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Abstract

The ever-increasing scale of available metagenomic data demands both fast and
accurate tools. This comes at a time when assembly-based metagenomics substan-
tially increased represented bacterial diversity in taxonomic databases and holds
great potential for accurate and fast taxonomic profilers. Yet, current metagenomic
profilers and strain-resolved tools do rarely utilise the vast known taxonomic
diversity, nor do they leverage state-of-the-art approaches to provide both efficient
and accurate metagenomic taxa profiles. With the importance of both species and
strain-level analysis for gaining insights into the workings of microbial communities,
there is a need to improve our understanding of how current tools work, and
to improve the integration of available genetic resources using standardized and
community supported databases.

This thesis presents approaches towards understanding the limitations of species-
and strain-resolved metagenomic analysis and introduces two newly developed
metagenomic profilers. Firstly, benchpro is a tool for in-depth benchmarking
of taxonomic profilers using synthetic metagenomes. Benchpro disentangles the
signal of false predictions by introducing a shared phylogenetic context between
gold-standard profile and prediction. Second, varkit is a fast k-mer based taxonomic
profiler that detects de novo SNPs based on k-mer match patterns relative to a
taxonomic database. Lastly, protal is an alignment-based approach to taxonomic
profiling and strain-resolved analysis and demonstrates how the integration of
k-mer and alignment-based concepts can elevate accuracy and efficiency. Protal
provides sensitive and accurate analysis at species-level while being 6.5 times faster
than similar profilers. At strain-level, protal builds on top of a custom alignment
algorithm and leverages this in a reference-guided multiple sequence alignment
algorithm, achieving speed-ups of up to 55-fold.
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to a linear model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.18 Max Cluster Error (MCE) on the y-axis per strain and stratified by
species. MCE is computed as explained in section 3.2.2 and quanti-
fies how well all samples with a certain strain cluster together in the
phylogenetic tree with respect to all other samples. The color encodes
the number of strains with a positive MCE. . . . . . . . . . . . . . . 73

3.19 A, Error rate and alignment length of MSAs per species. Error rate is
determined as number of multi-allelic positions per group of sequences
representing the same strain considering positions with at minimum
2 informative bases (A,C,G,T) and alignment length is the number of
bases in the alignment with at least 2 informative bases (see Section
3.2.2 for details). Each data point is a single strain. B, summary over
alignment length, error rate and error count. C, error rate in context
of monophyly per strain. There is no significant correlation. . . . . . 74
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3.20 Distance between the phylogenetic trees of StrainPhlAn 4 and ran-
domly generated trees to the gold standard tree constructed with
Roary for each species (n=42, four species not detected by Meta-
PhlAn 4+StrainPhlAn 4 due to lack of coverage in their database,
see Section 3.2.5). Significance (***: p ≤0.001) was calculated with
a paired t-test, with species between protal and StrainPhlAn 4 as
pairs. The utilized metrics are normalized Robinson-Fould distance
(RFnorm), normalized weighted Robinson-Fould (wRFnorm), Steele
and Penny distance (SP), weighted Steele and Penny distance (wSP),
and Kuhnert-Felstenstein distance (KF) (see Chapter 3.2.2 for details). 75

4.1 Given a query and a k-mer shape (here: ‘X_XX_X’) a hit-pattern is
defined as a sequence of successful (1) or unsuccessful (0) k-mer look-
ups with respect to a reference. Position 5 (starting position being
0) in the query is considered mutated with respect to the reference
(C→G) so all k-mers overlapping and with an ’X’ at this position are
unsuccessful lookups. A k-mer overlaps all positions where the k-mer
shape has an ‘X’. Gap positions denoted as ‘_’ are ignored. . . . . . 80

4.2 The workflow for building a pattern database with a given k-mer shape
and pattern length (here: X_XX_X and 8). . . . . . . . . . . . . . . . 82

4.3 The memory layout of varkit’s hash map requires 64-bits per cell. The
offset key (highlighted in orange in k-mer example) is a part of the key
that is implicitly stored in the position such that all k-mers starting
with the same prefix with predefined length lay in one contiguous
block. Here, the keys in Cells 1-3 all start with the prefix “Offset key
1” and the keys in Cells 4-6 start with “Offset key 2”. For each k-mer
(offset key + internal key) varkit stores the taxonomic id (taxid), gene
id (geneid) and gene position (genepos). . . . . . . . . . . . . . . . . 85

4.4 Space savings of varkit’s hash map with 64 bits per cell + offset in
extra data structure compared to a hash table with 96 bits without
offset as baseline. With offset 32, the effective cell size is the same
between both data structures. The labels denote the GB size at the
break-even point for each offset, i.e. what the size of the map is when
it is equally space efficient as the implementation without offset. . . 86
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4.5 Basic workflow of varkit’s classification and SNP detection algorithm.
A, extract all k-mers from read based on the k-mer shape. Look up
each k-mer in pre-built database, which contains k-mers from reference
sequences. If the database has an exact matching hit, report taxid,
geneid, and genepos, otherwise report a miss. B, hits are counted in
the taxonomic (sub)tree and increment the count for that node by
one. C, to classify the read, all hits are counted in the tree. The tree
is then traversed from top to bottom (bottom is species-level) and the
path is determined by the subtree with the higher total counts. D,
hits and misses from the k-mer database lookup forms hit-pattern.
If the classification result is on species-level, sub-patterns are looked
up in a separate database to receive SNP positions between read and
reference. Varkit reports the taxonomic classification as well as SNP
positions for each read. . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6 In 9623 iterations, each iteration tests the fitness of a new k-
mer shape and then moves to the next (see Section 4.2.3).
Fitness is defined as mean SNP sensitivity for ANIs between
95% and 99% (y-axis). The red dots are the three best per-
forming shapes based on their fitness. From left to right these are
’XXXX_XX_X_XXX_X__XXXXX__X_XXX_X_XX_XXXX’,
’XXXX_XX_XXXX__XX_X_X_X_XX__XXXX_XX_XXXX’,
and ’XXXX_XX_X_XXX_XX_X_X_X_XX_XXX_X_XX_XXXX’.
The blue dots mark the lowest scoring k-
mer shapes and from left to right these are
’XXXXXXXX_X_X_X_X_X_X_X_X_X_X_X_XXXXXXXX’,
’XXXXXXXXX______XXXXXXXXX______XXXXXXXXX’,
and ’XXXX_XXXXX_X_X_X_X_X_X_X_X_X_XXXXX_XXXX’. 90

4.7 In 138 iterations, each iteration tests the fitness of a new k-mer
shape and then moves to the next (see Section 4.2.3). Fit-
ness is defined as mean SNP sensitivity for ANIs between 95%
and 99% (y-axis). The red dots are the three best perform-
ing shapes based on their fitness. From left to right these are
‘XXXXX__XX_XXXX_X_XXXX_XX__XXXXX’ (mean ANI
of 0.4875677), ‘X_XXXXX_XXX__XXXXX__XXX_XXXXX_X’
(mean ANI of 0.4904544), and ‘XXXX_XXX_XX_XX_X_XX_XX_XXX_XXXX’
(mean ANI of 0.4894113). The blue dots mark the low-
est scoring k-mer shapes and from left to right these are
‘XXX____XXXXXXXXXXXXXXXXX____XXX’ (mean ANI
of 0.4298529),‘XXXXX_XXXXX___XXX___XXXXX_XXXXX’
(mean ANI of 0.4278185), and ‘XXXX_X_X_X_XXXXXXXXX_X_X_X_XXXX’
(mean ANI of 0.4213629). . . . . . . . . . . . . . . . . . . . . . . . . 91
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4.8 Depiction of how three properties of the k-mer shape affect SNP calling
sensitivity at ANI 95%. Panels show on the x-axis: number of gaps
with distance three (gap_dists_of_3), number of unique pairwise gap
distances in a shape (unique_gap_distances), and the sum of both
values (sum). The y-axis shows the mean SNP sensitivity. Data is
from shape finding with k=27 and s=12 (Fig. 4.6). . . . . . . . . . . 92

4.9 Comparison for training the pat-
tern database with two different shapes
‘XXXX_XX_XXX_X__X_XXXXX_X__X_XXX_XX_XXXX’
(k=27, s=12) and ‘X_XXXXX_XXX__XXXXX__XXX_XXXXX_X’
(k=23, s=8) for two different pattern sizes 16 and 32. The left plot
shows SNP-calling sensitivity for ANIs 90%, 95% and 99% with
respect to the training depth ‘limit’ shown on the x-axis. The right
plot shows how many patterns (y-axis) were added to the database
with increasing training depth (x-axis). . . . . . . . . . . . . . . . . . 93

4.10 SNP calling sensitivity at different ANI rates to reference, stratified by
genomes. Random species-representative marker genes were selected
and SNPs were introduced to match certain ANI values (94, 95, 96, 97,
98, 99% and vertical coverages 1,2,5,10). Reads were then simulated
on the new references. Sensitivity is the number of SNPs detected
divided by all inserted SNPs. GUT_GENOME227824 belongs to the
species s__Collinsella sp900761165. The x-axis denotes the percent-
age of species-level k-mers for this species. see Section 4.2.4 for more
details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.11 Profiling performance across samples, environments, and tools meas-
ured as F1-score, precision, and sensitivity. The boxplots represent
different tools and each data point is a sample. From left to right, the
column panels are F1-Score, precision, and sensitivity and the row
panels stratify between different environments with the top row being
the summary across all environments. . . . . . . . . . . . . . . . . . 95

4.12 A, relative abundance for TPs for different tools coloured by dataset.
Points on the lower end show the sensitivity of the tool to detect
low abundant taxa. B, relative abundance for FNs for different tools,
only showing taxa that are covered by the tool database. Points are
coloured by dataset and higher end points show that a tool failed to
detect higher abundant taxa. . . . . . . . . . . . . . . . . . . . . . . 96
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4.13 A, false positive species in context of their closest TP or FN neighbour
in the phylogenetic tree. FNs are split into detectable (FN+) and
undetectable (FN-) based on whether the tool has this taxon in their
database. B, Abundance prediction benchmark on species-level for all
datasets. Metrics are Bray-Curtis Similarity (BC), 1-L2 error (L2),
Pearson Correlation (PC), 1-L2 error only on TP taxa (L2-TP), and
Pearson Correlation only on TP taxa (PC-TP). . . . . . . . . . . . . 97

4.14 Runtime and memory analysis of varkit with respect to other taxo-
nomic profilers and strain-resolved tools. The benchmark was done
on a single node with no interfering input and output using 16 cores.
The tools were run on 10 samples from CAMI Airways with 2x 5GB
uncompressed paired-end reads (see Section 3.2.7 for more details). . 99

5.1 Protal takes a set of paired-end short reads from shotgun metagenomic
sequencing and outputs per sample taxonomic profiles and strain-
resolved MSAs per species present in multiple samples. Internally,
protal has three distinct steps - alignment, profiling, and strain-level.
In the first step, all reads are aligned against all species-representative
marker genomes within GTDB r214.0. During profiling, these align-
ments are processed and counted for each marker gene of each species.
A random forest evaluates evidence for each species to predict pres-
ence or absence. To achieve strain-level resolution, alignments from
the same species across multiple samples are used to yield a reference-
guided alignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Concept of the flex-map. The flex-map serves as data structure for
key-value pairs, with keys being core-mers and values being all posi-
tions in the reference for a core-mer and additional flex-mer informa-
tion. For each core-mer stored in KEYS, there is a bucket in VALUES
storing the location of all its occurrences in the reference. Those loc-
ations are stored in the ‘Body’ section of the bucket. Additionally,
buckets of size > 1 have a ‘Header’ section storing the flex-mer for
each core-mer. The flex-mer is the 2x8 flanking region of each core-
mer. Given a k-mer with core-mer and flex-mer from the query, exact
matching of the core-mer is used to retrieve the bucket with all its
locations in the reference and the flex-mer is used to further filter the
location based on flanking region similarity. . . . . . . . . . . . . . . 104

5.3 Detailed description of protal’s alignment workflow. See Section 5.2.2
for more details. Information about unique k-mers is not mentioned
here, as they do not influence the alignment process. . . . . . . . . . 107
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5.4 Overview over protal’s results section and the presented analyses. The
results section broadly divides into tool internal benchmarks, such as
evaluating the correctness of alignments, taxonomic profiling bench-
marks, and strain-level analysis benchmarks. . . . . . . . . . . . . . . 113

5.5 A, benchmark on 1,889,866,936 reads simulated from all bacterial
marker genomes in GTDB r214 (n=80,789), comparing different align-
ers. TP and FP are evaluated based on whether a read was mapped
to its correct species cluster representative. All reads that are neither
TPs nor FPs are FNs. TP-rate and FP-rate are calculated relative to
the total number of reads at all MAPQ filtering thresholds. B, runtime
in minutes and memory in GB for all aligners on a dataset of 2x7.9GB
uncompressed paired-end reads. Output is uncompressed for all tools.
C, protal’s internal time benchmarks on the dataset in B. Alignment
takes by far the longest out of all stages of the alignment process.
Stages refer to the following sections in Fig. 5.3: Seeding (1,2,3,4),
Sorting Seeds (5), Pairing (6), Sorting Anchors (8), Anchor recovery
(9), Alignment handler (10), Joining alignment pairs and sorting (11),
Output handler (End). D, seed- and anchor-size frequencies in protal.
Smaller seed sizes and anchor sizes with higher frequency result in a
better runtime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.6 Variable importance reported from constructing the random forest.
MeanDecreaseGini quantifies the importance of a variable within the
random forest. Variable explanations can be found in Table 5.1. . . . 117

5.7 The number of unique k-mers (short uniques and long uniques)
within the protal database stratified by species. A, unique k-mers
across all species. B, unique k-mers only for species of the genera
‘g__Bacteroides’, ‘g__Collinsella’, ‘g__Neisseria’. The distribu-
tion of unique k-mers is not uniform across taxa, and the majority
of Collinsella species have only few (mean±sd = 1812±4419 ) unique
k-mers. Out of 502 Collinsella species in GTDB r214, 6 have less than
200 unique k-mers in protal and 86 have less than 200. This indicates
a high similarity to other species or high diversity within the species. 117

5.8 Profiling performance across samples, environments, and tools. Per-
formance is measured with the metrics F1-score, precision, and sens-
itivity (row panels). The boxplots represent different tools and each
data point is a sample. The column panels stratify datasets. ‘200R’ is
the dataset MSSS200R. A, benchmarks on species-level adjusted. B,
benchmarks on genus-level. . . . . . . . . . . . . . . . . . . . . . . . 118
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5.9 A, relative abundance for TP and FN+ (Taxa covered by the re-
spective tool databases) for different tools coloured by tool. Hori-
zontal panels stratify datasets (UR=Urogenital, GI=Gastrointestinal,
MA=Marine, MO=Mouse, OR=Oral, SK=Skin, AI=Airways,
RA=MSSS200R). Points on the lower end show the sensitivity of the
tool to detect low abundant taxa. B, Richness with respect to F1-
score, precision, and sensitivity. Each dot represents one sample in
the Mouse dataset and all statistics are after adjustment on species
level. Richness on the x-axis is calculated as TP+FN and the y-axis
shows the value for the respective statistic in each panel. . . . . . . . 120

5.10 A, false positive species in context of their closest TP or FN neighbor
in the phylogenetic tree. FNs are split into detectable (FN+) and
undetectable (FN-) based on whether the tool has this taxon in its
database. B, Abundance prediction benchmark on species-level for all
datasets. Metrics are Bray-Curtis Similarity (BC), 1-L2 error (L2),
Pearson Correlation (PC), 1-L2 error only on TP taxa (L2-TP), and
Pearson Correlation only on TP taxa (PC-TP). . . . . . . . . . . . . 121

5.11 A, Per species sensitivity, measured by how many samples and strains
are present in the tree. B, protal per sample true vertical coverage
stratified by species and colored by presence (blue) or absence (red).
C, per species percentage of detected samples (y-axis) and mean true
vertical coverage (x-axis). . . . . . . . . . . . . . . . . . . . . . . . . 123

5.12 Per strain monophyly score of protal and StrainPhlAn 4 stratified
by species. Monophyly score measures how pure clusters of samples
carrying the same strain in a tree are (see Section 3.2.2 for details). A,
considering all tips. B, trees are subset to tips shared between protal
and StrainPhlAn 4 per species. Species are ordered by ascending mean
monophyly score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.13 Protal’s read alignments for all marker genomes under
s__Clostridium_Q fessum (A) and s__Bacteroides ovatus (B)
against the database containing all representative marker genomes.
Alignments are classified correct or incorrect based on whether they
align to their respective species cluster representative. Alignments
with a MAPQ value lower than 4 are filtered (protal default).
C, Proportions of read alignments of all marker genomes under
s__Bacteroides ovatus with respect to the species they aligned best
to. This figure both quantifies how many reads are retained after
filtering, and how many reads align to other species, potentially
leading to FPs species detection and chimeric signal in MSAs (in this
case for example for s__Bacteroides xylanisolvens). . . . . . . . . . 125
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5.14 Monophyly analysis with respect to closest neighboring strain. Each
data-point is the mean monophyly of a sliding window of 10 samples
per tool (y-axis) with samples sorted by closest pairwise similarity to
neighboring strain (x-axis). Values on the x-axis are rank-transformed
and label-placement is according to the closest matching point in the
data. Mind that samples from the same strain are simulated with
sequencing errors, but otherwise genetically identical. A, for each
tree, all samples are included. B, for all trees only samples shared by
both protal and StrainPhlAn 4 are considered. The fitted line is a
loess regression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.15 Max Cluster Error (MCE) on the y-axis per strain and stratified by
species. MCE is computed as explained in Section 3.2.2 and quanti-
fies how well all samples with a certain strain cluster together in the
phylogenetic tree with respect to all other samples. The color encodes
the number of strains with a positive MCE. Negative MCEs (good
clusters) are discarded. . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.16 A, Error rate and alignment length for each sample for protal’s MSAs
per species. B, alignment length, error rate, and total errors within
MSAs of both protal and StrainPhlAn 4 of strains across all species.
C, monophyly of protal’s trees per strain in context of MSA error
rate. Correlation computed with pearson correlation. See Table A.2
for species abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.17 A, distance between the trees of protal, StrainPhlAn 4, and randomly
generated trees to the gold standard tree. All trees are subset to
samples shared between protal and StrainPhlAn 4 and only trees for
species that are predicted by both tools are considered (n=42). B,
same as A, but protal and StrainPhlAn 4 trees are not subsets to
shared samples. Significance was calculated with a paired t-test (*:
p ≤ 0.05, ***: p ≤ 0.001, n=46 for protal, n=42 for StrainPhlAn
4), with species between protal and StrainPhlAn 4 as pairs. For B,
species that are not shared were removed from the test. The util-
ized metrics are normalized Robinson-Fould distance (RFnorm), nor-
malized weighted Robinson-Fould (wRFnorm), Steele and Penny dis-
tance (SP), weighted Steele and Penny distance (wSP), and Kuhnert-
Felstenstein distance (KF) (see Chapter 3.2.2 for details). . . . . . . 130

5.18 Runtime and memory analysis of protal with respect to varkit, other
taxonomic profilers, and strain-resolved tools. The benchmark was
done on a single node with no interfering input and output using 16
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A.1 Each point is a FP prediction in Kraken2+bracken, plotted with re-
spect to the phylogenetically closest TP, FN- or FN+ in the same
sample (horizontal panels). FN+ are false negatives that are con-
tained in the taxonomic database of the tool. FN- are absent from
the tool database. The x-axis shows the tree distance to the closest
TP and the y-axis shows the true abundance of the TP, FN+, and
FN-. TP, FP, and FN values are after re-evaluation. Vertical panels
stratify datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

A.2 Excerpt of phylogenetic tree as provided by GTDB r207, subset to TP,
FP, and FN species as predicted by mOTUs3 GTDB on the dataset 3
of the CAMI Marine dataset. Red color indicates FPs, yellow indicates
FN, and green indicates TPs. . . . . . . . . . . . . . . . . . . . . . . 234

A.3 Density plots showing the phylogenetic distances between undetect-
able false negative (FN) species—only those absent from the tool’s
database—and their closest false positive (FP) neighbours within the
same CAMI sample (n = 107). Each panel represents a different pro-
filing tool. The red vertical line marks the 0.04 cophenetic distance
threshold used throughout this thesis to adjust binary classification
metrics (F1 score, precision, sensitivity), accounting for missing taxa
in tool databases. This threshold was selected to balance tolerance for
taxonomic mismatches with avoiding overestimation of performance. 234

A.4 Species in the MSSS200C Dataset on the x-axis and their mean vertical
coverage with standard deviation across all 200 samples on the y-axis.
Each species is represented in each sample with exactly one strain. . 235

A.5 Each sample from the CAMI datasets (Human, Mouse, Marine) on
the x-axis with all relative abundances in % displayed in a boxplot on
the left y-axis. The red dots show species richness on the right y-axis. 235

A.6 In 138 iterations, each iteration tests the fitness of a new k-
mer shape and then moves to the next (See 4.2.3). Fitness
is defined as mean SNP sensitivity for ANIs between 95%
and 99% (y-axis). The red dots are the three best perform-
ing shapes based on their fitness. From left to right these are
‘X_XXXXX_XXX__XXXXX__XXX_XXXXX_X’ (mean ANI
of 0.7652134), ‘XXXX_XX_XXXX__XXX__XXXX_XX_XXXX’
(mean ANI of 0.7619734), and ‘XXXX_XXX_XX_XX_X_XX_XX_XXX_XXXX’
(mean ANI of 0.7685434). The blue dots mark the low-
est scoring k-mer shapes and from left to right these are
‘XXX____XXXXXXXXXXXXXXXXX____XXX’ (mean ANI
of 0.6922234),‘XXXXX__XX__XXXXXXXXX__XX__XXXXX’
(mean ANI of 0.6972566), and ‘XXXX_X_X_X_XXXXXXXXX_X_X_X_XXXX’
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A.7 Varkit species prediction profile for sample Oral 13 in the context of
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Chapter 1

Introduction

1.1 Problem statement

1.1.1 The complexity of metagenomics and taxonomic profiling

The vast amounts of produced metagenomic sequencing data is responsible for major
insights in how bacteria interact with each other or their environment [204], how they
associate with health and disease in humans[2], and how they colonize the human host
[98]. Reference-based taxonomic profiling is an integral method for reconstructing
taxonomic profiles from complex metagenomes. Further, the shift towards de novo
methods for assembling draft genomes led to an increase in diversity represented
in taxonomic databases which massively benefits reference-based methods [26, 232]
However, tools vary in performance and do not always seamlessly integrate with
standard taxonomies and different taxonomies and databases can have great impact
on profiling results [26]. While independent benchmarks of taxonomic profiling exist,
they do not include the latest tools and further do not distinguish between the
effect of tool performance and uncertainty introduced by the utilized taxonomy [242,
176, 177]. While metagenomic profilers often use the NCBI taxonomy, GTDB has
established itself as an alternative to NCBI in the recent years, but is often still poorly
supported by the most used tools, and hence hampers integration to other tools and
research using GTDB. Further, the currently most accurate tools are significantly
slower than the fastest[307, 26, 232], and both have only improved little regarding
speed in the past few years [277, 26]. On strain-level, this is even more pronounced
as the fastest tools that are able to quantify within-species diversity do not scale
linearly with the number of samples.

1.2 Thesis overview

This section provides a brief overview of the thesis. As a means to to cope with the
vast amount of data in metagenomics, the aim of this thesis was to improve the speed
and accuracy of taxonomic profilers and strain-resolved tools. This was achieved by
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implementing both existing and novel concepts around k-mer and alignment-based
methods, as well as in-depth benchmarking of existing tools. Chapter 2 introduces
the importance of microbiology research, and the shift towards metagenomics caused
by the advent of sequencing technologies. Core concepts around bacterial structure,
genetic blueprint, genetic diversity, as well as bacterial taxonomy, phylogeny and the
notion of species and strains are explained to provide the foundation for metagen-
omics. This is followed by a short overview of sequencing technologies and a brief
summary of bioinformatics tool and their concepts, focusing on metagenomics. Fur-
ther, the difference between algorithmic improvements and implementation details
is demonstrated with the example of alignment algorithms.

Chapter 3 introduces benchpro, a software for benchmarking species-level and
strain-level tools on simulated datasets. In this chapter, first details about the work-
flow and benchmarking metrics are introduced, followed by a comparison between
different taxonomic profilers on species-level on various datasets and benchmarking
of one strain-resolved tool.

Chapter 4 presents varkit, a k-mer based taxonomic profiler with a novel concept
to detect SNPs by using k-mer match patterns between query and database. First,
the methodology of k-mer based SNP calling is introduced. This is followed by results
about SNP calling sensitivity and a benchmark on species-level using benchpro.

Chapter 5 introduces protal, an alignment-based taxonomic profiler leveraging
both unique and inexact matching k-mers, an integrated alignment approach using
a novel data-structure, and a reference-guided approach to MSAs. This chapter first
introduces the workflow and then explains building the index from GTDB sequences,
the alignment algorithm, taxonomic profiling using random forests and reference-
guided MSAs to proceed to strain-level.

2



Chapter 2

Background

2.1 Microbial communities

Microbes prosper in a multitude of environments from parts of the human body such
as skin, gut or the oral cavity, over soil to even the most hostile places on earth
such as black smokers with temperatures above 250°C [17]. These microbes do not
exist in isolation; rather, they form complex communities known as microbiota. The
microbiota in the context of its environment including both biotic and abiotic factors
is called the microbiome.
Microorganisms, or microbes, are microscopically small single-celled organisms liv-

ing in solitude or as part of larger colonies of cells. While microbes encompass all
domains of life and their definition includes all archaea, bacteria, and some euka-
ryotes, the focus of this thesis will be solely on bacteria. Eukaryotic microbes are
generally less abundant in most environments, making them more challenging to
study and leading to their under-representation in genome databases. While archaea
can occur at higher abundances in specific environments, their representation in data-
bases still lags behind bacteria due to challenges such as their inherent difficulty in
in-vitro cultivation and the resulting lower quality and quantity of reference genomes.
Additionally, archaea present unique computational challenges, including taxonomic
complexity, distinct genomic features, and limited benchmarking resources, which
complicate their integration into profiling tools. Since the computational tools de-
veloped and presented in this thesis depend on genomic reference sequences for mi-
crobiota analysis, the focus was placed on bacteria, which benefit from both a higher
quantity and better quality of reference sequences. Although GTDB, the primary
resource of genomes utilised in this thesis, includes archaeal references and genome
markers, extending the tools to also profile archaea was beyond the scope of this
thesis.

Microbes were first described by Antonie van Leeuwenhoek in 1674, as what
he referred to as ‘little animalcules’ [135]. Driven by curiosity, he crafted the first
single-lensed microscope, which allowed him to unravel and describe the fascinating
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world of microscopic organisms. To this day, van Leeuwenhoek is referred to as the
father of microbiology and microscopy and his pioneering work set the foundation for
modern microbiology. Microbial research initially focused on pathogenic microbes
causing sickness affecting large parts of the population which lead to prominent
bacterial pathogens such as Mycobacterium tuberculosis or Bacillus anthracis,
causing the deadly diseases tuberculosis and anthrax, already being discovered and
described in the 19th century. This also explains the importance of the discovery of
penicillin in 1928, which marked the beginning of the golden age of antibiotics and
finally provided a means to combat bacterial infections that had previously claimed
thousands of lives [73]. Yet, until the second half of the 20th century, research on
microbes was limited to observational methods, neglecting the underlying genetic
components and their intricate evolutionary relationships. This changed in the
second half of the 20th century with the invention of DNA-DNA-hybridization
and Sanger sequencing [236, 92], facilitating analysis of the underlying blueprint
of microbes, ultimately defining traits that were previously only observable. Like
all living organisms, microbes have a genetic blueprint, their DNA, which encodes
genes that define all of their observable traits and is inherited from generation to
generation.

Before the advent of DNA-based techniques like Sanger sequencing, microbiome
research relied heavily on culturing-based approaches, where microbes were grown in
the laboratory on selective media. Scientists would isolate and characterise organisms
based on their morphology, metabolic activities, and staining properties. However,
these methods were inherently limited, as the vast majority of microbial species are
not easily cultivable under standard laboratory conditions. As a result, early studies
could only capture a small, biased fraction of the true microbial diversity present in
a given environment [7].

Although Sanger sequencing was a groundbreaking innovation, its high cost and
low throughput initially limited its application in large-scale studies of microbial
communities, such as those found in environmental or host-associated microbiota.
Over time, advances in sequencing technology increased both throughput and auto-
mation. A key innovation was the replacement of radioactive-labelled nucleotides
with fluorescent-labelled dideoxynucleotides, which enabled safer handling and the
simultaneous detection of all four DNA bases in a single reaction [218] allowing for
automating sequencing. In 1987, Applied Biosystems introduced the first automated
DNA sequencer, which used gel electrophoresis coupled with fluorescent dyes to de-
tect and differentiate the four DNA bases. The subsequent replacement of gel-based
systems with capillary array electrophoresis further improved the speed, resolution,
and scalability of Sanger sequencing, setting the stage for the next generation se-
quencing (NGS) machines.

Researchers like Wilson & Blitchington [302], Suau et al. [270], and Bonnet &
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Collins [30] were pioneers in utilizing these methods to explore the composition of
complex microbial communities, with a particular focus on the human gut. These
studies revealed that traditional culture-based methods captured only a small
fraction of microbial diversity, highlighting the presence of a vast ‘unculturable
majority’. By sequencing cloned 16S rRNA genes from PCR-amplified community
DNA, these researchers were among the first to use molecular techniques to identify
novel microbial taxa and to begin estimating the immense richness of microbiotas
in situ.

The introduction of the 454/Roche pyrosequencing platform in 2005—the first
widely adopted next-generation sequencing (NGS) technology—marked a major
leap over traditional Sanger sequencing by enabling larger-scale, parallel sequen-
cing without the need for electrophoresis [168, 231]. Compared to Sanger methods,
454 offered much higher throughput and longer read lengths, making it particularly
attractive for early microbial diversity studies. However, despite these advances,
454 sequencing remained limited by relatively high costs, low scalability, and sus-
ceptibility to homopolymer errors, which impaired sequence accuracy in genomes
rich in repetitive regions. Consequently, microbiome studies using 454 were typic-
ally restricted to sequencing marker genes such as the 16S rRNA gene rather than
full metagenomes (see 2.4.3 for more details on amplicon sequencing). Briefly, while
amplicon sequencing enables taxonomic stratification typically up to the genus level,
whole-genome sequencing is required to achieve species- or strain-level resolution or
to analyse functional potential (see 2.3 for details on bacterial taxonomy).

The subsequent development of Illumina sequencing further transformed the field
by offering vastly higher throughput, lower cost, and greater sequencing accuracy.
Although the initial read lengths were shorter than those of 454, the sheer volume of
data combined with improved base-calling precision enabled much deeper profiling of
microbial communities and helped rendering whole-metagenome shotgun sequencing
feasible at scale. This technological shift revolutionized microbiology research by
allowing comprehensive analyses of microbial composition, function, and ecology
across diverse environments and hosts.

It is important to note that whole-genome sequencing of microbiomes only
gained traction from around 2010 [174]; prior to that, sequencing efforts typically
focused on the more accessible and cost-effective to sequence 16S rRNA gene, a
phylogenetic marker widely used for taxonomic identification (see 2.4.3 for details
on amplicon sequencing). Whole-genome sequencing of microbiomes only became a
routine practice around 2015. This was primarily due to earlier limitations in cost
and sequencing technology, as well as a lack of computing power and adequate and
robust tools to process the data [124].

As for the human gut microbiome, an awareness and understanding of its role
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Figure 2.1: Schematic of different human microbiomes with common representatives.
Image taken from Choudhry et al. under the license CC BY 4.0 [45]

in human health is still emerging. Complex bacterial communities harbour almost
every part within and on our bodies and play important roles both in maintaining
physiological homeostasis and in influencing disease processes (Fig. 2.1). These mi-
crobiomes contribute to digestion, modulate the immune system, and protect against
pathogenic organisms, emphasizing their integral role in human health and disease.

For instance, in the gut, microbiota contribute to digestion by fermenting com-
plex carbohydrates that are otherwise indigestible by human enzymes, producing
short-chain fatty acids (SCFAs) like butyrate, acetate, and propionate, which serve
as important energy sources and have anti-inflammatory effects [74]. Specific taxa
such as the genus Bacteroides and various members of the phylum Firmicutes are
key players in this process [158]. Moreover, the microbiome modulates the immune
system by interacting with intestinal epithelial cells and immune cells; for example,
segmented filamentous bacteria have been shown to promote the maturation of Th17
cells, a critical subset of T helper cells involved in mucosal immunity [109]. Addition-
ally, commensal microbes competitively inhibit colonization by pathogenic organisms
by occupying niches and producing antimicrobial compounds, a phenomenon known
as colonization resistance [38].

Large-scale sequencing of bacterial communities as part of international efforts
like the Human Microbiome Project (HMP) or MetaHIT helped to shed light on
a previously understudied field. By gathering and analysing human fecal (or other
bodysites) microbial sequencing data of thousands of individuals [63, 106] researchers
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have gained insights on the human gut microbiome in health and disease.

The Human Microbiome Project (HMP) made foundational contributions to our
current understanding of microbiotas. Initiated in 2007, the HMP systematically
mapped the microbial diversity across different human body sites, including the gut,
skin, oral cavity, and urogenital tract [280]. By employing standardized protocols
for sampling, sequencing, and analysis, the project created a comprehensive refer-
ence framework for what constitutes a "normal" microbiota in healthy individuals.
This effort revealed the vast inter-individual variability in microbial composition,
established the concept of body site-specific microbial communities, and emphasized
the functional redundancy among different microbial taxa. Furthermore, the HMP
provided critical insights into the early links between microbiota alterations and hu-
man diseases, thereby catalysing a major paradigm shift in biomedical research that
recognized the microbiome as a key determinant of human health. Building upon
the foundational work of the HMP, the MetaHIT project extended the scope of mi-
crobiome research by focusing on the functional potential and genetic richness of the
gut microbiota.

The MetaHIT (Metagenomics of the Human Intestinal Tract) project, launched
in 2008 in Europe, significantly advanced our understanding of the human gut mi-
crobiota through the application of whole-genome shotgun sequencing [174]. By
generating one of the first comprehensive gene catalogues of the human gut microbi-
ome, MetaHIT demonstrated that the gut microbiota harbours an immense genetic
diversity far exceeding that of the human host. The project introduced critical con-
cepts such as microbial gene richness and the existence of a core set of microbial
genes shared across individuals. Moreover, MetaHIT studies revealed major associ-
ations between microbial gene content and human health, particularly highlighting
the reduced gene richness observed in individuals with obesity, type 2 diabetes, and
inflammatory bowel diseases. By shifting the focus from merely cataloguing species
to understanding microbial functional potential, MetaHIT laid the groundwork for
functional microbiome research and established a new paradigm for studying host-
microbe interactions at the genomic level. The MetaHIT consortium introduced key
concepts such as the existence of a "core microbiota," referring to microbial species
(and features) commonly shared across individuals, and "microbial gene richness",
which describes the diversity of microbial genes within the gut microbiome [174, 11].

Both the HMP and MetaHIT made their datasets openly available to the scientific
community, providing invaluable resources that continue to support microbiome re-
search, method development, and comparative studies worldwide.

A key insight into the gut microbiome that emerged was that each hosts’ micro-
biome is unique in regards to strain composition, diversity and abundance. Sheer
numbers can help us grasp the complexity: the human gut microbiome contains
1013 − 1014 microbial cells, which is the same order of magnitude as cells that exist
in the entire body with 3 × 1013 [247], and distributes across an estimated 250-400
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species of bacteria in the human gut[157].
The increased research focus has led to the discovery of links between the gut

microbiome and host diseases, such as obesity [15, 156, 107, 294], IBD (Inflammatory
Bowel Disease) [165, 139, 121, 41, 1, 163], Parkinson’s disease [230, 18], cardiovascu-
lar diseases [60, 188, 90, 75], type 2 diabetes [252], cancer [83, 47, 170], depression
[119], and rheumatoid arthritis [320].

Many of these diseases are mediated by the immune system and characterised by a
state of chronic low-grade inflammation, which is believed to be influenced by gut mi-
crobiome composition and function [292, 3]. Research into the microbiomes of meta-
bolically healthy versus unhealthy individuals has revealed characteristic differences,
including reduced microbial diversity, lower abundance of SCFA-producing bacteria
(such as Faecalibacterium and Roseburia), and increased prevalence of pathobionts
in unhealthy states.

Furthermore, the gut microbiome plays a critical role in the maturation of
the immune system, shaping immune responses through mechanisms such as the
induction of regulatory T cells by Clostridia species, the promotion of IgA pro-
duction for mucosal immunity, and the development of gut-associated lymph-
oid tissue (GALT) [324]. These interactions help establish immune tolerance to
commensal microbes while ensuring robust responses to pathogens [87]. For ex-
ample, Bacteroides fragilis facilitates immune system training through the produc-
tion of polysaccharide A, which is essential for maintaining immune homeostasis
[mazmanian_immunomodulatory_2005]. Immune homeostasis refers to the
balanced state in which the immune system can effectively defend the host against
infections while avoiding excessive or inappropriate immune responses that could
lead to chronic inflammation or autoimmune diseases.

Microbiome research does not solely focus on diseases—there is a continuous effort
to characterise and define a ‘healthy microbiome’ by analysing the microbiomes of
metabolically healthy individuals [248, 166]. Through this, it has become clear that
the microbiome is shaped not only by pathological conditions in the host but also
by factors such as dietary changes, drug intake, and environmental influences [260].
Although the term "healthy microbiome" is frequently used, including in marketing
contexts, defining it scientifically remains challenging [114]. Efforts to delineate a
healthy microbiome are complicated by factors such as high interpersonal variability,
the influence of geography, diet, age, and genetics, as well as the absence of a single
universal microbial composition that could be considered ‘optimal’ across different
populations [114].

Dysbiosis refers to quantitative and qualitative disease-related changes in the gut
microbiome, including alterations in metabolic activity, microbial diversity, and the
composition of beneficial and pathogenic microbes [27, 56]. The term ‘dysbiosis’
is, however, subject to criticism, as it suggests the existence of a known and defin-
able bacterial composition that causes disease. More accurately, dysbiosis describes
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a disrupted microbiome associated with disease, where the microbial changes are
hypothesized to be at least involved in the disease process.

‘Dysbiosis’ refers to quantitative and qualitative disease-related change patterns
in the gut microbiome, describing changes in metabolic activity, microbial diversity,
and microbial composition related to beneficial and pathogenic microbes [27, 56].
However, the concept of dysbiosis has been criticized, as it implies the existence of
a clearly defined, "healthy" microbial composition whose disruption leads to dis-
ease. In reality, dysbiosis is more accurately understood as a descriptive term for
microbial alterations observed in the context of disease, where the microbiome is
hypothesized to modulate disease severity or contribute to disease processes, rather
than necessarily being the direct cause [194].

In order to understand the impact of the gut microbiome on host health, it is
essential to understand the functional role and key interaction points between the
host and its microbial community.

A dysbiotic microbiome can lead to a loss of regulatory immune effects on the gut
mucosa, associated with inflammatory and immune-mediated diseases such as rheum-
atic arthritis, metabolic syndrome, neurodegenerative disorder and malignancy as
well as increased susceptibility to pathogen invasion or commensal-to-pathogen trans-
itioning [101, 165, 324, 225]. Understanding the already complex host-microbiome
interaction is further confounded by the constant change in gut microbiome compos-
ition.

Both age and diet are among the most influential factors driving shifts in gut mi-
crobiome composition throughout life. During infancy, the gut microbiota is initially
shaped by mode of delivery and early feeding practices (breastfeeding vs. formula
feeding), and gradually diversifies post-weaning [backhed_dynamic_2015]. In
adulthood, dietary patterns such as high fiber or high fat intake significantly mod-
ulate microbial diversity and metabolic output [310]. Aging is associated with a
decrease in microbial diversity and a shift towards a more inflammatory microbial
profile [16], which may contribute to immunosenescence and increased disease sus-
ceptibility in the elderly [51]. Thus, both age-related and diet-induced changes rep-
resent important variables that must be considered when studying host-microbiome
interactions.

Although considered robust to large-scale perturbations, certain events can cause
a dramatic change in the gut microbiome. Hildebrand et al. have shown that an
antibiotic intervention can cause low-abundant species to bloom to monodominance
and result in a persistent shift in the microbiome [97]. In addition to antibiotics,
a wide variety of external factors such as environment, diet, medication, and geo-
graphical region, impact the microbiome and, by extension, influence the human
host. Further, host genetics play a significant role in shaping the gut microbiome by
influencing factors such as immune system function, mucosal barrier properties, and
the production of antimicrobial peptides, thereby affecting which microbial taxa are
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able to colonize and persist [85, 261].

An effort to categorize and simplify the gut microbiome towards better under-
standing and analysis resulted in the concept of enterotypes, distinct generalized
configurations of taxonomic compositions, introduced by Arumugam et al. in 2011
[11]. Three key configurations, mainly based on relative abundances of the gen-
era Bacteroides (Phylum: Bacteroidetes), Prevotella (Phylum: Bacteroidetes) and
Ruminococcus (Phylum: Firmicutes), were reported to capture different states of
composition. This led to the assumption that a limited number of well-balanced
host-microbial symbiotic states exist.

However, subsequent research has challenged and refined the initial three-
enterotype model [100, 67, 287]. Later analyses showed evidence for a fourthentero-
type structure, distinguishing between two subgroups within the Bacteroides-driven
enterotypes — Bacteroides 1 and Bacteroides 2 — alongside Ruminococcaceae
and Prevotella enterotypes. This expanded model captures greater interindividual
variability and suggests that the microbiome configurations are more nuanced than
originally proposed. A recent study further supports this refinement by introducing
the concept of enterosignatures, emphasizing the dynamic and gradual nature
of microbiome community structures rather than strictly discrete clusters [76].
Additionally, recent findings highlight continued efforts to revisit and update the
enterotype framework in light of new large-scale datasets [120].

The heightened focus on microbiome research has been significantly driven by ad-
vancements in sequencing technologies, along with subsequent computational devel-
opments leading to the numerous mentioned discoveries. However, before exploring
the technical and computational aspects of modern microbiology research, it is es-
sential to understand the fundamental structure of bacteria, their genetic blueprint,
and their taxonomic classification.

2.1.1 Microbes, their Structure, and DNA

Bacteria are single-celled microorganisms belonging to the prokaryotic domain. All
bacteria are enclosed by a cell membrane, mostly also by a cell wall, and have a
single loop of DNA at their center, called the chromosome (Fig. 2.2). However,
there are notable exceptions, such as Streptomyces coelicolor, which possesses a linear
chromosome rather than the more common circular bacterial genome [23]. In contrast
to eukaryotes, the chromosome is not enclosed by a nucleus and instead exposed in
the cytoplasm, and prokaryotes also lack membrane-bound organelles. Most bacteria
reproduce asexually through a process called binary fission, wherein the bacterial cell
divides into two equal halves, each of which contains a complete copy of the genetic
material, or DNA. Streptomyces coelicolor, again, poses an exception as it reproduces
through the formation of aerial hyphae—filamentous structures formed by certain
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Figure 2.2: Schematic drawing of a bacterial cell. All bacteria are surrounded by a cell
membrane, delimiting the space into within the cell and the outside. Most bacteria
have an additional cell wall. The inside of the cell is filled with the cytoplasm,
containing different organelles such as the ribosomes. The chromosome, a single
circular piece of DNA, encodes the genetic blueprint. Image is taken from Hiremath
et al. from 2012 [233].

bacteria and fungi—and chains of spores, rather than by binary fission, during its
reproductive phase [72]. DNA, short for deoxyribonucleic acid, is a double helix of
two strands of complementary nucleotide base-pairs. Connected to a backbone of
sugar and phosphate, the four bases Adenine (A), Cytosine (C), Guanine (G), and
Thymine (T) link the two backbones by forming complementary base-pairs (bp) of
A-T and C-G. Hence, reading one strand in reverse order and replacing each base
with its complementary base will yield the other strand. Both strands are directed
with one end being 5’ and the other 3’. The reading direction is from 5’ to 3’.
Additionally to the chromosome, bacteria can have plasmids, smaller rings of DNA,
encoding additional information such as antibiotic resistance genes.

Genes are the DNA’s fundamental unit of information and their activity is reg-
ulated in an orchestrated manner. Coding regions contain genes that encode for a
protein. On reading, DNA transcribes into RNA (ribonucleic acid) which is a single-
stranded counterpart to DNA. RNA, uses ribose instead of deoxyribose and the base
Uracil (U) in place of Thymine (T), pairing with Adenine. RNA exists in vari-
ous forms: messenger RNA (mRNA) serves as an intermediary storage of genomic
information, with some regions being translated into proteins while others function
directly as mRNA. Ribosomal RNA (rRNA), encoded by the 16S, 23S, and 5S rRNA
genes in prokaryotes, is essential for protein synthesis. The process of copying DNA
into a separate strand of RNA is known as transcription, whereas the conversion of
mRNA to proteins is termed translation.
Sufficiently long RNA sequences can form a three-dimensional structure, or tertiary
structure, through bonds between complementary bases located in different regions of
the sequence. Transfer RNA (tRNA) exemplifies this capability, adopting a charac-
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teristic cloverleaf secondary structure and an L-shaped tertiary conformation critical
for its role in protein synthesis, where it delivers specific amino acids to the ribosome
according to the mRNA template. The relationship between the nucleotide sequence
and protein synthesis is governed by the genetic code, in which three consecutive
nucleotides (a codon) specify a single amino acid. Due to the redundancy of this
coding system, multiple codons can encode the same amino acid—a phenomenon
known as degeneracy or redundancy of the genetic code. This degeneracy provides
a buffer against mutations, as some changes in the third nucleotide of a codon may
not alter the encoded amino acid, thereby preserving protein function.

2.2 Genetic variation, Evolution, and Phylogeny

Genetic variation in microbial populations is grouped into (i) single nucleotide poly-
morphisms (SNPs), (ii) structural variants (SVs) such as insertions and deletions
(indels) and (iii) genomic rearrangements or horizontal gene transfer (HGT). In bio-
logical populations, evolution can be loosely defined as change in inherited genetic
material over several generations, linked to natural selection and genetic drift.

On one hand, genetic drift describes the change of genetic features in a popula-
tion by random chance, i.e., the decrease of genetic variety through an event that
reduces the population size. On the other hand, natural selection acts on phenotype
level: advantageous characteristics lead to successful propagation of the correspond-
ing alleles that can then become fixated in the population, provided selection exerts
a stronger force than genetic drift. Detrimental characteristics reduce the fitness of
an organism, decreasing the reproductive success of the associated allele. As a result,
such alleles are likely to decline in prevalence and may eventually disappear from the
population. Contrarily, strong genetic drift can also fixate detrimental alleles in a
population. Note that the usefulness of a characteristic depends on the environment
it occurs in; different factors such as PH, temperature, available resources, as well
as competition within a population making it more or less beneficial in different cir-
cumstances. New functionality can be acquired through de novo emergence of genes,
through mutations and within genome structural variation, and from other organ-
isms through horizontal gene transfer (HGT). The ability to detect these events is a
requirement to explain changes in phenotype as well as to construct a phylogeny.

Single Nucleotide Polymorphisms and Structural Variants SNPs are point
mutations (single base changes) in the nucleotide sequence and can happen spontan-
eously, typically during genome replication or by mutation-inducing agents. Point
mutations can be considered (i) neutral, if it is part of an intergenic region or is
a silent mutation (a mutation that does not change the encoded amino acid), (ii)
detrimental, if it causes a loss of functionality by altering a gene’s sequence or its
regulatory region or (iii) beneficial, if a change or gain in functionality causes a better
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Figure 2.3: This figure shows different structural variants and how to detect them
with paired-end reads. RC refers to read count, RP to read-pair, SR to split-read
and AS to assembly. A describes a deletion event, B an insertion, C an inversion
and D a tandem repeat such as microsatellites. The figure is taken from Tattini et
al. [273].

adaptation to its habitat. For example, increased pathogenicity can be advantageous
for a pathogen if it enhances transmission or survival within a host. In Plasmodium
(the malaria parasite), mutations that increase virulence—such as those promoting
faster replication or evasion of host immunity—can improve the parasite’s fitness
by ensuring higher propagation rates before host death or immune clearance [29].
Similarly, in Staphylococcus aureus, antibiotic resistance mutations are detrimental
in drug-free environments but become highly beneficial under antibiotic pressure,
allowing resistant strains to outcompete susceptible ones [267].

SNPs are frequently utilised in genotyping for the purpose of strain delineation.
Further, the density of SNPs in a genome can be used to calculate the average
nucleotide identity (ANI), a measure for sequence similarity. An ANI >95% between
two genomes is the accepted standard, that indicates both genomes belong to the
same species [86]. However, this threshold can vary for different species [50] (see
2.3.2 for more detail on species definition and 2.3 for more information on bacterial
taxonomy). Contrary to SNPs, structural variants (SV) describe mutations affecting
longer stretches of DNA, typically larger than 50 bp (base pairs) , and can emerge
due to cellular mechanisms such as DNA recombination, DNA repair and DNA
replication. Figure 2.3 describes four types of structural variants and how paired-

13



Novel taxonomic profiling and ...

end reads aligned to a reference can be used for their detection. Insertions (Fig.
2.3B) and deletions (Fig. 2.3A), commonly referred to as indels, describe the gain
or loss of one or several nucleotides at a certain position. Frameshift mutations are
indels that cause the disruption of a protein by shifting the reading frame. Other
structural variants are genomic recombinations that can lead to inversion (Fig. 2.3C),
amplification (Fig. 2.3D) and translocation of DNA segments and typically arise as a
result of double-strand breaks involving at least two different locations with following
(erroneous) re-ligation as part of DNA repair mechanisms. Structural variants are
evolutionary drivers as they increase the genetic variance through a) disrupted genes,
b) new genes [185] and c) fused genes with chimeric gene products [189] and are able
to affect gene expression by changing a gene’s position on the chromosome [223].

Structural variants such as microsatellites are used as molecular markers to infer
phylogeny or for genotyping [303, 5]. Microsatellites belong to the group of (short)
tandem repeats and describe stretches of repetitive DNA motifs. These motifs are
1-6 bp in length and repeat 2-15 times. Microsatellites are highly unstable in copy
number and are a result of replication slippage during genome replication. Replica-
tion slippage involves the DNA polymerase to pause and dissociate from the strand.
Before DNA replication is resumed, the newly synthesized strand separates from the
template and hybridizes with a different repeat, causing a loop either in the template
or the new strand and causes microsatellite expansion or shrinkage in the new strand
[289]. Their evolutionary relevance is based on a mutation rate (10−3 − 10−6 per
generation) much higher than for point mutations that is around 10−10 per base per
generation [141].

Horizontal Gene Transfer and Homologous Recombination While genetic
information is usually passed on vertically from generation to generation, hori-
zontal gene transfer (HGT) and homologous recombination (HR) describe intra-
generational exchange of genetic material. Both mechanisms are important factors
contributing to genetic variation and thus evolution. The three mechanisms behind
HGT are transformation, the uptake of extracellular DNA from the environment,
transduction, uptake of DNA through viruses, and conjugation, the transfer of DNA
between two cells via a cell-cell connection. For the genetic information to persist,
the DNA must be either incorporated into the genome via homologous recombination
or illegitimate recombination, or be able to proliferate on a separate plasmid [275].
Consequentially, most HGT events are unsuccessful [275].

Homologous recombination is the exchange of closely related DNA sequences and
is a normal part of DNA repair. As genetic information acquired by HGT is sus-
ceptible to stochastic loss, homologous recombination can increase the rate at which
genetic information is shared within a species [140]. While the acquired information
is often neutral or detrimental, acquiring mobile genetic elements (MGEs) through
HGT can also have a positive effect; e.g. by carrying antibiotic resistance genes
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(ARGs) which grants a selective advantage [271].
Phylogeny is a way to describe the evolutionary history among organisms. In a

phylogenetic tree, the leaves represent extant organisms, while the lowest common
ancestor (LCA) is the point where their root-to-leaf paths, or lineages, converge. The
root node of a phylogenetic tree represents the universal common ancestor of all or-
ganisms in the tree. Algorithms that reconstruct phylogenetic trees are almost always
assuming strict vertical inheritance of genetic information, which is the transmission
of genetic material between generations. However, this assumption does often not
apply to bacteria, as a significant amount of genetic material is exchanged between
individuals of the same generation (see chapter 2.2), complicating the reconstruction
of phylogenetic relationships. To address this, phylogenetic trees are often recon-
structed using conserved genomic regions that are shared by all organisms and are
unlikely to have undergone HGT. One of the most commonly used universal markers
for bacteria is ribosomal RNA (rRNA). Due to its crucial function in the ribosome
(translation), rRNA is highly conserved and ubiquitous across all species of bacteria,
making it an ideal candidate for constructing phylogenies. Despite the frequency
of HGT events in bacteria as well as homologous recombination in closely related
strains, vertical evolution exerts a strong phylogenetic signal in bacterial genomes
[12].

A group of organisms is monophyletic, if all organisms and their LCA form an ex-
clusive group in the phylogenetic tree. Within a group of genomes, this signal is util-
ised, often in combination with ANI, to detect strain-sharing and strain-transmission
events between hosts [98].

2.3 Describing Bacterial Taxonomy

Bacterial taxonomy, following the principles of Linnaean taxonomy [155], organises
microbial species based on their genetic similarity into a hierarchical system of differ-
ent ranks. The Linnaean system of taxonomic classification was developed by Carl
Linnaeus in the 18th century as a means to organise and categorize organisms across
all domains based on their degree of similarity [155]. Improving on previous systems,
the Linnaean taxonomy puts an emphasis on empirical observation and classification
and introduces binomial nomenclature, a composite of a generic term (genus) and a
specific epithet, which uniquely identifies a species, a system which is still ubiquit-
ously used in biology. The common taxonomic ranks today group the natural world
into Kingdom, Phylum, Class, Order, Family, Genus, and Species, with increasing
specificity.

While originally developed to organise plants and animals, Ferdinand Cohn
demonstrated in 1872 that this system could be equally applied to bacteria to di-
vide them into genera and species [224]. This was a huge step towards modern
microbiology, as categorizing and naming microorganisms is crucial to provide a
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common and precise language for microbiologists and clinicians [103]. At first, or-
ganisms were classified based on observable characteristics like morphology (shape,
structure), pathogenicity, and growth requirements. The basis for modern bacterial
nomenclature, Bergey’s Manual of Systematic Bacteriology, was published in 1923 by
David Hendricks Bergey and is used to classify bacteria based on shape, morphology,
gram staining, ability to form endospores, motility, and mode of energy production
[24]. The nomenclature was governed by the International Code of Botanical No-
menclature .

In 1961, McCarthy and Bolton presented a method to establish genetic simil-
arity through DNA-DNA hybridization, which has since been used extensively in
phylogeny and taxonomy [264, 263]. In this method, single-stranded DNA from
two organisms is mixed, and the extent of hybridization—indicating genetic similar-
ity—is measured; a similarity of 70% or higher typically indicates the same species,
while <70% suggests different species. This allowed for directly comparing genetic
similarity of two bacteria rather than relying on morphological and other observ-
able metrics only. DNA-DNA hybridization was long regarded as the gold standard
for delineating species among closely related strains. However, due to its technical
complexity, reliance on skilled personnel, and high variability between replicates, it
eventually became a bottleneck in taxonomic studies of closely related species [264].

In 1977, Carl Woese was first to sequence sufficient amounts of ribosomal RNA
samples to propose Archaea as the third domain of life, thus pioneering both the
use of the 16S rRNA gene in bacterial taxonomy and phylogeny reconstructions,
and simultaneously revolutionizing our understanding of the microbial world. In
the same year, Sanger sequencing was presented and thus sequenced microbial DNA
was more easily accessible and could be used to determine evolutionary relationships
between organisms [236]. This advancement initiated efforts to incorporate phylo-
genetic information into taxonomic classification. This approach, termed ‘polyphasic
taxonomy’ by Colwell, integrated genetic and phylogenetic information with tradi-
tional observational metrics, revolutionizing bacterial taxonomy [54].

Similar to how Linnaean taxonomy and binomial nomenclature were first ap-
plied to plants, the naming of bacteria was initially governed by the International
Code of Botanical Nomenclature (ICBN). Although a draft Code of Nomenclature
for Bacteria and Viruses was approved at the 1947 International Congress for Micro-
biology, it was never formally adopted, and bacterial names continued to fall under
the ICBN. In 1975, the International Botanical Congress formally excluded bacteria
from the scope of the ICBN. A fully independent framework for bacterial nomen-
clature came into effect with the publication of ‘The Approved Lists of Bacterial
Names’ in 1980 [255], which established the official starting point for valid names
under the International Code of Nomenclature of Bacteria (ICNB) and marked a
reset in bacterial nomenclature. The ICNB—renamed the International Code of No-
menclature of Prokaryotes (ICNP)—was later published in its 1990 Revision [138],
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marking the full institutionalization of bacterial nomenclature as a system separate
from botanical rules.

One key difference between the ICBN and the ICNP lies in their concept of the
type to describe a new species. In botany, the type is typically a physical speci-
men—such as a dried plant—preserved in a herbarium. In contrast, in microbiology,
the type is a living culture, known as a type strain, which must be deposited in
at least two publicly accessible culture collections in different countries. This type
strain is required for the valid publication of a new species name under the ICNP
since 2002 [199]. Before 2002, the deposition of a culture was strongly recommended,
but exceptions existed.

‘The Approved Lists of Bacterial Names’ not only set the foundation for the
ICNP and the List of Prokaryotic names with Standing in Nomenclature (LPSN),
it also set the foundation for current taxonomic frameworks for bacteria such as the
NCBI Taxonomy (National Center for Biotechnology Information ). While the ICNP
governs the nomenclature—a set of rules of how to name organisms—taxonomy aims
at classifying and grouping organisms based on genetic similarity into Ranks.

The NCBI Taxonomy project was initiated in 1991 alongside the development
of the Entrez information retrieval system, with the goal of linking nucleotide and
protein sequences to the scientific literature and unifying taxonomic classification
across all domains of life. This effort spanned major sequence databases—GenBank,
the European Bioinformatics Institute (EBI), and the DNA Data Bank of Japan
(DDBJ)—all of which later formed the International Nucleotide Sequence Database
Collection (INSDC) [69, 52, 79]. A central challenge in this undertaking was the
integration of the independently maintained taxonomies from these resources, which
required substantial coordination and harmonization.

In 1997, the INSDC members agreed to resolve taxonomic issues—such as nomen-
clature errors and classification discrepancies—before releasing new sequence data.
Under this agreement, all member databases (not just GenBank) began submitting
new organism names to NCBI Taxonomy for review prior to publication [69]. In re-
turn, NCBI committed to displaying only taxa linked to publicly available sequence
entries. Effectively, the NCBI Taxonomy for prokaryotes contains both species that
are validly published and have a type strain, as well as candidate species with place-
holder names such as those with Candidatus prefix. Many of those placeholder
names originate from MAGs which are not cultivated but inferred computationally,
and contribute to a better representation of microbial diversity. As of 2011, the
NCBI taxonomy database listed 11,110 prokaryotic species with a formal scientific
name, most of which were represented by at least a 16S rRNA gene sequence [69].

Next-generation sequencing (NGS) was introduced with the 454/Roche platform
in 2005, marking a major step forward from Sanger sequencing. Although cheaper
than Sanger sequencing, its high cost per base and poor accuracy in homopolymer
tracts limited its practicality for routine bacterial genome sequencing [231, 104]. It
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was only with the release of Illumina’s Genome Analyzer in 2006 [249]—offering
higher accuracy and substantially reduced costs—that whole-genome sequencing of
bacterial isolate cultures gradually gained wider accessibility [279, 133]. These
advancements in sequencing technology—especially by Illumina—facilitated sequen-
cing the collective bacterial DNA of communities and thus enabled metagenomics on
larger scopes, such as the HMP or MetaHIT projects [174, 175, 133, 280].

Consequently, an increasing number of putative novel species have been identified
based on genomic comparisons, such as similarity of the 16S rRNA gene, conserved
housekeeping genes, or the whole genome [206, 172]. However, under the current
rules of the ICNP, valid publication of a new species name requires the deposition
of a type strain in at least two public culture collections. As a result, genome-based
species discovered from metagenomic or uncultured samples cannot be validly named
under the Code. To accommodate such organisms, the provisional status Candidatus
is used. In practice this means that a Candidatus name may be proposed when a
pure culture (type strain) is unavailable, but sufficient data—usually genomic and
other phenotypic or ecological information—exist to characterise the organism [198].
Candidatus names represent provisional taxa that do not have formal standing in
prokaryotic nomenclature until they are validly published in accordance with the
ICNP guidelines [108]. In addition to validly published taxa and Candidatus taxa
with placeholder names, the NCBI Taxonomy also includes other taxa based solely
on proposed or auto-generated placeholder names derived from sequence entries in
the INSDC databases. Potential new taxa are then phylogenetically placed based on
the sequence data submitted to one of the INSDC nucleotide sequence databases, as
nomenclature and classification issues must be resolved before any sequence data is
publicly released [240].

As of 2024, the NCBI Taxonomy encompasses 24,821 bacterial species with val-
idly published names, 2,034 with the prefix Candidatus, and 106,071 with no validly
published or Candidatus name 1. An additional 420,024 bacterial species remain un-
classified as their sequence information does not allow for unambiguous phylogenetic
placement in the NCBI Taxonomy. Even though modern taxonomy uses phylogeny
as a framework, there are cases of taxa with clinical relevance, where phylogeny dif-
fers from taxonomy. This is the case for the genera Shigella and Escherichia, which
phylogenetically are in the same genus, yet are distinct in taxonomic genera. On the
other hand, Shigella and Escherichia coli exhibit different pathogenic profiles and
are treated differently in clinical and public health context [20]. This shows there are
good reasons for keeping the distinct taxonomic naming. The distinct placement in
the NCBI Taxonomy can be traced back to the original ‘Approved Lists of Bacterial
Names’ that both genera Shigella and Escherichia were part of [255].

As previously mentioned, technological advances in sequencing and computa-
tional tools as well as cost reduction of sequencing caused a shift towards whole-

1https://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/index.cgi?chapter=statistics
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genome sequencing of whole microbiomes. This shift has resulted in a dramatic
increase in the number of bacterial assemblies within the INSDC from 2,433 in 2010,
to 714,835 in 2020 [148], with the majority being metagenome-assembled genomes
(MAGs) derived from community sequencing rather than from genome assemblies
of isolates. Genome assembly is the process of reconstructing a complete genome
sequence from short DNA reads obtained by sequencing a pure culture of a single or-
ganism, resulting in an isolate genome. In contrast, a metagenome assembly involves
assembling draft genomes—MAGs—directly from complex environmental samples
containing DNA from multiple organisms, enabling recovery of genomes also from
(currently) unculturable, potentially unknown microbes. While MAGs provide valu-
able insights into microbial diversity, they are generally considered less complete
and accurate than isolate genomes. The methods for assembling MAGs and the
challenges associated with them will be discussed in more detail in section 2.5.2.

The SeqCode (Code of Nomenclature of Prokaryotes Described from Sequence
Data) was developed as an alternative to the ICNP to address a growing need in
microbial taxonomy: the formal recognition of prokaryotic taxa that are known only
from sequence data and lack a cultured type strain. This is particularly important in
the post-genomic era, where advances in metagenomics and single-cell genomics have
uncovered vast microbial diversity that cannot yet be cultured, leaving many taxa
excluded from valid naming under the ICNP [48]. The ICNP strictly requires depos-
ition of a viable, pure culture in at least two public culture collections to designate
a type strain, which is often not feasible for environmental microbes. In contrast,
the SeqCode permits genome sequences as type material, provided that they meet
defined quality standards, thus allowing for the valid naming of uncultured taxa [298].
Formally launched in 2022, the SeqCode represents a parallel and complementary no-
menclatural system, not in competition with the ICNP, but designed to bridge the
gap between modern sequencing-based taxonomy and classical nomenclature [94].
As of early 2025, the SeqCode registry (https://seqco.de) is active and accepting
submissions, and a growing number of taxa—particularly metagenome-assembled
genomes (MAGs) and single-amplified genomes (SAGs)—have been proposed under
its framework, though its adoption across the broader taxonomic community is still
ongoing and being closely monitored.

The SeqCode process for proposing a new prokaryotic taxon involves submitting
a high-quality genome sequence as the type material, followed by writing a formal
taxonomic description that includes genomic and phylogenetic evidence. The pro-
posal is then registered in the SeqCode Registry, where it undergoes a community
review period of at least 30 days. After any necessary revisions, the name is validated
and made official, with the option to publish through SeqCode or a peer-reviewed
journal. While the SeqCode allows for taxonomic naming without cultured type
strains, it also maintains compatibility with ICNP rules. For MAGs, it is recommen-
ded to have more than one MAG per species to ensure genomic representation, but
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it is not a strict requirement [minimum_information].
Considering the bigger picture, the enormous increase of MAGs in reference data-

bases still poses challenges. The quality of MAGs is measured in terms of complete-
ness and contamination and can be hampered by low read coverage in the sequencing
data, low-complexity regions that are difficult to assemble, as well as closely strains
in the sequence data which lead to chimeric assemblies (see 2.5.2. These limitations
. Limiting databases to isolate genomes is not an option as this would drastically
reduce the taxonomic diversity represented in public databases—most bacteria are
still considered unculturable or simply have not been cultured as isolates. Hence,
taxonomic classification of MAGs is important to establish context and a base for
communicating scientific results. At this scale, manually curating taxonomic no-
menclature is increasingly tedious and impractical, given the vast amount of novel
genetic information and the historical use of phenotypes for taxonomic classification,
which facilitated the need for a different approach.

2.3.1 Modern DNA-based Taxonomy

In 2016, ProGenomes [172] was released as a prokaryotic genome resource and tax-
onomy with a focus on providing extensive meta data such as functional annotation
and habitat information. In 2018, the Genome Taxonomy Database (GTDB) was
introduced as a solution to existing challenges concerning polyphyletic taxa and the
increasing amount of available MAGs [208]. The GTDB taxonomy is a fully auto-
mated taxonomic system for bacteria and archaea based on a phylogeny derived from
DNA sequences, while still respecting existing taxonomic nomenclature and further
offering normalized taxonomic ranks on the basis of relative evolutionary divergence
(RED) [309]. Automating the process of generating phylogenies and subsequently
developing a concordant taxonomy offers significant advantages. It addresses existing
discrepancies between phylogeny and taxonomy that have arisen from classifications
based on 16S rRNA or observational methods [317, 20], which have often been main-
tained for the sake of consistency, despite obvious inaccuracies.

Automating this process can resolve these issues, resulting in a more robust and
accurate taxonomy. As an on-going census of microbial diversity, GTDB provides
annual updates and went from 143,512 bacterial genomes spanning 23,458 species
clusters in the initial release in 2018 to 584,382 genomes spanning 107,235 species
clusters in R09-RS220 (2024) 2. Almost 50% of the incorporated genomes are based
on MAGs or SAGs (Single Amplified Genomes), and over 70% of species clusters
are represented by MAGs, indicating the vast biodiversity only accessible through
metagenomic sequencing. Even though both NCBI and GTDB source their genomes
from GenBank and RefSeq, they differ in underlying philosophy and methodology,
leading to discrepancies in taxonomic classification. A prominent example are the

2https://gtdb.ecogenomic.org/stats/r220
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aforementioned genera Shigella and Escherichia, which GTDB merged into the same
genus, Escherichia.

The GTDB taxonomy constructs species clusters by centering them around spe-
cies each represented by one or more genomes that pass quality control measures
[209]. For each species, a representative genome is selected based on metadata and
quality metrics. Genomes are then assigned to these species clusters using whole
genome ANI and alignment fraction (AF), with an ANI threshold of 95%. Genomes
that cannot be assigned to any existing species are sorted by quality. Starting with
the highest quality genome as a new species representative, remaining genomes are
assigned using ANI and AF, repeating this process until all genomes are assigned to
a species cluster, either as representatives or members.

The phylogeny in the GTDB taxonomy is based on 120 ubiquitous single-copy
proteins, ensuring taxonomic groups form monophyletic lineages with normalized
phylogenetic distances between ranks across lineages [208]. The selection of genetic
markers is critical to the success of any DNA based approach at structuring bacterial
evolutionary history and taxonomy; they must be ubiquitous across all bacterial spe-
cies to construct a comprehensive phylogeny while providing sufficient resolution to
distinguish between species. The 16S rRNA gene, although widely used in amplicon
sequencing, is often not present in MAGs, and other marker regions are more prac-
tical [49]. As the 16S rRNA gene is highly conserved across closely related microbial
taxa, which is why a >98.5% sequence identity threshold is often used for species
delineation in 16S-based studies, compared to the >95% average nucleotide identity
(ANI) threshold typically applied to whole-genome comparisons. However, due to
this high conservation, short DNA reads obtained from sequencing (e.g., Illumina)
often cannot be unambiguously assigned to specific species or strains during meta-
genomic assembly. This ambiguity leads to challenges in reconstructing full-length
16S rRNA genes in MAGs, resulting in their frequent absence from MAG datasets
[319].

GTDB’s phylogeny is constructed from a multiple sequence alignment (MSA)
of concatenated marker protein sequences from all dereplicated and quality-filtered
genomes. In the absence of a standardized approach, internal ranks are assigned
based on RED to provide uniform placement of taxonomic ranks across all lineages
[309, 208]. This addresses a significant issue in the NCBI taxonomy, where taxo-
nomic ranks are not based on evolutionary distances. Additionally, many taxa in the
NCBI taxonomy are polyphyletic, meaning that members of the same taxon do not
share a recent common ancestor. GTDB resolves this by splitting polyphyletic taxa
into distinct monophyletic groups with suffixed taxonomic labels. This approach
is particularly beneficial for profiling microbial communities from sequencing data,
as accurate profiling relies on phylogenetic signals. Using a taxonomy not based
on phylogeny can result in erroneous classifications, emphasizing the importance of
GTDB’s phylogenetically consistent taxonomy [26].
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2.3.2 Of species and strains

The prevalent species definition in the last century was based on a list of phen-
otypic characteristics of a microorganism, that allowed researchers to systematic-
ally categorize bacteria [24]. As phenotypes are reflected in the bacterial genome,
DNA-DNA hybridization quickly became the gold-standard for delineating species
by measuring the degree of genome similarity [226] and move away from solely relying
on observable traits.

However, as bacteria reproduce asexually, the classical species definition of the
animal kingdoms does not apply, which raised the question whether bacterial species
truly existed. With the broad availability of sequencing technology, researchers iden-
tified a natural gap in diversity at the species level by measuring ANI, the pairwise
similarity in nucleotide sequence of two genomes, between bacterial genomes at dif-
ferent taxonomic ranks. The ANI gap shows that bacteria within a species often are
>95% ANI similar, while between species ANIs are mostly <90% [226, 111], which
has been interpreted at supporting the existence of a ‘bacterial species’. Therefore,
95% genome-wide ANI is widely accepted as species boundary (Fig. 2.4).

For highly conserved marker regions like the 16S rRNA gene, a 97% ANI threshold
is commonly used, though a 98.5% ANI is more consistent with whole-genome species
definitions [262, 264, 229]. The 97% threshold was initially chosen as it aligned with
DNA-DNA hybridization values above 70%, the gold standard for species delineation
at the time [262]. However, this threshold often grouped species that should be
distinct, prompting its revision to 98.5% ANI for more accurate species delineation.

The discrepancy between the rRNA 16S gene ANI threshold to the whole genome
one arises because the 16S rRNA gene evolves more slowly than most other genomic
regions due to its essential role in ribosome function and strong structural constraints,
making it highly conserved across taxa. As a result, higher sequence similarity in the
16S gene is needed to reflect the same level of divergence captured by whole-genome
ANI.

A bacterial strain is a taxonomic unit below the species level, typically charac-
terised by 99.9-99.99% species identity (Fig. 2.4). The name derives from clinical
microbiology, where "straining" was used to grow bacterial strains on an agar plate.
However, in literature the definition of strains can vary widely, ranging from a hun-
dred or more, to as little as one nucleotide difference. The definition of a strain
often also depends on the research question. Single nucleotide variations can result
in phenotypic changes, thus being classified as a different strain [53]. For studying
strain-transmission, ‘same strain’ refers to bacteria that have been transmitted from
one host to another in a recent event, with "recent" encompassing time-frames from
days to decades [283, 98]. In very closely related strains, the signal-to-noise ration of
computational approach and sequencing errors limits the achievable resolution and
hence influence the definition of strain [250].
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Figure 2.4: Average nucleotide identity (ANI) between prokaryotic genomes of dif-
ferent taxonomic ranks. Image is taken from Hildebrand [95]

Figure 2.5: Overview over different sequencers and sequencing
technologies. Image taken from https://www.pacb.com/blog/
the-evolution-of-dna-sequencing-tools/

For the purposes of this thesis, a strain is defined by >99.99% Average Nucleotide
Identity (ANI), both between whole-genomes and marker genomes, and the term is
sometimes used interchangeably with ‘genome of organism‘. However, strains do no
only differ by SNPs. The pan-genome of a species defines the complete set of genes
of all strains within.

2.4 How to study microbial communities?

2.4.1 Sequencing technologies

Until the mid-20th century, studying microbes was confined to observational meth-
ods. In current microbiology, the analysis of the genetic material of microbes and
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microbiomes through sequencing has become the primary focus. Genomic sequen-
cing enables the determination of the order and identity of the four nucleotide bases
in a sequence.

The development of Sanger sequencing in 1977 marked a significant advance-
ment in sequencing technology, facilitating the sequencing of fragments up to 800
base pairs in length [236]. Sanger sequencing employs a sequencing-by-synthesis
approach, wherein fluorescently labelled nucleotides sequentially complement single-
stranded DNA. Each nucleotide incorporation emits a base-specific light signal, which
is detected by a photosensor to reconstruct the genomic sequence.

The very first high-throughput sequencer, the 454/Roche, was released in 2005
[231]. Like Sanger sequencing, the 454/Roche also utilises sequencing-by-synthesis.
However, unlike Sanger sequencing, which could only sequence one molecule at
a time, the 454/Roche was capable of massively parallel sequencing, allowing
the simultaneous reading of thousands of molecules. Hence, the 454/Roche was
the first sequencer of what is known as next generation sequencing. Other
next generation sequencers followed, most prominently the Genome Analyzer by
Illumina, increasing the sequencing throughput from megabases (Mb) (1,000,000
bases) to gigabases (Gb) per run [249]. Illumina sequencing starts with binding DNA
sequences to wells using adapter sequences. The immobilized DNA undergoes in-situ
bridge amplification [22] to create clusters of multiple copies of the same sequence,
also called template. Sequencing then proceeds in cycles: each cycle, fluorescently
tagged nucleotides complement the sequence by one using DNA polymerase. Each
cycle, the wells are excited with a light-source, which them emits a base-specific light
signal detected by a photosensor that is interpreted by a computer. Starting with
an initial read length of 50 bp with the Genome Analyzer, current Illumina models
commonly produce 2x150bp paired-end reads (HiSeq X, HiSeq 3000/4000, MiniSeq,
iSeq 100) but also offer longer read-lengths up to 2x300bp paired-end reads (MiSeq,
NextSeq3). Paired-end reads are achieved by reading the same DNA template from
both 5’ and 3’. The advantage over single-end reads are the increased DNA sequence
length and that both reads can span even a greater distance than their combined
length. However, Illumina sequencing is not without errors. Sequencing errors are
caused by phasing, a process when single DNA templates within a cluster go out of
sync, leading to noise and ambiguity in the base-specific light signal read. Phasing
can be caused by high GC-content, homopolymer runs (a long sequence of the same
base), imperfect conditions in temperature as well as faulty reagents. Sequencing
machines quantify the per-base error-rate in quality scores.

Succeeding next generation sequencing and what was dubbed third-generation
sequencing, machines were able to sequence 10kb and longer, instead of the 2x300bp

3https://knowledge.illumina.com/instrumentation/general/instrumentation-general-
reference_material-list/000002826
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previously possible. Commercially available from 2011, Pacific Biosciences’ (Pac-
Bio) single molecule, real-time (SMRT) sequencing-by-synthesis technology is able
to produce much longer reads exceeding 20 kb [64]. In SMRT sequencing, the long
double-stranded DNA fragments are ligated to adapters (so-called bells) on both
ends to produce long circular templates. After adding primer and DNA polymerase,
the molecules are put into individual wells on the SMRT cell. While immobilized,
the DNA polymerase incorporates labelled fluorescent nucleotides. The emitted light
on incorporation is measured in real-time and interpreted by a computer. PacBio
sequencing has two sequencing modes. In circular consensus sequencing (CCS), tem-
plates are sequenced multiple times in a circular fashion which leads to higher quality
long-reads, achieving error rates as low as Illumina’s short read sequences (10−3).
In continuous long read sequencing (CLR) each circular template is only sequenced
once and thus produces longer reads (half of the reads are > 50 kb).

Initially released in 2014, Oxford Nanopore Technologies’ (ONT) sequencing
is the other of the two major third-generation sequencing methods, producing
long-reads. As opposed to Illumina or PacBio, ONT sequencing is not based on
sequencing-by-synthesis [253]. Instead, they use a motor-protein that docks—when
capturing a long double-stranded DNA molecule—with a nanopore that is fitted into
a membrane with high electrical resistance. When applying a potential across the
membrane, molecules passing through the nanopore cause a characteristic change
in electrical current. Due to the electric field, the DNA naturally threads through
the nanopore and the motor-protein acts as a molecular brake to slow down the mo-
lecule. Changes in the electrical current as the DNA passes through the nanopore are
interpreted by a computer to determine the nucleotide sequence. The cheapest and
most commonly used ONT sequencer is the MinION; a portable device for real-time
sequencing with a laptop, allowing for on-site sample analysis without a full-fledged
lab. Initially suffering from an accuracy as low as 70%, ONT have successively in-
creased the accuracy to 99% by optimizing the chemistry, nanopores, and base calling
software.

2.4.2 Read Errors

Sequenced samples come with a per-base error rate which is encoded in the so-
called Phred scores. Phred scores are logarithmically related to the per-base error
probabilities and are often represented as ASCII characters. To convert the Phred
score from the characters in fastq files, a platform specific offset is subtracted from
the ASCII code of the character. The offset varies between technologies: old Illumina
has an offset of 64 but nowadays 33 is most common and universally used by i.e.
Illumina, ONT and PacBio. Equation 2.1 shows how the probability of an error Q
is computed from the Phred score P.

Q = −10 log10 P (2.1)
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An awareness for sequencing errors is crucial to a thorough analysis of sequencing
data. However, errors not only arise during sequencing. DNA damage, leading to
wrong base readings, can be introduced at any step in the workflow. During sample
preparation, faulty handling (exposure to UV radiation, wrong storage temperature)
can lead to DNA alterations that are passed along through the entire subsequent
workflow. Heating and formalin fixation (a stabilization method for clinical applica-
tions) increase the rate of spontaneous cytosine deamination and lead to transversion
mutations (mutating from a purine to pyrimidine or vice-versa) in PCR amplification
[10, 58]. Different methods for DNA fragmentation can also lead to deletions and
substitution errors [126, 235]. In the (optional) PCR enrichment steps, the DNA
polymerase may incorporate a wrong base; this is known as incorporation error. In
Illumina there is an additional PCR step to form sequence clusters in the wells.
During sequencing, context-driven DNA polymerase incorporation errors, phasing,
damaged DNA, overlapping clusters, issues with cluster formation and more are po-
tential error sources [214, 237, 125]. The per base error rate for substitutions in
HiSeq, an Illumina sequencer released in 20104, is approximately 3.3 × 10−3 [237].
For this error rate, one substitution error in a read pair with 2x150bp is expected.
Note, however, that errors are not uniformly distributed across the read but occur
preferentially towards the end of a read. When analyzing these errors, base-related
preferences in substitution as well as motifs preceding the error have been identi-
fied [237, 162] . Unless explicitly mentioned, the following approaches will focus on
methods developed for short-read analysis.

2.4.3 Approaches for sequencing complex microbial communities

Broadly speaking, there are two different sequencing methods for analysing the DNA
of microbiomes. Amplicon sequencing, also called ‘metabarcoding’, is the targeted
sequencing of a gene or genes, such as 16S or 23S, through specific primers. (Shotgun)
Metagenomic sequencing describes sequencing the collective genetic material of a
microbial community, called the metagenome [93]. It follows that metagenomics is
“the genomic analysis of a population of microorganisms”, a term that was coined by
Handelsman et al. in 1998 [93] (Fig. 2.6 A). In literature, however, metagenomics is
frequently used as an umbrella term for both whole genome and amplicon sequence
analysis. Similarly, metatranscriptomics describes the analysis of mRNA sequencing
and metaproteomics refers to the analysis of proteins of whole microbial communities;
however, this thesis focuses solely on metagenomics.

4https://investor.illumina.com/news/press-release-details/2010/Illumina-Announces-HiSeqTM-
2000-Sequencing-System/
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Amplicon Sequencing

Both amplicon sequencing and metagenomics are different in taxonomic resolution,
their ability to resolve functional potential, sequencing cost, computational require-
ments, and complexity of analysis. In amplicon targeted sequencing, or short ampl-
icon sequencing, a molecular marker such as 16S ribosomal RNA (rRNA) for proka-
ryotes, or 18S rRNA or ribosomal internal transcribed spacers (ITS) for eukaryotes,
is amplified using polymerase chain reaction (PCR) and subsequently sequenced.
Due to their functional conversation, 16S, 18S, and ITS genes have a low mutation
rate and are present in all microorganisms [304]. The 16S region is about 1,550 bp
long and comprises both conserved and variable regions. Because of the limited read
length in NGS sequencing, only part of the variable regions V1-V9 is accessible. The
taxonomic resolution of this short sequence is limited to genus (sometimes species)
level [195]. However, recent approaches using long reads from third generation se-
quencing for amplicon sequencing can be used to resolve microbes at species and
sometimes even strain-level [113].

Amplicon reads naturally align at the primer region which allows for de novo
similarity-based clustering into operational taxonomic units (OTUs). OTUs can
serve as proxies for de novo generated genera, with the similarity threshold for clus-
tering defining the taxonomic rank. The established threshold of 97% identity is
commonly used to delineate species-level clusters [262]. Annotation of OTUs with
the help of databases such as SILVA [317], RDP [293], Greengenes [57], or our KSGP
[88] establishes context with respect to known taxa, allowing the comparison of res-
ults to those in literature. Common tools for OTU clustering are, for example,
CD-HIT [78] or UPARSE [62], and are often integrated into pipelines to automate
the whole analysis process [201]. By clustering amplicons at an ANI threshold, noise
from sequencing errors is ‘drowned out’. Alternative to OTUs, amplicon sequence
variants (ASVs) aim to denoise sequences from sequencing errors while retaining true
variation. First coined and implemented in DADA2 [39] in 2016, ASVs are now a
widely used alternative to OTUs. Yet, in direct comparison ASVs often still produce
more false positives than OTU-based methods [201].

Amplicon sequencing is still the most cost-effective way to study the taxonomic
composition of microbiomes, and is especially useful for environmental samples with
mostly unknown biodiversity. Compared to metagenomics, a low cost-factor and
established easy-to-use tools [201], amplicon sequencing still is an accessible option
for reference-free taxonomic analysis with moderate resolution (Fig. 2.4). Bey-
ond this, some tools even extrapolate functional capacity from amplicon sequencing
data [296]. However, it’s important to approach this interpretation with caution,
as inferred functional capacity may not precisely reflect actual biological function.
Moreover, it’s noteworthy that the difference in functional capacity among microbes
within the same genus can be extensive. While amplicon sequencing data analysis is
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not without flaws [220, 237], the commonly used pipelines are well tested and prob-
lems like copy number variation, chimeric reads, and host contamination are known
and can mostly be accounted for.

Metagenomics

Metagenomic sequencing data allows for all the analyses possible with amplicon data,
and many more, but is a) more costly and b) computationally more demanding.
Taxonomic profiling of metagenomes is either conducted through reference-based or
reference-free methods, sometimes also referred to as assembly-free and assembly-
based methods. Reference-based methods use alignment (or comparison) of indi-
vidual reads against an often pre-built database, representing a set of pre-selected
genomes and thus taxa, to collect evidence and reconstruct the taxonomic profile
(Fig. 2.6 B). This will be discussed in greater detail in the next section (2.5) and
in Chapters 4 and 5, where I present two approaches I developed during my PhD.
Metagenomic data further allows for functional profiling, as genes can be detected
directly, not only via the known genomes of detected taxa, yielding a comprehens-
ive picture of functional capacity in the genome. Further, metagenomic sequencing
data allows for a much higher taxonomic resolution than amplicon sequencing, with
strain-level analyses possible with modern pipelines. This can be used to study
strain-transmission, HGT and SVs, and genome-wide association studies (GWAS)
enable searching for single genes or variants associated with diseases.

In terms of complexity, reference-based methods are in between amplicon sequen-
cing analysis and reference-free metagenomics. Reference-free (or assembly-based)
methods are necessary to study the genome of unknown microbes (Fig. 2.6 B).
Assembly-based workflows start with the de novo assembly of reads into longer con-
tiguous sequences (contigs). Subsequently, the contigs are distributed into bins based
on sequence properties and abundance, to group contigs from the same genome. Not-
ably, de novo assembly alone has a runtime approximately 50- to 100-fold greater
than that of reference-based profiling [322]. Metagenomic assembly will be discussed
in more detail in section 2.5.2.

2.5 Computational microbiome analysis

Along with the advent of sequencing, a plethora of bioinformatic algorithms and tools
have been developed for tasks such as similarity-based pairwise and multiple sequence
alignment (MSA), de novo genome assembly from sequencing data, prediction and
extraction of genes, reconstructing phylogenetic trees from MSAs, identification of
SNPs between sample and reference genome (SNP calling), quality filtering of se-
quencing data, and many more. Gradually, these tools were adapted for analysing
microbial sequencing data, and over time, specialized tools and pipelines for meta-
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Figure 2.6: A, Schematic depiction of culture-dependent and culture-independent
methods. Metagenomics emerged from the necessity to study microbial communit-
ies in vivo as opposed to in vitro, to study the microbe-microbe interactions as
well as microbe-host interactions. B, Schematic of the two major metagenomic ap-
proaches. The assembly-based approach aims to reconstruct draft genomes of known
and unknown microbes from sequencing data to capture both known and unknown
microbial diversity. Reference-based methods rely on databases with reference gen-
omes to profile metagenomes and analyse the known portion of microbial diversity.
Assembly-based approaches are orders of magnitude more complex in terms of com-
putational requirements as well as quality control. Image is taken from Yang et al.
[313].

genomics and amplicon sequencing analysis emerged, as I will discuss later (Table
2.2).

Probably the most common bioinformatic task across all bioinformatic disciplines
is sequence comparison. One of the first tools for this task that is still developed and
used today, is BLAST (Basic Local Alignment Search Tool) [6]. Published in 1990,
BLAST improved the speed of similarity-based sequencing search via a seed-and-
extend algorithm (refer to Section 2). Further, it was the first tool to introduce a
mathematical framework for quantifying the probability that a hit occurred by chance
(E-value). In general, alignment tools such as BLAST allow for building custom
reference databases to search against, and output the best scoring hit, calculated
based on similarities and differences such as mismatches, insertions, and deletions
(See 2.2). Early tools for metagenomics and amplicon sequencing analysis often
used BLAST for its highly sensitive and accurate sequence search [105, 246, 96] .
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However, many taxonomic profilers eventually replaced BLAST with aligners of a
new generation: aligners that offered substantial improvements in speed over BLAST
while maintaining a similar sensitivity and accuracy. Bowtie [137], bwa [146], and
the later published DIAMOND [37] are still among the most used bioinformatics
tools. Examples for this transition are mOTUs, MetaPhlAn and MEGAN, which
switched from BLAST to bwa, bowtie2, and DIAMOND, respectively.

2.5.1 Taxonomic profiling

To reconstruct the taxonomic composition in a sample, called taxonomic profiling,
read alignment is often an integral part. Many taxonomic profilers like MetaPhlAn
4 and mOTUs 3 (and some of their earlier versions) utilise read alignment against
a custom curated database to predict which taxa are present in a sample. This
reference-based profiling is fast, but heavily dependent on which taxa are represented
in the database. One strategy here involves marker genes, pre-selected areas of
reference genomes, which exhibit a strong phylogenetic signal to improve taxonomic
accuracy, and help to reduce the size of databases. MetaPhlAn 4 uses a set of
species-specific marker genes (for each species), which are selected for occurring in
every member of the species (coreness), but not in genomes outside of the species
(uniqueness). mOTUs3, on the other hand, uses universal marker genes, genes that
are present across all bacteria. In comparison, species-specific markers often exhibit
higher accuracy, but are difficult to accurately determine for species with only one
or two reference genomes available. On the other hand, universal marker genes are
easy to extract, but often less accurate in clearly distinguishing between two related
species.

The incredible success of tools like Kraken and Kraken2 (4204 and 3671 citations,
respectively, as of 13th June, 2024 5) further showcased a demand for fast algorithms
and analysis software. This was partly because sequencing cost had dropped and
more data was generated every year [183], but also due to the growing amount of
sequencing data deposited on public repositories. Faster tools and novel algorithms
facilitated large-scale meta-analyses, efforts to analyse data from multiple studies and
cohorts [210]. An effort that initially required resources of multiple labs [11] is now
possible for a single lab [76]. With the growing amount of available sequencing data
and taxonomic diversity in reference databases, the technical challenges were not
only limited to performance. Due to the vast amount of unculturable bacteria, there
was a shift towards MAGs, draft genomes of individual strains reconstructed from
complex communities (See Section 2.5.2). This led to reference databases quickly
harbouring more MAGs than assembled genomes from isolates. Table 2.2 provides
an overview over selected tools for taxonomic profiling from metagenomic data and
amplicon sequencing data.

5https://scholar.google.co.uk/ search terms ‘Kraken’ and ‘Kraken2’, cited by
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Year Tool Type Ref DB Method Taxonomy Databases External
Tools

Description

2007 MEGAN WGS DNA,
Pro-
tein

Whole-
genome

Alignment NCBI Custom BLASTX,
BLASTN,
BLASTZ

Tool for profiling and analysing sequencing data. Alignments are done with BLAST,
has a user interface.

2009 mothur Amplicon DNA Amplicon OTU clus-
tering

RDP RDP Implements
DOTUR, CD-
HIT, RDP,
UniFrac and
more.

Pipeline for analysing and visualising amplicon sequencing data. Combines pre-
viously existing resources for OTU clustering, pairwise phylogenetic distance and
taxonomic classification.

2010 QIIME Amplicon DNA Amplicon Alignment,
RDP

RDP RDP, Cus-
tom

CD-HIT, mo-
thur, RDP,
BLAST,
FastTree,
RAxML,
MUSCLE and
more

Pipeline for analysing and visualising amplicon sequencing data. Combines existing
tools for OTU clustering, MSA, phylogenetic tree and taxonomic classification.

2012 MetaPhlAn WGS DNA Clade-MG Alignment NCBI Fixed pre-
built

BLASTN Taxonomic profiling from WGS data, uses BLAST to align reads against custom
marker database. Database contains both species markers and markers on higher
taxonomic levels (The database covers 1,221 Species from 2,887 genomes).

2013 mOTUs Amplicon DNA Universal-
MG

Alignment,
Assembly,
Clustering

Custom
phylo-
geny,
NCBI

Fixed pre-
built

MOCAT,
fetchMG,
USEARCH

mOTUs is part of MOCAT and uses de novo read assembly and fetchMG to extract
marker genes from metagenomic sequencing data. For their database, mOTUs uses 10
universal marker genes of the total 40 of fetchMG. Extracted markers are compared
to markers in the database or de novo clustered. Covariance groups markers into
linkage groups to resemble species (mOTU-LG), (1,753 species from 3,496 genomes).

2013 UPARSE Amplicon DNA - OTU clus-
tering

- - - De novo clustering of amplicons into OTUs.

2014 Kraken WGS DNA WG, Cus-
tom

K-mer
based

NCBI Custom,
RefSeq
available.

- Fast k-mer based approach for taxonomic binning. Reads are classified based on
k-mer hits with respect to a prebuilt database. Non unique k-mers in the database
point to the LCA of all their occurrences. Reads are classified by counting hits in
the taxonomic tree and choose the lowest hit with the most support in the lineage.
User can build databases from custom genomes.

2014 LotuS Amplicon DNA 16S, 18S,
SSU

OTU clus-
tering

SILVA,
RDP,
green-
genes

greengenes,
SILVA,
RDP

UPARSE,
RDP,
BLAST, RDP,
FastTree,
ClustalO-
mega, usearch,
uchime, up-
arse, BLAST+

Complete pipeline for amplicon sequencing data. Provides fast and extensive qual-
ity filtering and dereplication of amplicon sequences, offers multiple clustering al-
gorithms and taxonomic databases.

2015 CLARK WGS DNA WG K-mer
based

NCBI Custom,
RefSeq

- Fast k-mer based taxonomic binning, uses target-specific k-mers in the database and
removes all k-mers that are not unique at a certain target level (species, genus, etc).
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2015 MetaPhlAn2 WGS DNA WG Alignment NCBI Fixed pre-
built

Bowtie2 Alignment against species-specific marker genes. Extends marker gene concept with
quasi-markers by lowering the uniqueness requirement (marker gene must not be
present in other species). The database covers more than 7500 Species from over
16,000 Genomes.

2016 Kaiju WGS Protein WG Pseudo-
alignment

NCBI Custom - Kaiju uses a data structure often used in alignment tools, the FM-index, without
doing actual alignment (pseudo alignment). It translates all reads into its six reading
frames and compares them against protein sequences in the database.

2016 Centrifuge WGS DNA WG Pseudo-
alignment

NCBI Custom - Centrifuge uses the FM-index to perform pseudo alignment (see Kaiju) against a
pre-built database. It finds and identifies short k-mer seeds shared between read
and reference and then extends those seeds until there is a mismatch. Hit species
are scored with respect to the lengths of their exact matches and the highest scoring
species are reported.

2016 DADA2 Amplicon DNA Amplicon ASV - - - DADA2 introduced ASVs (Amplicon Sequence Variant). DADA2 denoises amplicon
sequences into ASVs by removing sequencing errors based on a bayesian model.

2017 Bracken WGS* DNA WG, Cus-
tom

Bayesian-
reestimation

NCBI Custom Works with
Kraken,
Kraken2, and
KrakenUniq
output.

Transforms the Kraken (+ KrakenUniq and Kraken2) output into abundance profiles
by using bayesian-reestimation.

2018 KrakenUniq WGS DNA WG, Cus-
tom

K-mer
based

NCBI Custom - Counts unique k-mers to improve precision. User can build databases from custom
genomes.

2019 Kraken2 WGS DNA,
Pro-
tein

WG, Cus-
tom

K-mer
based

NCBI Custom - Improved speed and memory (85% less memory than kraken, 8 times faster), accuracy
similar to kraken. The user can build databases from custom genomes.

2019 mOTUs2 Amplicon DNA Universal-
MG

Alignment NCBI Fixed pre-
built

bwa-mem mOTUs2 has a custom database with a phylogeny built via de novo clustering of
10 universal marker genes across genomes. The database comprises marker genes
from both sequenced genomes and de novo assembled metagenomes. For profiling,
all reads are aligned against the marker gene database with bwa-mem (The database
covers over 7,700 Species from over 25,000 genomes).

2021 MetaPhLAn3 WGS DNA Species-
MG

Alignment NCBI Fixed pre-
built

Bowtie2 MetaPhlAn 3 has a custom database of species-specific marker genes, extracted from
the ChocoPhlAn 3 database. During profiling, reads are aligned to the marker genes
using bowtie2 (The database covers 13,475 species from 99,227 genomes).

2022 mOTUs3 WGS DNA Universal-
MG

Alignment NCBI,
GTDB

Fixed pre-
built

bwa-mem mOTUs3 has a custom database containing the same 10 universal marker genes as
previous versions (fetchMG). The previous database is extended by adding marker
genes from MAGs representing previously unrepresented species (The database cov-
ers more than 33,000 species from over 600,000 genomes).

2023 MetaPhlAn4 WGS DNA Species-
MG

Alignment NCBI,
GTDB

Fixed pre-
built

Bowtie2 MetaPhlAn 4 has a custom reference database containing species-specific marker
genes. They distinguish between uSGB and kSGB (unknown or known Species-level
genome bin ) depending on whether a bin is only comprised of MAGs (The database
covers 26,970 species from 729,195 genomes).
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Table 2.2: An overview of selected tools for taxonomic profiling. Fixed pre-built under database means a database is provided with the tool.
Custom means the user can provide their own set of genomes as reference. The tools in the Table are MEGAN [105], mothur [239], QIIME
[40], MetaPhlAn [246], mOTUs [272], UPARSE [62], Kraken [308], LotuS [96], CLARK [200], MetaPhlAn 2 [277], Kaiju [173], Centrifuge [123],
DADA2 [39], Bracken [159], KrakenUniq [32], Kraken2 [307], mOTUs2 [179], MetaPhlAn 3 [19], mOTUs3 [232], MetaPhlAn 4 [26].
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2.5.2 Expanding known diversity through Metagenomic Assembly

A prime example for the specialization of bioinformatics tools towards metagenomics
is genome assembly. In the past, culture-dependent methods were used to grow
individual organisms in isolation to then study their interaction [205]. However,
80% of the gut bacteria are considered ‘unculturable’ and relying on culture-based
methods neglects a huge portion of the community [131]. Despite recent efforts
and advancements in culturing bacteria, assembly-based metagenomics are still more
accessible.

Metagenomic assembly

[35, 116]. As a means to shift away from culture-dependent workflows towards
culture-independent microbiome analysis, metagenome assemblers were developed
to allow for reconstructing draft genomes from high complexity sequencing data,
spanning hundreds of bacterial species - a task conventional sequence assemblers
were not capable of.

Metagenome assembly faces several intrinsic challenges that affect genome recov-
ery, contiguity, and interpretability—especially for conserved and complex genomic
regions such as the 16S rRNA gene. One major issue is that 16S rRNA genes are
typically multi-copy and highly conserved, making them difficult to assemble us-
ing short-read sequencing. Their similarity across species often leads to collapsed
or chimeric contigs, resulting in underrepresentation or misassembly of this crucial
taxonomic marker [319]. Repetitive elements, such as transposases and rRNA op-
erons, introduce similar problems by confounding the assembler’s ability to resolve
copy number and structural arrangement, especially in species-rich environments
[242]. Additionally, strain heterogeneity—the presence of closely related but ge-
netically distinct strains—introduces conflicting signals during assembly, leading to
fragmented contigs due to low allelic consensus [221]. Coverage bias further complic-
ates assembly: low-abundance taxa are often under-sampled and poorly assembled,
while dominant organisms may produce highly uneven coverage that disrupts contig
extension and scaffolding [190]. Furthermore, high-GC content regions are known
to be systematically underrepresented in Illumina data, skewing both assembly and
downstream gene prediction [36].

The first dedicated metagenome assemblers date back to 2011 and performed sig-
nificantly better than previous general purpose assemblers on metagenomic datasets
[212, 28, 186]. One of the most popular metagenome assemblers today is MEGAHIT
[143] (5450 citations as of 19th June 2024 6), as it massively improved computational
requirements as well as assembly completeness and contiguity over other assemblers.
Further improvements on assembly can be achieved, for example by co-assembly of
samples that are from a single host, as a high level of strain retention within an indi-

6https://scholar.google.co.uk
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vidual is expected [291]. This approach artificially increases the sequencing depth for
low-abundant microbes, however, may lead to ambiguous and fragmented assemblies
in species with high strain-level variability [241].

Metagenomic binning

After assembly, binning tools group contigs together in ‘bins’ based on their gen-
omic origin. Binning tools typically use a combination of sequence properties and
abundance-based estimates of single contigs to group these together in a genome
"bin". Sequence properties such as tetra-nucleotide frequencies [117] or GC-content
[281], exhibit a species specific signal that is also present in the individual contigs.
However, short contigs are inherently hard to reliably assign to bins, as with decreas-
ing length the signal-to-noise ratio degrades rapidly [243]. Abundance-based binning
works with the premise that contigs from the same genome have similar abundance
within a sample and contigs between multiple samples exhibit a similar abundance
pattern across a genome [175].

Currently, popular binning tools are CONCOCT [5], MetaBat [115], and SemiBin
[203]. Additional tools like DAS Tool [251] and metawrap [282] refine the output of
other binners based on genome completeness and contamination.

MAG quality

Estimating genome completeness and contamination is a key process in building
high-quality MAGs from metagenomes. The tool CheckM marks an important devel-
opment as it improves quality control by estimating contamination and completeness
of MAGs [207] and has recently been superseded by CheckM2 [44]. CheckM analyses
lineage specific, single-copy marker genes, to assess the degree of contamination and
completeness. GUNC, MetaQUAST, MAGpy, and MAGpurify are complement-
ary tools used to assess and improve the quality of metagenome-assembled genomes
(MAGs), each targeting different aspects of contamination and chimerism [197, 178,
269, 187]. GUNC evaluates MAGs for taxonomic inconsistencies by checking for
discordant lineage signals across genes, making it particularly effective at identify-
ing chimeric and contaminated bins that traditional tools like CheckM might miss.
MetaQUAST is an assembly evaluation tool that compares contigs to reference gen-
omes (when available), identifying misassemblies, including chimeric contigs, struc-
tural errors, and unaligned regions. In contrast, MAGpurify specifically targets con-
taminant and chimeric contigs within MAGs. It uses multiple signals—such as GC
content, tetranucleotide frequencies, read coverage, and taxonomic assignments—to
score and filter out suspect contigs, improving MAG integrity. MAGpy is a scalable
pipeline for automatic MAG annotation that takes multiple MAGs to check their
quality, detect chimeras, suggests a taxonomy and places them in a phylogenetic
tree. Together, these tools improve MAG reliability for downstream taxonomic and
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functional analysis.

Alongside the development of tools for quality control of MAGS, a standard has
been established as a guideline for minimum quality requirements for MAGs. The
Minimum Information about a Metagenome-Assembled Genome (MIMAG) stand-
ards, proposed by the Genomic Standards Consortium [274], provide guidelines
for evaluating and reporting the quality of MAGs. MIMAG defines three qual-
ity tiers—high-quality, medium-quality, and low-quality—based on metrics such as
genome completeness, contamination, presence of rRNA genes, and the number of
tRNAs. For example, high-quality MAGs must be >90% complete, <5% contamin-
ated, and include the 23S, 16S, and 5S rRNA genes along with at least 18 tRNAs.
These standards are widely adopted by taxonomic databases like GTDB and frame-
works like SeqCode to determine the eligibility of MAGs for inclusion and potential
naming. By enforcing these thresholds, MIMAG helps ensure that only reliable gen-
ome reconstructions are used in downstream analyses, including taxonomy, functional
annotation, and evolutionary inference.

Advances in metagenome assembly and binning tools, along with the devel-
opment of quality assessment methods and community standards, have increased
confidence in MAGs, leading to their gradual integration into reference databases.
A good example of this development is GTDB [206]: For the first version of
GTDB (r89, 2019) only 15% of all ∼146,000 genomes were MAGs, a number which
grew to ∼45% of ∼597,000 genomes (r220, 2024) within five years. Moreover,
this progress has driven a rapid expansion of species representation in taxonomic
profilers, which have updated their databases by incorporating MAGs from diverse
environments. However, assembly-based pipelines also face challenges beyond
computational demands. Low-abundant taxa are difficult to assemble, which is why
some approaches combine reference-based and reference-free methods in taxonomic
profiling to increase sensitivity. Despite the importance of MAGs to cover taxonomic
diversity, reference-based pipelines are needed for fast and sensitive classification as
they detect lower abundant taxa, which lack the sequencing depth for assembly, at
a fraction of the time.

2.5.3 Strain-level analysis

Historically, the species definition emerged as a result of distinct phenotypic prop-
erties between bacteria. However, many species equally exhibit intra-specific pheno-
typic diversity [285], necessitating an increased taxonomic resolution to strain-level.
While functions are phylogenetically conserved to a certain degree, environmental
preferences show a greater contribution to the pan-genome’s (the collective genome
of organisms within a species) variance than phylogenetic inertia, which is the lim-
iting factor of previous adaptions on future evolution [164]. Thus, classifying the
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microbiome on genus or species level neglects potentially crucial strain-level differ-
ences within a species, such as pathogenicity or antibiotic resistance [142]. High
resolution strain-level metagenomics is therefore the key to understanding not only
how the microbiome changes over time, but also to investigate its role in disease
and identify its varying functional capacity. Further applications include detecting
transmission events of strains between two samples (such as two human hosts) that
can only be reliably detected if the sequencing resolution is adequate to identify a
common strain [314].

To understand how strain-level analyses can be conducted, it is important to
revisit the drivers of genetic diversity within a species. Genetic diversity emerges
from DNA replication errors, DNA repair errors, and mutagens, which causes SNPs,
insertions, deletions, but also structural variants such as inversions, duplications and
insertions. Mechanisms for exchange of genetic material, such as HGT or homologous
recombination, consolidate novel genetic diversity through genetic exchanges within
a species, thus decreasing genetic diversity. However, structural variants are hard to
detect with short-reads [297] (See Chapter 2.2), whereas long-read sequencing would
allow for an easier SV detection. For example, pan-genome based methods distin-
guish strains based on their gene content, but often require metagenome assembly or
sufficient reference genomes available [321] . This approach was used by Zhu et al. in
a reference-based approach to investigate inter-individual gene content of bacterial
strains of the same species [325, 91].
However, the most widely used methods to achieve strain-resolution are SNP based,
allowing for quantification of the genetic distance between entire genomes or spe-
cific marker regions. SNPs are easily identified from short-read alignments against
a reference genome using tools such as bcftools mpileup [144], freebayes [80], snippy
[245], or GATK haplotypecaller [216]. For example, Hildebrand et al. used de novo
assembly and SNPs calling in species core genes to investigate strain-retention and
dispersal across >1,000 species and >5,000 samples [98]. It is also important to
distinguish between de novo and reference-based strain-methods. GT-Pro, for ex-
ample, has a database built around SNPs from known genomes. It can genotype
strains, but ultimately lacks the resolution to incorporate unknown SNPs and other
genetic variation not represented in the reference database. Hence, strain-tracking
is possible, but limited to known variants and thus will not match the accuracy and
resolution of methods that can de novo detect SNPs.
Research often assumes for simplicity that the human gut is predominantly colon-
ized by a single (dominant) strain per species, with at most a few strains per species
(conspecific strains) [306]. This assumption is common in strain-resolved tools, which
typically consider only one strain per species in a single metagenome. While this sim-
plification is useful in many contexts, it may not fully capture the true complexity
of the gut microbiome, where multiple, potentially low-abundant, strains in addition
to the dominant strain can coexist in certain environments [81, 306, 301]. How-
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ever, several tools are specialized on disentangling con-specific strains. StrainScan,
for example, employs a tree-like data structure for k-mers between many closely re-
lated strains to accurately disentangle conspecific strains. Unfortunately, StrainScan
needs extensive database building for just one species and requires a multitude of
reference genomes to work [150]. ConStrains on the other hand requires only one
reference genome per species, rather linking SNPs with similar allele frequencies to
disentangle strain signatures; however, it requires a high coverage to be accurate
[160]. In practice, most strain-level tools which are not specialized for analysing
conspecific strains rely on a strong signal of a dominant strain and ignore potential
subdominant strains.
Strain-level pipelines can be separated into complete pipelines, starting from raw
sequencing reads, and pipelines which require prior read alignment or assembly, as
well as tools using whole-genome alignment vs. marker regions. MIDAS2 [323] starts
from raw reads by identifying species in a sample using marker gene alignments, to
then identify SNPs for all abundantly present species across the whole genome. Fur-
ther, MIDAS offers extensive pangenome analysis. StrainPhlAn 4 builds on the
MetaPhlAn 4 marker gene alignments to identify SNPs, reconstruct a consensus se-
quence, and build an MSA across samples on shared species [26]. inStrain [196]
takes read alignments as an input and does not provide a reference database. Un-
like MIDAS2 or StrainPhlAn4, which are consensus based tools, inStrain allows for
ambiguous matching by including includes minor SNP alleles into ANI computation.
While this approach is sensitive for detecting shared SNPs, it may also lead to an
increased false-positive SNP detection rate. SameStr [215] uses the same strategy
and compares strains with respect to all possible variants, both minor and major
alleles. Unlike inStrain, SameStr builds on top of both mOTUs3’s universal marker
genes and MetaPhlAn 4’s marker genes, offering an alternative to StrainPhlAn 4
to calculate distances, but does not reconstruct a consensus for MSA generation.
metaSNV2 also uses read alignments as input to delineate strains in metagenomes
and further provides a recommended database (ProGenomes2) [55, 286] . metaSNV2
stands out by being able to detect subspecies clusters, distinct phylogroups between
species- and strain-level.

The choice which software to use boils down to the available computational re-
sources, research question, and usability. Across all mentioned tools, StrainPhlAn
4 is reported to be fastest due to its utilization of marker genes instead of whole-
genomes [284].

2.5.4 Long-reads and hybrid assembly improve MAGs

Utilizing long-read sequencing for metagenome assembly holds significant potential
for enhancing the quality of metagenome-assembled genomes (MAGs) by overcoming
limitations of short-read assembly alone. Short-read assembly is difficult because a)
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low complexity regions with simple sequence repeats are hard to assemble, especially
because short-reads are often not long enough to span the entire region, b) short
reads have shorter DNA sequence overlaps that give rise to matches by chance,
and c) closely related strains or highly-conserved regions between species (e.g. 16S
rRNA gene) are hard to disentangle for the same reason as a). Therefore, MAGs
from short-reads are often fragmented due to those repetitive and hard to assemble
regions.

Long reads result in higher confidence alignment, which can help to span re-
petitive genomic regions, and can even lead to circular assemblies (a full contiguous
assembly of the whole chromosome) with minimal contamination. Additionally, long-
reads from the PacBio platform have a higher per-base accuracy and can be used
alone for genome assembly, as demonstrated with metaMDBG [21]. Other common
tools for assembling long-read data include Flye [127], Canu [128], and HiCanu [191],
all of which are widely used for assembling microbial genomes from PacBio or ONT
data. In contrast, Oxford Nanopore reads—despite their longer lengths—still have
a higher per-base error rate compared to Illumina reads [154]. For these datasets,
hybrid assembly approaches are preferred, as they combine the long-range continuity
of Nanopore reads with the high accuracy of short Illumina reads. Tools like Uni-
cycler [300], MaSuRCA [326], and hybridSPAdes [9] are commonly used for such hy-
brid assemblies, allowing for more accurate reconstruction of metagenome-assembled
genomes (MAGs). These approaches are currently the most effective way to generate
high-quality MAGs from Nanopore-based sequencing [299].

2.6 Computational concepts and data structures

Bioinformatics emerged as a solution to the vast amounts of data and the unique
challenges that come with analysing biological data. Many existing concepts from
statistics and other fields were adapted to problems in the biological domain [318, 71],
other methods were developed to work with sequencing data and other bioinformatics
inputs [259, 192].

The performance of bioinformatics software is determined by two major factors.
First, the chosen algorithm determines the runtime complexity and how the runtime
grows with input size. For example, the standard algorithm for optimal local align-
ment, the Smith-Waterman algorithm [259], has a quadratic runtime complexity
depending on query length n, denoted as O(n2) in Big O notation. Big O notation
gives an upper bound for how the time and space requirements grow as the input
grows (Fig. 2.7). The recently published wavefront alignment algorithm (WFA) im-
proves the algorithmic complexity from O(n2) to O(ns), with s being the similarity
between query and reference. This means that for identical sequences, the runtime
scales linearly with input length but gradually gets worse with decreasing similarity
and in the worst case scenario (no similarity) it exhibits the same runtime as the
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Figure 2.7: Visualization how the number of computations for algorithms with dif-
ferent runtime complexities scales with input size. Image generated using R.

Smith-Waterman algorithm.

The second factor in computational efficiency is about implementation specifics,
such as choice of programming language, parallelization efficiency, choice of data
structures, programming language, libraries, and memory efficiency. Simply put:
the range between the slowest and the fastest implementation of the same algorithm
can be vast [311, 129]. The choice of programming language defines how well the
developer can access the underlying low-level resources such as memory, to optimize
the number of operations necessary for computation, available libraries, and many
more. C++, for example, is a compiled language offering fine-grained control over
hardware and memory, allowing for optimizations that would not be possible in most
other languages.

This is often crucial, as the way data is laid out in memory affects the perform-
ance significantly. Most CPUs have a hierarchical memory system divided into local
storage and RAM, both of which are separate from the CPU, and further L3 cache,
L2 cache, and L1 cache, all of which are integrated into the CPU [258]. The access
times for memory increases in the order L1 cache, L2 cache, L3 cache, RAM, local
storage, whereas the storage capacity decreases in reverse order. L1 cache, for ex-
ample, has the fastest access time with ∼1-2 ns and usually has a capacity of 2-64
KB, while the main memory is ∼50-100 times slower but has a size of 16 GB in a
typical personal computer. Hence, if data that is actively used by an algorithm can
be laid out in consecutive blocks in memory, the number of accesses decreases and
the algorithm is faster. Frequent jumps between far away memory locations slow
down the program execution time. Different sorting algorithms, for example, have
been shown to exhibit difference performances due to cache access patterns [132].
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Sequence alignment

These performance differences can also be seen in popular bioinformatics algorithms
such as Smith-Waterman for local alignment. Smith-Waterman is a dynamic pro-
gramming algorithm for local sequence alignment that requires a matrix of size m×n,
with m being the size of the reference, and n being the size of the query (or read).
The matrix is filled in by comparing nucleotides between query and reference and
uses a set of parameters to score mismatches, start of gaps, and extension of gaps
(practically indels). This leads to the algorithm having a runtime complexity of
O(nm) which can be simplified to O(n2) if n > m is assumed. It has to be noted
that Smith-Waterman results in an optimal alignment, meaning no better solution
can be found given the input scoring parameters. Modern aligners use variations
of this algorithm. Bowtie2 [136], for example, first uses a seeding approach where
seeds of length 16 bp are extracted in distances of 10 bp and exact matches of those
seeds are searched in the reference via their internal data structure, the FM-index
(see next paragraph). Bowtie2 then uses a SIMD (single instruction multiple data)
accelerated heuristic of Smith-Waterman around exact matching seeds, to complete
the alignment between read and reference. SIMD is built into most modern CPUs
and allows for doing the same computation for multiple data values in one CPU-
cycle, as opposed to many cycles. SIMD can yield significant performance benefits,
but is hard to implement and also requires multiple implementations to allow for
execution on different CPU models. bwa-mem2 [169] implements a seed-and-extend
algorithm around the FM-index as well (‘mem’ stands for maximum exact matches).
It uses a banded Smith-Waterman alignment algorithm, which is restricted to only
fill in the matrix in a certain distance around the diagonal - a heuristic which speeds
up the process, but does not guarantee optimal alignment. Further, bwa-mem2 also
heavily employs SIMD acceleration to speed up certain operations. Heuristics such
as computing only parts of the matrix are often employed to speed up the algorithm
[151].

Data structures in sequence alignment

The two most common data structures for read alignment and sequence search in
bioinformatics are hash tables and the FM-index (Full-text index in Minute space)
[71]. While the FM-index is a complex search structure with conceptual similarities
to suffix-trees with great compression characteristics, a hash table is a conceptually
simple data structure storing key-value pairs for fast lookup.

The FM-index is a compressed full-text index based on the burrows-wheeler
transformation (BWT) . The burrows-wheeler transformation is a permutation of
the input text where all possible rotations of a text are stored in a matrix which
allows for better data compression. BWT has some similarities with suffix trees
[295], as each rotation of the input is also the start of a suffix. The FM-index con-
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ceptually combines BWT with suffix-arrays to yield a data structure that allows for
high compression and fast querying. It is not surprising that the FM-index found
application in bioinformatics, as many of its problems can be boiled down to text
search and storage. Well known bioinformatic implementations of the FM-index
are in the aforementioned alignment tools bwa [146] (Burrows-Wheeler aligner) and
bowtie [137]. The FM-index has linear time complexity O(n) for queries, depending
on the size n of the query. However, the FM-index has a poor spatial memory layout
(cache), causing many random access patterns to the cache, which are known to be
‘slow’ [112]. Although sequence aligners like bowtie and bwa are fast, many more
recently published aligners such as Minimap [145], accel-align [312], and strobealign
[234], achieve higher speeds while using custom hash tables instead.

A hash table, often also called hash map or dictionary, is an organised data struc-
tures of unique key-value pairs that allows for constant time lookup of a value given
its key. Constant time means that the complexity of a lookup is independent of both
input size and the size of the data structure. In k-mer based tools like Kraken, hash
tables are constructed in advance using a collection of reference sequences, with k-
mers serving as keys and sequence IDs as corresponding values. When presented with
a metagenome dataset for analysis, each read undergoes classification by searching
for its k-mers within the pre-built hash table. The read is then assigned to the taxo-
nomic identity associated with the most closely matching sequence based on k-mer
hits.

The significance of hash tables in this context lies in their linear time complex-
ity for lookup operations. This allows tools to utilise extensive reference databases
without impacting runtime performance. However, the use of large reference data-
bases does introduce memory usage considerations, as the hash table must be loaded
entirely into memory. While publicly available hash table libraries for C++ exist,
they often lack sufficient memory efficiency, thereby presenting a challenge for applic-
ations dealing with sizable datasets. In chapters 4 and 5 I will present two custom
implementations of a hash table, tailored towards fast and efficient k-mer lookups.
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Chapter 3

Benchmarking of metagenomic
profilers with benchpro

3.1 Introduction

Metagenomic studies provide insight into microbial communities, their functions, and
their interactions within diverse environments. Integral to studying these communit-
ies is to reconstruct their taxonomic composition to identify phenotypic changes
associated with certain microbial taxa in a host-related setting. This necessitates
accurate reconstruction of composition profiles by metagenomic profilers to reduce
false predictions that can confound the statistical signal. The reasons for false pre-
dictions in reference-based profiling are manifold and include sequencing technology,
sequencing errors, quality filtering, choice of reference, and underlying taxonomy.

With amplicon sequencing, for example, copy number variation of amplicons
in a single organism can lead to the false detection of multiple taxa and create a
false signal in the following analysis [89]. The distinction between these is import-
ant as, for example, incomplete reference databases or overly harsh quality filtering
of low-abundant taxa prevents discovering associations relating potential keystone
taxa. Ultimately, the challenge is to find a balance in quality filtering to remove the
false signal without losing the true signal. Aside from this, limited computational
resources, expertise, or time already dismiss certain tools that do not match the
requirements in computational efficiency and usability. A firm understanding of per-
formance and biases in taxonomic profilers is crucial to strike the balance between
sensitivity, precision, and invested computational and human resources.

Choosing the right tool, however, is not easy, especially as benchmarks rarely
go in depth into the root causes of false predictions and thus make it hard for the
user to identify whether the tool is applicable to their specific research scenario.
Consequently, an unbiased comparison of tool performance requires comprehensive
independent benchmarks covering a broad range of applications. CAMI, short for
critical assessment of metagenome interpretation, is an effort towards this by compar-
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ing metagenomic tools for example for taxonomic profiling and taxonomic binning.
Synthetic metagenomes as gold standard datasets simulate a wide range of microbio-
mes ranging from soil, over ocean to multiple host environments, allowing the authors
to compare the performance of multiple profilers across a variety of use-cases. Using
synthetic datasets as opposed to mock communities is crucial as the complexity of
real-world samples is higher than what is cost- and labour-efficiently achievable with
mock communities. In their comparisons, the CAMI team uses the NCBI taxonomy
as a common denominator and as a result the benchmarks are obfuscated by the
uncertainty of mapping between taxonomies and phylogenies. Tools like MetaPhlAn
4 and mOTUs3, take a different approach and come with proprietary databases with
their own phylogeny and taxonomy, which has to be mapped into the NCBI space
for benchmarking.

In the following, I will present benchpro, a set of tools for benchmarking meta-
genomic tools for species profiling as well as strain-resolved metagenomics. For
benchmarking taxonomic profilers, benchpro allows for easy analysis of large data-
sets across multiple tools for taxonomic classification, impact of sample richness
and abundance threshold filtering, and abundance prediction while supporting both
the NCBI and GTDB Taxonomy. For benchmarking using the GTDB taxonomy,
benchpro further provides analysis within the phylogenetic context of GTDB for
each profile, allowing for disentangling of different causes for false predictions and
their consequences.

For strain-level benchmarks, benchpro measures the monophyletic score, an ANI
independent assessment of degree of monophyly in phylogenetic trees, cluster error
in phylogenetic trees, and errors in MSAs for samples carrying the same strain.
Further, benchpro compares predicted phylogenetic trees to a gold standard tree to
assess similarity both with respect to topology and branch lengths.

3.1.1 Contribution of this Chapter

The scope of benchpro, in contrast to existing approaches [242, 177], is to not only
compare tools on a performance level, but also to dissect sources of errors. This
approach benefits both users and developers by providing a deep understanding of
a tool’s performance across different scenarios, thereby driving development and
enabling users to make informed decisions. Benchpro specifically targets false pre-
dictions in taxonomic profiling, analyzing these errors within a shared phylogenetic
context between predicted and gold-standard profile. Benchpro further provides
universal benchmarks for strain-level tools that stratify strains across samples and
use multiple sequence alignments and strain-resolved phylogenetic trees as interme-
diates, while existing benchmarks mostly focus on SNPs or use real-data with no
gold-standard [8, 196].
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Figure 3.1: Benchpro’s workflow listing required input, optional input, and output.
Taxonomic profiling requires gold-standard and prediction profiles for each tool, data-
set, and taxonomy. Optional files are phylogenetic tree for GTDB, and a list of all
species in the database for each tool. File paths and optional data is configured in the
META filer. For strain-level benchmarks, benchpro requires phylogenetic trees and
MSAs for each tool and species across all datasets. Further, gold-standard phylo-
genetic trees and strain-resolved information for each dataset is required.

3.2 Methods

3.2.1 Workflow

Benchpro is a tool to benchmark metagenomics software for taxonomic profiling and
strain-resolved analyses (Fig. 3.1). For evaluation of taxonomic profiling, benchpro
takes a set of generated predicted profiles along with their gold standard profiles (for
format see 3.2.3) to compute several metrics, such as F1-score, precision, sensitivity,
or Bray-Curtis similarity (see Section 3.2.2 for details). Optionally, the user can
provide gold-standard species-level trees and a list of species a tool can predict, to
put predicted and gold standard profiles into a phylogenetic context, facilitating
a more in-depth comparison. All files are organized within a meta-file, which is
used as main input for benchpro (see Section 3.2.3). For strain-level evaluation, the
tool-generated inputs are trees and MSAs for each species. Dataset inputs are gold-
standard trees as well as a meta-sheet providing additional information about the
strains per-species. For both species- and strain-level benchmarking, the output is
a report generated with R markdown, which contains a visualization of the results -
stratified by tool, dataset, taxonomic rank and metric.
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3.2.2 Metrics

Evaluation of Binary Classification

Taxonomic profilers are binary classifiers, which means that for a given sample the
taxa are put in one of two groups: present or absent. Benchmarking the binary
classification performance assesses how well a profiler performs at predicting the
presence or absence of taxa with respect to a gold standard profile. For each predicted
profile and its corresponding gold standard, I compute true positives (TP) as the
number of correctly predicted taxa, false positives (FP) as the number of incorrectly
predicted as present taxa, and false negatives (FN) as the number of taxa incorrectly
predicted as absent. Note, that there are no true negatives in this setting, as this
would encompass all taxa absent from the gold-standard profile that a tool can
predict. Some tools further output taxa labels for GTDB that indicate uncertainness,
e.g. ‘s__’ or ‘Incongruent [g__Marinobacter]’, and those are not counted as FP.
From TP, FP, and FN, I can compute sensitivity, precision, and F1-score as follows.

Sensitivity =
TP

TP + FN
(3.1)

Precision =
TP

TP + FP
(3.2)

F1 =
2 · TP

2 · TP + FP + FN
(3.3)

Adjusted Evaluation of Binary Classification

False negative predictions are caused by either insufficient vertical coverage (sequen-
cing depth), or because the database lacks coverage of the taxa. In the latter case, it
is important whether there is a closely related species (with a different label) which
is detected instead, or if the tool is unable to pick up the bacterial signal at all
(Fig. 3.2). For clarification: reporting a different taxonomic label compared to a
gold standard is generally a false prediction (especially in a clinical context). How-
ever, there are cases where labels do not match between gold-standard and predicted
profile because the species are clustered at a different resolution or do no match
between both taxonomies. In this case, false negatives (FN) that are absent from
the tool database (undetectable) are often in close phylogenetic proximity of a false
positive (FP) (see Fig. 3.2 C for clarification). This then indicates that there is a
difference in phylogeny and species definition leading to a labeling issue, but this is
not necessarily a biological error. To account for this, benchpro uses the GTDB tax-
onomy as a common taxonomy to identify those false positive, false negative pairs.
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Figure 3.2: Tree visualization of TP, FP and FN of predicted and gold-standard
profile. Each tip is a true positive, false positive, or false negative prediction. A, A
genuine false negative, often because the abundance is below the detection threshold
for the tool, but the taxon is covered by the database. B, A genuine false positive
caused by false signals of nearby false positive predictions. C, A wrong false positive
and false negative. The false negative taxon is not covered in the tool database,
so its merged with its closest neighbouring false positive if the distance is under a
threshold (distance of 0.04).

The algorithm starts with pairing each FP with their closest related FN based on
phylogenetic distance that is not contained in the tool database. Next, the pairs are
processed in order of phylogenetic distance, starting with the least distance pair. A
pair is merged if the FN is not already merged with another FP and if the distance
is below a certain threshold. Merged FN are relabeled as TP and merged FP are
relabeled as false false positives (FFP). In the evaluation I selected a tree distance
of 0.04 as a threshold for FP-FN-pairs to be considered for merging after assessing
the pairwise distances of FN species absent from the tool database and their phylo-
genetic closest FP species within the same dataset (see A.3). Additionally, profilers
sometimes output placeholder values such as ’s__’ or ‘Incongruent [g__ ...]’. These
taxa cannot possibly be TPs and reversely should not be counted as FP. Therefore,
they are relabelled as TN and thus removed from all metrics. The adjusted counts
are then used to recompute F1-score, sensitivity, and precision and are listed as a
new rank ‘Species Adj’ below ‘Species’.

Abundance Prediction

Beyond predicting presence and absence of taxa, profiling also entails predicting the
(relative) abundance of each taxon in the community. For benchmarking, benchpro
applies different metrics on the predicted and the gold standard abundances. I
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compute Bray-Curtis similarity (BC), L2 distance (also called euclidean distance),
and Pearson-Correlation (PC) on the predicted and gold-standard abundances. Taxa
present in only one of the profiles (FP, FN) are set to 0 in the respective other.
Additionally, to isolate the abundance prediction and not penalize for FP and FN
predictions, the metrics L2 and PC are also computed on abundances for only TP
predictions. This is indicated with a trailing ‘-TP’ (PC-TP, L2-TP). The metrics
compute as follows.

Bray-Curtis similarity =
2 ·

∑
min(Pi, Gi)∑
(Pi +Gi)

(3.4)

(3.5)

L2 =
√∑

(Pi −Gi)2 (3.6)

(3.7)

Pearson-Correlation =

∑
(Pi − P )(Gi −G)√∑
(Pi − P )2(Gi −G)2

(3.8)

Computing monophyly scores as an ANI agnostic metric

Microbial strain-tracking is important for understanding colonization and transmis-
sion patterns within and between (host) environments. For two samples carrying the
same strain, we can expect near perfect sequence identity (>99.9%) and, given a tree
with all samples, that they form a monophyletic cluster. Strains tracked between
samples, often have <100% ANI. Besides actual monoclonal nucleotide variation
between genomes of the same strain, this is caused by errors in sample preparation,
sequencing errors combined with low coverage, misaligned reads, as well as conspe-
cific strains and results in below 100% ANI in pairwise sequence comparison of the
same strain. To circumvent this problem, benchpro uses a monophyly score as an
ANI agnostic benchmark (see Fig. 3.3). It captures the structure and grouping of
samples rather than ANI values. With tools using different genomic regions (whole-
genome vs. universal marker genes vs. species-specific marker genes) for comparison,
ANI values can be misleading, which leads to structural metrics such as monophyly
becoming more important. Note, that the informative value of monophyly is lim-
ited to datasets with sufficient strain-sharing between samples and increases with
sample-size and number of closely related strains. Given a strain-level tree for a
species and samples as leaves with known strain-identity, I compute the monophyly
score for strain A as the proportion of samples carrying A and the total number of
leaves under the LCA of all samples carrying A as shown in Fig. 3.16.
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Figure 3.3: Here, the monophyly score describes the purity of a phyletic clade. It
is computed by dividing the number of samples carrying strain A by the number of
leaves in the smallest clade containing all samples carrying strain A. The monophyly
score is constrained to be between 0 and 1, with one being perfect monophyly score.

Computing Maximum Cluster Error in Phylogenetic Trees

Strains in a phylogenetic tree should form monophyletic clades. If two different
strains have high similarity it is often not possible to maintain monophyly. Given
strain A and strain B have indistinguishable high ANI. In this case, the pairwise
phylogenetic distances of samples within strain A and between strain A and B
should be close to zero (Fig. 3.18). To quantify this error in a phylogenetic tree
for a given strain, I introduce the metric Max Cluster Error (MCE) . The following
formula explains MCE. PairwiseWithin(A) are all pairwise distances between all
samples carrying Strain A and similarly PairwiseBetween(A) are all pairwise dis-
tances between a sample carrying strain A and all other samples outside of strain
A.

MCE(A) = −1 · (max(PairwiseWithin(A))−min(PairwiseBetween(A)))

(3.9)
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Figure 3.4: MaxClusterError (MCE) compares pairwise phylogenetic distances
within a strain to pairwise phylogenetic distances to other strains. High values
of MCE indicate that two strains are not separated in the tree. Further, MCE quan-
tifies large topological incongruities in the phylogenetic tree by reporting strains
with high pairwise distances within its members. MaxClusterError (MCE) is a
tree-dependent, subjective measure that reflects the relative placement of strains in
a phylogenetic tree. While its absolute values may vary with tree topology, MCE
is a useful comparative measure for assessing the clustering performance of different
tools. When computing MCE for strain A, all other strains are considered for the
pairwise between distances.

Computing the Error in MSAs

As with the monophyly score, knowing the strain-identity of each sequence in an MSA
and having multiple samples carrying the same strain, we can both assess the error
rate within a group of sequences representing the same strain and its information
content across all sequences. The error rate is computed as all positions in a group of
samples carrying the same strain where two different bases (ignoring ’-’ and ’N’) occur
divided by the number of positions with at least a coverage of two. The information
content, is the total number of positions with more than one nucleotide per position,
again ignoring ’-’ and ’N’. Intuitively, comparing sequences in the MSA representing
the same strain, I expect 100% sequence identity and any deviation indicates an error.
Similarly, to delineate strains within an MSA, I require sufficient genomic variation
to tell two strains apart. If the within group error rate exceeds the information
content in the MSA, it is not possible to robustly reconstruct strain-phylogenies.

Benchmarking Phylogenetic Accuracy

To measure the quality of per-species tree reconstruction, benchpro compares each
tree to its Roary [page_Roary_2015] gold standard constructed from all utilized
strains of a given species (see Section 3.2.5). Roary is a bioinformatics tool designed
for pan-genome analysis of prokaryotic genomes. It identifies both accessory genes
and core genes—those shared among a set of user-defined conspecific genomes—to
reconstruct their phylogenetic relationships. While each predicted tree has as many
leaves as samples, the gold standard tree only has one leaf per strain (genome) in
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the dataset. For comparison, each group of leaves (samples) in the predicted tree
carrying the same strain is removed and its LCA is kept as representative for this
strain. Predicted and gold standard trees can be compared either with respect to
edge lengths or tree topology. Benchpro uses the phangorn (v2.12.1) package [238]
to compute the topological distance metrics, normalized Robinson-Foulds distance
(RFnorm) [228] and Steel and Penny distance (SP) [266], and further the weighted
normalized Robinson-Foulds distance (wRFnorm) [228], weighted Steele and Penny
distance (wSP) and Kuhner & Felsenstein distance (KF) [161], which additionally
account for edge lengths.

Given two phylogenetic trees, the Robinson-Foulds (RF) distance counts the
number of branch bi-partitions that are not shared between two trees, hence the
maximum distance is the sum of the number of bi-partions of both phylogenetic trees.
The normalized distance is computed by dividing the Robinson-Foulds (RF) distance
by the maximum achievable distance, resulting in a value constrained between 0 and
1. The weighted RF distance incorporates branch lengths by incrementing the score
based on the absolute difference in branch lengths between two trees and for each bi-
partition, instead of simple counting [228]. Similarly, the Kuhner-Felsenstein (KF)
distance sums up the squared differences instead of absolute values, giving more
weight to longer branches [130]. The path distance as proposed by Steel and Penny
[266], first computes all leaf-to-leaf difference for both trees, and then sums up the
absolute differences for each path between trees.

3.2.3 Input Format for Benchpro

Gold-standard and Predicted Profiles

Benchpro accepts taxonomic profiles in CAMI format [242] and in tab-delimited
files. With both formats, the two columns of interest are lineage and abundance,
the column number of which can be specified in the map file (see Section 3.2.3).
Profiles must either specify taxa only for a single rank or specify all taxa. If
the profile contains only taxa of a single rank, e.g. species, the abundances for
all higher ranks will be inferred with help of the taxonomic lineage. The taxo-
nomic lineage can be either pipe-delimited (2|23|123...) or semicolon-delimited
(d__Bacteria;p__Firmicutes;...") and names are either integers or strings with or
without the GTDB tax prefix ‘s__’ (s for species).

Meta Files for Organizing Input

To provide a simplified framework for complex benchmarks with multiple samples,
data sets, and tools, benchpro takes map files for benchmarking taxonomic profiling
and strain-resolution. Map files are tabular files (.xlsx or .tsv), organizing inform-
ation on utilized tools, samples, paths to profiles, trees, MSAs, and other files. In
the map file for benchmarking taxonomic profiling, there is an entry (row) for each
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Table 3.1: Map file required for benchmarking taxonomic profiling. All columns are
mandatory.

Column Description

ID Unique identifier in the whole table, e.g. protal_sample1
sample Sample name
Dataset Dataset name
Tool Tool name
Profile Path to predicted profile
ProfileColumns Columns in the profile with the format id|gtdb_lineage|abundance .

(default 0|1|2, indicating that lineage is in column 1 and abundance
in column 2, starting with column 0. If the id is missing, this can be
indicated with an X, e.g. X|0|1).

GoldStd Path to gold standard profile
GoldStdColumns Same as “ProfileColumns” for GoldStd.
GoldStdTree Tree for the utilized taxonomy. E.g. GTDB r214 for protal or GTDB

r207 for MetaPhlAn 4. Can be set for each sample individually.

predicted profile. Each entry specifies which tool generated the profile for which
sample and where to find the predicted and the gold-standard profile. The exact
specifications are described in Table 3.2.

In contrast to per-sample benchmarks for taxonomic profiling, the strain-level
evaluation revolves around per-species MSAs and phylogenetic trees. In the strain-
level map file each entry (row) contains information about tool, dataset, species,
path to the tree, path to predicted reconstructed tree including information on the
tool, the tree construction tool and the species, as well as where to find the newick
tree, the MSA and a species meta-file. Trees must be in newick format and MSAs
in fasta format.

For a species present across multiple samples, the species-meta-file contains in-
formation about the vertical coverage and the specific strain contained in each
sample. This information must be supplied with the gold standard dataset and
cannot be derived by the user unless the user has created the dataset. With this
information, benchpro can deduce which tree tips should form monophyletic groups.

3.2.4 Output Format

The output of benchpro is a report (.html) generated with R Markdown. The report
contains plots for different metrics, stratified by dataset and tool. For species-level
benchmarks the report can be generated in a single command from the command-
line. The strain-level scripts are currently still in development.
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Table 3.2: Benchpro map file for strain-level evaluation. Rows are samples and
columns contain additional information on file paths and others. The meta-file can
be either a .xlsx or as tab-delimited text file. Provided to benchpro with ‘–meta
META_FILE’

Column Description

Name Unique name of tree
Species Species name, e.g. s__Agathobacter_rectalis
Tool Tool name (gold-std in case this entry is the gold-standard tree for

this species)
TreeTool Tool for tree creation (e.g. IQ-tree or raxML)
Tree Path to newick tree file
MSA Path to MSA file
AnalysisMSA Path to MSA analysis if it does not exist, it will be generated by

benchpro from the MSA supplied in column MSA
Meta Path to species meta-file, containing information which strains each

sample contains.
SpeciesTree Path to species level tree. Can be set to NA
AvailableSpecies Path to file containing a line for each species that can be detected.

Can be set to NA

Table 3.3: Benchpro species meta-file for strain-level profiling. Rows are samples
and columns contain additional information on file paths and others. The meta-file
can be either a .xlsx or a tab-delimited text file. Provided to benchpro with ‘–meta
META_FILE’

Column Description

ID Matches sample name in strain map and in trees
genome Name of genome used to simulate reads
species Species name
Coverage Vertical coverage of reads for this species in this sample
Path File path to genome fasta

3.2.5 Datasets

Taxonomic Profiling

For species-level benchmarking I used the datasets “Toy Human Microbiome Project
Dataset“ (CAMI Human), “Toy Mouse Gut Dataset” (CAMI Mouse), and “Marine“
(CAMI Marine) from the 2nd CAMI challenge (https://data.cami-challenge.
org/). The gold standard profiles were converted to GTDB r207 and GTDB
r214 by running GTDB-tk v2.32 on the source genomes and using the abund-
ance values provided in the ‘abundance<sampleid>.tsv’ files for CAMI Human and
the ‘distributions/distribution_<sampleid>.txt’ files for CAMI Mouse and ‘gen-
ome_to_id.tsv’ to map the genome fasta files with their respective genome identifier.
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Strain-evaluation

To benchmark the strain-level performance by measuring monophyly and within-
group error in MSAs, the dataset needed to resemble time series data where some
samples share the same strain and other samples contain different strains at a vary-
ing rate of relatedness. As a source for genomes I chose humgut, a comprehensive
collection of 289,232 genomes and MAGs common to the human gut [99]. To se-
lect a set of species with a variety of high quality genomes available, I filtered the
humgut database for isolate genomes only and selected 50 species with 15-60 isolate
genomes each. As the existing taxonomic annotation was done with the older GTDB
r95 version, I re-annotated the pool of 1428 isolate genomes with GTDB-tk (v2.32,
default parameters) and GTDB r214. Due to changes in taxonomic assignments,
the re-annotated genomes now span 67 species in version r214. After this process
I removed species that had less than 15 genomes available and was left with 1348
genomes spanning 46 species. These genomes were used as the basis to simulate 200
samples, each containing a single strain per species across all 46 species. Although
taken from a collection of bacteria commonly found in the human gut, the genome
selection was not designed to mimic the gut environment by representing a commonly
found diversity. Instead, the goal was to pick species which had a sufficient number
of isolate genomes available to avoid the often intransparent quality issues regard-
ing chimeric contigs and bins found in MAGs. All isolate genomes names within
humgut with their GTDB r214 species classification used can be found in Table A.3.
Table A.3 contains information on mean vertical coverage and standard deviation
per species across samples.

For each sample and species the genome is randomly selected from the pool and
the vertical abundance values are normalized to be between 1 and 50 following a
negative binomial distribution. The paired reads with 2x150bp are simulated with
art_illumina (v2.5.8) [102] using the parameters ‘ss HS25 -i <input.fna> -p -l 150 -f
<coverage> -m 200 -s 10 -o <output_prefix>’. The core genome and gold-standard
MSA for each species was constructed with Roary (v3.13.0, default parameters)
[page_Roary_2015] and ‘–mafft’ [118] on all prokka (v1.14.6, default parameters
from Roary) [244] gene predictions from source genomes within that species. iqtree
(v2.2.0.3) [180] was used to construct the gold-standard phylogeny of all strains from
Roary’s MSAs within a species with ‘-s <MSA> -fast -m GTR’. This dataset is used
in Section 3.3.3 and Section 5.3.5.

3.2.6 Metagenomics

Taxonomic profiling

MetaPhlAn 4 (v4.0.2) was used to profile the CAMI datasets and SPECIES46 data-
sets with database ‘mpa_vJan21_CHOCOPhlAnSGB_202103’ using default para-
meters. MetaPhLAn 4 uses bowtie2 with ‘–sensitive’ to align the reads against
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species-specific markers. mOTUs3 (v3.0.1) uses bwa2 for alignment against uni-
versal marker genes of a custom database . Kraken2 (v2.1.3) was used with the
standard RefSeq database covering bacteria, archaea, viruses, and the human gen-
ome1. Bracken (v2.9) was used for abundance estimation with a read threshold (‘-t’ )
of 450. Kraken2+Bracken output was mapped from NCBI to GTDB with a custom
mapping file created from the GTDB r214 metadata files 2. The species-level NCBI
taxonomic identifier (Column 74 in the metadata file) was mapped to the GTDB
lineage (Column 17) where GTDB and NCBI species names matched. If this was
not possible, the NCBI taxonomic identifier was mapped to the GTDB lineage with
the most occurrences. In case of a tie, an arbitrary GTDB lineage was selected out of
the tying members. MetaPhlAn 4 was mapped to GTDB using the provided script
‘sgb_to_gtdb_profile.py’ and NCBI results were obtained with the parameter ‘–
CAMI_format_output’. mOTUs3 was mapped to GTDB using a custom script and
their mapping file ‘mOTUs_3.0.1_GTDB_tax.tsv’ and NCBI results were obtained
with the parameter ‘-C parenthesis’.

Strain-level profiling

StrainPhlAn 4 (v4.0.2) was run with default parameters by first extracting the marker
regions for each sample with ‘sample2markers.py’ from the read alignments, then ex-
tracting the marker regions from the database as reference with ‘extract_markers.py’
from all SGBs (MetaPhlAn 4 species) found in the samples, and finally running the
main command StrainPhlAn 4 with ‘–marker_in_n_samples 20’ to get per species
MSAs. Protal was used with default parameters to get taxonomic profiles. IQ-Tree
was used to infer phylogenetic trees from multiple sequence alignments with ‘iqtree
-s <MSA> -fast -m GTR’.

3.2.7 Runtime and memory benchmark

For the runtime comparison, all tools are run on the CAMI Airways dataset with 10
samples of 2x5GB uncompressed paired-end fastq files. Included in the comparison
are Kraken2+Bracken, mOTUs3, MetaPhlAn 4, and StrainPhlAn 4. The tools were
run with the parameters described in the previous section 3.2.6. All tools were run
with 16 threads and the benchmark was conducted on AMD EPYC 9654 96-Core
Processor @ 3.70GHz with a separate local SSD storage. All reads were copied over
to the local SSD storage to minimize the effect of other processes on the cluster
using IO. The databases were not copied over, but each program was run three times
and the best run was taken as final result. After the first run, the utilized database
is cached, which leads to loading time being faster for the two subsequent runs.
StrainPhlAn 4 was only run once, but does not load a large database as opposed to

1https://benlangmead.github.io/aws-indexes/k2, from 1/12/2024
2‘ar53_metadata_r214.tsv’ and ‘bac120_metadata_r214.tsv’
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the other tools. Tree construction is not included in the benchmark for StrainPhlAn
4, as it is the user’s choice which tool to use.

3.2.8 Implementation Details

Benchpro’s implementation is comprised of both data generation and visualization.
Statistics for taxonomic classification, from predicted and gold standard profiles, are
implemented in Python 3.10. Visualisation and R Markdown generation is imple-
mented in R. Strain-level analyses are implemented in R and R Markdown. Trees are
read and handled with the ape package. Tree comparison is done with the phangorn
package as described in 3.2.2. All plots are generated with ggplot2.

• R version 4.5.0,

• Other packages: ape 5.8-1, BiocManager 1.30.25, cowplot 1.1.3, dplyr 1.1.4,
DT 0.33, forcats 1.0.0, ggExtra 0.10.1, ggplot2 3.5.2, ggpubr 0.6.0,
ggtree 3.16.0, ggtreeExtra 1.18.0, knitr 1.50, lattice 0.22-5, maps 3.4.2.1,
PerformanceAnalytics 2.0.8, permute 0.9-7, phangorn 2.12.1, phytools 2.4-4,
plotly 4.10.4, quantmod 0.4.27, reshape2 1.4.4, stringr 1.5.1, tibble 3.2.1,
tidyquant 1.0.11, tidyr 1.3.1, TTR 0.24.4, vegan 2.6-10, xts 0.14.1, zoo 1.8-14

3.3 Results

3.3.1 Overview

The following results section is divided into two parts: benchmarking taxonomic
profiling (Fig. 3.5) down to the species level and separate strain-level benchmarking
(Fig. 3.6).

Taxonomic profiling is evaluated using MetaPhlAn 4, mOTUs3, and
Kraken2+Bracken on the CAMI datasets (see Section 3.2.5; Fig. 3.5). First,
species-level classification performance is assessed in terms of F1-score, sensitivity,
and precision (Fig. 3.5 A). These metrics are then re-evaluated after applying
an abundance threshold to filter out low-abundance FP predictions, testing
whether such post-filtering improves overall performance (Fig. 3.5 A). Genus-level
performance is also examined using the same metrics (Fig. 3.5 B). Finally, to
assess how accurately each tool estimates species-level abundances, predicted and
gold-standard profiles are compared using L2 error, Bray-Curtis dissimilarity, and
Pearson correlation (Fig. 3.5 C).

Next, the species-level results are re-examined within a phylogenetic framework
using the GTDB r207 and r214 reference trees, with a particular focus on FNs
that are caused by taxa absent from some tool databases. For each tool, FNs
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Figure 3.5: Overview over datasets, tools, and analyses regarding taxonomic profiling
in this chapter.

are classified as FN- or FN+, depending on whether the species is present in the
respective database. False positives (FPs) are then analysed in relation to their
closest phylogenetic neighbours among FN-, FN+, and true positives (TPs), as well
as their relative abundances, to explore potential sources of misclassification (Fig.
3.5 D). Subsequently, FP-FN- pairs are reassessed to derive adjusted species-level
performance scores (Fig. 3.5 E). Detection thresholds are also examined across tools
and datasets to (a) estimate the minimum abundance at which true positives are
reliably detected, and (b) quantify high-abundance FNs that are missed (Fig. 3.5
F). Finally, the mouse dataset is used to assess how species richness in a sample
impacts tool performance (Fig. 3.5 G).

The strain-level benchmarks assesses StrainPhlAn 4 on a custom dataset spanning
200 samples, each containing a single strain per 46 species. The aim is to assess
StrainPhlAn 4’s (and later protal in chapter 5) ability to sensitively and accurately
resolve strains for species present in multiple samples. First, the sample and strain
sensitivity is assessed and how it is affected by the vertical coverage of strains (Fig.
3.6 A). Next, monophyly score is used as a metric to assess how well samples with the
same strain cluster together in the tree (Fig. 3.6 B). After this we look at monophyly
and sensitivity together to see if they affect each other (Fig. 3.6 C). MCE is used to
further quantify errors in non-monophyletically resolved strains (Fig. 3.6 D). Next,
we assess whether errors in the MSAs support errors in the tree (Fig. 3.6 E). Lastly,
per-species phylogenetic trees are compared to reference trees generated using Roary.
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Figure 3.6: Overview over datasets, tools, and analyses regarding strain-level bench-
marks in this chapter.

3.3.2 Taxonomic Profiling

Benchpro is a suite of tools designed for a comprehensive assessment of taxo-
nomic profilers and strain-resolved tools. The following section shows a compar-
ison between three popular taxonomic profilers, MetaPhlAn 4 [26], mOTUs3 [232],
and Kraken2+Bracken [307, 159]. This evaluation sheds new light on the tools’
profiling performance regarding false positives and false negatives, abundance pre-
diction accuracy, abundance detection limits, and effect of abundance-based post-
filtering. All tools were run on the CAMI datasets Human Microbiome, Mouse
Gut, and Marine, and are evaluated using both the NCBI and GTDB taxonomy
(For methods, see 3.2). Further, this comparison is not only between tools, but also
between alignment-based vs. alignment-free approaches (MetaPhlAn 4 and mOTUs3
vs. Kraken2+Bracken) and a comparison between methods using species-specific
marker genes, universal marker genes, and whole genomes as reference (MetaPhlAn
4, mOTUs3, and Kraken2+Bracken, respectively).

Fig. 3.7 shows the species-level benchmarking results between MetaPhlAn
4, mOTUs3, and Kraken2+Bracken using both the NCBI and GTDB taxonomy.
For F1-score for species level on all datasets, MetaPhlAn 4 performs best with a
mean of 0.927±0.04 and 0.852±0.057, for GTDB and NCBI respectively. mOTUs3
comes second with 0.841±0.055 for GTDB and 0.773±0.062 for NCBI. Last is
Kraken2+Bracken with 0.427±0.157 and 0.451±0.15. As both MetaPhlAn 4
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Figure 3.7: Species level profiling performance across samples, environments, and
tools measured with F1-score, precision, and sensitivity. Each box plots represents
a tool and each data point is a sample. Top to bottom, the panels display F1-
Score, precision, and sensitivity and the column panels stratify between different
environments with the left row being the summary across all environments.

NCBI and mOTUs3 NCBI have comparable sensitivity levels (0.823±0.068 and
0.782±0.084, respectively), the difference in F1-score is mostly due to the inferior
precision of mOTUs3 (0.885±0.055 vs. 0.772±0.077 for MetaPhlAn 4 vs. mOTUs3).
The GTDB phylogenetic context uncovers that FP predictions in mOTUs3 are
mostly artifacts of surrounding close-by (and often highly abundant) true positives.
An example of this signal can be seen in mOTUs3 GTDB profile for sample Mar-
ine_3. s__Moritella viscosa is correctly predicted as present, albeit with a higher
abundance (0.31% true abundance, 0.88% predicted abundance). In addition, two
FP species of the same genus—s__Moritella sp001574435 and s__Moritella mar-
ina—and in the close phylogenetic neighbourhood are falsely predicted as present
with lower abundances of 0.09% and 0.13%, respectively (see Fig. A.2).

Both MetaPhlAn 4 and mOTUs3 have a similar F1-score between GTDB and
NCBI and for MetaPhLAn4, sensitivity and precision are also similar between tax-
onomies. However, mOTUs3 GTDB has a lower precision (0.87±0.082 for GTDB,
0.874±0.061 for NCBI) and higher sensitivity (0.818±0.062 for GTDB, 0.782±0.084
for NCBI). MetaPhlAn 4 GTDB performs better than MetaPhLAn 4 across all met-
rics (F1: 0.928±0.04 vs. 0.852±0.057, precision: 0.95±0.035 vs. 0.885±0.055, sens-
itivity: 0.907±0.05 vs. 0.823±0.068). Kraken2+Bracken GTDB performs worse
than the other tools with an F1-score of 0.427±0.157, precision of 0.331±0.138, and
sensitivity of 0.676±0.23. Kraken2+Bracken using NCBI performs better than with
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GTDB and has a F1 score of 0.451±0.15, a sensitivity of 0.698±0.272, and a preci-
sion of 0.354±0.119. The performance difference between taxonomies is likely due to
Kraken2+Bracken’s output being native to NCBI - mapping to GTDB adds noise.
This is not the case for the other tools, as both MetaPhlAn 4 and mOTUs3 have
their own internal taxonomy and phylogeny and thus are neither native within NCBI
nor GTDB. MetaPhlAn 4’s better performance on GTDB suggest that its internal
species clustering aligns more with GTDB than with NCBI. Kraken2+Bracken’s high
sensitivity is partly due to its whole genome approach, which allows for picking up
a signal from the whole range of the genome, as opposed to MetaPhlAn 4’s and
mOTUs3’s marker gene based approach, which greatly limits the amount of inform-
ative reads. Additionally, Kraken2+Bracken has no default filter for FP reads and
thus gains its sensitivity at the cost of precision seen in the difference of their medians
of ∼0.5 across all datasets.

Figure 3.8: Change of F1-score, precision, and sensitivity on species-level on the
y-axis across tools when applying different abundance thresholds for the predicted
profiles on the x-axis. Each panel shows the performance of one tool. The y-axis
shows the mean of F1-score, precision, and sensitivity and is calculated for each tool
over 107 samples across all datasets (CAMI Human, Mouse, Marine).

To investigate whether applying an abundance threshold can increase the profiling
performance on species-level, a sliding threshold was applied to recompute sensitivity,
precision, and F1-score (Fig. 3.8). Kraken2+Bracken benefits the most from this
threshold with a maximum mean F1-score of ∼0.85 and ∼0.8 for NCBI and GTDB
respectively between a threshold of 0.0005 and 0.001, marking an increase of 0.3
from the unfiltered profiles. mOTUs3 benefits as well, with an increase of ∼0.05 for
both taxonomies peaking at a threshold of ∼0.0003. MetaPhlAn 4 shows no increase
in F1-score and has its best performance with no filter. It should be noted that
this benchmark explores the best possible performance with an abundance threshold
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determined with knowing the gold-standard. This is not achievable by the user,
as the best abundance filtering threshold depends on factors like sequencing depth
and complexity of the community. Therefore, there is no way to determine which
threshold is the best on real data. MetaPhlAn 4 is the most user-friendly in this
sense as the default parameters yield a good performance. It is also noteworthy that
MetaPhlAn 4 is the most precise out of the three tools at any threshold.

Genus-level profiling performance

Figure 3.9: Genus level profiling performance across samples, environments, and
tools measured with F1-score, precision, and sensitivity. Each boxplot represents
a taxonomic profiler and each data point is a sample. From top to bottom, the
row panels are F1-Score, precision, and sensitivity and the column panels stratify
between different environments with the left column being the summary across all
environments.

On genus-level and across all datasets, both MetaPhlAn 4 GTDB and mOTUs3
GTDB show an almost perfect F1-Score with 0.988±0.013 and 0.983±0.017, re-
spectively (Fig. 3.9). With NCBI, the scores are significantly lower at 0.834±0.11
for MetaPhLAn 4 and 0.916±0.051 for mOTUs3. While the precision for both tools
is almost 1 (1±0.001 for MetaPhlAn 4 and 0.995±0.014 for mOTUs3), they miss
some genera (mean FN of 27.111±3.79 and 50.889±5.533 for MetaPhlAn 4 GTDB
and MetaPhlAn 4 NCBI, and 43.556±5.681 and 53.222±6.078 for mOTUs3 GTDB
and mOTUs3 NCBI), likely due to genera that are either only represented by low
abundant species that are also not detected, or by genera that are missing or labelled
differently in the respective tool databases (sensitivity of 0.977±0.024 for MetaPh-
LAn 4 and 0.971±0.032 for mOTUs3). Since the focus is on species-level profiling
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and below, I did not investigate this further. Kraken2+Bracken GTDB is inferior
in all metrics with an F1-score of 0.701±0.178, a precision of 0.637±0.2, and a sens-
itivity of 0.81±0.172. The value is about the same for NCBI with an F1-score of
0.711±0.17, a precision of 0.655±0.177, and a sensitivity of 0.81±0.172. These scores
are not only due to the large number of FPs (mean of 31.533±26.123 for GTDB and
19.215±14.414 for NCBI) as otherwise the sensitivity would be higher.

Benchmarking the reconstruction of species-level relative abundances

Figure 3.10: Benchmark to test the ability to correctly reconstruct microbial abund-
ances. The column panels show different datasets, with the leftmost column being
the summary across all; the row panels stratify different metrics. Each plot shows
the performance on the y-axis stratified for all tools on the x-axis. Each data point in
the boxplots represents a sample. The metrics displayed are Bray-Curtis similarity
(BC), 1 - L2-error (L2) and Pearson Correlation (PC). The suffix ‘-TP’ indicates
that the metric has only been computed on TP abundances (see Section 3.2.2 for
details).

Correctly predicting presence and absence of taxa is only one part of taxonomic
profiling. Predicting the abundance values is equally important, as downstream stat-
istical analyses rely on accurate abundance values for differential abundance analysis.
I used two different ways to assess the performance of abundance prediction. The
metrics Bray-Curtis similarity (BC), L2, and Pearson Correlation (PC) penalize not
only for deviating abundance values, but also for missing or incorrect species. L2-TP
and PC-TP only focus on TP taxa and thus do not penalize based on the classification
performance (see Section 3.2.2 for details). Further, all of the abundance prediction
metrics were only computed on unadjusted values.

62



Joachim Fritscher

MetaPhLAn 4 GTDB had the highest score across all tools and all metrics with a
mean BC similarity of 0.944±0.136, followed by mOTUs3 GTDB with 0.929±0.134,
and Kraken2+Bracken with 0.835±0.177. This order maintains for all other metrics.
Out of all datasets, all tools showed the lowest accuracy at reconstructing abund-
ances for the Marine dataset, with a mean BC between 0.295±0.02 and 0.349±0.027.
However, for the metrics only comparing TP abundances all tools performed much
better. For L2-TP, MetaPhlAn 4 GTDB had the lowest mean L2-TP of 0.89±0.013,
and Kraken2+Bracken had the highest L2-TP with a mean value of 0.91±0.008. The
reason for this is the abundance of plasmids in the dataset that cannot be detected
with any of the tools, that are not included when only assessing TP abundance
predictions. The dataset with the most variance across tools is Mouse for which
MetaPhlAn 4 GTDB performed the best with a mean BC of 0.936±0.115, mean L2
of 0.924±0.141, and mean PC of 0.931±0.168. Kraken2+Bracken GTDB performed
the worst for BC with a mean value of 0.511±0.179. Kraken2+Bracken was worst for
L2 of 0.645±0.173 and PC of 0.509±0.303. Due to the lack of availability of genomes
for the Mouse dataset, Fritz et al. reduced the quality requirement of genomes to
‘scaffold’, suggesting that the dataset is simulated from lower quality genomes [77].
Incomplete genomes might hamper with the internal abundance prediction algorithm
of tools, for example in regions with low or no read coverage.

Adjusted TP, FP, and FN values on species-level lead to more accurate
assessment of tool performance

In the previous benchmark, TPs, FPs, and FNs were determined by exact matching
between taxonomic labels of prediction and gold profiles, disregarding the taxonomic
or phylogenetic context. However, a closer inspection of FP and FN predictions
within a shared phylogenetic context warranted questioning this strategy. For ree-
valuating wrong predictions, FNs are divided into the two categories, detectable taxa
and undetectable taxa, based on whether they can or cannot be predicted by the
tool (see Section 3.2 for details). In several cases, undetectable FNs formed pairs
with FP taxa in close tree distance, suggesting that the present organism was identi-
fied, but mislabeled due to a mismatching taxonomies and phylogenies. To quantify
this signal, all GTDB prediction profiles have been re-evaluated by benchpro with
respect to GTDB’s species-level phylogenetic tree. By using the proposed algorithm
to re-adjust species level benchmarking, the performance improved for all tools with
the GTDB taxonomy. MetaPhlAn 4 benefits the most with removing 166 FP+FN
pairs leading to a false prediction reduction of more than 60% and thus rendering
90% of FPs as an error of mapping. mOTUs3 follows with 118 pairs removed and
a following reduction of ∼13% and Kraken2+Bracken has 68 FP+FN pairs removed
leading to a 1.3% reduction in false predictions. The high relative reduction of false
predictions for MetaPhlAn 4 is due to the low initial number of false predictions. All
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removed FP+FN pairs are caused by misclassifications due to label mismatching.
The low amount of remaining false predictions suggest an otherwise homogeneous
mapping between the GTDB and MetaPhLAn4 phylogeny and that FP+FN explain
most of the false predictions for MetaPhLAn4. For Kraken2+Bracken, on the other
hand, only 68 FP+FN pairs indicate that the cause of FN and FP predictions is more
substantial and only partly due to label mismatching. It happens that a single NCBI
taxonomic identifier associates with genomes from different genera within GTDB and
leading to an error that cannot be removed by the here introduced algorithm. The
difference in F1-score between Kraken2+Bracken NCBI and GTDB shows the errors
introduced by mapping the NCBI taxonomy to GTDB. However, the main source of
false predictions in Kraken2+Bracken and mOTUs3 are spurious low-abundant spe-
cies caused by high-abundant TP species causing signal in the closer phylogenetic
neighbourhood. Although mOTUs3 has a higher reduction in false predictions, the
majority of FP predictions remain after re-evaluation.

Figure 3.11: Each point is a FP prediction, plotted with respect to the phylogen-
etically closest TP, FN- or FN+ in the same sample. FN+ are false negatives that
are contained in the taxonomic database of the tool. FN- are absent from the tool
database. The x-axis shows the tree distance to the closest TP and the y-axis shows
the true abundance of the TP, FN+, and FN-. TP, FP, and FN values are after
re-evaluation.
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After re-evaluating FPs and FNs, I analysed the remaining FPs with respect to
their closest phylogenetic neighbour in the gold-standard profile (TP, FN+, FN-).
Fig. 3.11 shows that FP predictions by mOTUs3 GTDB are mostly within close
phylogenetic distance of TP predictions that are often also high-abundant. This
signal suggests that high-abundant taxa in a dataset lead to FP predictions in their
close phylogenetic neighbourhood. Kraken2+Bracken GTDB, shares the same sig-
nal, however, there are also FPs that are not in close phylogenetic distance to any
TP. A potential explanation is that Kraken2+Bracken’s database contains mobile
elements shared via HGT, that are also shared with species less phylogenetically
related. Additionally, the taxonomic species definition in NCBI is only an approxim-
ate representation of phylogenetic relationships, which can lead to discordance when
mapping to the phylogenetically more consistent GTDB taxonomy.
MetaPhlAn 4 GTDB also shows 12 FP whose closest neighbour in the tree are FN-
species. Although the majority of those were resolved during re-evaluating pairs
of FP and FN species, some remain, as they did not meet the threshold of 0.04%
phylogenetic similarity. Although the threshold was only determined through visual
inspection of FP-FN- pair distances, this does not automatically mean the threshold
should be increased. Raising the threshold further would permit greater phylogen-
etic divergence between the predicted and actual species, potentially inflating the
perceived performance of the tool. Those 12 FP species have a mean phylogenetic
distance of 0.043±0.003 to the next FN- species. MetaPhlAn 4 GTDB does not
have any FPs that are closest to a detectable FN (FN+). mOTUs3 GTDB has 6
FPs closest to a FN+, three of which ares__Anaerotignum lactatifermentan falsely
predicted as s__Anaerotignum sp001304995. This shows that the present strain
is classified differently between the GTDB taxonomy and mOTUs3’s classification.
Kraken2+Bracken has a high occurrence (n=5315) of FPs in close distance to high
abundant detectable FN+. When stratified by dataset it is apparent that the signal
varies between dataset (see Supp Fig. A.1). The signal of FPs in close distance
to high abundant FN+ is only present in the Mouse dataset. This signal is poten-
tially an artifact of mapping from NCBI to GTDB (see Section 3.2.6), and also the
Kraken2+Bracken’s whole-genome approach.

After re-evaluating false predictions, F1-score, sensitivity, and precision were re-
computed on the adjusted TP, FP, and FN counts. With the resulting adjusted
scores of species level performance, MetaPhLAn 4 achieves an F1-score of over 0.9
for every single dataset and a mean F1-score of 0.972±0.02, marking an increase of
almost 0.05 compared to the unadjusted scores. MetaPhlAn 4 GTDB’s precision is
at a remarkable 0.996±0.011 due to a low mean FP count of 0.673±1.72, which is
reduced from 4.935±4.622 in the unadjusted benchmarks. mOTUs3 GTDB’s F1-
score increased by ∼0.02 to a mean of 0.89±0.073 after adjustment reduced false
positives from 10.093±4.319 before adjustment to 8.327±3.592 after adjustment.
Kraken2+Bracken only experienced a slight increase in F1-score from 0.427±0.157
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Figure 3.12: Profiling performance across samples, environments, and tools measured
with F1-score, precision, and sensitivity after re-evaluating false predictions. The
boxplots represent different tools and each data point is a sample. From top to
bottom, the row panels are F1-Score, precision, and sensitivity and the column panels
stratify between different environments with the left column being the summary
across all environments.

to 0.432±0.158 and is still behind the other tools. A general large amount of noise
of FPs of 137.252±62.172 to begin with is reduced to only 136.551±62.133 after
adjustment, explaining the little increase.

Zooming into the individual datasets, I see that there are no universally difficult
datasets. Kraken2+Bracken GTDB, for example, struggles with the Mouse dataset
(mean F1-score of 0.319±0.064), likely due to an insufficient coverage of species in
the database, which is supported by the high mean FN count of 82.571±35.376.
MetaPhlAn 4 GTDB performs consistently across all datasets, but excels especially
in gut related datasets (Human Gastrointestinal, Mouse) where it has a perfect
precision of 1±0 for Human Gut and an almost perfect mean precision of 1±0.001
for Mouse. mOTUs3 GTDB struggles with Skin and Urogenital samples but still has
decent F1-scores with 0.818±0.041 and 0.837±0.06, respectively.

In another benchmark, I tested the detection of low abundant taxa in the sample
as well as if high abundant taxa are missed (Fig. 3.13). In the adjusted benchmark,
MetaPhlAn 4 GTDB captures all taxa that are above 1% relative abundance and
detects taxa down to a relative abundance of 0.0007%. The most abundant taxon
mOTUs3 GTDB missed had a relative abundance of 4.24% but can detect taxa down
to 0.0003% relative abundance. Kraken2+Bracken GTDB missed taxa with a relative
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Figure 3.13: Detection threshold of species based on abundances. The y-axis displays
the gold standard abundance of each species (point) across all datasets (horizontal
panels, UR=Urogenital, GI=Gastrointestinal, MA=Marine, MO=Mouse, OR=Oral,
SK=Skin, AI=Airways) and the x-axis stratifies tools (color). The left panel shows
FNs and TPs after adjustment and the right panel shows the unadjusted values. The
top panel shows the FNs and the bottom panel shows the TP. High abundant FNs
indicate failure to detect important species while low abundant TPs show that a tool
has a high sensitivity for low-abundant species. FNs are filtered for species that are
detectable by the respective tool.

abundance up to 52.75% but has the lowest detection threshold with 0.0001% relat-
ive abundance. Considering that an abundance threshold of 0.01% for taxa would
increase the precision and F1-score (Fig. 3.8) puts Kraken2+Bracken GTDB’s low
abundance detection threshold into perspective. Microbiomes from different envir-
onments typically have different complexities and species counts. To investigate how
the profiling performance is linked to the species richness, I compared the profiler
outputs for all samples within the Mouse dataset (Fig. 3.14). CAMI Mouse is the
only dataset that exhibits a great variance in richness, so I can avoid the bias of
comparing between datasets. It is important to note that all datasets have similar
number of reads at varying species richness (see Fig. A.5). Firstly, while precision is
increasing with species richness, sensitivity is declining. This evens out for mOTUs3
GTDB and MetaPhLAn 4 GTDB such that the F1-score is constant for different spe-
cies counts. For Kraken2+Bracken GTDB, however, there is a notable increase in
F1-score from ∼0.25 to ∼0.38 (linear regression line) caused by the increase in sens-
itivity. The general decline in sensitivity is caused by the constant read count across
all samples. The more species there are in the dataset without an increase in depth,
the more taxa will be pushed below the detection threshold. Kraken2+Bracken’s
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Figure 3.14: Richness with respect to F1-score, precision, and sensitivity. Each dot
represents one sample in the Mouse dataset and all statistics are after adjustment on
species level. Richness on the x-axis is calculated as TP+FN and the y-axis shows
the value for the respective statistic in each panel.

increase in precision is most likely a result as with increasing taxa the likelihood of
a random taxon to be a TP increases.

3.3.3 Strain-level Benchmarks

Benchpro offers dedicated benchmarks for strain-resolved tools, with a focus on
tools that produce per-species MSAs and phylogenetic trees on multiple samples.
These analyses facilitate insights like strain-tracking and strain-sharing. Pairwise
distances—either computed directly from multiple sequence alignments (MSAs) or
derived as cophenetic distances from phylogenetic trees—can serve as thresholds to
infer whether two genomes represent the same or different strains. In longitudinal
datasets, such as those from the human gut microbiome, additional assumptions can
be made: because the gut microbiota tends to remain relatively stable over time, a
high degree of strain sharing across timepoints within individuals is expected [257,
66]. These expectations can be used to validate the placement of samples within
phylogenetic trees and to detect events such as strain replacements..

With this in mind, I designed 200 simulated datasets carrying the same 46 Spe-
cies with the same and different strains. With this type of dataset where each strain
is present in multiple samples at different coverages, I can determine tree mono-
phyly per species to assess if samples with the same strain form pure clusters. For
quantifying the resolution at which strain-clusters are separated, I incorporate tree
distances measuring the intra-strain distances vs. inter-strain distances. To com-
bine both metrics, I measure the monophyly of strains with respect to their closest
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Figure 3.15: Strain and sample sensitivity of StrainPhlAn 4 on different species. A
shows sample sensitivity plotted against strain sensitivity for each species. B also
shows sample and strain sensitivity per species and includes the mean coverage across
samples for this species. C resolves the gold-standard vertical coverage per sample
in boxplots for each species, stratified by whether it is included in StrainPhlAn 4
phylogenies. Refer to Table A.2 for species abbreviations.

neighbour-strain outside of the strain-cluster. As tree distances serve as proxies for
ANI values, this allows us to measure at what resolution a tool fails to correctly
distinguish and place strains in a tree. As trees are computed from MSAs, I also
compute metrics directly on the MSAs to quantify the error in sequences within
the same strain and putting those errors into context of total nucleotide variability
between all sequences. Lastly, Roary is tool to generate core-genome phylogenies
from a set of (conspecific) genomes. Benchpro quantifies the distances between pre-
dicted trees and Roary reference trees both considering phylogenetic topology and
distances. Benchpro automatically computes these metric from provided MSAs and
phylogenetic trees given a test dataset and gold standard trees. Using StrainPhLAn
4, I generated MSAs and trees on a dataset spanning 200 samples, each containing
a single strain for 46 selected species. The dataset is simulated from 1335 differ-
ent strains with a mean group size of 6.89±3.97. With benchpro, I computed the
aforementioned benchmarks on the StrainPhlAn 4 output.

Sensitivity of StrainPhlAn 4

StrainPhlAn 4 has a low sensitivity of 40.5% of strains (n=525) and 16.5% of samples
(n=1510) (Fig. 3.15). This means the remaining samples are discarded due to in-
sufficient coverage for SNP calling and consensus reconstruction, and not included
in the output alignments or trees. The species with the lowest number of retained
samples is s__Bifidobacterium adolescentis with a strain sensitivity of 20.9% and
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and sample sensitivity of 11.2% (9 out of 43 strains and 22 out of 200 samples re-
tained). On the other end is s__Coprococcus eutactus_A with a strain and sample
sensitivity of 90% (18 out of 20) and 30.5% (61 out of 200), respectively. The mean
sensitivity across species is 0.5±0.21 for strains and 0.18±0.04 for samples. With
sensitivity put into context of per-species mean sample coverage, I find that most
variation is explained by insufficient coverage. Interestingly, s__Lactoplantibacillus
plantarum is detected by MetaPhlAn 4 in all of the 200 samples, but only 23 samples
are contained in the phylogenetic tree for StrainPhlAn 4. Of all missing samples,
eight have a vertical coverage of more than 5x, with one sample having a coverage of
50x. This specific strain s__Lactoplantibacillus plantarum GUT_GENOME142473
is present in two samples at with 50x and 8.28x, is missed by StrainPhlAn 4, but
present in the taxonomic profile of MetaPhlAn 4. MetaPhlAn 4’s predicted relat-
ive abundances are less than the gold-standard abundances with 2.4% instead of
4.3% (Sample 157) and 15% vs. 24% (Sample 42). Unfortunately, the log files did
not contain any information on why these samples were not included in the strain-
level phylogenies. Further species missing in StrainPhlAn 4 output despite vertical
coverages greater than 5x are s__Lachnospira eligens_A with 5 missing samples,
s__Clostridium_F botulinum with 4 missing samples, and s__Lacticaseibacillus
paracasei and s__Lacticaseibacillus rhamnosus with one each. Although StrainPh-
LAn 4 quite consistently detects strains if their vcov is larger than 5x, in some cases
strains are missed despite sufficient abundance. This indicates that the marker genes
do not receive enough hits to be included in the MSA. As all selected source strains
in the dataset are isolate genomes, MAG-related errors in the dataset can be ruled
out.

Monophyly score

Next, benchpro will assess how well samples that carry the same strain are re-
solved with respect to monophyly in the generated phylogenetic trees (Fig. 3.16).
The monophyly score is only calculated for strains that occur in at least 2
samples. Across all species, StrainPhlAn4 resolves 76.4% of strains (NSP4=525)
and 72.5% of samples (NSP4=1510) with a perfect monophyly score of 1 with re-
spect to species and strains that were included in their trees. StrainPhlAn 4 re-
solves 7 out of 42 species with perfect monophyly scores, namely s__Agathobacter
rectalis, s__Agathobaculum butyriciproducens, s__Akkermansia muciniphila,
s__Bifidobacterium adolescentis, s__Clostridium_Q fessum, s__Ruminococcus_B
gnavus, and s__Ruminococcus_E bromii_B. The lowest mean monophyly score
is recorded for s__Longicatena caecimuris with 0.692±0.257 (49 samples and 12
strains), followed by s__Roseburia inulinivorans with 0.718±0.276 (46 samples and
13 strains), and s__RUG115 sp900066395 with 0.744±0.295. Species with a higher
mean monophyly scores tend to have lower sample sensitivity (Pearson correlation
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Figure 3.16: The monophyly score of StrainPhlAn 4 stratified across bacteria in
panels. The monophyly score measures how pure clusters of samples carrying the
same strain in a tree are (see Section 3.2.2). The right-most column is a boxplot
summarizing monophyly score across all species. Refer to Table A.2 for species
abbreviations.

R=-0.6, p=0.000026, 3.17), which is another demonstration of the trade-off sensitiv-
ity vs. precision.

Strain Cluster Error within Phylogenetic Trees

Benchpro compares the phylogenetic distances of pairwise samples carrying the same
strain, to those carrying different strains (Fig. 3.18). Ideally, samples carrying the
same strain clearly separate from other samples by having high within-strain cluster
similarity and low between-strain cluster similarity within the phylogenetic trees. To
measure this, I calculate the Max Cluster Error (MCE) as described in section 3.4.
The three species s__Coprococcus eutactus_A, s__Longicatena caecimuris, and
s__Roseburia inulinivorans have 11, 7, and 7 strains with a positive MaxClusterEr-
ror have low mean monophyly values of 0.754, 0.692, and 0.718. Even if two samples
carry different strains with (for a tool) indistinguishably high similarity, within-strain
and between-strain distances should both all be close to zero. The presence of a pos-
itive MCE is indicative of errors in the MSA that is either due to read errors or
wrong alignments. Especially in cases where strains in the dataset are highly sim-
ilar (>99.9% ANI), this likely results in positive MCE values as the strains are too
similar for the tool to reliably resolve (see Fig. 5.14 for plot displaying ability to
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Figure 3.17: Correlation between sensitivity and monophyly scores per species. Each
point is a species and the monophyly score measures how pure samples of the same
strain cluster together. Sensitivity on the x-axis is how many strains and samples
from the original dataset are still contained in the resulting phylogenetic trees. The
correlation is computed with pearson and the regression line was computed according
to a linear model.

resolve strains monophyletically based on their cophenetic distance). As the dataset
consists solely of reads simulated from isolate genomes, quality issues with MAGs
can be ruled out. However, also isolate genomes have been shown to exhibit signals
of contamination, potentially confounding the strain-level results [184]. This will be
further expanded on in Chapter 5.3.5.

Increased error rate leads to decreased Monophyly

Complementary, I investigated errors within the MSA, calculated per group of con-
sensus sequences in the MSA belonging to the same strain (Fig. 3.19). Errors can
occur for two reasons. First, mis-alignments of reads, either from within the species
or from other species, can lead to the detection of false SNPs and second, sequencing
errors are incorporated as true biological variation. As error rate is calculated as er-
rors over alignment length, the error rate goes up with decreasing alignment length.
Across all strains, StrainPhlAn has a mean error rate of 0.0016±0.0037 and a mean er-
ror count of 5.63±10.36 (Fig. 3.19 B). s__Bacteroides ovatus has the highest mean
error rate with 0.0144±0.0126 and mean error of 43.53±35.85. The mean mono-
phyly for this species is 0.944±0.121 and not as low as the error rate might suggest.
s__Bacteroides caccae comes second with a mean error rate of 0.0063±0.006, fol-
lowed by s__Bacteroides xylanisolvens with 0.0038±0.0054. Both have non perfect
monophyly with a mean of 0.873±0.242, and 0.744±0.338, respectively. To exam-
ine this relationship, I analysed error rate with respect to monophyly, but found no
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Figure 3.18: Max Cluster Error (MCE) on the y-axis per strain and stratified by
species. MCE is computed as explained in section 3.2.2 and quantifies how well all
samples with a certain strain cluster together in the phylogenetic tree with respect
to all other samples. The color encodes the number of strains with a positive MCE.

significant correlation (Fig. 3.19 C). This can be for two reasons: a) if there is no
closely related strain next to a strain with a high error-rate, then monophyly (as a
distance agnostic measure) will not be affected, and b) if the error rate is smaller
than the genetic signal to distinguish strains due to the selection of less conserved
marker genes, monophyly will also not be affected. To further investigate this, I
correlated monophyly per strain with the minimum gold-standard distance (distance
in Roary phylogenetic tree) to any strain present in the StrainPhlAn 4 phylogenetic
tree. It shows that monophyly is mostly driven by how closely related the nearest
neighbor in the tree is, however, monophyly also varies significantly between species
(p=2 · 10−16 for distance to nearest neighbar and p=2 · 10−6 for species, ANOVA).
One example is the strain GUT_GENOME142064 of the species s__Clostridium_F
botulinum, which has a monophyly of only 0.43, however there are no errors within
the MSA and the closest strain in the phylogenetic tree has a similarity of 0.9975.
Otherwise, StrainPhlAn 4 resolves strains with perfect monophyly if their closest
neighbor has similarity of 0.999 or lower. Noteworthy, however, is that there are 452
(12%) within-strain sample pairs that have a similarity lower than 0.999 (cophenetic
distance of StrainPhlAn 4 phylogenetic tree).
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Figure 3.19: A, Error rate and alignment length of MSAs per species. Error rate
is determined as number of multi-allelic positions per group of sequences repres-
enting the same strain considering positions with at minimum 2 informative bases
(A,C,G,T) and alignment length is the number of bases in the alignment with at
least 2 informative bases (see Section 3.2.2 for details). Each data point is a single
strain. B, summary over alignment length, error rate and error count. C, error rate
in context of monophyly per strain. There is no significant correlation.

StrainPhlAn 4 cophenetic distances are no proxy for ANI

In the last benchmark, I compare the predicted phylogenetic trees with the gold
standard trees produced with Roary, with respect to tree topology and cophenetic
distances. For comparison, I compute the same distances for randomly generated
trees. Comparing StrainPhlAn 4 on RFnorm (normalized Robinson-Fould) and wR-
Fnorm (normalized weighted Robinson-Fould), I find that accounting for cophenetic
distances (weighted) increases the distance to the gold-standard (Fig. 3.20). This is
a cause of StrainPhlAn 4’s skewed cophenetic distances, which are not equivalent to
ANI values. StrainPhlAn 4’s cophenetic distances can exceed 1 within species, which
is about 20x times higher as expected for ANI based distance values (0.05 with 95%
ANI).

3.4 Discussion

This chapter has shown that benchpro is able to accurately profile the performance
of taxonomic profilers and strain-level tools. For benchmarking taxonomic profiling,
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Figure 3.20: Distance between the phylogenetic trees of StrainPhlAn 4 and ran-
domly generated trees to the gold standard tree constructed with Roary for each
species (n=42, four species not detected by MetaPhlAn 4+StrainPhlAn 4 due to
lack of coverage in their database, see Section 3.2.5). Significance (***: p ≤0.001)
was calculated with a paired t-test, with species between protal and StrainPhlAn 4
as pairs. The utilized metrics are normalized Robinson-Fould distance (RFnorm),
normalized weighted Robinson-Fould (wRFnorm), Steele and Penny distance (SP),
weighted Steele and Penny distance (wSP), and Kuhnert-Felstenstein distance (KF)
(see Chapter 3.2.2 for details).

benchpro adjusts for errors caused by differences in phylogeny and taxonomy that
do not reflect the actual tool performance, but rather the uncertainty when map-
ping between different phylogenies and taxonomy versions. This helps users to make
an informed decision about which tool to use for a project and get the best results
out of a dataset. Benchmarking the taxonomic profiling performance of mOTUs3,
MetaPhlAn 4, and Kraken2+Bracken with benchpro provided a more in-depth com-
parison than previous independent benchmarks [242, 316, 177]. For an even more
comprehensive assessment, it would be necessary to create different custom data-
bases for Kraken2 and KrakenUniq using the GTDB marker genes as well as the
whole genome of all species-representative genomes. This is necessary to further dis-
entangle the impact of a) marker genes vs. whole-genome databases and b) NCBI
Taxonomy vs. GTDB Taxonomy on Kraken’s profiling performance. A benchmark
in the publication for MetaPhlAn 4 compared Kraken2 using databases from RefSeq
[193] and GTDB [206], but it is unclear how the taxonomic assignment for GTDB
was performed [26]. I decided against including KrakenUniq in this benchmark due
to its high memory consumption, as the standard database for download is 377 GB
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in size 3. KrakenUniq should still be included in the benchmarks as it offers a higher
precision over Kraken2 and Kraken, although it should be noted, that a recent bench-
mark has found only little difference in performance [219]. To measure the profiling
performance in the presence of unknown taxa, a leave-one-out approach simulates
the absence of whole taxonomic clades in databases [290]. However, this is not gen-
erally applicable due to the fixed pre-built databases for mOTUs3 and MetaPhlAn
4. I further set a focus on evaluating the correct classification of taxa over assess-
ing the correctness of predicted abundances. As the correct classification of taxa
is a requirement for correct abundances, I prioritized classification over abundance
benchmarks, and hence did not calculate the abundance metrics on the adjusted
species predictions. Further, detailed abundance benchmarks are already covered
in a different benchmark paper [316]. Adjusting the species-level classification was
inspired by MetaPhlAn 4’s benchmark in their own publication [26]. MetaPhlAn 4’s
species clustering into species genome bins (SGBs) is based on whole genome dis-
tances with clusters spanning 5% genetic diversity [211]. In a separate benchmark,
‘SGB evaluation’, Blanco-Míguez et al. evaluated the correctness of taxonomic clas-
sification by counting a TP if any genome in a predicted SGB matches a genome in
the sample. By doing so, their benchmark results improved significantly. As I was
not able not recreate this benchmark for the comparison with protal, I implemented
the adjustment of FP and FN taxa based on their phylogenetic distance in the GTDB
phylogeny to provide a fair benchmark (see 5.3.3). I argue that the most important
quality for a taxonomic profiler is to have a 1:1 ratio of species present to species
detected. The adjustment within benchpro fulfils this requirement, as each FP can
only be matched with one FN, and the taxonomic label of the FN must not be previ-
ously present in the tool database. FP predictions that are caused by high-abundant
TP taxa still remain, which is problematic as they can elicit a spurious co-occurrence
signal [68]. On the other hand, for applications requiring the exact taxonomic label,
such as detecting a pathogen, predicting a close phylogenetic neighbour is still incor-
rect. Due to time constraints, I concentrated on StrainPhlAn 4 for the strain-level
benchmarks, thereby excluding other tools from the analysis. In addition, I initially
planned on including metaSNV on the mOTUs3 output, however, the benchmark
failed due to the large size of temporary files produced (>5TB).

Additionally, the focus was on lightweight strain-level tools for comparison with
Protal, as tools like inStrain and MIDAS involve more complex workflows. Another
limitation is that the simulated dataset does not resemble any naturally occurring
community, as every sample contains a strain of 46 species. This, for example,
prevents one from assessing whether FP predictions are included in the MSA and
the phylogenetic tree. For StrainPhlAn 4, the default parameters were used, however
a recent publication suggests that StrainPhlAn 4 still performs well with lowered
coverage requirements [182].

3https://benlangmead.github.io/aws-indexes/k2, accessed 23rd June 2024
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3.5 Author contributions

I conceptualized, developed, and implemented benchpro by myself, under the guid-
ance of Falk Hildebrand. Using monophyly as ANI-independent measure of perform-
ance on longitudinal data was suggested by Falk Hildebrand.
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Chapter 4

Alignment-free taxonomic profiling
and SNP detection with varkit

4.1 Introduction

Alignment-free methods for taxonomic binning are popular due to their fast perform-
ance and flexibility of use when compared to their alignment-based counterparts.
Especially Kraken [308], Kraken2 [307], and KrakenUniq [32] are widely used due
to their simple, yet effective approach of assigning each read a taxonomic identity
through k-mer matches instead of costly alignment against the reference. In addi-
tion, the option of creating a database from custom sequences opens up a variety
of use-cases such as filtering host contamination [98], targeted screening for selected
strains, and incorporating taxa that are not yet represented by public databases. In
standard metagenomic profiling, assuming a similar database coverage, alignment-
based profilers such as mOTUs [232] and MetaPhlAn [26] tend to perform better at
the species level. They achieve a similar sensitivity to tools from the Kraken family,
but with a lower false positive rate [26, 316, 219]. This is even true when tools of
the Kraken family are used in conjunction with Bracken [159] to filter and calculate
abundance profiles from the taxonomic bins [177]. Yet, the ∼5-fold speed advantage
of Kraken2+Bracken over MetaPhlAn 4 and mOTUs3 still matters when analysing
datasets of hundreds of samples and being able to turn five days of analysis into one.

When the taxonomic resolution is increased from species-level and above to
subspecies- and strain-level, Kraken is only able to detect strains that are contained
in its database, but is unable to reconstruct strain-level diversity across samples. This
limitation is not shared by MetaPhlAn and mOTUs, as their output can be further
processed with StrainPhlAn [26] and metaSNV [55], respectively, to reconstruct the
phylogeny of known species present in multiple samples. Strain-level resolved ana-
lyses are required, for example, for identifying strain-transmission events between
hosts [98], tracking pathogen outbreaks and their evolution, and analysing pheno-
types that show correlations with taxa below species-level. Tools most commonly
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quantify strain-level genomic variation by comparing SNPs between samples with re-
spect to a shared reference [8]. This requires alignment against a shared reference to
call SNPs, reconstruct per sample consensus sequences and build an MSA to quantify
the diversity; as done by mOTUs+metaSNV and MetaPhlAn+StrainPhlAn. The ex-
ception among alignment-free tools is GT-Pro, a tool for metagenomic genotyping
which uses an alignment-step during the initial database building, to extract and
filter for species-specific SNPs from a species’ pangenome (requiring >10 genomes
per species) to then store k-mers covering those SNPs [250]. This allows GT-Pro
to rapidly genotype samples without alignment and reports counts for reads cov-
ering each allele of each SNP in the database. While allowing for strain-resolved
analysis, this approach, too, relies on SNPs in references and will only detect known
SNPs, as opposed to alignment-based approaches that are able to quantify genomic
diversity with de novo SNPs. Further, the database building process is computa-
tionally expensive in regard to both time and memory and the default database only
covers bacteria commonly found in the human gut. Thus, for most strain-level ana-
lyses from short-reads, alignment is still a necessary and costly step to accurately
quantify within-species genomic diversity across samples.

Here I present the variant k-mer identification toolkit (varkit), to combine
the speed and simplicity of k-mer based methods with the accuracy and strain-
resolution of alignment-based methods. Varkit stores k-mers of GTDB marker genes
of all 62,291 species-representative genomes—both isolate genomes and MAGs—in
its database (r207), to strike the balance between memory efficiency and representa-
tion of taxonomic diversity across all environments. Further, varkit employs patterns
of exact matching spaced k-mers between read and reference as a novel method to
capture and analyse de novo intra-specific genomic variation.

4.1.1 Contribution of this thesis

With varkit, I explore a novel method for SNP calling using k-mers and thus open-
ing up k-mer based approaches to strain-level analyses. Thus, varkit bridges the gap
between fast k-mer based analyses restricted to species-level and slower alignment-
based tools like MetaPhlAn or mOTUs. Varkit avoids alignment and direct com-
parison with the reference and instead relies on indirect comparison by using exact
spaced k-mer match patterns to identify SNPs. This is facilitated by two means: 1)
by implementing a novel data structure that is both fast and memory efficient and
stores k-mers along with their exact position in the reference and 2) by a novel ap-
proach for SNP calling using patterns of matching and non matching spaced k-mers
between read and reference. Different shapes for spaced k-mers have previously been
evaluated in the context of match sensitivity for read classification, but have not been
explored for SNP calling. I explored how different k-mer sizes and shapes influence
the sensitivity of SNP calling in conjunction with this novel species classifier.
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Figure 4.1: Given a query and a k-mer shape (here: ‘X_XX_X’) a hit-pattern is defined
as a sequence of successful (1) or unsuccessful (0) k-mer lookups with respect to a
reference. Position 5 (starting position being 0) in the query is considered mutated
with respect to the reference (C→G) so all k-mers overlapping and with an ’X’ at this
position are unsuccessful lookups. A k-mer overlaps all positions where the k-mer
shape has an ‘X’. Gap positions denoted as ‘_’ are ignored.

4.2 Methods

4.2.1 SNP calling with k-mer look up patterns

The core idea for varkit’s approach to SNP calling is leveraging the sequence of
matching and non-matching k-mers between the query and a reference. This se-
quence, from now on referred to as hit-pattern, is used to infer the exact positions
where read and reference disagree. A hit-pattern P is a sequence defined over the
alphabet 0, 1 where 1 denotes a match between two k-mers, and 0 a mismatch, re-
spectively. In practice, when extracting and storing k-mers from multiple reference
sequences, one will find non-unique k-mers that are present across multiple references.

To explain the workings of the method, I assume that all k-mers are unique within
a sequence so there are no ambiguous (uncertain which reference they are from) or
random hits between a query and a reference. P is thus a sequence of 1s and 0s,
depending on whether the k-mer at the corresponding position has a match (1) in
the reference, or not (0). Figure 4.1 shows how k-mer lookups for a query lead to the
hit-pattern. The idea is to take this hit-pattern and infer the SNP positions without
explicit alignment of the read against a reference. The length of the hit-pattern
depends on the length of the query and the overlap between query and reference. To
break down the problem from a variable size into a fixed size, I extract all possible
fixed size substrings of the hit-pattern. I refer to these substrings of length p as
p-mers and infer the potential SNP positions for each p-mer individually.

4.2.2 Building the varkit reference database of hit-patterns

P-mer is defined as a substring of length p of a pattern P. Since each p-mer is the
result of p k-mer look ups of a sequence of length p + w − 1, with w being the size
of the k-mer shape, one can reconstruct all reads (with a given k-mer shape) that
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potentially give rise to a certain p-mer. To call variants given a hit-pattern P I build
a dictionary mapping p-mers onto SNP locations relative to the p-mer. The pattern
database is built by iterating each possible sub-pattern. The number of p-mers is
2p. For instance, with p = 16, there are 216 = 65, 536 possible p-mers. For each
p-mer, the shape is aligned with the match positions in the pattern to determine
positions that are not covered by any k-mer (Figure 4.2 1.). These positions are
potential mutations. Next, all permutations of the potentially mutated positions
are computed to get a set of candidate reads that could have generated the pattern
(Figure 4.2 2.). For all candidate reads the hit/miss pattern is then computed and
candidate reads that do not contain the original pattern are discarded (Figure 4.2
3.). The intersection of SNP positions of the remaining candidate reads are the SNP
positions associated with the original pattern (Figure 4.2 D). This approach does not
produce false positives in a model setting, as intersecting the SNP position as shown
in Fig 4.2 D ensures that only unambiguous SNPs are included in the database. In
training the database, the computationally expensive part is permuting all possibly
mutated positions to get a set of candidate reads from a given pattern as shown in
Fig. 4.2 C. The number of candidate reads scales exponentially with the number of
potential mutations and for this reason a threshold limit l is applied when necessary,
to reduce the time to compute the pattern database, skipping all patterns with more
or equal to l potential mutations.

When analyzing real metagenomic samples, false positives SNPs may still occur.
This is because the database stores each k-mer with the lowest common ancestor
(LCA) of all taxa it occurs in. As a consequence, a genus level k-mer surrounded
by species-level k-mers (which are considered unique k-mers as each species is only
represented by one strain) is not necessarily present in the detected species if at
least two other species under the same genus contain the k-mer. This case cannot
be detected as information on gene id and position is lost for non-unique k-mers.
Non-unique k-mers are stored with the lowest common ancestor (LCA) of all taxa it
occurs in and gene id and gene position is dropped.

However, this approach cannot consider reads with insertions and deletions. The
impact of this restriction is likely small, since the reference for varkit are universal
marker genes, that typically have mostly SNP variation. Further, multiple strain-
resolved tools omit indels when quantifying intra-specific variation, being similar to
the varkit approach in this regard [250, 215].

4.2.3 Finding k-mer shapes for SNP calling

K-mer based algorithms often employ spaced k-mers to increase the detection sensit-
ivity with long k-mers [34], and is most prominently implemented in Kraken2 [307].
Long k-mers are necessary to retain a certain amount of specificity, as k-mers which
are too short cannot identify taxa uniquely on species level or below. For this reason,

81



Novel taxonomic profiling and ...

Figure 4.2: The workflow for building a pattern database with a given k-mer shape
and pattern length (here: X_XX_X and 8).

Kraken uses 31-mers are they have been shown to uniquely identify Species. In con-
trast to alignment, Minimap2 [145], for example, is more sensitive by using 15-mers
to find candidate references for alignment. This does not come at the cost of taxo-
nomic resolution, as their data structure stores all reference locations for a given
k-mer (not just the LCA like varkit). The trade-off lies in computational overhead,
as more k-mer hits require a more intensive post-processing. This is important, as
the goal of an aligner is to align as many query sequences as possible, while taxo-
nomic binning has the more general goal to accurately determine the presence of
taxa.

Spaced k-mers improve sensitivity for long k-mers without loss of taxonomic
resolution for larger k [34]. As varkit’s approach is more similar to Kraken and does
not resolve all reference locations for a k-mer I choose to employ a spaced k-mers
approach to retain uniqueness with improved sensitivity. As I will discuss in Chapter
4.3, the k-mer shape determines not only the sensitivity, but also how many SNPs
can be detected between query and reference and is dependent on the ANI between
query and reference. Hence, the choice of a fitting k-mer shape is crucial for the
performance of varkit. In order to find the right k-mer shape for SNP calling, I
employed an approach similar to evolutionary algorithms exploring the k-mer space
with a fixed k and a fixed number of gaps but flexible gap positions, trying to
maximize SNP calling sensitivity [14].
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Finding a sensitive k-mer shape

Evolutionary algorithms are used to solve optimization problems where the large
solution space prevents testing every single solution due to the complexity of the
problem. This approach was fitting to find a near-optimal k-mer shape for varkit
and was thus implemented.

A fitness function determines the quality of a solution, in our case, how sensitive
the k-mer shape is at calling SNPs given a test set of random reads with varying
number of reads. In our case, simulating reads only requires distinguishing between
mutation and no mutation, while the number of mutations over the total read length
determines the similarity to the reference (expressed as ANI). For each iteration, the
current shape is assessed regarding SNP calling sensitivity across multiple generated
‘reads’ with random SNP positions at varying ANI levels between 90% and 99%. It
has to be noted that a read of length 100 with 99% ANI does not always contain
99 SNPs. In this case, during read generation, for each position the probability is
1% for it to be a SNP. The assumption with evolutionary algorithms is that closely
related solutions perform similarly well given the fitness function and that altering
a well performing existing solution has a higher chance of giving us an increase in
fitness as opposed to a random solution [14]. The step function defines how I alter
an existing solution and is described in the following paragraph.

In the case of varkit, further constraints to the solution require all k-mer shapes to
be symmetric and of odd length. Symmetry is important as each k-mer is extracted
as the lexicographic minimum between itself and its reverse complement1 and only
uneven lengths were chosen to ensure no k-mer is its own reverse complement. Since
k and the number of gaps are fixed, the step function employed here moves the gaps
in the k-mer shape, while still obeying the symmetry constraint and the fixed k and
number of gaps. If a shape is revisited, the shape is completely randomized in the
next step. The step function should i

Given a starting shape, the algorithm assesses the fitness of the shape by building
its pattern database with limiting l to reduce runtime complexity (see Section 4.2.2).
In our case, the solution space is spanned by all k-mers that satisfy the above restric-
tion. A k-mer shape is a sequence of ‘X’ and ‘_’ with the regulation that a shape
must start or end with an ‘X’. ‘X’ are also referred to as ‘take positions’ and ‘_’ are
referred to as ‘gaps’. To construct a shape, consider a string of take positions ‘X’
with length k. To insert gap positions ‘_’, a fixed number of positions between two
‘X’ with repetition and without order is picked (since there can be two gaps between
two take positions as in ‘X__X’ and the order in which I select the gaps does not
matter). As the shape is symmetric I only need to construct one half of the k-mer
shape. The number of possible k-mer shapes at fixed k and g, can be described with

1Since varkit uses a canonical representation of nucleotides internally, each k-mer is an integer and
the lexicographic minimum for k-mers in string representation is the numerical minimum between
the canonical representations of itself and its reverse complement.
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Equation

NumPermutations(k, g) =

(k−1
2 + g

2 − 1
g
2

)
(4.1)

For k = 27 and g = 12, this gives 18564 different k-mer shapes.

4.2.4 Assessing varkit’s SNP calling sensitivity

SNP calling sensitivity was assessed with respect to an early version of varkit’s data-
base containing custom marker genes from the UHGG database [4] (see Section 4.2.5
for details). The marker genes of 15 random genomes (that are part of the database)
were selected. SNPs were inserted to simulate ANIs between 94% and 99%. Reads
without errors were simulated with wgsim 2 from the SNP injected marker genes
with length 150bp at vertical coverages 1,2,5, and 10. The individual samples were
processed using varkit, and predicted SNPs were compare to the known SNPs to
calculate SNP calling sensitivity.

4.2.5 K-mer data structure

To efficiently handle and look up k-mers, k-mer based algorithms employ hash tables,
as they provide constant time lookup of exact matching k-mers. With k-mers as keys
and taxonomic identifiers as values, k-mer based profiling methods often employ a
pre-built hash map, storing k-mers of the reference sequences, that is used to identify
the query.

I extended this approach: instead of only storing taxonomic identifiers, varkit
also stores a gene identifier and gene position for each k-mer to increase sens-
itivity and precision, both for taxonomic profiling and SNP calling. Due to
the lack of a publicly available hash table libraries with a small memory footprint
fitting this specific use-case, I implemented a hash map tailored to the needs of varkit.

Varkit needs 46 bits to store the k-mer (k=23), 16 bits for the taxonomic identifier
(216 = 65, 536 different values), 7 bits for the gene id (27 = 128 different ids, given
120 marker genes), and 12 bits for the gene position (212 = 4096). These values
were determined to fit the specifics of GTDB r207 marker genes. In total, this makes
46+16+7+12 = 81 bit per cell. In a naïve implementation, key and value would each
take 64 bits. This would require 128 bits per cell. A more refined implementation
where key and value can take byte defined values and are not restricted to 64-bit
each cell would still require 92 bit.

varkit takes this a step further: the hash map reduces the space by storing
the key and value in a single 64-bit type and implicitly storing part of the key in
the hash map location (Fig. 4.3). With 81 bit for the whole entry - a cell that
would otherwise need 92 bit to store - 81− 64 = 17 bit need to be stored implicitly.

2https://github.com/lh3/wgsim, unpublished
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Figure 4.3: The memory layout of varkit’s hash map requires 64-bits per cell. The
offset key (highlighted in orange in k-mer example) is a part of the key that is
implicitly stored in the position such that all k-mers starting with the same prefix
with predefined length lay in one contiguous block. Here, the keys in Cells 1-3 all
start with the prefix “Offset key 1” and the keys in Cells 4-6 start with “Offset key
2”. For each k-mer (offset key + internal key) varkit stores the taxonomic id (taxid),
gene id (geneid) and gene position (genepos).

The implicit part is realized with an additional array storing the offset for each
possible (implicitly stored) offset key. With 17 bit in the offset key and 64-bits per
cell to point to a location in the main data array, the offset table needs 256 MB
(= 225 · 8 byte = 33, 554, 432 · 8 = 268, 435, 456 byte) of additional space, while
saving 33% of space per cell that would otherwise need 92 bit to store the full k-mer.
With growing size, the constant size of the additional offset table becomes negligible
and the space savings converge to 33% less space required when compared to the 96
bit implementation without offset (Fig. 4.4).

4.2.6 Building the database

Varkit’s database is built from 120 bacterial marker genes of species representat-
ives of GTDB version r207 [208]. Within GTDB, these marker genes are used to
construct the phylogeny and are part of the database. The utilized k-mer shape is
‘X_XXXXX_XXX__XXXXX__XXX_XXXXX_X’, and the SNP calling data-
base was built with a pattern size of 26 and full training depth (see Section 4.2.2).
The space for a single data cell in the hash table is shared between k-mer, taxonomic
identifer, gene identifier, and gene position, that take up 46 bits, 17 bits, 9 bits,
and 14 bits, respectively. 26 Bits of the cell is stored in the offset to reduce overall
memory footprint (see Section 4.2.5).

The database is built in two iterations over the reference sequences. The first
iteration is for determining the number of entries under each offset key. In the second
iteration the values are stored. For all k-mers with the same offset (which are stored
in a consecutive region in the hash table), varkit uses the hash function to determine
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Figure 4.4: Space savings of varkit’s hash map with 64 bits per cell + offset in extra
data structure compared to a hash table with 96 bits without offset as baseline. With
offset 32, the effective cell size is the same between both data structures. The labels
denote the GB size at the break-even point for each offset, i.e. what the size of the
map is when it is equally space efficient as the implementation without offset.

the position within an offset. Varkit uses the same hash function as Kraken2 3.
A k-mer is stored with its taxonomic id, gene id, and position within the gene. If

a k-mer is not unique, the gene id and gene position is dropped, and the taxonomic
identifier is set to the LCA of all references it occurs in. A collision happens if two
different k-mers with the same offset have the same hash. Collisions are resolved
with Robin Hood hashing [42]. Briefly summarized, Robin Hood hashing is a way
to resolve collisions without external data structures, where entries in the table are
moved to minimize the distance to their original hash. If a k-mer hashes to a cell that
is already occupied, the distance of both entries to their original hash is compared.
If the distance of the to be inserted k-mer is larger, Robin Hood hashing replaces
the entry with the k-mer, and searches for a new position for the previous value by
moving to the following cell and repeating the last step. To ensure good performance,
the hash table needs to be larger than the amount of entries. This is referred to as
load factor - varkit uses a default load factor of 0.75, meaning that only 75% of the
table is filled with entries.

This is the standard database used for the benchmarks in section 4.3.1. For plot
4.10, an earlier version of varkit’s database was used. Briefly, this database was based
on marker genes from species representative genomes of the UHGG database (unified
human gastrointestinal genomes) [4]. Marker genes were selected de novo by first

3https://github.com/DerrickWood/kraken2/blob/4cbdc5fac92d0a19d76ce68d6633d7ff794a1587/
src/kv_store.h#L23
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predicting genes of all genomes (n=204,938) (prodigal with ‘-meta’) and subsequent
clustering of the sequences based on 95% sequence identity and minimum alignment
length with mmseqs2 [268] (‘mmseqs linclust -id 0.95 -min-aln-len 100’). For each
species cluster (n=4,644), marker genes were originally selected based on uniqueness
in their genus (number of genomes in species with gene g divided by all genomes
in genus) and coreness (number of genomes of species s with gene g divided by all
genomes in the species) and the top 300 marker genes were selected for a species.
This approach was dropped early, as the integration of GTDB marker genes appeared
to be a more promising approach regarding quality of marker genes and taxonomic
diversity.

4.2.7 Taxonomic classification and SNP detection

To profile a metagenomic dataset, for each read all k-mers are extracted and looked
up in the database (see Fig. 4.5 A). Similar to Kraken [308], k-mers are counted up
in a tree structure (see Fig. 4.5 B). The tree has the same structure as the taxonomic
tree, containing all taxa that have been hit by a k-mer, while keeping intermediate
nodes with zero hits. Each node holds a counter for the number of k-mers it was hit
by. Varkit then classifies a read by traversing the subtree from the highest node (least
specific), and traversing closer to the leaves by taking the path with the most hits
in the subtree (see Fig. 4.5 C). When traversing the tree, varkit considers the two
variables ‘min_confidence’ and ‘min_hits’. Varkit traverses down the branch with
the highest count if the hits in the subtree divided by all hits is > min_confidence

and the number of hits is > min_hits. If the condition is not fulfilled, a read (-pair)
is classified as the current node in the taxonomic tree.

The k-mer hit-pattern across the whole read is processed according to section
4.2.2 (see Fig. 4.5 D). K-mer hits to different leaves (species) as well as k-mer hits
on higher taxonomic levels must be disentangled, to get SNPs with respect to the
classification. A k-mer hit is included as ‘1’ in the pattern, if it matches with the read
classification or it is on its the root-to-leaf path. Based on this pattern, sub-patterns
are extracted and used to get SNP positions which are written out subsequently.
To get from read classifications to abundance profiles, varkit collects all read classi-
fications across taxa and marker genes. In the current version of varkit, only reads
classified on species-level are further processed. For each species that receives hits,
varkit estimates the mean ANI, based on predicted ANI values for each read using
hit k-mers vs total k-mers.
Given a certain amount of reads mapping to a species, we expect a certain ‘spread’
across the genes if it is a genuine signal. We can quantify this as Expected Gene
Presence and Expected Gene Presence Ratio which are calculated for species t as
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Figure 4.5: Basic workflow of varkit’s classification and SNP detection algorithm. A,
extract all k-mers from read based on the k-mer shape. Look up each k-mer in pre-
built database, which contains k-mers from reference sequences. If the database has
an exact matching hit, report taxid, geneid, and genepos, otherwise report a miss.
B, hits are counted in the taxonomic (sub)tree and increment the count for that node
by one. C, to classify the read, all hits are counted in the tree. The tree is then
traversed from top to bottom (bottom is species-level) and the path is determined by
the subtree with the higher total counts. D, hits and misses from the k-mer database
lookup forms hit-pattern. If the classification result is on species-level, sub-patterns
are looked up in a separate database to receive SNP positions between read and
reference. Varkit reports the taxonomic classification as well as SNP positions for
each read.

follows.

ExpectedGenePresence(t) = (1− (
genes(t)− 1

genes(t)
)reads(t)) · genes(t) (4.2)

ExpectedGenePresenceRatio(t) =
ExpectedGenePresence(t)

PresentGenes(t)
(4.3)

In varkit, for a species to be predicted present, the expected gene presence ra-
tio must be higher than a threshold e, mapped read count must be higher than a
threshold r, and the median ANI must be higher than threshold a. By default the
values are e = 0.6, r = 100, and a = 0.95; used like this in the profiling benchmark.
The abundance is calculated as the median abundance across all genes.

4.2.8 Implementation details

Varkit is implemented in C++ using the std++20. Internally, k-mers are represen-
ted as integers with each base occupying exactly 2 bits. The mapping for this 2-bit
representation is A=00, C=01, G=10, T=11. Any other ambiguous bases are conver-
ted to A=00 by default. Extracting unspaced k-mers is a lot faster than extracting
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spaced k-mers as for unspaced k-mers, simple bit-shift operations can be used.

For unspaced k-mer extraction, all k-mers smaller or equal than 32 nucleotides
fit into a 64-bit integer. Starting with a k-mer in 2-bit representation, we need to
bit-shift to the left by two (the bits of one nucleotide), apply logical ‘and’ with a
mask of one-bits of the size k · 2 to cut the overhanging two bits we created by
shifting left, and appending the new nucleotide by applying logical ‘or’ with the two
bit encoding of the new nucleotide. The runtime of this algorithm is not dependent
on k, the number of take positions in the k-mer, but instead has a constant runtime
as once the initial k-mer is computed, each new k-mer just requires the fixed number
of operations to add the next nucleotide (see Equ. A.1) .

To extract spaced k-mers, varkit uses an iterative algorithm to speed up extrac-
tion similar to an algorithm proposed by Petrucci et al [213]. Briefly summarized,
each new k-mer, given a certain k-mer shape, can be constructed from a number
of previously extracted k-mer by using bitwise operations. The number of previous
k-mers needed depends on the size of the largest gap in the k-mer shape.

4.3 Results

4.3.1 SNP calling sensitivity

SNP calling usually requires alignment of query and reference, however, with the
introduced algorithm, I can leverage k-mer hit patterns to determine SNP positions.
Alignment is costly, and being able to directly go from k-mer hits to SNP positions
eliminates a computationally expensive step. As introduced in Section 4.2.3, I
hypothesize that SNP calling sensitivity with k-mer hit patterns is dependent on the
spaced k-mer shape and the pattern length p, similar to sensitivity in match finding.
With selected fixed ks of 23, 25, 27, total spaces of 2, 4, 6, 8, 10, 12, and a fixed
p = 16 I explored the k-mer space. Given the space limitations of the underlying
data structure as described in 4.2.5, I chose the k-mer size 27 for the following, 12
spaces for sensitivity and set p = 16 and l = 16 to limit the runtime complexity
of the fitness function. p is the pattern size and l limits the ‘training depth’ as
explained in section 4.2.2. The fitness function measures the mean SNP calling
sensitivity for random sequences with simulated ANI values between 95%-99%. The
best shape refers to the shape with the highest SNP calling sensitivity with a given
set of constraints that are the size k (Number of ‘X’) and the number of spaces s

(Number of ‘_’)..
In 9,623 iterations I assessed the fitness of different k-mer shapes (Fig.
4.6). This range is appropriate, as this is the expected ANI between
reads and reference marker genes in varkit’s database. The shape
’XXXX_XX_X_XXX_X__XXXXX__X_XXX_X_XX_XXXX’ at it-
eration 4184 performs best among all tested shapes across all itera-
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Figure 4.6: In 9623 iterations, each iteration tests the fitness of a new k-mer
shape and then moves to the next (see Section 4.2.3). Fitness is defined as
mean SNP sensitivity for ANIs between 95% and 99% (y-axis). The red dots
are the three best performing shapes based on their fitness. From left to right
these are ’XXXX_XX_X_XXX_X__XXXXX__X_XXX_X_XX_XXXX’,
’XXXX_XX_XXXX__XX_X_X_X_XX__XXXX_XX_XXXX’, and
’XXXX_XX_X_XXX_XX_X_X_X_XX_XXX_X_XX_XXXX’. The
blue dots mark the lowest scoring k-mer shapes and from left to right
these are ’XXXXXXXX_X_X_X_X_X_X_X_X_X_X_X_XXXXXXXX’,
’XXXXXXXXX______XXXXXXXXX______XXXXXXXXX’, and
’XXXX_XXXXX_X_X_X_X_X_X_X_X_X_XXXXX_XXXX’.

tions and has a mean SNP sensitivity of 0.6178524. This shape is fol-
lowed by ’XXXX_XX_XXXX__XX_X_X_X_XX__XXXX_XX_XXXX’
and ’XXXX_XX_X_XXX_XX_X_X_X_XX_XXX_X_XX_XXXX’
with 0.6128544 and 0.6087724 respectively. The worst shapes are
’XXXXXXXX_X_X_X_X_X_X_X_X_X_X_X_XXXXXXXX’,
’XXXXXXXXX______XXXXXXXXX______XXXXXXXXX’, and
’XXXX_XXXXX_X_X_X_X_X_X_X_X_X_XXXXX_XXXX’ with a mean
sensitivity of 0.3826254, 0.3890564, and 0.4052756. On this data I observed that, 1)
shapes with the same length and a fixed number of spaces perform very differently
(difference of 0.23 between best and worst in fitness) and 2), navigating the shape
space with our current step function does not lead to a gradual improvement of the
solution, but is rather a random traversal (see Section 4.2.3).

I further computed this for k=23 and s=8 (Fig. 4.7). Here, the best shape
across all iterations regarding mean ANI for values between 90% and 99% is
‘X_XXXXX_XXX__XXXXX__XXX_XXXXX_X’ (mean ANI of 0.4904544)
and the worst is ‘XXXX_X_X_X_XXXXXXXXX_X_X_X_XXXX’ (mean ANI
of 0.6849034). For mean ANI value between 95% and 99%, the best shape across all
iterations for this k and s is ‘XXXX_XXX_XX_XX_X_XX_XX_XXX_XXXX’
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Figure 4.7: In 138 iterations, each iteration tests the fitness of a new k-mer
shape and then moves to the next (see Section 4.2.3). Fitness is defined as
mean SNP sensitivity for ANIs between 95% and 99% (y-axis). The red dots
are the three best performing shapes based on their fitness. From left to
right these are ‘XXXXX__XX_XXXX_X_XXXX_XX__XXXXX’ (mean ANI
of 0.4875677), ‘X_XXXXX_XXX__XXXXX__XXX_XXXXX_X’ (mean ANI of
0.4904544), and ‘XXXX_XXX_XX_XX_X_XX_XX_XXX_XXXX’ (mean ANI
of 0.4894113). The blue dots mark the lowest scoring k-mer shapes and from left to
right these are ‘XXX____XXXXXXXXXXXXXXXXX____XXX’ (mean ANI
of 0.4298529),‘XXXXX_XXXXX___XXX___XXXXX_XXXXX’ (mean ANI of
0.4278185), and ‘XXXX_X_X_X_XXXXXXXXX_X_X_X_XXXX’ (mean ANI
of 0.4213629).

(mean ANI of 0.7685434, Fig. A.6).

Properties of k-mer shapes correlating with SNP detection sensitivity

Next, I focused on which properties in gap placements improve fitness. The first
hypothesis is that a higher number of different space distances, which is the pairwise
distance between any two spaces in a k-mer shape, improves the performance, as this
allows for k-mer hits in the presence of two SNPs with various distances. Additionally,
since our test data contains more synonymous mutations to model realistic patterns
more accurately, mutations at distances that are multiples of three, occur more
frequently. Hence, I also hypothesize that the number of gaps that are a multiple
of three apart, is also indicative of the SNP calling sensitivity. For all 9,623 k-mer
shapes I tested a) the number of different pairwise gap distances, b) the number of
pairwise gap distances that are a multiple of 3 and c) the sum of both values (Fig.
4.8).

With linear modeling the R2 for a) is 0.13, for b) is 0.02, and for c) is 0.19.
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This confirms that both pairwise gap distances and the number of three apart gaps
indicate to a degree whether the shape will be performant. While further analyses
could be done to analyse gap distances and spacing patterns within spaced k-mers
with regard to the proposed SNP calling algorithm, it is likely that potentially better
solutions will only result in negligible improvements of <1% sensitivity. In the end,
I used the shape ‘X_XXXXX_XXX__XXXXX__XXX_XXXXX_X’ with k=23
and s=8 (best shape mean ANI 90%-99%) to build the database for varkit used
in Chapter 4.3.1. I chose k=23 as a good compromise between higher SNP calling
sensitivity, while not losing too much precision for species profiling.

Figure 4.8: Depiction of how three properties of the k-mer shape affect SNP call-
ing sensitivity at ANI 95%. Panels show on the x-axis: number of gaps with dis-
tance three (gap_dists_of_3), number of unique pairwise gap distances in a shape
(unique_gap_distances), and the sum of both values (sum). The y-axis shows the
mean SNP sensitivity. Data is from shape finding with k=27 and s=12 (Fig. 4.6).

Impact of pattern-database training depth on SNP detection

The sensitivity of the pattern-based SNP calling depends on the k-mer shape and the
sub-pattern length. Figure 4.9 shows SNP calling sensitivity with respect to different
k-mer shapes, varying in k and number of spaces. As mentioned in 4.2.2, the pattern
size p and ‘training depth’ l can be limited to save building time of the database
when needed. In this section I will unwrap how p and l affect the sensitivity of a
shape. For this, I trained a shape database for four very different k-mer shapes. The
first shape is a 23-mer without gaps, the second shape a 23-mer with 44 gaps (‘_’),
the third shape a 23-mer with 16 gaps, and the fourth shape a 9-mer with 20 gaps.

For a more direct comparison, I tested k-mer shapes trained
at different pattern sizes and included performance assessments
for every stage of training. Training two different k-mer shapes
‘XXXX_XX_XXX_X__X_XXXXX_X__X_XXX_XX_XXXX’ (k=27,
s=12) and ‘X_XXXXX_XXX__XXXXX__XXX_XXXXX_X’ (k=23, s=8)
with pattern sizes 16 and 32 shows how pattern size and k-mer length affect the
SNP calling sensitivity (Fig. 4.9). For both k-mer shapes and low-training depth,
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Figure 4.9: Comparison for training the pattern database with two different shapes
‘XXXX_XX_XXX_X__X_XXXXX_X__X_XXX_XX_XXXX’ (k=27, s=12)
and ‘X_XXXXX_XXX__XXXXX__XXX_XXXXX_X’ (k=23, s=8) for two dif-
ferent pattern sizes 16 and 32. The left plot shows SNP-calling sensitivity for ANIs
90%, 95% and 99% with respect to the training depth ‘limit’ shown on the x-axis.
The right plot shows how many patterns (y-axis) were added to the database with
increasing training depth (x-axis).

p=16 has a higher sensitivity than p=32. However, there is a training depth where
the longer pattern size surpasses the short pattern size in sensitivity. This point
comes later with lower ANI and thus suggests that shallow training depths increases
detection of SNPs for high similarity and deeper training adds shapes that improve
the SNP calling for lower ANI regions. This effect is more pronounced with the
shorter pattern and is likely due to the fact that the difference p− (k+ s) is smaller.

Assessing SNP detection sensitivity with synthetic metagenomes

Next, I assessed SNP calling sensitivity with varkit given simulated reads from marker
genes with injected SNPs (Fig. 4.10 A). For varkit, SNP calling sensitivity mostly
depends on the ANI to the reference genome and quickly declines with growing
distance to the reference. At 99%, over 90% of all SNPs are recovered, but at 95%
ANI this rate drops to ∼50%. This is in line with what already emerged during
the building of the pattern database in Figure 4.9. Figure 4.10 B reveals a species-
specific signal. Across all 15 genomes that were used to simulate reads from, both
genomes from g__Collinsella stand out with a mean sensitivity of 33.078±13.456
and 35.121±14.41, respectively. Vice-versa, the mean FP-rate for SNPs is high with
7.503±2.69 and 10.006±2.648, respectively. The mean sensitivity and FP-rate across
all genomes is 58.095±20.861 and 1.824±3.086. This is caused by the low rate of
species-level k-mers in the database. For both genomes within g__Collinsella, 66%
and 69% of all k-mers are above species-level and as mentioned in section 4.2.7 the
SNP detection algorithm cannot disentangle, whether a genus hit is actually present
in the detected species or not. In conclusion, the SNP detection performance depends
on the coverage, ANI to the reference, and the number of species-level k-mer. In the
next section, I will further showcase how varkit performs in taxonomic profiling

93



Novel taxonomic profiling and ...

benchmark.

Figure 4.10: SNP calling sensitivity at different ANI rates to reference, stratified by
genomes. Random species-representative marker genes were selected and SNPs were
introduced to match certain ANI values (94, 95, 96, 97, 98, 99% and vertical coverages
1,2,5,10). Reads were then simulated on the new references. Sensitivity is the number
of SNPs detected divided by all inserted SNPs. GUT_GENOME227824 belongs
to the species s__Collinsella sp900761165. The x-axis denotes the percentage of
species-level k-mers for this species. see Section 4.2.4 for more details.

4.3.2 Taxonomic profiling with varkit

For species-level benchmarking, I compared varkit’s performance to MetaPhlAn 4
and mOTUs3 on GTDB, with adjusted scores using benchpro to analyse the data.
Varkit was tested against MetaPhlAn 4 and mOTUs3, all against GTDB r207 pro-
files on the CAMI HumanToy dataset (Airways, Gastrointestinal, Oral, Skin, and
Urogenital).

Across all datasets for species (adjusted), varkit has the second highest mean
F1 with 0.915±0.059 (Fig. 4.11 A). Varkit performs best on the Gastrointest-
inal samples, with both a high mean sensitivity and precision (0.977±0.027,
0.972±0.039, respectively). Varkit’s lowest F1 score is for the Oral dataset(mean
F1 of 0.824±0.031) as a result of the low mean precision (0.737±0.052).

Further, the oral datasets contains reads from multiple strains of
s__Streptococcus suis, which, across all oral datasets, cause many FP predictions in
the surrounding closely related species (Supp. Fig. A.7). In fact, ∼63% of varkit’s
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Figure 4.11: Profiling performance across samples, environments, and tools measured
as F1-score, precision, and sensitivity. The boxplots represent different tools and each
data point is a sample. From left to right, the column panels are F1-Score, precision,
and sensitivity and the row panels stratify between different environments with the
top row being the summary across all environments.

FPs in the Oral datasets are species of the genus g__Streptococcus. Species of the
genus g__Neisseria are responsible for 34 FPs (15%) in the Oral datasets, 16 FPs
(28%) in Airway, and 11 FPs in Skin, suggesting a similar issue as g__Streptococcus.
Considering all datasets, other genera with frequent FPs are g__Haemophilus (37),
g__Campylobacter_D (15), g__Lactobacillus_D (15), and g__Escherichia (13).
Varkit performs particularly well on the Gastrointestinal dataset with only 10 FP
and 11 FN species. On genus level and across all datasets, varkit and MetaPhLAn 4
GTDB have perfect precision while mOTUs3 GTDB has 10 FPs across all datasets
(Fig. 4.11 B). However, overall varkit performs worse than the other two tested tools,
with a mean F1 of 0.985±0.015 and a mean sensitivity of 0.972±0.03.
As mentioned, Kraken2+Bracken was omitted from this benchmark, as it had already
been described and assessed in Chapter 3.3. In comparison, varkit has a mean
F1-score of 0.915±0.059 across all datasets, and Kraken2+Bracken with NCBI and
GTDB have a mean F1-score of 0.451±0.15 and 0.427±0.157, respectively. Further,
as varkit uses a marker gene based approach while Kraken2+Bracken use whole
genomes as reference, I focused on the comparison to MetaPhlAn 4 and mOTUs3.

95



Novel taxonomic profiling and ...

Figure 4.12: A, relative abundance for TPs for different tools coloured by dataset.
Points on the lower end show the sensitivity of the tool to detect low abundant taxa.
B, relative abundance for FNs for different tools, only showing taxa that are covered
by the tool database. Points are coloured by dataset and higher end points show
that a tool failed to detect higher abundant taxa.

Detection performance at difference taxa abundances and sample richness
levels

When further looking into the detection ability for low abundant species (<0.01%
relative abundance), I found that varkit only detects 19 TPs, while MetaPhlan 4
GTDB detects 45, mOTUs3 GTDB detects 46 (Fig. 4.12 A). Varkit also has 16 FN
species above 0.1% relative abundance (MetaPhlan 4 GTDB has 0 FN, mOTUs3
GTDB has 11 FN) (Fig. 4.12 B). For varkit, 8 out of the 16 FNs, and for mOTUs3
GTDB 7 out of 11 were species of the genus g__Streptococcus, which were previously
identified as a cause for FPs in varkit.

Next, I looked at how sample richness affects profiling performance for the Oral
dataset, which metagenomes had a richness between ∼50 and ∼135 different spe-
cies. For varkit, an increase in F1 and precision with sample richness is significant
(p=0.034 and 0.0024, respectively with Pearson Correlation). The main reason for
this is s__Streptococcus suis, which, when present in a sample, causes FP predic-
tions in the whole clade (Supp. Fig. A.7). For varkit, there is a higher increase for
TPs than FPs with increasing richness, which overall leads to a higher precision. A
possible conclusion is therefore that richness affects sensitivity more than precision,
as a higher richness causes more taxa to be below the abundance detection threshold.
To further expand on the abundance detection threshold, I filtered reads at differ-
ent abundance thresholds (Supp. Fig. A.8). Varkit’s F1 score improves gradually
with an abundance threshold and peaks at a threshold of 0.05% with a mean F1 of
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0.921±0.053 (increase from 0.915±0.059 unfiltered).

FP predictions with respect to their phylogenetic context

Figure 4.13: A, false positive species in context of their closest TP or FN neighbour
in the phylogenetic tree. FNs are split into detectable (FN+) and undetectable (FN-)
based on whether the tool has this taxon in their database. B, Abundance prediction
benchmark on species-level for all datasets. Metrics are Bray-Curtis Similarity (BC),
1-L2 error (L2), Pearson Correlation (PC), 1-L2 error only on TP taxa (L2-TP), and
Pearson Correlation only on TP taxa (PC-TP).

I already established in Chapter 3.3.2 that FPs are often a byproduct of closely
related higher abundant TP taxa (Fig. 4.13 A). I found that all FP predictions
(except for one) are within 0.1 tree distance of a TP, and 58% of those TPs have a
relative abundance above 1%. The mean tree distance from TPs is 0.022±0.017 with
a mean abundance of 10.2±13.7%. Five FPs are closest to a FN+ (FN taxa that are
present in the tool database) in the tree, three of which are s__Haemophilus influ-
enzae, that are falsely detected as s__Haemophilus influenzae_E, s__Haemophilus
influenzae_F, or s__Haemophilus aegyptius.
Varkit’s FPs are mostly caused by unclear species boundaries for certain closely
related species, a source of error that also seems to affect mOTUs3 GTDB. I also
observed a larger spread in phylogenetic distance of FP taxa and their closest TP
neighbour (0.0 - 0.1 for varkit and 0.0 - 0.2 for mOTUs3 GTDB) between varkit
and mOTUs3. While varkit natively supports the GTDB phylogeny, mOTUs3 has a
custom species clustering. Hence, phylogenetic distances between species can differ
between the two phylogenies, depending on the phylogenetic approach.
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As for abundance prediction, varkit scores last in the dataset summary across
metrics (Fig. 4.13 B). By comparing between metrics applied on all taxa (TP, FP,
FN) and metrics only applied to TPs, I find that varkit does not benefit from only
considering TPs. Especially on the oral dataset, varkit has a lower score across all
metrics. This shows that in some cases, varkit’s abundance predictions are incorrect
for TP taxa. Out of 15 TP predictions with an absolute difference between predicted
and true abundance > 0.1, 7 of those TP taxa are s__Streptococcus suis and 4
are s__Neisseria meningitidis. Hence, the same species that are responsible for
FP predictions also cause wrong abundance predictions and have closely related
neighbouring species.

4.3.3 Runtime

In the following speed and memory benchmark, Kraken2+Bracken is included, as it
is often used as a benchmark reference for fast tools. Further, a thorough benchmark
on its taxonomic profiling performance was already conducted in chapter 3. On a
benchmark using the 10 samples from CAMI Airways (see Section 3.2.7), varkit was
the second fastest with a runtime of 12min (Fig. 4.14). Kraken2+Bracken came
in first with 8min 30 sec followed by mOTUs3 taking 1h 59min and MetaPhlAn 4
taking 1h 28min. Part of varkit’s speed is because it is the only tool that is able to
run multiple samples in the same run and hence does not have to reload the database
for each sample. Reloading the database still takes some time, even if it is cached
from the previous run. StrainPhlAn 4 takes the longest with ∼12h 30min. Varkit
was approximately 7.3 times faster than MetaPhlAn 4 and approximately 10 times
faster than mOTUs3. The memory consumption was highest for varkit with 85 GB
followed by Kraken2+Bracken with 77 GB. MetaPhlAn 4 took 19 GB, and mOTUs3
and StrainPhlAn 4 ran with only 6 GB of memory.

4.4 Discussion

In this chapter, I presented varkit, a k-mer based taxonomic profiler and strain-
resolved tool. Varkit uses the GTDB marker genes (r207) as reference and presents
a novel method to determine SNP positions from k-mer lookup patterns, without
alignment to the reference. The species-level benchmarks revealed that varkit’s
performance is competitive with the other tested tools. Especially compared to
Kraken2+Bracken [307, 159], varkit performs well and is shown to be closer to the
performance of the two alignment-based tools, MetaPhlAn 4 and mOTUs3 in bench-
marks. Other benchmarks have already demonstrated that many k-mer based tools
such as Kraken, Kraken2 or CLARK [200] offer great speed and sensitivity, but
struggle with precision [242, 177] . The main reason for this is that k-mer based
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Figure 4.14: Runtime and memory analysis of varkit with respect to other taxonomic
profilers and strain-resolved tools. The benchmark was done on a single node with
no interfering input and output using 16 cores. The tools were run on 10 samples
from CAMI Airways with 2x 5GB uncompressed paired-end reads (see Section 3.2.7
for more details).

tools like Kraken [308] and Kraken2 often use databases built from whole genomes.
Genomes in public databases can exhibit contamination and are further often sub-
ject to HGT [46]. As a result, many FP hits emerge from using the whole genome
information without curating the database in some way. KrakenUniq [32], follows a
different approach to estimate the coverage of unique k-mers across the genome with
a HyperLogLog data-structure to minimize false positive predictions, but has been
shown to perform inferior to mOTUs2 and MetaPhlAn 4 in a recent benchmark [219].
Varkit instead stores marker genes with positional information, which allows for bet-
ter quality control (see Section 4.2.7). By storing the positional information, varkit’s
approach is closer to the seeding phase of aligners and alignment-based tools and ex-
hibits much higher precision (see also Chapter 3). Further, by using universal marker
genes which are rarely subject to HGT [305], varkit eliminates a potential source for
FP predictions. However, a downside is that due to its specialized approach, varkit
does not allow for custom databases, which is one of the major advantages of other
k-mer based tools.

When comparing varkit to Kraken2 in terms of memory consumption, it’s evident
that both have databases of the same size. However, varkit stores short regions of
species representatives, whereas Kraken2 retains complete information from 203,948
sequences 4. Kraken2 achieves this by sub-sampling k-mers (minimizer approach)
and storing a lossful representation of k-mers; a strategy not viable for varkit, as
the pattern-based SNP detection requires hit or miss information for every single

4Kraken Standard database from 12/01/2024
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k-mer lookup. A fundamental issue with varkit lies in the selection of the parameter
k. The results for SNP calling sensitivity for different k-mer shapes suggest that
a shorter k-mer size is advantageous. While this is true for SNP calling, it is not
true for taxonomic classification [307]. Varkit’s hash table stores the LCA for each
non-unique k-mer, and the proportion of unique k-mers for each species decreases
with smaller k. This decreases the species-specific signal of k-mers and increases
the false positive rate. When optimizing for one application, the other will suffer
- the current results show that while the profiling performance is comparable to
mOTUs3, the SNP detection sensitivity suffers for species with a low count of unique
k-mers. Without substantial changes to the data structure and approach, this trade-
off leads to unsolvable problems. A solution would be to store each k-mer with all
its locations, retaining the exact information for non-unique k-mers. However, this
would inevitably increase the database size, as it would require storing every k-mer.
Moreover, it would shift varkit closer to an alignment-based approach, necessitating
significant algorithmic changes to accommodate this shift.

Other k-mer based strain-level tools are either reference-based, or compare
between whole genomes as opposed to short-read sequencing data. FastANI [111],
for example, approximates ANI for whole genomes by breaking down each sequence
into equally sized large segments, for which the similarity is approximated through
overlapping k-mer sets using MashMap [122]. This speeds up ANI estimation for
whole genomes significantly, but is an unfeasible approach for short-reads. Skani has
a similar approach, but prevents ANI biases arising from comparing sequences with a
great size difference [222, 254]. Kmer2SNP [149] is a reference-free SNP caller, which
analyses the k-mer frequency distribution to identify heterozygous SNPs and is thus
only applicable to diploid organisms. FastGT [202] identifies SNPs from short-reads,
but only works with a pre-built k-mer database. Similarly, GT-Pro [250] is a meta-
genotyper for sequencing data from the human gut and utilizes a pre-built database
of k-mers, selected based on co-occurrence patterns across genomes and linkage dis-
equilibrium. Varkit thus presents a novel method for alignment-free detection of de
novo SNPs. While varkit’s conceptual approach is intriguing, its lack of practicality
for the reasons mentioned necessitates significant modifications for it to be effectively
usable in practice.

4.5 Author contributions

I conceptualized, developed, and implemented varkit by myself, under the guidance
of Falk Hildebrand. The idea to utilize k-mer lookups to infer the position of SNPs
came from Falk Hildebrand. I then conceptualized and implemented the idea.
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Chapter 5

Alignment-based taxonomic
profiling and strain-resolved
metagenomics using protal

5.1 Introduction

As established in the introductions of the previous Chapters 3 and 4, the amount
of publicly available metagenomic data is rapidly increasing. Facilitated by de novo
assembly pipelines and the subsequent characterization of unknown species, current
reference databases such as GTDB have immensely expanded their taxonomic cov-
erage over the past years. This demands fast and precise taxonomic profilers and
strain-resolved tools, to (re-)analyse existing as well as new metagenomic data, with
respect to the expanded taxonomy now becoming available.

In the previous Chapter I introduced varkit as an attempt to tackle these is-
sues with a novel k-mer based approach that allows for strain-level resolution based
on k-mer hits in a database. I showed that varkit’s taxonomic profiling is largely
on par with existing tools, while benefiting from covering the whole GTDB taxo-
nomic space. While the strain-level performance was fast, the achieved resolution
was inadequate for the applications I envisaged. Additionally, varkit’s high memory
requirements (80-90Gb) reduce accessibility and increase the runtime for small data-
sets. Leveraging the accumulated knowledge and ideas that were not fit for varkit, I
implemented an alignment-based approach, integrating novel and known concepts to
achieve speed, precision, and taxonomic coverage for taxonomic profiling and strain-
resolved analysis.

Here I present protal, a tool for taxonomic profiling and strain-resolved analysis
using short-read metagenomic data. Like varkit, protal uses 120 bacterial marker
genes from GTDB as a reference to offer broad taxonomic coverage and seamless
integration with taxonomic tools such as GTDB-tk [43]. I implemented a custom
alignment algorithm around a novel data-structure, the flex-map. This allows for
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fast and accurate read alignment with a database densely populated with high sim-
ilarity sequences, such as conserved marker genes. Further, protal’s flex-map stores
and reports information on k-mers that are unique to their species cluster, but are
absent from other species. This is a unique advantage, as protal is simultaneously
an alignment tool, but also stores additional information about taxonomy in its
data structure. In combination with machine learning assisted taxonomic profiling,
protal has higher sensitivity and precision on almost all datasets. On strain-level,
protal reuses alignments for SNP calling and a subsequent reference-guided multiple
sequence alignment (MSA), allowing for a 70-fold speed improvement over similar
strain-resolved tools.

In the methods section, I introduce protal’s workflow, covering its input, output,
alignment, taxonomic profiling, and strain-level resolution. The alignment section
begins with an introduction to the flex-map data structure, followed by detailed steps
on building the index, seeding, anchor-finding, and performing the actual alignment
between read and reference. Later, I explain the taxonomic profiling process and
how alignments, unique k-mers and random forests are employed to create taxo-
nomic profiles. This is followed by a description of how reference-guided alignment
is implemented to reconstruct per-species and across samples MSAs and achieve
strain-resolution.

The results section leads with a benchmark of protal against other contemporary
aligners on a dataset simulated from all marker genomes (see Section5.2.5), and
further information about unique k-mers and the trained random forest. Next,
protal’s profiling performance is benchmarked against MetaPhlAn 4 (GTDB) [26]
and mOTUs3 (GTDB) [232] using benchpro (see Chapter 3). As protal natively pro-
files within the whole GTDB space, I chose to compare protal against MetaPhlAn
4 and mOTUs3 using only their adjusted species-level benchmarks to enable a fair
comparison. On strain-level, I compare protal’s MSAs and subsequently generated
phylogenetic trees to StrainPhlAn 4, again using benchpro. Lastly, a speed and
memory benchmark demonstrates the potential of protal’s approach.

5.2 Methods

5.2.1 Workflow Approach

Protal takes a set of short, paired-end reads from shotgun metagenomic sequencing as
input and computes taxonomic profiles for each sample by aligning all read-pairs to a
reference containing GTDB marker genes for 80,789 bacterial species (Fig. 5.1). For
strain-level, protal reconstructs MSAs for each species present in multiple samples.
A pre-built database is provided to the user.

Protal follows a common approach of aligning reads against marker genes [26,
232]. Read alignment provides enough information to infer metrics such as ANI to

102



Joachim Fritscher

Figure 5.1: Protal takes a set of paired-end short reads from shotgun metagenomic
sequencing and outputs per sample taxonomic profiles and strain-resolved MSAs
per species present in multiple samples. Internally, protal has three distinct steps -
alignment, profiling, and strain-level. In the first step, all reads are aligned against
all species-representative marker genomes within GTDB r214.0. During profiling,
these alignments are processed and counted for each marker gene of each species.
A random forest evaluates evidence for each species to predict presence or absence.
To achieve strain-level resolution, alignments from the same species across multiple
samples are used to yield a reference-guided alignment.

the reference, MAPQ scores, and alignment length, and further allows inference of
SNPs to increase the resolution to strain-level. Marker genes are commonly used to
a) focus on highly reliable regions that are single-copy and do not exhibit any HGT
to avoid spurious evidence for species-presence and b) to keep the database smaller,
which is usually loaded into memory at once.

Protal’s design philosophy follows an integrated approach rather than using ex-
ternal tools. This allows for customizing parts of the pipeline so they are tailored
towards the use-case of metagenomics. These customisations entail high-similarity
read alignment, incorporation of unique k-mers to decrease FP rate, random-forest
assisted presence prediction, and reference-guided MSA directly utilizing existing
alignments. This allows protal to not only increase sensitivity and precision, but it
further decreases the runtime as opposed to relying on external software.

5.2.2 Alignment

Flex-mers and flex-map

Protal’s alignment algorithm is based on a seeding approach that uses core-mers
and flex-mers to speed up finding candidates for alignment. I define core-mer (here
15-mer) as a substring of a k-mer (here 31-mer) that sits in its middle and is used
for exact matching. Further, I define a flex-mer as the flanking region around a
core-mer, and it is used for inexact matching (2x8-mer) (see Fig. 5.2). In practice,
this means that for each lookup, the core-mer is exactly matched and all positions in
the reference are then further filtered by highest similarity in the flanking flex-mers.
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Figure 5.2: Concept of the flex-map. The flex-map serves as data structure for key-
value pairs, with keys being core-mers and values being all positions in the reference
for a core-mer and additional flex-mer information. For each core-mer stored in
KEYS, there is a bucket in VALUES storing the location of all its occurrences in
the reference. Those locations are stored in the ‘Body’ section of the bucket. Ad-
ditionally, buckets of size > 1 have a ‘Header’ section storing the flex-mer for each
core-mer. The flex-mer is the 2x8 flanking region of each core-mer. Given a k-mer
with core-mer and flex-mer from the query, exact matching of the core-mer is used
to retrieve the bucket with all its locations in the reference and the flex-mer is used
to further filter the location based on flanking region similarity.

For clarification, I use the term core-mer to emphasize the concept, however, here, a
core-mer is always of length 15. This length has proven to be sensitive, yet precise in
other aligners (e.g. minimap2 [145]) and works well with the flex-map data-structure.
Similarly, flex-mers are of length 16 and are the concatenation of the flanking regions
around a core-mer within a 31-mer.

Before querying reads, the reference database needs to be indexed. Protal’s index
is a custom implemented hash table, called flex-map, holding key-value(s) pairs with
keys and values stored separately using a 16-bit-array, called KEYS, and a 64-bit
array, called VALUES (see Fig. 5.2). Keys, stored in KEYS, are core-mers and
stored in 2-bit representation with A, C, G, and T stored as 00, 01, 10, and 11,
respectively. Compared to classical hash tables, the hash function for the flex-map is
the 2-bit representation of a core-mer and gives us the position for each core-mer in
KEYS. For example, the core-mer ‘AAAAAAAAAAAAAGT’ is represented as the
bit string ‘000000000000000000000000001011’, which translates to index 11.

In the following, taxonomic identifier is abbreviated as tid, gene identifier as
gid, gene position as gpos, and read position as rpos. Value(s), stored in VALUES,
corresponding to a core-mer are 4-tuples (tid, gid, gpos, unique) populating consec-
utive entries in VALUES. Unique refers to additional information whether a k-mer is
unique to its species and is explained later in Section 5.7. Each 4-tuple populates a
single 64-bit cell in VALUES and points to an exact location in the reference. Core-
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mers that are absent from the reference sequences have an entry in KEYS, but no
entries in VALUES. If a core-mer has more than two occurrences in the reference,
an additional flanking 8 nucleotides, the flex-mer, is stored for inexact matching to
reduce the number of returned locations.

To reduce memory footprint, the KEYS array only has 16-bit cells. Since 16-
bits can only index 216 = 65, 536 positions in VALUES, an additional ‘global offset’
needs to be stored between entries in KEYS. Hence, entries are grouped in blocks
of 16. Every 16 entries, an extra 32-bit (2 * 16-bit cells, called control-block) is
used to store a new global offset for VALUES; the following 16 entries in KEYS
are local offsets in VALUES relative to this block’s global offset. Thus, the total
size of KEYS is constant and occupies 230 · 2byte + (230/16) · 4byte = 2.25 GB of
space. 230/16 ·4byte is the space requirement for the control-blocks, given blocks are
inserted every 16 keys, and each control-block occupies 4 byte. In contrast to this,
using the naive approach and storing offsets in 64-bit cells, the space requirement
would be 230 ·8 = 8 GB. The size of VALUES is variable and depends on the number
of stored reference locations. The index is built from marker genes of GTDB species
representative genomes (version r214) [206].

Minimizers and Syncmers

In the previous Chapter 4, varkit demonstrated a high memory consumption (Fig.
4.14), making it less accessible for users. While Varkit could not avoid storing all k-
mers due to its unique approach for identifying SNP positions, many common meth-
ods exist to subsample k-mers in order to reduce memory usage and computational
load. One widely used technique is minimizers, which offer a space- and time-efficient
way to represent k-mers in DNA sequence analysis. First introduced by Roberts et
al. in 2004 to address storage limitations in biological sequence processing, min-
imizers work by selecting only a subset of k-mers—typically the lexicographically
smallest k-mer within a sliding window of size w—thereby reducing redundancy in
sequence representation [227]. This strategy enables faster sequence comparison and
alignment by avoiding the need to store or process every k-mer.

This type of minimizer is context dependent, as mutations within the sliding
window w could alter the lexicographic ordering of the k-mers, and thus changing
the selected minimizer. There are various types of minimizers including modulo min-
imizers, and sync-mers. While standard minimizers select the smallest k-mer in a
window, syncmers and their variants are independent of the local sequence context
and are therefore less susceptible to sequencing errors. Popular tools that use minim-
izers include Minimap2 and Kraken2 [145, 307]. Open syncmers, in particular, select
k-mers where the smallest s-mer (a substring of length s) occurs at a specific position
within the k-mer, leading to better conservation in comparison to context dependent
minimizers [61]. Protal uses open-syncmers as a strategy to reduce memory.
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Unique k-mers

To increase precision, protal implements an additional post-processing step to add
information, whether exact matching 31-mers are unique to their species. For this,
all stored k-mers (core-mer + flex-mer) are tested against all 394,932 marker genomes
to determine which k-mers are unique to a species and have no occurrences in other
species. Short uniques are k-mers with a unique core-mer. Long uniques are 31-mers
(core-mer and flex-mer), with no occurrences outside of their species. Super long
uniques are similar to long uniques but their closest matching k-mer outside of their
species cluster has a minimum Hamming distance of 2. It follows that each long
super unique is by definition also a super unique. This information is stored in 3
bits out of the 64 bits per value in VALUES. Unique k-mer information does not
influence the alignment process, but is reported together with the best alignment.

Seeding, anchor-finding, and alignment

Briefly summarized, to align reads to reference, protal uses matching k-mers, called
seeds, between read and reference to find candidates for alignment. As alignment is
computationally expensive, the aim is to only submit a few selected candidates for
alignment. The following describes the candidate selection process and alignment in
detail.

Seeding is used to find candidate references to align the reads to, in order to
reduce the number of computationally expensive alignments. I define a hit as a 4-
tuple (tid, gid, gpos, unique) pointing to a single location in the reference database;
it is stored in a 64-bit value. A value-block corresponds to a stretch of hits that have
identical core-mers. I define a seed as a 5-tuple of (tid, gid, gpos, rpos, unique) that
links a core-mer in the query to the location(s) in the reference where the same core-
mer can be found. For each read, all 31-mers that are also syncmers are extracted
(Fig. 5.3 1). The core-mer of every selected 31-mer is used as a key for the flex-
map (Fig. 5.3 2). For each core-mer, the bucket in VALUES is retrieved. The size
of a bucket refers to the number of seeds for this core-mer. All buckets are then
sorted by size in ascending order (Fig. 5.3 3). Starting with the smallest bucket,
seeds are retrieved and stored in a seed list based on their closest matching flex-mer
(Fig. 5.3 4). A strategy is implemented to reduce the number of retrieved seeds,
and hence the computational complexity for sorting and processing retrieved seeds:
protal stops if seeds from at least four buckets have been retrieved and the seed list
size exceeds the threshold of max_seed_size (default value is 128). All retrieved
seeds are sorted by tid, gid, and rpos (Fig. 5.3 5). Seeds are then grouped into
anchors based on tid and gid (Fig. 5.3 6). Seeds in the same anchor must further
have the same pairwise distance in both read and reference, hence have no indels in
between. In the next step, for each anchor all seeds are extended with respect to the
reference, until a mismatch is found or another seed is hit (Fig. 5.3 7). Anchors are
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Figure 5.3: Detailed description of protal’s alignment workflow. See Section 5.2.2
for more details. Information about unique k-mers is not mentioned here, as they do
not influence the alignment process.

then sorted in descending order by their number of exact matching positions to the
reference (Fig. 5.3 8). If the reads are paired end and not all top 3 anchors are shared
between both reads (with respect to tid and gid), additional anchors are recovered
(Fig. 5.3 9). If there is no matching anchor, further seeds are retrieved from the
buckets to match the target anchor. Finally, the top 3 anchors and recovered anchors
for each read-pair are submitted to alignment with WFA2 against the respective
reference sequence [167] (Fig. 5.3 10). The penalty scores used for alignment are
mismatch=4, gap_opening=6, and gap_extend=2. Subsequently, alignments are
paired and sorted based on the normalized alignment bit-score (Fig. 5.3 11). With
the presented scoring system, the perfect alignment has a score of 0. When the score
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is divided by 4 (mismatch penalty), I get an ANI approximation. The best scoring
alignment pair is reported.

During seeding, anchor grouping, and alignment, information about unique k-
mers is passed through and retained to be stored with the alignment. For each
reported alignment, the number of long unique and long super unique k-mers are
stored in the optional columns in the sam file under ZU:i:<value> and ZT:i:<value>
for long uniques and long super uniques, respectively. Further, for each alignment
protal computes a MAPQ score. MAPQ scores are the phred-scaled probability (-10
* log10(p)) that a read(-pair) is incorrectly mapped. If a read maps to multiple
locations in the reference at a similar identity, the MAPQ score is lower; if it maps
to only one location at high identity it is higher. MAPQ is computed according
to the following formula, which follows the implementation of calculating MAPQ in
minimap2 but I omit the chaining factor [145]. S1 and S2 hereby represent the score
of the best and the second best alignment, respectively.

MAPQ = 40 · (1− S2

S1
) · log10(S1) (5.1)

5.2.3 Taxonomic Profiling using Random Forests

Protal utilizes random forests [31] to make sense of a wide array of per-species metrics
to predict its presence or absence. Random forests are a machine learning algorithm
composed of multiple individual models to make predictions. The training data
was obtained from protal’s output on all benchmark datasets CAMI Human-Toy,
Marine, and Mouse. Further, the CAMI dataset Rhizosphere was used to train
the random forest, but was later removed from the species-profiling benchmark as
there were inconsistencies across all tools. Further, the dataset MSSS200R was
used for training, and is introduced in Section 5.2.5). Protal outputs a dataset of
metrics for all species that have at least one read assigned (see Table 3.1). Using the
gold-standard profiles, the dataset was annotated with information which taxa are
present and served as an input for building a random forest with the ‘randomForest’
R package [152] version 4.7-1.1. I used an 80/20 training/test split in the dataset and
trained the forest with ‘randomForest‘ using the parameters ‘ntree = 256, maxnodes
= 128‘. Protal calculates the same metrics from alignments when profiling reads,
and uses the random forest to predict species presence.

Expected gene presence is an input for the random forest (see Table 5.1). Given
a certain number of reads, I expect to have a certain number of genes discovered.
This is modeled with the following equation. genes(t) is the number of total genes
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Table 5.1: The following metrics are computed by protal for each species from all
read alignments and are used as input for the random forest.

Metric Name Metric Description

lu_gene_rate3 Observed number of genes with at least 3 long uniques di-
vided by the number of genes with at least 3 long uniques in
database

lu_gene_rate2 Observed number of genes with at least 2 long uniques di-
vided by the number of genes with at least 2 long uniques in
database

lu_gene_rate Observed number of genes with any long uniques divided by
the number of genes with any long uniques in reference

lu_genes Observed number of genes with at least one long unique re-
ported

present_genes Number of genes hit by at least one read
lu Total number of observed long unique k-mers (reported in

optional part of alignment sam-file)
lsu_gene_rate Observed number of genes with any long super uniques di-

vided by the number of genes with any long super uniques
in reference

lsu_genes Observed number of genes with at least one long super
unique reported

lsu Total number of observed long super unique k-mers (reported
in optional part of alignment sam-file)

lsu_gene_rate2 Observed number of genes with at least 2 long super uniques
divided by the number of genes with at least 2 long super
uniques in reference

expected_gene_presence_ratio Observed gene presence rate relative to expected gene pres-
ence

expected_gene_presence Formula for how many genes are expected to be hit based
on the number of reads (see Equ. 5.2)

lu_per_read Number of long uniques divided y number of reads
lsu_gene_rate3 Observed number of genes with at least 3 long super uniques

divided by the number of genes with at least 3 long super
uniques in reference

mean_ani Mean ANI across all reads and genes (computed from Align-
ment CIGAR [147])

variance1 Variance calculated on predicted vertical abundances for all
genes

stddev StdDev calculated on predicted vertical abundances for all
genes (only for present genes)

AF0 Number of alleles that did not pass quality filter (sum of
qualities >60 and minimum 2 observations)

lsu_per_read Number of long super uniques divided y number of reads
total_genome Total number of k-mers for reference in index
RAF0 AF0 divided by all Variant positions
hittable Genes that can be hit (Need to have at least 1 unique k-mer

in protal database)
su_rate_ref Fraction of short uniques in reference with respect to all k-

mers
uniqueness Number of reads with MAPQ >20 divided by number of

reads
lu_genome Number of long uniques in reference genome
lu_rate_ref Fraction of long uniques in reference with respect to all k-

mers
lsu_rate_ref Fraction of long super uniques in reference with respect to

all k-mers
lsu_genome Number of long super uniques in reference genome
su_genome Number of short uniques in reference genome
mean_mapq Mean MAPQ across all reads and genes (computed from

Alignment CIGAR [147])
variance2 Variance calculated on predicted vertical abundances for all

genes (only for present genes)
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in the reference for taxon t and reads(t) is the number of reads mapped to t.

ExpectedGenePresence(t) = (1− (
genes(t)− 1

genes(t)
)reads(t)) · genes(t) (5.2)

ExpectedGenePresenceRatio(t) =
PresentGenes(t)

ExpectedGenePresence(t)
(5.3)

For example, if a taxon has 120 marker genes with 350 reads mapped in total, I
would expect reads to hit (1 − 120−1

120

350
) · 120 = 110 genes. If I then find only 50

genes are hit, the expected gene presence ratio is 50
110 = 0.45.

Abundance calculation For all present species, the abundance is computed as
the median of per gene vertical coverage. The vertical coverage for each gene is
calculated according to the Lander-Waterman equation from all its mapped reads
and is the sum of length over all mapped reads divided by the length of the gene
[134].

5.2.4 Strain-level

In a dataset with multiple metagenomes, strain-level is achieved by comparing align-
ments across metagenomes for all species that are present in at least two meta-
genomes. A common approach is to call SNPs based off the alignments and then
reconstruct a per species consensus sequence for each metagenome. A multiple se-
quence alignment of all consensus sequences can then be used to create a maximum-
likelihood phylogenetic tree. This approach is computationally expensive as MSA
construction typically has an algorithmic complexity of O(n · log n) [118]. Further,
computing a consensus and passing it on to an external tool comes with an additional
I/O (Input/Output) overhead. Protal massively speeds this up by calling SNPs in-
ternally and reconstructing the consensus simultaneously along with the MSA. This
is called reference-guided MSA and is possible, as reads aligning to the same species
across metagenomes share the same reference and computing an MSA de novo on
the consensus sequences is not necessary. ViralMSA [181] and VIRULIGN [153] im-
plement reference-guided MSAs to cope with the large number of viral sequences in
molecular epidemiology, but use genomes instead of reads as input. As opposed to
traditional MSAs, the computational complexity for reference-guided MSAs scales
linearly (O(n)) with the number of input sequences (samples). The following is a
detailed description of how protal computes reference-guided MSAs.

Reference-guided MSA

During an initial step, all alignments are grouped per species and marker gene. All
alignments with a MAPQ lower than 4 are discarded. Individual marker genes need
to be present in at least three samples to be included in the MSA. From alignments
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against the reference marker gene, protal extracts all (unfiltered) variants in a vector
and further keeps a vector containing vertical base coverage for every position. Every
position in the MSA needs to have a minimum coverage of 2 to be included in the
MSA. For multi-allelic positions, the consensus call is the variant with the higher
sum of quality-scores. For example, with variants denoted as (base, quality), if a
position has the bases (′A′, 20), (′A′, 35), (′A′, 40), (′T ′, 25), (′T ′, 40), the consensus is
‘A’ with a quality sum of 95 as opposed to ‘T’ with a quality sum of 65. As protal
only tracks variant positions with quality, reference bases have a default quality of
30. Finally, the consensus variant must have a minimum coverage of three, and a
minimum sum of quality scores of 60 to pass quality control. In our example, variant
‘A’ passes with a coverage 3 ≥ 3 and a sum of quality scores 95 ≥ 60. When building
the MSA, protal traverses the marker gene reference and for each position traverses
all samples twice. In the first traversal, protal determines whether any variant is an
insertion passing quality control, and if so, keeps track of the maximum insertion
in any of the samples for this column. In the second traversal, protal considers the
following rules for each sample to decide which base to incorporate at this position.
First, the sample needs to have at least a vertical coverage of two, otherwise a ’-’
(gap) is incorporated. If the vertical coverage is ≥ 2, and the position has a variant
that passes quality control, the variant is incorporated. If the passing variant is an
insertion, the insertion is added. If the passing variant is a deletion, ’-’ for the next
reference positions according to the length of the deletion is incorporated. If there is
a variant that did not pass quality control (that includes the reference base), an ‘N’
is incorporated. If there is no variant and the vertical coverage is ≥ 2, the reference
base is incorporated. An additional number of ‘-’ is added according to the maximum
insertion size for this column. At the end of building the species MSA, protal filters
all samples based on a minimum 5,000 bases vertical coverage. At the moment all
thresholds are hard-coded and cannot be changed by the user.

5.2.5 Additional Datasets and Benchmarks

Firstly, to evaluate the internal read alignment, I simulated reads from all marker
genomes (n=394,932), including non representative ones, using art_illumina 2.5.8
[102] and the parameters ‘-nf 0 -p -i reference.fna -o output -l 150 -ss HS25 -f 5.0 -m
200 -s 10’ resulting in 2x944,933,468 reads. Each species has up to 120 marker genes,
but not all marker genes are present in all species. As some marker genes are shorter
than 200 nucleotides, I added 128 N’s at the beginning and the end of each marker
gene for reads to be able to span the sequence. I aligned all resulting reads using
bowtie2 2.5.3 [136], bwa-mem2 2.2.1 [146], strobealign 0.13.0 [234], and minimap2
2.28-r1209 [145]. The parameters for the aligners were ‘ –very-sensitive -p 16’ for
bowtie2, ‘-t 16’ for bwa-mem2 (bwa-mem2.avx to enforce usage of the avx extension),
‘-ax sr -t 16 –secondary=no’ for minimap2 to change the settings to sam output,
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short-reads, and to only output the primary alignment, ‘-t 16 -U’ for strobealign to
suppress output of unaligned sequence, and ‘–max_score_ani 0.9 -u 256 -s 128 -t 16’
for protal to stop alignments with lower prospective ANI than 0.9. The databases for
all tools were built with default settings from species representative marker genomes
for bacteria in GTDB r214 (80,789). Each non-representative marker genome belongs
to a species cluster. I assess all alignments based on whether the reads were aligned
to the representative marker genome of their respective species cluster. I count TP,
FP, and FN alignments to compute TP-rate and FP-rate for all MAPQ thresholds.
I did not compute TN or FN values as this would require to know whether it is
possible to align the read to the true reference. Speed and memory benchmarks for
the alignment tools were conducted with an AMD EPYC 7713P CPU and 512GB
RAM with no other jobs running on this node during the benchmarks. I used a
subset of the simulated marker gene data, which resulted in an uncompressed set of
paired-end reads with 7.9GB each. After each run, I further used pigz 2.5 with ‘-p
16’ to compress the resulting sam file. Each tool was run twice to ensure all tools
had their databases pre-cached by the second run.

I further introduce a new dataset MSSS200R (multiple species single strain),
which was added to assess the profiling performance of rare species. From the UHGG
database [4], a collection of common genomes in the human gut, 783 isolate genomes
were selected from 363 species that have only one genome representative in GTDB
r214. Similar to the strain-level dataset described in Section 3.2.5, this dataset is
more a technical benchmark and not an attempt to create a truthful representation
of a common microbiota. All genomes utilized are listed in Table A.6.

I simulated 20 samples with a single genome across 200 species. Both genomes
and species were randomly selected from the pool of available genomes. The vertical
coverage across all genomes was fitted to match a binomial distribution, with a
minimum vertical coverage of 0.05, and a maximum vertical coverage of 70. Per
sample mean vertical coverages and number of species are listed in Table A.5. I used
art_illumina to simulate paired-end reads of length 2x150bp with the parameters ‘-p
-l 150 -ss HS25 -m 200 -s 10’. This dataset is only used for species-level profiling in
Section 5.3.3. Strain-level benchmarking was conducted using the dataset introduced
in Chapter 3.2.5. Further, species and strain-level benchmarks were conducted as
explained in Chapter 3.2.

5.3 Results

5.3.1 Overview

In this section I will provide a brief overview over the presented results (Fig. 5.3). As
protal employs its own algorithm for aligning reads to the marker-gene reference, the
first benchmark is an evaluation of the alignment performance compared to other
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aligners with respect to correctness, speed and memory (Fig. 5.3 A). This part
further presents results regarding unique k-mers, a way to improve accuracy in the
downstream taxonomic classification (Fig. 5.3 B). Part of this is also the evaluation
of the random forest as an automated process to classify species as present or absent,
based on data such as unique k-mers found for each species (Fig. 5.3 C).

Figure 5.4: Overview over protal’s results section and the presented analyses. The
results section broadly divides into tool internal benchmarks, such as evaluating the
correctness of alignments, taxonomic profiling benchmarks, and strain-level analysis
benchmarks.

The subsequent analyses are structured similarly to the benchpro results chapter
and are divided into sections on taxonomic profiling and strain-resolved analysis. For
the taxonomic profiling benchmarks, only GTDB-based profiles are considered (r207
for MetaPhlAn 4 and mOTUs3; r214 for protal), excluding the NCBI taxonomy-
based CAMI profiles, which were already addressed in Chapter 3.3.2. It is important
to note that protal does not currently support output in the NCBI taxonomy, as
converting between NCBI and GTDB taxonomies is non-trivial. Additionally, a
novel dataset—MSSS200R—is introduced, composed exclusively of simulated reads
from species represented by a single genome in GTDB r214. This dataset tests
database coverage and each tool’s ability to detect novel taxa. Kraken2+Bracken is
excluded from this benchmark section, having already been evaluated in Chapter 3.3
where it demonstrated suboptimal performance.

The evaluation begins with taxonomic classification performance of protal,
MetaPhlAn 4, and mOTUs3 across all CAMI datasets and MSSS200R, at both the
species level (adjusted; see Section 3.2.2) and genus level, to assess protal’s ability
to accurately predict taxon presence and absence (Fig. 5.3 D). Following this,
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FN and TP are visualized with respect to their relative abundance (Fig. 5.3 E).
Next, we assess whether protal’s performance is influenced by species richness. The
analysis then explores protal’s phylogenetic neighbourhood of FPs with respect to
FN-s, FN+s, and TPs (Fig. 5.3 F). This is followed by benchmarking the ability to
reconstruct species-level abundance values across all datasets (Fig. 5.3 G).

The strain-level analysis begins by evaluating protal’s sensitivity at both the
sample and strain levels, with particular attention to the vertical coverage of strains
(Fig. 5.3 H). To identify potential species-specific challenges, these results are further
stratified by species. Given protal’s higher sensitivity compared to StrainPhlAn 4,
results are presented for both the full protal trees (including all samples) and for trees
filtered to only those tips shared with StrainPhlAn 4. This facilitates a side-by-side
comparison of the tools’ performance.

The next analysis focuses on species-specific monophyly scores for protal and
StrainPhlAn 4 to assess their ability to accurately resolve strain-level identities (Fig.
5.3 I). This is followed by an in-depth case study of two species—one exhibiting well-
resolved monophyly, the other poorly resolved—highlighting issues such as cross-
mapping of reads between closely related species (Fig. 5.3 J).

Subsequently, monophyly is analysed in relation to the phylogenetic distances
between strains in the dataset, illustrating each tool’s ability to differentiate closely
related strains in the resulting trees (Fig. 5.3 K). To quantify errors in cases of
non-monophyly, the MCE metric is applied (Fig. 5.3 L). The relationship between
alignment quality and phylogenetic accuracy is then explored by linking MSA errors
to alignment lengths and monophyly scores (Fig. 5.3 M).

Following this, the inferred phylogenetic trees are compared to reference trees
generated using roary on the source genomes. Several tree distance metrics are em-
ployed to evaluate how well protal and StrainPhlAn 4 recover the internal topology
of the true strain relationships (Fig. 5.3 N). Finally, the runtime and memory con-
sumption of protal are benchmarked against StrainPhlAn 4 and other tools at the
strain resolution level (Fig. 5.3 O).

5.3.2 Alignment evaluation

At the core of protal is its custom sequence aligner using the flex-map data-structure
for fast and sensitive read alignment in a metagenomic setting. To validate the
benefits of the flex-map data-structure, I tested protal’s internal aligner against four
state-of-the-art alignment tools bowtie2 [136], bwa-mem2 [169], minimap2 [145], and
strobealign [234]. As protal’s aligner is optimized for an application in metagenomic
profiling, I created a benchmark that targets this specific use-case. Like protal,
the databases for the other aligners are built from all species representative marker
genomes in GTDB r214. I simulated reads from all marker genomes, not just species-
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representatives, and tested whether they align to the representative marker genome
of their respective species cluster (for more details see Section 5.2.5). TP-rate and
1-FP-rate are compared with respect to increasingly restrictive MAPQ thresholds
(Fig. 5.5 A). The MAPQ value is commonly used for quality filtering and represents
a confidence score of the alignment (see Section 5.2.2). Protal shows a good balance
between TPs and FPs at MAPQ == 4 with a TP-rate of 0.680 and a 1-FP-rate of
0.974. At this 1-FP-rate, it is only surpassed by bwa-mem2 with a higher TP-rate of
0.691 at a MAPQ of 48. As different tools implement different methods to calculate
the MAPQ score, identical MAPQ scores yield different degrees of filtering. While
bowtie2 yields lower FP-rate values for MAPQ between 12-37, the low TP-rate of
< 0.6 does not justify the lower FP count.

In terms of speed, protal is the second fastest aligner on this dataset with a mean
runtime of 5.88min±0.51, just after strobealign with 5.18min±0.95 (Fig. 5.5 B). Both
aligners are at least twice as fast as the other aligners (14.07min±1.62 for bwa-mem2,
19.51min±1.46 for bowtie2, and 22.39min±0.88 for minimap2). With ∼35GB, protal
is also in the middle regarding memory consumption, using 7GB less than the fastest,
strobealign, and 26GB less than the third fastest, bwa-mem2. Bowtie2 and minimap2
have the lowest memory requirement with ∼15GB and ∼20GB, respectively. An
analysis of the runtime of individual parts in protal shows that the alignment step
takes longest by far (Fig. 5.5 C). This shows that protal’s flex-map for seeding is
not the bottleneck of the tool. Protal’s flex-map is also responsible for keeping the
number of seeds and anchors small by first seeding for 15-mers, but only reporting
based on best hits to 31-mers (Fig. 5.5). This reduces the downstream runtime while
maintaining a high sensitivity (Fig. 5.5 D).

5.3.3 Unique-k-mers and Random forest

Protal utilizes a random forest for predicting the presence or absence of taxa. When
training the random forest on a random 80% split of the dataset, the sensitivity
was 0.9886 and the precision was 0.9898. On the 20% test dataset, the sensitivity
was 0.9857 and the precision was 0.9880. Evaluating the importance of variables in
the random forest shows that information about unique k-mers is most important
for determining presence or absence of taxa (Fig. 5.6, see Section 5.2.3 for details).
Unique k-mers are split into three types: short unique k-mers, long unique k-mers
and long super unique k-mers. Long unique k-mers are exact matching 31-mers
in the database, that only occur in genomes within a species, but not outside (see
Section 5.2.2). Variable lu_gene_rate3 quantifies the number of genes present
with at least three long unique k-mers with respect to genes with at least three
long unique k-mers in the database. Similarly, lu_gene_rate2 and lu_gene_rate
measure with a two and one uniques per gene thresholds. The most important
variable not describing unique k-mers is present genes - the number of genes for
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Figure 5.5: A, benchmark on 1,889,866,936 reads simulated from all bacterial marker
genomes in GTDB r214 (n=80,789), comparing different aligners. TP and FP are
evaluated based on whether a read was mapped to its correct species cluster repres-
entative. All reads that are neither TPs nor FPs are FNs. TP-rate and FP-rate are
calculated relative to the total number of reads at all MAPQ filtering thresholds.
B, runtime in minutes and memory in GB for all aligners on a dataset of 2x7.9GB
uncompressed paired-end reads. Output is uncompressed for all tools. C, protal’s
internal time benchmarks on the dataset in B. Alignment takes by far the longest
out of all stages of the alignment process. Stages refer to the following sections in
Fig. 5.3: Seeding (1,2,3,4), Sorting Seeds (5), Pairing (6), Sorting Anchors (8), An-
chor recovery (9), Alignment handler (10), Joining alignment pairs and sorting (11),
Output handler (End). D, seed- and anchor-size frequencies in protal. Smaller seed
sizes and anchor sizes with higher frequency result in a better runtime.

a species with at least one read alignment. Surprisingly, uniqueness has a very
low impact on the classification result of the random forest. Uniqueness measures
the percent of reads mapped to a species with a MAPQ >20 and should in theory
be indicative of unambiguous high-quality read alignments. In the context of the
distribution of unique k-mers within protal (see Fig. 5.7 A), it is observed that
many species possess a sufficient number of unique k-mers to enable identification
by the random forest. Roughly 95% (76749 out of 80789) of all species have more
than 6,250 unique k-mers. However, some genera, for example g__Collinsella,
harbor many species with a low number of unique k-mers (mean number of uniques
in g__Collinsella 1812±4419, see Fig. 5.7 B). Within g__Collinsella, 399 species
have less than 1000 unique k-mers, indicating a high marker genome similarity.

Note, that unique refers to ‘not outside of the species’, but it does not guarantee
that other members other than the representative genome also carry those k-mers.
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Figure 5.6: Variable importance reported from constructing the random forest. Me-
anDecreaseGini quantifies the importance of a variable within the random forest.
Variable explanations can be found in Table 5.1.

Figure 5.7: The number of unique k-mers (short uniques and long uniques) within
the protal database stratified by species. A, unique k-mers across all species. B,
unique k-mers only for species of the genera ‘g__Bacteroides’, ‘g__Collinsella’,
‘g__Neisseria’. The distribution of unique k-mers is not uniform across taxa, and
the majority of Collinsella species have only few (mean±sd = 1812±4419 ) unique
k-mers. Out of 502 Collinsella species in GTDB r214, 6 have less than 200 unique
k-mers in protal and 86 have less than 200. This indicates a high similarity to other
species or high diversity within the species.
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5.3.4 Species-level profiling

To benchmark protal’s performance for taxonomic profiling, I used benchpro and
the CAMI datasets introduced in Chapter 3. With the dataset MSSS200R, I added
a benchmark to show the advantages of covering the whole native GTDB space by
focusing on GTDB species comprised of only one genome (see Section 5.2.5). As
with varkit, adjustment of protal’s benchmark scores is not possible as protal nat-
ively covers all GTDB taxa. The following only shows benchmarks of tools with
respect to the GTDB taxonomy, as the NCBI results have already been discussed
in Chapter 3.3. The species-level comparison focuses on adjusted benchmark scores
to account for differences in taxonomic databases between tools (see 3.2.2). I ex-
cluded Kraken2+Bracken from this benchmark for its inferior performance in previ-
ous benchmarks and as results were already discussed in depth in Chapter 3.3.2.

Figure 5.8: Profiling performance across samples, environments, and tools. Perform-
ance is measured with the metrics F1-score, precision, and sensitivity (row panels).
The boxplots represent different tools and each data point is a sample. The column
panels stratify datasets. ‘200R’ is the dataset MSSS200R. A, benchmarks on species-
level adjusted. B, benchmarks on genus-level.

Summarized, protal shows superior profiling performance across all datasets, with
a total mean F1 of 0.974±0.031 (Fig. 5.8 A). With a focus on precision over sens-
itivity, protal has a higher mean precision of 0.994±0.013 over a mean sensitivity of
0.955±0.05. For F1 and sensitivity, this puts protal ahead of MetaPhlAn 4, which
has a mean F1 of 0.91±0.146 and a mean sensitivity of 0.865±0.201. For precision,
MetaPhlAn 4 and protal are almost tied, with MetaPhlAn 4 having a mean precision
of 0.995±0.011.

For individual datasets, MetaPhlAn 4 surpasses protal in precision in MSSS200R
and Gastrointestinal with a mean precision of 0.991±0.01 over 0.969±0.012 for
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MSSS200R, and 1±0 over 0.998±0.007 for Gastrointestinal for MetaPhlAn 4 and
protal, respectively. Protal’s sensitivity is outperformed by mOTUs3 and MetaPh-
lAn 4 only for the Marine dataset with mean sensitivity of 0.956±0.006 for protal,
0.956±0.006 for MetaPhlAn 4, and 0.887±0.007 for mOTUs3. This is because protal
currently only profiles bacteria, and the Marine datasets contain 442 archaeal spe-
cies making up for ∼6.9% of all species. For all other datasets, protal has the higher
sensitivity.

It is notable that protal has a perfect mean precision of 1 for the four data-
sets Airways, Oral, Skin, and Marine, and MetaPhlAn 4 has a perfect precision for
Gastrointestinal. The biggest disparity in performance is seen for MSSS200R, where
protal has a high mean sensitivity of 0.866±0.023 and both mOTUs3 and MetaPh-
lAn 4 have low mean sensitivity of 0.622±0.025 and 0.408±0.02, respectively. This
is due to a lack of species coverage in the respective databases as for MSSS200R,
MetaPhlAn 4 and mOTUs have 2,296 FNs from 226 species and 1,340 FNs from
141 species respectively that are not covered by their respective databases. The
genus-level results mostly align with the species-level findings in terms of order of
tool performance (Fig. 5.8 B). Both protal and MetaPhlAn 4 have perfect precision
across all datasets except for Mouse. For MSSS200R, protal increases the sensitivity
from species to genus-level from 0.866±0.023 at s to 0.997±0.004 while mOTUs3
has a mean sensitivity of 0.905±0.032, and MetaPhlAn 4 has a mean sensitivity of
0.67±0.03. While the dataset MSSS200R does not simulate a specific environment,
it still showcases that there are common species in the human gut that MetaPhlAn
4 and mOTUs3 have no taxonomic coverage for.

Protal is sensitive for low-abundant taxa

Next, I assess the detection thresholds for TPs and FNs for all tools (Fig. 5.9 A).
In my benchmarks, protal is the most sensitive profiler and in some cases can detect
TP species down to 0.0002% relative abundance. The lowest TP abundance for
mOTUs3 is 0.0006% and 0.0007% for MetaPhlAn 4. Although protal is the most
sensitive, it also misses some high abundance taxa (FNs) that other tools detect.
For each tool, considering only taxa contained in their database, protal misses 25
species with a relative abundance of >1% while MetaPhlAn 4 and mOTUs3 only
miss 3 and 8 species, respectively. With one exception, these species are all from the
genus g__Collinsella. Within GTDB, g__Collinsella has multiple closely related
species that are either absent from MetaPhLAn 4 and mOTUs3, or are represented
by fewer species in their respective databases. MetaPhlAn 4 has 16 species for the
genus g__Collinsella while GTDB r214 has 502 distinct species for this genus. Is
is important to note that all genomes in the dataset were taxonomically placed into
GTDB r207 and GTDB r214 using GTDB-tk. The species-level classification is based
on whole-genome ANI and AF. For MSSS200R_15, for example, MetaPhlAn 4 misses
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Figure 5.9: A, relative abundance for TP and FN+ (Taxa covered by the respective
tool databases) for different tools coloured by tool. Horizontal panels stratify data-
sets (UR=Urogenital, GI=Gastrointestinal, MA=Marine, MO=Mouse, OR=Oral,
SK=Skin, AI=Airways, RA=MSSS200R). Points on the lower end show the sensit-
ivity of the tool to detect low abundant taxa. B, Richness with respect to F1-score,
precision, and sensitivity. Each dot represents one sample in the Mouse dataset and
all statistics are after adjustment on species level. Richness on the x-axis is calcu-
lated as TP+FN and the y-axis shows the value for the respective statistic in each
panel.

69 FN g__Collinsella species not in its database, with total relative abundance
of 20.5%. However, MetaPhlAn 4 predicts one FP g__Collinsella species with a
predicted abundance of 13.5%, indicating that this single FP species s__Collinsella
sp003458415 covers for many of the closely related missing FN species. This is even
more apparent when comparing pairwise distances between g__Collinsella species
for the GTDB 207 species tree containing only MetaPhlAn 4 species and the GTDB
r214 tree (Suppl Fig. A.10). The distribution of pairwise distances in GTDB r214 has
a peak between 0.0 and 0.05 while the majority of pairwise distances for MetaPhLAn
4 is between 0.25 and 0.3 . As a consequence, protal fails to detect some high
abundant taxa in parts of the tree where species are closely related, while MetaPhlAn
4 fails at representing the species diversity in those regions.

To investigate how the tool performance changes with respect to sample richness,
I plotted F1, precision, sensitivity, TP, FP, and FN with respect to all samples within
the Mouse dataset (Fig. 5.9 B). F1 score and sensitivity decline for all tools with
increasing richness while precision increases for MetaPhlAn 4 and mOTUs3. Albeit
not significant, protal is the only tool with a negative correlation between precision
and richness, which is caused by protal having no FPs for the low richness samples.
Protal also had the lowest increase in FNs (R=0.62, p=10−6) with increasing rich-
ness when compared to MetaPhlAn 4 (R=0.72, p=10−8) and mOTUs3 (R=0.91,
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Figure 5.10: A, false positive species in context of their closest TP or FN neighbor in
the phylogenetic tree. FNs are split into detectable (FN+) and undetectable (FN-)
based on whether the tool has this taxon in its database. B, Abundance prediction
benchmark on species-level for all datasets. Metrics are Bray-Curtis Similarity (BC),
1-L2 error (L2), Pearson Correlation (PC), 1-L2 error only on TP taxa (L2-TP), and
Pearson Correlation only on TP taxa (PC-TP).

p=10−10), showing that protal remains sensitive for high richness samples.

In the following analysis, I explored the within-sample phylogenetic neighborhood
of FPs (Fig. 5.10). Across all datasets, protal has 122 FP species, of which >94%
are closest to a TP species with a mean abundance of 0.013±0.04. This means
that protal’s main source of FPs is misaligned reads from TP species. mOTUs3
exhibits a similar pattern, but more pronounced. mOTUs3 has the highest FP count
(n=1075) of which 88% are neighboring a TP with a mean abundance of 0.048±0.104.
MetaPhLAn 4 has the lowest of FP count of 81. For protal, the remaining 7 FP that
are closest to a FN+ most likely stem from reads that are simulated from genomes
having similar distance between species clusters and thus being hard to classify.

Considering FP species with a neighboring TP and FN with a phylogenetic
tree distance less than 0.05 and an abundance higher than 1%, protal has 36 FPs,
mOTUs3 has 574 FPs, and MetaPhLAn 4 has no FPs with these parameters. I
paired FPs with TPs under the assumption that FPs can be a byproduct of neigh-
boring TP species and imperfect alignment. However, some FPs have a high distance
to any TP in the tree. For MetaPhlAn 4, the reason is that some FPs and FNs were
not merged during adjustment as their distance is above the threshold (see 3.2 for
details). For protal and mOTUs3, these FP have a closely related FN neighbor that
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is present in the tool database and thus could be detected.
Lastly, I assessed the ability of protal to reconstruct correct bacterial abundances

in metagenomes. Similar to the analysis in Chapter 3, I differentiate between metrics
that incorporate FPs and FNs (BC, L2, PC) and metrics that consider only TP taxa
(L2-TP, PC-TP). At the species level, protal shows the best performance with a mean
PC value of 0.897±0.251 (higher is better) and a mean L2 value of 0.102±0.165 (lower
is better), surpassing the second-place MetaPhlAn 4, which has values of 0.806±0.338
and 0.152±0.211, respectively (Fig. 5.10 B). Protal also achieves the highest mean
BC value of 0.953±0.134, compared to 0.931±0.124 for the second-place mOTUs3.
However, for the metrics that only consider TP abundances, protal is slightly behind
other tools, with a mean PC-TP value of 0.977±0.059 and a mean L2-TP value of
0.056±0.056, meaning that in estimating purely abundances of taxa, protal is slightly
worse than either mOTUs3 or MetaPhlAn 4. This deficit is more than compensated
by protal’s more accurate species detection.

5.3.5 Strain-level evaluation

In the previous section I showed that protal is able to correctly align reads against a
universal marker gene database and further demonstrated that these alignments can
be translated to precise and accurate species profiles. In this section, I benchmark
how well individual read alignments for all predicted species translate to strain-
resolved trees.

Similar to Chapter 3.3.3, I used a simulated dataset of 200 metagenomes, each
containing a single strain per 46 different species. With many samples contain-
ing reads from the same strain, I benchmarked the correct reconstruction of mono-
phyletic clades per strain, errors in MSAs, within strain pairwise distances between
samples, and compared tree topology with gold standard trees for StrainPhlAn 4
[26] and protal. As protal currently employs only little filtering on which samples
are incorporated in the MSA, I both assessed protal’s native unfiltered strain-level
performance, as well as a filtered performance where protal trees are trimmed to the
same tips as StrainPhLAn 4.

Sensitivity for detecting low-abundant strains

Protal’s unfiltered strain-level results display a much higher sensitivity across species
with a mean value of 0.959±0.085 for strains and 0.907±0.174 for samples, compared
to StrainPhLAn 4 with 0.497±0.211 and 0.18±0.044, respectively (Fig. 5.11 A). In
total, protal retains 90.67% of all samples (8,342 out of 9,200), 94.38% of all strains
(1,260 out of 1,335), and detects all 46 species. StrainPhlAn 4 only retains 17.98%
of samples (1,510 out of 8,400), 42.17% of strains (525 out of 1,245), and 42 out of
46 species. The difference in total samples (9,200 vs. 8,400) and strains (1,335 vs.
1,245) is caused by StrainPhlAn 4 failing to detect four species and their strains and
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Figure 5.11: A, Per species sensitivity, measured by how many samples and strains
are present in the tree. B, protal per sample true vertical coverage stratified by
species and colored by presence (blue) or absence (red). C, per species percentage of
detected samples (y-axis) and mean true vertical coverage (x-axis).

samples were excluded for the total number. For three species, protal has below 50%
sample sensitivity (s__Lachnospira eligens_A with 27.5%, s__Bacteroides ovatus
with 39.5%, and s__Collinsella sp003466125 with 43%). Although those species
have a low mean vertical coverage across samples (3.98, 4.13, and 4.13, respectively),
other species like s__Bifidobacterium bifidum have a lower mean vertical coverage
of 3.485 at a much higher sample sensitivity in protal of 98.5% (Fig. 5.11 B). This
indicates that beyond coverage, there is a species-specific component that determines
detectability of samples, most likely caused by varying success of read alignment.
This is even more interesting considering that protal uses universal marker genes,
so the difference lies in the genetic similarity of marker genes in certain areas of the
tree, leading to a different number of recovered reads at the same vertical coverage.
s__Lachnospira eligens_A for example, has four samples with a vertical coverage
>3x that are missing from protal’s MSA. This is surprising, given that the mean
vertical coverage of undetected samples across all species is 1.425±0.429 and the
minimum detected coverage is 1 (which is the lower vertical coverage bound set for
the simulated dataset). Of 200 samples with a vertical coverage of exactly one, ∼66%
of species (133) are detected by protal. Of all undetected samples with a coverage
>2x (n=81), appears 31 belong to s__Bacteroides ovatus, 28 to s__Lachnospira
eligens_A, and 15 to s__Enterobacter hormaechei_A.

Analysing monophyly scores

Next, I assess the monophyly score for protal and StrainPhlAn 4 on the full trees,
and on filtered trees only with shared tips (see Section 3.2.2 for details). Across all
samples of all species, protal exhibits a mean monophyly score of 0.732±0.327, which
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Figure 5.12: Per strain monophyly score of protal and StrainPhlAn 4 stratified by
species. Monophyly score measures how pure clusters of samples carrying the same
strain in a tree are (see Section 3.2.2 for details). A, considering all tips. B, trees
are subset to tips shared between protal and StrainPhlAn 4 per species. Species are
ordered by ascending mean monophyly score.

is lower than the mean monophyly score of 0.897±0.202 of StrainPhlAn 4 (Fig. 5.12
A). However, when assessing only tree tips present in both StrainPhlAn 4 and protal,
protal’s mean monophyly score increases from 0.732±0.327 to 0.887±0.217 (Fig. 5.12
B). For s__Neisseria gonorrhoeae, protal’s mean monophyly score increases from
0.342±0.36 to 0.899±0.262 while reducing detected strain count from 44 to 11. Only
s__Lachnospira eligens_A has a decrease in monophyly score after filtering with a
difference of 0.08493. Out of all species, 14 species have an increase of less than 0.1
mean monophyly score, 4 species have an increase higher than 0.3 (Supp Fig. A.15).

Cross-mapping causes low monophyly scores

To further analyse why species perform differently with respect to sample sensit-
ivity and monophyly scores, I looked at the marker gene read alignments from
Chapter 5.3.1, where reads were simulated from all marker genomes (not only
species representatives) within GTDB. I picked s__Clostridium_Q fessum and
s__Bacteroides ovatus as both perform very differently with respect to sensitivity
and monophyly. I selected s__Clostridium_Q fessum for its high mean monophyly
score of 0.959±0.136 and 100% sample sensitivity, despite its low mean coverage of
3.738±6.34. In contrast, I picked s__Bacteroides ovatus due to its low mean mono-
phyly score of 0.615±0.363, and low sample sensitivity of 46% despite a high mean
coverage of 7.076±7.28. Like in Chapter 5.3.1, alignments are considered correct if
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Figure 5.13: Protal’s read alignments for all marker genomes under
s__Clostridium_Q fessum (A) and s__Bacteroides ovatus (B) against the data-
base containing all representative marker genomes. Alignments are classified correct
or incorrect based on whether they align to their respective species cluster represent-
ative. Alignments with a MAPQ value lower than 4 are filtered (protal default). C,
Proportions of read alignments of all marker genomes under s__Bacteroides ovatus
with respect to the species they aligned best to. This figure both quantifies how
many reads are retained after filtering, and how many reads align to other species,
potentially leading to FPs species detection and chimeric signal in MSAs (in this
case for example for s__Bacteroides xylanisolvens).

they align against the species representative marker genome of their original species
cluster.

Across all alignments for reads simulated from marker genomes of
s__Clostridium_Q fessum, the mean percentage for correct alignments out of all
reported alignments is 97.635±0.848%, 2.082±0.406% of read-pairs were filtered,
and a mean of 0.337±0.635% of read-pairs were aligned to a different species (Fig.
5.13 A). For s__Bacteroides ovatus only a mean percentage of 13.338±5.012% of
reads were correctly aligned, 75.477±2.148% were filtered due to protal’s default
MAPQ threshold, and 11.507±4.533% aligned onto other species (Fig. 5.13 B). When
looking at where the incorrect read alignments from read-pairs of s__Bacteroides
ovatus went, I found that 43.5% percent of all incorrect alignments (after filtering)
aligned with the neighbouring species s__Bacteroides xylanisolvens.(Fig. 5.13 C).
To ensure that this is not caused by protal’s custom alignment, I further aligned
these reads with bowtie2. This showed a qualitatively similar result, and with
the same MAPQ (≥ 4) filtering threshold the mean percentage of correct classi-
fications is 28.508±9.636, incorrect classifications is 27.429±10.156, and an average
39.236±1.981% of reads were filtered (Fig. A.11). Further, the incorrect alignments
were also mostly aligning to s__Bacteroides xylanisolvens, similar to protal’s align-
ments.
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Figure 5.14: Monophyly analysis with respect to closest neighboring strain. Each
data-point is the mean monophyly of a sliding window of 10 samples per tool (y-
axis) with samples sorted by closest pairwise similarity to neighboring strain (x-axis).
Values on the x-axis are rank-transformed and label-placement is according to the
closest matching point in the data. Mind that samples from the same strain are
simulated with sequencing errors, but otherwise genetically identical. A, for each
tree, all samples are included. B, for all trees only samples shared by both protal
and StrainPhlAn 4 are considered. The fitted line is a loess regression.

In GTDB r214, 203/250 genomes classified as s__Bacteroides ovatus are isolate
genomes, 184 out of 221 genomes of s__Bacteroides xylanisolvens are isolate gen-
omes. Within the genus g__Bacteroides 1948 out of 2561 are isolate genomes.
It remains unclear whether the observed misalignments stem from assembly ar-
tifacts—such as chimeric contigs in MAGs—or from genuine biological processes
like homologous recombination. During the read-alignment evaluation, I only dis-
tinguished misalignments by species and gene, not by their source genome. Con-
sequently, further work is needed to compare leakage levels between reads simulated
from isolate genome marker genes and those from MAGs.

It has to be noted, that all alignments are correct in the sense that they align
to the reference with the highest sequence identity. By filtering with alignments
with a MAPQ-threshold, all alignments that are highly ambiguous were removed;
the remaining alignments should have a higher confidence. This suggests that some
species clusters within g__Bacteroides, as provided by GTDB, have substantial
genetic overlap in their conserved core marker genes.

An important metric for de novo strain-level tools is the ANI resolution at which
they still can reliably resolve closely related strains, as this means higher accuracy
for tracking strains. For this, the following analysis put monophyly scores in context
with the true phylogenetic distance within the gold-standard phylogenetic tree as
constructed with roary. Pairwise phylogenetic distances hereby serve as proxy of
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%ANI. I compared protal against StrainPhlAn 4 with protal’s unfiltered output, as
well as all phylogenetic trees subset to shared tips (Fig. 5.14 A, B).

For the unfiltered benchmark, there are eight strains for which protal has a
non-perfect monophyly score with their closest neighboring strain less similar than
99.5% in the roary gold-standard tree. Six of those strains belong to s__Bacteroides
xylanisolvens and the other two to s__Bacteroides breve. This is in line with the
previous results and is likely due to species cross-mapping of reads. For strains
with 99.5% or greater similarity, I see a decline in monophyly score for both protal
and StrainPhlAn 4, albeit this decline is more extreme for protal. Protal has a
monophyly score of 0.4 (fitted loess regression) for the most closely related strains
while StrainPhLAn 4 is better at resolving strains with its monophyly score not going
below 0.6. If I compare both tools only for shared species and shared tips, both
exhibit a perfect monophyly score for all strains with the closest neighbor having
a similarity of 99.75% or lower. For more closely related strains the monophyly
score degrades equally below ∼0.7 when distinguishing between the most closely
(>99.999999% ANI) related strains.

Strain Cluster Error within Phylogenetic Trees

Similar to Chapter 3.3.3, I next compared the pairwise distances of samples car-
rying the same strain, vs. samples carrying different strains by calculating the
Max Cluster Error (MCE) as explained in Section 3.2.2 (see Fig. 5.15). There are
two signals that are apparent. First, s__Bacteroides xylanisolvens, s__Bacteroides
ovatus, s__Bacteroides breve, and s__Blautia_A sp003471165 display large MCEs
up to 0.018, but not necessarily many. Second, the remaining species have oc-
currences of positive MCE ranging between 34 (s__Neisseria gonorrhoeae) and 2
(s__Clostridium_C Q fessum, s__Clostridium_F botulinum, s__Agathobaculum
butyriciproducens), however, never exceeding a MCE of 0.00098. Considering the
previous analysis investigating read alignments, s__Bacteroides xylanisolvens was
one of the species that was falsely represented by reads that were derived from
s__Bacteroides ovatus genomes. In the light of alignment cross-mapping, it makes
sense that both species have a larger MCE, as could be considered a baseline noise
from sequencing errors.

Bacteroides strains exhibit errors in MSA

Looking at protal’s MSAs directly there was no clear association between alignment
length and error rate (Fig. 5.16 A). Errors are columns in the MSA between con-
sensus sequences of the same strain, that are not monoallelic. It follows that the
error rate is the number or errors divided by the consensus length.

Error rate was highest for s__Bacteroides xylanisolvens with a mean value of
0.00184±0.00119. As previously shown, the error rate is most likely caused by reads
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Figure 5.15: Max Cluster Error (MCE) on the y-axis per strain and stratified by
species. MCE is computed as explained in Section 3.2.2 and quantifies how well all
samples with a certain strain cluster together in the phylogenetic tree with respect
to all other samples. The color encodes the number of strains with a positive MCE.
Negative MCEs (good clusters) are discarded.

falsely aligned to s__Bacteroides xylanisolvens, creating a wrong consensus DNA
sequence reported by protal. Of other species, s__Blautia_A sp003471165 has a
mean error rate of 0.00075±0.00046 and s__Bacteroides ovatus has a mean error
rate of 0.00046±7e-04. As expected, the raw number of errors supports this rank-
ing with s__Bacteroides xylanisolvens having a mean error count of 85.22±54.71.
s__Bacteroides ovatus has the lowest mean alignment length with 12591±5856 nuc-
leotides. The mean alignment length across all species is 66265±36598 and thus
substantially higher than StrainPhlAn 4’s mean alignment length of 5401.786. While
protal does not filter any columns in the MSA to retain as much signal as possible,
StrainPhlAn 4 has a stricter filtering approach. StrainPhLAn 4 has a higher mean
MSA error rate of 0.00156±0.00369 than protal, which has a mean error rate of
0.000066±0.00036. The reason why this does not translate to a lower monophyly
score on the side of StrainPhlAn 4 is that their species-specific marker genes are
less conserved, and the between strain-specific signal (positions that are different) is
a stronger. Protal needs to maintain a low error rate as a higher error rate would
drown out the true signal resolving the inferred strains from metagenomes (Fig. 5.16
B).

Comparing monophyly scores with error rate indicates there is a potential neg-
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Figure 5.16: A, Error rate and alignment length for each sample for protal’s MSAs
per species. B, alignment length, error rate, and total errors within MSAs of both
protal and StrainPhlAn 4 of strains across all species. C, monophyly of protal’s
trees per strain in context of MSA error rate. Correlation computed with pearson
correlation. See Table A.2 for species abbreviations.

ative correlation (r=-0.042), however this was not significant (p-value = 0.075, Fig.
5.16 C). Interestingly, StrainPhlAn 4, too, shows a high error rate in MSAs and a
low monophyly for s__Bacteroides xylanisolvens and s__Bacteroides ovatus. This
suggests that some species have a high rate of ‘false’ alignments to neighbouring
species regardless of the strategy for selecting marker gene.

In the next benchmark, I compared protal’s and StrainPhlAn 4s trees with re-
spect to topology against the roary gold standard trees using the five metrics RF
normalized, weighted RF normalized, SP, weighted SP, and KF distance (see Chapter
3.2.2). All samples in protal’s and StrainPhlAn 4’s trees were collapsed per strain
by removing them and keeping their LCA to represent the strain. This was ne-
cessary to compare the trees to the roary gold-std trees, which are built from the
strain genomes. I again benchmarked protal without filtering as well as protal with
trees filtered to the samples present in StrainPhlAn 4’s trees. For the three met-
rics wRFnorm, wSP, and KF, which consider branch lengths, protal’s filtered trees
have a significantly lower distance (p-value < 0.001 for paired t-test) to the gold-
standard than StrainPhLAn 4 (Fig. 5.17 A). For the metrics RFnorm and SP, which
only assess the topology without incorporating branch lengths, there is no signi-
ficant difference between protal’s and StrainPhlAn 4’s performance (mean RFnorm
for protal is 0.491±0.195 and 0.43±0.184 for StrainPhlAn 4, mean SP for protal
is 30.504±17.575 and 28.197±14.639 for StrainPhlAn 4). Comparing the unfiltered
trees, protal is still significantly better for the metrics considering branch lengths with
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Figure 5.17: A, distance between the trees of protal, StrainPhlAn 4, and randomly
generated trees to the gold standard tree. All trees are subset to samples shared
between protal and StrainPhlAn 4 and only trees for species that are predicted by
both tools are considered (n=42). B, same as A, but protal and StrainPhlAn 4
trees are not subsets to shared samples. Significance was calculated with a paired
t-test (*: p ≤ 0.05, ***: p ≤ 0.001, n=46 for protal, n=42 for StrainPhlAn 4),
with species between protal and StrainPhlAn 4 as pairs. For B, species that are not
shared were removed from the test. The utilized metrics are normalized Robinson-
Fould distance (RFnorm), normalized weighted Robinson-Fould (wRFnorm), Steele
and Penny distance (SP), weighted Steele and Penny distance (wSP), and Kuhnert-
Felstenstein distance (KF) (see Chapter 3.2.2 for details).

mean distances of 0.314±0.126 for wRFnorm, 0.131±0.107 for wSP, and 0.01±0.005
for KF (StrainPhlAn 4 with 0.933±0.032 for wRFnorm, 6.492±1.717 for wSP, and
0.572±0.14 for KF). On the metrics RFnorm and SP StrainPhlAn 4 has a signi-
ficantly lower distance (p-value < 0.05 for RFnorm and p-value < 0.001 for SP
for paired t-test) with 0.43±0.184 (protal 0.509±0.172) and 28.197±14.639 (protal
46±32.149), respectively. In the shared tips benchmark, for 14 out of the 42 shared
species, protal has a lower RFnorm distance compared to StrainPhlAn 4 (mean lower
distance of 0.119±0.1 for protal), 4 species have the same distance, and 24 species
have a higher distance to the gold standard compared to StrainPhLAn 4 (mean lower
distance of 0.124±0.097 for StrainPhlAn 4). In the all-tips benchmark, protal has a
lower RFnorm for 15 species (mean lower distance of 0.109±0.079 in favor or protal),
StrainPhlAn for 27 species (mean lower distance of 0.159±0.105 for StrainPhlAn
4). This shows that protal’s ability to reconstruct the topology is often on-par or
better than StrainPhlAn 4, but has more variance in performance. Further, protal’s
tree distances are much more similar to the gold-std tree distances, offering a viable
proxy for ANI. For StrainPhlAn 4, however, their distances are skewed, especially
for higher distances. This is a result of StrainPhLAn 4’s sub-sampling of positions
in the MSA that are uninformative.
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Figure 5.18: Runtime and memory analysis of protal with respect to varkit, other
taxonomic profilers, and strain-resolved tools. The benchmark was done on a single
node with no interfering input and output using 16 cores. The tools were run on
10 samples from CAMI Airways with 2x 5GB uncompressed paired-end reads (see
Section 3.2.7 for more details).

5.3.6 Runtime

Similar to Chapter 4, I chose to include Kraken2+Bracken in the memory bench-
mark as a reference. On a dataset with 10 uncompressed paired-end reads with
2x5GB size each, protal was the third fastest with a runtime of 13min 30sec (Fig.
5.18). Compared to varkit, protal is 2 minutes slower. However, it has to be con-
sidered that protal outputs alignments, taxonomic profiles, and reconstructed MSAs.
Kraken2+Bracken came in first with 8min 30sec, MetaPhlAn 4 was third with a
runtime of 1h 28min and mOTUs3 was fourth with 1h 59min. StrainPhlAn 4 takes
the longest with ∼12h 30min and in comparison, protal is approximately 55 times
faster. The memory consumption for protal is moderate with 36 GB and is between
Kraken2+Bracken with 77 GB on the upper end, and MetaPhlAn 4 with 19 GB on
the lower end. StrainPhlAn 4 only required 6 GB of memory.

5.4 Discussion

Protal demonstrates important advancements in reference-based metagenomic profil-
ing and strain-resolved analysis, offering superior sensitivity for lesser-studied species
through the comprehensive integration of the GTDB taxonomy. By combining a cus-
tom alignment and k-mer based approach with universal marker genes, protal not
only enhances taxonomic coverage but also achieves significantly faster performance
compared to existing tools.
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Flex-map and technical approach

I used a custom hash table design and alignment to significantly speed up alignment
and taxonomic profiling. Using a hash table over the often employed FM-index has
led to performance gains in multiple aligners like minimap2 [145], strobealign [234],
and accel-align [312]. Further, FM-index approaches are less memory intensive and
more sensitive, albeit slower than their hash table based counterparts. This can
be seen in the publications of centrifuge [123] vs. kraken [308], bowtie2 [137] and
bwa2 [146] vs. minimap2 [145]. Nonetheless, hash table based approaches were pop-
ular due to their performance, especially considering the growing amounts of data
to analyse. Kraken2 implemented a probabilistic hashing to speed up taxonomic
classification and k-mer sub-sampling to reduce the memory footprint, countering
the ever-growing reference databases [307]. Inspired by this idea, I developed and
implemented the flex-map to expedite the seeding phase in alignment without com-
promising sensitivity. Further, I am unaware of any other bioinformatics tool that
combines exact matching k-mers with flexible matching in the same data structure
and processing step. I also used the remaining space per k-mer entry to indicate it’s
uniqueness given its species cluster. This information is not used for alignment, but
later retrieved for the taxonomic profiling to improve precision for species prediction.
This was inspired by KrakenUniq [32], which implements a counting of unique k-mers
to improve precision, and GT-Pro [250], which pre-selects k-mers based on criteria to
do both taxonomic profiling and genotyping. Protal’s approach is unique and would
be impossible with an external alignment tool. Instead two programs would need
to be run, one for extracting and identifying unique k-mers, and another one for
performing the read alignment. Protal’s balance of speed and precision is currently
unmatched. Tools of similar precision such as MetaPhlAn 4 are slower, and faster
tools like Kraken2 don’t match protal’s precision and sensitivity.

Speed and memory

In addition to speed, maintaining reasonable memory requirements is crucial to en-
sure accessibility for users with limited access to computational resources. For GTDB
marker genes, protal’s index size is roughly twice as big as bowtie2 and minimap2,
but only about half of that of bwa-mem2’s index. In practice, protal currently re-
quires at least 64GB memory to run, while bowtie2 and minimap2 run with 32GB
memory. With respect to taxonomic profilers, MetaPhLAn 4 uses bowtie2 and re-
quires at least 32GB. mOTUs3 is the only tool that can truly be operated on a
personal computer using 16GB of memory or less. This is due to mOTUs3’s small
set of reference sequences with only ten marker gene sequences per species, impact-
ing precision, as previously shown. Kraken2’s standard database is 60GB in size,
however, this encompasses whole-genomes as opposed to marker gene databases and
hence Kraken2’s database on marker genes would likely be a lot smaller. Since
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32GB or more of memory space remains exceptional for the current generation of
personal computers, all tools except mOTUs3 must be executed on machines with
high memory capabilities, such as a dedicated computing cluster.

Taxonomic profiling with random forests

For predicting whether a taxon is present in a metagenome, taxonomic profilers often
apply thresholds on parameters such as number of reads or marker genes present.
However, the complex signals from read alignments, comprising of ANI, MAPQ,
number of hits, number of genes, abundance distribution of genes, and, in the case
of protal, unique k-mers are not easily converted into taxa predictions. Random
forests on the other hand do not require data normalization and provide an accessible
solution for this problem. In protal, the random forest predicts taxa with high
sensitivity and high accuracy, mostly using information from unique k-mers. While I
did a split between training and test data and the performance remained stable across
training a random forest on multiple splits, systematic cross-validation is necessary to
confirm the results. Further, as the random forest is used on the data it was trained
with, a certain degree of cross-mapping is to be expected. Due to time constraints, I
was unable to generate additional test data to simulate the complexity found in the
CAMI datasets, which necessitates further assessments to ensure that the results are
reproducible on more independent datasets and the model does not overfit. Another
issue is related to the unique k-mer information. As demonstrated, some species only
have few unique k-mers in the database and prediction of those species will likely
require more aligned reads than other species with a high unique k-mer count. In
addition to the signal from cross-mapping, a solution is still required to address this
problem.

Reference-guided MSA

For the small speed benchmark dataset (10 samples), protal is able to reconstruct
phylogenies faster than StrainPhlAn 4. As the runtime for building MSAs with protal
scales linearly, it is also suited for larger datasets with > 1000 samples. StrainPh-
lAn 4 will likely take a lot longer as the datasets grow, hence being most suitable
for small- to medium-sized datasets. The speed advantage ultimately hinges on the
sample size and the extent of shared species between samples. However, further eval-
uations are needed to determine whether internal SNP calling or MSAs contribute
more significantly to this speed benefit. Many issues with protal’s MSAs are likely
caused by cross-mapping. While the incorporation of unique k-mer information helps
to detect the correct species, it does not prevent cross-mapping, which still affects
the performance on strain-level.
Additionally, shortly before completing my PhD, I encountered a bug in the align-
ment process for reference-guided multiple sequence alignments (MSAs). This bug
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resulted in the insertion of ’N’s in numerous positions where references should have
been correctly placed. Although I was unable to revise the results for Protal in
my thesis, an initial assessment indicated a slight enhancement in the MSAs and
phylogenetic trees. Nonetheless, the main results remain unchanged.

Marker gene cross-mapping

I reported that species of the genus g__Collinsella had below average detection
rates and accuracy in the MSSS200R dataset, and further, that the subtree of
g__Collinsella in GTDB has many closely related species. For s__Bacteroides
ovatus, I showed that many of the short reads simulated from its member’s marker
genes best aligned to the species representative marker genes of its neighboring spe-
cies s__Bacteroides xylanisolvens. Further, by investigating the marker gene align-
ments, cross-mapping was shown to be the problem for many species clusters in the
database. In Chapter 6, I will address potential technical and biological causes for
this signal and propose strategies to resolve this issue.

5.5 Author contributions

I developed and implemented protal. Concepts such as the flex-mer data structure
were developed by myself, with insights drawn from discussions with Falk Hildebrand.
The idea of storing any extra information in the hash table was inspired by Falk
Hildebrand, which lead me to store additional genetic information around k-mers for
higher precision during seeding and additional information on k-mer uniqueness for
higher precision in taxonomic profiling. Monophyly based benchmarks were inspired
by Falk Hildebrand as a means to assess the tool’s performance independent of ANI
values. Strain-level benchmark datasets were designed by myself. I conceptualized
reference-guided MSAs from short-reads to avoid a costly regular MSA.
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Chapter 6

Critical Assessment of Work

6.1 Overview and chapter summaries

Taxonomic profiling and strain-resolved analyses are crucial to many discoveries in
microbiology and metagenomics. Yet, problems like database bias [288] and con-
tamination [33] are two bottlenecks that can lead to a spurious detection of taxa
and confound subsequent analysis [82]. This challenge is compounded by the fact
that various metagenomic profilers employ different taxonomic systems and reference
databases, complicating informed tool selection and data confidence. Independent
efforts for benchmarking taxonomic profilers exist [288, 177, 242, 316], but none of
these provided an in-depth explanation on the true source of false predictions. Fur-
ther, while accuracy in profiling has increased, the improvement in speed of the most
popular taxonomic profilers and strain-resolved tools has stagnated. However, par-
ticularly for strain-level analysis, computational efficiency can facilitate an unbiased
analysis. Researchers limited by computational resources might have to adjust the
scope of their analysis and set a focus instead of exploring their data.

In this work I benchmarked the performance and explored the sources of false pre-
dictions for three popular taxonomic profilers with benchpro. With varkit, I proposed
a fast and novel alignment-free approach for taxonomic profiling and SNP detection
in marker genes. Lastly, based on insights from my previous work and employ-
ing novel algorithms, I developed protal, an ultra-fast alignment-based profiler and
tool for strain-resolved analysis, that allows for sensitive and precise analysis. This
chapter gives a concise summary of the work covered in the three results chapters.
Finally, I discuss the findings, the contributions of this research, and the implications
for future studies within a broader context.

6.1.1 Benchmarking of metagenomic profilers with benchpro

In this chapter, I presented benchpro, a software for benchmarking tools for meta-
genomic profiling and strain-resolved analysis. By using the analysis capabilities
of benchpro on simulated CAMI datasets[177], I compared three popular tools for
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taxonomic profiling: MetaPhlAn 4[26], mOTUs3[232], and Kraken2+Bracken[307,
159]. By comparing all tools both using the NCBI taxonomy[69] and the GTDB
taxonomy[206], I was able to isolate the performance difference caused by the dif-
ferent taxonomies and mapping between these systems. GTDB provides resources
that allowed me to examine phylogenetic patterns in false predictions. Benchpro
was able to identify and account for pairs of FP and FN species that only arose
from differences in species-level resolution between databases, but not from a gen-
eral lack of database coverage for those species. This facilitated the identification
of FP predictions that arose from ambiguous short-read mappings between species.
Further, a sliding abundance threshold for filtering low-abundant taxa revealed that
Kraken2+Bracken is less accurate than mOTUs3 and MetaPhlAn4 at any threshold.
MetaPhlAn 4 was the most accurate tool across all benchmarks, and exhibited the
lowest rate of FP prediction caused by cross-mapping between closely related taxa.

On strain-level, I used simulated metagenomes to investigate the performance of
StrainPhlAn 4[26] using ANI independent measures such as contamination in mono-
phyly and MSA errors, as well as phylogenetic distance to gold-standard phylogen-
etic trees. This revealed a species-specific error signal, independent of the dataset.
Lastly a runtime and memory benchmark showed that Kraken2+Bracken is fastest,
and comprehensive strain-resolved analysis for all species with StrainPhlAn 4 takes
significantly longer than species-level profiling.

6.1.2 Alignment-free taxonomic profiling and SNP detection with
varkit

In this chapter, I explored a novel alignment-free k-mer based method for taxonomic
profiling and SNP calling, called varkit. Varkit utilizes the hit patterns of sequential
k-mers shared between read and reference to infer SNP positions. Varkit’s database
stores all k-mers of marker genes along with their position and taxonomic identity.
Non-unique k-mers point to the LCA of all occurrences in the reference. Varkit
further employs a custom hash table with a reduced memory footprint for storing
k-mers. A pattern database, pre-built using a specific k-mer shape, contains key-
value pairs of sub-patterns and SNP positions and is used to infer SNP positions.
The pattern database is used to retrieve the relative SNP positions in a read by
looking up each sub-pattern observed between read and reference. I selected the k-
mer shape based on an extensive analysis of SNP detection sensitivity with respect to
its size and number and position of gaps. This showed that irregular patterns of gap
positions increase sensitivity, and longer k-mers decrease sensitivity. An analysis
of simulated reads from genomes with a controlled ANI to the reference further
showed that SNP detection sensitivity steadily declines with increasing distance to
the reference. This is more pronounced for species with a lower rate of species-level
k-mers. Next, I used benchpro to assess the taxonomic profiling performance of
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varkit using a database built from GTDB r207 marker genes[206], using a similar
benchmarking approach as in chapter 3. Varkit exhibits an elevated false positive rate
for specific species; however, overall, it performs comparably to mOTUs3 and better
than Kraken2+Bracken. A runtime benchmark demonstrated that varkit is faster
than MetaPhlAn 4 and mOTUs3, and comparable in speed to Kraken2+Bracken,
with a similar memory footprint.

6.1.3 Alignment-based taxonomic profiling and strain-resolved
metagenomics with protal

In this chapter I presented protal, an alignment-based tool for taxonomic profiling
and strain-resolved analysis I developed. Protal uses a novel data-structure, the
flex-map, to find hits between read and reference with an exact-matching 15-mer
(core-mer), and then filters further by inexact matching of the 8-mer flanking regions
around (flex-mer). Protal’s database is built from GTDB’s universal marker genes
(r214) of all species-representative genomes. K-mers which are unique for a species
are identified by checking against all k-mers of all marker genomes within GTDB.
Protal’s alignment algorithm first looks for seeds between read and reference in the
flex-map, groups them into anchors and passes the best candidate reference sequences
to alignment. The alignment is performed with an external alignment library, the
WFA2 aligner [167, 256]. Protal outputs the best alignment for each read, along with
counts of unique k-mers identified during the seeding phase. It collects alignments
and unique k-mer hits for each species and gene. A random forest algorithm then
predicts the presence or absence of species in a sample using a diverse array of data.

First, I showed that protal’s alignment performance is on par with established
alignment tools regarding the specific use-case of marker gene alignment, and is as
fast as the fastest currently available alignment tool. I tested protal’s performance
against MetaPhlAn 4 and mOTUs 3 using benchpro and the datasets from chapter 3
as well as an additional dataset, containing reads from rare species. Protal exhibited
the highest F1-score among all tools. Deeper analysis with benchpro revealed that
protal has an elevated rate of FP for specific species (e.g. g__Collinsella). I found
evidence that this bias arises from clusters of closely related species within the GTDB
database. On strain-level, I demonstrated that protal exhibits similar accuracy as
StrainPhlAn 4 when comparing phylogenies of strains and samples detected by both
approaches simultaneously.

6.2 Limitations and assessment of results

Taxonomic profiling is a highly complex task that involves several decisions, including
the selection of reference sequences, the choice between a whole-genome or marker-
based approach, as well as the choice between alignment-based and alignment-free
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methods. Furthermore, it is crucial to consider the taxonomy employed, the meth-
odology for predicting taxa from individual read mappings, and the approach for
estimating their relative abundance within the sample. Arguably, the underlying
database, including selection of reference, taxonomy, species-clustering, and marker
regions, has the most profound impact on profiling. The database not only defines
the detectable taxonomic diversity, but also the precision for taxonomic profiling and
strain-resolved analysis.

Therefore, it is concerning that for some species alignments with both protal
and bowtie2 (Fig. A.14, Fig. A.12) showed large amounts of cross-mapping, even
after MAPQ filtering. The question stands whether this is a biological signal or a
technical bias in reference genomes. It has been reported that bacterial databases
are contaminated with human reads [33], however, contamination mostly affected
small contigs of low coverage and stems from human repeat sequences and is thus
unlikely to affect universal marker genes. This also does not explain why this signal
is present in some species, and absent in others. Another part of the explanation
is that the species clusters in GTDB[206] are based on whole-genome ANI and the
phylogeny of marker genes does not necessarily reflect these species clusters. To
account for this in its own database, MetaPhlAn 4 employed checking for cross-
mapping as strategy for selecting the species-specific marker genes[26]. That being
said, there is also indication of some species exhibiting cross-mapping in MetaPhLAn
4 and StrainPhlAn 4. The reads were simulated to resemble the error profile of the
Illumina HiSeq 2500. Simulated sequencing errors can lead to false alignments for a
small percentage of reads, but do not explain the systematic signal observed.

A biological explanation for the cross-mapping might be horizontal gene transfer
(HGT) through natural transformation and homologous recombination (HR). There
is evidence that HR is a major evolutionary factor behind core genome evolution in
prokaryotes[84] and further, that a short region of similarity is sufficient for HR[275].
Additionally, natural competence, which is required for the uptake of extracellular
DNA, is not uniformly distributed in the taxonomic tree, hence affecting some taxa
more than others[171]. Further investigation is warranted to understand this signal
for GTDB marker genes, and potential solutions are presented in the next section
6.2.

6.3 Further work

This last section discusses which work could be done to improve the tools introduced
in the three results sections. Further, potential solutions are discussed to solve the
aforementioned problems with cross-mapping.
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6.3.1 Benchpro

To gain deeper insights into the strengths and weaknesses of various profilers, it
would be necessary to extend the benchmark to include additional tools. With
also including long-read based profilers, I would gain a more comprehensive picture
of the overall profiling landscape. As shown in other scenarios, species exclusion
benchmarks contributed to a more rounded benchmark to test the performance
in absence of an appropriate reference. To dive even deeper and separate the
effect of database from the tools algorithm, I would compare read origin and read
mapping after quality filtering with a MAPQ threshold to assess the percentage of
cross-mapped reads. For reads simulated from a single genome that map to different
species in the database, we need to disentangle whether one of the following signals
is present: a) Homologous recombination in either the source genome of the reads
or the species wrongly mapped to, or b) chimeric contigs (not bins) in the source
genomes, if MAGs. This would allow for assessing the quality of the genomes and
MAGs used by CAMI, the reference sequences in the database, and hence also the
underlying tool algorithm.

On strain-level some species with strain clustering errors already exhibit an
erroneous signal in the MSAs generated by protal and StrainPhlAn 4, indicating
that changing iqtree for a different tree building tools such as RAxML [265], will not
change the underlying errors. The current benchmarks for evaluating the distance
between the generated phylogenetic trees and a reference tree—constructed using
Roary—could be improved. Replacing Roary with Panaroo [276], a similar tool that
also accounts for genome contamination, could lead to more accurate benchmarking.
However, other evaluation metrics such as the Monophyly score and MCE would
remain unaffected, as they rely solely on the predicted phylogenetic trees and the
known genomic origin of each sample and species.

Two limitations hindered me from including more tools. Firstly, there are not
many tools in this very category providing MSAs and a phylogenetic tree while hav-
ing moderate computational requirements. MetaSNV, for example, operates on the
mOTUs3 output and has much higher computational requirement, which lead to it
failing in my runs due to excessive data output. inStrain works on whole genomes
and has a higher complexity compared to StrainPhlAn 4 and does target a differ-
ent user-base. Many other strain-level tools such as GT-Pro do not quantify novel
strain-level variation but instead detect known strains. The second reason is the time
constraints I encountered as I approached the end of my PhD. However, in the protal
chapter I use benchpro to benchmark protal’s strain-level performance compared to
StrainPhlAn 4. For future benchmarks, I would still want to include more tools to
also disentangle benefits and downsides of utilizing whole genomes for strain-level
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resolution as opposed to a limited set of marker genes. I also intentionally omit-
ted benchmarking tools for reconstructing phylogenetic trees from multiple sequence
alignments (MSAs), as all trees in this comparison were generated using iqtree. Ex-
panded benchmarks would necessitate the inclusion of alternative tree-building tools
as well.

Benchpro’s automated benchmarking scripts already offer comprehensive and re-
liable assessments for both taxonomic profiling and strain-resolved analysis, making
them highly valuable during the development of protal. However, the current lack
of documentation and the limited accessibility of strain-level benchmarks—available
only through built-in functions—pose usability challenges. Improvements in
accessibility and user experience would significantly enhance the tool. While R
and RMarkdown are commonly used for reporting figures and statistical results,
in benchpro’s case, the extensive automation can lead to unnecessarily large docu-
ments, primarily due to the memory-heavy nature of embedded plots. Additionally,
because all analyses are included by default, the resulting report structure tends to
drive the user’s exploration, rather than allowing it to be guided by specific research
questions. A web-based platform with customizable plots could address these
issues effectively. Such a platform would allow users to generate only the analyses
relevant to their needs, compile them into concise, shareable reports, and facilitate
collaboration. Moreover, it could serve not only as a tool for benchmarking newly
developed methods but also as a hub for exploring benchmarking results of widely
used tools.

6.3.2 Varkit

The aforementioned conceptual issues with SNP calling sensitivity and database
size that became apparent during varkit’s development were too serious to ignore.
Protal, a taxonomic profiler which I will present in the following chapter 5, builds
upon varkit’s foundational idea to offer an ultra-fast metagenomic species profiler and
strain-level tool. This is achieved by shifting from a purely k-mer based approach
to an alignment-based approach, while still utilizing concepts like unique k-mers for
increased precision. Ideas that led to the development of protal’s core concepts were
formed during the time developing varkit. Unfortunately, varkit’s approach is too
limiting regarding memory consumption and quality of strain-resolution and should
not be followed-up with further developments.

6.3.3 Protal

Although the results presented are already very promising, they have also shown
that alignment speed, alignment quality, taxonomic profiling, and strain-resolved
analysis can still be improved. Firstly, evaluating the runtime of individual tasks in
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protal has shown that seeding consumes the least time by far (see Fig. 5.3.1 C).This
suggests that optimizing parameter selection for the process from seed extension to
alignment has the potential to yield further performance gains. Concepts like spaced
k-mers introduced in varkit could also be applied to protal to increase sensitivity.
To evaluate this, the alignment sensitivity would need to be assessed with respect to
a k-mer shape. As protal currently does seed finding through exact matching with
a consecutive 15-mer, adding spaces into this 15-mer has the potential to increase
sensitivity.

Protal’s profiling and strain-level performance is dependent on accurate read
alignments against GTDB’s marker genes. However, some species exhibit a high
amount of cross-mapping. It is commonly known that whole-genome approaches
like Kraken have a high rate of false signals due to HGT. However, marker gene
based approaches have been shown to be affected as well. MetaPhLAn 4 described
employing an additional marker gene selection criterion to avoid short-reads
cross-mapping between species [26]. Nevertheless, based on the results presented in
this chapter, cross-mapping may still occur with MetaPhlAn 4, impacting the same
species that pose challenges for protal.

A logical extension of protal’s alignment approach is to develop a stand-alone
general purpose alignment tool based on the flex-map approach and WFA2[167]
as an external alignment library. Protal has demonstrated that it matches the
speed of the fastest current aligner, strobealign [234], and can at least compete
in alignment performance for the specific use-case of read-to-marker gene alignments.

The concept of reference-guided MSAs has already been introduced in ViralMSA
[181] and VIRULIGN [153] but these are limited to whole-genome sequences as
input. Protal has demonstrated that it offers a great speedup over StrainPhLAn 4
by having a custom SNP calling process followed by the reference-guided alignment
of single reads. A stand-alone tool for constructing reference-guided MSAs would fa-
cilitate more efficient large-scale phylogenetic analyses of thousands of metagenomes.

6.3.4 Cross-mapping between closely related species

This thesis demonstrates that GTDB marker genes exhibit varying degrees of
cross-mapping between species, affecting some species and genera more than others.
This signal is responsible for a decrease in accuracy for both taxonomic profiling
and strain-resolved analysis, and must be accounted for. Regardless of the potential
underlying causes, technical solutions must aim to preserve the original structure
of the reference database (in this case GTDB) to ensure seamless integration with
existing research and tools that rely on the GTDB taxonomy. Therefore, the removal
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of taxa from the reference database and/or analysis should be considered only as
a last resort. However, finding a solution for this problem will increase precision,
sensitivity, correctness of abundance predictions, as well as purity of MSAs due to
less cross-mapping.

As a proposed solution, I recommend conducting a detailed analysis of cross-
mapping on a per-gene and per-species basis. This approach will help identify
and mask problematic genes for specific species during taxonomic profiling and
the construction of MSAs. For genes with only small regions being affected, it is
further possible to mask those regions, to retain as much information as possible.
The critical aspect of this approach is to identify which areas and genes in a
representative marker genome are frequently subjected to cross-mapping from other
species. A similar approach was used for MetaPhlAn 4 in order to select genes
that do not exhibit such cross-mapping [26]. For cases where the majority of genes
is affected, species could be merged in a manner that respects the phylogenetic
structure until cross-mapping falls below a previously specified threshold. Another,
albeit more complex, solution involves extracting species-specific de novo marker
genes for large species clusters using all genomes within GTDB. This approach
combines the precision of species-specific marker genes with the sensitivity of
universal marker genes for species with very few member genomes.

It may be the case that a universal, automated approach to taxonomic classifica-
tion is inherently limited, and genus-specific considerations are essential. Some spe-
cies display ambiguous boundaries when applying fixed whole-genome ANI thresholds
such as 95% [13]. Even at the genus level, taxonomic boundaries can be unclear, as
reflected in inconsistencies within GTDB. These issues highlight the limitations of
marker gene-based approaches [278]. The selection of marker-genes already intro-
duces a bias because other phylogenetic signals across the genome are neglected. On
the other hand, efforts like GTDB successfully moved towards a unified computa-
tional approach to build their taxonomic framework, and considering clade-specific
solutions contradicts this idea.

Therefore, it seems inevitable that a combination of revised species concepts
(to define clearer species clusters), standardized taxonomic approaches and a bet-
ter selection of marker genes would be required for the next performance jumps in
metagenomic species profiling, and further strain-resolved analysis.

6.4 Outlook

The future of taxonomic profiling and strain-resolved metagenomics is undergoing
a transformation, driven by advancements in sequencing technologies and evolving
taxonomic standards. Long-read sequencing platforms such as Oxford Nanopore
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and PacBio are revolutionizing metagenomics by enabling the assembly of complete,
high-contiguity genomes directly from environmental samples. These technologies
overcome limitations of short reads by resolving repetitive regions and large struc-
tural variants, which are critical for accurate strain delineation and pangenome ana-
lysis. Recent advances in long-read-only assemblers have significantly improved the
quality of metagenome-assembled genomes (MAGs), with PacBio HiFi data alone
now capable of producing (near-)complete circular genomes [21, 25]. Although Ox-
ford Nanopore Technologies (ONT) still faces challenges with read accuracy, hybrid
assemblies combining ONT and short-read data can also yield complete circular
genomes from isolate DNA [299]. In metagenomic studies, hybrid assemblies have
been shown to markedly increase contig lengths, improving the overall quality of re-
covered genomes [315]. Long-read sequencing further addresses two key limitations
in MAG reconstruction: chimeric contigs and chimeric bins. By spanning repetitive
and structurally complex regions, long reads reduce misassemblies and improve bin
purity, thereby enabling the recovery of more accurate and complete MAGs [70]. As
the accessibility of long-read technologies improves and sequencing costs decline, hy-
brid—and eventually long-read-only—approaches are expected to become standard
practice in high-resolution metagenomic research. Nonetheless, long-read sequencing
remains significantly more expensive than short-read methods [65]. The additional
labour and coordination required when combining multiple sequencing platforms can
present a further barrier for many laboratories.

Proximity ligation methods like Hi-C offer valuable complementary data for gen-
ome binning by linking DNA fragments that are physically co-located within the
same cell—for example, plasmids that have been acquired via horizontal gene trans-
fer. This spatial co-association allows for more confident assignment of contigs to
individual genomes, even in complex microbial communities where strain variation,
mobile genetic elements, and horizontal gene transfer can confound binning based
solely on sequence composition or coverage [59, 110]. While Hi-C alone does not
resolve sequence continuity, it can significantly enhance binning accuracy when used
alongside long-read assemblies, which improve contiguity and resolve repetitive re-
gions. The integration of Hi-C with long-read metagenomics thus enables more pre-
cise reconstruction of MAGs [25]. Long-read sequencing not only enhances metagen-
ome assembly but is also increasingly proving valuable for taxonomic classification,
yielding similarly or more accurate results than traditional short-read approaches
[217]. The longer read lengths reduce ambiguity in mapping, helping to avoid is-
sues such as cross-mapping between closely related taxa—an artifact observed in
this thesis. However, while long reads mitigate such technical artifacts, they do not
inherently resolve challenges related to the use of incomplete or low-quality MAGs as
representative genomes in taxonomic databases. As a result, the broader adoption of
long-read sequencing must be accompanied by efforts to expand and improve refer-
ence databases with high-quality, near-complete MAGs. These improved references
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will help disentangle true biological signals, such as homologous recombination, from
assembly- or binning-related inconsistencies in phylogenetic placement.

At the same time, the advancement of long-read technologies does not obviate
the need for robust tools designed for short-read data. The vast majority of publicly
available metagenomic datasets are generated using short-read sequencing, and this
trend is likely to persist in the near term due to its cost-effectiveness and accessibility.
Therefore, continued development of computational methods optimized for short-
read data remains critical. High-performing tools that maximize taxonomic and
functional resolution from short-read datasets will ensure that existing resources
remain valuable and that ongoing studies without access to long-read sequencing
can still contribute meaningfully to microbial ecology and genomics.

144



Bibliography

[1] Lama Izzat Hasan Abdel-Rahman and Xochitl C Morgan. ‘Searching for a
Consensus Among Inflammatory Bowel Disease Studies: A Systematic Meta-
Analysis’. en. In: Inflammatory Bowel Diseases 29.1 (Jan. 2023), pp. 125–139.
issn: 1078-0998, 1536-4844. doi: 10.1093/ibd/izac194.

[2] Muhammad Afzaal et al. ‘Human gut microbiota in health and disease: Unveil-
ing the relationship’. In: Frontiers in Microbiology 13 (Sept. 2022), p. 999001.
issn: 1664-302X. doi: 10.3389/fmicb.2022.999001.

[3] Zahraa Al Bander et al. ‘The Gut Microbiota and Inflammation: An Over-
view’. en. In: International Journal of Environmental Research and Pub-
lic Health 17.20 (Oct. 2020), p. 7618. issn: 1660-4601. doi: 10 . 3390 /

ijerph17207618.

[4] Alexandre Almeida et al. ‘A unified catalog of 204,938 reference genomes from
the human gut microbiome’. en. In: Nature Biotechnology 39.1 (Jan. 2021),
pp. 105–114. issn: 1087-0156, 1546-1696. doi: 10.1038/s41587-020-0603-3.

[5] Johannes Alneberg et al. ‘Binning metagenomic contigs by coverage and com-
position’. en. In: Nature Methods 11.11 (Nov. 2014), pp. 1144–1146. issn:
1548-7091, 1548-7105. doi: 10.1038/nmeth.3103.

[6] Stephen F. Altschul et al. ‘Basic local alignment search tool’. en. In: Journal
of Molecular Biology 215.3 (Oct. 1990), pp. 403–410. issn: 00222836. doi:
10.1016/S0022-2836(05)80360-2.

[7] R I Amann, W Ludwig and K H Schleifer. ‘Phylogenetic identification and
in situ detection of individual microbial cells without cultivation’. en. In:
Microbiological Reviews 59.1 (Mar. 1995), pp. 143–169. issn: 0146-0749. doi:
10.1128/mr.59.1.143-169.1995.

[8] Sergio Andreu-Sánchez et al. ‘A Benchmark of Genetic Variant Calling
Pipelines Using Metagenomic Short-Read Sequencing’. In: Frontiers in Ge-
netics 12 (May 2021), p. 648229. issn: 1664-8021. doi: 10.3389/fgene.2021.
648229.

145

https://doi.org/10.1093/ibd/izac194
https://doi.org/10.3389/fmicb.2022.999001
https://doi.org/10.3390/ijerph17207618
https://doi.org/10.3390/ijerph17207618
https://doi.org/10.1038/s41587-020-0603-3
https://doi.org/10.1038/nmeth.3103
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1128/mr.59.1.143-169.1995
https://doi.org/10.3389/fgene.2021.648229
https://doi.org/10.3389/fgene.2021.648229


Novel taxonomic profiling and ...

[9] Dmitry Antipov et al. ‘<span style="font-variant:small-
caps;">hybrid</span> SPA <span style="font-variant:small-
caps;">des</span> : an algorithm for hybrid assembly of short and
long reads’. en. In: Bioinformatics 32.7 (Apr. 2016), pp. 1009–1015. issn:
1367-4811, 1367-4803. doi: 10.1093/bioinformatics/btv688.

[10] Barbara Arbeithuber, Kateryna D. Makova and Irene Tiemann-Boege. ‘Ar-
tifactual mutations resulting from DNA lesions limit detection levels in ul-
trasensitive sequencing applications’. en. In: DNA Research 23.6 (Dec. 2016),
pp. 547–559. issn: 1340-2838, 1756-1663. doi: 10.1093/dnares/dsw038.

[11] Manimozhiyan Arumugam et al. ‘Enterotypes of the human gut microbiome’.
en. In: Nature 473.7346 (May 2011). Publisher: Nature Publishing Group,
pp. 174–180. issn: 1476-4687. doi: 10.1038/nature09944.

[12] Eliran Avni and Sagi Snir. ‘A New Phylogenomic Approach For Quantifying
Horizontal Gene Transfer Trends in Prokaryotes’. en. In: Scientific Reports
10.1 (July 2020), p. 12425. issn: 2045-2322. doi: 10.1038/s41598- 020-

62446-5.

[13] Evelise Bach et al. ‘Genome-based taxonomy of Burkholderia sensu lato: Dis-
tinguishing closely related species’. eng. In: Genetics and Molecular Biology
46.3 Suppl 1 (2023), e20230122. issn: 1415-4757. doi: 10.1590/1678-4685-
GMB-2023-0122.

[14] Thomas Bäck. Evolutionary Algorithms in Theory and Practice: Evolution
Strategies, Evolutionary Programming, Genetic Algorithms. en. Oxford Uni-
versity Press, Feb. 1996. isbn: 978-0-19-509971-3 978-0-19-756092-1. doi: 10.
1093/oso/9780195099713.001.0001.

[15] Fredrik Bäckhed et al. ‘The gut microbiota as an environmental factor that
regulates fat storage’. en. In: Proceedings of the National Academy of Sciences
101.44 (Nov. 2004), pp. 15718–15723. issn: 0027-8424, 1091-6490. doi: 10.
1073/pnas.0407076101.

[16] Varsha D. Badal et al. ‘The Gut Microbiome, Aging, and Longevity: A Sys-
tematic Review’. en. In: Nutrients 12.12 (Dec. 2020), p. 3759. issn: 2072-6643.
doi: 10.3390/nu12123759.

[17] John A. Baross and Jody W. Deming. ‘Growth of ‘black smoker’ bacteria
at temperatures of at least 250 °C’. en. In: Nature 303.5916 (June 1983).
Publisher: Nature Publishing Group, pp. 423–426. issn: 1476-4687. doi: 10.
1038/303423a0.

[18] J. R. Bedarf et al. ‘Das Darmmikrobiom bei der Parkinson-Krankheit’. de.
In: Der Nervenarzt 90.2 (Feb. 2019), pp. 160–166. issn: 1433-0407. doi: 10.
1007/s00115-018-0601-6.

146

https://doi.org/10.1093/bioinformatics/btv688
https://doi.org/10.1093/dnares/dsw038
https://doi.org/10.1038/nature09944
https://doi.org/10.1038/s41598-020-62446-5
https://doi.org/10.1038/s41598-020-62446-5
https://doi.org/10.1590/1678-4685-GMB-2023-0122
https://doi.org/10.1590/1678-4685-GMB-2023-0122
https://doi.org/10.1093/oso/9780195099713.001.0001
https://doi.org/10.1093/oso/9780195099713.001.0001
https://doi.org/10.1073/pnas.0407076101
https://doi.org/10.1073/pnas.0407076101
https://doi.org/10.3390/nu12123759
https://doi.org/10.1038/303423a0
https://doi.org/10.1038/303423a0
https://doi.org/10.1007/s00115-018-0601-6
https://doi.org/10.1007/s00115-018-0601-6


Joachim Fritscher

[19] Francesco Beghini et al. Integrating taxonomic, functional, and strain-level
profiling of diverse microbial communities with bioBakery 3. en. Publisher:
eLife Sciences Publications Limited. May 2021. doi: 10.7554/eLife.65088.

[20] M. J. C. Beld and F. A. G. Reubsaet. ‘Differentiation between Shigella, en-
teroinvasive Escherichia coli (EIEC) and noninvasive Escherichia coli’. en. In:
European Journal of Clinical Microbiology & Infectious Diseases 31.6 (June
2012), pp. 899–904. issn: 0934-9723, 1435-4373. doi: 10.1007/s10096-011-
1395-7.

[21] Gaëtan Benoit et al. ‘High-quality metagenome assembly from long accurate
reads with metaMDBG’. en. In: Nature Biotechnology (Jan. 2024). issn: 1087-
0156, 1546-1696. doi: 10.1038/s41587-023-01983-6.

[22] David R. Bentley et al. ‘Accurate whole human genome sequencing using
reversible terminator chemistry’. en. In: Nature 456.7218 (Nov. 2008), pp. 53–
59. issn: 0028-0836, 1476-4687. doi: 10.1038/nature07517.

[23] S. D. Bentley et al. ‘Complete genome sequence of the model actinomycete
Streptomyces coelicolor A3(2)’. en. In: Nature 417.6885 (May 2002), pp. 141–
147. issn: 0028-0836, 1476-4687. doi: 10.1038/417141a.

[24] ‘Bergey’s Manual of Determinative Bacteriology:’ en. In: Academic Medicine
9.4 (July 1934), p. 256. issn: 1040-2446. doi: 10.1097/00001888-193407000-
00027.

[25] Derek M. Bickhart et al. ‘Generating lineage-resolved, complete metagenome-
assembled genomes from complex microbial communities’. en. In: Nature Bi-
otechnology 40.5 (May 2022), pp. 711–719. issn: 1087-0156, 1546-1696. doi:
10.1038/s41587-021-01130-z.

[26] Aitor Blanco-Míguez et al. ‘Extending and improving metagenomic taxonomic
profiling with uncharacterized species using MetaPhlAn 4’. en. In: Nature
Biotechnology (Feb. 2023). Publisher: Nature Publishing Group, pp. 1–12.
issn: 1546-1696. doi: 10.1038/s41587-023-01688-w.

[27] Martin J. Blaser. ‘Fecal Microbiota Transplantation for Dysbiosis — Predict-
able Risks’. en. In: New England Journal of Medicine 381.21 (Nov. 2019),
pp. 2064–2066. issn: 0028-4793, 1533-4406. doi: 10.1056/NEJMe1913807.

[28] Sébastien Boisvert et al. ‘Ray Meta: scalable de novo metagenome assembly
and profiling’. en. In: Genome Biology 13.12 (2012), R122. issn: 1465-6906.
doi: 10.1186/gb-2012-13-12-r122.

[29] Camille Bonneaud et al. ‘Experimental evidence for stabilizing selection on
virulence in a bacterial pathogen’. en. In: Evolution Letters 4.6 (Dec. 2020),
pp. 491–501. issn: 2056-3744. doi: 10.1002/evl3.203.

147

https://doi.org/10.7554/eLife.65088
https://doi.org/10.1007/s10096-011-1395-7
https://doi.org/10.1007/s10096-011-1395-7
https://doi.org/10.1038/s41587-023-01983-6
https://doi.org/10.1038/nature07517
https://doi.org/10.1038/417141a
https://doi.org/10.1097/00001888-193407000-00027
https://doi.org/10.1097/00001888-193407000-00027
https://doi.org/10.1038/s41587-021-01130-z
https://doi.org/10.1038/s41587-023-01688-w
https://doi.org/10.1056/NEJMe1913807
https://doi.org/10.1186/gb-2012-13-12-r122
https://doi.org/10.1002/evl3.203


Novel taxonomic profiling and ...

[30] Régis Bonnet et al. ‘Differences in rDNA libraries of faecal bacteria derived
from 10- and 25-cycle PCRs.’ en. In: International Journal of Systematic and
Evolutionary Microbiology 52.3 (May 2002), pp. 757–763. issn: 1466-5026,
1466-5034. doi: 10.1099/00207713-52-3-757.

[31] Leo Breiman. ‘Random Forests’. In: Machine Learning 45.1 (2001), pp. 5–32.
issn: 08856125. doi: 10.1023/A:1010933404324.

[32] F. P. Breitwieser, D. N. Baker and S. L. Salzberg. ‘KrakenUniq: confident
and fast metagenomics classification using unique k-mer counts’. In: Genome
Biology 19.1 (Nov. 2018), p. 198. issn: 1474-760X. doi: 10.1186/s13059-
018-1568-0.

[33] Florian P. Breitwieser et al. ‘Human contamination in bacterial genomes has
created thousands of spurious proteins’. en. In: Genome Research 29.6 (June
2019), pp. 954–960. issn: 1088-9051, 1549-5469. doi: 10.1101/gr.245373.
118.

[34] Karel Břinda, Maciej Sykulski and Gregory Kucherov. ‘Spaced seeds im-
prove k -mer-based metagenomic classification’. en. In: Bioinformatics 31.22
(Nov. 2015), pp. 3584–3592. issn: 1367-4811, 1367-4803. doi: 10 . 1093 /

bioinformatics/btv419.

[35] Hilary P. Browne et al. ‘Culturing of ‘unculturable’ human microbiota reveals
novel taxa and extensive sporulation’. en. In: Nature 533.7604 (May 2016),
pp. 543–546. issn: 0028-0836, 1476-4687. doi: 10.1038/nature17645.

[36] Patrick Denis Browne et al. ‘GC bias affects genomic and metagenomic re-
constructions, underrepresenting GC-poor organisms’. en. In: GigaScience 9.2
(Feb. 2020), giaa008. issn: 2047-217X. doi: 10.1093/gigascience/giaa008.

[37] Benjamin Buchfink, Chao Xie and Daniel H Huson. ‘Fast and sensitive protein
alignment using DIAMOND’. en. In: Nature Methods 12.1 (Jan. 2015), pp. 59–
60. issn: 1548-7091, 1548-7105. doi: 10.1038/nmeth.3176.

[38] Charlie G. Buffie and Eric G. Pamer. ‘Microbiota-mediated colonization res-
istance against intestinal pathogens’. en. In: Nature Reviews Immunology
13.11 (Nov. 2013), pp. 790–801. issn: 1474-1733, 1474-1741. doi: 10.1038/
nri3535.

[39] Benjamin J Callahan et al. ‘DADA2: High-resolution sample inference from
Illumina amplicon data’. en. In: Nature Methods 13.7 (July 2016), pp. 581–
583. issn: 1548-7091, 1548-7105. doi: 10.1038/nmeth.3869.

[40] J Gregory Caporaso et al. ‘QIIME allows analysis of high-throughput com-
munity sequencing data’. en. In: Nature Methods 7.5 (May 2010), pp. 335–
336. issn: 1548-7091, 1548-7105. doi: 10.1038/nmeth.f.303.

148

https://doi.org/10.1099/00207713-52-3-757
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1186/s13059-018-1568-0
https://doi.org/10.1186/s13059-018-1568-0
https://doi.org/10.1101/gr.245373.118
https://doi.org/10.1101/gr.245373.118
https://doi.org/10.1093/bioinformatics/btv419
https://doi.org/10.1093/bioinformatics/btv419
https://doi.org/10.1038/nature17645
https://doi.org/10.1093/gigascience/giaa008
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1038/nri3535
https://doi.org/10.1038/nri3535
https://doi.org/10.1038/nmeth.3869
https://doi.org/10.1038/nmeth.f.303


Joachim Fritscher

[41] Roberta Caruso, Bernard C. Lo and Gabriel Núñez. ‘Host–microbiota interac-
tions in inflammatory bowel disease’. en. In: Nature Reviews Immunology 20.7
(July 2020), pp. 411–426. issn: 1474-1733, 1474-1741. doi: 10.1038/s41577-
019-0268-7.

[42] Pedro Celis, Per-Ake Larson and J. Ian Munro. ‘Robin hood hashing’. In:
26th Annual Symposium on Foundations of Computer Science (sfcs 1985).
Portland, OR, USA: IEEE, 1985, pp. 281–288. isbn: 978-0-8186-0644-1. doi:
10.1109/SFCS.1985.48.

[43] Pierre-Alain Chaumeil et al. ‘GTDB-Tk v2: memory friendly classification
with the genome taxonomy database’. In: Bioinformatics 38.23 (Dec. 2022),
pp. 5315–5316. issn: 1367-4803. doi: 10.1093/bioinformatics/btac672.

[44] Alex Chklovski et al. ‘CheckM2: a rapid, scalable and accurate tool for assess-
ing microbial genome quality using machine learning’. en. In: Nature Methods
20.8 (Aug. 2023), pp. 1203–1212. issn: 1548-7091, 1548-7105. doi: 10.1038/
s41592-023-01940-w.

[45] Hani Choudhry. ‘The Microbiome and Its Implications in Cancer Immuno-
therapy’. en. In: Molecules 26.1 (Jan. 2021), p. 206. issn: 1420-3049. doi:
10.3390/molecules26010206.

[46] Brianna Chrisman et al. ‘The human “contaminome”: bacterial, viral, and
computational contamination in whole genome sequences from 1000 families’.
en. In: Scientific Reports 12.1 (June 2022), p. 9863. issn: 2045-2322. doi:
10.1038/s41598-022-13269-z.

[47] Liam Chung et al. ‘Bacteroides fragilis Toxin Coordinates a Pro-carcinogenic
Inflammatory Cascade via Targeting of Colonic Epithelial Cells’. en. In: Cell
Host & Microbe 23.2 (Feb. 2018), 203–214.e5. issn: 19313128. doi: 10.1016/
j.chom.2018.01.007.

[48] Maria Chuvochina et al. ‘The importance of designating type material for un-
cultured taxa’. en. In: Systematic and Applied Microbiology 42.1 (Jan. 2019),
pp. 15–21. issn: 07232020. doi: 10.1016/j.syapm.2018.07.003.

[49] Francesca D. Ciccarelli et al. ‘Toward Automatic Reconstruction of a Highly
Resolved Tree of Life’. en. In: Science 311.5765 (Mar. 2006), pp. 1283–1287.
issn: 0036-8075, 1095-9203. doi: 10.1126/science.1123061.

[50] Stacy Ciufo et al. ‘Using average nucleotide identity to improve taxonomic as-
signments in prokaryotic genomes at the NCBI’. en. In: International Journal
of Systematic and Evolutionary Microbiology 68.7 (July 2018), pp. 2386–2392.
issn: 1466-5026, 1466-5034. doi: 10.1099/ijsem.0.002809.

[51] Marcus J. Claesson et al. ‘Gut microbiota composition correlates with diet
and health in the elderly’. en. In: Nature 488.7410 (Aug. 2012), pp. 178–184.
issn: 0028-0836, 1476-4687. doi: 10.1038/nature11319.

149

https://doi.org/10.1038/s41577-019-0268-7
https://doi.org/10.1038/s41577-019-0268-7
https://doi.org/10.1109/SFCS.1985.48
https://doi.org/10.1093/bioinformatics/btac672
https://doi.org/10.1038/s41592-023-01940-w
https://doi.org/10.1038/s41592-023-01940-w
https://doi.org/10.3390/molecules26010206
https://doi.org/10.1038/s41598-022-13269-z
https://doi.org/10.1016/j.chom.2018.01.007
https://doi.org/10.1016/j.chom.2018.01.007
https://doi.org/10.1016/j.syapm.2018.07.003
https://doi.org/10.1126/science.1123061
https://doi.org/10.1099/ijsem.0.002809
https://doi.org/10.1038/nature11319


Novel taxonomic profiling and ...

[52] Karen Clark et al. ‘GenBank’. en. In: Nucleic Acids Research 44.D1 (Jan.
2016), pp. D67–D72. issn: 0305-1048, 1362-4962. doi: 10.1093/nar/gkv1276.

[53] Mark M. Collery et al. ‘What’s a SNP between friends: The influence of single
nucleotide polymorphisms on virulence and phenotypes of Clostridium difficile
strain 630 and derivatives’. en. In: Virulence 8.6 (Aug. 2017), pp. 767–781.
issn: 2150-5594, 2150-5608. doi: 10.1080/21505594.2016.1237333.

[54] R. R. Colwell. ‘Polyphasic Taxonomy of the Genus Vibrio: Numerical Tax-
onomy of Vibrio cholerae, Vibrio parahaemolyticus , and Related Vibrio Spe-
cies’. en. In: Journal of Bacteriology 104.1 (Oct. 1970), pp. 410–433. issn:
0021-9193, 1098-5530. doi: 10.1128/jb.104.1.410-433.1970.

[55] Paul Igor Costea et al. ‘metaSNV: A tool for metagenomic strain level ana-
lysis’. en. In: PLOS ONE 12.7 (July 2017). Publisher: Public Library of Sci-
ence, e0182392. issn: 1932-6203. doi: 10.1371/journal.pone.0182392.

[56] Arianna K. DeGruttola et al. ‘Current Understanding of Dysbiosis in Dis-
ease in Human and Animal Models:’ en. In: Inflammatory Bowel Diseases
22.5 (May 2016), pp. 1137–1150. issn: 1078-0998. doi: 10 . 1097 / MIB .

0000000000000750.

[57] T. Z. DeSantis et al. ‘Greengenes, a Chimera-Checked 16S rRNA Gene Data-
base and Workbench Compatible with ARB’. en. In: Applied and Environ-
mental Microbiology 72.7 (July 2006), pp. 5069–5072. issn: 0099-2240, 1098-
5336. doi: 10.1128/AEM.03006-05.

[58] Hongdo Do and Alexander Dobrovic. ‘Sequence Artifacts in DNA from
Formalin-Fixed Tissues: Causes and Strategies for Minimization’. en. In: Clin-
ical Chemistry 61.1 (Jan. 2015), pp. 64–71. issn: 0009-9147, 1530-8561. doi:
10.1373/clinchem.2014.223040.

[59] Yuxuan Du and Fengzhu Sun. ‘HiCBin: binning metagenomic contigs and
recovering metagenome-assembled genomes using Hi-C contact maps’. en. In:
Genome Biology 23.1 (Feb. 2022), p. 63. issn: 1474-760X. doi: 10.1186/
s13059-022-02626-w.

[60] David J. Durgan et al. ‘Role of the Gut Microbiome in Obstructive Sleep
Apnea–Induced Hypertension’. en. In: Hypertension 67.2 (Feb. 2016), pp. 469–
474. issn: 0194-911X, 1524-4563. doi: 10 . 1161 / HYPERTENSIONAHA . 115 .

06672.

[61] Robert Edgar. ‘Syncmers are more sensitive than minimizers for selecting
conserved k -mers in biological sequences’. en. In: PeerJ 9 (Feb. 2021), e10805.
issn: 2167-8359. doi: 10.7717/peerj.10805.

[62] Robert C Edgar. ‘UPARSE: highly accurate OTU sequences from microbial
amplicon reads’. en. In: Nature Methods 10.10 (Oct. 2013), pp. 996–998. issn:
1548-7091, 1548-7105. doi: 10.1038/nmeth.2604.

150

https://doi.org/10.1093/nar/gkv1276
https://doi.org/10.1080/21505594.2016.1237333
https://doi.org/10.1128/jb.104.1.410-433.1970
https://doi.org/10.1371/journal.pone.0182392
https://doi.org/10.1097/MIB.0000000000000750
https://doi.org/10.1097/MIB.0000000000000750
https://doi.org/10.1128/AEM.03006-05
https://doi.org/10.1373/clinchem.2014.223040
https://doi.org/10.1186/s13059-022-02626-w
https://doi.org/10.1186/s13059-022-02626-w
https://doi.org/10.1161/HYPERTENSIONAHA.115.06672
https://doi.org/10.1161/HYPERTENSIONAHA.115.06672
https://doi.org/10.7717/peerj.10805
https://doi.org/10.1038/nmeth.2604


Joachim Fritscher

[63] S. Dusko Ehrlich. ‘MetaHIT: The European Union Project on Metagenomics
of the Human Intestinal Tract’. en. In: Metagenomics of the Human Body.
Ed. by Karen E. Nelson. New York, NY: Springer, 2011, pp. 307–316. isbn:
978-1-4419-7089-3. doi: 10.1007/978-1-4419-7089-3_15.

[64] John Eid et al. ‘Real-Time DNA Sequencing from Single Polymerase Mo-
lecules’. en. In: Science 323.5910 (Jan. 2009), pp. 133–138. issn: 0036-8075,
1095-9203. doi: 10.1126/science.1162986.

[65] Raphael Eisenhofer et al. ‘A comparison of short-read, HiFi long-read, and hy-
brid strategies for genome-resolved metagenomics’. eng. In: Microbiology Spec-
trum 12.4 (Apr. 2024), e0359023. issn: 2165-0497. doi: 10.1128/spectrum.
03590-23.

[66] Jeremiah J. Faith et al. ‘The Long-Term Stability of the Human Gut Mi-
crobiota’. en. In: Science 341.6141 (July 2013), p. 1237439. issn: 0036-8075,
1095-9203. doi: 10.1126/science.1237439.

[67] Gwen Falony et al. ‘Population-level analysis of gut microbiome variation’. en.
In: Science 352.6285 (Apr. 2016), pp. 560–564. issn: 0036-8075, 1095-9203.
doi: 10.1126/science.aad3503.

[68] Karoline Faust and Jeroen Raes. ‘Microbial interactions: from networks to
models’. en. In: Nature Reviews Microbiology 10.8 (Aug. 2012), pp. 538–550.
issn: 1740-1526, 1740-1534. doi: 10.1038/nrmicro2832.

[69] Scott Federhen. ‘The NCBI Taxonomy database’. In: Nucleic Acids Research
40.D1 (Jan. 2012), pp. D136–D143. issn: 0305-1048. doi: 10.1093/nar/

gkr1178.

[70] Xiaowen Feng et al. ‘Metagenome assembly of high-fidelity long reads with
hifiasm-meta’. en. In: Nature Methods 19.6 (June 2022), pp. 671–674. issn:
1548-7091, 1548-7105. doi: 10.1038/s41592-022-01478-3.

[71] P. Ferragina and G. Manzini. ‘Opportunistic data structures with applica-
tions’. In: Proceedings 41st Annual Symposium on Foundations of Computer
Science. Redondo Beach, CA, USA: IEEE Comput. Soc, 2000, pp. 390–398.
isbn: 978-0-7695-0850-4. doi: 10.1109/SFCS.2000.892127.

[72] Klas Flärdh and Mark J. Buttner. ‘Streptomyces morphogenetics: dissecting
differentiation in a filamentous bacterium’. en. In: Nature Reviews Microbio-
logy 7.1 (Jan. 2009), pp. 36–49. issn: 1740-1526, 1740-1534. doi: 10.1038/
nrmicro1968.

[73] Alexander Fleming. ‘THE DISCOVERY OF PENICILLIN’. en. In: British
Medical Bulletin 2.1 (1944), pp. 4–5. issn: 1471-8391, 0007-1420. doi: 10.
1093/oxfordjournals.bmb.a071032.

151

https://doi.org/10.1007/978-1-4419-7089-3_15
https://doi.org/10.1126/science.1162986
https://doi.org/10.1128/spectrum.03590-23
https://doi.org/10.1128/spectrum.03590-23
https://doi.org/10.1126/science.1237439
https://doi.org/10.1126/science.aad3503
https://doi.org/10.1038/nrmicro2832
https://doi.org/10.1093/nar/gkr1178
https://doi.org/10.1093/nar/gkr1178
https://doi.org/10.1038/s41592-022-01478-3
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1038/nrmicro1968
https://doi.org/10.1038/nrmicro1968
https://doi.org/10.1093/oxfordjournals.bmb.a071032
https://doi.org/10.1093/oxfordjournals.bmb.a071032


Novel taxonomic profiling and ...

[74] Harry J. Flint et al. ‘The role of the gut microbiota in nutrition and health’. en.
In: Nature Reviews Gastroenterology & Hepatology 9.10 (Oct. 2012), pp. 577–
589. issn: 1759-5045, 1759-5053. doi: 10.1038/nrgastro.2012.156.

[75] Kristoffer Forslund et al. ‘Disentangling type 2 diabetes and metformin treat-
ment signatures in the human gut microbiota’. en. In: Nature 528.7581 (Dec.
2015). Number: 7581 Publisher: Nature Publishing Group, pp. 262–266. issn:
1476-4687. doi: 10.1038/nature15766.

[76] Clémence Frioux et al. ‘Enterosignatures define common bacterial guilds in
the human gut microbiome’. en. In: Cell Host & Microbe 31.7 (July 2023),
1111–1125.e6. issn: 19313128. doi: 10.1016/j.chom.2023.05.024.

[77] Adrian Fritz et al. ‘CAMISIM: simulating metagenomes and microbial com-
munities’. en. In: Microbiome 7.1 (Dec. 2019), p. 17. issn: 2049-2618. doi:
10.1186/s40168-019-0633-6.

[78] Limin Fu et al. ‘CD-HIT: accelerated for clustering the next-generation se-
quencing data’. en. In: Bioinformatics 28.23 (Dec. 2012), pp. 3150–3152. issn:
1367-4803, 1367-4811. doi: 10.1093/bioinformatics/bts565.

[79] Asami Fukuda et al. ‘DDBJ update: streamlining submission and access of
human data’. eng. In: Nucleic Acids Research 49.D1 (Jan. 2021), pp. D71–
D75. issn: 1362-4962. doi: 10.1093/nar/gkaa982.

[80] Erik Garrison and Gabor Marth. Haplotype-based variant detection from
short-read sequencing. Version Number: 2. 2012. doi: 10.48550/ARXIV.1207.
3907.

[81] Nandita R. Garud et al. ‘Evolutionary dynamics of bacteria in the gut micro-
biome within and across hosts’. en. In: PLOS Biology 17.1 (Jan. 2019). Ed.
by Isabel Gordo, e3000102. issn: 1545-7885. doi: 10.1371/journal.pbio.
3000102.

[82] Abraham Gihawi et al. ‘Major data analysis errors invalidate cancer microbi-
ome findings’. en. In: mBio 14.5 (Oct. 2023). Ed. by Igor B. Zhulin, e01607–
23. issn: 2150-7511. doi: 10.1128/mbio.01607-23.

[83] David M. Golombos et al. ‘The Role of Gut Microbiome in the Pathogenesis
of Prostate Cancer: A Prospective, Pilot Study’. en. In: Urology 111 (Jan.
2018), pp. 122–128. issn: 00904295. doi: 10.1016/j.urology.2017.08.039.

[84] Pedro González-Torres et al. ‘Impact of Homologous Recombination on the
Evolution of Prokaryotic Core Genomes’. en. In: mBio 10.1 (Feb. 2019). Ed.
by Joseph Heitman, e02494–18. issn: 2161-2129, 2150-7511. doi: 10.1128/
mBio.02494-18.

152

https://doi.org/10.1038/nrgastro.2012.156
https://doi.org/10.1038/nature15766
https://doi.org/10.1016/j.chom.2023.05.024
https://doi.org/10.1186/s40168-019-0633-6
https://doi.org/10.1093/bioinformatics/bts565
https://doi.org/10.1093/nar/gkaa982
https://doi.org/10.48550/ARXIV.1207.3907
https://doi.org/10.48550/ARXIV.1207.3907
https://doi.org/10.1371/journal.pbio.3000102
https://doi.org/10.1371/journal.pbio.3000102
https://doi.org/10.1128/mbio.01607-23
https://doi.org/10.1016/j.urology.2017.08.039
https://doi.org/10.1128/mBio.02494-18
https://doi.org/10.1128/mBio.02494-18


Joachim Fritscher

[85] Julia K. Goodrich et al. ‘Human Genetics Shape the Gut Microbiome’. en.
In: Cell 159.4 (Nov. 2014), pp. 789–799. issn: 00928674. doi: 10.1016/j.
cell.2014.09.053.

[86] Johan Goris et al. ‘DNA–DNA hybridization values and their relationship to
whole-genome sequence similarities’. en. In: International Journal of System-
atic and Evolutionary Microbiology 57.1 (Jan. 2007), pp. 81–91. issn: 1466-
5026, 1466-5034. doi: 10.1099/ijs.0.64483-0.

[87] Daniel B. Graham and Ramnik J. Xavier. ‘Conditioning of the immune system
by the microbiome’. en. In: Trends in Immunology 44.7 (July 2023), pp. 499–
511. issn: 14714906. doi: 10.1016/j.it.2023.05.002.

[88] Alastair Grant et al. Improved taxonomic annotation of Archaea communities
using LotuS2, the Genome Taxonomy Database and RNAseq data. en. Aug.
2023. doi: 10.1101/2023.08.21.554127.

[89] Catherine Grasso et al. ‘Assessing Copy Number Alterations in Targeted,
Amplicon-Based Next-Generation Sequencing Data’. en. In: The Journal of
Molecular Diagnostics 17.1 (Jan. 2015), pp. 53–63. issn: 15251578. doi: 10.
1016/j.jmoldx.2014.09.008.

[90] Manoj Gurung et al. ‘Role of gut microbiota in type 2 diabetes patho-
physiology’. English. In: eBioMedicine 51 (Jan. 2020). Publisher: Elsevier.
issn: 2352-3964. doi: 10.1016/j.ebiom.2019.11.051.

[91] Barry G. Hall, Garth D. Ehrlich and Fen Z. Hu. ‘Pan-genome analysis provides
much higher strain typing resolution than multi-locus sequence typing’. en. In:
Microbiology 156.4 (Apr. 2010), pp. 1060–1068. issn: 1350-0872, 1465-2080.
doi: 10.1099/mic.0.035188-0.

[92] Benjamin D. Hall and S. Spiegelman. ‘SEQUENCE COMPLEMENTARITY
OF T2-DNA AND T2-SPECIFIC RNA’. en. In: Proceedings of the National
Academy of Sciences 47.2 (Feb. 1961), pp. 137–146. issn: 0027-8424, 1091-
6490. doi: 10.1073/pnas.47.2.137.

[93] Jo Handelsman et al. ‘Molecular biological access to the chemistry of unknown
soil microbes: a new frontier for natural products’. en. In: Chemistry & Biology
5.10 (Oct. 1998), R245–R249. issn: 10745521. doi: 10.1016/S1074-5521(98)
90108-9.

[94] Brian P. Hedlund et al. ‘SeqCode: a nomenclatural code for prokaryotes de-
scribed from sequence data’. en. In: Nature Microbiology (Sept. 2022). issn:
2058-5276. doi: 10.1038/s41564-022-01214-9.

[95] Falk Hildebrand. ‘Ultra-resolution Metagenomics: When Enough Is Not
Enough’. en. In: mSystems 6.4 (Aug. 2021), e00881–21. issn: 2379-5077. doi:
10.1128/mSystems.00881-21.

153

https://doi.org/10.1016/j.cell.2014.09.053
https://doi.org/10.1016/j.cell.2014.09.053
https://doi.org/10.1099/ijs.0.64483-0
https://doi.org/10.1016/j.it.2023.05.002
https://doi.org/10.1101/2023.08.21.554127
https://doi.org/10.1016/j.jmoldx.2014.09.008
https://doi.org/10.1016/j.jmoldx.2014.09.008
https://doi.org/10.1016/j.ebiom.2019.11.051
https://doi.org/10.1099/mic.0.035188-0
https://doi.org/10.1073/pnas.47.2.137
https://doi.org/10.1016/S1074-5521(98)90108-9
https://doi.org/10.1016/S1074-5521(98)90108-9
https://doi.org/10.1038/s41564-022-01214-9
https://doi.org/10.1128/mSystems.00881-21


Novel taxonomic profiling and ...

[96] Falk Hildebrand et al. ‘LotuS: an efficient and user-friendly OTU processing
pipeline’. en. In: Microbiome 2.1 (Dec. 2014), p. 30. issn: 2049-2618. doi:
10.1186/2049-2618-2-30.

[97] Falk Hildebrand et al. ‘Antibiotics-induced monodominance of a novel gut
bacterial order’. eng. In: Gut 68.10 (Oct. 2019), pp. 1781–1790. issn: 1468-
3288. doi: 10.1136/gutjnl-2018-317715.

[98] Falk Hildebrand et al. ‘Dispersal strategies shape persistence and evolution
of human gut bacteria’. en. In: Cell Host & Microbe 29.7 (July 2021), 1167–
1176.e9. issn: 19313128. doi: 10.1016/j.chom.2021.05.008.

[99] Pranvera Hiseni et al. ‘HumGut: a comprehensive human gut prokaryotic
genomes collection filtered by metagenome data’. In: Microbiome 9.1 (July
2021), p. 165. issn: 2049-2618. doi: 10.1186/s40168-021-01114-w.

[100] Ian Holmes, Keith Harris and Christopher Quince. ‘Dirichlet Multinomial
Mixtures: Generative Models for Microbial Metagenomics’. en. In: PLoS ONE
7.2 (Feb. 2012). Ed. by Jack Anthony Gilbert, e30126. issn: 1932-6203. doi:
10.1371/journal.pone.0030126.

[101] L. V. Hooper and J. I. Gordon. ‘Commensal host-bacterial relationships in the
gut’. eng. In: Science (New York, N.Y.) 292.5519 (May 2001), pp. 1115–1118.
issn: 0036-8075. doi: 10.1126/science.1058709.

[102] Weichun Huang et al. ‘ART: a next-generation sequencing read simulator’. en.
In: Bioinformatics 28.4 (Feb. 2012), pp. 593–594. issn: 1367-4811, 1367-4803.
doi: 10.1093/bioinformatics/btr708.

[103] Philip Hugenholtz et al. ‘Prokaryotic taxonomy and nomenclature in the age
of big sequence data’. en. In: The ISME Journal 15.7 (July 2021), pp. 1879–
1892. issn: 1751-7362, 1751-7370. doi: 10.1038/s41396-021-00941-x.

[104] Susan M Huse et al. ‘Accuracy and quality of massively parallel DNA
pyrosequencing’. en. In: Genome Biology 8.7 (July 2007), R143. issn: 1474-
760X. doi: 10.1186/gb-2007-8-7-r143.

[105] Daniel H. Huson et al. ‘MEGAN analysis of metagenomic data’. en. In: Gen-
ome Research 17.3 (Mar. 2007), pp. 377–386. issn: 1088-9051. doi: 10.1101/
gr.5969107.

[106] Curtis Huttenhower et al. ‘Structure, function and diversity of the healthy
human microbiome’. en. In: Nature 486.7402 (June 2012). Publisher: Nature
Publishing Group, pp. 207–214. issn: 1476-4687. doi: 10.1038/nature11234.

[107] Cláudia Maria Dos Santos Pereira Indiani et al. ‘Childhood Obesity and
Firmicutes/Bacteroidetes Ratio in the Gut Microbiota: A Systematic Review’.
en. In: Childhood Obesity 14.8 (Dec. 2018), pp. 501–509. issn: 2153-2168, 2153-
2176. doi: 10.1089/chi.2018.0040.

154

https://doi.org/10.1186/2049-2618-2-30
https://doi.org/10.1136/gutjnl-2018-317715
https://doi.org/10.1016/j.chom.2021.05.008
https://doi.org/10.1186/s40168-021-01114-w
https://doi.org/10.1371/journal.pone.0030126
https://doi.org/10.1126/science.1058709
https://doi.org/10.1093/bioinformatics/btr708
https://doi.org/10.1038/s41396-021-00941-x
https://doi.org/10.1186/gb-2007-8-7-r143
https://doi.org/10.1101/gr.5969107
https://doi.org/10.1101/gr.5969107
https://doi.org/10.1038/nature11234
https://doi.org/10.1089/chi.2018.0040


Joachim Fritscher

[108] ‘International Code of Nomenclature of Prokaryotes: Prokaryotic Code (2008
Revision)’. en. In: International Journal of Systematic and Evolutionary Mi-
crobiology 69.1A (Jan. 2019), S1–S111. issn: 1466-5026, 1466-5034. doi: 10.
1099/ijsem.0.000778.

[109] Ivaylo I. Ivanov et al. ‘Induction of Intestinal Th17 Cells by Segmented Fila-
mentous Bacteria’. en. In: Cell 139.3 (Oct. 2009), pp. 485–498. issn: 00928674.
doi: 10.1016/j.cell.2009.09.033.

[110] Valeriia Ivanova et al. ‘Hi-C Metagenomics in the ICU: Exploring Clinically
Relevant Features of Gut Microbiome in Chronically Critically Ill Patients’.
eng. In: Frontiers in Microbiology 12 (2021), p. 770323. issn: 1664-302X. doi:
10.3389/fmicb.2021.770323.

[111] Chirag Jain et al. ‘High throughput ANI analysis of 90K prokaryotic genomes
reveals clear species boundaries’. en. In: Nature Communications 9.1 (Nov.
2018), p. 5114. issn: 2041-1723. doi: 10.1038/s41467-018-07641-9.

[112] Lei Jiang and Farzaneh Zokaee. ‘EXMA: A Genomics Accelerator for Exact-
Matching’. In: 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). Seoul, Korea (South): IEEE, Feb. 2021,
pp. 399–411. isbn: 978-1-66542-235-2. doi: 10.1109/HPCA51647.2021.00041.

[113] Jethro S. Johnson et al. ‘Evaluation of 16S rRNA gene sequencing for species
and strain-level microbiome analysis’. en. In: Nature Communications 10.1
(Nov. 2019). Publisher: Nature Publishing Group, p. 5029. issn: 2041-1723.
doi: 10.1038/s41467-019-13036-1.

[114] Raphaela Joos et al. ‘Examining the healthy human microbiome concept’. en.
In: Nature Reviews Microbiology 23.3 (Mar. 2025), pp. 192–205. issn: 1740-
1526, 1740-1534. doi: 10.1038/s41579-024-01107-0.

[115] Dongwan D. Kang et al. ‘MetaBAT 2: an adaptive binning algorithm for
robust and efficient genome reconstruction from metagenome assemblies’. en.
In: PeerJ 7 (July 2019). Publisher: PeerJ Inc., e7359. issn: 2167-8359. doi:
10.7717/peerj.7359.

[116] Gabriela Kapinusova, Marco A. Lopez Marin and Ondrej Uhlik. ‘Reaching un-
reachables: Obstacles and successes of microbial cultivation and their reasons’.
In: Frontiers in Microbiology 14 (Mar. 2023), p. 1089630. issn: 1664-302X.
doi: 10.3389/fmicb.2023.1089630.

[117] Samuel Kariin and Chris Burge. ‘Dinucleotide relative abundance extremes: a
genomic signature’. en. In: Trends in Genetics 11.7 (July 1995), pp. 283–290.
issn: 01689525. doi: 10.1016/S0168-9525(00)89076-9.

[118] K. Katoh. ‘MAFFT: a novel method for rapid multiple sequence alignment
based on fast Fourier transform’. In: Nucleic Acids Research 30.14 (July 2002),
pp. 3059–3066. issn: 13624962. doi: 10.1093/nar/gkf436.

155

https://doi.org/10.1099/ijsem.0.000778
https://doi.org/10.1099/ijsem.0.000778
https://doi.org/10.1016/j.cell.2009.09.033
https://doi.org/10.3389/fmicb.2021.770323
https://doi.org/10.1038/s41467-018-07641-9
https://doi.org/10.1109/HPCA51647.2021.00041
https://doi.org/10.1038/s41467-019-13036-1
https://doi.org/10.1038/s41579-024-01107-0
https://doi.org/10.7717/peerj.7359
https://doi.org/10.3389/fmicb.2023.1089630
https://doi.org/10.1016/S0168-9525(00)89076-9
https://doi.org/10.1093/nar/gkf436


Novel taxonomic profiling and ...

[119] Asma Kazemi et al. ‘Effect of probiotic and prebiotic vs placebo on psycho-
logical outcomes in patients with major depressive disorder: A randomized
clinical trial’. en. In: Clinical Nutrition 38.2 (Apr. 2019), pp. 522–528. issn:
02615614. doi: 10.1016/j.clnu.2018.04.010.

[120] Marisa Isabell Keller et al. Refined Enterotyping Reveals Dysbiosis in Global
Fecal Metagenomes. en. Aug. 2024. doi: 10.1101/2024.08.13.607711.

[121] Israr Khan et al. ‘Alteration of Gut Microbiota in Inflammatory Bowel Disease
(IBD): Cause or Consequence? IBD Treatment Targeting the Gut Microbi-
ome’. In: Pathogens 8.3 (Aug. 2019), p. 126. issn: 2076-0817. doi: 10.3390/
pathogens8030126.

[122] Bryce Kille et al. Minmers are a generalization of minimizers that enable
unbiased local Jaccard estimation. en. May 2023. doi: 10.1101/2023.05.16.
540882.

[123] Daehwan Kim et al. ‘Centrifuge: rapid and sensitive classification of metage-
nomic sequences’. en. In: Genome Research 26.12 (Dec. 2016), pp. 1721–1729.
issn: 1088-9051, 1549-5469. doi: 10.1101/gr.210641.116.

[124] Nayeon Kim et al. ‘Genome-resolved metagenomics: a game changer for mi-
crobiome medicine’. en. In: Experimental & Molecular Medicine 56.7 (July
2024), pp. 1501–1512. issn: 2092-6413. doi: 10.1038/s12276-024-01262-7.

[125] Martin Kircher, Susanna Sawyer and Matthias Meyer. ‘Double indexing over-
comes inaccuracies in multiplex sequencing on the Illumina platform’. en. In:
Nucleic Acids Research 40.1 (Jan. 2012), e3–e3. issn: 1362-4962, 0305-1048.
doi: 10.1093/nar/gkr771.

[126] Ellen Knierim et al. ‘Systematic Comparison of Three Methods for Fragment-
ation of Long-Range PCR Products for Next Generation Sequencing’. en. In:
PLoS ONE 6.11 (Nov. 2011). Ed. by M. Thomas P. Gilbert, e28240. issn:
1932-6203. doi: 10.1371/journal.pone.0028240.

[127] Mikhail Kolmogorov et al. ‘Assembly of long, error-prone reads using repeat
graphs’. en. In: Nature Biotechnology 37.5 (May 2019), pp. 540–546. issn:
1087-0156, 1546-1696. doi: 10.1038/s41587-019-0072-8.

[128] Sergey Koren et al. ‘Canu: scalable and accurate long-read assembly via ad-
aptive k-mer weighting and repeat separation’. eng. In: Genome Research 27.5
(May 2017), pp. 722–736. issn: 1549-5469. doi: 10.1101/gr.215087.116.

[129] Hans-Peter Kriegel, Erich Schubert and Arthur Zimek. ‘The (black) art of
runtime evaluation: Are we comparing algorithms or implementations?’ en.
In: Knowledge and Information Systems 52.2 (Aug. 2017), pp. 341–378. issn:
0219-1377, 0219-3116. doi: 10.1007/s10115-016-1004-2.

156

https://doi.org/10.1016/j.clnu.2018.04.010
https://doi.org/10.1101/2024.08.13.607711
https://doi.org/10.3390/pathogens8030126
https://doi.org/10.3390/pathogens8030126
https://doi.org/10.1101/2023.05.16.540882
https://doi.org/10.1101/2023.05.16.540882
https://doi.org/10.1101/gr.210641.116
https://doi.org/10.1038/s12276-024-01262-7
https://doi.org/10.1093/nar/gkr771
https://doi.org/10.1371/journal.pone.0028240
https://doi.org/10.1038/s41587-019-0072-8
https://doi.org/10.1101/gr.215087.116
https://doi.org/10.1007/s10115-016-1004-2


Joachim Fritscher

[130] Mary K. Kuhner and Jon Yamato. ‘Practical Performance of Tree Comparison
Metrics’. en. In: Systematic Biology 64.2 (Mar. 2015), pp. 205–214. issn: 1076-
836X, 1063-5157. doi: 10.1093/sysbio/syu085.

[131] J.-C. Lagier et al. ‘Microbial culturomics: paradigm shift in the human gut
microbiome study’. en. In: Clinical Microbiology and Infection 18.12 (Dec.
2012), pp. 1185–1193. issn: 1198743X. doi: 10.1111/1469-0691.12023.

[132] Anthony LaMarca and Richard E Ladner. ‘The Influence of Caches on the Per-
formance of Sorting’. en. In: Journal of Algorithms 31.1 (Apr. 1999), pp. 66–
104. issn: 01966774. doi: 10.1006/jagm.1998.0985.

[133] Miriam Land et al. ‘Insights from 20 years of bacterial genome sequencing’.
eng. In: Functional & Integrative Genomics 15.2 (Mar. 2015), pp. 141–161.
issn: 1438-7948. doi: 10.1007/s10142-015-0433-4.

[134] Eric S. Lander and Michael S. Waterman. ‘Genomic mapping by fingerprinting
random clones: A mathematical analysis’. en. In: Genomics 2.3 (Apr. 1988),
pp. 231–239. issn: 0888-7543. doi: 10.1016/0888-7543(88)90007-9.

[135] Nick Lane. ‘The unseen world: reflections on Leeuwenhoek (1677) ‘Concerning
little animals’’. en. In: Philosophical Transactions of the Royal Society B:
Biological Sciences 370.1666 (Apr. 2015), p. 20140344. issn: 0962-8436, 1471-
2970. doi: 10.1098/rstb.2014.0344.

[136] Ben Langmead and Steven L. Salzberg. ‘Fast gapped-read alignment with
Bowtie 2’. en. In: Nature Methods 9.4 (Apr. 2012). Number: 4 Publisher:
Nature Publishing Group, pp. 357–359. issn: 1548-7105. doi: 10 . 1038 /

nmeth.1923.

[137] Ben Langmead et al. ‘Ultrafast and memory-efficient alignment of short DNA
sequences to the human genome’. en. In: Genome Biology 10.3 (2009), R25.
issn: 1465-6906. doi: 10.1186/gb-2009-10-3-r25.

[138] S. P. Lapage et al., eds. International Code of Nomenclature of Bacteria:
Bacteriological Code, 1990 Revision. eng. Washington (DC): ASM Press, 1992.
isbn: 978-1-55581-039-9.

[139] Aonghus Lavelle and Harry Sokol. ‘Beyond metagenomics, metatranscriptom-
ics illuminates microbiome functionality in IBD’. en. In: Nature Reviews Gast-
roenterology & Hepatology 15.4 (Apr. 2018). Number: 4 Publisher: Nature
Publishing Group, pp. 193–194. issn: 1759-5053. doi: 10.1038/nrgastro.
2018.15.

[140] Jeffrey G. Lawrence and Adam C. Retchless. ‘The Interplay of Homologous
Recombination and Horizontal Gene Transfer in Bacterial Speciation’. In:
Horizontal Gene Transfer. Ed. by John M. Walker et al. Vol. 532. Series Title:
Methods in Molecular Biology. Totowa, NJ: Humana Press, 2009, pp. 29–53.

157

https://doi.org/10.1093/sysbio/syu085
https://doi.org/10.1111/1469-0691.12023
https://doi.org/10.1006/jagm.1998.0985
https://doi.org/10.1007/s10142-015-0433-4
https://doi.org/10.1016/0888-7543(88)90007-9
https://doi.org/10.1098/rstb.2014.0344
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1186/gb-2009-10-3-r25
https://doi.org/10.1038/nrgastro.2018.15
https://doi.org/10.1038/nrgastro.2018.15


Novel taxonomic profiling and ...

isbn: 978-1-60327-852-2 978-1-60327-853-9. doi: 10.1007/978- 1- 60327-

853-9_3.

[141] Heewook Lee et al. ‘Rate and molecular spectrum of spontaneous mutations
in the bacterium Escherichia coli as determined by whole-genome sequencing’.
eng. In: Proceedings of the National Academy of Sciences of the United States
of America 109.41 (Oct. 2012), E2774–2783. issn: 1091-6490. doi: 10.1073/
pnas.1210309109.

[142] Andreas Leimbach, Jörg Hacker and Ulrich Dobrindt. ‘E. coli as an all-
rounder: the thin line between commensalism and pathogenicity’. eng. In:
Current Topics in Microbiology and Immunology 358 (2013), pp. 3–32. issn:
0070-217X. doi: 10.1007/82_2012_303.

[143] Dinghua Li et al. ‘MEGAHIT: an ultra-fast single-node solution for large
and complex metagenomics assembly via succinct de Bruijn graph’. en. In:
Bioinformatics 31.10 (May 2015), pp. 1674–1676. issn: 1367-4811, 1367-4803.
doi: 10.1093/bioinformatics/btv033.

[144] Heng Li. ‘A statistical framework for SNP calling, mutation discovery, asso-
ciation mapping and population genetical parameter estimation from sequen-
cing data’. en. In: Bioinformatics 27.21 (Nov. 2011), pp. 2987–2993. issn:
1367-4811, 1367-4803. doi: 10.1093/bioinformatics/btr509.

[145] Heng Li. ‘Minimap2: pairwise alignment for nucleotide sequences’. In: Bioin-
formatics 34.18 (Sept. 2018), pp. 3094–3100. issn: 1367-4803. doi: 10.1093/
bioinformatics/bty191.

[146] Heng Li and Richard Durbin. ‘Fast and accurate short read alignment with
Burrows–Wheeler transform’. In: Bioinformatics 25.14 (July 2009), pp. 1754–
1760. issn: 1367-4803. doi: 10.1093/bioinformatics/btp324.

[147] Heng Li et al. ‘The Sequence Alignment/Map format and SAMtools’. eng. In:
Bioinformatics (Oxford, England) 25.16 (Aug. 2009), pp. 2078–2079. issn:
1367-4811. doi: 10.1093/bioinformatics/btp352.

[148] Wenjun Li et al. ‘RefSeq: expanding the Prokaryotic Genome Annotation
Pipeline reach with protein family model curation’. en. In: Nucleic Acids Re-
search 49.D1 (Jan. 2021), pp. D1020–D1028. issn: 0305-1048, 1362-4962. doi:
10.1093/nar/gkaa1105.

[149] Yanbo Li, Hardip Patel and Yu Lin. ‘Kmer2SNP: Reference-Free Heterozyg-
ous SNP Calling Using k-mer Frequency Distributions’. en. In: Variant Call-
ing. Ed. by Charlotte Ng and Salvatore Piscuoglio. Vol. 2493. Series Title:
Methods in Molecular Biology. New York, NY: Springer US, 2022, pp. 257–
265. isbn: 978-1-07-162292-6 978-1-07-162293-3. doi: 10.1007/978-1-0716-
2293-3_16.

158

https://doi.org/10.1007/978-1-60327-853-9_3
https://doi.org/10.1007/978-1-60327-853-9_3
https://doi.org/10.1073/pnas.1210309109
https://doi.org/10.1073/pnas.1210309109
https://doi.org/10.1007/82_2012_303
https://doi.org/10.1093/bioinformatics/btv033
https://doi.org/10.1093/bioinformatics/btr509
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/nar/gkaa1105
https://doi.org/10.1007/978-1-0716-2293-3_16
https://doi.org/10.1007/978-1-0716-2293-3_16


Joachim Fritscher

[150] Herui Liao, Yongxin Ji and Yanni Sun. ‘High-resolution strain-level microbi-
ome composition analysis from short reads’. en. In: Microbiome 11.1 (Aug.
2023), p. 183. issn: 2049-2618. doi: 10.1186/s40168-023-01615-w.

[151] Yi-Lun Liao et al. ‘Adaptively Banded Smith-Waterman Algorithm for Long
Reads and Its Hardware Accelerator’. In: 2018 IEEE 29th International
Conference on Application-specific Systems, Architectures and Processors
(ASAP). Milan: IEEE, July 2018, pp. 1–9. isbn: 978-1-5386-7479-6. doi:
10.1109/ASAP.2018.8445105.

[152] Andy Liaw and Matthew Wiener. ‘Classification and Regression by random-
Forest’. In: R News 2.3 (2002), pp. 18–22.

[153] Pieter J K Libin et al. ‘VIRULIGN: fast codon-correct alignment and an-
notation of viral genomes’. en. In: Bioinformatics 35.10 (May 2019). Ed. by
John Hancock, pp. 1763–1765. issn: 1367-4803, 1367-4811. doi: 10.1093/
bioinformatics/bty851.

[154] Jörg Linde et al. ‘Comparison of Illumina and Oxford Nanopore Technology
for genome analysis of Francisella tularensis, Bacillus anthracis, and Brucella
suis’. en. In: BMC Genomics 24.1 (May 2023), p. 258. issn: 1471-2164. doi:
10.1186/s12864-023-09343-z.

[155] C Linnaeus. Systema naturae per regna tria naturae, secundum classes,
ordines, genera, species, cum characteribus, differentiis, synonymis, locis.
Tomus I. Editio decima, reformata. Holmiae [= Stockholm]: L. Salvii, 1758.

[156] Bing-Nan Liu et al. ‘Gut microbiota in obesity’. In: World Journal of Gast-
roenterology 27.25 (July 2021), pp. 3837–3850. issn: 1007-9327. doi: 10.3748/
wjg.v27.i25.3837.

[157] Jason Lloyd-Price et al. ‘Strains, functions and dynamics in the expanded
Human Microbiome Project’. en. In: Nature 550.7674 (Oct. 2017), pp. 61–66.
issn: 0028-0836, 1476-4687. doi: 10.1038/nature23889.

[158] Petra Louis and Harry J. Flint. ‘Diversity, metabolism and microbial ecology
of butyrate-producing bacteria from the human large intestine’. en. In: FEMS
Microbiology Letters 294.1 (May 2009), pp. 1–8. issn: 03781097, 15746968.
doi: 10.1111/j.1574-6968.2009.01514.x.

[159] Jennifer Lu et al. ‘Bracken: estimating species abundance in metagenomics
data’. en. In: PeerJ Computer Science 3 (Jan. 2017), e104. issn: 2376-5992.
doi: 10.7717/peerj-cs.104.

[160] Chengwei Luo et al. ‘ConStrains identifies microbial strains in metagenomic
datasets’. en. In: Nature Biotechnology 33.10 (Oct. 2015), pp. 1045–1052. issn:
1087-0156, 1546-1696. doi: 10.1038/nbt.3319.

159

https://doi.org/10.1186/s40168-023-01615-w
https://doi.org/10.1109/ASAP.2018.8445105
https://doi.org/10.1093/bioinformatics/bty851
https://doi.org/10.1093/bioinformatics/bty851
https://doi.org/10.1186/s12864-023-09343-z
https://doi.org/10.3748/wjg.v27.i25.3837
https://doi.org/10.3748/wjg.v27.i25.3837
https://doi.org/10.1038/nature23889
https://doi.org/10.1111/j.1574-6968.2009.01514.x
https://doi.org/10.7717/peerj-cs.104
https://doi.org/10.1038/nbt.3319


Novel taxonomic profiling and ...

[161] J Felsenstein M K Kuhner. ‘A simulation comparison of phylogeny algorithms
under equal and unequal evolutionary rates.’ en. In: Molecular Biology and
Evolution (May 1994). issn: 1537-1719. doi: 10 . 1093 / oxfordjournals .

molbev.a040126.

[162] Xiaotu Ma et al. ‘Analysis of error profiles in deep next-generation sequencing
data’. en. In: Genome Biology 20.1 (Dec. 2019), p. 50. issn: 1474-760X. doi:
10.1186/s13059-019-1659-6.

[163] Yongshun Ma et al. ‘Metagenome Analysis of Intestinal Bacteria in Healthy
People, Patients With Inflammatory Bowel Disease and Colorectal Cancer’.
In: Frontiers in Cellular and Infection Microbiology 11 (Feb. 2021), p. 599734.
issn: 2235-2988. doi: 10.3389/fcimb.2021.599734.

[164] Oleksandr M Maistrenko et al. ‘Disentangling the impact of environmental
and phylogenetic constraints on prokaryotic within-species diversity’. en. In:
The ISME Journal 14.5 (May 2020), pp. 1247–1259. issn: 1751-7362, 1751-
7370. doi: 10.1038/s41396-020-0600-z.

[165] Chaysavanh Manichanh et al. ‘The gut microbiota in IBD’. eng. In: Nature
Reviews. Gastroenterology & Hepatology 9.10 (Oct. 2012), pp. 599–608. issn:
1759-5053. doi: 10.1038/nrgastro.2012.152.

[166] Ohad Manor et al. ‘Health and disease markers correlate with gut microbiome
composition across thousands of people’. en. In: Nature Communications 11.1
(Oct. 2020), p. 5206. issn: 2041-1723. doi: 10.1038/s41467-020-18871-1.

[167] Santiago Marco-Sola et al. ‘Fast gap-affine pairwise alignment using the wave-
front algorithm’. In: Bioinformatics 37.4 (Feb. 2021), pp. 456–463. issn: 1367-
4803. doi: 10.1093/bioinformatics/btaa777.

[168] Marcel Margulies et al. ‘Genome sequencing in microfabricated high-density
picolitre reactors’. en. In: Nature 437.7057 (Sept. 2005), pp. 376–380. issn:
0028-0836, 1476-4687. doi: 10.1038/nature03959.

[169] Vasimuddin Md et al. Efficient Architecture-Aware Acceleration of BWA-
MEM for Multicore Systems. arXiv:1907.12931 [cs, q-bio]. July 2019. doi:
10.48550/arXiv.1907.12931.

[170] Raaj S. Mehta et al. ‘Association of Dietary Patterns With Risk of Colorectal
Cancer Subtypes Classified by Fusobacterium nucleatum in Tumor Tissue’.
en. In: JAMA Oncology 3.7 (July 2017), p. 921. issn: 2374-2437. doi: 10.
1001/jamaoncol.2016.6374.

[171] Joshua Chang Mell and Rosemary J. Redfield. ‘Natural Competence and the
Evolution of DNA Uptake Specificity’. en. In: Journal of Bacteriology 196.8
(Apr. 2014), pp. 1471–1483. issn: 0021-9193, 1098-5530. doi: 10.1128/JB.
01293-13.

160

https://doi.org/10.1093/oxfordjournals.molbev.a040126
https://doi.org/10.1093/oxfordjournals.molbev.a040126
https://doi.org/10.1186/s13059-019-1659-6
https://doi.org/10.3389/fcimb.2021.599734
https://doi.org/10.1038/s41396-020-0600-z
https://doi.org/10.1038/nrgastro.2012.152
https://doi.org/10.1038/s41467-020-18871-1
https://doi.org/10.1093/bioinformatics/btaa777
https://doi.org/10.1038/nature03959
https://doi.org/10.48550/arXiv.1907.12931
https://doi.org/10.1001/jamaoncol.2016.6374
https://doi.org/10.1001/jamaoncol.2016.6374
https://doi.org/10.1128/JB.01293-13
https://doi.org/10.1128/JB.01293-13


Joachim Fritscher

[172] Daniel R. Mende et al. ‘proGenomes: a resource for consistent functional
and taxonomic annotations of prokaryotic genomes’. en. In: Nucleic Acids
Research 45.D1 (Jan. 2017), pp. D529–D534. issn: 0305-1048, 1362-4962. doi:
10.1093/nar/gkw989.

[173] Peter Menzel, Kim Lee Ng and Anders Krogh. ‘Fast and sensitive taxonomic
classification for metagenomics with Kaiju’. en. In: Nature Communications
7.1 (Apr. 2016). Number: 1 Publisher: Nature Publishing Group, p. 11257.
issn: 2041-1723. doi: 10.1038/ncomms11257.

[174] MetaHIT Consortium et al. ‘A human gut microbial gene catalogue estab-
lished by metagenomic sequencing’. en. In: Nature 464.7285 (Mar. 2010),
pp. 59–65. issn: 0028-0836, 1476-4687. doi: 10.1038/nature08821.

[175] MetaHIT Consortium et al. ‘Identification and assembly of genomes and ge-
netic elements in complex metagenomic samples without using reference gen-
omes’. en. In: Nature Biotechnology 32.8 (Aug. 2014), pp. 822–828. issn: 1087-
0156, 1546-1696. doi: 10.1038/nbt.2939.

[176] Fernando Meyer et al. ‘Assessing taxonomic metagenome profilers with
OPAL’. In: Genome Biology 20.1 (Mar. 2019), p. 51. issn: 1474-760X. doi:
10.1186/s13059-019-1646-y.

[177] Fernando Meyer et al. ‘Critical Assessment of Metagenome Interpretation:
the second round of challenges’. en. In: Nature Methods 19.4 (Apr. 2022).
Number: 4 Publisher: Nature Publishing Group, pp. 429–440. issn: 1548-7105.
doi: 10.1038/s41592-022-01431-4.

[178] Alla Mikheenko, Vladislav Saveliev and Alexey Gurevich. ‘MetaQUAST: eval-
uation of metagenome assemblies’. en. In: Bioinformatics 32.7 (Apr. 2016),
pp. 1088–1090. issn: 1367-4811, 1367-4803. doi: 10.1093/bioinformatics/
btv697.

[179] Alessio Milanese et al. ‘Microbial abundance, activity and population genomic
profiling with mOTUs2’. en. In: Nature Communications 10.1 (Mar. 2019),
p. 1014. issn: 2041-1723. doi: 10.1038/s41467-019-08844-4.

[180] Bui Quang Minh et al. ‘Corrigendum to: IQ-TREE 2: New Models and Effi-
cient Methods for Phylogenetic Inference in the Genomic Era’. en. In: Molecu-
lar Biology and Evolution 37.8 (Aug. 2020), pp. 2461–2461. issn: 0737-4038,
1537-1719. doi: 10.1093/molbev/msaa131.

[181] Niema Moshiri. ‘ViralMSA: massively scalable reference-guided multiple se-
quence alignment of viral genomes’. en. In: Bioinformatics 37.5 (May 2021).
Ed. by Peter Robinson, pp. 714–716. issn: 1367-4803, 1367-4811. doi: 10.
1093/bioinformatics/btaa743.

161

https://doi.org/10.1093/nar/gkw989
https://doi.org/10.1038/ncomms11257
https://doi.org/10.1038/nature08821
https://doi.org/10.1038/nbt.2939
https://doi.org/10.1186/s13059-019-1646-y
https://doi.org/10.1038/s41592-022-01431-4
https://doi.org/10.1093/bioinformatics/btv697
https://doi.org/10.1093/bioinformatics/btv697
https://doi.org/10.1038/s41467-019-08844-4
https://doi.org/10.1093/molbev/msaa131
https://doi.org/10.1093/bioinformatics/btaa743
https://doi.org/10.1093/bioinformatics/btaa743


Novel taxonomic profiling and ...

[182] Nadja Mostacci et al. ‘Informed interpretation of metagenomic data by Strain-
PhlAn enables strain retention analyses of the upper airway microbiome’. en.
In: mSystems 8.6 (Dec. 2023). Ed. by Nicola Segata, e00724–23. issn: 2379-
5077. doi: 10.1128/msystems.00724-23.

[183] Paul Muir et al. ‘The real cost of sequencing: scaling computation to keep
pace with data generation’. en. In: Genome Biology 17.1 (Dec. 2016), p. 53.
issn: 1474-760X. doi: 10.1186/s13059-016-0917-0.

[184] Supratim Mukherjee et al. ‘Large-scale contamination of microbial isolate
genomes by Illumina PhiX control’. en. In: Standards in Genomic Sciences
10.1 (Mar. 2015), p. 18. issn: 1944-3277. doi: 10.1186/1944-3277-10-18.

[185] Sowmya Nagarajan et al. ‘Functions of the Duplicated hik31 Operons in Cent-
ral Metabolism and Responses to Light, Dark, and Carbon Sources in Syn-
echocystis sp. Strain PCC 6803’. en. In: Journal of Bacteriology 194.2 (Jan.
2012), pp. 448–459. issn: 0021-9193, 1098-5530. doi: 10.1128/JB.06207-11.

[186] Toshiaki Namiki et al. ‘MetaVelvet: an extension of Velvet assembler to de
novo metagenome assembly from short sequence reads’. en. In: Nucleic Acids
Research 40.20 (Nov. 2012), e155–e155. issn: 1362-4962, 0305-1048. doi: 10.
1093/nar/gks678.

[187] Stephen Nayfach et al. ‘New insights from uncultivated genomes of the global
human gut microbiome’. en. In: Nature 568.7753 (Apr. 2019), pp. 505–510.
issn: 0028-0836, 1476-4687. doi: 10.1038/s41586-019-1058-x.

[188] Antonio Nesci et al. ‘Gut Microbiota and Cardiovascular Disease: Evidence
on the Metabolic and Inflammatory Background of a Complex Relationship’.
en. In: International Journal of Molecular Sciences 24.10 (May 2023), p. 9087.
issn: 1422-0067. doi: 10.3390/ijms24109087.

[189] T Nogami, T Mizuno and S Mizushima. ‘Construction of a series of ompF-
ompC chimeric genes by in vivo homologous recombination in Escherichia
coli and characterization of the translational products’. en. In: Journal of
Bacteriology 164.2 (Nov. 1985), pp. 797–801. issn: 0021-9193, 1098-5530. doi:
10.1128/jb.164.2.797-801.1985.

[190] Sergey Nurk et al. ‘metaSPAdes: a new versatile metagenomic assembler’.
In: Genome Research 27.5 (May 2017), pp. 824–834. issn: 1088-9051. doi:
10.1101/gr.213959.116.

[191] Sergey Nurk et al. ‘HiCanu: accurate assembly of segmental duplications,
satellites, and allelic variants from high-fidelity long reads’. eng. In: Genome
Research 30.9 (Sept. 2020), pp. 1291–1305. issn: 1549-5469. doi: 10.1101/
gr.263566.120.

162

https://doi.org/10.1128/msystems.00724-23
https://doi.org/10.1186/s13059-016-0917-0
https://doi.org/10.1186/1944-3277-10-18
https://doi.org/10.1128/JB.06207-11
https://doi.org/10.1093/nar/gks678
https://doi.org/10.1093/nar/gks678
https://doi.org/10.1038/s41586-019-1058-x
https://doi.org/10.3390/ijms24109087
https://doi.org/10.1128/jb.164.2.797-801.1985
https://doi.org/10.1101/gr.213959.116
https://doi.org/10.1101/gr.263566.120
https://doi.org/10.1101/gr.263566.120


Joachim Fritscher

[192] R Nussinov and A B Jacobson. ‘Fast algorithm for predicting the second-
ary structure of single-stranded RNA.’ en. In: Proceedings of the National
Academy of Sciences 77.11 (Nov. 1980), pp. 6309–6313. issn: 0027-8424, 1091-
6490. doi: 10.1073/pnas.77.11.6309.

[193] Nuala A. O’Leary et al. ‘Reference sequence (RefSeq) database at NCBI: cur-
rent status, taxonomic expansion, and functional annotation’. en. In: Nucleic
Acids Research 44.D1 (Jan. 2016), pp. D733–D745. issn: 0305-1048, 1362-
4962. doi: 10.1093/nar/gkv1189.

[194] Scott W. Olesen and Eric J. Alm. ‘Dysbiosis is not an answer’. en. In: Nature
Microbiology 1.12 (Nov. 2016), p. 16228. issn: 2058-5276. doi: 10.1038/

nmicrobiol.2016.228.

[195] Leonardo de Oliveira Martins et al. ‘Taxonomic resolution of the ribosomal
RNA operon in bacteria: implications for its use with long-read sequencing’.
en. In: NAR Genomics and Bioinformatics 2.1 (Mar. 2020), lqz016. issn:
2631-9268. doi: 10.1093/nargab/lqz016.

[196] Matthew R. Olm et al. ‘inStrain profiles population microdiversity from meta-
genomic data and sensitively detects shared microbial strains’. en. In: Nature
Biotechnology 39.6 (June 2021), pp. 727–736. issn: 1087-0156, 1546-1696. doi:
10.1038/s41587-020-00797-0.

[197] Askarbek Orakov et al. ‘GUNC: detection of chimerism and contamination in
prokaryotic genomes’. en. In: Genome Biology 22.1 (Dec. 2021), p. 178. issn:
1474-760X. doi: 10.1186/s13059-021-02393-0.

[198] A. Oren. ‘Nomenclature of prokaryotic ’Candidatus’ taxa: establishing order
in the current chaos’. eng. In: New Microbes and New Infections 44 (Nov.
2021), p. 100932. issn: 2052-2975. doi: 10.1016/j.nmni.2021.100932.

[199] Aharon Oren et al. ‘International Code of Nomenclature of Prokaryotes.
Prokaryotic Code (2022 Revision)’. en. In: International Journal of System-
atic and Evolutionary Microbiology 73.5a (May 2023). Publisher: Microbiology
Society. issn: 1466-5026, 1466-5034. doi: 10.1099/ijsem.0.005585.

[200] Rachid Ounit et al. ‘CLARK: fast and accurate classification of metagenomic
and genomic sequences using discriminative k-mers’. en. In: BMC Genomics
16.1 (Dec. 2015), p. 236. issn: 1471-2164. doi: 10.1186/s12864-015-1419-2.

[201] Ezgi Özkurt et al. ‘LotuS2: an ultrafast and highly accurate tool for amplicon
sequencing analysis’. en. In: Microbiome 10.1 (Oct. 2022), p. 176. issn: 2049-
2618. doi: 10.1186/s40168-022-01365-1.

[202] Fanny-Dhelia Pajuste et al. ‘FastGT: an alignment-free method for calling
common SNVs directly from raw sequencing reads’. en. In: Scientific Reports
7.1 (May 2017), p. 2537. issn: 2045-2322. doi: 10.1038/s41598-017-02487-
5.

163

https://doi.org/10.1073/pnas.77.11.6309
https://doi.org/10.1093/nar/gkv1189
https://doi.org/10.1038/nmicrobiol.2016.228
https://doi.org/10.1038/nmicrobiol.2016.228
https://doi.org/10.1093/nargab/lqz016
https://doi.org/10.1038/s41587-020-00797-0
https://doi.org/10.1186/s13059-021-02393-0
https://doi.org/10.1016/j.nmni.2021.100932
https://doi.org/10.1099/ijsem.0.005585
https://doi.org/10.1186/s12864-015-1419-2
https://doi.org/10.1186/s40168-022-01365-1
https://doi.org/10.1038/s41598-017-02487-5
https://doi.org/10.1038/s41598-017-02487-5


Novel taxonomic profiling and ...

[203] Shaojun Pan et al. ‘A deep siamese neural network improves metagenome-
assembled genomes in microbiome datasets across different environments’.
en. In: Nature Communications 13.1 (Apr. 2022), p. 2326. issn: 2041-1723.
doi: 10.1038/s41467-022-29843-y.

[204] Lucas Paoli et al. ‘Biosynthetic potential of the global ocean microbiome’.
en. In: Nature 607.7917 (July 2022), pp. 111–118. issn: 0028-0836, 1476-4687.
doi: 10.1038/s41586-022-04862-3.

[205] R. B. Parker and M. L. Snyder. ‘Interactions of the Oral Microbiota I. A
System for the Defined Study of Mixed Cultures.’ en. In: Experimental Biology
and Medicine 108.3 (Dec. 1961), pp. 749–752. issn: 1535-3702, 1535-3699. doi:
10.3181/00379727-108-27055.

[206] Donovan H Parks et al. ‘GTDB: an ongoing census of bacterial and archaeal
diversity through a phylogenetically consistent, rank normalized and com-
plete genome-based taxonomy’. In: Nucleic Acids Research 50.D1 (Jan. 2022),
pp. D785–D794. issn: 0305-1048. doi: 10.1093/nar/gkab776.

[207] Donovan H. Parks et al. ‘CheckM: assessing the quality of microbial gen-
omes recovered from isolates, single cells, and metagenomes’. en. In: Genome
Research 25.7 (July 2015), pp. 1043–1055. issn: 1088-9051, 1549-5469. doi:
10.1101/gr.186072.114.

[208] Donovan H. Parks et al. ‘A standardized bacterial taxonomy based on genome
phylogeny substantially revises the tree of life’. en. In: Nature Biotechnology
36.10 (Nov. 2018). Publisher: Nature Publishing Group, pp. 996–1004. issn:
1546-1696. doi: 10.1038/nbt.4229.

[209] Donovan H. Parks et al. ‘A complete domain-to-species taxonomy for Bacteria
and Archaea’. en. In: Nature Biotechnology 38.9 (Sept. 2020), pp. 1079–1086.
issn: 1087-0156, 1546-1696. doi: 10.1038/s41587-020-0501-8.

[210] Edoardo Pasolli et al. ‘Machine Learning Meta-analysis of Large Metagenomic
Datasets: Tools and Biological Insights’. en. In: PLOS Computational Biology
12.7 (July 2016). Ed. by Jonathan A. Eisen, e1004977. issn: 1553-7358. doi:
10.1371/journal.pcbi.1004977.

[211] Edoardo Pasolli et al. ‘Extensive Unexplored Human Microbiome Diversity
Revealed by Over 150,000 Genomes from Metagenomes Spanning Age, Geo-
graphy, and Lifestyle’. en. In: Cell 176.3 (Jan. 2019), 649–662.e20. issn:
00928674. doi: 10.1016/j.cell.2019.01.001.

[212] Yu Peng et al. ‘Meta-IDBA: a de Novo assembler for metagenomic data’.
en. In: Bioinformatics 27.13 (July 2011), pp. i94–i101. issn: 1367-4811, 1367-
4803. doi: 10.1093/bioinformatics/btr216.

164

https://doi.org/10.1038/s41467-022-29843-y
https://doi.org/10.1038/s41586-022-04862-3
https://doi.org/10.3181/00379727-108-27055
https://doi.org/10.1093/nar/gkab776
https://doi.org/10.1101/gr.186072.114
https://doi.org/10.1038/nbt.4229
https://doi.org/10.1038/s41587-020-0501-8
https://doi.org/10.1371/journal.pcbi.1004977
https://doi.org/10.1016/j.cell.2019.01.001
https://doi.org/10.1093/bioinformatics/btr216


Joachim Fritscher

[213] Enrico Petrucci et al. ‘Iterative Spaced Seed Hashing: Closing the Gap
Between Spaced Seed Hashing and k-mer Hashing’. en. In: Bioinformatics
Research and Applications. Ed. by Zhipeng Cai, Pavel Skums and Min Li.
Vol. 11490. Series Title: Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2019, pp. 208–219. isbn: 978-3-030-20241-5 978-3-
030-20242-2. doi: 10.1007/978-3-030-20242-2_18.

[214] Franziska Pfeiffer et al. ‘Systematic evaluation of error rates and causes in
short samples in next-generation sequencing’. en. In: Scientific Reports 8.1
(July 2018), p. 10950. issn: 2045-2322. doi: 10.1038/s41598-018-29325-6.

[215] Daniel Podlesny et al. ‘Metagenomic strain detection with SameStr: identi-
fication of a persisting core gut microbiota transferable by fecal transplant-
ation’. en. In: Microbiome 10.1 (Mar. 2022), p. 53. issn: 2049-2618. doi:
10.1186/s40168-022-01251-w.

[216] Ryan Poplin et al. Scaling accurate genetic variant discovery to tens of thou-
sands of samples. en. Nov. 2017. doi: 10.1101/201178.

[217] Daniel M. Portik, C. Titus Brown and N. Tessa Pierce-Ward. ‘Evaluation of
taxonomic classification and profiling methods for long-read shotgun meta-
genomic sequencing datasets’. en. In: BMC Bioinformatics 23.1 (Dec. 2022),
p. 541. issn: 1471-2105. doi: 10.1186/s12859-022-05103-0.

[218] James M. Prober et al. ‘A System for Rapid DNA Sequencing with Fluorescent
Chain-Terminating Dideoxynucleotides’. en. In: Science 238.4825 (Oct. 1987),
pp. 336–341. issn: 0036-8075, 1095-9203. doi: 10.1126/science.2443975.

[219] Vaidehi Pusadkar and Rajeev K. Azad. ‘Benchmarking Metagenomic Clas-
sifiers on Simulated Ancient and Modern Metagenomic Data’. en. In: Mi-
croorganisms 11.10 (Oct. 2023), p. 2478. issn: 2076-2607. doi: 10.3390/

microorganisms11102478.

[220] Yujia Qin et al. ‘Effects of error, chimera, bias, and GC content on the accur-
acy of amplicon sequencing’. en. In: mSystems 8.6 (Dec. 2023). Ed. by Jack A.
Gilbert, e01025–23. issn: 2379-5077. doi: 10.1128/msystems.01025-23.

[221] Christopher Quince et al. ‘Shotgun metagenomics, from sampling to analysis’.
en. In: Nature Biotechnology 35.9 (Sept. 2017), pp. 833–844. issn: 1087-0156,
1546-1696. doi: 10.1038/nbt.3935.

[222] Mahmudur Rahman Hera, N. Tessa Pierce-Ward and David Koslicki. ‘Deriv-
ing confidence intervals for mutation rates across a wide range of evolutionary
distances using FracMinHash’. en. In: Genome Research (June 2023), genome,
gr.277651.123v2. issn: 1088-9051, 1549-5469. doi: 10.1101/gr.277651.123.

165

https://doi.org/10.1007/978-3-030-20242-2_18
https://doi.org/10.1038/s41598-018-29325-6
https://doi.org/10.1186/s40168-022-01251-w
https://doi.org/10.1101/201178
https://doi.org/10.1186/s12859-022-05103-0
https://doi.org/10.1126/science.2443975
https://doi.org/10.3390/microorganisms11102478
https://doi.org/10.3390/microorganisms11102478
https://doi.org/10.1128/msystems.01025-23
https://doi.org/10.1038/nbt.3935
https://doi.org/10.1101/gr.277651.123


Novel taxonomic profiling and ...

[223] J E Rebollo, V François and J M Louarn. ‘Detection and possible role of two
large nondivisible zones on the Escherichia coli chromosome.’ en. In: Proceed-
ings of the National Academy of Sciences 85.24 (Dec. 1988), pp. 9391–9395.
issn: 0027-8424, 1091-6490. doi: 10.1073/pnas.85.24.9391.

[224] Reconciling Microbial Systematics & Genomics: This report is based on a
colloquium, sponsored by the American Academy of Microbiology, convened
September 27–28, 2006, in Washington, DC. eng. American Academy of Mi-
crobiology Colloquia Reports. Washington (DC): American Society for Mi-
crobiology, 2006.

[225] David Ribet and Pascale Cossart. ‘How bacterial pathogens colonize their
hosts and invade deeper tissues’. en. In: Microbes and Infection 17.3 (Mar.
2015), pp. 173–183. issn: 12864579. doi: 10.1016/j.micinf.2015.01.004.

[226] Michael Richter and Ramon Rosselló-Móra. ‘Shifting the genomic gold stand-
ard for the prokaryotic species definition’. en. In: Proceedings of the National
Academy of Sciences 106.45 (Nov. 2009), pp. 19126–19131. issn: 0027-8424,
1091-6490. doi: 10.1073/pnas.0906412106.

[227] Michael Roberts et al. ‘Reducing storage requirements for biological sequence
comparison’. en. In: Bioinformatics 20.18 (Dec. 2004), pp. 3363–3369. issn:
1367-4811, 1367-4803. doi: 10.1093/bioinformatics/bth408.

[228] D.F. Robinson and L.R. Foulds. ‘Comparison of phylogenetic trees’. en. In:
Mathematical Biosciences 53.1-2 (Feb. 1981), pp. 131–147. issn: 00255564.
doi: 10.1016/0025-5564(81)90043-2.

[229] Luis M. Rodriguez-R et al. ‘How Much Do rRNA Gene Surveys Underestimate
Extant Bacterial Diversity?’ en. In: Applied and Environmental Microbiology
84.6 (Mar. 2018). Ed. by Frank E. Löffler, e00014–18. issn: 0099-2240, 1098-
5336. doi: 10.1128/AEM.00014-18.

[230] Stefano Romano et al. ‘Meta-analysis of the Parkinson’s disease gut microbi-
ome suggests alterations linked to intestinal inflammation’. en. In: npj Par-
kinson’s Disease 7.1 (Mar. 2021). Number: 1 Publisher: Nature Publishing
Group, pp. 1–13. issn: 2373-8057. doi: 10.1038/s41531-021-00156-z.

[231] Mostafa Ronaghi, Mathias Uhlén and Pål Nyrén. ‘A Sequencing Method
Based on Real-Time Pyrophosphate’. en. In: Science 281.5375 (July 1998),
pp. 363–365. issn: 0036-8075, 1095-9203. doi: 10.1126/science.281.5375.
363.

[232] Hans-Joachim Ruscheweyh et al. Reference genome-independent taxonomic
profiling of microbiomes with mOTUs3. en. Pages: 2021.04.20.440600 Section:
New Results. Apr. 2022. doi: 10.1101/2021.04.20.440600.

166

https://doi.org/10.1073/pnas.85.24.9391
https://doi.org/10.1016/j.micinf.2015.01.004
https://doi.org/10.1073/pnas.0906412106
https://doi.org/10.1093/bioinformatics/bth408
https://doi.org/10.1016/0025-5564(81)90043-2
https://doi.org/10.1128/AEM.00014-18
https://doi.org/10.1038/s41531-021-00156-z
https://doi.org/10.1126/science.281.5375.363
https://doi.org/10.1126/science.281.5375.363
https://doi.org/10.1101/2021.04.20.440600


Joachim Fritscher

[233] P. S.Hiremath, Parashuram Bannigidad and Soumyashree S. Yelgond. ‘Iden-
tification of Flagellated or Fimbriated Bacterial Cells using Digital Image
Processing Techniques’. In: International Journal of Computer Applications
59.12 (Dec. 2012), pp. 12–16. issn: 09758887. doi: 10.5120/9599-4223.

[234] Kristoffer Sahlin. ‘Strobealign: flexible seed size enables ultra-fast and accur-
ate read alignment’. en. In: Genome Biology 23.1 (Dec. 2022), p. 260. issn:
1474-760X. doi: 10.1186/s13059-022-02831-7.

[235] Jesse J. Salk, Michael W. Schmitt and Lawrence A. Loeb. ‘Enhancing the ac-
curacy of next-generation sequencing for detecting rare and subclonal muta-
tions’. en. In: Nature Reviews Genetics 19.5 (May 2018), pp. 269–285. issn:
1471-0056, 1471-0064. doi: 10.1038/nrg.2017.117.

[236] F. Sanger, S. Nicklen and A. R. Coulson. ‘DNA sequencing with chain-
terminating inhibitors’. en. In: Proceedings of the National Academy of Sci-
ences 74.12 (Dec. 1977), pp. 5463–5467. issn: 0027-8424, 1091-6490. doi:
10.1073/pnas.74.12.5463.

[237] Melanie Schirmer et al. ‘Illumina error profiles: resolving fine-scale variation
in metagenomic sequencing data’. en. In: BMC Bioinformatics 17.1 (Mar.
2016), p. 125. issn: 1471-2105. doi: 10.1186/s12859-016-0976-y.

[238] Klaus Peter Schliep. ‘phangorn: phylogenetic analysis in R’. en. In: Bioin-
formatics 27.4 (Feb. 2011), pp. 592–593. issn: 1367-4811, 1367-4803. doi:
10.1093/bioinformatics/btq706.

[239] Patrick D. Schloss et al. ‘Introducing mothur: Open-Source, Platform-
Independent, Community-Supported Software for Describing and Compar-
ing Microbial Communities’. en. In: Applied and Environmental Microbiology
75.23 (Dec. 2009), pp. 7537–7541. issn: 0099-2240, 1098-5336. doi: 10.1128/
AEM.01541-09.

[240] Conrad L Schoch et al. ‘NCBI Taxonomy: a comprehensive update on cura-
tion, resources and tools’. en. In: Database 2020 (Jan. 2020), baaa062. issn:
1758-0463. doi: 10.1093/database/baaa062.

[241] Matthias Scholz et al. ‘Strain-level microbial epidemiology and population
genomics from shotgun metagenomics’. en. In: Nature Methods 13.5 (May
2016), pp. 435–438. issn: 1548-7091, 1548-7105. doi: 10.1038/nmeth.3802.

[242] Alexander Sczyrba et al. ‘Critical Assessment of Metagenome Interpreta-
tion—a benchmark of metagenomics software’. en. In: Nature Methods 14.11
(Nov. 2017), pp. 1063–1071. issn: 1548-7091, 1548-7105. doi: 10 . 1038 /

nmeth.4458.

167

https://doi.org/10.5120/9599-4223
https://doi.org/10.1186/s13059-022-02831-7
https://doi.org/10.1038/nrg.2017.117
https://doi.org/10.1073/pnas.74.12.5463
https://doi.org/10.1186/s12859-016-0976-y
https://doi.org/10.1093/bioinformatics/btq706
https://doi.org/10.1128/AEM.01541-09
https://doi.org/10.1128/AEM.01541-09
https://doi.org/10.1093/database/baaa062
https://doi.org/10.1038/nmeth.3802
https://doi.org/10.1038/nmeth.4458
https://doi.org/10.1038/nmeth.4458


Novel taxonomic profiling and ...

[243] Karel Sedlar, Kristyna Kupkova and Ivo Provaznik. ‘Bioinformatics strategies
for taxonomy independent binning and visualization of sequences in shotgun
metagenomics’. en. In: Computational and Structural Biotechnology Journal
15 (2017), pp. 48–55. issn: 20010370. doi: 10.1016/j.csbj.2016.11.005.

[244] Torsten Seemann. ‘Prokka: rapid prokaryotic genome annotation’. en. In:
Bioinformatics 30.14 (July 2014), pp. 2068–2069. issn: 1367-4811, 1367-4803.
doi: 10.1093/bioinformatics/btu153.

[245] Torsten Seemann. snippy: fast bacterial variant calling from NGS reads. 2015.

[246] Nicola Segata et al. ‘Metagenomic microbial community profiling using unique
clade-specific marker genes’. en. In: Nature Methods 9.8 (Aug. 2012), pp. 811–
814. issn: 1548-7091, 1548-7105. doi: 10.1038/nmeth.2066.

[247] Ron Sender, Shai Fuchs and Ron Milo. ‘Revised Estimates for the Number
of Human and Bacteria Cells in the Body’. eng. In: PLoS biology 14.8 (Aug.
2016), e1002533. issn: 1545-7885. doi: 10.1371/journal.pbio.1002533.

[248] Fergus Shanahan, Tarini S. Ghosh and Paul W. O’Toole. ‘The Healthy Mi-
crobiome—What Is the Definition of a Healthy Gut Microbiome?’ en. In:
Gastroenterology 160.2 (Jan. 2021), pp. 483–494. issn: 00165085. doi: 10.
1053/j.gastro.2020.09.057.

[249] Richard Shen et al. ‘High-throughput SNP genotyping on universal bead ar-
rays’. en. In: Mutation Research/Fundamental and Molecular Mechanisms of
Mutagenesis 573.1-2 (June 2005), pp. 70–82. issn: 00275107. doi: 10.1016/
j.mrfmmm.2004.07.022.

[250] Zhou Jason Shi et al. ‘Fast and accurate metagenotyping of the human gut
microbiome with GT-Pro’. en. In: Nature Biotechnology 40.4 (Apr. 2022),
pp. 507–516. issn: 1087-0156, 1546-1696. doi: 10.1038/s41587-021-01102-
3.

[251] Christian M. K. Sieber et al. ‘Recovery of genomes from metagenomes via a
dereplication, aggregation and scoring strategy’. en. In: Nature Microbiology
3.7 (May 2018), pp. 836–843. issn: 2058-5276. doi: 10.1038/s41564-018-
0171-1.

[252] Michael Silverman et al. ‘Protective major histocompatibility complex al-
lele prevents type 1 diabetes by shaping the intestinal microbiota early in
ontogeny’. en. In: Proceedings of the National Academy of Sciences 114.36
(Sept. 2017), pp. 9671–9676. issn: 0027-8424, 1091-6490. doi: 10.1073/pnas.
1712280114.

[253] Jared T Simpson et al. ‘Detecting DNA cytosine methylation using nanopore
sequencing’. en. In: Nature Methods 14.4 (Apr. 2017), pp. 407–410. issn: 1548-
7091, 1548-7105. doi: 10.1038/nmeth.4184.

168

https://doi.org/10.1016/j.csbj.2016.11.005
https://doi.org/10.1093/bioinformatics/btu153
https://doi.org/10.1038/nmeth.2066
https://doi.org/10.1371/journal.pbio.1002533
https://doi.org/10.1053/j.gastro.2020.09.057
https://doi.org/10.1053/j.gastro.2020.09.057
https://doi.org/10.1016/j.mrfmmm.2004.07.022
https://doi.org/10.1016/j.mrfmmm.2004.07.022
https://doi.org/10.1038/s41587-021-01102-3
https://doi.org/10.1038/s41587-021-01102-3
https://doi.org/10.1038/s41564-018-0171-1
https://doi.org/10.1038/s41564-018-0171-1
https://doi.org/10.1073/pnas.1712280114
https://doi.org/10.1073/pnas.1712280114
https://doi.org/10.1038/nmeth.4184


Joachim Fritscher

[254] ‘Skani enables accurate and efficient genome comparison for modern metage-
nomic datasets’. en. In: Nature Methods 20.11 (Nov. 2023), pp. 1633–1634.
issn: 1548-7091, 1548-7105. doi: 10.1038/s41592-023-02019-2.

[255] V. B. D. Skerman, P. H. A. Sneath and Vicki McGOWAN. ‘Approved Lists of
Bacterial Names’. en. In: International Journal of Systematic and Evolution-
ary Microbiology 30.1 (Jan. 1980). Publisher: Microbiology Society, pp. 225–
420. issn: 1466-5026, 1466-5034. doi: 10.1099/00207713-30-1-225.

[256] smarco/WFA2-lib: WFA2-lib: Wavefront alignment algorithm library v2.

[257] Christopher S. Smillie et al. ‘Strain Tracking Reveals the Determinants of
Bacterial Engraftment in the Human Gut Following Fecal Microbiota Trans-
plantation’. en. In: Cell Host & Microbe 23.2 (Feb. 2018), 229–240.e5. issn:
19313128. doi: 10.1016/j.chom.2018.01.003.

[258] Alan Jay Smith. ‘Cache Memories’. en. In: ACM Computing Surveys 14.3
(Sept. 1982), pp. 473–530. issn: 0360-0300, 1557-7341. doi: 10.1145/356887.
356892.

[259] T.F. Smith and M.S. Waterman. ‘Identification of common molecular sub-
sequences’. en. In: Journal of Molecular Biology 147.1 (Mar. 1981), pp. 195–
197. issn: 00222836. doi: 10.1016/0022-2836(81)90087-5.

[260] Alice J. Sommer et al. ‘A randomization-based causal inference framework
for uncovering environmental exposure effects on human gut microbiota’. en.
In: PLOS Computational Biology 18.5 (May 2022). Ed. by Simon Anders,
e1010044. issn: 1553-7358. doi: 10.1371/journal.pcbi.1010044.

[261] Aymé Spor, Omry Koren and Ruth Ley. ‘Unravelling the effects of the envir-
onment and host genotype on the gut microbiome’. en. In: Nature Reviews
Microbiology 9.4 (Apr. 2011), pp. 279–290. issn: 1740-1526, 1740-1534. doi:
10.1038/nrmicro2540.

[262] E. Stackebrandt and B. M. Goebel. ‘Taxonomic Note: A Place for DNA-
DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species
Definition in Bacteriology’. en. In: International Journal of Systematic and
Evolutionary Microbiology 44.4 (Oct. 1994), pp. 846–849. issn: 1466-5026,
1466-5034. doi: 10.1099/00207713-44-4-846.

[263] Erko Stackebrandt, ed. Molecular Identification, Systematics, and Population
Structure of Prokaryotes. en. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006. isbn: 978-3-540-23155-4 978-3-540-31292-5. doi: 10.1007/978-3-540-
31292-5.

[264] Erko Stackebrandt and J. Ebers. ‘Taxonomic parameters revisited: Tarnished
gold standards’. In: Microbiol Today 8 (Jan. 2006), pp. 6–9.

169

https://doi.org/10.1038/s41592-023-02019-2
https://doi.org/10.1099/00207713-30-1-225
https://doi.org/10.1016/j.chom.2018.01.003
https://doi.org/10.1145/356887.356892
https://doi.org/10.1145/356887.356892
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1371/journal.pcbi.1010044
https://doi.org/10.1038/nrmicro2540
https://doi.org/10.1099/00207713-44-4-846
https://doi.org/10.1007/978-3-540-31292-5
https://doi.org/10.1007/978-3-540-31292-5


Novel taxonomic profiling and ...

[265] Alexandros Stamatakis. ‘RAxML version 8: a tool for phylogenetic ana-
lysis and post-analysis of large phylogenies’. en. In: Bioinformatics 30.9
(May 2014), pp. 1312–1313. issn: 1367-4811, 1367-4803. doi: 10 . 1093 /

bioinformatics/btu033.

[266] M. A. Steel and D. Penny. ‘Distributions of Tree Comparison Metrics–Some
New Results’. en. In: Systematic Biology 42.2 (June 1993), pp. 126–141. issn:
1063-5157, 1076-836X. doi: 10.1093/sysbio/42.2.126.

[267] S. Stefani and P.E. Varaldo. ‘Epidemiology of methicillin-resistant staphylo-
cocci in Europe’. en. In: Clinical Microbiology and Infection 9.12 (Dec. 2003),
pp. 1179–1186. issn: 1198743X. doi: 10.1111/j.1469-0691.2003.00698.x.

[268] Martin Steinegger and Johannes Söding. ‘MMseqs2 enables sensitive protein
sequence searching for the analysis of massive data sets’. en. In: Nature Bi-
otechnology 35.11 (Nov. 2017), pp. 1026–1028. issn: 1087-0156, 1546-1696.
doi: 10.1038/nbt.3988.

[269] Robert D. Stewart et al. ‘MAGpy: a reproducible pipeline for the downstream
analysis of metagenome-assembled genomes (MAGs)’. eng. In: Bioinformatics
(Oxford, England) 35.12 (June 2019), pp. 2150–2152. issn: 1367-4811. doi:
10.1093/bioinformatics/bty905.

[270] Antonia Suau et al. ‘Direct Analysis of Genes Encoding 16S rRNA from
Complex Communities Reveals Many Novel Molecular Species within the Hu-
man Gut’. en. In: Applied and Environmental Microbiology 65.11 (Nov. 1999),
pp. 4799–4807. issn: 0099-2240, 1098-5336. doi: 10.1128/AEM.65.11.4799-
4807.1999.

[271] Dongchang Sun et al. ‘Editorial: Horizontal gene transfer mediated bacterial
antibiotic resistance, volume II’. In: Frontiers in Microbiology 14 (June 2023),
p. 1221606. issn: 1664-302X. doi: 10.3389/fmicb.2023.1221606.

[272] Shinichi Sunagawa et al. ‘Metagenomic species profiling using universal phylo-
genetic marker genes’. en. In: Nature Methods 10.12 (Dec. 2013), pp. 1196–
1199. issn: 1548-7091, 1548-7105. doi: 10.1038/nmeth.2693.

[273] Lorenzo Tattini, Romina D’Aurizio and Alberto Magi. ‘Detection of Genomic
Structural Variants from Next-Generation Sequencing Data’. In: Frontiers
in Bioengineering and Biotechnology 3 (June 2015). issn: 2296-4185. doi:
10.3389/fbioe.2015.00092.

[274] The Genome Standards Consortium et al. ‘Minimum information about
a single amplified genome (MISAG) and a metagenome-assembled genome
(MIMAG) of bacteria and archaea’. en. In: Nature Biotechnology 35.8 (Aug.
2017), pp. 725–731. issn: 1087-0156, 1546-1696. doi: 10.1038/nbt.3893.

170

https://doi.org/10.1093/bioinformatics/btu033
https://doi.org/10.1093/bioinformatics/btu033
https://doi.org/10.1093/sysbio/42.2.126
https://doi.org/10.1111/j.1469-0691.2003.00698.x
https://doi.org/10.1038/nbt.3988
https://doi.org/10.1093/bioinformatics/bty905
https://doi.org/10.1128/AEM.65.11.4799-4807.1999
https://doi.org/10.1128/AEM.65.11.4799-4807.1999
https://doi.org/10.3389/fmicb.2023.1221606
https://doi.org/10.1038/nmeth.2693
https://doi.org/10.3389/fbioe.2015.00092
https://doi.org/10.1038/nbt.3893


Joachim Fritscher

[275] Christopher M. Thomas and Kaare M. Nielsen. ‘Mechanisms of, and Barri-
ers to, Horizontal Gene Transfer between Bacteria’. en. In: Nature Reviews
Microbiology 3.9 (Sept. 2005), pp. 711–721. issn: 1740-1526, 1740-1534. doi:
10.1038/nrmicro1234.

[276] Gerry Tonkin-Hill et al. ‘Producing polished prokaryotic pangenomes with
the Panaroo pipeline’. en. In: Genome Biology 21.1 (Dec. 2020), p. 180. issn:
1474-760X. doi: 10.1186/s13059-020-02090-4.

[277] Duy Tin Truong et al. ‘MetaPhlAn2 for enhanced metagenomic taxonomic
profiling’. en. In: Nature Methods 12.10 (Oct. 2015), pp. 902–903. issn: 1548-
7091, 1548-7105. doi: 10.1038/nmeth.3589.

[278] Ming-Hsin Tsai et al. ‘A New Genome-to-Genome Comparison Approach
for Large-Scale Revisiting of Current Microbial Taxonomy’. eng. In: Mi-
croorganisms 7.6 (June 2019), p. 161. issn: 2076-2607. doi: 10 . 3390 /

microorganisms7060161.

[279] Tracy Tucker, Marco Marra and Jan M. Friedman. ‘Massively parallel se-
quencing: the next big thing in genetic medicine’. eng. In: American Journal
of Human Genetics 85.2 (Aug. 2009), pp. 142–154. issn: 1537-6605. doi:
10.1016/j.ajhg.2009.06.022.

[280] Peter J. Turnbaugh et al. ‘The Human Microbiome Project’. en. In: Nature
449.7164 (Oct. 2007), pp. 804–810. issn: 0028-0836, 1476-4687. doi: 10.1038/
nature06244.

[281] Gene W. Tyson et al. ‘Community structure and metabolism through re-
construction of microbial genomes from the environment’. en. In: Nature
428.6978 (Mar. 2004), pp. 37–43. issn: 0028-0836, 1476-4687. doi: 10.1038/
nature02340.

[282] Gherman V. Uritskiy, Jocelyne DiRuggiero and James Taylor.
‘MetaWRAP—a flexible pipeline for genome-resolved metagenomic data
analysis’. en. In: Microbiome 6.1 (Dec. 2018), p. 158. issn: 2049-2618. doi:
10.1186/s40168-018-0541-1.

[283] Mireia Valles-Colomer et al. ‘The person-to-person transmission landscape of
the gut and oral microbiomes’. en. In: Nature 614.7946 (Feb. 2023), pp. 125–
135. issn: 0028-0836, 1476-4687. doi: 10.1038/s41586-022-05620-1.

[284] Lucas R. Van Dijk et al. ‘StrainGE: a toolkit to track and characterize low-
abundance strains in complex microbial communities’. en. In: Genome Biology
23.1 (Dec. 2022), p. 74. issn: 1474-760X. doi: 10.1186/s13059-022-02630-0.

[285] Thea Van Rossum et al. ‘Diversity within species: interpreting strains in mi-
crobiomes’. en. In: Nature Reviews Microbiology 18.9 (Sept. 2020), pp. 491–
506. issn: 1740-1526, 1740-1534. doi: 10.1038/s41579-020-0368-1.

171

https://doi.org/10.1038/nrmicro1234
https://doi.org/10.1186/s13059-020-02090-4
https://doi.org/10.1038/nmeth.3589
https://doi.org/10.3390/microorganisms7060161
https://doi.org/10.3390/microorganisms7060161
https://doi.org/10.1016/j.ajhg.2009.06.022
https://doi.org/10.1038/nature06244
https://doi.org/10.1038/nature06244
https://doi.org/10.1038/nature02340
https://doi.org/10.1038/nature02340
https://doi.org/10.1186/s40168-018-0541-1
https://doi.org/10.1038/s41586-022-05620-1
https://doi.org/10.1186/s13059-022-02630-0
https://doi.org/10.1038/s41579-020-0368-1


Novel taxonomic profiling and ...

[286] Thea Van Rossum et al. ‘metaSNV v2: detection of SNVs and subspecies in
prokaryotic metagenomes’. en. In: Bioinformatics 38.4 (Jan. 2022). Ed. by
Russell Schwartz, pp. 1162–1164. issn: 1367-4803, 1367-4811. doi: 10.1093/
bioinformatics/btab789.

[287] Doris Vandeputte et al. ‘Quantitative microbiome profiling links gut com-
munity variation to microbial load’. en. In: Nature 551.7681 (Nov. 2017),
pp. 507–511. issn: 0028-0836, 1476-4687. doi: 10.1038/nature24460.

[288] Irina M. Velsko et al. ‘Selection of Appropriate Metagenome Taxonomic Clas-
sifiers for Ancient Microbiome Research’. en. In: mSystems 3.4 (Aug. 2018).
Ed. by Thomas J. Sharpton, e00080–18. issn: 2379-5077. doi: 10 . 1128 /

mSystems.00080-18.

[289] E. Viguera. ‘Replication slippage involves DNA polymerase pausing and dis-
sociation’. In: The EMBO Journal 20.10 (May 2001), pp. 2587–2595. issn:
14602075. doi: 10.1093/emboj/20.10.2587.

[290] F. A. Bastiaan Von Meijenfeldt et al. ‘Robust taxonomic classification of
uncharted microbial sequences and bins with CAT and BAT’. en. In: Genome
Biology 20.1 (Dec. 2019), p. 217. issn: 1474-760X. doi: 10.1186/s13059-
019-1817-x.

[291] Solize Vosloo et al. ‘Evaluating de Novo Assembly and Binning Strategies for
Time Series Drinking Water Metagenomes’. eng. In: Microbiology Spectrum
9.3 (Dec. 2021), e0143421. issn: 2165-0497. doi: 10.1128/Spectrum.01434-
21.

[292] Ji Wang, Wei-Dong Chen and Yan-Dong Wang. ‘The Relationship Between
Gut Microbiota and Inflammatory Diseases: The Role of Macrophages’. In:
Frontiers in Microbiology 11 (June 2020), p. 1065. issn: 1664-302X. doi: 10.
3389/fmicb.2020.01065.

[293] Qiong Wang et al. ‘Naïve Bayesian Classifier for Rapid Assignment of rRNA
Sequences into the New Bacterial Taxonomy’. en. In: Applied and Environ-
mental Microbiology 73.16 (Aug. 2007), pp. 5261–5267. issn: 0099-2240, 1098-
5336. doi: 10.1128/AEM.00062-07.

[294] Jillian L. Waters and Ruth E. Ley. ‘The human gut bacteria Christensenel-
laceae are widespread, heritable, and associated with health’. en. In: BMC
Biology 17.1 (Dec. 2019), p. 83. issn: 1741-7007. doi: 10.1186/s12915-019-
0699-4.

[295] Peter Weiner. ‘Linear pattern matching algorithms’. In: 14th Annual Sym-
posium on Switching and Automata Theory (swat 1973). USA: IEEE, Oct.
1973, pp. 1–11. doi: 10.1109/SWAT.1973.13.

172

https://doi.org/10.1093/bioinformatics/btab789
https://doi.org/10.1093/bioinformatics/btab789
https://doi.org/10.1038/nature24460
https://doi.org/10.1128/mSystems.00080-18
https://doi.org/10.1128/mSystems.00080-18
https://doi.org/10.1093/emboj/20.10.2587
https://doi.org/10.1186/s13059-019-1817-x
https://doi.org/10.1186/s13059-019-1817-x
https://doi.org/10.1128/Spectrum.01434-21
https://doi.org/10.1128/Spectrum.01434-21
https://doi.org/10.3389/fmicb.2020.01065
https://doi.org/10.3389/fmicb.2020.01065
https://doi.org/10.1128/AEM.00062-07
https://doi.org/10.1186/s12915-019-0699-4
https://doi.org/10.1186/s12915-019-0699-4
https://doi.org/10.1109/SWAT.1973.13


Joachim Fritscher

[296] Franziska Wemheuer et al. ‘Tax4Fun2: prediction of habitat-specific functional
profiles and functional redundancy based on 16S rRNA gene sequences’. en.
In: Environmental Microbiome 15.1 (May 2020), p. 11. issn: 2524-6372. doi:
10.1186/s40793-020-00358-7.

[297] Patrick T West, Rachael B Chanin and Ami S Bhatt. ‘From genome structure
to function: insights into structural variation in microbiology’. en. In: Current
Opinion in Microbiology 69 (Oct. 2022), p. 102192. issn: 13695274. doi: 10.
1016/j.mib.2022.102192.

[298] William B. Whitman et al. ‘Development of the SeqCode: A proposed nomen-
clatural code for uncultivated prokaryotes with DNA sequences as type’. en.
In: Systematic and Applied Microbiology 45.5 (Sept. 2022), p. 126305. issn:
07232020. doi: 10.1016/j.syapm.2022.126305.

[299] Ryan R. Wick, Louise M. Judd and Kathryn E. Holt. ‘Assembling the perfect
bacterial genome using Oxford Nanopore and Illumina sequencing’. en. In:
PLOS Computational Biology 19.3 (Mar. 2023). Ed. by Francis Ouellette,
e1010905. issn: 1553-7358. doi: 10.1371/journal.pcbi.1010905.

[300] Ryan R. Wick et al. ‘Unicycler: Resolving bacterial genome assemblies from
short and long sequencing reads’. en. In: PLOS Computational Biology 13.6
(June 2017). Ed. by Adam M. Phillippy, e1005595. issn: 1553-7358. doi:
10.1371/journal.pcbi.1005595.

[301] Daniel James Wilkinson et al. ‘Genomic diversity of Helicobacter pylori pop-
ulations from different regions of the human stomach’. en. In: Gut Microbes
14.1 (Dec. 2022), p. 2152306. issn: 1949-0976, 1949-0984. doi: 10.1080/

19490976.2022.2152306.

[302] K H Wilson and R B Blitchington. ‘Human colonic biota studied by ribosomal
DNA sequence analysis’. en. In: Applied and Environmental Microbiology 62.7
(July 1996), pp. 2273–2278. issn: 0099-2240, 1098-5336. doi: 10.1128/aem.
62.7.2273-2278.1996.

[303] Thierry Wirth et al. ‘Origin, Spread and Demography of the Mycobacterium
tuberculosis Complex’. en. In: PLoS Pathogens 4.9 (Sept. 2008). Ed. by Mark
Achtman, e1000160. issn: 1553-7374. doi: 10.1371/journal.ppat.1000160.

[304] C. R. Woese and G. E. Fox. ‘Phylogenetic structure of the prokaryotic do-
main: the primary kingdoms’. eng. In: Proceedings of the National Academy
of Sciences of the United States of America 74.11 (Nov. 1977), pp. 5088–5090.
issn: 0027-8424. doi: 10.1073/pnas.74.11.5088.

[305] Yuri I. Wolf et al. ‘Two fundamentally different classes of microbial genes’.
en. In: Nature Microbiology 2.3 (Nov. 2016), p. 16208. issn: 2058-5276. doi:
10.1038/nmicrobiol.2016.208.

173

https://doi.org/10.1186/s40793-020-00358-7
https://doi.org/10.1016/j.mib.2022.102192
https://doi.org/10.1016/j.mib.2022.102192
https://doi.org/10.1016/j.syapm.2022.126305
https://doi.org/10.1371/journal.pcbi.1010905
https://doi.org/10.1371/journal.pcbi.1005595
https://doi.org/10.1080/19490976.2022.2152306
https://doi.org/10.1080/19490976.2022.2152306
https://doi.org/10.1128/aem.62.7.2273-2278.1996
https://doi.org/10.1128/aem.62.7.2273-2278.1996
https://doi.org/10.1371/journal.ppat.1000160
https://doi.org/10.1073/pnas.74.11.5088
https://doi.org/10.1038/nmicrobiol.2016.208


Novel taxonomic profiling and ...

[306] Richard Wolff, William Shoemaker and Nandita Garud. ‘Ecological Stability
Emerges at the Level of Strains in the Human Gut Microbiome’. en. In: mBio
14.2 (Apr. 2023). Ed. by Rachel Whitaker and John W. Taylor, e02502–22.
issn: 2150-7511. doi: 10.1128/mbio.02502-22.

[307] Derrick E. Wood, Jennifer Lu and Ben Langmead. ‘Improved metagenomic
analysis with Kraken 2’. In: Genome Biology 20.1 (Nov. 2019), p. 257. issn:
1474-760X. doi: 10.1186/s13059-019-1891-0.

[308] Derrick E. Wood and Steven L. Salzberg. ‘Kraken: ultrafast metagenomic
sequence classification using exact alignments’. In: Genome Biology 15.3 (Mar.
2014), R46. issn: 1474-760X. doi: 10.1186/gb-2014-15-3-r46.

[309] Dongying Wu, Ladan Doroud and Jonathan A. Eisen. TreeOTU: Operational
Taxonomic Unit Classification Based on Phylogenetic Trees. Version Number:
1. 2013. doi: 10.48550/ARXIV.1308.6333.

[310] Gary D. Wu et al. ‘Linking Long-Term Dietary Patterns with Gut Microbial
Enterotypes’. en. In: Science 334.6052 (Oct. 2011), pp. 105–108. issn: 0036-
8075, 1095-9203. doi: 10.1126/science.1208344.

[311] Zeyu Xia et al. ‘A Review of Parallel Implementations for the
Smith–Waterman Algorithm’. en. In: Interdisciplinary Sciences: Computa-
tional Life Sciences 14.1 (Mar. 2022), pp. 1–14. issn: 1913-2751, 1867-1462.
doi: 10.1007/s12539-021-00473-0.

[312] Yiqing Yan, Nimisha Chaturvedi and Raja Appuswamy. ‘Accel-Align: a fast
sequence mapper and aligner based on the seed–embed–extend method’. In:
BMC Bioinformatics 22.1 (May 2021), p. 257. issn: 1471-2105. doi: 10.1186/
s12859-021-04162-z.

[313] Chao Yang et al. ‘A review of computational tools for generating metagenome-
assembled genomes from metagenomic sequencing data’. en. In: Computa-
tional and Structural Biotechnology Journal 19 (2021), pp. 6301–6314. issn:
20010370. doi: 10.1016/j.csbj.2021.11.028.

[314] Moran Yassour et al. ‘Strain-Level Analysis of Mother-to-Child Bacterial
Transmission during the First Few Months of Life’. eng. In: Cell Host & Mi-
crobe 24.1 (July 2018), 146–154.e4. issn: 1934-6069. doi: 10.1016/j.chom.
2018.06.007.

[315] Lianwei Ye et al. ‘High-Resolution Metagenomics of Human Gut Microbi-
ota Generated by Nanopore and Illumina Hybrid Metagenome Assembly’. In:
Frontiers in Microbiology 13 (May 2022), p. 801587. issn: 1664-302X. doi:
10.3389/fmicb.2022.801587.

[316] Simon H. Ye et al. ‘Benchmarking Metagenomics Tools for Taxonomic Clas-
sification’. en. In: Cell 178.4 (Aug. 2019), pp. 779–794. issn: 00928674. doi:
10.1016/j.cell.2019.07.010.

174

https://doi.org/10.1128/mbio.02502-22
https://doi.org/10.1186/s13059-019-1891-0
https://doi.org/10.1186/gb-2014-15-3-r46
https://doi.org/10.48550/ARXIV.1308.6333
https://doi.org/10.1126/science.1208344
https://doi.org/10.1007/s12539-021-00473-0
https://doi.org/10.1186/s12859-021-04162-z
https://doi.org/10.1186/s12859-021-04162-z
https://doi.org/10.1016/j.csbj.2021.11.028
https://doi.org/10.1016/j.chom.2018.06.007
https://doi.org/10.1016/j.chom.2018.06.007
https://doi.org/10.3389/fmicb.2022.801587
https://doi.org/10.1016/j.cell.2019.07.010


Joachim Fritscher

[317] Pelin Yilmaz et al. ‘The SILVA and “All-species Living Tree Project (LTP)”
taxonomic frameworks’. en. In: Nucleic Acids Research 42.D1 (Jan. 2014),
pp. D643–D648. issn: 0305-1048, 1362-4962. doi: 10.1093/nar/gkt1209.

[318] Byung-Jun Yoon. ‘Hidden Markov Models and their Applications in Biological
Sequence Analysis’. en. In: Current Genomics 10.6 (Sept. 2009), pp. 402–415.
issn: 13892029. doi: 10.2174/138920209789177575.

[319] Cheng Yuan et al. ‘Reconstructing 16S rRNA genes in metagenomic data’. en.
In: Bioinformatics 31.12 (June 2015), pp. i35–i43. issn: 1367-4811, 1367-4803.
doi: 10.1093/bioinformatics/btv231.

[320] Xuan Zhang et al. ‘The oral and gut microbiomes are perturbed in rheumatoid
arthritis and partly normalized after treatment’. en. In: Nature Medicine 21.8
(Aug. 2015), pp. 895–905. issn: 1078-8956, 1546-170X. doi: 10.1038/nm.
3914.

[321] Yadong Zhang et al. ‘ProPan: a comprehensive database for profiling proka-
ryotic pan-genome dynamics’. en. In: Nucleic Acids Research 51.D1 (Jan.
2023), pp. D767–D776. issn: 0305-1048, 1362-4962. doi: 10 . 1093 / nar /

gkac832.

[322] Zhenmiao Zhang et al. ‘Benchmarking genome assembly methods on metage-
nomic sequencing data’. en. In: Briefings in Bioinformatics 24.2 (Mar. 2023),
bbad087. issn: 1467-5463, 1477-4054. doi: 10.1093/bib/bbad087.

[323] Chunyu Zhao et al. ‘MIDAS2: Metagenomic Intra-species Diversity Analysis
System’. en. In: Bioinformatics 39.1 (Jan. 2023). Ed. by Russell Schwartz,
btac713. issn: 1367-4811. doi: 10.1093/bioinformatics/btac713.

[324] Danping Zheng, Timur Liwinski and Eran Elinav. ‘Interaction between micro-
biota and immunity in health and disease’. en. In: Cell Research 30.6 (June
2020). Number: 6 Publisher: Nature Publishing Group, pp. 492–506. issn:
1748-7838. doi: 10.1038/s41422-020-0332-7.

[325] Ana Zhu et al. ‘Inter-individual differences in the gene content of human
gut bacterial species’. en. In: Genome Biology 16.1 (Dec. 2015), p. 82. issn:
1474-760X. doi: 10.1186/s13059-015-0646-9.

[326] Aleksey V. Zimin et al. ‘Hybrid assembly of the large and highly repetitive
genome of Aegilops tauschii, a progenitor of bread wheat, with the MaSuRCA
mega-reads algorithm’. eng. In: Genome Research 27.5 (May 2017), pp. 787–
792. issn: 1549-5469. doi: 10.1101/gr.213405.116.

175

https://doi.org/10.1093/nar/gkt1209
https://doi.org/10.2174/138920209789177575
https://doi.org/10.1093/bioinformatics/btv231
https://doi.org/10.1038/nm.3914
https://doi.org/10.1038/nm.3914
https://doi.org/10.1093/nar/gkac832
https://doi.org/10.1093/nar/gkac832
https://doi.org/10.1093/bib/bbad087
https://doi.org/10.1093/bioinformatics/btac713
https://doi.org/10.1038/s41422-020-0332-7
https://doi.org/10.1186/s13059-015-0646-9
https://doi.org/10.1101/gr.213405.116


Appendix A

Appendix

A.1 Chapter 5

A.1.1 Benchpro

Table A.1: Number of species for utilized benchmark datasets CAMI Human, CAMI
Mouse, and CAMI Human for NCBI, GTDB r207, and GTDB r214.

Dataset NCBI GTDB r207 GTDB r214
Airways 10 69 67 67
Airways 11 34 33 33
Airways 12 45 44 44
Airways 23 32 31 31
Airways 26 71 67 67
Airways 27 90 92 92
Airways 4 109 110 109
Airways 7 75 78 78
Airways 8 57 56 56
Airways 9 93 96 96
Gastrointestinal 0 35 35 35
Gastrointestinal 10 40 43 43
Gastrointestinal 11 55 59 59
Gastrointestinal 12 26 29 29
Gastrointestinal 1 38 39 39
Gastrointestinal 2 21 23 23
Gastrointestinal 3 45 45 45
Gastrointestinal 4 45 45 45
Gastrointestinal 5 19 20 20
Gastrointestinal 9 36 39 39
Oral 13 73 75 75
Oral 14 64 65 65

176



Joachim Fritscher

Oral 15 78 79 79
Oral 16 129 139 139
Oral 17 53 58 57
Oral 18 74 79 79
Oral 19 96 101 101
Oral 6 46 48 48
Oral 7 59 65 66
Oral 8 60 63 63
Skin 13 42 42 42
Skin 14 30 30 30
Skin 15 27 26 25
Skin 16 11 10 10
Skin 17 48 47 47
Skin 18 28 27 27
Skin 19 105 111 111
Skin 1 51 52 52
Skin 20 82 81 81
Skin 28 13 13 13
Urogenital 0 34 33 33
Urogenital 21 34 34 34
Urogenital 22 21 21 21
Urogenital 24 27 27 27
Urogenital 25 43 46 46
Urogenital 2 27 26 26
Urogenital 3 48 47 47
Urogenital 5 25 25 25
Urogenital 6 15 16 16
Marine 0 303 333 331
Marine 1 277 313 312
Marine 2 384 430 429
Marine 3 280 318 317
Marine 4 334 371 370
Marine 5 329 364 365
Marine 6 285 317 317
Marine 7 348 390 390
Marine 8 274 302 302
Mouse 0 64 64 64
Mouse 1 82 81 81
Mouse 2 75 75 73
Mouse 5 206 201 200
Mouse 6 213 204 204
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Mouse 7 68 69 69
Mouse 8 92 84 85
Mouse 9 95 89 90
Mouse 10 120 122 121
Mouse 11 158 145 144
Mouse 12 162 158 158
Mouse 13 111 111 111
Mouse 14 162 153 153
Mouse 15 170 166 165
Mouse 16 75 76 76
Mouse 17 138 138 138
Mouse 18 73 75 75
Mouse 19 132 128 128
Mouse 20 147 149 148
Mouse 21 105 107 106
Mouse 22 206 204 204
Mouse 23 102 105 104
Mouse 24 203 203 202
Mouse 25 201 194 193
Mouse 26 101 102 101
Mouse 27 204 198 199
Mouse 28 196 190 191
Mouse 29 108 111 109
Mouse 30 207 198 198
Mouse 31 154 155 153
Mouse 32 49 48 47
Mouse 33 204 206 204
Mouse 34 225 222 222
Mouse 35 63 62 61
Mouse 36 193 188 187
Mouse 37 212 210 209
Mouse 38 97 97 97
Mouse 52 100 91 91
Mouse 53 154 156 155
Mouse 54 165 163 163
Mouse 55 183 178 177
Mouse 56 164 157 157
Mouse 57 168 162 161
Mouse 58 222 215 213
Mouse 59 215 205 206
Mouse 60 225 217 216
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Mouse 61 231 223 222
Mouse 62 83 83 82
Mouse 63 59 60 59

Table A.4: All (isolate) genomes from humgut that are part of the strain-analysis
dataset and their GTDB r214 species annotations generated with GTDB-tk 2.32.

HumGut ID Species
GUT_GENOME000002 s__Anaerobutyricum hallii
GUT_GENOME000003 s__Blautia_A wexlerae
GUT_GENOME000005 s__Mediterraneibacter faecis
GUT_GENOME000012 s__Bacteroides caccae
GUT_GENOME000013 s__Bacteroides cellulosilyticus
GUT_GENOME000028 s__Parabacteroides distasonis
GUT_GENOME000033 s__Bacteroides fragilis
GUT_GENOME000039 s__Bacteroides xylanisolvens
GUT_GENOME000051 s__Thomasclavelia ramosa
GUT_GENOME000061 s__Agathobacter rectalis
GUT_GENOME000070 s__Parabacteroides distasonis
GUT_GENOME000074 s__Ruminococcus_D bicirculans
GUT_GENOME000080 s__Agathobaculum butyriciproducens
GUT_GENOME000084 s__Anaerobutyricum hallii
GUT_GENOME000087 s__Enterobacter hormaechei_A
GUT_GENOME000091 s__Anaerobutyricum hallii
GUT_GENOME000099 s__Bifidobacterium adolescentis
GUT_GENOME000105 s__Enterobacter hormaechei_A
GUT_GENOME000108 s__Anaerostipes hadrus
GUT_GENOME000112 s__Coprococcus eutactus_A
GUT_GENOME000115 s__Bariatricus comes
GUT_GENOME000116 s__Mediterraneibacter faecis
GUT_GENOME000117 s__Roseburia inulinivorans
GUT_GENOME000120 s__Blautia_A obeum
GUT_GENOME000121 s__Blautia_A wexlerae
GUT_GENOME000125 s__Coprococcus eutactus_A
GUT_GENOME000127 s__Anaerobutyricum hallii
GUT_GENOME000132 s__Fusicatenibacter saccharivorans
GUT_GENOME000135 s__Ruminococcus_B gnavus
GUT_GENOME000142 s__Agathobacter rectalis
GUT_GENOME000144 s__Bifidobacterium adolescentis
GUT_GENOME000150 s__Mediterraneibacter faecis
GUT_GENOME000151 s__Anaerostipes hadrus
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GUT_GENOME000155 s__Bacteroides thetaiotaomicron
GUT_GENOME000157 s__Faecalibacillus intestinalis
GUT_GENOME000160 s__Bifidobacterium bifidum
GUT_GENOME000164 s__Blautia_A obeum
GUT_GENOME000169 s__Parabacteroides distasonis
GUT_GENOME000170 s__RUG115 sp900066395
GUT_GENOME000171 s__Roseburia inulinivorans
GUT_GENOME000172 s__Coprococcus eutactus_A
GUT_GENOME000173 s__Sarcina perfringens
GUT_GENOME000176 s__Ruminococcus_D bicirculans
GUT_GENOME000178 s__Bifidobacterium adolescentis
GUT_GENOME000179 s__Anaerobutyricum hallii
GUT_GENOME000182 s__Bariatricus comes
GUT_GENOME000192 s__Parabacteroides merdae
GUT_GENOME000194 s__Bifidobacterium adolescentis
GUT_GENOME000196 s__Faecalibacillus intestinalis
GUT_GENOME000204 s__Blautia_A wexlerae
GUT_GENOME000206 s__Blautia_A wexlerae
GUT_GENOME000209 s__Bariatricus comes
GUT_GENOME000210 s__Dorea formicigenerans
GUT_GENOME000216 s__Lachnospira eligens_A
GUT_GENOME000218 s__Anaerostipes hadrus
GUT_GENOME000227 s__Enterococcus faecalis
GUT_GENOME000235 s__Ruminococcus_D bicirculans
GUT_GENOME000237 s__Lachnospira eligens_A
GUT_GENOME000240 s__Bacteroides thetaiotaomicron
GUT_GENOME000241 s__Bacteroides cellulosilyticus
GUT_GENOME000242 s__Parabacteroides distasonis
GUT_GENOME000244 s__Longicatena caecimuris
GUT_GENOME000249 s__Anaerostipes hadrus
GUT_GENOME000253 s__Bariatricus comes
GUT_GENOME000257 s__Bacteroides caccae
GUT_GENOME000261 s__Blautia_A obeum
GUT_GENOME000263 s__Fusicatenibacter saccharivorans
GUT_GENOME000265 s__Agathobaculum butyriciproducens
GUT_GENOME000281 s__Bacteroides ovatus
GUT_GENOME000283 s__Bacteroides caccae
GUT_GENOME000284 s__Anaerobutyricum hallii
GUT_GENOME000286 s__Parabacteroides distasonis
GUT_GENOME000288 s__Faecalibacillus intestinalis
GUT_GENOME000292 s__Agathobacter rectalis
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GUT_GENOME000293 s__Blautia_A wexlerae
GUT_GENOME000294 s__Anaerostipes hadrus
GUT_GENOME000297 s__Bariatricus comes
GUT_GENOME000298 s__Coprococcus eutactus_A
GUT_GENOME000300 s__Anaerobutyricum hallii
GUT_GENOME000301 s__Fusicatenibacter saccharivorans
GUT_GENOME000303 s__Agathobacter rectalis
GUT_GENOME000306 s__Ruminococcus_D bicirculans
GUT_GENOME000307 s__Ruminococcus_E bromii_B
GUT_GENOME000315 s__Ruminococcus_E bromii_B
GUT_GENOME000318 s__Enterococcus faecalis
GUT_GENOME000321 s__Lacticaseibacillus rhamnosus
GUT_GENOME000323 s__Enterococcus faecalis
GUT_GENOME000324 s__Sarcina perfringens
GUT_GENOME000326 s__Thomasclavelia ramosa
GUT_GENOME000328 s__Ruminococcus_B gnavus
GUT_GENOME000329 s__Enterococcus faecalis
GUT_GENOME000331 s__Enterococcus faecalis
GUT_GENOME000332 s__Lacticaseibacillus paracasei
GUT_GENOME000334 s__Thomasclavelia ramosa
GUT_GENOME000336 s__Sarcina perfringens
GUT_GENOME000339 s__Lacticaseibacillus rhamnosus
GUT_GENOME000341 s__Enterococcus faecalis
GUT_GENOME000342 s__Sarcina perfringens
GUT_GENOME000344 s__Thomasclavelia ramosa
GUT_GENOME000346 s__Ruminococcus_B gnavus
GUT_GENOME000347 s__Enterococcus faecalis
GUT_GENOME000348 s__Enterococcus faecalis
GUT_GENOME000349 s__Sarcina perfringens
GUT_GENOME000351 s__Enterococcus faecalis
GUT_GENOME000352 s__Sarcina perfringens
GUT_GENOME000355 s__Roseburia inulinivorans
GUT_GENOME000356 s__Blautia_A wexlerae
GUT_GENOME000357 s__Mediterraneibacter faecis
GUT_GENOME000359 s__Bacteroides stercoris
GUT_GENOME000360 s__Coprococcus eutactus_A
GUT_GENOME000362 s__Bariatricus comes
GUT_GENOME000368 s__Parabacteroides distasonis
GUT_GENOME000369 s__Blautia_A obeum
GUT_GENOME000371 s__Agathobacter rectalis
GUT_GENOME000372 s__Bacteroides ovatus
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GUT_GENOME000373 s__Bifidobacterium adolescentis
GUT_GENOME000375 s__Bacteroides fragilis
GUT_GENOME000376 s__Faecalibacillus intestinalis
GUT_GENOME000386 s__Dorea formicigenerans
GUT_GENOME000388 s__Lachnospira eligens_A
GUT_GENOME000389 s__Enterococcus faecalis
GUT_GENOME000390 s__Sarcina perfringens
GUT_GENOME000392 s__Enterococcus faecalis
GUT_GENOME000393 s__Sarcina perfringens
GUT_GENOME000397 s__Roseburia inulinivorans
GUT_GENOME000398 s__Blautia_A wexlerae
GUT_GENOME000399 s__Mediterraneibacter faecis
GUT_GENOME000401 s__Bacteroides stercoris
GUT_GENOME000402 s__Coprococcus eutactus_A
GUT_GENOME000404 s__Bariatricus comes
GUT_GENOME000410 s__Parabacteroides distasonis
GUT_GENOME000411 s__Blautia_A obeum
GUT_GENOME000413 s__Agathobacter rectalis
GUT_GENOME000414 s__Bacteroides ovatus
GUT_GENOME000415 s__Bifidobacterium adolescentis
GUT_GENOME000417 s__Bacteroides fragilis
GUT_GENOME000418 s__Faecalibacillus intestinalis
GUT_GENOME000429 s__Dorea formicigenerans
GUT_GENOME000431 s__Lachnospira eligens_A
GUT_GENOME000433 s__Blautia_A wexlerae
GUT_GENOME000435 s__Bifidobacterium breve
GUT_GENOME000437 s__Bifidobacterium adolescentis
GUT_GENOME000441 s__Dorea formicigenerans
GUT_GENOME000446 s__Dorea formicigenerans
GUT_GENOME000449 s__Agathobacter rectalis
GUT_GENOME000453 s__Bacteroides stercoris
GUT_GENOME000454 s__Bacteroides ovatus
GUT_GENOME000455 s__Blautia_A obeum
GUT_GENOME000458 s__Blautia_A obeum
GUT_GENOME000462 s__Blautia_A obeum
GUT_GENOME000465 s__Parabacteroides distasonis
GUT_GENOME000468 s__Blautia_A obeum
GUT_GENOME000470 s__Bacteroides cellulosilyticus
GUT_GENOME000472 s__Bacteroides thetaiotaomicron
GUT_GENOME000474 s__Blautia_A obeum
GUT_GENOME000476 s__Sarcina perfringens
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GUT_GENOME000480 s__Bifidobacterium adolescentis
GUT_GENOME000482 s__Bacteroides fragilis
GUT_GENOME000486 s__Blautia_A obeum
GUT_GENOME000492 s__Bacteroides thetaiotaomicron
GUT_GENOME000493 s__Dorea formicigenerans
GUT_GENOME000497 s__Enterococcus faecalis
GUT_GENOME000502 s__Sarcina perfringens
GUT_GENOME000503 s__Lacticaseibacillus paracasei
GUT_GENOME000511 s__Bacteroides fragilis
GUT_GENOME000516 s__Lacticaseibacillus paracasei
GUT_GENOME000517 s__Lacticaseibacillus paracasei
GUT_GENOME000526 s__Bacteroides thetaiotaomicron
GUT_GENOME000527 s__Enterococcus faecalis
GUT_GENOME000528 s__Enterococcus faecalis
GUT_GENOME000529 s__Enterococcus faecalis
GUT_GENOME000538 s__Bifidobacterium adolescentis
GUT_GENOME000541 s__Lacticaseibacillus paracasei
GUT_GENOME000542 s__Bacteroides cellulosilyticus
GUT_GENOME000544 s__Sarcina perfringens
GUT_GENOME000557 s__Enterococcus faecalis
GUT_GENOME000560 s__Lactiplantibacillus plantarum
GUT_GENOME000569 s__Bacteroides caccae
GUT_GENOME000579 s__Bacteroides xylanisolvens
GUT_GENOME000599 s__Lacticaseibacillus rhamnosus
GUT_GENOME000613 s__Enterococcus faecalis
GUT_GENOME000636 s__Bacteroides stercoris
GUT_GENOME000638 s__Bacteroides xylanisolvens
GUT_GENOME000639 s__Bacteroides xylanisolvens
GUT_GENOME000642 s__Bacteroides thetaiotaomicron
GUT_GENOME000643 s__Bacteroides cellulosilyticus
GUT_GENOME000644 s__Ruminococcus_D bicirculans
GUT_GENOME000646 s__Bacteroides stercoris
GUT_GENOME000648 s__Enterococcus faecalis
GUT_GENOME000651 s__Faecalibacillus intestinalis
GUT_GENOME000654 s__Blautia_A obeum
GUT_GENOME000661 s__Enterococcus faecalis
GUT_GENOME000668 s__Enterococcus faecalis
GUT_GENOME000669 s__Bacteroides stercoris
GUT_GENOME000671 s__Bacteroides fragilis
GUT_GENOME000673 s__Enterococcus faecalis
GUT_GENOME000675 s__Enterococcus faecalis
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GUT_GENOME000684 s__Bacteroides fragilis
GUT_GENOME000689 s__Bacteroides stercoris
GUT_GENOME000694 s__Parabacteroides distasonis
GUT_GENOME000696 s__Clostridium_Q fessum
GUT_GENOME000697 s__Sarcina perfringens
GUT_GENOME000702 s__Bifidobacterium adolescentis
GUT_GENOME000706 s__Dorea formicigenerans
GUT_GENOME000712 s__Bacteroides stercoris
GUT_GENOME000716 s__Sarcina perfringens
GUT_GENOME000717 s__Ruminococcus_B gnavus
GUT_GENOME000728 s__Thomasclavelia ramosa
GUT_GENOME000735 s__RUG115 sp900066395
GUT_GENOME000736 s__Faecalibacillus intestinalis
GUT_GENOME000738 s__Clostridium_Q fessum
GUT_GENOME000745 s__Bacteroides thetaiotaomicron
GUT_GENOME000751 s__Bacteroides ovatus
GUT_GENOME000756 s__Bacteroides ovatus
GUT_GENOME000762 s__Bacteroides stercoris
GUT_GENOME000765 s__Lachnospira eligens_A
GUT_GENOME000766 s__Agathobacter rectalis
GUT_GENOME000771 s__Thomasclavelia ramosa
GUT_GENOME000777 s__Agathobaculum butyriciproducens
GUT_GENOME000783 s__Bifidobacterium bifidum
GUT_GENOME000788 s__Dorea formicigenerans
GUT_GENOME000789 s__RUG115 sp900066395
GUT_GENOME000794 s__Clostridium_Q fessum
GUT_GENOME000797 s__Mediterraneibacter faecis
GUT_GENOME000798 s__Bacteroides stercoris
GUT_GENOME000801 s__Agathobacter rectalis
GUT_GENOME000803 s__Ruminococcus_B gnavus
GUT_GENOME000804 s__Faecalibacillus intestinalis
GUT_GENOME000806 s__Faecalibacillus intestinalis
GUT_GENOME000807 s__Blautia_A sp003471165
GUT_GENOME000811 s__Blautia_A sp003471165
GUT_GENOME000816 s__Faecalibacillus intestinalis
GUT_GENOME000819 s__Bacteroides ovatus
GUT_GENOME000826 s__Bacteroides thetaiotaomicron
GUT_GENOME000828 s__Blautia_A obeum
GUT_GENOME000834 s__Fusicatenibacter saccharivorans
GUT_GENOME000840 s__Parabacteroides distasonis
GUT_GENOME000841 s__Blautia_A obeum
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GUT_GENOME000842 s__Bifidobacterium adolescentis
GUT_GENOME000844 s__Blautia_A wexlerae
GUT_GENOME000847 s__Bacteroides xylanisolvens
GUT_GENOME000850 s__Bacteroides fragilis
GUT_GENOME000854 s__RUG115 sp900066395
GUT_GENOME000858 s__Faecalibacillus intestinalis
GUT_GENOME000860 s__Ruminococcus_E bromii_B
GUT_GENOME000861 s__Bifidobacterium adolescentis
GUT_GENOME000863 s__Agathobaculum butyriciproducens
GUT_GENOME000882 s__Coprococcus eutactus_A
GUT_GENOME000885 s__Bacteroides stercoris
GUT_GENOME000886 s__Bariatricus comes
GUT_GENOME000887 s__Ruminococcus_E bromii_B
GUT_GENOME000888 s__Faecalibacillus intestinalis
GUT_GENOME000891 s__Ruminococcus_D bicirculans
GUT_GENOME000892 s__Coprococcus eutactus_A
GUT_GENOME000895 s__Faecalibacillus intestinalis
GUT_GENOME000896 s__Ruminococcus_E bromii_B
GUT_GENOME000900 s__Faecalibacillus intestinalis
GUT_GENOME000901 s__Ruminococcus_D bicirculans
GUT_GENOME000907 s__Ruminococcus_D bicirculans
GUT_GENOME000908 s__Bacteroides cellulosilyticus
GUT_GENOME000909 s__Agathobacter rectalis
GUT_GENOME000915 s__Ruminococcus_D bicirculans
GUT_GENOME000916 s__Ruminococcus_D bicirculans
GUT_GENOME000920 s__Fusicatenibacter saccharivorans
GUT_GENOME000922 s__Parabacteroides distasonis
GUT_GENOME000923 s__Bariatricus comes
GUT_GENOME000926 s__Agathobacter rectalis
GUT_GENOME000927 s__Agathobacter rectalis
GUT_GENOME000932 s__Ruminococcus_D bicirculans
GUT_GENOME000935 s__Collinsella sp003466125
GUT_GENOME000939 s__Longicatena caecimuris
GUT_GENOME000942 s__Lachnospira eligens_A
GUT_GENOME000945 s__Collinsella sp003466125
GUT_GENOME000946 s__Collinsella sp003466125
GUT_GENOME000951 s__Fusicatenibacter saccharivorans
GUT_GENOME000952 s__Dorea formicigenerans
GUT_GENOME000953 s__Parabacteroides distasonis
GUT_GENOME000954 s__Ruminococcus_D bicirculans
GUT_GENOME000955 s__Ruminococcus_B gnavus
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GUT_GENOME000957 s__Longicatena caecimuris
GUT_GENOME000960 s__Fusicatenibacter saccharivorans
GUT_GENOME000961 s__Thomasclavelia ramosa
GUT_GENOME000966 s__Blautia_A wexlerae
GUT_GENOME000968 s__Bacteroides stercoris
GUT_GENOME000970 s__Agathobacter rectalis
GUT_GENOME000972 s__Faecalibacillus intestinalis
GUT_GENOME000973 s__Dorea formicigenerans
GUT_GENOME000974 s__Mediterraneibacter faecis
GUT_GENOME000975 s__Agathobacter rectalis
GUT_GENOME000977 s__Coprococcus eutactus_A
GUT_GENOME000978 s__Parabacteroides merdae
GUT_GENOME000986 s__RUG115 sp900066395
GUT_GENOME000989 s__Thomasclavelia ramosa
GUT_GENOME000990 s__Clostridium_Q fessum
GUT_GENOME000991 s__Bacteroides ovatus
GUT_GENOME000992 s__Ruminococcus_E bromii_B
GUT_GENOME000993 s__Ruminococcus_D bicirculans
GUT_GENOME000997 s__Clostridium_Q fessum
GUT_GENOME000998 s__Blautia_A obeum
GUT_GENOME000999 s__Dorea formicigenerans
GUT_GENOME001000 s__Bifidobacterium adolescentis
GUT_GENOME001001 s__Roseburia inulinivorans
GUT_GENOME001002 s__Blautia_A sp003471165
GUT_GENOME001005 s__Parabacteroides distasonis
GUT_GENOME001009 s__Bacteroides xylanisolvens
GUT_GENOME001012 s__Clostridium_Q fessum
GUT_GENOME001016 s__Agathobaculum butyriciproducens
GUT_GENOME001017 s__RUG115 sp900066395
GUT_GENOME001018 s__Bacteroides cellulosilyticus
GUT_GENOME001021 s__RUG115 sp900066395
GUT_GENOME001031 s__Blautia_A obeum
GUT_GENOME001035 s__Mediterraneibacter faecis
GUT_GENOME001036 s__Agathobacter rectalis
GUT_GENOME001037 s__Agathobaculum butyriciproducens
GUT_GENOME001038 s__Bacteroides thetaiotaomicron
GUT_GENOME001040 s__Faecalibacillus intestinalis
GUT_GENOME001043 s__Ruminococcus_B gnavus
GUT_GENOME001044 s__Bacteroides ovatus
GUT_GENOME001045 s__Bacteroides caccae
GUT_GENOME001047 s__Clostridium_Q fessum
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GUT_GENOME001049 s__Blautia_A sp003471165
GUT_GENOME001050 s__Roseburia inulinivorans
GUT_GENOME001053 s__Agathobacter rectalis
GUT_GENOME001054 s__Dorea formicigenerans
GUT_GENOME001057 s__RUG115 sp900066395
GUT_GENOME001058 s__Mediterraneibacter faecis
GUT_GENOME001059 s__RUG115 sp900066395
GUT_GENOME001060 s__Agathobacter rectalis
GUT_GENOME001062 s__Mediterraneibacter faecis
GUT_GENOME001063 s__RUG115 sp900066395
GUT_GENOME001065 s__Ruminococcus_D bicirculans
GUT_GENOME001067 s__Blautia_A obeum
GUT_GENOME001068 s__Blautia_A wexlerae
GUT_GENOME001069 s__RUG115 sp900066395
GUT_GENOME001071 s__Blautia_A wexlerae
GUT_GENOME001073 s__Bacteroides stercoris
GUT_GENOME001075 s__Parabacteroides distasonis
GUT_GENOME001077 s__Mediterraneibacter faecis
GUT_GENOME001079 s__Bacteroides stercoris
GUT_GENOME001080 s__Ruminococcus_E bromii_B
GUT_GENOME001084 s__Bacteroides ovatus
GUT_GENOME001085 s__Bacteroides stercoris
GUT_GENOME001086 s__Parabacteroides merdae
GUT_GENOME001087 s__Ruminococcus_D bicirculans
GUT_GENOME001088 s__Fusicatenibacter saccharivorans
GUT_GENOME001091 s__Bacteroides fragilis
GUT_GENOME001094 s__Bacteroides fragilis
GUT_GENOME001095 s__Mediterraneibacter faecis
GUT_GENOME001097 s__Mediterraneibacter faecis
GUT_GENOME001099 s__Parabacteroides distasonis
GUT_GENOME001100 s__Bacteroides ovatus
GUT_GENOME001104 s__Faecalibacillus intestinalis
GUT_GENOME001108 s__Mediterraneibacter faecis
GUT_GENOME001109 s__Ruminococcus_B gnavus
GUT_GENOME001110 s__Clostridium_Q fessum
GUT_GENOME001116 s__Thomasclavelia ramosa
GUT_GENOME001117 s__Roseburia inulinivorans
GUT_GENOME001118 s__Thomasclavelia ramosa
GUT_GENOME001120 s__Bacteroides thetaiotaomicron
GUT_GENOME001121 s__Bifidobacterium adolescentis
GUT_GENOME001126 s__Bacteroides ovatus
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GUT_GENOME001130 s__Bacteroides cellulosilyticus
GUT_GENOME001132 s__Blautia_A obeum
GUT_GENOME001134 s__Faecalibacillus intestinalis
GUT_GENOME001137 s__Clostridium_Q fessum
GUT_GENOME001141 s__Sarcina perfringens
GUT_GENOME001143 s__Collinsella sp003466125
GUT_GENOME001144 s__Dorea formicigenerans
GUT_GENOME001146 s__Mediterraneibacter faecis
GUT_GENOME001147 s__Blautia_A sp003471165
GUT_GENOME001148 s__Anaerobutyricum hallii
GUT_GENOME001149 s__Parabacteroides merdae
GUT_GENOME001150 s__Faecalibacillus intestinalis
GUT_GENOME001156 s__Bacteroides caccae
GUT_GENOME001160 s__Bacteroides fragilis
GUT_GENOME001164 s__Mediterraneibacter faecis
GUT_GENOME001165 s__Fusicatenibacter saccharivorans
GUT_GENOME001166 s__Clostridium_Q fessum
GUT_GENOME001168 s__Bacteroides ovatus
GUT_GENOME001169 s__Blautia_A wexlerae
GUT_GENOME001171 s__Ruminococcus_B gnavus
GUT_GENOME001178 s__Bacteroides fragilis
GUT_GENOME001179 s__Parabacteroides distasonis
GUT_GENOME001180 s__Parabacteroides merdae
GUT_GENOME001182 s__Fusicatenibacter saccharivorans
GUT_GENOME001183 s__Ruminococcus_D bicirculans
GUT_GENOME001186 s__RUG115 sp900066395
GUT_GENOME001191 s__Ruminococcus_B gnavus
GUT_GENOME001195 s__Blautia_A obeum
GUT_GENOME001196 s__Bacteroides stercoris
GUT_GENOME001198 s__Clostridium_Q fessum
GUT_GENOME001199 s__Bacteroides stercoris
GUT_GENOME001200 s__Lachnospira eligens_A
GUT_GENOME001202 s__Parabacteroides merdae
GUT_GENOME001203 s__Agathobaculum butyriciproducens
GUT_GENOME001205 s__Faecalibacillus intestinalis
GUT_GENOME001207 s__Faecalibacillus intestinalis
GUT_GENOME001218 s__Dorea formicigenerans
GUT_GENOME001221 s__Agathobacter rectalis
GUT_GENOME001225 s__Parabacteroides distasonis
GUT_GENOME001228 s__Lachnospira eligens_A
GUT_GENOME001229 s__Bacteroides stercoris
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GUT_GENOME001231 s__Bacteroides thetaiotaomicron
GUT_GENOME001235 s__Ruminococcus_D bicirculans
GUT_GENOME001237 s__Faecalibacillus intestinalis
GUT_GENOME001238 s__Ruminococcus_E bromii_B
GUT_GENOME001242 s__Blautia_A obeum
GUT_GENOME001243 s__Blautia_A sp003471165
GUT_GENOME001244 s__Clostridium_Q fessum
GUT_GENOME001247 s__Coprococcus eutactus_A
GUT_GENOME001248 s__Agathobacter rectalis
GUT_GENOME001249 s__Bacteroides xylanisolvens
GUT_GENOME001250 s__Collinsella sp003466125
GUT_GENOME001251 s__Parabacteroides merdae
GUT_GENOME001252 s__Parabacteroides distasonis
GUT_GENOME001258 s__Agathobacter rectalis
GUT_GENOME001261 s__Blautia_A obeum
GUT_GENOME001263 s__Bacteroides xylanisolvens
GUT_GENOME001265 s__Lachnospira eligens_A
GUT_GENOME001267 s__Bacteroides stercoris
GUT_GENOME001271 s__Ruminococcus_E bromii_B
GUT_GENOME001275 s__Dorea formicigenerans
GUT_GENOME001276 s__Bacteroides ovatus
GUT_GENOME001277 s__Lachnospira eligens_A
GUT_GENOME001278 s__Parabacteroides distasonis
GUT_GENOME001280 s__RUG115 sp900066395
GUT_GENOME001281 s__Blautia_A sp003471165
GUT_GENOME001284 s__Ruminococcus_E bromii_B
GUT_GENOME001287 s__Bifidobacterium bifidum
GUT_GENOME001288 s__Lachnospira eligens_A
GUT_GENOME001289 s__Anaerobutyricum hallii
GUT_GENOME001290 s__Bacteroides thetaiotaomicron
GUT_GENOME001291 s__Bacteroides ovatus
GUT_GENOME001293 s__Bifidobacterium adolescentis
GUT_GENOME001296 s__Bacteroides xylanisolvens
GUT_GENOME001299 s__Bacteroides fragilis
GUT_GENOME001301 s__Bacteroides caccae
GUT_GENOME001306 s__Clostridium_Q fessum
GUT_GENOME001311 s__Agathobaculum butyriciproducens
GUT_GENOME001314 s__Longicatena caecimuris
GUT_GENOME001319 s__Blautia_A sp003471165
GUT_GENOME001321 s__Longicatena caecimuris
GUT_GENOME001326 s__Mediterraneibacter faecis
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GUT_GENOME001329 s__Bacteroides thetaiotaomicron
GUT_GENOME001330 s__Faecalibacillus intestinalis
GUT_GENOME001338 s__Collinsella sp003466125
GUT_GENOME001343 s__Collinsella sp003466125
GUT_GENOME001344 s__Collinsella sp003466125
GUT_GENOME001347 s__Collinsella sp003466125
GUT_GENOME001348 s__Anaerostipes hadrus
GUT_GENOME001350 s__Collinsella sp003466125
GUT_GENOME001357 s__Bifidobacterium bifidum
GUT_GENOME001360 s__Bifidobacterium adolescentis
GUT_GENOME001362 s__Blautia_A wexlerae
GUT_GENOME001363 s__Ruminococcus_B gnavus
GUT_GENOME001365 s__Bifidobacterium adolescentis
GUT_GENOME001366 s__Bifidobacterium bifidum
GUT_GENOME001368 s__Bifidobacterium adolescentis
GUT_GENOME001369 s__Bacteroides fragilis
GUT_GENOME001374 s__Ruminococcus_B gnavus
GUT_GENOME001378 s__Parabacteroides merdae
GUT_GENOME001379 s__Coprococcus eutactus_A
GUT_GENOME001380 s__Lachnospira eligens_A
GUT_GENOME001382 s__Bacteroides ovatus
GUT_GENOME001384 s__Bacteroides ovatus
GUT_GENOME001385 s__Bifidobacterium adolescentis
GUT_GENOME001386 s__Bacteroides ovatus
GUT_GENOME001388 s__Bacteroides thetaiotaomicron
GUT_GENOME001389 s__Parabacteroides distasonis
GUT_GENOME001391 s__Bacteroides fragilis
GUT_GENOME001393 s__Agathobacter rectalis
GUT_GENOME001394 s__Bacteroides xylanisolvens
GUT_GENOME001397 s__Bacteroides fragilis
GUT_GENOME001407 s__Mediterraneibacter faecis
GUT_GENOME001410 s__Bacteroides caccae
GUT_GENOME001411 s__Parabacteroides distasonis
GUT_GENOME001412 s__Parabacteroides merdae
GUT_GENOME001423 s__Faecalibacillus intestinalis
GUT_GENOME001426 s__Parabacteroides distasonis
GUT_GENOME001427 s__Bacteroides ovatus
GUT_GENOME001428 s__Ruminococcus_B gnavus
GUT_GENOME001430 s__Enterobacter hormaechei_A
GUT_GENOME001433 s__Bifidobacterium bifidum
GUT_GENOME001434 s__Bifidobacterium bifidum
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GUT_GENOME001435 s__Parabacteroides distasonis
GUT_GENOME001437 s__Blautia_A wexlerae
GUT_GENOME001439 s__Bifidobacterium bifidum
GUT_GENOME001441 s__Bifidobacterium bifidum
GUT_GENOME001442 s__Blautia_A obeum
GUT_GENOME001444 s__Agathobaculum butyriciproducens
GUT_GENOME001446 s__Blautia_A wexlerae
GUT_GENOME001448 s__Clostridium_Q fessum
GUT_GENOME001463 s__Thomasclavelia ramosa
GUT_GENOME001464 s__Ruminococcus_B gnavus
GUT_GENOME001467 s__Anaerostipes hadrus
GUT_GENOME001469 s__Ruminococcus_B gnavus
GUT_GENOME001472 s__Bariatricus comes
GUT_GENOME001473 s__Bacteroides caccae
GUT_GENOME001474 s__Blautia_A sp003471165
GUT_GENOME001476 s__Mediterraneibacter faecis
GUT_GENOME001489 s__Agathobacter rectalis
GUT_GENOME001491 s__Ruminococcus_B gnavus
GUT_GENOME001492 s__Blautia_A obeum
GUT_GENOME001496 s__Bacteroides thetaiotaomicron
GUT_GENOME001497 s__Fusicatenibacter saccharivorans
GUT_GENOME001504 s__Blautia_A wexlerae
GUT_GENOME001509 s__Roseburia inulinivorans
GUT_GENOME001512 s__Faecalibacillus intestinalis
GUT_GENOME001513 s__Bariatricus comes
GUT_GENOME001515 s__Dorea formicigenerans
GUT_GENOME001516 s__Anaerostipes hadrus
GUT_GENOME001517 s__Faecalibacillus intestinalis
GUT_GENOME001521 s__Parabacteroides distasonis
GUT_GENOME001524 s__Bacteroides stercoris
GUT_GENOME001527 s__Ruminococcus_B gnavus
GUT_GENOME001530 s__Lactiplantibacillus plantarum
GUT_GENOME001535 s__Lactiplantibacillus plantarum
GUT_GENOME001536 s__Anaerostipes hadrus
GUT_GENOME001537 s__Thomasclavelia ramosa
GUT_GENOME001541 s__Parabacteroides distasonis
GUT_GENOME001548 s__Parabacteroides distasonis
GUT_GENOME001551 s__Bacteroides fragilis
GUT_GENOME001553 s__Bacteroides thetaiotaomicron
GUT_GENOME001554 s__Anaerostipes hadrus
GUT_GENOME001555 s__Bacteroides xylanisolvens
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GUT_GENOME001556 s__Parabacteroides distasonis
GUT_GENOME001559 s__Agathobacter rectalis
GUT_GENOME001561 s__Faecalibacillus intestinalis
GUT_GENOME001562 s__Parabacteroides merdae
GUT_GENOME001563 s__Bacteroides caccae
GUT_GENOME001564 s__Mediterraneibacter faecis
GUT_GENOME001565 s__Roseburia inulinivorans
GUT_GENOME001568 s__Blautia_A wexlerae
GUT_GENOME001570 s__Bacteroides stercoris
GUT_GENOME001575 s__Mediterraneibacter faecis
GUT_GENOME001576 s__Clostridium_Q fessum
GUT_GENOME001579 s__Blautia_A obeum
GUT_GENOME001580 s__Ruminococcus_B gnavus
GUT_GENOME001582 s__Agathobaculum butyriciproducens
GUT_GENOME001583 s__Parabacteroides distasonis
GUT_GENOME001587 s__Fusicatenibacter saccharivorans
GUT_GENOME001588 s__Collinsella sp003466125
GUT_GENOME001589 s__Ruminococcus_D bicirculans
GUT_GENOME001591 s__Faecalibacillus intestinalis
GUT_GENOME001592 s__Bacteroides stercoris
GUT_GENOME001595 s__Clostridium_Q fessum
GUT_GENOME001599 s__Agathobaculum butyriciproducens
GUT_GENOME001600 s__Fusicatenibacter saccharivorans
GUT_GENOME001601 s__Ruminococcus_E bromii_B
GUT_GENOME001603 s__Fusicatenibacter saccharivorans
GUT_GENOME001605 s__Blautia_A sp003471165
GUT_GENOME001608 s__Longicatena caecimuris
GUT_GENOME001610 s__Mediterraneibacter faecis
GUT_GENOME001611 s__Agathobacter rectalis
GUT_GENOME001613 s__Dorea formicigenerans
GUT_GENOME001615 s__Blautia_A wexlerae
GUT_GENOME001616 s__Faecalibacillus intestinalis
GUT_GENOME001618 s__Mediterraneibacter faecis
GUT_GENOME001620 s__Mediterraneibacter faecis
GUT_GENOME001621 s__Mediterraneibacter faecis
GUT_GENOME001623 s__Blautia_A obeum
GUT_GENOME001624 s__Blautia_A sp003471165
GUT_GENOME001625 s__Fusicatenibacter saccharivorans
GUT_GENOME001629 s__Mediterraneibacter faecis
GUT_GENOME001631 s__Agathobacter rectalis
GUT_GENOME001632 s__Bacteroides ovatus
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GUT_GENOME001633 s__Blautia_A sp003471165
GUT_GENOME001637 s__Bacteroides thetaiotaomicron
GUT_GENOME001640 s__Parabacteroides merdae
GUT_GENOME001641 s__Bacteroides xylanisolvens
GUT_GENOME001643 s__Parabacteroides distasonis
GUT_GENOME001648 s__Bacteroides fragilis
GUT_GENOME001650 s__Ruminococcus_D bicirculans
GUT_GENOME001651 s__Bacteroides caccae
GUT_GENOME001654 s__Ruminococcus_E bromii_B
GUT_GENOME001655 s__Agathobacter rectalis
GUT_GENOME001658 s__Faecalibacillus intestinalis
GUT_GENOME001659 s__Ruminococcus_E bromii_B
GUT_GENOME001660 s__Bacteroides ovatus
GUT_GENOME001661 s__Bacteroides stercoris
GUT_GENOME001662 s__Blautia_A wexlerae
GUT_GENOME001663 s__Agathobaculum butyriciproducens
GUT_GENOME001665 s__Parabacteroides distasonis
GUT_GENOME001667 s__Lachnospira eligens_A
GUT_GENOME001669 s__Ruminococcus_B gnavus
GUT_GENOME001670 s__Roseburia inulinivorans
GUT_GENOME001673 s__Mediterraneibacter faecis
GUT_GENOME001674 s__Parabacteroides distasonis
GUT_GENOME001675 s__Lacticaseibacillus paracasei
GUT_GENOME001680 s__Ruminococcus_E bromii_B
GUT_GENOME001683 s__Bifidobacterium adolescentis
GUT_GENOME001684 s__Blautia_A obeum
GUT_GENOME001685 s__Parabacteroides merdae
GUT_GENOME001689 s__Anaerobutyricum hallii
GUT_GENOME001693 s__Blautia_A wexlerae
GUT_GENOME001695 s__Dorea formicigenerans
GUT_GENOME001697 s__Longicatena caecimuris
GUT_GENOME001699 s__Blautia_A wexlerae
GUT_GENOME001701 s__Ruminococcus_E bromii_B
GUT_GENOME001702 s__Bifidobacterium bifidum
GUT_GENOME001705 s__Agathobacter rectalis
GUT_GENOME001706 s__Bifidobacterium adolescentis
GUT_GENOME001710 s__Bacteroides stercoris
GUT_GENOME001711 s__Dorea formicigenerans
GUT_GENOME001715 s__Lachnospira eligens_A
GUT_GENOME001716 s__Blautia_A obeum
GUT_GENOME001717 s__Dorea formicigenerans
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GUT_GENOME001719 s__Faecalibacillus intestinalis
GUT_GENOME001720 s__Bacteroides xylanisolvens
GUT_GENOME001721 s__Ruminococcus_B gnavus
GUT_GENOME001722 s__Parabacteroides distasonis
GUT_GENOME001727 s__Thomasclavelia ramosa
GUT_GENOME001737 s__Blautia_A obeum
GUT_GENOME001741 s__Blautia_A wexlerae
GUT_GENOME001742 s__Dorea formicigenerans
GUT_GENOME001746 s__Bacteroides stercoris
GUT_GENOME001747 s__Bacteroides fragilis
GUT_GENOME001748 s__Bacteroides ovatus
GUT_GENOME001754 s__Bifidobacterium adolescentis
GUT_GENOME001755 s__Mediterraneibacter faecis
GUT_GENOME001758 s__Blautia_A obeum
GUT_GENOME001759 s__Blautia_A wexlerae
GUT_GENOME001765 s__Bifidobacterium bifidum
GUT_GENOME001767 s__Agathobacter rectalis
GUT_GENOME001770 s__Roseburia inulinivorans
GUT_GENOME001771 s__Agathobacter rectalis
GUT_GENOME001774 s__Fusicatenibacter saccharivorans
GUT_GENOME001781 s__Dorea formicigenerans
GUT_GENOME001788 s__Clostridium_Q fessum
GUT_GENOME001789 s__Lachnospira eligens_A
GUT_GENOME001795 s__Ruminococcus_D bicirculans
GUT_GENOME001801 s__Parabacteroides distasonis
GUT_GENOME001802 s__Bacteroides caccae
GUT_GENOME001804 s__Agathobacter rectalis
GUT_GENOME001808 s__Agathobacter rectalis
GUT_GENOME001809 s__Blautia_A wexlerae
GUT_GENOME001810 s__Blautia_A wexlerae
GUT_GENOME001812 s__Blautia_A wexlerae
GUT_GENOME001813 s__Dorea formicigenerans
GUT_GENOME001814 s__Blautia_A wexlerae
GUT_GENOME001817 s__Ruminococcus_E bromii_B
GUT_GENOME001821 s__Ruminococcus_D bicirculans
GUT_GENOME001822 s__Fusicatenibacter saccharivorans
GUT_GENOME001823 s__Bacteroides stercoris
GUT_GENOME001824 s__Agathobacter rectalis
GUT_GENOME001825 s__Bacteroides fragilis
GUT_GENOME001826 s__Longicatena caecimuris
GUT_GENOME001827 s__Clostridium_Q fessum
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GUT_GENOME001829 s__Anaerobutyricum hallii
GUT_GENOME001830 s__Parabacteroides merdae
GUT_GENOME001832 s__Agathobacter rectalis
GUT_GENOME001833 s__Lachnospira eligens_A
GUT_GENOME001834 s__Mediterraneibacter faecis
GUT_GENOME001838 s__Bacteroides stercoris
GUT_GENOME001840 s__Mediterraneibacter faecis
GUT_GENOME001841 s__Bacteroides ovatus
GUT_GENOME001842 s__Blautia_A wexlerae
GUT_GENOME001843 s__Parabacteroides merdae
GUT_GENOME001844 s__Parabacteroides distasonis
GUT_GENOME001846 s__Bacteroides stercoris
GUT_GENOME001848 s__Bacteroides stercoris
GUT_GENOME001849 s__Bacteroides thetaiotaomicron
GUT_GENOME001850 s__Ruminococcus_B gnavus
GUT_GENOME001855 s__Parabacteroides distasonis
GUT_GENOME001856 s__Blautia_A wexlerae
GUT_GENOME001858 s__Bacteroides caccae
GUT_GENOME001859 s__Ruminococcus_D bicirculans
GUT_GENOME001860 s__Agathobacter rectalis
GUT_GENOME001862 s__Bacteroides xylanisolvens
GUT_GENOME001863 s__Bacteroides ovatus
GUT_GENOME001865 s__Blautia_A obeum
GUT_GENOME001868 s__Bacteroides ovatus
GUT_GENOME001869 s__Mediterraneibacter faecis
GUT_GENOME001874 s__Blautia_A sp003471165
GUT_GENOME015911 s__Bacteroides ovatus
GUT_GENOME015913 s__Ruminococcus_E bromii_B
GUT_GENOME015915 s__Bacteroides fragilis
GUT_GENOME095937 s__Lacticaseibacillus rhamnosus
GUT_GENOME095939 s__Lacticaseibacillus rhamnosus
GUT_GENOME095940 s__Lactiplantibacillus plantarum
GUT_GENOME095945 s__Enterococcus faecalis
GUT_GENOME095946 s__Enterococcus faecalis
GUT_GENOME095947 s__Enterococcus faecalis
GUT_GENOME095948 s__Enterococcus faecalis
GUT_GENOME095949 s__Enterococcus faecalis
GUT_GENOME095950 s__Enterococcus faecalis
GUT_GENOME095951 s__Enterococcus faecalis
GUT_GENOME095954 s__Blautia_A obeum
GUT_GENOME095957 s__Bifidobacterium adolescentis
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GUT_GENOME095958 s__Parabacteroides merdae
GUT_GENOME095959 s__Bacteroides ovatus
GUT_GENOME095972 s__Thomasclavelia ramosa
GUT_GENOME095974 s__Bacteroides stercoris
GUT_GENOME095975 s__Anaerostipes hadrus
GUT_GENOME095984 s__Bifidobacterium bifidum
GUT_GENOME095990 s__Lacticaseibacillus paracasei
GUT_GENOME095993 s__Bariatricus comes
GUT_GENOME096013 s__Parabacteroides distasonis
GUT_GENOME096014 s__Bacteroides ovatus
GUT_GENOME096016 s__Bacteroides xylanisolvens
GUT_GENOME096023 s__Bifidobacterium breve
GUT_GENOME096024 s__Bacteroides cellulosilyticus
GUT_GENOME096044 s__Thomasclavelia ramosa
GUT_GENOME096052 s__Enterococcus faecalis
GUT_GENOME096053 s__Enterococcus faecalis
GUT_GENOME096059 s__Lacticaseibacillus paracasei
GUT_GENOME096063 s__Bacteroides fragilis
GUT_GENOME096064 s__Bacteroides thetaiotaomicron
GUT_GENOME096067 s__Blautia_A wexlerae
GUT_GENOME096068 s__Lacticaseibacillus rhamnosus
GUT_GENOME096079 s__Bacteroides fragilis
GUT_GENOME096080 s__Bacteroides xylanisolvens
GUT_GENOME096081 s__Parabacteroides distasonis
GUT_GENOME096085 s__Parabacteroides distasonis
GUT_GENOME096087 s__Parabacteroides distasonis
GUT_GENOME096088 s__Bacteroides ovatus
GUT_GENOME096092 s__Longicatena caecimuris
GUT_GENOME096093 s__Parabacteroides distasonis
GUT_GENOME096094 s__Bacteroides xylanisolvens
GUT_GENOME096127 s__Bacteroides caccae
GUT_GENOME096129 s__Dorea formicigenerans
GUT_GENOME096131 s__Ruminococcus_B gnavus
GUT_GENOME096141 s__Anaerobutyricum hallii
GUT_GENOME096142 s__Roseburia inulinivorans
GUT_GENOME096145 s__Enterococcus faecalis
GUT_GENOME096146 s__Bacteroides xylanisolvens
GUT_GENOME096148 s__Bacteroides ovatus
GUT_GENOME096149 s__Bacteroides xylanisolvens
GUT_GENOME096159 s__Anaerostipes hadrus
GUT_GENOME096163 s__Eggerthella lenta
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GUT_GENOME096181 s__Eggerthella lenta
GUT_GENOME096203 s__Bacteroides ovatus
GUT_GENOME096204 s__Bacteroides fragilis
GUT_GENOME096205 s__Bacteroides xylanisolvens
GUT_GENOME096210 s__Ruminococcus_B gnavus
GUT_GENOME096218 s__Dorea formicigenerans
GUT_GENOME096231 s__Lacticaseibacillus rhamnosus
GUT_GENOME096247 s__Thomasclavelia ramosa
GUT_GENOME096253 s__Longicatena caecimuris
GUT_GENOME096255 s__Sarcina perfringens
GUT_GENOME096257 s__Thomasclavelia ramosa
GUT_GENOME096265 s__Bifidobacterium bifidum
GUT_GENOME096280 s__Parabacteroides distasonis
GUT_GENOME096303 s__Anaerostipes hadrus
GUT_GENOME096379 s__Bifidobacterium breve
GUT_GENOME096397 s__Bifidobacterium bifidum
GUT_GENOME096429 s__Bacteroides xylanisolvens
GUT_GENOME096433 s__Lactiplantibacillus plantarum
GUT_GENOME096434 s__Enterococcus faecalis
GUT_GENOME096444 s__Faecalibacillus intestinalis
GUT_GENOME096453 s__Eggerthella lenta
GUT_GENOME096456 s__Bifidobacterium breve
GUT_GENOME096457 s__Bifidobacterium bifidum
GUT_GENOME096471 s__Anaerostipes hadrus
GUT_GENOME096475 s__Bifidobacterium bifidum
GUT_GENOME096477 s__Bifidobacterium breve
GUT_GENOME096488 s__Parabacteroides distasonis
GUT_GENOME096492 s__Bacteroides xylanisolvens
GUT_GENOME096515 s__Anaerostipes hadrus
GUT_GENOME096516 s__Anaerostipes hadrus
GUT_GENOME096517 s__Anaerostipes hadrus
GUT_GENOME096520 s__Lactiplantibacillus plantarum
GUT_GENOME096552 s__Blautia_A wexlerae
GUT_GENOME103690 s__Bifidobacterium breve
GUT_GENOME103700 s__Dorea formicigenerans
GUT_GENOME103702 s__Longicatena caecimuris
GUT_GENOME103720 s__Sarcina perfringens
GUT_GENOME103721 s__Enterococcus faecalis
GUT_GENOME103722 s__Enterococcus faecalis
GUT_GENOME103742 s__Coprococcus eutactus_A
GUT_GENOME103745 s__Parabacteroides distasonis

197



Novel taxonomic profiling and ...

GUT_GENOME103755 s__Akkermansia muciniphila
GUT_GENOME103767 s__Fusicatenibacter saccharivorans
GUT_GENOME103768 s__Fusicatenibacter saccharivorans
GUT_GENOME103769 s__Fusicatenibacter saccharivorans
GUT_GENOME103772 s__Roseburia inulinivorans
GUT_GENOME103774 s__Bariatricus comes
GUT_GENOME103775 s__Bariatricus comes
GUT_GENOME103779 s__Roseburia inulinivorans
GUT_GENOME103781 s__Lachnospira eligens_A
GUT_GENOME103782 s__Lachnospira eligens_A
GUT_GENOME103784 s__Coprococcus eutactus_A
GUT_GENOME103786 s__Coprococcus eutactus_A
GUT_GENOME103787 s__Bariatricus comes
GUT_GENOME103790 s__Coprococcus eutactus_A
GUT_GENOME103792 s__Bariatricus comes
GUT_GENOME103793 s__Coprococcus eutactus_A
GUT_GENOME103794 s__Blautia_A wexlerae
GUT_GENOME103796 s__Bacteroides caccae
GUT_GENOME103798 s__Mediterraneibacter faecis
GUT_GENOME103799 s__Blautia_A wexlerae
GUT_GENOME103801 s__Blautia_A wexlerae
GUT_GENOME103804 s__Blautia_A obeum
GUT_GENOME103806 s__Anaerobutyricum hallii
GUT_GENOME103807 s__Blautia_A wexlerae
GUT_GENOME103808 s__Blautia_A wexlerae
GUT_GENOME103809 s__Mediterraneibacter faecis
GUT_GENOME103810 s__Mediterraneibacter faecis
GUT_GENOME103811 s__Blautia_A obeum
GUT_GENOME103814 s__Anaerobutyricum hallii
GUT_GENOME103819 s__Anaerostipes hadrus
GUT_GENOME103820 s__Anaerostipes hadrus
GUT_GENOME103821 s__Anaerostipes hadrus
GUT_GENOME103824 s__Anaerostipes hadrus
GUT_GENOME103848 s__Dorea formicigenerans
GUT_GENOME103869 s__Roseburia inulinivorans
GUT_GENOME103872 s__Bacteroides cellulosilyticus
GUT_GENOME103873 s__Anaerobutyricum hallii
GUT_GENOME103876 s__Parabacteroides distasonis
GUT_GENOME103881 s__Parabacteroides distasonis
GUT_GENOME103888 s__Anaerostipes hadrus
GUT_GENOME103894 s__Enterobacter hormaechei_A
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GUT_GENOME103895 s__Agathobacter rectalis
GUT_GENOME140036 s__Parabacteroides distasonis
GUT_GENOME140040 s__Bacteroides ovatus
GUT_GENOME140052 s__Faecalibacillus intestinalis
GUT_GENOME140056 s__Bacteroides caccae
GUT_GENOME140059 s__Bacteroides caccae
GUT_GENOME140060 s__Bacteroides thetaiotaomicron
GUT_GENOME140061 s__Bacteroides ovatus
GUT_GENOME140063 s__Fusicatenibacter saccharivorans
GUT_GENOME140064 s__Blautia_A obeum
GUT_GENOME140070 s__Faecalibacillus intestinalis
GUT_GENOME140079 s__Parabacteroides distasonis
GUT_GENOME140080 s__Parabacteroides distasonis
GUT_GENOME140083 s__Thomasclavelia ramosa
GUT_GENOME140084 s__Bifidobacterium adolescentis
GUT_GENOME140085 s__Bifidobacterium adolescentis
GUT_GENOME140086 s__Bacteroides fragilis
GUT_GENOME140087 s__Bacteroides ovatus
GUT_GENOME140089 s__Bacteroides fragilis
GUT_GENOME140091 s__Bacteroides thetaiotaomicron
GUT_GENOME140094 s__Mediterraneibacter faecis
GUT_GENOME140100 s__Agathobaculum butyriciproducens
GUT_GENOME140101 s__Fusicatenibacter saccharivorans
GUT_GENOME140102 s__Agathobaculum butyriciproducens
GUT_GENOME140107 s__Longicatena caecimuris
GUT_GENOME140109 s__Agathobaculum butyriciproducens
GUT_GENOME140110 s__Fusicatenibacter saccharivorans
GUT_GENOME140113 s__Clostridium_Q fessum
GUT_GENOME140114 s__Agathobaculum butyriciproducens
GUT_GENOME140229 s__Bacteroides fragilis
GUT_GENOME140231 s__Dorea formicigenerans
GUT_GENOME140232 s__Parabacteroides distasonis
GUT_GENOME140234 s__Blautia_A wexlerae
GUT_GENOME140238 s__Anaerostipes hadrus
GUT_GENOME140252 s__Bacteroides fragilis
GUT_GENOME140254 s__RUG115 sp900066395
GUT_GENOME140255 s__Dorea formicigenerans
GUT_GENOME140257 s__Blautia_A obeum
GUT_GENOME140258 s__RUG115 sp900066395
GUT_GENOME140260 s__RUG115 sp900066395
GUT_GENOME140261 s__RUG115 sp900066395

199



Novel taxonomic profiling and ...

GUT_GENOME140267 s__RUG115 sp900066395
GUT_GENOME140271 s__Mediterraneibacter faecis
GUT_GENOME140275 s__Clostridium_Q fessum
GUT_GENOME140279 s__Parabacteroides merdae
GUT_GENOME140285 s__Bacteroides caccae
GUT_GENOME140288 s__Agathobacter rectalis
GUT_GENOME140289 s__Clostridium_Q fessum
GUT_GENOME140290 s__Agathobacter rectalis
GUT_GENOME140292 s__Fusicatenibacter saccharivorans
GUT_GENOME140294 s__Blautia_A wexlerae
GUT_GENOME140295 s__Agathobacter rectalis
GUT_GENOME140298 s__Blautia_A obeum
GUT_GENOME140301 s__Fusicatenibacter saccharivorans
GUT_GENOME140303 s__Parabacteroides merdae
GUT_GENOME140305 s__Bacteroides fragilis
GUT_GENOME140306 s__Coprococcus eutactus_A
GUT_GENOME140308 s__Bacteroides fragilis
GUT_GENOME140310 s__Coprococcus eutactus_A
GUT_GENOME140312 s__Thomasclavelia ramosa
GUT_GENOME140313 s__Agathobaculum butyriciproducens
GUT_GENOME140317 s__Collinsella sp003466125
GUT_GENOME140318 s__Agathobacter rectalis
GUT_GENOME140319 s__Ruminococcus_D bicirculans
GUT_GENOME140323 s__Parabacteroides distasonis
GUT_GENOME140325 s__Mediterraneibacter faecis
GUT_GENOME140331 s__Agathobacter rectalis
GUT_GENOME140332 s__Mediterraneibacter faecis
GUT_GENOME140339 s__Faecalibacillus intestinalis
GUT_GENOME140344 s__Enterococcus faecalis
GUT_GENOME140346 s__Blautia_A sp003471165
GUT_GENOME140384 s__Bifidobacterium breve
GUT_GENOME140607 s__Blautia_A wexlerae
GUT_GENOME140721 s__Enterococcus faecalis
GUT_GENOME140722 s__Enterococcus faecalis
GUT_GENOME140724 s__Enterococcus faecalis
GUT_GENOME140725 s__Enterococcus faecalis
GUT_GENOME140726 s__Enterococcus faecalis
GUT_GENOME140786 s__Ruminococcus_D bicirculans
GUT_GENOME140790 s__Enterococcus faecalis
GUT_GENOME140791 s__Enterococcus faecalis
GUT_GENOME140792 s__Enterococcus faecalis
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GUT_GENOME140793 s__Enterococcus faecalis
GUT_GENOME141010 s__Bifidobacterium bifidum
GUT_GENOME141011 s__Bifidobacterium bifidum
GUT_GENOME141012 s__Bifidobacterium bifidum
GUT_GENOME141056 s__Thomasclavelia ramosa
GUT_GENOME141096 s__Yersinia enterocolitica
GUT_GENOME141105 s__Clostridium_F botulinum
GUT_GENOME141111 s__Lacticaseibacillus paracasei
GUT_GENOME141112 s__Lacticaseibacillus paracasei
GUT_GENOME141113 s__Lacticaseibacillus paracasei
GUT_GENOME141114 s__Lacticaseibacillus paracasei
GUT_GENOME141116 s__Yersinia enterocolitica
GUT_GENOME141117 s__Yersinia enterocolitica
GUT_GENOME141118 s__Yersinia enterocolitica
GUT_GENOME141143 s__Bacteroides cellulosilyticus
GUT_GENOME141188 s__Lactiplantibacillus plantarum
GUT_GENOME141224 s__Enterobacter hormaechei_A
GUT_GENOME141241 s__Lacticaseibacillus rhamnosus
GUT_GENOME141399 s__Enterobacter hormaechei_A
GUT_GENOME141400 s__Enterobacter hormaechei_A
GUT_GENOME141448 s__Bacteroides fragilis
GUT_GENOME141449 s__Bacteroides fragilis
GUT_GENOME141450 s__Bacteroides fragilis
GUT_GENOME141451 s__Bacteroides fragilis
GUT_GENOME141452 s__Bacteroides fragilis
GUT_GENOME141453 s__Bacteroides fragilis
GUT_GENOME141454 s__Bacteroides fragilis
GUT_GENOME141455 s__Bacteroides fragilis
GUT_GENOME141456 s__Bacteroides fragilis
GUT_GENOME141457 s__Bacteroides fragilis
GUT_GENOME141458 s__Bacteroides fragilis
GUT_GENOME141459 s__Bacteroides fragilis
GUT_GENOME141460 s__Bacteroides fragilis
GUT_GENOME141468 s__Enterococcus faecalis
GUT_GENOME141469 s__Enterococcus faecalis
GUT_GENOME141470 s__Enterococcus faecalis
GUT_GENOME141471 s__Enterococcus faecalis
GUT_GENOME141472 s__Enterococcus faecalis
GUT_GENOME141687 s__Bifidobacterium breve
GUT_GENOME141688 s__Bifidobacterium breve
GUT_GENOME141689 s__Bifidobacterium breve
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GUT_GENOME141690 s__Bifidobacterium breve
GUT_GENOME141691 s__Bifidobacterium breve
GUT_GENOME141692 s__Bifidobacterium breve
GUT_GENOME141693 s__Bifidobacterium breve
GUT_GENOME141694 s__Bifidobacterium breve
GUT_GENOME141695 s__Bifidobacterium breve
GUT_GENOME141696 s__Bifidobacterium breve
GUT_GENOME141698 s__Clostridium_F botulinum
GUT_GENOME141699 s__Clostridium_F botulinum
GUT_GENOME141700 s__Clostridium_F botulinum
GUT_GENOME141701 s__Clostridium_F botulinum
GUT_GENOME141702 s__Clostridium_F botulinum
GUT_GENOME141703 s__Clostridium_F botulinum
GUT_GENOME141704 s__Clostridium_F botulinum
GUT_GENOME141710 s__Bifidobacterium breve
GUT_GENOME141711 s__Bifidobacterium breve
GUT_GENOME141712 s__Bifidobacterium breve
GUT_GENOME141713 s__Bifidobacterium breve
GUT_GENOME141719 s__Lacticaseibacillus rhamnosus
GUT_GENOME141720 s__Lacticaseibacillus rhamnosus
GUT_GENOME141721 s__Lacticaseibacillus rhamnosus
GUT_GENOME141722 s__Enterococcus faecalis
GUT_GENOME141735 s__Lactiplantibacillus plantarum
GUT_GENOME141741 s__Lacticaseibacillus rhamnosus
GUT_GENOME141742 s__Clostridium_F botulinum
GUT_GENOME142059 s__Clostridium_F botulinum
GUT_GENOME142060 s__Clostridium_F botulinum
GUT_GENOME142063 s__Clostridium_F botulinum
GUT_GENOME142064 s__Clostridium_F botulinum
GUT_GENOME142065 s__Clostridium_F botulinum
GUT_GENOME142066 s__Clostridium_F botulinum
GUT_GENOME142067 s__Clostridium_F botulinum
GUT_GENOME142391 s__Sarcina perfringens
GUT_GENOME142436 s__Enterobacter hormaechei_A
GUT_GENOME142437 s__Enterobacter hormaechei_A
GUT_GENOME142438 s__Enterobacter hormaechei_A
GUT_GENOME142439 s__Enterobacter hormaechei_A
GUT_GENOME142440 s__Enterobacter hormaechei_A
GUT_GENOME142441 s__Enterobacter hormaechei_A
GUT_GENOME142442 s__Enterobacter hormaechei_A
GUT_GENOME142443 s__Enterobacter hormaechei_A
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GUT_GENOME142444 s__Enterobacter hormaechei_A
GUT_GENOME142445 s__Enterobacter hormaechei_A
GUT_GENOME142446 s__Enterobacter hormaechei_A
GUT_GENOME142447 s__Enterobacter hormaechei_A
GUT_GENOME142448 s__Enterobacter hormaechei_A
GUT_GENOME142449 s__Enterobacter hormaechei_A
GUT_GENOME142450 s__Enterobacter hormaechei_A
GUT_GENOME142451 s__Enterobacter hormaechei_A
GUT_GENOME142452 s__Enterobacter hormaechei_A
GUT_GENOME142453 s__Enterobacter hormaechei_A
GUT_GENOME142454 s__Enterobacter hormaechei_A
GUT_GENOME142455 s__Enterobacter hormaechei_A
GUT_GENOME142456 s__Enterobacter hormaechei_A
GUT_GENOME142458 s__Lactiplantibacillus plantarum
GUT_GENOME142459 s__Lactiplantibacillus plantarum
GUT_GENOME142460 s__Lactiplantibacillus plantarum
GUT_GENOME142461 s__Lactiplantibacillus plantarum
GUT_GENOME142462 s__Lactiplantibacillus plantarum
GUT_GENOME142463 s__Lactiplantibacillus plantarum
GUT_GENOME142464 s__Lactiplantibacillus plantarum
GUT_GENOME142465 s__Lactiplantibacillus plantarum
GUT_GENOME142466 s__Lactiplantibacillus plantarum
GUT_GENOME142467 s__Lactiplantibacillus plantarum
GUT_GENOME142468 s__Lactiplantibacillus plantarum
GUT_GENOME142469 s__Lactiplantibacillus plantarum
GUT_GENOME142470 s__Lactiplantibacillus plantarum
GUT_GENOME142471 s__Lactiplantibacillus plantarum
GUT_GENOME142472 s__Lactiplantibacillus plantarum
GUT_GENOME142473 s__Lactiplantibacillus plantarum
GUT_GENOME142474 s__Lactiplantibacillus plantarum
GUT_GENOME142475 s__Lactiplantibacillus plantarum
GUT_GENOME142476 s__Lactiplantibacillus plantarum
GUT_GENOME142477 s__Lactiplantibacillus plantarum
GUT_GENOME142478 s__Lactiplantibacillus plantarum
GUT_GENOME142479 s__Lactiplantibacillus plantarum
GUT_GENOME142483 s__Lacticaseibacillus paracasei
GUT_GENOME142484 s__Lacticaseibacillus paracasei
GUT_GENOME142508 s__Bifidobacterium adolescentis
GUT_GENOME142509 s__Bifidobacterium adolescentis
GUT_GENOME142510 s__Bifidobacterium adolescentis
GUT_GENOME142511 s__Bifidobacterium adolescentis
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GUT_GENOME142512 s__Bifidobacterium adolescentis
GUT_GENOME142513 s__Bifidobacterium adolescentis
GUT_GENOME142514 s__Bifidobacterium adolescentis
GUT_GENOME142515 s__Bifidobacterium adolescentis
GUT_GENOME142516 s__Bifidobacterium adolescentis
GUT_GENOME142517 s__Bifidobacterium adolescentis
GUT_GENOME142518 s__Bifidobacterium adolescentis
GUT_GENOME142519 s__Bifidobacterium adolescentis
GUT_GENOME142520 s__Bifidobacterium adolescentis
GUT_GENOME142521 s__Bifidobacterium adolescentis
GUT_GENOME142522 s__Bifidobacterium adolescentis
GUT_GENOME142523 s__Bifidobacterium adolescentis
GUT_GENOME142524 s__Bifidobacterium adolescentis
GUT_GENOME142525 s__Bifidobacterium bifidum
GUT_GENOME142526 s__Bifidobacterium bifidum
GUT_GENOME142527 s__Bifidobacterium bifidum
GUT_GENOME142528 s__Bifidobacterium bifidum
GUT_GENOME142529 s__Bifidobacterium bifidum
GUT_GENOME142530 s__Bifidobacterium bifidum
GUT_GENOME142531 s__Bifidobacterium bifidum
GUT_GENOME142532 s__Bifidobacterium bifidum
GUT_GENOME142533 s__Bifidobacterium bifidum
GUT_GENOME142534 s__Bifidobacterium bifidum
GUT_GENOME142535 s__Bifidobacterium bifidum
GUT_GENOME142536 s__Bifidobacterium bifidum
GUT_GENOME142537 s__Bifidobacterium bifidum
GUT_GENOME142538 s__Bifidobacterium bifidum
GUT_GENOME142539 s__Bifidobacterium bifidum
GUT_GENOME142547 s__Bifidobacterium breve
GUT_GENOME142548 s__Bifidobacterium breve
GUT_GENOME142549 s__Bifidobacterium breve
GUT_GENOME142550 s__Bifidobacterium breve
GUT_GENOME142551 s__Bifidobacterium breve
GUT_GENOME142552 s__Bifidobacterium breve
GUT_GENOME142553 s__Bifidobacterium breve
GUT_GENOME142554 s__Bifidobacterium breve
GUT_GENOME142555 s__Bifidobacterium breve
GUT_GENOME142556 s__Bifidobacterium breve
GUT_GENOME142557 s__Bifidobacterium breve
GUT_GENOME142558 s__Bifidobacterium breve
GUT_GENOME142559 s__Bifidobacterium breve
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GUT_GENOME142560 s__Bifidobacterium breve
GUT_GENOME142561 s__Bifidobacterium breve
GUT_GENOME142562 s__Bifidobacterium breve
GUT_GENOME142563 s__Bifidobacterium breve
GUT_GENOME142564 s__Bifidobacterium breve
GUT_GENOME142577 s__Lacticaseibacillus rhamnosus
GUT_GENOME142584 s__Bacteroides ovatus
GUT_GENOME143130 s__Parabacteroides distasonis
GUT_GENOME143131 s__Parabacteroides distasonis
GUT_GENOME143133 s__Enterobacter hormaechei_A
GUT_GENOME143155 s__Faecalibacillus intestinalis
GUT_GENOME143157 s__Clostridium_Q fessum
GUT_GENOME143194 s__Akkermansia muciniphila
GUT_GENOME143195 s__Akkermansia muciniphila
GUT_GENOME143205 s__Akkermansia muciniphila
GUT_GENOME143206 s__Akkermansia muciniphila
GUT_GENOME143207 s__Akkermansia muciniphila
GUT_GENOME143208 s__Akkermansia muciniphila
GUT_GENOME143209 s__Akkermansia muciniphila
GUT_GENOME143210 s__Akkermansia muciniphila
GUT_GENOME143211 s__Akkermansia muciniphila
GUT_GENOME143212 s__Akkermansia muciniphila
GUT_GENOME143213 s__Akkermansia muciniphila
GUT_GENOME143214 s__Akkermansia muciniphila
GUT_GENOME143215 s__Akkermansia muciniphila
GUT_GENOME143216 s__Akkermansia muciniphila
GUT_GENOME143217 s__Akkermansia muciniphila
GUT_GENOME143218 s__Akkermansia muciniphila
GUT_GENOME143219 s__Akkermansia muciniphila
GUT_GENOME143222 s__Akkermansia muciniphila
GUT_GENOME143223 s__Akkermansia muciniphila
GUT_GENOME143224 s__Akkermansia muciniphila
GUT_GENOME143225 s__Akkermansia muciniphila
GUT_GENOME143226 s__Akkermansia muciniphila
GUT_GENOME143230 s__Anaerostipes hadrus
GUT_GENOME143231 s__Bacteroides cellulosilyticus
GUT_GENOME143232 s__Bacteroides cellulosilyticus
GUT_GENOME143233 s__Bacteroides fragilis
GUT_GENOME143336 s__Lacticaseibacillus paracasei
GUT_GENOME143337 s__Lacticaseibacillus paracasei
GUT_GENOME143338 s__Lacticaseibacillus paracasei
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GUT_GENOME143339 s__Lacticaseibacillus paracasei
GUT_GENOME143355 s__Bacteroides ovatus
GUT_GENOME143356 s__Bacteroides ovatus
GUT_GENOME143357 s__Bacteroides ovatus
GUT_GENOME143358 s__Bacteroides ovatus
GUT_GENOME143415 s__Enterobacter hormaechei_A
GUT_GENOME143483 s__Bifidobacterium breve
GUT_GENOME143485 s__Bacteroides cellulosilyticus
GUT_GENOME143516 s__Agathobacter rectalis
GUT_GENOME143521 s__Ruminococcus_E bromii_B
GUT_GENOME143523 s__Ruminococcus_E bromii_B
GUT_GENOME143572 s__Bacteroides fragilis
GUT_GENOME143578 s__Blautia_A wexlerae
GUT_GENOME143591 s__Bacteroides stercoris
GUT_GENOME143592 s__Bacteroides thetaiotaomicron
GUT_GENOME143593 s__Bacteroides thetaiotaomicron
GUT_GENOME143635 s__Lacticaseibacillus paracasei
GUT_GENOME143636 s__Lacticaseibacillus rhamnosus
GUT_GENOME143637 s__Lacticaseibacillus rhamnosus
GUT_GENOME143638 s__Lacticaseibacillus rhamnosus
GUT_GENOME143639 s__Lacticaseibacillus rhamnosus
GUT_GENOME143640 s__Lacticaseibacillus rhamnosus
GUT_GENOME143641 s__Lacticaseibacillus rhamnosus
GUT_GENOME143642 s__Lacticaseibacillus rhamnosus
GUT_GENOME143643 s__Lacticaseibacillus rhamnosus
GUT_GENOME143644 s__Lacticaseibacillus rhamnosus
GUT_GENOME143645 s__Lacticaseibacillus rhamnosus
GUT_GENOME143646 s__Lacticaseibacillus rhamnosus
GUT_GENOME143647 s__Lacticaseibacillus rhamnosus
GUT_GENOME143648 s__Lacticaseibacillus rhamnosus
GUT_GENOME143649 s__Lacticaseibacillus rhamnosus
GUT_GENOME143650 s__Lacticaseibacillus rhamnosus
GUT_GENOME143651 s__Lacticaseibacillus rhamnosus
GUT_GENOME143652 s__Lacticaseibacillus rhamnosus
GUT_GENOME143653 s__Lacticaseibacillus rhamnosus
GUT_GENOME143654 s__Lacticaseibacillus rhamnosus
GUT_GENOME143655 s__Lacticaseibacillus rhamnosus
GUT_GENOME143656 s__Lacticaseibacillus rhamnosus
GUT_GENOME143659 s__Bifidobacterium bifidum
GUT_GENOME143661 s__Neisseria gonorrhoeae
GUT_GENOME143662 s__Neisseria gonorrhoeae
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GUT_GENOME143663 s__Neisseria gonorrhoeae
GUT_GENOME143664 s__Neisseria gonorrhoeae
GUT_GENOME143665 s__Neisseria gonorrhoeae
GUT_GENOME143666 s__Neisseria gonorrhoeae
GUT_GENOME143667 s__Neisseria gonorrhoeae
GUT_GENOME143668 s__Neisseria gonorrhoeae
GUT_GENOME143669 s__Neisseria gonorrhoeae
GUT_GENOME143670 s__Neisseria gonorrhoeae
GUT_GENOME143671 s__Neisseria gonorrhoeae
GUT_GENOME143672 s__Neisseria gonorrhoeae
GUT_GENOME143673 s__Neisseria gonorrhoeae
GUT_GENOME143674 s__Neisseria gonorrhoeae
GUT_GENOME143675 s__Neisseria gonorrhoeae
GUT_GENOME143676 s__Neisseria gonorrhoeae
GUT_GENOME143677 s__Neisseria gonorrhoeae
GUT_GENOME143678 s__Neisseria gonorrhoeae
GUT_GENOME143679 s__Neisseria gonorrhoeae
GUT_GENOME143680 s__Neisseria gonorrhoeae
GUT_GENOME143681 s__Neisseria gonorrhoeae
GUT_GENOME143682 s__Neisseria gonorrhoeae
GUT_GENOME143683 s__Neisseria gonorrhoeae
GUT_GENOME143684 s__Neisseria gonorrhoeae
GUT_GENOME143685 s__Neisseria gonorrhoeae
GUT_GENOME143686 s__Neisseria gonorrhoeae
GUT_GENOME143687 s__Neisseria gonorrhoeae
GUT_GENOME143688 s__Neisseria gonorrhoeae
GUT_GENOME143689 s__Neisseria gonorrhoeae
GUT_GENOME143690 s__Neisseria gonorrhoeae
GUT_GENOME143691 s__Neisseria gonorrhoeae
GUT_GENOME143692 s__Neisseria gonorrhoeae
GUT_GENOME143693 s__Neisseria gonorrhoeae
GUT_GENOME143694 s__Neisseria gonorrhoeae
GUT_GENOME143695 s__Neisseria gonorrhoeae
GUT_GENOME143696 s__Neisseria gonorrhoeae
GUT_GENOME143697 s__Neisseria gonorrhoeae
GUT_GENOME143698 s__Neisseria gonorrhoeae
GUT_GENOME143699 s__Neisseria gonorrhoeae
GUT_GENOME143700 s__Neisseria gonorrhoeae
GUT_GENOME143701 s__Neisseria gonorrhoeae
GUT_GENOME143702 s__Neisseria gonorrhoeae
GUT_GENOME143703 s__Neisseria gonorrhoeae
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GUT_GENOME143704 s__Neisseria gonorrhoeae
GUT_GENOME143705 s__Neisseria gonorrhoeae
GUT_GENOME143706 s__Neisseria gonorrhoeae
GUT_GENOME143707 s__Neisseria gonorrhoeae
GUT_GENOME143712 s__Agathobacter rectalis
GUT_GENOME143713 s__Agathobacter rectalis
GUT_GENOME143720 s__Lacticaseibacillus paracasei
GUT_GENOME143753 s__Enterobacter hormaechei_A
GUT_GENOME143754 s__Enterobacter hormaechei_A
GUT_GENOME143756 s__Enterobacter hormaechei_A
GUT_GENOME143757 s__Enterobacter hormaechei_A
GUT_GENOME143758 s__Enterobacter hormaechei_A
GUT_GENOME143760 s__Enterobacter hormaechei_A
GUT_GENOME143761 s__Longicatena caecimuris
GUT_GENOME143762 s__Bacteroides xylanisolvens
GUT_GENOME143767 s__Thomasclavelia ramosa
GUT_GENOME145579 s__Enterococcus faecalis
GUT_GENOME145995 s__Bifidobacterium adolescentis
GUT_GENOME147110 s__Yersinia enterocolitica
GUT_GENOME147111 s__Yersinia enterocolitica
GUT_GENOME147112 s__Yersinia enterocolitica
GUT_GENOME147113 s__Yersinia enterocolitica
GUT_GENOME147114 s__Yersinia enterocolitica
GUT_GENOME147116 s__Yersinia enterocolitica
GUT_GENOME147117 s__Yersinia enterocolitica
GUT_GENOME147118 s__Yersinia enterocolitica
GUT_GENOME147119 s__Yersinia enterocolitica
GUT_GENOME147120 s__Yersinia enterocolitica
GUT_GENOME147121 s__Yersinia enterocolitica
GUT_GENOME147122 s__Yersinia enterocolitica
GUT_GENOME147123 s__Yersinia enterocolitica
GUT_GENOME147124 s__Yersinia enterocolitica
GUT_GENOME147125 s__Yersinia enterocolitica
GUT_GENOME147126 s__Yersinia enterocolitica
GUT_GENOME147127 s__Yersinia enterocolitica
GUT_GENOME147128 s__Yersinia enterocolitica
GUT_GENOME147129 s__Yersinia enterocolitica
GUT_GENOME147135 s__Bacteroides thetaiotaomicron
GUT_GENOME147149 s__Anaerostipes hadrus
GUT_GENOME147150 s__Anaerostipes hadrus
GUT_GENOME147156 s__Bacteroides xylanisolvens
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GUT_GENOME147157 s__Enterococcus faecalis
GUT_GENOME147158 s__Mediterraneibacter faecis
GUT_GENOME147162 s__Agathobacter rectalis
GUT_GENOME147163 s__Agathobacter rectalis
GUT_GENOME147165 s__Ruminococcus_E bromii_B
GUT_GENOME147170 s__Parabacteroides distasonis
GUT_GENOME147541 s__Bifidobacterium bifidum
GUT_GENOME147548 s__Enterobacter hormaechei_A
GUT_GENOME147603 s__Enterococcus faecalis
GUT_GENOME147606 s__Coprococcus eutactus_A
GUT_GENOME147631 s__Bacteroides fragilis
GUT_GENOME147632 s__Bacteroides fragilis
GUT_GENOME147633 s__Bacteroides fragilis
GUT_GENOME147634 s__Bacteroides fragilis
GUT_GENOME147635 s__Bacteroides fragilis
GUT_GENOME147636 s__Bacteroides fragilis
GUT_GENOME147637 s__Bacteroides fragilis
GUT_GENOME147638 s__Bacteroides thetaiotaomicron
GUT_GENOME147639 s__Bacteroides thetaiotaomicron
GUT_GENOME147642 s__Parabacteroides distasonis
GUT_GENOME147643 s__Parabacteroides distasonis
GUT_GENOME147659 s__Eggerthella lenta
GUT_GENOME147660 s__Eggerthella lenta
GUT_GENOME147661 s__Eggerthella lenta
GUT_GENOME147662 s__Eggerthella lenta
GUT_GENOME147663 s__Eggerthella lenta
GUT_GENOME147664 s__Eggerthella lenta
GUT_GENOME147665 s__Eggerthella lenta
GUT_GENOME147666 s__Eggerthella lenta
GUT_GENOME147667 s__Eggerthella lenta
GUT_GENOME147668 s__Eggerthella lenta
GUT_GENOME147669 s__Eggerthella lenta
GUT_GENOME147670 s__Eggerthella lenta
GUT_GENOME147671 s__Eggerthella lenta
GUT_GENOME147672 s__Eggerthella lenta
GUT_GENOME147673 s__Eggerthella lenta
GUT_GENOME147674 s__Eggerthella lenta
GUT_GENOME147675 s__Eggerthella lenta
GUT_GENOME147676 s__Eggerthella lenta
GUT_GENOME147784 s__Bifidobacterium breve
GUT_GENOME147854 s__Bacteroides caccae
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GUT_GENOME147855 s__Bacteroides cellulosilyticus
GUT_GENOME147860 s__Bacteroides fragilis
GUT_GENOME147861 s__Bacteroides fragilis
GUT_GENOME147862 s__Bacteroides fragilis
GUT_GENOME147863 s__Bacteroides fragilis
GUT_GENOME147864 s__Bacteroides fragilis
GUT_GENOME147866 s__Bacteroides ovatus
GUT_GENOME147867 s__Bacteroides ovatus
GUT_GENOME147872 s__Parabacteroides distasonis
GUT_GENOME147873 s__Parabacteroides distasonis
GUT_GENOME147876 s__Parabacteroides merdae
GUT_GENOME147877 s__Parabacteroides merdae
GUT_GENOME239653 s__Ruminococcus_B gnavus
GUT_GENOME239656 s__Bacteroides stercoris
GUT_GENOME239662 s__Bacteroides stercoris
GUT_GENOME239667 s__Bifidobacterium bifidum
GUT_GENOME239668 s__Eggerthella lenta
GUT_GENOME239669 s__Longicatena caecimuris
GUT_GENOME239671 s__Bacteroides fragilis
GUT_GENOME239672 s__Bifidobacterium bifidum
GUT_GENOME239675 s__Bifidobacterium adolescentis
GUT_GENOME239677 s__Bifidobacterium bifidum
GUT_GENOME239678 s__Bifidobacterium bifidum
GUT_GENOME239679 s__Clostridium_Q fessum
GUT_GENOME239680 s__Blautia_A wexlerae
GUT_GENOME239681 s__Bifidobacterium adolescentis
GUT_GENOME239682 s__Bifidobacterium adolescentis
GUT_GENOME239691 s__Bifidobacterium bifidum
GUT_GENOME239707 s__Mediterraneibacter faecis
GUT_GENOME239708 s__Blautia_A obeum
GUT_GENOME239711 s__Collinsella sp003466125
GUT_GENOME239712 s__Bacteroides fragilis
GUT_GENOME239716 s__Dorea formicigenerans
GUT_GENOME239718 s__Parabacteroides distasonis
GUT_GENOME239720 s__Faecalibacillus intestinalis
GUT_GENOME239722 s__Mediterraneibacter faecis
GUT_GENOME239723 s__Fusicatenibacter saccharivorans
GUT_GENOME239724 s__Bacteroides xylanisolvens
GUT_GENOME239727 s__Parabacteroides distasonis
GUT_GENOME239729 s__Mediterraneibacter faecis
GUT_GENOME239730 s__Anaerostipes hadrus
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GUT_GENOME239732 s__Dorea formicigenerans
GUT_GENOME239733 s__Clostridium_Q fessum
GUT_GENOME239734 s__Coprococcus eutactus_A
GUT_GENOME239735 s__Agathobacter rectalis
GUT_GENOME239736 s__Blautia_A wexlerae
GUT_GENOME239740 s__Parabacteroides distasonis
GUT_GENOME239741 s__Fusicatenibacter saccharivorans
GUT_GENOME239742 s__Longicatena caecimuris
GUT_GENOME239743 s__Ruminococcus_E bromii_B
GUT_GENOME239744 s__Dorea formicigenerans
GUT_GENOME239746 s__Ruminococcus_D bicirculans
GUT_GENOME239748 s__Fusicatenibacter saccharivorans
GUT_GENOME239752 s__Bifidobacterium bifidum
GUT_GENOME239753 s__Bifidobacterium bifidum
GUT_GENOME239756 s__Bifidobacterium bifidum
GUT_GENOME239758 s__Ruminococcus_B gnavus
GUT_GENOME239767 s__Bifidobacterium bifidum
GUT_GENOME239771 s__Collinsella sp003466125
GUT_GENOME239773 s__Dorea formicigenerans
GUT_GENOME239774 s__Bifidobacterium bifidum
GUT_GENOME239777 s__Bacteroides stercoris
GUT_GENOME239783 s__Bifidobacterium adolescentis
GUT_GENOME239784 s__Bifidobacterium adolescentis
GUT_GENOME239785 s__Bifidobacterium bifidum
GUT_GENOME239788 s__Bariatricus comes
GUT_GENOME239791 s__Bacteroides ovatus
GUT_GENOME239792 s__Ruminococcus_B gnavus
GUT_GENOME239794 s__Bifidobacterium bifidum
GUT_GENOME239796 s__Bacteroides fragilis
GUT_GENOME239802 s__Blautia_A obeum
GUT_GENOME239803 s__Bacteroides xylanisolvens
GUT_GENOME239804 s__Dorea formicigenerans
GUT_GENOME239805 s__Ruminococcus_E bromii_B
GUT_GENOME239806 s__Dorea formicigenerans
GUT_GENOME239807 s__Blautia_A wexlerae
GUT_GENOME239808 s__Ruminococcus_E bromii_B
GUT_GENOME239809 s__Faecalibacillus intestinalis
GUT_GENOME239810 s__Agathobaculum butyriciproducens
GUT_GENOME239812 s__Anaerobutyricum hallii
GUT_GENOME239814 s__Ruminococcus_E bromii_B
GUT_GENOME239815 s__Collinsella sp003466125
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GUT_GENOME239816 s__Fusicatenibacter saccharivorans
GUT_GENOME239817 s__Agathobacter rectalis
GUT_GENOME239819 s__Blautia_A sp003471165

A.1.2 Varkit
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A.1.3 Protal

Table A.6: All genomes that are part of the MSSS200R dataset and their
GTDB r214 species annotations generated with GTDB-tk 2.32. Genomes were
downloaded from MGnify Genomes v2.0 (ftp://ftp.ebi.ac.uk/pub/databases/
metagenomics/mgnify_genomes/human-gut/v2.0/).

Genome Species
MGYG000228797 s__Acutalibacter sp900759575
MGYG000001950 s__Gastranaerophilus phascolarctosicola
MGYG000003796 s__Peptoniphilus_B sp000478985
MGYG000002246 s__UBA6857 sp900555805
MGYG000003156 s__Eubacterium_R sp900544515
MGYG000000768 s__Collinsella sp900542905
MGYG000002978 s__Collinsella sp900548515
MGYG000003718 s__S5-A14a sp900553025
MGYG000002734 s__Collinsella sp900545165
MGYG000003432 s__UBA6857 sp900767015
MGYG000003419 s__RF16 sp900766775
MGYG000002829 s__Enterocloster sp900551225
MGYG000089933 s__CAG-313 sp900760745
MGYG000001602 s__Blautia sp900547685
MGYG000228316 s__HGM11417 sp900761895
MGYG000003748 s__Alterileibacterium massiliense
MGYG000030438 s__Kluyvera sp902363335
MGYG000289070 s__Mailhella sp900553065
MGYG000003512 s__UBA11524 sp900769075
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MGYG000003062 s__Collinsella sp900550185
MGYG000067591 s__Collinsella sp900541065
MGYG000035843 s__Anaerosporomusa sp900542835
MGYG000002187 s__Collinsella sp000434535
MGYG000002891 s__Streptococcus sp900546335
MGYG000210301 s__Gemella sp900766305
MGYG000001644 s__UBA7173 sp900759895
MGYG000173278 s__Streptococcus mitis_D
MGYG000002764 s__Collinsella sp900555745
MGYG000003593 s__Enterocloster sp900770345
MGYG000001190 s__Collinsella sp900759435
MGYG000003398.1 s__HGM08974 sp900766555
MGYG000000785 s__Lancefieldella sp900555335
MGYG000002957 s__Ellagibacter sp900554945
MGYG000003533 s__SFTJ01 sp900769345
MGYG000000966 s__Blautia_A sp900553515
MGYG000003363 s__Bacteroides sp900766195
MGYG000001015 s__Gemmiger sp900556255
MGYG000000946 s__Collinsella sp900552685
MGYG000003523 s__CAG-475 sp900769205
MGYG000061704 s__Collinsella sp900552755
MGYG000003397.1 s__F0422 sp900766245
MGYG000003544 s__Alistipes sp900769525
MGYG000002911 s__Collinsella sp900541045
MGYG000003239 s__Coprococcus sp900761435
MGYG000003131 s__UMGS1260 sp900550105
MGYG000003779 s__Stomatobaculum sp002892395
MGYG000001124 s__Collinsella sp900757285
MGYG000209960 s__CAG-269 sp900762425
MGYG000002869 s__Collinsella sp900549535
MGYG000123327 s__Collinsella sp900551815
MGYG000000145 s__Lacrimispora sp902363735
MGYG000071947 s__Collinsella sp900762015
MGYG000003547 s__UMGS1976 sp900769535
MGYG000000555 s__Cellulosilyticum sp900556665
MGYG000003047 s__Collinsella sp900553705
MGYG000143125 s__HGM12957 sp900760695
MGYG000002927 s__Collinsella sp900554585
MGYG000002241 s__UMGS1901 sp900556135
MGYG000249426 s__KA00274 sp902373515
MGYG000000906 s__Phocaeicola sp900552075
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MGYG000002915 s__Collinsella sp900548075
MGYG000002877 s__Prevotella sp900550365
MGYG000016339 s__Collinsella sp900542125
MGYG000186436 s__GCA-900066495 sp902362365
MGYG000002824 s__Collinsella sp900552705
MGYG000003345 s__Veillonella sp900765235
MGYG000218377 s__Collinsella sp900543605
MGYG000002830 s__Veillonella sp900552715
MGYG000001215 s__Collinsella sp900759045
MGYG000002752 s__Collinsella sp900556605
MGYG000212344 s__Pauljensenia sp001064145
MGYG000003646 s__UBA1259 sp900771345
MGYG000003803 s__Pantoea conspicua
MGYG000002984 s__UBA737 sp900554525
MGYG000001127 s__Collinsella sp900757385
MGYG000002988 s__Pauljensenia sp900556405
MGYG000155954 s__UMGS1370 sp900551135
MGYG000180154 s__V9D3004 sp900760345
MGYG000001082 s__Ruminococcus_E sp900755995
MGYG000003276 s__Collinsella sp900762345
MGYG000044303 s__Phascolarctobacterium_A sp900770955
MGYG000001121 s__Collinsella sp900757205
MGYG000001139 s__Collinsella sp900757595
MGYG000048288 s__Collinsella sp900545995
MGYG000003549 s__UBA1259 sp900769565
MGYG000096229 s__UMGS1601 sp900553335
MGYG000002709 s__UMGS1623 sp900553525
MGYG000035712 s__Collinsella sp900542965
MGYG000002132 s__Monoglobus sp900542675
MGYG000001000 s__UBA4716 sp900556575
MGYG000002923 s__Collinsella sp900547805
MGYG000003201 s__CAG-873 sp900759825
MGYG000003068 s__UMGS1388 sp900551345
MGYG000023952 s__Dialister sp900543455
MGYG000002875 s__CAG-873 sp900541865
MGYG000002847 s__Collinsella sp900554325
MGYG000003011 s__Collinsella sp900545605
MGYG000255664 s__CAG-267 sp900551865
MGYG000003274 s__Collinsella sp900762355
MGYG000003160 s__UMGS1858 sp900555705
MGYG000236063 s__Collinsella sp900542305
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MGYG000003555 s__SFWF01 sp900769775
MGYG000261263 s__UMGS1783 sp900555065
MGYG000000127 s__Catenibacillus sp902363555
MGYG000003515 s__Prevotella sp900769275
MGYG000002767 s__Collinsella sp900557455
MGYG000106591 s__Paramuribaculum sp900759835
MGYG000193619 s__Veillonella sp900549805
MGYG000003132 s__Dysgonomonas sp900556485
MGYG000003202 s__UBA3263 sp900759865
MGYG000000943 s__Eubacterium_R sp900555015
MGYG000241852 s__Blautia_A sp900540785
MGYG000003472 s__Alistipes sp900768045
MGYG000003542 s__Alistipes sp900769445
MGYG000126202 s__Succinivibrio sp900770725
MGYG000003209 s__Collinsella sp900760215
MGYG000003260 s__Collinsella sp900761945
MGYG000003513 s__Prevotella sp900769055
MGYG000003157 s__Collinsella sp900556515
MGYG000002137 s__Collinsella sp900556205
MGYG000259799 s__Anaerococcus sp900551095
MGYG000000115 s__Clostridium_J sp902363375
MGYG000002883 s__UMGS1477 sp900553845
MGYG000171916 s__Dysosmobacter sp900546705
MGYG000038090 s__UMGS124 sp900539345
MGYG000003027 s__Collinsella sp900550595
MGYG000001274 s__Streptococcus sp902373455
MGYG000003019 s__Alistipes sp900553175
MGYG000238610 s__Streptococcus sp900755085
MGYG000003572 s__Prevotella sp900770025
MGYG000054386 s__Veillonella_A sp900545795
MGYG000003229 s__Collinsella sp900761035
MGYG000004457 s__CAG-485 sp900767075
MGYG000000116 s__Exiguobacterium_A sp902363455
MGYG000002949 s__UMGS1251 sp900549995
MGYG000000940 s__Collinsella sp900548935
MGYG000003035 s__CAG-485 sp900542185
MGYG000003231 s__Collinsella sp900761145
MGYG000003249 s__Victivallis sp900761715
MGYG000003751 s__Peptoniphilus_A raoultii
MGYG000004731 s__Bifidobacterium italicum
MGYG000148734 s__Ruminococcus sp900752785
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MGYG000003200 s__CAG-873 sp900759845
MGYG000006226 s__Ruminococcus_D sp900539835
MGYG000001663 s__Alistipes sp900760675
MGYG000003199 s__HGM05190 sp900759815
MGYG000003765 s__Prevotella bergensis
MGYG000003775 s__Ezakiella massiliensis
MGYG000000152 s__Lacrimispora sp902363835
MGYG000003606 s__HGM10611 sp900770645
MGYG000003026 s__Collinsella sp900549195
MGYG000003500 s__Butyrivibrio_A sp900768755
MGYG000004084 s__HGM10766 sp900757295
MGYG000003587 s__Ruminococcus_D sp900770285
MGYG000101484 s__UMGS693 sp900544555
MGYG000003632 s__Acinetobacter sp900771065
MGYG000075875 s__Zag111 sp900551965
MGYG000003494 s__Ruminiclostridium_E sp900768735
MGYG000000102.1 s__Terrisporobacter sp902363255
MGYG000252678 s__CAG-485 sp900760885
MGYG000003462 s__Collinsella sp900767675
MGYG000004975 s__Collinsella sp900557505
MGYG000003194 s__Paramuribaculum sp900546365
MGYG000088509 s__Collinsella sp900546105
MGYG000003443 s__UBA1067 sp900767325
MGYG000001130 s__Collinsella sp900757615
MGYG000257190 s__HGM13862 sp900760825
MGYG000003497 s__RF16 sp900768725
MGYG000005033 s__Collinsella sp900547345
MGYG000121486 s__Ruminococcus sp900761275
MGYG000001267 s__Lancefieldella sp902373375
MGYG000218052 s__Collinsella sp900556415
MGYG000017976 s__Collinsella sp900768265
MGYG000003625 s__UBA2913 sp900770895
MGYG000003203 s__Butyricimonas sp900759925
MGYG000003180 s__Collinsella sp900544065
MGYG000003241 s__Eubacterium_R sp900761545
MGYG000277149 s__Dialister sp900545785
MGYG000003234 s__Collinsella sp900761155
MGYG000001134 s__Collinsella sp900757495
MGYG000249906 s__Desulfovibrio sp900547595
MGYG000003468 s__UMGS1883 sp900768005
MGYG000003038 s__Collinsella sp900554465
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MGYG000003023 s__Parasutterella sp900554375
MGYG000003436 s__HGM20899 sp900767005
MGYG000005372 s__UMGS1601 sp900545345
MGYG000248022 s__UBA7185 sp900756555
MGYG000026963 s__UMGS856 sp900760305
MGYG000003413 s__Akkermansia sp900766865
MGYG000200135 s__Collinsella sp900544425
MGYG000003827 s__51-20 sp900539605
MGYG000031695 s__Succinivibrio sp900767695
MGYG000003609 s__UBA1259 sp900770685
MGYG000241933 s__Fusobacterium_B sp900545035
MGYG000048231 s__Caproiciproducens sp900546895
MGYG000133322 s__Collinsella sp900553165
MGYG000145548 s__HGM12998 sp900756495
MGYG000003651 s__RF16 sp900767595
MGYG000003173 s__Collinsella sp900541185
MGYG000000913 s__Blautia sp900556555
MGYG000003421 s__CAG-115 sp900766795
MGYG000148963 s__Dialister sp900547785
MGYG000003218 s__HGM13862 sp900760825
MGYG000002192 s__Acutalibacter sp900543305
MGYG000043704 s__Massilistercora sp902406105
MGYG000003601 s__HGM12713 sp900770605
MGYG000003496 s__CAG-115 sp900768705
MGYG000278902 s__HGM04593 sp900770665
MGYG000003560 s__UMGS1820 sp900769795
MGYG000003183 s__Collinsella sp900541195
MGYG000001628 s__Collinsella sp900549345
MGYG000003040 s__Collinsella sp900556705
MGYG000001087 s__Anaerostipes sp900756035
MGYG000158189 s__Blautia_A sp900551465
MGYG000168959 s__Collinsella sp900541135
MGYG000283354 s__Butyricimonas sp900759925
MGYG000115019 s__Evtepia sp900758955
MGYG000077418 s__Lacrimispora sp902363735
MGYG000003589 s__Dysosmobacter sp900770295
MGYG000234251 s__Zag111 sp900551965
MGYG000243949 s__Dialister sp900543455
MGYG000002887 s__Anaerococcus sp900550345
MGYG000034979 s__Gastranaerophilus phascolarctosicola
MGYG000003034 s__Collinsella sp900554495
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MGYG000002956 s__Lactobacillus kalixensis
MGYG000282934 s__HGM11788 sp900760465
MGYG000003020 s__Collinsella sp900554985
MGYG000107112 s__Peptoniphilus_B sp000478985
MGYG000001605 s__Enorma sp900538305
MGYG000002968 s__Collinsella sp900546455
MGYG000033599 s__Collinsella sp900554255
MGYG000237437 s__Acutalibacter sp900759575
MGYG000201340 s__Treponema_D sp900769325
MGYG000003559 s__HGM04593 sp900769765
MGYG000003721 s__Peptoniphilus_C urinimassiliensis
MGYG000003261 s__Collinsella sp900761995
MGYG000001123 s__Collinsella sp900757265
MGYG000041593 s__Collinsella sp900542825
MGYG000000563 s__Collinsella sp900546105
MGYG000003471 s__UBA737 sp900768035
MGYG000148170 s__Collinsella sp900556415
MGYG000003377 s__Phytobacter sp002377245
MGYG000213982 s__Collinsella sp900541065
MGYG000071663 s__Collinsella sp900541715
MGYG000075643 s__CAG-485 sp900761855
MGYG000087858 s__Paramuribaculum sp900551515
MGYG000018490 s__Bilophila sp900553145
MGYG000007854 s__UBA10677 sp900760475
MGYG000269707 s__Lawsonibacter sp900763995
MGYG000231128 s__UMGS1783 sp900555065
MGYG000003277 s__Duncaniella sp900762315
MGYG000001135 s__Collinsella sp900757465
MGYG000105919 s__QAMM01 sp900762715
MGYG000003143 s__Clostridium_J sp900548455
MGYG000188244 s__Collinsella sp900544875
MGYG000000132 s__Beduini sp902363625
MGYG000178801 s__Clostridium_Q sp900547735
MGYG000003543.1 s__HGM04593 sp900769465
MGYG000058755 s__CAAGGB01 sp900769285
MGYG000238756 s__Collinsella sp900767675
MGYG000000868 s__Collinsella sp900544425
MGYG000003168 s__Collinsella sp900552295
MGYG000101694 s__Collinsella sp900759045
MGYG000002970 s__Collinsella sp900552755
MGYG000082196 s__Collinsella sp900556205
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MGYG000003028 s__Collinsella sp900551655
MGYG000003198 s__Paramuribaculum sp900759835
MGYG000004538 s__CAG-313 sp900760745
MGYG000192963 s__UBA1829 sp900760615
MGYG000079547 s__UMGS1613 sp900553395
MGYG000003756 s__Varibaculum massiliense
MGYG000000923 s__Phocaeicola sp900552645
MGYG000003159 s__Collinsella sp900556285
MGYG000000783 s__Veillonella_A sp900545795
MGYG000001064 s__Streptococcus sp900755085
MGYG000121639 s__Collinsella sp900553165
MGYG000211017 s__Collinsella sp900541795
MGYG000002195 s__Emergencia sp900551775
MGYG000188468 s__HGM11808 sp900757025
MGYG000157150 s__Ruminococcus_D sp900539835
MGYG000216838 s__Collinsella sp900760325
MGYG000072093 s__UMGS693 sp900544555
MGYG000003174 s__Collinsella sp900542125
MGYG000003538 s__UBA737 sp900769375
MGYG000003558 s__UMGS1322 sp900769815
MGYG000003339 s__Collinsella sp900765115
MGYG000003347 s__Prevotella sp900765465
MGYG000001280 s__KA00274 sp902373515
MGYG000049493 s__UMGS1649 sp900553785
MGYG000043831 s__CAG-510 sp900551115
MGYG000003029 s__Collinsella sp900543615
MGYG000285993 s__Collinsella sp900547505
MGYG000188691 s__Collinsella sp900551365
MGYG000232223 s__Stenotrophomonas maltophilia_S
MGYG000003935 s__CAG-465 sp900554875
MGYG000000978 s__Streptococcus mitis_D
MGYG000228344 s__Collinsella sp900547765
MGYG000126710 s__UBA6857 sp900555805
MGYG000021465 s__CAG-267 sp900551865
MGYG000003437 s__Eubacterium_R sp900767025
MGYG000097077 s__Collinsella sp900545165
MGYG000000551 s__Mailhella sp900553065
MGYG000003364 s__Collinsella sp900766165
MGYG000001005 s__Faecalimonas sp900550235
MGYG000057269 s__CAG-485 sp900767075
MGYG000094638 s__Paramuribaculum sp900760855
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MGYG000002917 s__Collinsella sp900544725
MGYG000001681 s__Ruminococcus sp900761275
MGYG000069350 s__Dysosmobacter sp900548505
MGYG000002952 s__Bulleidia sp900554555
MGYG000002733 s__Collinsella sp900549335
MGYG000003122 s__Collinsella sp900541235
MGYG000159707 s__Succinivibrio sp900767695
MGYG000000926 s__Veillonella sp900549845
MGYG000067131 s__Angelakisella sp003453215
MGYG000036406 s__Acetatifactor sp900771995
MGYG000197282 s__Collinsella sp900549185
MGYG000172030 s__CAG-272 sp900556615
MGYG000212243 s__Collinsella sp900556365
MGYG000206548 s__Porphyromonas uenonis_A
MGYG000003054 s__Eubacterium_R sp900547915
MGYG000133403 s__Collinsella sp900539735
MGYG000224544 s__Longibaculum sp900538465
MGYG000002043 s__Collinsella sp900757235
MGYG000003191 s__Collinsella sp900547285
MGYG000001212 s__Acutalibacter sp900759575
MGYG000001126 s__Collinsella sp900757505
MGYG000003018 s__Alistipes_A sp900549685
MGYG000003521 s__Parabacteroides sp900770835
MGYG000023461 s__Collinsella sp900548935
MGYG000207674 s__UMGS1623 sp900553525
MGYG000109557 s__Collinsella sp900542825
MGYG000011925 s__Collinsella sp900551365
MGYG000000536 s__Cetobacterium_A sp900766645
MGYG000003528 s__CAAGGB01 sp900769285
MGYG000000976 s__CAG-492 sp900557195
MGYG000003031 s__Collinsella sp900545995
MGYG000001616 s__Dysosmobacter sp900544955
MGYG000094422 s__Alistipes sp900761235
MGYG000120288 s__Collinsella sp900556415
MGYG000224160 s__UMGS1783 sp900555065
MGYG000003275 s__Collinsella sp900762325
MGYG000002871 s__Collinsella sp900555815
MGYG000058319 s__Pauljensenia sp900554605
MGYG000192428 s__CAG-977 sp900768845
MGYG000266338 s__Duodenibacillus sp900762555
MGYG000176561 s__Ezakiella sp900540185
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MGYG000202305 s__Collinsella sp900548565
MGYG000133083 s__Enterocloster sp900555045
MGYG000072410 s__Fusobacterium_B sp900545035
MGYG000003517 s__UBA3766 sp900769175
MGYG000031271 s__CAG-267 sp900551865
MGYG000076247 s__HGM12957 sp900760695
MGYG000098151 s__Fusobacterium sp000235465
MGYG000252410 s__Eisenbergiella sp900548905
MGYG000002184 s__Collinsella sp900553165
MGYG000265493 s__Paramuribaculum sp900546365
MGYG000014463 s__Cellulosilyticum sp900556665
MGYG000003473 s__UBA6857 sp900768075
MGYG000001238 s__Evtepia sp900758955
MGYG000131888 s__CAG-485 sp900761855
MGYG000173721 s__Collinsella sp900761145
MGYG000002971 s__Collinsella sp900541715
MGYG000003213 s__Collinsella sp900760245
MGYG000003433 s__CAG-485 sp900766975
MGYG000145353 s__KA00274 sp902373515
MGYG000253035 s__Ruminococcus_D sp900539835
MGYG000002867 s__Alistipes sp900552955
MGYG000003012 s__Blautia_A sp900540785
MGYG000057517 s__Collinsella sp900555745
MGYG000280200 s__Enorma sp900538305
MGYG000106198 s__V9D3004 sp900760345
MGYG000239726 s__Acidaminococcus sp900554515
MGYG000000905 s__Collinsella sp900555555
MGYG000162316 s__Eubacterium_R sp900547915
MGYG000000769 s__Collinsella sp900544875
MGYG000004074 s__HGM12998 sp900756495
MGYG000079924 s__Paenibacillus_A sp900766135
MGYG000281238 s__Clostridium_J sp902363375
MGYG000003640 s__Butyrivibrio_A sp900771195
MGYG000128420 s__Butyricimonas sp900759925
MGYG000001631 s__Bilophila sp900553145
MGYG000001241 s__Collinsella sp900758885
MGYG000003341 s__Collinsella sp900765185
MGYG000003391 s__Gemella sp900766305
MGYG000003036 s__Collinsella sp900542555
MGYG000125852 s__Porphyromonas uenonis_A
MGYG000261359 s__Collinsella sp900541035
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MGYG000023773 s__Collinsella sp900545055
MGYG000269333 s__Collinsella sp900541795
MGYG000147056 s__Streptococcus sp900755085
MGYG000003181 s__Collinsella sp900545905
MGYG000009732 s__CAG-485 sp900767075
MGYG000002924 s__UMGS124 sp900539345
MGYG000217268 s__HGM11514 sp900757255
MGYG000003024 s__Collinsella sp900545835
MGYG000087105 s__Collinsella sp900542305
MGYG000001660 s__HGM11788 sp900760465
MGYG000001118 s__HGM11808 sp900757025
MGYG000268084 s__Fusobacterium_B sp900542625
MGYG000003890 s__Zag111 sp900551965
MGYG000002983 s__Gemella sp900555985
MGYG000000959 s__Ruminococcus sp900752785
MGYG000003104 s__UMGS1601 sp900545345
MGYG000197391 s__Dialister sp900543455
MGYG000002744 s__Collinsella sp900544865
MGYG000003368 s__Finegoldia sp900766215
MGYG000001884 s__UBA1829 sp900760615
MGYG000003221 s__OM05-12 sp900760755
MGYG000000531 s__Collinsella sp900768265
MGYG000003729 s__Peptostreptococcus sp000758885
MGYG000003534 s__Treponema_D sp900769325
MGYG000003204 s__HGM05232 sp900759955
MGYG000175538 s__UBA7173 sp900759895
MGYG000091901 s__Coprococcus sp900761435
MGYG000183191 s__Paramuribaculum sp900760855
MGYG000183674 s__HGM12998 sp900756495
MGYG000004263 s__Massilistercora sp902406105
MGYG000000308 s__Pauljensenia sp001064145
MGYG000264226 s__Phocaeicola sp900552645
MGYG000145892 s__Treponema_D sp900769325
MGYG000003617 s__Helicobacter_D sp900770765
MGYG000007433 s__Alterileibacterium massiliense
MGYG000003253 s__HGM11417 sp900761895
MGYG000003590 s__Sodaliphilus sp900770215
MGYG000004623 s__Blautia_A sp900551465
MGYG000003577 s__Anaeroplasma sp900770055
MGYG000209800 s__Collinsella sp900549335
MGYG000004905 s__UBA7488 sp002477185
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MGYG000003430 s__Eubacterium_R sp900766895
MGYG000022381 s__Acutalibacter sp900543305
MGYG000003228 s__Collinsella sp900761085
MGYG000187594 s__Collinsella sp900543025
MGYG000002991 s__Collinsella sp900542305
MGYG000164345 s__Stenotrophomonas maltophilia_S
MGYG000000984 s__Collinsella sp900549215
MGYG000004422 s__Collinsella sp900762015
MGYG000002777 s__Dialister sp900545785
MGYG000002918 s__Collinsella sp900547765
MGYG000165596 s__UBA10677 sp900760475
MGYG000254498 s__Collinsella sp900542555
MGYG000000110 s__Kluyvera sp902363335
MGYG000002928 s__Collinsella sp900554645
MGYG000000904 s__Collinsella sp900553415
MGYG000000921 s__Dysosmobacter sp900546705
MGYG000160954 s__Paramuribaculum sp900551515
MGYG000003359 s__Paenibacillus_A sp900766135
MGYG000152774 s__Collinsella sp900546455
MGYG000115908 s__Collinsella sp900547805
MGYG000003032 s__Collinsella sp900543605
MGYG000003415 s__Alistipes sp900766655
MGYG000225807 s__S5-A14a sp900553025
MGYG000172310 s__RF16 sp900767595
MGYG000002907 s__Anaerosporomusa sp900542835
MGYG000052345 s__Collinsella sp900557455
MGYG000266276 s__Collinsella sp900550185
MGYG000261816 s__UMGS1388 sp900551345
MGYG000018872 s__CAG-313 sp900760745
MGYG000182304 s__Collinsella sp900552875
MGYG000002117 s__Collinsella sp900556365
MGYG000255227 s__UMGS1601 sp900553335
MGYG000154772 s__51-20 sp900539605
MGYG000178849 s__Dysosmobacter sp900544955
MGYG000042980 s__Collinsella sp900539735
MGYG000191684 s__UMGS1490 sp900548185
MGYG000003252 s__Bacteroides sp900761785
MGYG000001083 s__CAG-873 sp900755985
MGYG000184757 s__Collinsella sp900768265
MGYG000001102 s__UBA7185 sp900756555
MGYG000002977 s__Bifidobacterium vaginale_F
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MGYG000002934 s__Caproiciproducens sp900546895
MGYG000094493 s__Terrisporobacter sp902363255
MGYG000124683 s__CAG-485 sp900542185
MGYG000263667 s__Alistipes sp900761235
MGYG000002140 s__CAG-510 sp900551115
MGYG000001590 s__Desulfovibrio sp900547595
MGYG000002995 s__Enterocloster sp900555045
MGYG000002792 s__Dialister sp900547785
MGYG000160679 s__CAG-465 sp900554875
MGYG000145523 s__UBA2804 sp900768635
MGYG000019977 s__Ezakiella sp900540185
MGYG000003223 s__CAG-485 sp900760885
MGYG000003006 s__Collinsella sp900551365
MGYG000164789 s__UMGS1623 sp900553525
MGYG000001595 s__Fusobacterium_B sp900545035
MGYG000132539 s__Collinsella sp900545605
MGYG000000907 s__Collinsella sp900551665
MGYG000019218 s__Collinsella sp900547505
MGYG000002751 s__Collinsella sp900551815
MGYG000084238 s__Butyricimonas sp900759925
MGYG000133934 s__Gabonibacter sp900543425
MGYG000279910 s__Monoglobus sp900542675
MGYG000057888 s__Anaeroplasma sp900767915
MGYG000003025 s__Collinsella sp900548565
MGYG000130409 s__Collinsella sp900762015
MGYG000230032 s__Intestinimonas sp900540545
MGYG000001635 s__Longibaculum sp900538465
MGYG000242150 s__CAG-465 sp900554875
MGYG000154418 s__Zag111 sp900551965
MGYG000168458 s__Gemmiger sp900556255
MGYG000067306 s__Veillonella sp900549805
MGYG000238187 s__Ruminococcus_E sp900755995
MGYG000137104 s__Collinsella sp900554255
MGYG000066886 s__HGM05190 sp900759815
MGYG000034974 s__Collinsella sp900556605
MGYG000065652 s__S5-A14a sp900553025
MGYG000033988 s__CAG-873 sp900755985
MGYG000066988 s__CAG-485 sp900760885
MGYG000102899 s__Eisenbergiella sp900548905
MGYG000092577 s__Collinsella sp900542825
MGYG000003268 s__Prevotella sp900762125
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MGYG000191558 s__Eubacterium_R sp900547915
MGYG000038402 s__HGM05232 sp900759955
MGYG000129050 s__HGM12957 sp900760695
MGYG000001172 s__Fusobacterium sp000235465
MGYG000131875 s__Collinsella sp900760325
MGYG000044730 s__Collinsella sp900549195
MGYG000098124 s__QAMM01 sp003150405
MGYG000213113 s__UMGS1901 sp900556135
MGYG000161034 s__Dialister sp900547785
MGYG000058630 s__UBA10677 sp900760475
MGYG000192274 s__Collinsella sp900541715
MGYG000003414 s__Acinetobacter sp900766635
MGYG000004089 s__UMGS1783 sp900555065
MGYG000150036 s__Emergencia sp900551775
MGYG000036209 s__Collinsella sp900542305
MGYG000209519 s__Paramuribaculum sp900551515
MGYG000002239 s__UMGS1613 sp900553395
MGYG000001612 s__Acidaminococcus sp900554515
MGYG000002247 s__Acetatifactor sp900771995
MGYG000259670 s__Acutalibacter sp900543305
MGYG000169476 s__UBA7488 sp002477185
MGYG000117956 s__Collinsella sp900541025
MGYG000023376 s__Collinsella sp900761085
MGYG000002936 s__Collinsella sp900547505
MGYG000001621 s__Pauljensenia sp900554605
MGYG000003838 s__QAMM01 sp003150405
MGYG000049659 s__Blautia sp900547685
MGYG000002916 s__Collinsella sp900545055
MGYG000001209 s__Porphyromonas uenonis_A
MGYG000002682 s__Dysosmobacter sp900548505
MGYG000276158 s__Collinsella sp900541035
MGYG000000565 s__Collinsella sp900545555
MGYG000144149 s__Ruminococcus_D sp900539835
MGYG000167754 s__Gabonibacter sp900543425
MGYG000003172 s__CAG-485 sp900555915
MGYG000025550 s__Dialister sp900543455
MGYG000000996 s__Collinsella sp900547345
MGYG000003280 s__CAG-269 sp900762425
MGYG000003491 s__UBA2804 sp900768635
MGYG000198535 s__Phascolarctobacterium_A sp900770955
MGYG000003309 s__Lawsonibacter sp900763995
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MGYG000105688 s__Fusobacterium_B sp900542625
MGYG000244658 s__Peptostreptococcus sp000758885
MGYG000264072 s__Collinsella sp900541795
MGYG000068798 s__Collinsella sp900541135
MGYG000190975 s__Collinsella sp900544425
MGYG000164350 s__Alistipes sp900760675
MGYG000274460 s__Collinsella sp900542825
MGYG000207557 s__Dialister sp900545785
MGYG000004208 s__CAG-485 sp900759795
MGYG000000488 s__Anaeroplasma sp900767915
MGYG000117940 s__Collinsella sp900553165
MGYG000001011 s__Anaerococcus sp900551095
MGYG000003505 s__CAG-977 sp900768845
MGYG000018441 s__Blautia_A sp900540785
MGYG000160316 s__Collinsella sp900768265
MGYG000003220 s__HGM12957 sp900760695
MGYG000001108 s__Collinsella sp900756765
MGYG000001592 s__Intestinimonas sp900540545
MGYG000263477 s__Paramuribaculum sp900760855
MGYG000003657 s__Collinsella sp900552875
MGYG000003610 s__HGM04593 sp900770665
MGYG000049946 s__Exiguobacterium_A sp902363455
MGYG000288152 s__CAG-267 sp900551865
MGYG000028308 s__Collinsella sp900541025
MGYG000232463 s__Prevotella sp900557255
MGYG000001796 s__UBA7488 sp002477185
MGYG000105123 s__CAG-485 sp900542185
MGYG000012311 s__Collinsella sp900541795
MGYG000111643 s__Dialister sp900547785
MGYG000246119 s__Collinsella sp900541035
MGYG000001654 s__UMGS856 sp900760305
MGYG000144162 s__Veillonella sp900549805
MGYG000030268 s__Dialister sp900543455
MGYG000157737 s__Collinsella sp900544865
MGYG000092339 s__Collinsella sp900545055
MGYG000202205 s__HGM10766 sp900757295
MGYG000074998 s__GCA-900066495 sp902362365
MGYG000044105 s__UMGS693 sp900544555
MGYG000053684 s__Collinsella sp900762015
MGYG000150882 s__UBA10677 sp900760475
MGYG000098119 s__Stenotrophomonas maltophilia_S
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MGYG000003986 s__CAG-485 sp900761855
MGYG000015662 s__Beduini sp902363625
MGYG000266524 s__Anaeroplasma sp900767915
MGYG000258586 s__V9D3004 sp900760345
MGYG000003612 s__Succinivibrio sp900770725
MGYG000058141 s__UMGS1623 sp900553525
MGYG000000689 s__Angelakisella sp003453215
MGYG000260268 s__UMGS124 sp900539345
MGYG000004241 s__Alistipes sp900761235
MGYG000238869 s__Dysosmobacter sp900548505
MGYG000217489 s__51-20 sp900539605
MGYG000001617 s__Clostridium_Q sp900547735
MGYG000003856 s__Paramuribaculum sp900551515
MGYG000004309 s__Fusobacterium_B sp900542625
MGYG000003911 s__QAMM01 sp900762715
MGYG000253674 s__Succinivibrio sp900767695
MGYG000043480 s__Collinsella sp900757235
MGYG000060106 s__HGM10766 sp900757295
MGYG000002747 s__Collinsella sp900543025
MGYG000192328 s__Anaerococcus sp900551095
MGYG000267159 s__Ezakiella sp900540185
MGYG000267455 s__S5-A14a sp900553025
MGYG000003154 s__UMGS1490 sp900548185
MGYG000002919 s__Collinsella sp900541065
MGYG000060639 s__HGM11514 sp900757255
MGYG000197972 s__Collinsella sp900552755
MGYG000285361 s__Collinsella sp900768265
MGYG000002237 s__UMGS1649 sp900553785
MGYG000073145 s__Collinsella sp900542825
MGYG000004244 s__UMGS1601 sp900553335
MGYG000002222 s__Dialister sp900543455
MGYG000164807 s__Collinsella sp900545605
MGYG000199732 s__Collinsella sp900761145
MGYG000033656 s__Prevotella sp900557255
MGYG000033135 s__Acutalibacter sp900543305
MGYG000268139 s__Collinsella sp900541035
MGYG000061438 s__Collinsella sp900543615
MGYG000141456 s__CAG-272 sp900556615
MGYG000137905 s__Duodenibacillus sp900762555
MGYG000095038 s__Collinsella sp900544725
MGYG000283832 s__UMGS693 sp900544555
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MGYG000051353 s__CAG-485 sp900759795
MGYG000002757 s__Collinsella sp900550595
MGYG000203600 s__Porphyromonas uenonis_A
MGYG000230911 s__Collinsella sp900545555
MGYG000015667 s__HGM10766 sp900757295
MGYG000166960 s__Collinsella sp900539735
MGYG000219620 s__UBA6857 sp900555805
MGYG000261927 s__Streptococcus sp900546335
MGYG000204260 s__Cellulosilyticum sp900556665
MGYG000263284 s__Duodenibacillus sp900762555
MGYG000003404 s__Lactococcus hircilactis
MGYG000174914 s__Collinsella sp900760245
MGYG000001203 s__Collinsella sp900556415
MGYG000082687 s__S5-A14a sp900553025
MGYG000145232 s__Phascolarctobacterium_A sp900770955
MGYG000166132 s__Collinsella sp900767675
MGYG000146422 s__CAG-272 sp900556615
MGYG000120333 s__Prevotella sp900557255
MGYG000287438 s__Collinsella sp900542825
MGYG000199701 s__Collinsella sp900552705
MGYG000206602 s__Collinsella sp900762015
MGYG000193707 s__UMGS1601 sp900545345
MGYG000195933 s__CAG-485 sp900761855
MGYG000065129 s__Veillonella sp900549845
MGYG000184226 s__Anaerosporomusa sp900542835
MGYG000009177 s__Collinsella sp900541795
MGYG000152275 s__Parasutterella sp900554375
MGYG000152086 s__Ezakiella sp900540185
MGYG000265341 s__KA00274 sp902373515
MGYG000251010 s__UMGS1623 sp900553525
MGYG000164523 s__HGM11514 sp900757255
MGYG000129218 s__UBA2804 sp900768635
MGYG000143271 s__Paramuribaculum sp900551515
MGYG000249113 s__Collinsella sp900541025
MGYG000001615 s__Eisenbergiella sp900548905
MGYG000160931 s__Collinsella sp900760325
MGYG000217213 s__CAG-267 sp900551865
MGYG000148196 s__51-20 sp900539605
MGYG000038918 s__Collinsella sp900544425
MGYG000117795 s__Lactococcus hircilactis
MGYG000125919 s__Prevotella sp900557255

228



Joachim Fritscher

MGYG000245837 s__Collinsella sp900554255
MGYG000114423 s__Gabonibacter sp900543425
MGYG000213562 s__Collinsella sp900762015
MGYG000001682 s__Paramuribaculum sp900760855
MGYG000249855 s__V9D3004 sp900760345
MGYG000168158 s__UMGS693 sp900544555
MGYG000059613 s__Fusobacterium_B sp900545035
MGYG000068136 s__Stenotrophomonas maltophilia_S
MGYG000252181 s__Collinsella sp900541185
MGYG000067551 s__UBA1829 sp900760615
MGYG000001608 s__Gabonibacter sp900543425
MGYG000066213 s__Zag111 sp900551965
MGYG000224300 s__Paramuribaculum sp900760855
MGYG000173930 s__Ruminococcus_D sp900539835
MGYG000201925 s__Peptostreptococcus sp000758885
MGYG000133835 s__Collinsella sp900539735
MGYG000002958 s__Collinsella sp900541795
MGYG000257648 s__Dialister sp900547785
MGYG000188993 s__Collinsella sp900548515
MGYG000039947 s__UBA7488 sp002477185
MGYG000288209 s__Dialister sp900545785
MGYG000042657 s__Collinsella sp900542825
MGYG000000865 s__Collinsella sp900554255
MGYG000030853 s__Collinsella sp900541035
MGYG000044047 s__Stenotrophomonas maltophilia_S
MGYG000082380 s__CAG-313 sp900760745
MGYG000178125 s__Collinsella sp900552875
MGYG000090047 s__Acutalibacter sp900543305
MGYG000155608 s__UMGS1783 sp900555065
MGYG000139770 s__Collinsella sp900541795
MGYG000216110 s__HGM10766 sp900757295
MGYG000003044 s__Collinsella sp900541135
MGYG000251722 s__Phascolarctobacterium_A sp900770955
MGYG000028712 s__Fusobacterium sp000235465
MGYG000118662 s__Alistipes sp900761235
MGYG000003216 s__UBA10677 sp900760475
MGYG000077463 s__Blautia_A sp900540785
MGYG000075111 s__Collinsella sp900762015
MGYG000006619 s__HGM12957 sp900760695
MGYG000267118 s__KA00274 sp902373515
MGYG000175025 s__Stenotrophomonas maltophilia_S
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MGYG000285636 s__CAG-485 sp900759795
MGYG000000955 s__Collinsella sp900557505
MGYG000081389 s__Collinsella sp900541795
MGYG000204885 s__Collinsella sp900542305
MGYG000256613 s__Collinsella sp900548515
MGYG000198340 s__Dialister sp900543455
MGYG000003463 s__Succinivibrio sp900767695
MGYG000001013 s__Ezakiella sp900540185
MGYG000010386 s__Collinsella sp900541715
MGYG000000001 s__GCA-900066495 sp902362365
MGYG000097218 s__HGM11514 sp900757255
MGYG000100817 s__Collinsella sp900768265
MGYG000138418 s__CAG-485 sp900759795
MGYG000037520 s__Ruminococcus sp900752785
MGYG000266542 s__Caproiciproducens sp900546895
MGYG000185315 s__Collinsella sp900541025
MGYG000044571 s__Eisenbergiella sp900548905
MGYG000026618 s__Dialister sp900543455
MGYG000001603 s__UMGS1370 sp900551135
MGYG000072140 s__Collinsella sp900759435
MGYG000144052 s__Collinsella sp900548515
MGYG000124085 s__Dialister sp900545785
MGYG000165962 s__Cetobacterium_A sp900766645
MGYG000159915 s__Stenotrophomonas maltophilia_S
MGYG000161662 s__Collinsella sp900542825
MGYG000003007 s__Collinsella sp900541025
MGYG000195419 s__Collinsella sp900541715
MGYG000095633 s__Ruminococcus_D sp900539835
MGYG000073441 s__Collinsella sp900541795
MGYG000121383 s__Collinsella sp900539735
MGYG000006391 s__HGM11808 sp900757025
MGYG000004157 s__HGM11514 sp900757255
MGYG000012762 s__Dialister sp900545785
MGYG000067560 s__Collinsella sp900541025
MGYG000283305 s__V9D3004 sp900760345
MGYG000000717 s__Duodenibacillus sp900762555
MGYG000111314 s__Collinsella sp900762015
MGYG000003033 s__Collinsella sp900549185
MGYG000003051 s__Collinsella sp900542965
MGYG000219429 s__Dialister sp900543455
MGYG000137402 s__Collinsella sp900768265
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MGYG000144214 s__Collinsella sp900541025
MGYG000119895 s__Collinsella sp900549345
MGYG000257957 s__Stenotrophomonas maltophilia_S
MGYG000038512 s__51-20 sp900539605
MGYG000142929 s__Phascolarctobacterium_A sp900770955
MGYG000000328 s__CAG-272 sp900556615
MGYG000283395 s__Acutalibacter sp900543305
MGYG000283583 s__Dialister sp900545785
MGYG000000102 s__Terrisporobacter sp902363255
MGYG000276719 s__UMGS693 sp900544555
MGYG000002947 s__Collinsella sp900539735
MGYG000133416 s__Collinsella sp900762015
MGYG000167917 s__Veillonella sp900549805
MGYG000069737 s__Dialister sp900545785
MGYG000006162 s__V9D3004 sp900760345
MGYG000061136 s__UMGS1601 sp900553335
MGYG000130176 s__Collinsella sp900542825
MGYG000042144 s__Stenotrophomonas maltophilia_S
MGYG000089739 s__Collinsella sp900547505
MGYG000174408 s__Collinsella sp900762325
MGYG000221372 s__Collinsella sp900541035
MGYG000062122 s__CAG-267 sp900551865
MGYG000244345 s__Collinsella sp900542825
MGYG000215603 s__Collinsella sp900541025
MGYG000059401 s__Collinsella sp900544725
MGYG000082372 s__Collinsella sp900768265
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Figure A.1: Each point is a FP prediction in Kraken2+bracken, plotted with respect
to the phylogenetically closest TP, FN- or FN+ in the same sample (horizontal
panels). FN+ are false negatives that are contained in the taxonomic database of
the tool. FN- are absent from the tool database. The x-axis shows the tree distance
to the closest TP and the y-axis shows the true abundance of the TP, FN+, and FN-.
TP, FP, and FN values are after re-evaluation. Vertical panels stratify datasets.
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Table A.2: Species and their abbreviations used throughout the thesis.

Species Abbreviation
s__Agathobacter_rectalis A. rectalis
s__Agathobaculum_butyriciproducens A. butyriciproducens
s__Akkermansia_muciniphila A. muciniphila
s__Anaerobutyricum_hallii A. hallii
s__Anaerostipes_hadrus A. hadrus
s__Bacteroides_caccae B. caccae
s__Bacteroides_cellulosilyticus B. cellulosilyticus
s__Bacteroides_fragilis B. fragilis
s__Bacteroides_ovatus B. ovatus
s__Bacteroides_stercoris B. stercoris
s__Bacteroides_thetaiotaomicron B. thetaiotaomicron
s__Bacteroides_xylanisolvens B. xylanisolvens
s__Bariatricus_comes B. comes
s__Bifidobacterium_adolescentis B. adolescentis
s__Bifidobacterium_bifidum B. bifidum
s__Bifidobacterium_breve B. breve
s__Blautia_A_obeum B. A obeum
s__Blautia_A_sp003471165 B. A sp003471165
s__Blautia_A_wexlerae B. A wexlerae
s__Clostridium_F_botulinum C. F botulinum
s__Clostridium_Q_fessum C. Q fessum
s__Collinsella_sp003466125 C. sp003466125
s__Coprococcus_eutactus_A C. eutactus A
s__Dorea_formicigenerans D. formicigenerans
s__Eggerthella_lenta E. lenta
s__Enterobacter_hormaechei_A E. hormaechei A
s__Enterococcus_faecalis E. faecalis
s__Faecalibacillus_intestinalis F. intestinalis
s__Fusicatenibacter_saccharivorans F. saccharivorans
s__Lachnospira_eligens_A L. eligens A
s__Lacticaseibacillus_paracasei L. paracasei
s__Lacticaseibacillus_rhamnosus L. rhamnosus
s__Lactiplantibacillus_plantarum L. plantarum
s__Longicatena_caecimuris L. caecimuris
s__Mediterraneibacter_faecis M. faecis
s__Neisseria_gonorrhoeae N. gonorrhoeae
s__Parabacteroides_distasonis P. distasonis
s__Parabacteroides_merdae P. merdae
s__Roseburia_inulinivorans R. inulinivorans
s__RUG115_sp900066395 R. sp900066395
s__Ruminococcus_B_gnavus R. B gnavus
s__Ruminococcus_D_bicirculans R. D bicirculans
s__Ruminococcus_E_bromii_B R. E bromii B
s__Sarcina_perfringens S. perfringens
s__Thomasclavelia_ramosa T. ramosa
s__Yersinia_enterocolitica Y. enterocolitica
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Figure A.2: Excerpt of phylogenetic tree as provided by GTDB r207, subset to TP,
FP, and FN species as predicted by mOTUs3 GTDB on the dataset 3 of the CAMI
Marine dataset. Red color indicates FPs, yellow indicates FN, and green indicates
TPs.

Figure A.3: Density plots showing the phylogenetic distances between undetectable
false negative (FN) species—only those absent from the tool’s database—and their
closest false positive (FP) neighbours within the same CAMI sample (n = 107).
Each panel represents a different profiling tool. The red vertical line marks the
0.04 cophenetic distance threshold used throughout this thesis to adjust binary clas-
sification metrics (F1 score, precision, sensitivity), accounting for missing taxa in
tool databases. This threshold was selected to balance tolerance for taxonomic mis-
matches with avoiding overestimation of performance.
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Figure A.4: Species in the MSSS200C Dataset on the x-axis and their mean vertical
coverage with standard deviation across all 200 samples on the y-axis. Each species
is represented in each sample with exactly one strain.

Figure A.5: Each sample from the CAMI datasets (Human, Mouse, Marine) on the
x-axis with all relative abundances in % displayed in a boxplot on the left y-axis.
The red dots show species richness on the right y-axis.
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Table A.3: Species in the MSSS200C Dataset and their mean vertical coverage with
standard deviation across all 200 samples. Each species is represented in each sample
with exactly one strain.

Species Mean SD
s__Agathobacter rectalis 3.93 7.07
s__Agathobaculum butyriciproducens 5.08 9.94
s__Akkermansia muciniphila 4.14 6.44
s__Anaerobutyricum hallii 4.88 8.47
s__Anaerostipes hadrus 4.28 7.89
s__Bacteroides caccae 5.01 9.44
s__Bacteroides cellulosilyticus 4.95 8.55
s__Bacteroides fragilis 5.52 9.54
s__Bacteroides ovatus 4.13 5.34
s__Bacteroides stercoris 5.56 10.46
s__Bacteroides thetaiotaomicron 5.25 10.01
s__Bacteroides xylanisolvens 4.95 8.92
s__Bariatricus comes 4.85 7.85
s__Bifidobacterium adolescentis 4.41 8.38
s__Bifidobacterium bifidum 3.49 5.51
s__Bifidobacterium breve 4.66 8.80
s__Blautia_A obeum 4.07 6.57
s__Blautia_A sp003471165 4.26 7.83
s__Blautia_A wexlerae 4.78 7.66
s__Clostridium_F botulinum 4.70 8.94
s__Clostridium_Q fessum 3.74 6.34
s__Collinsella sp003466125 4.13 7.12
s__Coprococcus eutactus_A 5.69 9.36
s__Dorea formicigenerans 3.95 6.58
s__Eggerthella lenta 4.14 8.03
s__Enterobacter hormaechei_A 4.64 7.78
s__Enterococcus faecalis 3.84 6.53
s__Faecalibacillus intestinalis 4.55 8.43
s__Fusicatenibacter saccharivorans 4.17 7.24
s__Lachnospira eligens_A 3.98 6.88
s__Lacticaseibacillus paracasei 4.15 6.76
s__Lacticaseibacillus rhamnosus 4.38 7.66
s__Lactiplantibacillus plantarum 4.68 8.46
s__Longicatena caecimuris 4.75 8.14
s__Mediterraneibacter faecis 4.54 7.72
s__Neisseria gonorrhoeae 5.15 9.81
s__Parabacteroides distasonis 5.37 9.41
s__Parabacteroides merdae 3.98 6.08
s__RUG115 sp900066395 4.38 8.23
s__Roseburia inulinivorans 5.17 9.17
s__Ruminococcus_B gnavus 4.46 8.01
s__Ruminococcus_D bicirculans 4.56 7.78
s__Ruminococcus_E bromii_B 3.74 5.66
s__Sarcina perfringens 4.58 7.37
s__Thomasclavelia ramosa 4.20 7.19
s__Yersinia enterocolitica 4.29 7.30
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Figure A.6: In 138 iterations, each iteration tests the fitness of a new k-
mer shape and then moves to the next (See 4.2.3). Fitness is defined as
mean SNP sensitivity for ANIs between 95% and 99% (y-axis). The red dots
are the three best performing shapes based on their fitness. From left to
right these are ‘X_XXXXX_XXX__XXXXX__XXX_XXXXX_X’ (mean ANI
of 0.7652134), ‘XXXX_XX_XXXX__XXX__XXXX_XX_XXXX’ (mean ANI of
0.7619734), and ‘XXXX_XXX_XX_XX_X_XX_XX_XXX_XXXX’ (mean ANI
of 0.7685434). The blue dots mark the lowest scoring k-mer shapes and from left to
right these are ‘XXX____XXXXXXXXXXXXXXXXX____XXX’ (mean ANI
of 0.6922234),‘XXXXX__XX__XXXXXXXXX__XX__XXXXX’ (mean ANI of
0.6972566), and ‘XXXX_X_X_X_XXXXXXXXX_X_X_X_XXXX’ (mean ANI
of 0.6849034).
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Figure A.7: Varkit species prediction profile for sample Oral 13 in the context of the
phylogenetic tree of GTDB r207. Red tips are FPs, green tips are TPs, and yellow
tips are FNs. The bottom right cluster of species under the genus g__Streptococcus
are FPs likely wrong hits from the TP s__Streptococcus suis

Figure A.8: Profiling performance with respect to different abundance threshold
filtering.
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Figure A.9: Subtree of GTDB r214 species tree containing all s__Collinsella species
from dataset MSSS200R_15.

Figure A.10: Subtree of GTDB r214 species tree containing all s__Collinsella species
within GTDB r214 and a subset of GTDB r207 containing only species covered by
MetaPhlAn 4.
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Figure A.11: Subtree of GTDB r214 species tree containing all s__Collinsella species
within GTDB r214 and a subset of GTDB r207 containing only species covered by
MetaPhlAn 4.

Figure A.12: Read alignments with protal for reads simulated from all marker gen-
omes mapping outside of their original species cluster and filtering out alignments
with MAPQ <4 (see Section 5.2.5 for details about data). All 80,789 are stratified
on the x-axis and sorted based on the percentage of correct alignments.
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Figure A.13: Read alignments with protal for reads simulated from all marker gen-
omes mapping outside of their original species cluster and filtering out alignments
with MAPQ <4 (see Section 5.2.5 for details about data). Species contained in
MSSS200 are stratified on the x-axis and (as opposed to Fig. A.14) incoming align-
ments are stratified based on whether they originate from the species, or not. Incor-
rect alignments for a species hence quantifies the amount of alignments from reads
of other species.

Figure A.14: Read alignments with protal for reads simulated from all marker gen-
omes mapping outside of their original species cluster and filtering out alignments
with MAPQ <4 (see Section 5.2.5 for details about data). Species contained in
MSSS200 are stratified on the x-axis and sorted based on the percentage of correct
alignments.
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Figure A.15: A, Increase in monophyly score for protal from before to after filtering
to the same samples as StrainPhlAn 4. B, Increase in monophyly score with respect
to the fraction of retained strains from before to after filtering. There is a significant
correlation between strain loss and increase in mean monophyly score (p=0.016,
pearson correlation)

Figure A.16: Phylogenetic trees for s__Neisseria gonorrhoeae. A, phylogenetic tree
constructed from protal’s MSA. B, phylogenetic tree constructed from protal’s MSA,
subset to shared trees with StrainPhlAn 4. C, phylogenetic tree constructed from
StrainPhlAn4’s MSA.
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Table A.5: Per sample mean vertical coverage (VC) and standard deviation (SD) for
MSSS200R, as well as number of species.

Sample Mean VC SD VC Species
sample0 1.77 6.31 200
sample1 1.68 6.28 200
sample10 1.41 5.72 200
sample11 1.67 6.17 200
sample12 1.46 5.89 200
sample13 1.56 5.91 200
sample14 1.33 5.60 200
sample15 1.29 5.53 200
sample16 1.40 5.61 200
sample17 1.63 6.09 200
sample18 1.59 6.17 200
sample19 1.71 6.43 200
sample2 1.30 5.65 200
sample3 1.31 5.64 200
sample4 1.27 5.60 200
sample5 1.50 5.95 200
sample6 1.32 5.68 200
sample7 1.38 5.60 200
sample8 1.64 6.04 200
sample9 1.64 6.20 200
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