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ABSTRACT The protection and processing of the sensitive data in recommendation system are the major
concern. Existing literature, used homomorphic encryption (HE), Reversible Data Transform (RDT), differ-
ential privacy (DP) and many more schemes to protect user information. Existing RDT scheme require prior
sharing of the parameters and an alternative mechanism e.g., Shamir Threshold Protocol or Diffie-hellman
algorithm are used to protect the sharing parameters. In this paper, we proposed a chaotic based RDT
approach for privacy-preserving data mining (PPDM) in recommendation system. Using this approach, RDT
parameter values will be generated locally and because of this, prior sharing of the parameter values for the
recovery process will not be necessary. This approach can be used as an alternative to the standard-RDT
algorithm where bandwidth and memory are considered important factors. Our results on the Iris data set
clearly show that the proposed chaotic RDT shows similar results as standard-RDT. Secondly, in this paper,
we explore the usage of the RDT algorithm on real app usage records in the mobile app recommendation
(MAR) domain. Thirdly, we tested the application of the RDT algorithm for the standard MovieLens dataset
to ensure the validity of results because app usage dataset is publicly not available. Our results show that the
proposed RDT algorithm can replace HE if an adaptive recommendation approach is used. Similarly, we can
safely use the RDT approach to any data including user rating, health data or app usage frequency to ensure
user privacy before delivering it to the recommender-server.

INDEX TERMS Movie recommendation system (RS), reversible data transform (RDT), reversible integer
transform (RIT), privacy-preservation data mining (PPDM), app recommendation system (MARS), homo-
morphic encryption (HE).

I. INTRODUCTION

In recent pandemic (COVID-19), due to the restriction on
face to face clinical consultations, the usage of mobile health
applications are increased [1]-[4]. Existing studies [2], [3]
considered the usage of the mobile health application as the
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best choice in the patient-physician relationship in many ways
e.g., using in fever coach, detecting the disease based on
obtained data from different locations. In the same manner,
study [2] reviewed 223 COVID-19-related mobile apps and
pointed out that only 19.9 percent mobile apps are found
in the app store and 44.4 percent found in the Play Store.
According to the study [2] most of the apps scored 4 out
of 7 points during basic feature assessment where most of the
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app scored 3 out of 5 points during functionality assessment.
High number of apps and possible dissemination of misinfor-
mation could harm the users and this situation left the health
care professionals in dilemma to recommend best possible
COVID-19-related mobile app [2]. Here, Mobile app recom-
mendation system (MARS) is the best suitable choice.

Mobile app recommendation system mostly based on the
collaborating filtering approach and it is considered as dou-
ble edge sword in literature because it not only provide the
relevant recommendation after processing the different users
preference data and on the flip side it is the source of leakage
of private information collected from the users [5]. In today’s
world, data privacy is the major concern of the data owners,
and to retain the knowledge within data, they mostly used
privacy-preservation schemes [5]-[8]. The most famous pri-
vacy preservation schemes are k-anonymity, /-diversity, and
randomization [7], [9]. k-anonymity is the “syntactic prop-
erty on the anonymized dataset: when only certain attributes
known as quasi-identifiers (QID) are considered, and each
tuple appeared k times in the anonymized dataset” [10].
Generally, the k-anonymity notation has considered weak and
the degree of preserving the privacy of the original data totally
depends upon the number of k [9], [10]. Increase in the num-
ber of k also increase the degree of privacy preservation but
with this, degree of data distortion also increase. In literature,
different privacy-preserving data mining (PPDM) approaches
are available [11]—-[17]. Most of these PPDM techniques are
applied in recommendation domain [18], [19].

These PPDM techniques offer different operations to pro-
tect the original data which include original data modification
or perturbation [11], [16], swap [15] and data deletion [10]
operations. These operations are used to ensure that there is
no correlation exists between the original data and the resul-
tant protected data. By doing this, the original data cannot
be recovered from the protected data and this distorted data
cause knowledge uncertainty when data mining approaches
are applied to it [12]. It is because data mining approaches
perform “‘cross-analysis and comparison with the original
data to confirm the relevance between the knowledge and the
data and thus help the users to verify the authenticity of the
knowledge and make decisions” [9].

To reduce the knowledge uncertainty issue, reversible data
hiding (RDH) approaches are presented in [9], [12], [13].
The techniques [9], [13] used the difference expansion (DE)
mechanism which is a well-established technique to secure
the images. In the article [13], the authors did not directly
apply the DE technique to perturb the original data because
it can create a big difference between the original data and
perturbed data which can cause the data loss. So, they apply
the principal component analysis (PCA) to sort the original
data first and then exploit the similarity between the neigh-
bor elements while embedding the customized watermark.
This approach reduces the impact of data loss but has the
limited length for the watermark hidden inside of the data
thus minimizing the watermark payload. In contrast to this
method, in the article [9], the authors used a reversible integer
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transform (RIT) approach to solve the watermark length issue
and also reduce the impact of data loss. They adjusted the per-
turbation degree via a weighting mechanism. This approach
can embed high payload and reduce the information loss but
it can suffer from underflow and overflow issues when the
difference between the group elements is not large enough.
Secondly, for reversal, prior sharing of parameter values is
necessary and need another mechanism for secure sharing.

To reduce the impact of knowledge uncertainty caused by

PPDM techniques in the recommendation domain, we want to
explore the performance of RDT methods especially the RDT
algorithm. Moreover, in RDT algorithm, prior sharing of the
parameters is required for reversal process and to do this
secondary secure sharing mechanism e.g., Diffie-Hellman is
needed. To eliminate the prior sharing and usage of another
secure mechanism conditions, this paper proposed chaotic
maps based dynamic and local parameter creation method.
In the same manner, for fair analysis of the proposed method,
a chaotic noise addition method is also proposed. To check
the applicability of the proposed RDT method, three different
datasets are used. MovieLens dataset is used to compare the
RDT performance with existing schemes where Iris dataset is
used to check the RDT performance on medical data. Lastly,
RDT is tested for self-generated app usage dataset. Moreover,
the effect of different parameters are also analyzed and new
amendments in proposed RDT algorithm is also proposed.
Our major contributions are as follows:

« We proposed chaotic maps based mechanism called
“RDT-P” to generate dynamic parameter values as dis-
cussed in Section III.

o We proposed chaotic noise addition mechanism as in
Section II to compare the performance of the proposed
RDT-P.

« Due tolack of standard app usage dataset, we applied the
RDT-std and RDT-P algorithms for movie recommenda-
tion system on standard MovieLens dataset to ensure the
validity of results as presented in Section I'V. We tested
the both algorithm for Iris dataset to ensure the validity
of these algorithms for medical based dataset. Lastly,
we tested the both algorithms for our self-generated app
dataset collected from the real users. Self-collected
app usage information is widely used in the mobile
app recommendation system (MARS) and, this informa-
tion can be used to identify the traits of mobile users as
discussed in [20]-[22].

« During analysis, we also identified different cases where
underflow (negative) and overflow (value over the
range) occurs to see the potential hurdles while applying
the RDT schemes in MARS domain. It is very neces-
sary to understand underflow causes because negative
app usage is not desirable. To mitigate underflow condi-
tions, an amendment (the usage of ABS function) is pro-
posed. After that, we analyze RDT impact on different
factors e.g. watermark payload, execution time, degree
of underflow and overflow and degree of data loss, etc.
as described in Section IV
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The rest of the paper is organized as follows; Section II
described background. Section III discussed the proposed
method. Section IV presents the application of both RDT-std
and proposed RDT-P algorithms on selected datasets and
the comprehensive analysis of the results. Section V and
Section VI discussed the related work and conclusion
respectively.

Il. BACKGROUND

Reversible data transform (RDT) approach [9] and homo-
morphic encryption (HE) [23] are now applied in differ-
ent domains for privacy-preservation. Both algorithms can
preserve user privacy during the data mining process. The
detailed description of RDT and Chaotic noise addition algo-
rithms are given below.

A. REVERSIBLE DATA TRANSFORM (RDT)

RDT algorithm proposed in [9] used DE with a weight-
ing mechanism to adjust the degree of perturbation. This
algorithm ensures the privacy-preservation during data min-
ing process. The DE mechanism in RDT is generally used
for digital images, and this mechanism was first used by
Tian [24]. He used the difference of neighboring pixel val-
ues and selected the most suitable difference values for DE
and embedded different parameter values into those different
values. Later, Tian algorithm was extended by Alattar [25]
and Kallel ez al. [26]. The idea of reversible integer transform
by Alattar [25], Peng et al. [27], and Pun and Choi [28]
was used in RDT algorithm proposed in [9]. Here in this
paper, we called RDT algorithm using DE proposed in [9] as
RDT-std algorithm and its detail description are given below:

The selection of the optimal value for these parameters
is very important because it directly impacts the algorithm
performance in terms of knowledge reservation, overhead,
and, payload. The first parameter, which we need to select
is the group size because other parameters are dependent
upon it e.g. set of weight and division of watermark bits.
The group size parameter directly affects the bits embedding
capacity (payload) of the algorithm. Using the RDT algo-
rithm, we can select different group sizes e.g.; if we select
group size equal to 4, then the RDT algorithm takes every
four values of QI attribute as a group and used this process
to divide the whole dataset into the number of groups. With
group size 4, we can embed 3 bits in each group. Recently,
an article [29] shows that irregular block size can improve
the embedding capacity of Alattar’s algorithm [25]. In this
paper, we will explore the effect of RDT-std parameters on the
efficiency of the RDT algorithm because the effect of these
parameters is still unknown.

Secondly, In the RDT-std algorithm, for the data recovery
process, the user must know the QI attributes, seed, group
size, set of weights, and length of the watermark. Watermark
bits are used to identify the tempering if it happened during
transmission. Here, in this paper, we will propose the process
that can generate values for the RDT parameters locally and
due to this approach, prior sharing of the parameters for the
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recovery process will not be necessary. The algorithm steps
for the RDT-std algorithm is given below:

Algorithm 1 RDT-Std Algorithm

Input: An original dataset D, sensitive attributes
S = (simym = 1,2,3,...), an integer Seed, a group
size g, a set of weights x;, (i € [0, g — 1]), and a watermark
w.

Step 1: Let n =ﬂ00r(|% —1),and ! = 1.

Step 2: For each sij,:
1) Let(Sim,j, Sim j+1, - - - Sim,j+(g—1)) be a group of g neigh-
boring data values G=(1,1 + (1 x g),1 + (2 x g)...1

+(n X 9)).
2) Perform difference expansion on
(Sim.j» Sim j+15 - - - Sim_j+(g—1)) and obtain
(sim,j,. sim#], .. .sim’j+(g_1)), using following
equations:

X0 X Sip,j + X1 X Shyjp1 + ..+ Xg_] X Sip jt(g—1)
Xo+x1 4. X

.
Slm,j = floor( )

N o . o .
St j1 = Stmj+1 = Shn,j»

A _ . . _ . .
Shy jy2 = Sim,j+2 — Sim,j,

of _ . . _ . A
Sk j(g—1) = Sim.j+(g=1) — Sim.))
o~
Sl j = Sy j»
o~ _ N
Sy i1 = 2 X Shy j 10

o~ N
Shnj(g—1) = 2 X Sk j1(g-1)

3) If1 < | w |, then for (si;’j,si;’jﬂ,...siwm,j+(g_1)),
we embed /7 bit,(I + 1) bit,(I + (g — 1)) bit of the
watermark w respectively. [ =1+ (g — 1).

4) Generate corresponding perturb group data using the
following equations:

N o~
Sy j = Sy, ;
X| XSO oyt X X ST
—_ﬂoor( m,j+1 8 m,j+(g ]))
xo+x1+...+ X1
N7 ] N/
St j+1 = Shnjt1 + St

o/ o~ o/
St g—1) = Stj+g—1) + Sl
Step 3: Rearranged the perturbed data in ascending or

descending order using the seed values and generate the
perturbed dataset D’.

B. CHAOTIC NOISE ADDITION (CNA)

The additive homomorphic encryption (HE) is widely used
for the data privacy because HE schemes encrypt the numer-
ical data in such form that, data analytic/server can perform
different computations on this encrypted data without ever
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TABLE 1. Chaotic binary sequence.

Chaotic inputs

X; is the initial condition and it can be any random value between [0, 1],
suppose initial value is 0.6, the second most important parameter is the control
parameter and for that, we will use 3.8 value for A

Calculate Chaotic sequence

Calculate X = [X1, X2, X3, X4, X5, ...] because we have to generate ran-
dom numbers according to the length of dataset size using the below-mentioned
formula. X; = 0.6, the value of A must be in the range of [3.8 — 4].

X2 = 3.8 % 0.6(1 — 0.6) which is 0.912. The chaotic sequence will be
{0.6,0.912,0.3,...}.

Chaotic binary sequence

Convert chaotic sequence into a binary number using the Eq. 2 given in [27]

such as:

The binary sequence will be BX; = {1,1,0,...}.

0 0<X<0.5
T(X)_{l 05<X<1 @

having access to their decryption. Different HE schemes are
applied in the recommendation systems as discussed in [30],
[31] but literature shows that the HE requires large execution
time [32] which can create a feasibility issue in the mobile
domain [33]. The basic definition of the HE scheme is given
as follows [23]:

Homomorphic = enc((b + ba)modN ) (1)

For the fair comparison, we proposed our own chaotic
based additive noise scheme. In this scheme, we used chaotic
binary sequence as a key and it is represented as b; in the
above Eq. 1 where by represent the plain-text based input
binary sequence. For chaotic binary sequence generation,
we used the process proposed in [34]. Finally, we set the value
of variable N = 2.

ill. PROPOSED METHOD

In this paper, we proposed a process in which RDT param-
eter values will be generated dynamically. We choose three
important parameters which include watermark bits, set of
weights, and group size. The values of these parameters will
be generated locally, so, prior knowledge of these parameters
for the recovery process is not necessary. Before generating
the parameter values, first, we have to generate a chaotic
binary sequence as discussed in [34]. Here, we choose the
most widely used map known as logistic chaotic map and it
is defined as:

Xir1 = Axi(1 —x7), x0€[0,11,0 <A < 4. 3)

xo is considered as the initial condition and the A is known
as the control parameter which controls the dynamic system
of the map. The study [35], suggested that the best value
of A is between 3.6 and 4. Using these two values, we will
generate a chaotic sequence. For a working example, we set
the initial condition and control parameter values like 0.6
and 3.8 respectively as shown in Table 1. The process of
binary sequence generation by the chaotic map using Eq. 3
is shown in Table 1. This chaotic sequence will directly be
utilized to generate parameter values e.g. group-size, weights
set, watermark bits, and seed as shown in Figure 1. The total
number of bits generated is equal to |D].
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In RDT, the most important parameter is the selection of
the group size because it not only defined the range of the
weight set but also sets the limit of the embedded watermark
bits. So, we have to define the value of g first. For that
purpose, the user has to define the representing binary bits.
If the user decides to reserve the first three or four bits of
chaotic binary sequence, then it means the group-size range is
[2—7] or [2—15] respectively. The value of g is always greater
than 1. Now convert those bits into their respective decimal
number which will be used as the value of g parameter.
If binary sequence 1, 1, O then it respective decimal value is 6.

The second important parameter is the weight set x;, which
value will be in the range of (i € [0, g-1]). To generate the
values for the x;, first, we set the max value of i equals to group
size g, which means we have to generate 6 values if the value
of g is 6. Now use the first 6 values of the original chaotic
sequence to generate the weight set.Values can be generated
using Eq. 4.

x; = floor(X; x g) 4)

If the first value of the chaotic sequence is 0.6 then using
Eq. 4, floor(0.6 x 6) = 3 we can generate weight set
{3,5,1...}. The flooring process limits the weight range
according to (i € [0, g — 1]) but it can generate multiple
0 values. To remove this drawback, we only replace the O
values with 1. Here, we can clarify that with multiple O value,
the performance of proposed RDT will not suffer greatly.

For watermark bits values, we used the binary sequence
directly. To calculate the total number of bits, we first calcu-
late N which represents the total number of groups and can
be calculated as:

N—2
—ﬂoor(?) )

After calculating the N, the total number of bits per

attribute can be calculated as:

watermark bits = (N x (g — 1)) (6)

After generation of For N number of seed generation,
we used the location strategy of the chaotic sequence. If our
data-size = 256, then we need a 256 chaotic sequence. The
proposed location strategy is given below:

VOLUME 9, 2021
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Create Chaotic sequence according to
the size "D"
)

Generate Binary sequence and reserve
bits according to group-size
Convert reserved bits into its respective
decimal value

'
Generate Weight set using chaotic
sequence and group-size value
|

s
i

Use Binary sequence as watermark bits

V2

Use above generated parameters and
perform difference expansion
)
Add watermark bits and generate perturb

| valies

FIGURE 1. Steps of the proposed scheme.

1) Step 1: generate a chaotic sequence of 256 lengths
using Eq. 3.

2) Step 2: rearrange the chaotic sequence order by using
a sorting mechanism (ascending or descending) while
keeping the original location.

3) Output: random 256 locations (no repetition) will be
achieved.

A. AN EXAMPLE OF THE PROPOSED RDT ALGORITHM
ALONG WITH RDT-STD PROCESS

In this section, an example to illustrate the process of param-
eter generation and data perturbation process in the pro-
posed RDT algorithm is discussed. Let us consider four users
dataset having single numerical attribute i.e., age as shown
in Table 2.

TABLE 2. Toy example.

ID Name Age
A12345 Alexander 22
B12345 Alice 26
C12345 Beatrice 23
D12345 Randolph 35

Let us set the group size g equal to 4. So, total num-
ber of N is equal to 1 using Eq.5. Due to g value,
we needed to reserve first three bits of chaotic sequence
{0.6,0.912,0.3,0.79, ...} as shown in Table 1. After that,
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binary sequence {1, 1,0, 1, ...} is generated from the chaotic
sequence. The respective decimal number of the reserved
binary sequence {1, 1,0} is 6. In order to set the weights,
we used the Eq. 4 and create set as {2, 3, 1, 3}. In the same
manner, the binary sequence {1, 1, 0} is set as the watermark
bits.

After generating the parameter values, the difference
expansion process of the RDT-std algorithm is performed
on the age values and we get {27, 8, 2, 26}. After adding
the watermark bits in last three values of the group,
we obtain {27, 9, 3, 26}. Finally, we generate the perturb
group {15, 24, 18,41} and replaced these perturbed values
with the original ones.

IV. RESULTS AND DISCUSSION

Using the proposed-RDT algorithm, we first generate differ-
ent group-sizes using the chaotic sequence. Then, we gen-
erate weight sets and watermark bits according to the group
sizes. The manual analysis of the algorithm and results are
discussed in the below sections.

A. APPLICATION OF RDT-STD AND RDT-P ON SELECTED
DATASETS

For the performance analysis of the RDT std algorithm [9],
we selected two data sets; the Iris dataset and the real records
of the mobile users. Iris dataset is widely used to test the
classifiers [36], [37]. The detailed information of the Iris
dataset is given in Table 3.

TABLE 3. Iris dataset.

Dataset Multivariate | Number of | 150| Area Life
characteris- instances
tics
Attribute Real Number of | 4 Date 1-7-
characteris- attributes do- 1988
tics nated
Associated Classification) Missing No | Number | 2736300
task value of web

hits

The first reason to choose the Iris dataset as a test case is
that it shows a constant accuracy ratio for a different set of
classifiers as compared to other datasets. We used WEKA 3.8
tool classifiers to test the accuracy ratio of different classifiers
on the Iris dataset as shown in Table 4.

TABLE 4. Accuracy ratio of the WEKA classifiers on the original Iris
dataset.

NB MLP | SMO | IBK RF AB- J48 DT
M1
144 146 144 147 143 143 144 139
96% | 97% | 96% | 98% 95% 95% 96% 92%

To re-ensure our selection, we also test the Iris dataset
using Python machine learning libraries. We implement three
classifiers; kNN, SVM, and Decision tree (ID3). The accu-
racy achieved by these classifiers is 100%, 93%, and 94%
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respectively. The second reason to select this kind of dataset is
that we want to compare the results of the classifier accuracy
of a real dataset with RDT protected dataset. Because the
accuracy of the classifiers will ensure that dataset with RDT
protection achieves the objective of knowledge reservation
and it does not lose its original knowledge because of per-
turbation. Moreover, we wanted to check the RDT appli-
cability on health dataset. For a similar purpose, Abalone,
Breast, Vehicle, KDD Cup, Census, Landsat Satellite, and
other datasets are used in RDT based literature as well [9],
[12]. The third reason to choose the Iris dataset is that it
has less number of instances which will be helpful in our
manual analysis. Moreover, we wanted to check the RDT
applicability on health dataset as well.

After selecting the Iris dataset, we applied the RDT-std [9]
algorithm with the parameter setting (4 QI attributes, data
size=150, group-size: 4, weight: {1, 2, 1, 2}, and watermark
bits:(101100011),. We repeat the similar watermark bits for
the whole dataset. The snapshot of the original Iris dataset
values and the corresponding resultant perturbed values using
RDT-std are shown in Table 5. The second dataset is the real
records of the mobile users which are used to predict the
recommendation for the targeted users. The same data can be
used to predict user traits as discussed in [20]. The snapshot of
the app usage record of a single user and its resultant RDT-std
values are shown in Table 6.The reason for the selection of the
mobile usage record as a test case is that we want to explore
the applicability of the RDT-std algorithm in this domain.

TABLE 5. Snapshot of original and perturbed Iris dataset using RDT-std.

I. | O- | RDT{ O- | RDT{ O- | RDT{ O- | RDT-{ Label
no.| col-| col- | col-| col- | col-| col- | col-| col-
1 1 2 2 3 3 4 4
1 51|55 351 39 14 | 1.3 0.2 | 0.2 Iris-
setosa
2 149 |5 3 2.8 14 | 14 02| 03 Iris-
setosa)
3147 | 47 32| 33 1.3 | 1.1 0.2 | 0.2 Iris-
setosa
4 | 46 | 44 3.1 |3 1.5 ] 1.6 02 | 03 Tris-
setosa
515 4.9 3.6 | 3.6 14 | 12 020 Iris-
setosa
6 | 54158 39 | 43 1.7 | 1.9 04 | 0.5 Iris-
setosa
71 46 | 4.1 34| 32 14 | 1.2 03 | 0.2 Iris-
setosa)
8 |5 4.9 34 | 32 1.5 | 14 0210 Iris-
setosa
9 | 44| 39 29 | 25 14 | 1.3 0.2 | 0.2 Iris-
setosa
10{ 49 | 49 3.1 ] 29 1.5 | 1.5 010 Iris-
setosa
11 54 | 6 3.7 | 42 1.5 | 1.6 02 | 03 Tris-
setosa
12| 48 | 4.8 34 | 3.6 1.6 | 1.8 02 | 03 Tris-
setosa
13| 48 | 45 3.0 | 23 14 | 1.5 0.1 | - Iris-
0.1 setosa

After the application of RDT-std [9] on both datasets,
we applied our proposed RDT algorithm on both datasets.

110016

TABLE 6. Single user app usage record and its relevant resultant
perturbed record using RDT-std.

App O- | RDT{ App O- | RDT{ App O- | RDT+
names Freq| std names Freq| std names Freq| std

S Plan- | 1 1 Maps 4 5 Snapchat | 29 | 29
ner

A 1 2 Weather | 5 3 System 30 | 31
Torch Ul

Package | 1 1 Gmail 7 8 My Files | 36 | 31

mn-

staller
Studio 1 2 Camera | 7 7 Contacts | 39 | 37
Email 1 -1 Truecaller 8 9 Chrome 40 | 40
Candy 2 2 Hancom | 8 6 Clock 46 | 52
Office
Viewer
Gulp 2 1 Calculatqr 8 6 Video 46 17
Player
S Voice | 2 1 YouTube| 9 9 Messages | 58 | 42
Settings | 2 2 Android | 14 19 Google 91 107
system

Square 2 2
InPic
Netflix 2 3
Photo 2 3

Messenger 15 13 Gallery 96 118

JazzCash| 15 14
Careem | 17 17

Facebook | 113 | -89
Instagram | 159 | 4

studio
Google | 3 2 Memo 20 | 24 WhatsApp| 250 | 185
Play
Store
Tafheem | 3 3 Phone 27 25 TouchWiz | 601 | 887
ul Home
Quran
Drive 3 2 Adobe 28 28
Acro-
bat

TABLE 7. Original Iris dataset with resultant perturbed values using
RDT-P.

O- RDT- | O- RDT- | O- RDT- | O- RDT-
col-1 P col-2 P col-3 P col- P
4

5.1 5.4 3.5 3.8 1.4 1.4 0.2 0.2
4.9 4.9 3 2.7 1.4 1.5 0.2 0.3
4.7 4.5 32 3.1 1.3 1.1 0.2 0.3
4.6 4.3 3.1 2.9 1.5 1.7 0.2 0.3
5 5 3.6 3.7 1.4 1.3 0.2 0.1
5.4 5.8 3.9 4.3 1.7 1.9 0.4 0.5
4.6 4.2 34 33 1.4 1.3 0.3 0.3
5 5.1 3.4 32 1.5 1.6 0.2 0.2
4.4 4 2.9 2.5 1.4 1.2 0.2 0.1
4.9 5 3.1 2.9 1.5 1.4 0.1 -0.1
54 6.1 3.7 4.2 1.5 1.5 0.2 0.2
4.8 49 3.4 3.6 1.6 1.7 0.2 0.2

The snapshot of the Iris dataset with the resultant perturbed
values for the proposed RDT is shown in Table 7. After that,
we applied our proposed RDT algorithm on the second select
“app-usage record” dataset. The results are shown in Table 8.

The detailed manual and performance comparison is given
in the following sections.

B. MANUAL ANALYSIS OF THE PROPOSED RDT
ALGORITHM AND RDT-STD ON THE SELECTED DATASETS
For manual analysis and comparison, we choose the results
of proposed-RDT when group size is set 4 because study [9]
reported their results while setting the group size 4. We can
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TABLE 8. Single user app usage record and its relevant proposed-RDT
perturbed record.

App O- | RDT{ App O- | RDT{ App O- | RDTH
names | Freq| P names Freq| P names Freq| P
S 1 1 Maps 4 5 Snapchat | 29 | 31
Plan-
ner
A 1 2 Weather | 5 4 System 30 33
Torch Ul
Package| 1 2 Gmail 7 9 My 36 | 32
in- Files
staller
Studio | 1 2 Camera | 7 8 Contacts | 39 | 38
Email 1 0 Truecaller] 8 10 Chrome | 40 41
Candy | 2 2 Hancom | 8 5 Clock 46 | 53
Office
Viewer
Gulp 2 3 Calculator 8 5 Video 46 | 26
Player
S 2 3 YouTube | 9 8 Messages| 58 51
Voice

Android | 14 | 18
system
Messenger 15 13

Settings| 2 2 Google 91 116

Square | 2 2
In Pic
Netflix | 2 2

Gallery 96 126

JazzCash | 15 13 Facebook| 113 | -82

Photo 2 3 Careem 17 17 Instagram| 159 | 11
studio

Google | 3 3 Memo 20 | 24 WhatsApp 250 | 192
Play

Store

Tafheem 3 4 Phone 27 26 TouchWizZ 601 | 895
ul Home

Quran

Drive 3 4 Adobe 28 28

Acrobat

see that only one underflow occurs at the attribute-4 in
the given data as shown in Table 7. The total numbers of
underflow instances with negative values are 4. Similarly,
if we consider O values as underflow than the total number
of instances with O values are 3. Here, we consider only
negative value instances as underflow. So, first, we identify
those groups where underflow occurs. In the Iris dataset,
we found only three groups which are; group 3, group 9, and
group 13. The group elements and its resultant RDT-P values
are shown in Table 7, and Table 8. Similarly, RDT-std [9] also
suffers from the underflow when applied to both datasets as
shown in Table 4 and Table 6. The total number of negative
instance is 5 and the number of an instance with O values are 6.
We found four groups which are group 4, group10, group 11,
and group 13. The underflow results of group 13 for both
RDT-std [9] and RDT-P are shown in Table 9.

TABLE 9. Group 13 elements and its resultant RDT-P and RDT-std values.

Original | RDT-P | RDT-std
0.2 -0.4 -0.5
0.2 -0.3 -0.4
1.4 2 1.9
1.5 2.3 2.2

We investigate this matter and try to identify those causes
which can generate underflow phenomena. We found out that,
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if any elements of the group have a difference less than or
equal to 50% with any group element then this phenomenon
happens. To avoid this, we can use upper and lower bound
as Alattar’ s proposed in his study [25], and those blocks
which can cause underflow must not undergo the RDT-
process. Send real values of those instances instead of nega-
tive values. In the case of classification dataset, the process of
block investigation (upper and lower bound checking) is not
necessary, because few negative instances do not affect the
accuracy and it is already proven from the RDT-std results [9].
But in the case of real app usage record, it can create a
problem because app-usage cannot be negative, and sending
real values instead of negative causes an issue during the
recovery process and those real values will become false.
To counter this problem, different points can be considered
while applying RDT in the recommendation, which is as
follows:

« We assume that we did not need the recovery process
because, for recommendation purpose, the server always
need the latest app usage frequency values to calculate
the recommendation for targeted users and these values
should be replaced with the older ones. If the server
stores the user older records (can be used this data for
another purpose [20], [21], [38], then this act is already
out of the scope of the recommendation task. We con-
sider this act as a privacy breach and because of that,
we need not recovery process.

o The underflow values are usually negative values; so,
instead of replacing them with original, one can use
standard ABS function to mitigate this problem. Replace
with the original values increase the disclosure risk (DR)
which is not desirable in the case of mobile-usage
dataset.

If the recovery process is required, we can do the following:

o Add some sort of identification mark to those groups
instance which do not undergo the RDT process.

« Mobile data is collected in the periodic form, so instead
of applying the RDT-std or RDT-P perturbation method,
use continuous RDT (RDT-C) perturbation method as
discussed in [12].

In conclusion, we are confident enough that RDT-std,
RDT-P, and, RDT-C can be utilized in the recommendation
domain, but we need an adaptive and flexible algorithm for
the recommendation which can accommodate both high and
low frequent used apps in the recommendation list. It would
not be a burden or out of scope thing as in the recent study
[39], the same concept is used for the friend’s recommen-
dation. Before discussing the application of the RDT algo-
rithm for the recommendation domain, we first analyze the
performance of the RDT-P and RDT-std approaches on the
Iris dataset in the next few sections.

C. PERFORMANCE ANALYSIS

In this section, we analyze the proposed RDT performance
on different parameters which include overhead, knowledge
reservation, payload, and computation time. In terms of

110017



IEEE Access

S. Beg et al.: Dynamic Parameters-Based RDT Algorithm in RS

TABLE 10. Sample result of the proposed-RDT for group-size=2 with
weight set {1, 1}.

No.col- NB | MLP| SMO| IBK| RF | AB | J48 DT

replaced

Four 122 | 135 | 131 130 | 135] 119 | 129 121

attributes

Accuracy (%) 81 90 87 86.6| 90 79 86 80.6
Three 141 | 142 | 143 138 | 141 | 140 | 142 143

attributes

Accuracy (%) | 94 | 946 | 95 92 | 94 | 93 | 946 | 95
Two attributes | 139 | 146 | 147 143 | 143 | 143 | 144 137
Accuracy (%) 94.6| 97 98 95 95 95 96 91
One attribute 143 | 145 | 145 142 | 142 | 143 | 144 | 139
Accuracy (%) | 95 | 96.6 | 96.6 | 94.6| 94.6| 95 | 96 92.6

Accuracyratio after first attibute replaced

mOriginal ®mRDT-std wG=2 mG=4 wmG=5 wnG=6 wnG=10

Accuracy Ratio in %

NB MLP SMO IBk RF AB HE juy

MachineLeamingal

FIGURE 2. Accuracy ratio after first attribute values replaced by RDT
values.

overhead (communication and bandwidth etc.,) at the recov-
ery phase, the performance of our algorithm is better than
RDT-std [9]. Because, in our proposed algorithm, we will
only share the group-size range, initial condition, and the con-
trol parameter of the chaotic map instead of sharing the whole
set of the watermark bits, weight set, seed, and the exact
group size. Similarly, run-time generation of parameter val-
ues also reduces the memory space requirement as compared
to RDT-std.

In terms of measuring the knowledge reservation, we used
WEKA 3.8 classifiers to test the accuracy ratio of the Iris
dataset and used 10-fold cross-validation to analyze the
impact of proposed-RDT on it. Here, we set the WEKA
3.8 parameter values as default for all the experiments.
To test the accuracy, we selected the most famous machine
learning (ML) algorithms of different classes offered by
the WEKA tool. We choose Naive Bayes (NB), Multi-
layer Perceptron (MLP), Sequential Minimal Optimization
(SMO), Instance-based Learner (IBK), Random Forest (RF),
AdaBoostM1(AB), J48, and Decision Table (DT). The accu-
racy ratio of these classifiers on the original Iris dataset is
shown in Table 4.

The snapshot of the WEKA tool results for the group-
size=2 for the proposed RDT algorithm is shown in Table 10.
It can be seen that after replacing the RDT values with the
original, the accuracy degrades gradually and after replacing
all the data, the accuracy ratio for the NB is 81 as shown in 10.
We calculated the accuracy ratio of different group sizes after
replacing single attribute, two attributes, three attributes, and
four attributes as shown in Fig. 2, Fig. 3, Fig. 4, and Fig. 5.
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Accuracy ratio after two attributes replaced

100 . ®Orignal BRDT-std MG=2 EG=4 BG=5 EG=6 5G=10
BN
ER
€ o
ol
it
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< 88

g

NB MLP SMO IBk RF AB HE DT
MachineL earning alzorithm:

FIGURE 3. Accuracy ratio after the first two attribute values replaced by
RDT values.

Accuracyratio after three attributes replaced

To.%ﬁghﬂ BRDT-std ®G=2 #8G=4 ®G=5 #nNG=6 =G=10

accurcay ratioin %

NB MLP SMO Ibk RF AB HE DT
Machine Learning aleorithms

FIGURE 4. Accuracy ratio after the first three attribute values replaced by
RDT values.

We can see that the classification accuracy of the proposed
RDT algorithm all came very close to the classification accu-
racy of the RDT-std [9] and the original dataset. According
to [9] these results can be interpreted as “This means that
the datasets with RDT protection do not lose its original
knowledge because of the perturbation, proving that RDT can
indeed achieve the objective of knowledge reservation.”

According to [9] authors discussed that during the testing
of the RDT-std different group sizes g does not have a large
impact on knowledge reservation when few attributes values
are replaced. It is likely true for the NB, DT, and SVM but
not for other ML techniques as we can see from Figure 3,
and Figure 4 that the accuracy ratio varies significantly when
few attributes values are replaced. But when all four attributes
values are replaced then all ML techniques perform almost
similar for all group sizes as shown in Figure 5. After that,
we calculate the total accuracy loss for RDT-P and RDT-std
on the Iris dataset. The comparison of the total accuracy
loss due to the replacement of all four attributes values with
RDT-P and RDT-std values are shown in Figure 6.

The maximum loss of accuracy ratio is 28.4 when
group-size is set 10 for the RDT-P. Here, it is to be noted
that for RDT-std, we used fixed watermark bits (repeat the
given 9 bits for the whole dataset) wherein RDT-P, we used
a chaotic based dynamic watermark bits for each group. The
addition of a watermark bit in LSB changes the value which
also affects the accuracy ratio. Here, we can see that, for
group size 2, our proposed RDT-P algorithm shows constant
performance or even better performance then RDT-std in
terms of information loss.
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TABLE 11. Descriptive statistics.

Variables O-1 std-1 P-1 0-2 | std-2 p-2 0-3 | std-3 P-3 0-4 std-4 P-4
Mean 5.8 5.8 5.8 3.0 3.0 3.0 3.7 3.7 3.7 1.1 1.1 1.1
SE 0.06 | 0.09 0.09 0.03 | 0.05 0.05 | 0.14 | 0.16 0.16 0.06 0.07 0.06
Median 5.8 5.7 5.7 3 3 3 4.3 4.2 4.2 1.3 1.3 1.25
Mode 5 6 5.7 3 3.1 2.9 1.5 4.6 1.5 0.2 0.2 0.2
SD 0.8 1.1 1.2 0.4 0.7 0.7 1.7 1.9 1.9 0.7 0.8 0.8
SV 0.6 1.3 1.4 0.1 0.5 0.5 3.1 3.8 3.8 0.5 0.7 0.7
Kurtosis -0.5 | 0.004 | -0.03 0.2 0.2 0.4 -1.4 | -1.1 -1.0 -1.3 -0.9 -0.9
Skew 0.3 0.4 0.4 0.3 0.1 0.2 -0.2 | -0.04 -0.007 | -0.08 0.1 0.15
Range 3.6 6.3 5.9 2.4 4 4.1 5.9 8.4 8.2 2.4 3.6 3.5
Min 4.3 2.8 3 2 1.2 1.2 1 -0.3 -0.1 0.1 -0.5 -0.4
Max 7.9 9.1 8.9 4.4 5.2 5.3 6.9 8.1 8.1 2.5 3.1 3.1
Sum 864 862 862 451 451 448 553 553 551 175 175 172
Count 148 148 148 148 148 148 148 148 148 148 148 148
Large (1) 7.9 9.1 8.9 4.4 5.2 5.3 6.9 8.1 8.1 2.5 3.1 3.1
Small (1) 4.3 2.8 3 2 1.2 1.2 1 -0.3 -0.1 0.1 -0.5 -0.4
CL (95.0%) 0.13 | 0.19 0.19 0.07 | 0.11 0.11 | 0.28 | 0.31 0.31 0.12 0.14 0.13

Accurcay ratio after four attributes replaced
EG=2 EG=4 EG=5 EG=6 =G=10

Original ERDT-std
120 gm

Accuracy ratio in %o

NB MLP SMO IBk RF AB B DT
Machine L earning algorithms:

FIGURE 5. Accuracy ratio after four-attribute values replaced by RDT
values.

Accuracyloss comparison

BRDT-std ®G=2 ®G=4 #nG=5 #BG=6 8G=10

"B

S

Accuracy ratio
=l
[

FIGURE 6. Accuracy loss comparison.

In terms of payload, the number of watermark bits embed-
ded in the group depends upon the group size. If we have
group-size=4 then, we can embed 3 bits maximum in each
group. The total number of bits for the g=4is 111 per attribute
when the dataset size is 150. Bits embedding capacity for the
different group sizes is shown in Figure 7. The maximum
bits which can be embedded in the Iris dataset are 140 per
attribute when the group size is 15. Our proposed algorithm
shows similar performance as compared to RDT-std [9] in
terms of the payload. It is because we used a similar structure
of embedding bits as discussed in RDT-std.

In terms of computation time, our proposed algorithm
takes slightly more than RDT-std. The experiments are
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Bit embedding capacity
160
140
#1204
£ 100
=]
S
g 60 -
=
Z 40
20 -
L
G=2 G=4 G=5 G=6 G=8 G=10 G=15
Group size

FIGURE 7. Bit embedding capacity of each group size in a single attribute.

conducted on a computer equipped with an Intel Core i5 —
3210MCPU @2.50GHz and 4GB RAM. We used MATLAB
17 environment for the experiment. The average time (10
runs) of the chaotic sequence (256 value) is 0.00192 sec-
onds (max = 0.0099 and min = 0.0001). The total time for
group-size (g = 4), watermark bits set (111) and weight set
(4 values of 3 bits) is 0.01 seconds. This operation takes place
only once when the RDT process is initiated. The rest of the
computation time is similar to RDT-std because we use the
same procedure for perturbation.

D. STATISTICAL ANALYSIS

In this section, we analyze and compare the statistical changes
in the resultant perturbed dataset with the original dataset.
Usually, for analyzing the information loss, different statis-
tical measures which include mean, variance, co-variance,
and, Pearson’s correlation is calculated before and after the
perturbation process. Here, for the data analysis, we used the
data analysis tool of Excel 2010. First, we apply the descrip-
tive statistics on each column of the original Iris dataset,
RDT-std, and RDT-P datasets. The descriptive statistics are
shown in Table 10 After that, we calculate the population
co-variance and correlation between the original and resul-
tant RDT datasets. The co-variance and correlation result
for each column are shown in Table 12. We can see that
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TABLE 12. Co-variance, correlation, standard deviation, variance.

Technique Col-1 Col-2 Col-3 Col-4
std-covariance 0.903 0.296 3.324 0.635
P-covariance 0.934 0.287 3.326 0.607
std-correlation 0.926 0.945 0.969 0.965
P-correlation 0.937 0.931 0.968 0.957

std-SD 1.016 0.595 1.856 0.814
RDT-P-SD 1.03 0.588 1.857 0.798
std-Variance 1.034 0.354 3.44 0.66

P-Variance 1.065 0.346 3.450 0.637

TABLE 13. Regression statistics.

Variable| std-1 P-1 std-2 | P-2 std-3 P-3 std-4 | P-4
Multiple| 0.92 093 | 0.94 0.93 | 0.96 0.96 | 0.96 0.95
R
R.Sq 0.85 0.87 | 0.89 0.86 | 0.93 0.93 | 0.93 0.91
Adjusted 0.85 0.87 | 0.89 0.86 | 0.93 0.93 | 0.93 0.91
R. Sq
SE 0.44 0411 0.23 0.26 | 0.48 0.48 | 0.22 0.24

TABLE 14. ANOVA statistics.

Method
RDT-std-Col-1

Variable | DF| SS MS | F Sig. F
Regression 1 175.1| 175.1] 884.6| 7.8E-64
Residual | 146 28.9 | 0.19
Total 147| 204
Regression 1 68.8 | 68.8 | 1240| 3.04E-73
Residual | 146| 8.10 | 0.05

RDT-std-Col-2

Total 147\ 76.9

RDT-std-Col-3 | Regression 1 527 527 | 2260| 9.64E-91
Residual 146| 34.03| 0.2
Total 147| 561

RDT-std-Col-4 | Regression 1 103.6| 103.6| 2018 | 2.27E-87
Residual 146| 7.5 0.05

Total 147| 111.1

RDT-P-Col-1 Regression 1 187.5| 187.5| 1067| 5.03E-69
Residual | 146 25.6 | 0.17
Total 147| 213.2

RDT-P-Col-2 Regression 1 64.7 | 64.7| 955 | 6.22E-66
Residual | 146] 9.8 0.06
Total 147| 74.5

RDT-P-Col-3 Regression 1 527.6| 527.6/ 2238| 1.93E-90
Residual | 146] 344 | 0.2
Total 147| 562.1019

RDT-P-Col-4 Regression 1 94.8 | 94.8 | 1623 | 5.55E-81

Residual | 146| 8.5 0.05
Total 147| 103.4

the correlation values between real and both RDT-std and
RDT-P is above 0.9. This value shows that instance values of
the real dataset are highly correlated with the RDT-std and
RDT-P resultant dataset. For further analysis, we calculate
the population standard deviation and variance between each
column of the real Iris dataset and its resultant RDT-std
and RDT-P perturbed dataset as shown in Table 12.Lastly,
we apply regression between each column of the original Iris
dataset and perturbed datasets as shown in Table 13, Table 14,
and, Table 15.

After analyzing the performance of the proposed RDT-P to
RDT-std., now, we have to check that these RDT algorithms
can be applied in the recommendation domain. Our main
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agenda is to check can these algorithms replace homomorphic
encryption.

E. RDT APPLICATION IN RECOMMENDATION DOMAIN
Here, to ensure the validity of the results, we used the
MovieLens dataset because mobile app usage dataset in not
publicly available. The MovieLens data set is the widely
used dataset in recommendation research and publically
available at [40]. For movie recommendation, instead of
developing our recommender system, we selected a movie
recommender available at GitHub. For the test case, we ran-
domly selected select five users, and their 4 ratings for
14 movies are shown in Table 16. From the 100Kdataset,
we selected 85 movies from 17 categories. We input these
original rating to the movie recommender system and gen-
erate 3 recommendation per user. Our recommendation
set is in the form of a movie number (id) as shown
in Table 17. After that, we applied a single bit key based HE
(Homo-S), the three-bit key-based HE (Homo-M), RDT-std,
and, RDT-P on these 20 ratings which are shown in Table 16.
The perturbed rating dataset for each technique is shown
in Table 18.

From Table 18, we evident some under-flows and overflow
terms of 0 and greater than 5 values. We know that ratings of
the given dataset should be in the range of 1 — 5. So, use
the Alattar’s suggestion [25] and replace this underflow and
overflow values with the original ratings. After that, we input
these perturbed ratings to the recommender algorithm and
generate 3 recommendations per user. For the comparison,
we only use the Homo-S recommendation set, because of 10
perturbed ratings of Homo-S, RDT-std, and RDT-P as similar
to original ratings. The recommendation set comparison for
each algorithm is shown in Table 19.

The resultant recommendation set for each algorithm is
almost similar. From these recommendation results, we are
confident enough that RDT-algorithm can replace homomor-
phic encryption where execution time is the main constraint.
Here, we only compared our RDT results with the HE scheme
because of few reasons:

« Recent recommendation methods used homomorphic

encryption to achieve privacy-preservation aspects.

« It is based on the encryption process and the server can
use it directly without decrypting.

o The existing RDT schemes [12], [13] are already com-
pared with the RDT-std in terms of information loss,
watermark embedding, and accuracy as discussed in the
article [9]. The RDT-std proved better performance over
existing methods. Here, we are using the same pertur-
bation process as RDT-std, so, our proposed RDT-P
with ABS function will also perform better than existing
methods.

Finally, we compared the RDT-P performance with HE in
terms of RMSE accuracy metric. We used Surprise Python
package discussed in [41]. We chose SVD movie recommen-
dation algorithm with 80-20 data split scheme. 80 percent
data is used for training and 20 percent is used for testing.
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TABLE 15. ANOVA statistics.
Method Variable Coeffi SE t-Stat P-value Lower Upper Lower Upper
95% 95% 95.0% 95.0%
P- Col-1 Intercept -2.0 0.24 -8.53 1.67E-14 -2.5 -1.6 -2.5 -1.6
X Variable 1 1.3 0.04 32.6 5.03E-69 1.2 1.4 1.2 1.4
P- Col-2 Intercept -1.6 0.15 -10.6 5.99E-20 -1.9 -1.3 -1.9 -1.3
X Variable 1 1.5 0.04 30.9 6.22E-66 1.42 1.6 1.4 1.6
P- Col-3 Intercept -0.2 0.09 -3.0 0.002 -0.46 -0.09 -0.46 -0.09
X Variable 1 1.07 0.02 473 1.93E-9 1.02 1.1 1.0 1.1
P-Col-4 Intercept -0.08 0.03 -2.31 0.02 -0.1 -0.01 -0.15 -0.01
X Variable 1 1.05 0.02 40.2 5.55E-81 1.003 1.10 1.003 1.10
RDT-std- Col-1 | Intercept -1.82 0.25 -7.03 7.21E-11 -2.3 -1.31 -2.34 -1.31
X Variable 1 1.31 0.04 29.7 7.8E-64 1.2 1.3 1.2 1.3
RDT-std- Col-2 | Intercept -1.7 0.1 -12.6 2.71E-25 -2.01 -1.47 -2.01 -1.47
X Variable 1 1.5 0.04 35.2 3.04E-73 1.4 1.6 14 1.6
RDT-std- Col-3 | Intercept -0.2 0.09 -2.8 0.004 -0.44 -0.08 -0.44 -0.08
X Variable 1 1.07 0.023 475 9.64E-91 1.02 1.115777 | 1.02 1.1
RDT-std- Col-4 | Intercept -0.12 0.03 -3.6015 0.0004 -0.19 -0.05 -0.19 -0.05
X Variable 1 1.10 0.02 44.9 2.27E-87 1.05 1.1 1.05 1.1
TABLE 16. User-item rating matrix.
User- Movie-
no. no.
8 9 12 | 13 ] 14 | 16 | 22 | 25 | 94 | 198] 240| 288| 324| 333
196 5 ? ? 2 ? ? ? 4 3 ? ? ? ? ?
207 3 ? 3 ? ? ? 3 4 ? ? ? ? ? ?
209 ? 3 ? ? 3 4 ? ? ? ? ? ? ? 2
105 ? ? ? ? ? 4 ? ? ? ? ? 4 4 3
296 ? ? ? 3 ? ? 4 ? ? 5 1 ? ? ?
TABLE 17. Recommendation list. TABLE 18. Perturbed rating dataset.
U-number Tstc nd- 3rd- Original | RDT-std | RDT-P | Homo-S | Homo-M
Recommendation] Recommendation| Recommendation B 7 7 5 6
196 63 26 138 3 2 2 2 1
207 3 138 16 2 1 1 1 3
209 34 6 25 4 5 4 4 7
105 219 159 207 3 3 3 2 1
296 218 359 21 3 3 3 3 5
4 5 5 4 2
3 3 4 3 7
Accuracy comparison for 100K dataset 2 1 0 1 0
3 3 3 2 3 6
; 3 3 2 2 2
" 4 5 5 3 5
7 4 4 4 4 7
i 3 2 1 2 0
§ 7 7 7 i 6
2o 4 4 4 4 4
fo 5 7 7 4 0
- 04 4 5 4 4 1
1 -1 -2 0 0
Origaal RDT-P Homor  Homodbit  Fandom Homomorphic Mltilerd bamcaymined 3 3 2 2 2

permtaics  Eaaypiea

Privact achemes

FIGURE 8. Accuracy comparison in terms of RMSE.

The computed RMSE score for RDT-P, Homo-S, and Homo-
3bit datasets along with few existing schemes [42]-[45] are
shown in Figure 8.

The Homomorphic encryption [42] and k-anonymized rat-
ing [43] schemes perform almost similar to original dataset
where random perturbation [45] and multi-level [44] perform
worst but better than Homo-3bit scheme. The RDT-P per-
form better in terms of RMSE even from the original dataset
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because it create dataset in the range of 1 — 3 with low
variance. After comparison of 100K movie dataset accuracy
with few existing schemes, we applied the RDT-P algorithm
on app rating dataset used by the study [46].The properties
of the app rating dataset are: number of users: 3825, number
of apps: 8654, number of rating: 9690, the sparsity ratio:
99.97. The given ratings are in the range of 1 — 5. In the
first round, we calculate the RMSE, MAE, and MSE score of
the original dataset using three algorithms SVD, SVD++ and
KNN with cluster-size 40 as shown in Figure 9. After that,
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TABLE 19. Recommendation list.

User- Rating Ist-Rec 2nd-Rec 3rd-Rec
number
196 Original 63 26 138
RDT-std 13 138 26
RDT-P 63 138 26
Homo-S 63 138 26
207 Original 13 138 16
RDT-std 13 16 138
RDT-P 13 16 138
Homo-S 13 138 16
209 Original 34 6 25
RDT-std 34 6 25
RDT-P 34 25 159
Homo-S 34 25 159
105 Original 219 159 217
RDT-std 219 159 217
RDT-P 219 159 217
Homo-S 219 159 217
296 Original 218 359 21
RDT-std 218 359 21
RDT-P 218 359 21
Homo-S 218 359 21

Accuracy comparison of original and
perturbed App rating dataset

ERMSE ®MAE MSE
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FIGURE 9. Comparison of original’s and perturbed app rating dataset.

in the second round, we replaced the original ratings with
the RDT-P based perturbed ratings and then RMSE, MAE,
and MSE is calculated for three selected algorithms. Finally,
in the third round, we replaced the original ratings with
chaotic based perturbed ratings and the above three accuracy
measures are calculated. It can be clearly seen from Figure 9
that RDT-P performs better than chaotic noise scheme, even
from the original ratings.

After accuracy analysis, the detailed analysis related to
execution time is given in next the section.

F. COMPUTATIONAL ANALYSIS OF RDT-P WITH HE
SCHEME

The execution time of both RDT-std and our proposed RDT-P
algorithm is the same as discussed earlier because of the
same perturbation process except we used ABS function to
mitigate negative values. So, we used the average time after
10 runs for the RDT-algorithms and homomorphic encryp-
tion. For testing purposes, we used 100K MovieLens dataset.
Because of rating range of 1 — 5, and total of 100K ratings,
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FIGURE 10. Comparison of execution time.

the chaotic binary sequence size is 300K . We calculate the
binary sequence size using Eq.7 as given below:

C-sequenceg;,, = Data-size
xNo.of bits of max value in data  (7)

The same chaotic sequence is used for the proposed RDT-P
algorithm and chaotic noise addition. After that, we exe-
cute our Chaotic noise addition on this dataset and after
10 runs, we achieved the meantime is 90 seconds. After
that, we execute RDT-std and proposed RDT-P algorithms
and after 10 runs we achieved the meantime of 20 seconds
for both methods. A comparison of RDT algorithms and
Chaotic noise addition is shown in Figure 10. Moreover,
HE based centralized privacy-preservation mobile app rec-
ommendation scheme [30] achieved more than 30 seconds
(average) for just 100 items where our RDT-P achieved
20 seconds for more than 1600 movie-items and 100,000 rat-
ings. In the same manner, study [47] achieve 45 seconds
for only 100 items. These results support our selection and
give a foundation to our hypothesis that RDT can replace
the HE scheme in terms of execution time. In the future,
we will perform more detailed performance analysis on the
application of RDT in the mobile health app recommendation
domain.

V. RELATED WORK

The privacy-preserving data mining (PPDM) techniques can
prevent information disclosure during the datamining process
but these approaches severally damage the original values.
Due to this, mining results cannot be verified from the per-
turbed data. This irrecoverable problem of PPDM can be
solved by the privacy difference expansion (PDE) approach
as discussed in [13]. Authors in [13] used different expan-
sion (DE) mechanism and exploit the similarity between
the data. But sometimes similarity does not exist in the
mining data. For that purpose, they used Principal Compo-
nent Analysis (PCA) on the real dataset and then exploit
the similarity using DE. This approach not only provides
privacy during the datamining process but also can recover

VOLUME 9, 2021



S. Beg et al.: Dynamic Parameters-Based RDT Algorithm in RS

IEEE Access

the original data which reduce the knowledge loss. Their
experimental results show that PDE performs well against
different PPDM techniques. PDE approach reduces the infor-
mation loss but has limited payload capacity. The reversible
privacy-preserving approach for streaming data is discussed
in [12]. In this approach, the authors proposed a windowing
procedure in which they combine a few instances as a group
and then they take the average of those elements. Subtract
the average value from the next value which is an immediate
instance after the group. Upon the difference value, protec-
tion and watermark embedding process are decided. Their
proposed result shows a better accuracy ratio than the PDE
approach.

To improve the issues of PDE, another approach reversible
data transform (RDT) is discussed in [9]. To adjust the per-
turbation degree, they used the weighing mechanism which
increases flexibility. This method reduces the information
loss and increases the watermark payload than other PDE
methods. This method shows the RDT applicability in the
health dataset and we consider this method as the most
perfect candidate for further exploration for our research in
this paper. The application of RDT-std in IoT based mobile
app recommendation system is discussed in [48]. In this
paper, the authors used RDT-std with their proposed data
collection scheme but they did not discuss the RDT impact
on the accuracy of the recommendation algorithm. Moreover,
they used static parameters and effect of these parameters on
the perturbed data is unknown.

In the same manner, Homomorphic encryption (HE) based
mobile app recommendation approach is discussed in [30].
In this study, authors computed the trust values on the
mobile device and then apply HE scheme before sending
those values to the server. Another HE scheme for movie
rating dataset is discussed in [47]. In this study, authors
used ElGamal cryptosystem and achieve better accuracy and
computation time.

Moreover, random perturbation schemes are also used in
the recommendation domain as discussed in [44], [45]. These
schemes generally achieve high accuracy loss and takes low
computation time when compared to HE schemes. On the
other hand, K-anonymized rating scheme [43] is also tested
for recommendation domain. This scheme perform almost
similar to the original rating after performing fine tuning in
the recommendation algorithm.

In health based mobile app recommendation especially
for the areas of nutrition and physical activity, there are
few schemes are available as discussed in recent litera-
ture review [49]. In the same manner, a recent literature
review [50] clearly mentioned that security and privacy issues
are still under-explored in mobile health applications. So,
RDT algorithm would be a nice addition to the said domain.

VI. CONCLUSION

In this paper, we proposed a chaotic based Reversible Data
Transform (RDT) approach for privacy-preserving data min-
ing. This approach will generate RDT parameter values

VOLUME 9, 2021

dynamically at run time and due to this, prior sharing of
the parameter values for the recovery process will not be
necessary. This approach can be used as an alternative to the
standard-RDT algorithm where bandwidth and memory are
considered important factors. Our results on the Iris dataset
clearly show that the proposed chaotic RDT shows similar
results as standard-RDT. Secondly, in this paper, we explore
the usage of the RDT algorithm on real app usage records
in the mobile recommendation domain. Thirdly, we apply
the RDT algorithm on the movie recommendation system
and our results show that the proposed RDT algorithm can
replace homomorphic encryption if an adaptive recommen-
dation approach is used.

APPENDIX

After checking the RDT-P effect on the app rating dataset,
in the next evaluation, the synthetic dataset is created and
used. First, random app-usage frequency is created in the
range of 1-50 using the Excel software and then replaced
these frequencies with ratings in above-mentioned app rating
dataset. The RMSE, MAE and MSE is calculated for orig-
inal and perturbed datasets using three selected algorithms
i.e., SVD, SVD++ and KNN with cluster size 40 as shown
in Figure 11. It can be seen that due to scale down the
frequency values by 100, the CNA perform almost similar to
the original dataset.

Accuray comparison for synthetic app usage

frequency dataset
mRMSE

EMAE MSE

Aceuracy

FIGURE 11. Accuracy comparison of synthetic dataset.
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