C). This result
strongly supports the view that tessellation is needed for PduL
binding. It is difficult to argue that PduL binding resulting in
the disassembly of tessellation would account for this result. A
titration of PduL into PduA reveals a 1:1 binding of PduL
dimer to PduA trimer (Fig. 3D upper panel). The Western blot
(Fig. 3D lower panel) using an anti-His antibody to His-tagged
PduA (PduL is not tagged and does not bind the antibody)
shows PduA is present in the lower band on the native gel,
revealing that this band is the complex of PduA and PduL.

In silico modeling of cargo-encapsulation peptide binding

The binding of the cargo encapsulation peptides of PduL
(L20), PduD (D18), and PduP (P18) first to the PduA hexamer
and then to the dimer of hexamers was evaluated in silico
using three docking methods: ClusPro (30), Frodock (31) and
CABS-dock server (32). The peptides were modeled both as
helical and as flexible peptides and the search covered the
entire surface of the hexamer and of the dimer of hexamers.
When the surface of the monomer was searched, the peptides
bound to the concave side of the PduA disk in the mode
described previously (22) (Fig. 4A). The second-ranked hit is
substantially the same as the top hit, but the third-ranked it is
on the convex side close to the hexamer-hexamer interface
(Fig. 4B). When the surface of tessellating PduA hexamers is
searched, the results consistently show binding to the groove
at the hexamer-hexamer interface (Fig. 4C). For instance, the
rmsd for L20 binding to the hexamer-hexamer interface, using
CABS-dock, was 0.88 Å with a cluster density of 113
(compared to the significantly poorer values of 3.0 Å and 27
for binding to a single hexamer). In this CABS-DOCK model,
the irregular starting peptide structure is predicted to bind to
the groove as an amphipathic helix (Fig. 4C). In summary, the
cargo-encapsulation peptides are predicted to bind to the
groove between tessellating hexamers with higher affinity than
to individual hexamers (Fig. 4, C and D).

Titration of the PduL dimer into the PduA trimer of hexamers

The stoichiometry of binding of 1:1 for the PduL dimer to
PduA trimer of hexamers was originally established using the
6% acrylamide gel (Fig. 3D). The binding was subsequently
explored at higher resolution using a native gradient gel. The
lower mobility band on this gel corresponds to the PduA
trimer of hexamers and the highest mobility band to the
complex of three PduL dimers per PduA trimer of hexamers
(Fig. 5A). As the ratio of PduL increases across the gel from left
to right, two bands are observed between the unbound and
fully saturated PduA trimer of hexamers. We interpret the
intermediate bands as the binding of one and two PduL dimers
per PduA trimer of hexamers (Fig. 5A). PduA alone forms
nanotubes but in the presence of PduL or other encapsulation
peptides, only sheets are seen in electron micrographs
(Fig. S1). This supports the view that the cargo-encapsulation
peptide is binding between hexamers because when the groove
is occupied by peptide the hexamer-hexamer interface cannot
bend to the angle required to make a tube (28). The apparent
cooperativity of binding is interesting (Fig. 5A), and is
considered in the discussion, it is consistent with binding at or
close to the hexamer-hexamer interface.

A mutation that allows PduA tessellation but prevents PduL
binding

The proposed binding of the encapsulation peptide to the
tessellation interface with conserved hydrophobic residues
highlighted is shown in Figure 5B. The mutation A63R was
made to introduce a bulky group to PduA block the PduL
binding site identified in the modeling studies (Fig. 5C). PduA
A63R was seen to form sheets using electron microscopy so
tessellation of the PduA hexamers is preserved. This mutant is
more basic than PduA so required the native gel to be run at
pH 9.5 instead of pH 8.5. Compared to the non-tessellating
mutant with the C-terminal extension (GGSST), A63R has
similar mobility to PduA confirming that it can successfully
tessellate to form a trimer of hexamers (Fig. 5D). When PduL
is added to A63R no binding is observed with the two bands,
PduL and A63R, running as separate bands with unchanged
mobility. This contrasts with the band shift seen with native
PduA (Fig. 5D). This result reveals that if the groove formed
between tessellating hexamers is blocked by the mutation
A63R then the mutant PduA is unable to bind the PduL
encapsulation peptide.

Discussion

Using gentle sonication to disrupt higher-order assemblies
and higher pH to slow subsequent reassembly we have been
able to separate early-assembly intermediates in the forma-
tion of PduA sheets and nanotubes. Frequently observed, the
higher molecular mass assembly of PduA hexamers travels
more slowly through the native gel than variants that do not
tesselate. Tessellation of PduA was confirmed using electron
microscopy and observing the presence of sheets and nano-
tubes. These higher-order structures were not seen using
non-tessellating variants, and nanotubes were not seen when
encapsulation peptides were added. The binding of the cargo-
encapsulation peptide to the groove between tessellating
hexamers will restrict the bending of the hexamer-hexamer
interface that is necessary to form tubes. Of the dimer and
trimer of hexamers resolved on the native gel, the cyclic
trimer with 3-fold symmetry is proposed to be the more
stable assembly intermediate because each of the three tiles is
stabilized by interaction with two adjacent tiles. The non-
tessellating variants of PduA used in this study have muta-
tions near the hexamer-hexamer interface or the addition of
flexible linkers that are presumed to interfere with the
J. Biol. Chem. (2024) 300(6) 107357 5
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Figure 4. In silicomodeling of the structure of the encapsulating peptide binding to the PduA hexamer and to tessellating hexamers. A, top two hits
from docking the encapsulation peptides with the PduA hexamer: L20 (the first 20 residues of PduL in light and dark pink), P18 (light and dark green), and
D18 (light and dark blue). The binding is to the concave side of PduA. B, the third-ranked hits for all three encapsulating peptides bind to the convex side of
the hexamer close to the hexamer–hexamer interface. C, when presented with tessellated hexamers, despite given no preferred binding site residues on
PduA, all three encapsulation peptides localise to the cleft between hexamers on the convex side of the PduA dimer. D, a summary of peptide binding to
PduA hexamer and tessellating hexamers.
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hexamer-hexamer interface. Unlike tessellating PduA, these
non-tessellating variants do not bind PduL. This is either
because the cargo-encapsulation peptide binds close to the
hexamer-hexamer interface and mutation disrupts the inter-
face or because the encapsulation peptide binds in the hy-
drophobic groove formed between adjacent tessellating
hexamers. In either case, this is a new result and links the
6 J. Biol. Chem. (2024) 300(6) 107357
interface to encapsulation peptide binding. The correlation of
tessellation and cargo-encapsulation peptide binding is
striking and established using several mutants of PduA
including the slowly tessellating mutant where only the
tessellated oligomer binds to PduL.

The experimental results produced by Fan et.al. (2014) are
in broad agreement with our proposed model. They show that
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of hexamers on the bottom row of the panel. B, closeup of the encapsulation peptide binding site between tessellating hexamers of PduA. The conserved
hydrophobics which form a patch on the surface of the helical encapsulation peptides are shown as sticks and labeled. C, the position of conserved small
hydrophobics on the surface of PduA on a-helix 1 (AMVKSA; residues 23 and 27 underlined) and a-helix 2 (AATDAGAAAA; 56, 60 and 63 underlined). The
mutation A63R was designed to block the binding site. D, the result of the band-shift assay using the PduA A63R mutant. Both PduA and A63R can be seen
to tessellate (low mobility on the gel). The PduA A63R mutant is however unable to bind PduL whereas PduA undergoes the usual band shift. PduA with C-
terminal linker, GGSST, is used here as a non-tessellating control (AGGSST), it does not bind PduL.
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the mutations E7A, I10A, and L14A abolish the incorporation
of PduP into microcompartments. In our proposed binding
model these latter two hydrophobic residues are buried at the
hydrophobic interface between the cargo-encapsulation pep-
tide helix and groove between tessellating tiles. The reason for
the conservation of Glu 7 is less clear, but it might interact
with Arg 66 of PduA.

In silico studies suggest the binding of the cargo-
encapsulation peptides is preferentially to the hydrophobic
grooves between the tessellating hexamers. The binding of the
encapsulation peptide to this convex side of the hexameric disk
agrees with previous studies showing this side of the hexamer
faces the lumen of the microcompartment. The peptides adopt
helical conformation on binding and present a hydrophobic
surface to the binding site. This mode of binding would not be
readily detected in previous in silico studies using isolated
hexamers possessing half the binding site. The conserved hy-
drophobic residues of the helical encapsulation peptides
interact with conserved small hydrophobic residues on the a1
and a2-helices of two adjacent PduA hexamers. The residues
on the first helix are: 23 and 27; and on the second: 56, 60, and
63. Mutation of one of these hydrophobic residues, Ala 63, to
the bulkier and charged arginine, blocks the binding cleft,
transforms its hydrophobic character, and prevents the bind-
ing of the encapsulation peptide despite allowing tessellation
of the PduA hexamers. This mutagenesis result supports the in
J. Biol. Chem. (2024) 300(6) 107357 7
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silico modeling and binding of cargo-peptide to the hydro-
phobic groove between tessellating tiles.

Further evidence for binding between tessellating hexamers
comes from the higher-resolution titration which shows
saturation at three PduL dimers per PduA trimer consistent
with the binding to the three hexamer-hexamer interfaces
present in the trimer. In this model, one encapsulation peptide
from the PduL dimer interacts with the PduA interface and the
other encapsulation peptide is free to interact with another
microcompartment component. A plausible explanation for
the positive cooperativity seen is that the binding of two
encapsulation peptides flattens the assembly of three hexam-
ers, opens the third binding groove, and thereby increases the
affinity for the third peptide. Electron microscopy shows that
the presence of the encapsulation peptides inhibits the for-
mation of PduA nanotubes which require bending at the
junction between hexamers. We can now understand how the
encapsulation peptide might influence the assembly of the
microcompartment in vivo. Binding to a single hexamer would
not directly affect assembly, except by increasing the effective
concentration in the vicinity of the enzyme but binding be-
tween hexamers will stabilize the hexamer–hexamer interface,
increase facet stability, planarity, and size, and directly pro-
mote microcompartment assembly. The groove between
tessellating hexamers has two-fold symmetry, this complicates
achieving ordered binding of peptides for experimental
structural studies. When the encapsulation peptides are
attached to their cargo enzymes, the oligomeric state of the
cargo and the steric exclusion of the enzymes will affect how
the peptides are presented and it is plausible this will also
influence binding to microcompartment facets. PduL is a
dimer and the results presented here suggest that one N-ter-
minal encapsulation peptide from the PduL dimer binds to the
trimer of PduA hexamers and the other encapsulation peptide
is unbound.

A prominent hydrophobic groove formed between tessel-
lating tiles is a common theme in the crystal structures of shell
proteins and the sequence of small hydrophobics of a-helix 1
(AMVKAA; residues 23 and 27 underlined) and a-helix 2
(AATDAGAAAA; 56, 60 and 63 underlined, 3NGK
numbering) that form the binding-site is conserved across
many hexameric shell proteins including the major shell pro-
teins PduJ and PduA (Fig. S2). This hydrophobic groove is
therefore present in the facets of the bacterial micro-
compartment shell. We suggest that encapsulation peptide
binding to grooves formed between tessellating subunits is a
general way of binding cargo and plausibly also of prompting
nucleation of the microcompartment shell.
Experimental procedures

Molecular biology

We previously described a variant of C. freundii PduA with a
C-terminal 23 residue extension which aids protein solubility
(15). This is the variant used in this work, it is referred to in the
methods as PduA*, but simply as PduA in the main text. The
concatenated constructs of 6 sequential copies of PduA* were
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prepared in pOPIN F (OPPF) and modified to contain a TEV
cleavage site and the restriction sites SpeI, EcoRV, and BglII
inserted into the KpnI site. PduA* or PduA*K26D were ampli-
fied using primers containing ScaI in the forward primer (50-30)
ggagtactatgcaacaagaagcgttagg and incorporating EcoRV and
BglII sites either side of a stop codon using the primers (50-30)
atagatctttagatatcttgctcagcggtggcagc. The PCR product was
ligated into pBluescript SKII +. The gene was excised using
ScaI and BglII and was ligated into pOPIN F TEV linearised
with EcoRV and BglII. This was repeated in a link and lock
style (33) approach until 6 copies of PduA, with the 23-residue
extension between each repeat, had been ligated. PduAGGSST

was designed to include a 30 residue C-terminal extension (six
repeats of GGSST), in place of the C-terminal 23 residue
extension tag and was synthesized including the same ScaI,
EcoRV, and BglII sites as above. The synthesized gene was
excised from the commercial vector pEXA128 (Genewiz) using
ScaI and BglII and ligated into pOPIN F (OPPF) containing a
TEV cleavage site linearised with EcoRV and BglII. PduA*
A63R was created using site-directed mutagenesis. All se-
quences were confirmed by sequencing (Source BioSciences).

The gene for C. freundii PduL was originally cloned into
pET3a (modified with SpeI 50 of BamHI). The forward primer
with NdeI restriction site used was gcgcatatggataaa-
cagcaactggag and the reverse with SpeI restriction site gcgac-
tagtcatcgtgggctcaccagtg. This was subsequently subcloned into
pET28a by an NdeI and BamHI digest, therefore creating a
thrombin cleavable N-terminal His-tag. Again, all were se-
quences confirmed before protein production.

Protein production and purification

For protein production, BL21 (DE3) transformed with the
desired plasmid were grown in 1 L volumes of 2YT media
supplemented with ampicillin, at 37 �C while shaking at
200 rpm. Gene expression was induced at an OD of 1.0 with
0.4 mM IPTG followed by overnight incubation at 18 �C,
shaking at 200 rpm. Cells were harvested by centrifugation at
6000g for 10 min and were resuspended in 20 mM Tris pH 8.0,
500 mMNaCl. The cells were lysed by sonication and the lysate
was clarified using centrifugation at 25,000g for 30 min. Pro-
teins were purified using immobilized nickel affinity chroma-
tography. PduA and mutants were washed with 20 mM Tris pH
8.0, 500 mM NaCl, and imidazole up to 150 mM before elution
with 500 mM. PduL was washed with 20 mM Tris pH 8.0,
500 mM NaCl, and imidazole up to 60 mM before elution with
250 mM. The N-terminal His-tag of PduL was cleaved after
incubation with thrombin at 4 �C overnight. Thrombin and un-
cleaved protein were removed using reverse immobilized nickel
affinity chromatography. The proteins were further purified
using size exclusion chromatography on a Superdex 200 10/300
column equilibrated in 25 mM HEPES, 500 mM NaCl, pH 8.0,
and eluted at their expected sizes.

Native-PAGE analysis and Western blot

For all Native-PAGE, BioRad Mini-PROTEAN TGX 4 to
15% gradient gels and running buffer (25 mM TRIS, 192 mM
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glycine) were run at 4 �C for 3 h at 100 V fixed with variable
current. Native-PAGE samples were prepared in 200 mM
NaCl, 25 mM HEPES, pH 8.0, and protein complexes were left
at 4 �C for 1 h before the addition of loading buffer (0.1%
bromophenol blue, 50% glycerol, 50% 1x running buffer).
When using Native-PAGE titration of PduL into PduA, it was
necessary to demonstrate the location of PduA. The N-ter-
minal His-tag of PduL was cleaved to both facilitate binding to
PduA and enable the exclusive detection of PduA with an anti-
His antibody obtained from Novagen. The protein concen-
trations used were circa 1.0 mg/ml PduA for Native-PAGE.

Cross-linking

To prepare PduA* oligomers, 4 mg/ml PduA* in 20 mM
HEPES, 500 mM NaCl, pH 8.0, was sonicated, on ice, for 30 s
pulses for 2 min. Glutaraldehyde to 1% v/v was added imme-
diately after sonication and the crosslinking reaction was
incubated at 4 �C overnight. The reaction was terminated
using size exclusion chromatography with Superose 6 column
in 20 mM Tris, 500 mM NaCl pH 8.0.

Dynamic light scattering and mass-spectrometry

Dynamic light scattering of PduA* samples was measured
using the Protein Solutions DynaPro MS/X. The 4 mg/ml
samples were first filtered through a 1 mm filter to remove
larger particulates. MALDI-TOF mass-spectrometry of PduA*
was using a Bruker rapifleX MALDI PharmaPulse spectrom-
eter. Sinapinic acid was added in excess to 30% water, 70%
acetonitrile, 0.1% TFA. This mixture was then vortexed thor-
oughly and centrifuged for 1 min at 20,000 RPM. The super-
natant (saturated with sinapinic acid) was removed and added
to 1 mg/ml of desalted protein in a 1:1 ratio. 1 ml of this
mixture was added to the sample plate and left until thor-
oughly dried. Sample analysis then proceeded using positive
detection mode, collecting 1000 images per sample.

Structural modeling

Models of a PduA* hexamer and a pair of hexamers were
produced using the structure 3NGK (14). ClusPro (30), Fro-
dock (31), and CABS-dock server (32) were then run on the
hexamer and dimer of hexamers using the peptides L20, P18,
or D18. CABS-dock simulation was run for 50 cycles and no
preferred regions were selected to avoid any implicit bias. All
structural figures presented were made using PyMOL (34).
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