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Abstract
In a real-world scenario for privacy-preserving data publishing, the original data
are anonymized and released periodically. Each release may vary in number of
records due to insert, update, and delete operations. An intruder can combine,
that is, correlate different releases to compromise the privacy of the individual
records. Most of the literature, such as τ-safety, τ-safe (l, k)-diversity, have an
inconsistency in record signatures and adds counterfeit tuples with high gen-
eralization that causes privacy breach and information loss. In this paper, we
propose an improved privacy model (τ, m)-slicedBucket, having a novel idea of
“Cache” table to address these limitations. We indicate that a collusion attack can
be performed for breaching the privacy of τ-safe (l, k)-diversity privacy model,
and demonstrate it through formal modeling. The objective of the proposed
(τ, m)-slicedBucket privacy model is to set a tradeoff between strong privacy
and enhanced utility. Furthermore, we formally model and analyze the pro-
posed model to show that the collusion attack is no longer applicable. Extensive
experiments reveal that the proposed approach outperforms the existing models.

1 INTRODUCTION

With the advent of recent technologies such as Internet of Things (IoT) and Big Data technologies, huge amount of data
is collected on daily basis.1,2 The accumulated data can be of various type such as credit card transactions, phone calls,
web browsing, social media activities, or Electronic Health Records (EHR), and so on.1-3 Such data may contain private
information, for example, name, address, account number, patient disease information in EHR, and so on. The leakage of
[Correction added on 13 November 2020, after first online publication: The author name has been corrected to Waheedur Rehman, in Table 8, rows 9
and 10 have been corrected, and the acknowledgement section has been added.]
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private information is a major concern in today’s modern society. Recently, it has been reported that 41 million healthcare
record breached in 2019.4 Moreover, another report indicates that U.S. healthcare department loss $6.2 billion annually
due to the private information leakage in EHR.5 On the other hand, data publishing and sharing is also very crucial
for research innovation and improving business processes. In this regard, Privacy-Preserving Data Publishing (PPDP)
methods aim to keep the privacy of an individual before publishing the data using anonymization techniques.6-8

The PPDP methods can be either static or dynamic. In case of Privacy-Preserving Static Data Publishing (PPSDP),
the data are published one time. The most common PPSDP techniques include k-anonymity,6,7 l-diversity,8 t-closeness.9
Contrary, Privacy-Preserving Dynamic Data Publishing (PPDDP) is based on republication in which data can be modified
over time through insertion, update or deletion. The first contribution introduced in PPDDP is known as m-invariance,10

where the signature (a set of sensitive information in a group of records), of each record must remain the same in every
republication. The authors in References 11,12 improved m-invariance with τ-safety and τ-safe (l, k)-diversity privacy
models, respectively. In all the three models, dummy records (noise tuples) have been used as counterfeit tuples to create
a consistent signature for a record. However, it has been identified that τ-safe (l, k)-diversity12 prevents signature incon-
sistency during internal updates up to two releases and cannot prevent during further alternate releases. Moreover, all
the mentioned techniques suffer from counterfeit usage limitations.

The focus of this paper is to address the above-mentioned limitation in existing PPDDP techniques by proposing a
new privacy model named as (τ, m)-slicedBucket, in comparison to τ-safe (l, k)-diversity model. The proposed model
identifies that the 𝜏-safe (l, k)-diversity model contains inconsistent record signatures in an alternate releases. The incon-
sistent record signatures prone the patient’s data to a new type of attack, that is termed as collusion attack which breaches
the privacy of the intended target individual. The proposed algorithm creates a consistent record signature for each
record over time to prevent the collusion attack. The proposed approach presents a novel idea of cache table (ie, Cach),
which are few repeated records extracted from an original microdata T to avoid use of counterfeit records. The proposed
Algorithm 1 (see Section 5.4) begins working after Cach table creation. To the best of our knowledge, the idea of
Cach table is a novel work in PPDDP. The (𝜏, m)-slicedBucket also separate the delete table (Del) work in 𝜏-safe (l,
k)-diversity model into Del and an update (Upd) tables for better record identification. During the anonymization
process, we apply slicing13 and cell generalization14,15 approaches for an improved utility and privacy. The proposed
(𝜏, m)-slicedBucket privacy model groups the tuples into sliced buckets. Each slice bucket must fulfill the following pri-
vacy requirements; (i) be of size k and m-invariant, (ii) be in sliced form, (iii) fulfill the m-invariance requirement and (iv)
maintain a consistent signature for an individual record in each release during internal or external updates (discussed in
Section 1.1 Motivation).

1.1 Motivation

The microdata data T contains EHRs of different individuals. The attributes of T are classified into; identifier attribute
- AID (eg, social security number or an individual name), quasi identifier attributes - AQI (eg, age, gender, zipcode), and
sensitive attribute (SA) - AS (eg, disease.) For data de-identification, removing the AID is not enough because an adver-
sary (ie, an attacker) can use background knowledge (BK), that is, certain pattern of AQI (partial identifiers) and AS,16

and can link the published data to some external data (eg, voting system) to re-identify an individual, named as link-
ing attack. Therefore, the original microdata T is k-anonymized1 to T* (eg, Table 2A) for preventing the linking attack.
Before anonymizing the actual data using the proposed (𝜏, m)-slicedBucket privacy model, the repeated As records in
microdata T (Table 1) are extracted to produce Cach table (Table 1B). The remaining records (Table 1C) are consid-
ered as original microdata T for anonymization. Therefore, to identify the privacy breach in12 the same data that is,
in Table 1C, is used to perform anonymization through 𝜏-safe (l,k)-diversity12 and the proposed (𝜏, m)-slicedBucked
privacy models.

The PPDDP can support records insertion, deletion or update operations during different releases (ie,
T∗1 ,T∗2 ,T∗3 , … T∗n). Modification in data is known as external and internal updates. First time insertion or deletion that
effects the total number of records; are known as external updates. Internal updates are the re-insertion of deleted records
or change in the record attribute values that is, . AQI or AS values, over different times. In this paper, we consider the inter-
nal updates for AS values and are arbitrary that is, old values have not been correlated with the new ones. An intruder
can identify an individual record by correlating different releases, that is, intersection or subtraction, published over
time. Like,16 we consider that some of the AS values are persistent (values that never change) while others are transient
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T A B L E 1 (A) Microdata table T (before Cach), (B) Cach table, (C)
microdata T (after Cach)

Age Gender Zipcode Disease

(A)

22 M 47 906 Aids

22 F 47 305 Flu

33 F 47 905 SSM-pos

52 F 47 905 Asthma

54 M 47 906 Flu

60 M 47 302 Cardiac

60 M 47 304 Dyspepsia

64 F 47 304 Gastritis

21 M 47 901 Bronchitis

54 F 47 902 Dyspepsia

27 M 47 303 Aids

65 M 47 308 Cardiac

58 F 47 905 Asthma

64 F 47 308 Gastritis

21 M 47 907 Bronchitis

(B)

22 M 47 906 Aids

22 F 47 305 Flu

33 F 47 905 SSM-pos

52 F 47 905 Asthma

60 M 47 302 Cardiac

60 M 47 304 Dyspepsia

64 F 47 304 Gastritis

21 M 47 901 Bronchitis

52 F 47 907 Malaria

32 M 47 955 Diarrhea

52 M 47 915 Pneumonia

(C)

21 M 47 907 Bronchitis

27 M 47 303 Aids

33 F 47 905 SSM-pos

58 F 47 905 Asthma

54 M 47 906 Flu

54 F 47 902 Dyspepsia

64 F 47 308 Gastritis

65 M 47 308 Cardiac
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F I G U R E 1 Relating values with the possible operations on them

(A)

GID (name) Age Zip code BID

1(p1) [21-27](21) [47303-47 907](47907) 1

1(p2) [21-27](27) [47303-47 907](47303) 1

2(p3) [33-58](33) [47905-47 906](47905) 2

2(p4) [33-58](58) [47905-47 906](47905) 2

(B)

BID Signature Count

1 Bron, Aids 1

2 SSM-pos, Asthma 1

(C)

p2 Bron, Aids

p4 SSM-pos, Asthma

p3 SSM-pos, Asthma

T A B L E 2 (A) τ-Safe (2,2)-diversity GT1 for T∗1, (B)
τ-safe (2,2)-diversity BT1 for T∗1, (C) del table at time 1

(may freely change with time) but are arbitrary. Figure 1 shows the relationship between persistent and transient values
with the possible operations on them. For example, if insertion is performed initially, the value must be persistent, but
it can be transient which will be known in Tj (2≤ j≤n). An update operation shows that the value must be transient,
and so on.

Consider a portion from original microdata T (after Cach reduction) in Table 1C having AS values that are common
between male and female.

This work has been motivated by the following limitations in 𝜏-safe (l, k)-diversity privacy model.12

(i) Fails to prevent Collusion Attack. The 𝜏-safe (l, k)-diversity12 prevents signature inconsistency during internal
updates only for two releases and cannot prevent during further alternate releases, that is, . T∗n ≠ T∗n−2, T∗n−1 ≠ T∗n−3 and so
on. For example, after releasing T∗1 the deleted records = {p2, p4}, updated = {p3}. T∗2 creates consistent signatures with
T∗1 but the problem arises in T∗3. Consider an internally update scenario for any of the record for example, p3 = SSM-pos
in Table 2. At time 2 in T∗2, for example p3 has suffered from Diarrhea, so a new signature {Glaucoma, Diarrhea} has been
created. At time 3, if p3 suffers again with same disease value SSM-pos, its intersection with {Glaucoma, Diarrhea} is
zero, that is, S(t)∉ Sig(BTp− 1(t)) in 𝜏-safe (l, k)-diversity algorithm, and T∗3 ∩ T∗2 = 0. The reason behind is; the algorithm
checks the signature inconsistency with its previous release only that is, p-1, and no further checking is performed. The
𝜏-safe (l, k)-diversity algorithm allows to create a new signature for p3 that may causes signature inconsistency with the
same p3 record at time 1. The signatures stored in Del Table 3C are useless at all because the algorithm only stores record
signatures in Del table. While creating new signatures, there is no verification of the same signature existence in Del
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T A B L E 3 (A) τ-Safe (2,2)-diversity GT2 for T∗3, (B)
τ-safe (2,2)-diversity BT2 for T∗3, (C) del table at time 3 (A)

GID (name) Age Zip code BID

1(p1) [21, 22](21) [47906-47 907](47906) 1

1(C1) [21, 22](22) [47906-47 907](47907) 1

2(p3) [33-58](33) [47905-47 921](47905) 2

2(p5) [33-58](58) [47905-47 921](47921) 2

(B)

BID Signature Count

1 Bron, Aids 1

2 SSM-pos, Dysp 1

(C)

p2 Bron, Aids

p4 SSM-pos, Asthma

p3 SSM-pos, Asthma

p3 SSM-pos, Dysp

table. It also causes the increase in the size of Del table drastically. For example, at time 3, the newly created signature for
p3 is (SSM-pos, Dyspepsia), where p5 = Dyspepsia is a newly inserted sensitive value at time 3. The new signature for p3
has an intersection value SSM-pos with his own signature at time 1. The intersection value obtained is a collusion of the
three releases. Such internal updates enable the intruder in identifying the p3 latest sensitive value using the AQI values
in previously published releases. Therefore, the collusion attack can occur.

(ii) Improper use of Del table. Two limitations were observed in Del table usage of 𝜏-safe (l, k)-diversity,12 (i) both
the deleted and updated record-signatures are stored at one place, (ii) no-deletion of re-inserted record signature. These
limitations cause two problems: (i) Mixing of updated and deleted tuples; that eventually leads to a scenario where the
legitimate records are unpublishable. For a specific record, each time the alternate internal updates create new signatures
that will lead to signature limitations, (ii) Continuously increasing size of Del table. Therefore, searching for an internally
updated record signature among the deleted records, will take longer time. The proposed (𝜏, m)-slicedBucket privacy
model separates the Del work into Del and Upd tables.

(iii) Bound to use counterfeit tuples. The use of counterfeit; a noise or dummy record, is common in m-invariance,10

𝜏-safety,11 and 𝜏-safe (l, k)-diversity.12 These models directly use the counterfeit tuples when there is no other record to
create the required signature. Using counterfeits, increases the privacy but reduces the truthfulness in records and utility
because of the noise addition. In a special case, there may be insertion of such records that will only need the counterfeits
for signature consistency, so a drastic utility decrease with complete fake publishing may occur. The proposed privacy
model in this work, does not use any counterfeit tuple with the help of novel idea of Cach table.

1.2 Contributions

The main contributions of the proposed (𝜏, m)-slicedBucket privacy model are as follows.

1. We propose an improvement of 𝜏-safe (l, k)-diversity, named as (𝜏, m)-slicedBucket privacy model for sequential
dynamic data publishing. The proposed approach prevents against a new type of attack, named collusion attack.
Unlike the 𝜏-safe (l, k)-diversity, the (𝜏, m)-slicedBucket uses Del, Upd, and Cach tables during the anonymization
process to help in creating consistent record signatures.

2. We formally model and investigate the invalidation of 𝜏-safe (l, k)-diversity for the collusion attack and correctness
of the proposed (𝜏, m)-slicedBucket privacy model.
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3. Based on the above points, the simulation results prove that the proposed privacy model outperform its counterpart
in terms of privacy and utility.

The rest of the paper is organized as follows. Section 2 presents the related work. Section 3 discusses the prelim-
inaries. Section 4 shows the considered attacks and limitations in 𝜏-safe (l, k)-diversity12 with respect to High Level
Petri-Net (HLPN). Section 5 presents the proposed (𝜏, m)-slicedBucket privacy model and its formal analysis using HLPN.
In Section 6, experiments and evaluations have been discussed. Section 7 concludes the paper.

2 RELATED WORK

This section investigates and categorizes the available relevant research work in order to define narrow scope of the
proposed work.

For implementing privacy and security in IoT and Big Data, numerous techniques exist in literature.17-26 For
PPDP, a bunch of anonymization algorithms have also been proposed so far. These PPDP approaches can be broadly
categorized to semantic and syntactic privacy models. The 𝜀-differential privacy (random noise addition)19 is an
example of semantic data privacy. While syntactic privacy is a clustering framework which creates quasi identi-
fier (QI) groups called equivalence classes (ECs). The k-anonymity6,7 by Sweeney et al, and all its refinements for
example, l-diversity,8 t-closeness,9 𝛽-likeness,20

𝜃-Sensitive k-anonymity,21 are the syntactic approaches which pre-
vent the linking attack. In all these privacy approaches, the microdata are generalized into k-anonymized groups
where every record is un-differentiable from at least k − 1 other records. The syntactic privacy algorithms can be
further categorization into microaggregation,22-26 anatomization,27,28 and generalization.29-35 Microaggregation replaces
the QI values in an EC to the centroid of the EC. Anatomization performs vertical partition by separating the
microdata T into QI attributes table and SA table. Generalization includes top-down34 or bottom-up35 approaches
where more specific QI values are replaced with less specific values. As compared to generalization, anatomy27 may
have high degree of privacy disclosure because of publishing actual values. The centroid values in microaggregation
are not the real record QI values. Hence the published data are meaningless. Due to the advantages of general-
ization; as compared to microaggregation and anatomization, we have used bottom-up cell generalization in the
proposed algorithm.

A more practical and challenging scenario is the PPDDP which can be categorized to (i) Multiple and, (ii) Sequen-
tial data publishing. In multiple data publishing, at the same time and on the same data, different set of attributes
are published.14,36 In sequential data publishing, many releases of the same table are published over a period of
time.10-12,15,16,37-39 The focus of this paper is sequential data publishing, where data are published over time hav-
ing the same schema. In each release the number of records may vary. The variation during different releases is
due to adding records (insertion), removing few existing records (deletion), or modifying the existing records or
re-insertion of old records (updating). Most privacy models fail to preserve privacy due to adversary BK. Several
works consider BK for single publishing,40-42 however an adversary cannot adopt the static BK for re-publishing
scenario. For privacy breach in re-publishing the adversary correlate attributes or records in different sequential
releases.

Byun et al43 was first to propose the idea of data re-publishing where only insertion is considered (incremen-
tal update). The m-invariance10 being the first to address dynamic publications; all the operations that is, insertion,
updating and deletion, is considered in a sequential scenario. A top-down global generalizing algorithm; k-likability38

confirmed that a record could not be linked with less than k distinct AS values in a sequential release. The appli-
cability of the algorithm was only for two releases. Shmuely et al37 proposed a sequential privacy model in a multi-
partite graph with more releases. In the above model, only few records could be inserted over time. 𝜏-Safety11 is a
state-of-the-art privacy model for sequential data publication based on m-invariance10 concept. 𝜏-safe (l, k)-diversity12

further claimed to improve the 𝜏-safety model however, the algorithm failed to reflect the claim and applicabil-
ity is limited to only two releases. Also, in m-invariance,10

𝜏-safety11 and 𝜏-safe (l, k)-diversity,12 adding coun-
terfeit tuples is compulsory which fails to claim the truthfulness of published data. The proposed privacy model
(𝜏, m)-slicedBucket is a syntactic sequential data anonymization privacy model without the counterfeit tuples, using cell
generalization approach.
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3 PRELIMINARIES

Let the microdata T = {T1, T2, T3, …Tr} be the EHRs tables generated at times 1,2,3,… r, respectively, where each table
Tj before anonymization is in the form: Tj = {AID, AQI, AS}. The total number of tuples in any Tj are td (1≤ i≤ d) tuples
where each tuple belong to an individual i, and is known as the record respondent. Let T∗j be the anonymized release that
have been published at time j (1≤ j≤ r). The T∗j consists of QI attributes column (ACQI) and As column (ACS), where AID

(i.e. a patient identifier - PID) is dropped before publication. Del, Upd and Cach are the supporting tables, which store the
deleted records with their signatures, internally updated records with their signatures and the repeated AS values tuples
from original microdata, respectively. The intruder identifies an individual after linking the AQIs with some external
dataset for example, the publicly available voting data. The AS, which contains sensitive information for example, disease
in our case, needs to be protected the most. Table 4 depicts the notations used in this paper.

3.1 Adversarial BK

The BK; logical or probabilistic, is the information an adversary collects from different sources and personal obser-
vations that may cause a privacy breach in static,7-9,21,22 or in re-publication of data.11,16,32,44 In the proposed privacy
model, it is assumed that an adversary recursively updates the BK. Adversarial BK comprises of already published
releases, history of each individual tuple, QI values, and an updated knowledge obtained from joining different
releases.

Sensitive value background knowledge (BKsv) is the adversary’s initial belief about a record respondent and about
the corresponding possible sensitive value. It can be referred as prior belief about the sensitive values. Sensitive value
updated background knowledge (UBKsv) is the revised observation over the released tuples BKsv during different releases.
After a specific release, sensitive value posterior knowledge (PKsv

i ) is the adversary confidence about a possible sensitive
value for a record respondent. After release at time 1, only BKsv

i derives PKsv
i , because during first release, UBKsv is not

available. In static data publishing, PKsv
i is compared with prior BKsv

i for privacy disclosure. In dynamic re-publication,

T A B L E 4 Notation used in the paper

Symbol Description Symbol Description

Tj Table of m tuples of v individuals Sign Sensitive attributes signatures

Ts Number of tuples having same attribute
values in each release

Del Table of deleted records.

Tn Newly inserted records GID Group Identifier

Tr The re-inserted tuples from Del table BKsv Sensitive value background knowledge

Tr− 1 The original microdata table released at
time r− 1

UBKsv Sensitive value updated BKsv

Tr The current original micro data table to
be released at time r

PKsv Sensitive value posterior knowledge

Tu The tuples whose sensitive value
updates between the releases

CβK Composite Background knowledge

AID Explicit identifiers in T T∗j Anonymized data at time j

ACQI Quasi identifier column in T BT Bucket Table

ACS Sensitive attributes column in T GT Generalized Table

Tuples ti in table Tj are classified into Ts, Tn, Tr, Tu and Td as follows.
Ts = Tr ∩Tr− 1.
Tn = (Tr −Tr− 1)+Tu, t∉Del, t∉Cach.
Tr : ∀ t∈Tr, t∉Tr− 1,t∈Del, t∉Upd.
Tu : ∀ t∈Tr, t∉Tr− 1,t∈Upd, t∉Del.
Td : ∀ t∉Tr, t∈Tr− 1,t∈Del.
Where Tr and Tr− 1 are the original microdata tables at time r and r-1, t is a record of an individual.
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continuous background knowledge (BKcon) is the correlation between two sensitive values at time 1 and 2. As, we are
considering only arbitrary updates, this BKcon may not help the adversary. However PKsv

i is joined with BKcon, which is
further joined with BKsv

i to derive UBKsv
i+1 after release, at time 2. The UBKsv

i+1 is then joined with BKsv
i to derive PKsv

i+1 for
release at time 2. This recursive joining process increases the adversarial knowledge continuously, which helps in breach-
ing the privacy of an individual. Equation (1) and (2) depict PKsv

i and UBKsv
i+1 calculation for some anonymized releases

at time i.

PKsv
i = BKsv

i ⋈ UBKsv
i+1 (1)

UBKsv
i+1 = PKsv

i ⋈ BKcon ⋈ BKsv
i (2)

In this work, we consider collusion attack and membership attack based on intruder’s BK. The m-invariance,10

𝜏-safety,11 and 𝜏-safe (l, k)-diversity,12 instead of their claims are lacking with the inconsistencies of individual record sig-
natures that causes the collusion attacks possible. For example in m-invariance10 definition condition (2) “for any tuple
t with lifespan [x, y] have the same signature,” 𝜏-safety11 definition condition (2), “signature of [x] must remain the same”
and 𝜏-safe (l, k)-diversity12 condition (2), “all signatures of the record t must be consistence and have no intersection in the
lifetime” are the same but have different explanations. What they claim in their definitions, are not achieved in their algo-
rithms. The adversary continuously uses PKsv and UBKsv in Equations (1) and (2) respectively for privacy breaches that
leads to collusion attacks and membership disclosure attacks.

3.2 Adversarial model

We assume the following adversarial model:

• The generalized table GT = {GID, AQI, BID}.
• The bucket table BT = {BID, Sign, Count}.
• A published dataset PD = {GT, BT} that is publicly available.
• The adversarial composite background knowledge is of the form: C𝛽𝐾 = (UBKsv

,PKsv
i ,PD)

Definition 1. Collusion Attack. The adversary performs collusion attack, if Sig(T∗r (tj)) ∩ Sig(T∗r−i(tj)) ≠ ∅, where 2< i<n,
which can be a tuple from Tu or from Tr that can eventually identify the individual.

Definition 2. Membership Attack. The adversary performs membership attack if he can map the known QI attribute of
an individual i to an EC, to identify the AS value with the help of available PKsv and UBKsv.

Definition 3. External Update.11,12 □∀t, the operation is said to be external update of t, if t∈Tn or t∈Td.

Definition 4. Internal Updates.11,12 ∀t, the operation is said to be internal update of t, if t∈Tu or t∈Tr.

Definition 5. slicedBucket (SBUC). Partitioning correlated attributes into columns and, tuples into buckets makes
SBUCs. The values inside the SBUC can be randomly permuted to break the correlation between AQI and AS.

Definition 6. Signature.11,12 Let SBUC be a sliced set of distinct sensitive values in an EC. Signature of a tuple that is,
Sig(t) is known by the distinct sensitive values in SBUCi from which tuple t belongs.

Definition 7. m-unique.10 A SBUCi(1≤ i≤n) is m-unique if it contains at least m tuples and all the tuples have distinctive
AS values. An anonymized table T∗r is m-unique if all the SBUCs are m-unique.

Definition 8. m-invariance.10 Let T∗1,T
∗
2,T

∗
3, … T∗r be the sequential anonymized published relations, are said to be

m-invariant if:

1. ∀T∗i where (1≤ i≤ r) is m-unique.
2. For any tuple t∈T with lifespan [j, j+ k](1≤ j≤ r), k≥ 0, we have Sig(tj)= Sig(tj+ 1)= … = Sig(tj+ k), where tj denotes

tuple t at publication time j and Sig(tj) shows signature of tuple t at publication time j.
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KHAN et al. 9 of 32

Definition 9. Privacy Risk.12 risk(t) = p(t ∣ (PKsv
i ∧UBKsv

i+1) where p(t) is the probability of tuple t and PKsv
i and UBKsv

i+1
are obtained from Equations (1) and (2).

Definition 10. High Level Petri-Nets (HLPN).45,46 A HLPN represents the system in a graphical and mathematical way to
examine the control of information. It consists of 7-tuple, N = (P, T, F, 𝜑, Rn, L, M0). P represents set of all places where
place is a single portion in the system represented by circle, T is the set of transitions such that P∩T = ∅, P∪T ≠ ∅ .
F shows the flow such that F ⊆ (P×T)∪ (T ∪P), 𝜑 maps P to the data types. Rn defines the rules for transitions, L is a
label on F and M0 represents the initial marking.37 In short, L, 𝜑, and Rn shows the static semantic whereas F, P, and T
represents the dynamic structure.

4 FORMAL MODELING AND ANALYSIS OF 𝛕-SAFE (l, k)-DIVERSITY
PRIVACY MODEL WITH ADVERSARIAL ATTACK IDENTIFICATION

In this section, we formally model and analyze the 𝜏-safe (l, k)-diversity12 algorithm to identify the adversarial attack,
that is, collusion attack. To perform the formal modeling and analysis, HLPN has been used to represent the 𝜏-safe (l,
k)-diversity model in terms of its mathematical properties. Descriptions of places and variable types are shown in Table 5.
Mapping of data types on places are in Table 5B used in HLPN Figure 2.

Figure 2 comprises of three entities, namely: end user, trusted data sanitizer and adversary. The transitions have been
referred as Input. The first Input transition receives data from end user that serves for some health organization, EHRs;
patients’ records—raw data. After this stage, the data are transferred to a trusted data-sanitizer. The data sanitizer per-
forms an anonymization process over the raw data, seeking to minimize AS values disclosure. Data are then published
and can be subject to exploitation by an adversary.

Like 𝜏-safety,11 the 𝜏-safe (l, k)-diversity algorithm12 consists of four phases, that is, classification, balancing, assign-
ment, and generalization. The first three phases focus on AS only while generalization phase focuses on AQI. Bucket table
is specifically used to store AS signatures. The detailed algorithm is given in Reference 12. The transition rule is given for
adversarial collusion attack only, for the identification of inconsistence signatures. A general critical review for 𝜏-safe (l,
k)-diversity algorithm with respect to HLPN transitions is given below.

The problem exists in classification phase that divides the records (Ts or Tr) into their correct buckets (l-diverse)
along with their signatures but results in inconsistent signatures. Figure 2 shows that for a record to be added to
a bucket if same signature exists then transition Crt-BktS, else transition Crt-OthrBkt for a new signature bucket.
The reinserted tuples from Del table are processed via transition Crt-BktRe and finally all the different signatures
are stored in BUC′ via transition updallBkt. The balancing phase using transition Balancing, fills the unfilled created
buckets with the same number of sensitive values. Tn or TCtS (counterfeit tuples) are used to balance the buck-
ets. While our proposed approach uses the Cach table instead to these noise records. The assignment phase in (l,
k)-diversity12 is exactly the same as in Reference 11. This phase divides the records in the Tn into correct buck-
ets. Transition addCt adds counterfeit to Tnew to make it l-eligible. The transition Chk asg-equ check the Tn via
asg-var. Transition CrtBktA creates the l-eligible buckets and store it along with balanced buckets, all together at
one place.

Generalization initializes the QI values with counterfeit QI part (TCtQ) in transition Initialize-T, satisfying the
k-anonymity and sorting it. The Check 𝛾 condition creates the generalize data at place GenData which is received either
via transition GenArray or GenT. The places GenData and BA-BUC represent tables GT and BT respectively.

The inconsistent signatures created in classification phase allow the privacy breach. Section 1.1 motivation, illus-
trates the collusion attack with example. The transition Collusion Attack is the adversary action that uses record
signatures from previous alternate releases which leads to the privacy breach, given in rule 1. The Collusion
Attack transition receives two data flows from places: GenData and BA-BUC. Inside the Sign_Disc() function the
adversary correlate the sensitive knowledge of BA-BUC and UBK with QI values from GenData (Rule 1 depicts
the Figure 2 collusion attack transition). The adversary correlates same record signatures in different releases by
continuously using Equation (2) iteratively to get UBK, until it results in Signdis and QI identification, against
an individual.

R ( Collusion Attacks ) = ∀ i45∈ x45, i46∈ x46,∀ i48∈ x48, i49∈ x49 |

Sign_Disc({i46[2], i48[2]} ∪ i45[2])→ i49[2] = i1[2] ∧ i49[1] = i29[2]) Rule 1
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10 of 32 KHAN et al.

T A B L E 5 (A) Description of places and types used in HLPN for 𝛕-safe (l, k)-diversity model, (B) mapping of data types on places

(A)

Types Description
Tp− 1 Place holding sets of same records, signatures, and re-inserted records.
GID An integer type describing group identifier.
PID An integer type describing patient identifier.
BID An integer type describing bucket identifier.
BTp− 1 Place holding bucket table and signatures
B Place holding records signatures during classification phase
B′ Place holding SAs new signatures during classification phase
BUC, BUC′ Holds records signatures before and after updating all signatures
Tn, Tn′ Holding sets of new records and new records with added counterfeits
TCtS, TCtQ Place holding counterfeit records SV only and QI values only.
BA-BUC Holding combined records signature after balancing and assignment
asg-var Place holding assignment variables: 𝛼 is the number of buckets in Tn, 𝛽 is the number of distinct sensitive

values in bucket and 𝛾 is total number of distinct sensitive values in Tn.
A-BUC Place holding updated bucket after assignment
Tp Place holding QI values with BID from BA-BUC at release p
T-Q Holds BID, quasi identifiers and generalization variables
Tsort Holds sorted QIs records in the data set
Tsort′ Holds the same Tsort data for generalization after condition
array Holds top k individuals QIs in the data set after condition
GenArrData Holds array data after generalization
GenTData Holds T data after generalization
GenData Holds final generalized QI data, obtained
Sign Dis Holds adversarial disclosed signatures

(B)

Places Description
𝜑 (Tp− 1) P (Ts × Signsame ×Tre)
𝜑 (BTp− 1) P (GID× Signp− 1 ×BID)
𝜑 (B) P (GID× Signs ×BID)
𝜑 (B′) P (GID× Signru ×BID)
𝜑 (DEL) P (PID× Signd ×BID)
𝜑 (BUC′) P (GID× Signall ×BID)
𝜑 (BUC) P (GID× Signm ×BID)
𝜑 (Tn) P(PID× Signnew ×BID× 𝓁)
𝜑 (TCtS) P (GID× SignCt ×BID)
𝜑 (BA-BUC) P (GID× SignBA ×BID)
𝜑 (Tn′ ) P (GID× Signnew′ ×BID×Tct)
𝜑 (A-BUC) P (GID× Signa ×BID)
𝜑 (Tp) P (GID×QI×BID)
𝜑 (TCtQ) P (GID×QI×BID)
𝜑 (T-Q) P (GID×QI×BID× 𝜆× k)
𝜑 (asg-var) P(𝛼 × 𝛽× 𝛾)
𝜑 (array) P (GID×QIsort ×BID× 𝛾 )
𝜑 (GenArrData) P (GID×QIarray ×BID)
𝜑 (Tsort) P GID×QIsort ×BID ×𝛾)
𝜑 (Tsort′ ) P (GID×GQI×BID)
𝜑 (GenTData) P (GID×QIT ×BID)
𝜑 (GenData) P (GID×QIF ×BID)
𝜑 (UBK) P (QIadv × Signadv)
𝜑 (Sign Dis) P (QI× Signdis)
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KHAN et al. 11 of 32

F I G U R E 2 HLPN of
𝜏-safe (l, k)-diversity model
with adversarial attacks
identification

5 PROPOSED (𝛕, m)-SLICEDBUCKET PRIVACY MODEL

Preserving privacy with enhanced utility is NP-hard problem specially in sequential dynamic publication. An intruder
combines different releases to re-identify an individual sensitive information performing intersection or subtraction
between the ECs in each release. The proposed (𝜏, m)-slicedBucket privacy model is an extension of 𝜏-safe (l, k)-diversity
model12 with a balance in utility and privacy using the slicing13 and cell generalization14,15 approaches. The proposed
(𝜏, m)-slicedBucket privacy model is defined as following.

Definition 11. (𝜏, m)-slicedBucket. A sequential published anonymized data T∗ = {T∗1,T
∗
2,T

∗
3, … T∗r }where (1≤ j≤ r), is

said to be (𝜏, m)-slicedBucket anonymous if the following conditions are satisfied:

1. Any release T∗j at time j (1≤ j≤ r) is m-unique and satisfies (𝜏, m)-slicedBucket ∀j∈ [0, 1].
2. Record signature ∀t ∈ T∗j during the lifetime [r, r− 1, r− 2, r− 3, … r−n] must remain consistent such that

Sig(T∗r (t)) = Sig(T∗r−1(t)) = Sig(T∗r−2(t)) = … = Sig(T∗r−n(t)), where 0≤ i≤n and if ∃ a partial intersection probability
{0< p< 1} during any release then Sig(T∗r (t)) ∩ Sig(T∗r−1(t)) ∩ Sig(T∗r−2(t)) ∩ … ∩ Sig(T∗r−n(t)) = ∅, ∀ internal updates.

3. Shuffle ACQI and AS values inside the sliced buckets randomly in each anonymized release, that is, . T∗1,T
∗
2,T

∗
3, … T∗r

before publishing.

The three conditions for the proposed (𝜏, m)-slicedBucket privacy model guarantee privacy for the anonymized
release. Condition (1) guarantee m-uniqueness for each k-anonymous SBUC over time. Condition (2) maintains con-
sistent signature for the same record during its lifespan. This ensures protection from collusion attack. Condition (3)
guarantees protection against presence or membership attack. The random shuffling of sensitive values inside SBUCs
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12 of 32 KHAN et al.

in any T∗j create fake tuples, which misguide the adversary. Collectively the proposed system provides protection from
collusion attack and membership disclosures attack.

The detailed explanation for the proposed (𝜏, m)-slicedBucket privacy model is given below.

5.1 slicedBucket (SBUC)

To create slicedBucket (SBUC), the data are partitioned both vertically and horizontally using slicing technique. Sig-
nature of each slice must be m-invariant during each release. Vertical partitioning merges co-related AQIs into ACQIs
where each column consists of subset of correlated attributes. This reduces data dimensionality and improves general-
ization for more utility. The actual SBUCs are formed by performing horizontal partitioning of the tuples. Horizontal
partitioning groups the same or closer distance QI records into an almost homogeneous cluster or SBUC. Each SBUC is
processed separately by applying the m-unique constraint. Thus, an anonymized release T∗j , published at time j (1≤ j≤ r)
using the proposed (𝜏, m)-slicedBucket privacy model has ACQIs and As. For preventing membership disclosure attack or
presence attack the values inside each SBUC are permuted randomly to break the association among different columns
and attributes but the association within each bucket will be preserved. This creates fake tuples which misguides the
intruder. The fake tuples produced are not considered as invalid because we assume the common diseases for male
and female.

Table 6 shows the anonymous release T∗1 at time 1 of the original microdata Table 1C. The three AQI are
{age, gender, zipcode} and AS is {Disease}. The co-related attributes age and gender (via Equation (3)) are merged to form a
column. The zipcode and disease are drawn as separate attributes. Values in each slicedBucket of the anonymized release
are randomly permuted to break the association between the uncorrelated attributes.

5.2 (𝛕, m) Persistent invariance

The (𝜏, m) keeps persist during all the releases to prevent signature variance inside the slicedBuckets for each record. 𝜏
keep all the internal updates for a record while m maintains the m-invariance diversity without counterfeit in slicedBuck-
ets for sequential releases. Signature of a record must fulfill, Sig(T∗r (t)) = Sig(T∗r−1(t)) = Sig(T∗r−2(t)) = … = Sig(T∗r−n(t))
and if ∃ a partial intersection probability {0< p< 1} during any release then Sig(T∗r (t)) ∩ Sig(T∗r−1(t)) ∩ Sig(T∗r−2(t)) ∩ … ∩
Sig(T∗r−n(t)) = ∅. If for a specific record during all releases the ∩≠ ∅ then (𝜏, m) adds the tuples from Tn or Cach table
(Table 1B), otherwise will store back the same record in Cach for publishing in next releases. During internal updates, the
same record signature from previous releases is checked in Upd table history (see Figure 3A,B) otherwise new signature
will be created according to Definition 11.

Tables 6-8 are the 2-diverse dynamically published anonymized releases T∗1, T∗2, and T∗3 produced through
(𝜏, m)-slicedBucket privacy model from the original microdata (Table 1C. Initially the sensitive values create m-invariance
signatures and the corresponding records are added in the buckets. For a specific record, their signature remains consis-
tent during each release. At time 1, 2-anonymous 2-diverse table (Table 6) is published. At time 2, the records p3= SSM-pos
and p8 = Cardiac are updated (internal update) to p3 = Gloucoma and p8 = Dyspepsia, and p2 = Aids and p4 = Asthma

Patient (Age, gender) Zip code Disease

p1 (21–27, M) [21] 47*** [47907] Bronchitis

p2 (21–27, M) [27] 47*** [47303] Aids

p3 (33-58, F) 47 905 SSM-pos

p4 (33-58, F) 47 905 Asthma

p5 (54, *) [M] 4790* [47906] Flu

p6 (54, *) [F] 4790* [47902] Dyspepsia

p7 (64-65, *) [64, F] 47 308 Gastritis

p8 (64–65, *) [65,M] 47 308 Cardiac

T A B L E 6 2-Anonymous T∗1
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KHAN et al. 13 of 32

(A)

(B)

F I G U R E 3 Processing of bucket data

are deleted (external update), while records p9 =Malaria, p10 = Diarrhea and p11 = Diarrhea are newly inserted (exter-
nal update), as shown in Table 7. Because of the same sensitive values for p10 and p11, one of the sensitive values say
p11 is stored in Cach. Since p9 is the last tuple to accommodate and can use a tuple from Cach to create a new signature
but the algorithm does not do so because this will empty the Cach. Instead p9 is cached in Cach table till next release.
At time 3, for Table 8, record p7 is deleted (external update), p3 updates (internal update) to the same sensitive value
SSM-pos (chances of collusion attack but prevented from re-insertion) as was in Table 6, records p12 = Glaucoma and
p13 = Pneumonia are newly inserted (external update) and p4 is re-inserted (internal update) from delete table that is,
Del. Figure 3 illustrates the data processing inside the buckets during T∗2 and T∗3 and the data inside the three support-
ing tables that is, Del, Upd, and Cach for each. The anonymized Tables 6, 7, and 8 obtained via proposed Algorithm 1
(𝜏, m)-slicedBucket privacy model shows that after all these internal and external updates the signature of all the SBUCs
remain consistent for the same record among themselves.

5.3 Empowering Cach tuples over counterfeit tuples

Cache Table 1B named as Cach (obtained via Algorithm 2), is a novel idea to avoid the use of dummy counterfeit records.
In re-publication of dynamic data, among the three major operations, that is, insertion, update and deletion in PPDDP,
deletion is more challenging because of the critical absence dilemma. Most of the work15,32 related to dynamic publica-
tion considers insertion and update and do not focus the deletion operation. The well-known previous work that talk
about the deletion are.10-12 They have adopted the direct and easy option of fake tuples named as counterfeit. So, dynamic
data publication adds the counerfiets while the differential priacy19,47 adds laplacian noise. We bridge the gap similar to
Reference 48 of syntatic and semantic data publishing via Cach table (actual records) but in a dynamic data sequential
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14 of 32 KHAN et al.

Patient (Age, gender) Zip code Disease

p1 (21-22, M) [21] 4790* [47907] Bronchitis

ch1 (21-22, M) [22] 4790* [47906] Aids

p3 (33-45, F) [33] 4790* [47905] Glaucoma

p10 (33-45, F) [45] 4790* [47901] Diarrhea

p5 (54, *) [M] 4790* [47906] Flu

p6 (54, *) [F] 4790* [47902] Dyspepsia

p7 (60-64, *) [64, F] 4730* [47308] Gastritis

ch2 (60-64, *) [60,M] 4730* [47302] Cardiac

p8 (22-65, *) [65, M] 4730* [47308] Dyspepsia

ch3 (22-65, *) [22, F] 4730* [47305] Flu

T A B L E 7 2-Anonymous T∗2

Patient (Age, gender) Zip code Disease

p1 (21–22, M) [21] 4790* [47907] Bronchitis

ch1 (21-22, M) [22] 4790* [47906] Aids

p3 (33–58, F) [33] 47 905 SSM-pos

p4 (33-58, F) [58] 47 905 Asthma

p10 (40-45, *) [45, F] 47*** [47901] Diarrhea

p12 (40-45,*) [40, M] 47*** [47407] Glaucoma

p5 (54, *) [M] 4790* [47906] Flu

p6 (54, *) [F] 4790* [47902] Dyspepsia

ch2 (60-64, *) [60, M] 4730* [47302] Cardiac

ch4 (60-64, *) [64, F] 4730* [47304] Gastritis

p8 (22–65, *) [65, M] 4730* [47308] Dyspepsia

ch3 (22-65, *) [22, F] 4730* [47305] Flu

T A B L E 8 2-Anonymous T∗3

scenario where no counterfiet or noise is used and have consistent signatures. In this paper, the counterfeit avoidable sce-
nario is considered. The basic purpose of the Cach is not to use any counterfeit in any case specially for critical absence
caused by deletion operation. To the best of our knowledge, providing Cach records instead of counterfeit fake records
is the first solution proposed in this work. Whenever there is a need to create m-unique signatures, records from Cach
table are ready to use while all those tuples that cannot fulfill m-unique criteria are stored back in Cach table for future
release. In this way deletion from and insertion into the Cach is performed automatically during the proposed algorithm
execution.

Table 7 is the anonymized release at time 2, that is, . T∗2 uses ch1, ch2, and ch3 tuples from Cach table to fulfill the
m-unique and signature consistency constraints. Similarly, for T∗3 ch4 is inserted from Cach. This whole scenario explains
that the counterfeit tuples have no use at all in the proposed approach. The proposed Cach idea drastically enhances the
truthfulness of the anonymized releases.

5.4 Proposed algorithm

The proposed Algorithm 1 consists of the following steps: (i) Cache table creation (ii) Grouping correlated attributes (iii)
Classification (iv) Balancing (v) Assignment (vi) Partitioning (vii) Cell Generalization.

 21613915, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ett.4130 by U

niversity O
f E

ast A
nglia, W

iley O
nline L

ibrary on [03/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



KHAN et al. 15 of 32

Algorithm 1. (𝜏, m)-slicedBucket privacy algorithm Big Picture

Require ∶ Tr,T∗r−1,Cach,Del,Upd
1.Calculate Cach table ∶ Trep and Tso
2. Calculate correlating attributes : chi-square method
3.Calculate initially and after each release ∶
Tn = Tr − Tr−1,Ts = Tr ∩ Tr−1,Tu = Sig(tr) ≠ Sig(tr−i)
4.Reinsertion ∶ Tr = Sig(Del(t))
5.SBUC = Classify(Ts

,T∗r−i,T
u
,Tr

,Del)
6.T∗r = Balancing-Assignment-Partition-CellGeneralization
7.Publish T∗r

(i) Cache table Creation: The original microdata consists of thousands of records. There are limited number of unique
AS values frequently repeating over the tuples. Before anonymization, a Cach table is created (Algorithm 2) from the
original microdata whose records will be used to beat the counterfeit tuples. Cach consists of two different types of records,
(i) single record from repeated same SA values (ii) copy of a single occurred SA record. The Cach is a small table as
compared to the whole dataset. For example, the dataset used in our experiment consists of 60 000 records that have only
49 SA values, which is only .082% of the whole dataset. This small amount of records for delaying in publishing will
not affect the anonymized release, instead it can effectively increase the utility. Therefore, Cach table in the proposed
(𝜏, m)-slicedBucket privacy model, not only vanishes the counterfeit tuples but also implies (e, 𝛿)-differential privacy48

and provides strong privacy guarantee. Table 1B is an example of Cach table obtained from original Table 1 before its
anonymization. Figure 3A,B also illustrates the Cach table during T∗2 and T∗3 creation.

Algorithm 2. Cach creation

for all records in Dataset do
Trep ← Comp rep(SA)
Cach ← single_rec_frm(Trep)
Tso ← Comp single_occured(SA)
Cach ← copy_of(Tso)

endfor
return Cach

(ii) Grouping Correlated Attributes: Generalization, that is, k-anonymity, losses utility in case of high-dimensional
data. For effective generalization that have higher data utility, the data must be low-dimensional. But low dimensions do
not mean to drop any attribute from the dataset. We adopt the slicing13 approach to create single column from multiple
co-related attributes by calculating affinity between the attributes. This improves the privacy that is, break the associa-
tion between uncorrelated attributes. Because uncorrelated attribute values are less associated with each other and thus
without grouping the correlated attributes the identification risk is higher. Algorithm 3 calculates the affinity ∅2 between
any two attributes Ai and Aj using Equation (3).

Algorithm 3. Calculate co-related attributes

for all attributes in microdata T do
Calc − affinity (AiςAj) i.e.∅2(Ai,Aj)

end for

A commonly used method for measuring the correlation between two categorical attributes is chi-square method or
mean-square contingency coefficient.13,14 This method groups the attributes according to their pairwise affinity. Attributes
in different columns have high affinity within columns and low affinity between columns.
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16 of 32 KHAN et al.

Let there are two attributes A1 and A2 with domain values {v11, v12, … v1d1} and {v21, v22, … v2d2} respectively, where
d1 and d2 are domain sizes. The mean-square contingency coefficient between A1 and A2 can be calculated as shown in
Equation (3).

∅2(A1,A2) =
1

min(d1, d2) − 1

d1∑

i=1

d2∑

j=1

(fi j − fi.f.j)2

fi.f.j
(3)

where fi. And f.j are the fractional occurrences of v1i and v2j in the data, respectively. fij is the fractional occurrence of
v1i and v2j. Formal definitions of fi. and f.j which are the marginal totals of fij are: fi. =

∑d2
j=1 fij and f.j =

∑d1
i=1 fij. Here

0≤ ∅2(A1, A2)≤ 1.
In this work we adopt the same attributes correlation approach as in Reference 9 The attributes {age, gender} have

high affinity and form the first column, that is, . ACQI. The zipcode and disease are considered as separated attributes.
For attributes, age and gender, affinity example can be seen in Tables 6-8.

(iii) Classification: This phase is the main source of signatures inconsistency, which is not modeled properly in Refer-
ence 11 and in Reference 12 In this phase the SBUCs are created and classify the records, that is, . t1, t2, t3, … , tn in Ts,
Tu and Tr into their correct buckets using Tr− 1 (1≤ j≤ r), Del, and Upd tables. Each SBUC has a unique signature cre-
ated. Attribute sensitive values and signature of SBUC (Sig(SB)) with respect to an individual record are considered in this
phase only. Records in Ts get the same signatures from T∗r−1. If signature for records in Tu or Tr exists in Upd or Del tables,
respectively then the same signature SBUCs are created for those records. The entry for re-inserted records are deleted
from Del table. The crucial part is if signature does not exist for Tu or Tr, or any one of them. If signature for records in
Tu or Tr does not exist in Upd or Del tables then the tuples are stored in temporary arrays as Tun

i (updated new records)
or Trn

i (re-inserted new records), respectively and are partially treated as new tuples. The new signatures for new buckets
for records in Tun

i or Trn
i are created based on zero integration condition (see Definition 11) and Algorithm 6 assignment

condition. Because the work in Reference 11 or 12 are not sure about the bucket size for the records in Tun or Trn which
can be 𝛽 or 𝛽+1, where 𝛽=m. which is possibly the main reason for signature inconsistency. The new signatures from
Tun or Trn are stored permanently in Upd table along with the corresponding records to avoid the collusion attack. The
classification phase is shown in Algorithm 4.

Figure 3 shows the classification phase for sequential releases of T∗2 and T∗3 at time 2 and time 3 respectively. At
time 2 Ts={p1, p5, p6, p7}, and at time 3 Ts={p1, p5, p6, p8, p10, ch1, ch2, ch3}. At time 2, Tu={p3 = Glaucoma,
p8 = Dyspepsia}. Both p3 and p8 are new sensitive values for each record at time 2. So new signature are created having
intersection zero with all its previous releases, that is, . Tr−2,Tr−3, … ,Tr−n =

r−n
∩

r−2
Sig(t) = 0 and checked via assignment

condition in Algorithm 6. The classification algorithm in Reference 12 checks integration with only Tr− 1 and create
new signature if there is zero integration while we check integration with all its previous releases for the same record,
and verify the assignment condition. At time 3, Tr={p4} which is the only re-inserted record from Td={p2, p4} at time
1. The p4 SBUC got the same signature as was at time 1 from Del table. At time 3, the only Tu={p3}. If p3 updates
to the same disease as at time 1, that is, SSM-pos, then it can cause collusion attack. Both the 𝜏-safety and 𝜏-safe (l,
k)-diversity do not consider the same sensitive value reappearance at time 3. In our proposed technique the same signature
already available in Upd table as was at time 1, is checked and reused. New signature will not be created for p3 internal
re-update.

Algorithm 4. Classification (Ts
,T∗r−1,T

r
,Tu

,Del)

Initialize SB = 0
for all records t in Ts do

if (S(t) ∈ Sig(STr−1(t))) then
SB = Crt_SBkt(Sig(STr−1(t)))

end if
put(SB, t)
if (SB ∉ SBUC) then

SBUC = SBUC ∪ {SB}
end if

end for
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KHAN et al. 17 of 32

for all records t in Tu do
if (S(t) ∈ Upd(Sig(STr−2(t)) or Sig(STr−3(t)) or … or Sig(STr−n(t))))

SB = Crt_SBkt(Sig(STr−2(t) or STr−3(t) or … or STr−n(t)))
else

Tun
i = ti //temporary array

end if
put(SB, t)
if (SB ∉ SBUC) then

SBUC = SBUC ∪ {SB}
end if

end for
for all records t in Tun do //processing updates as new tuples wth ∩

SB = Crt_un_SBkt(Sig(S(t))∩
Upd(Sig(STr−2(t)) or Sig(STr−3(t)) or … or Sig(STr−n(t))) = 0

∧Call Algoritm 6, line 5 to 13 where Tn = Tun

addToUpd(t, Sig(t))
put(SB, t)
if (SB ∉ SBUC) then

SBUC = SBUC ∪ {SB}
end if

end for
for all records t in Tr do

if (S(t) ∈ Sig(Del(t)) then
SB = Crt_SBkt(Sig(Del(t)))
Delete-entry Sig(Del(t))

else
Trn

i = ti //temporary array
end if
put(SB, t)
if (SB ∉ SBUC) then

SBUC = SBUC ∪ {SB}
end if

end for
for all records t in Trn do //processing reinst as new tuples wth ∩

SB = Crt_New_SBkt(Sig(S(t))∩
Upd(Sig(STr−2(t)) or Sig(STr−3(t)) or … or Sig(STr−n(t))) = 0

∧Call Algoritm 6, line 5 to 13 where Tn = Trn

addToUpd(t, Sig(t))
put(SB, t)
if (SB ∉ SBUC) then

SBUC = SBUC ∪ {SB}
end if

end for
return SBUC

(iv) Balancing: This phase balances the SBUCs created in classification phase through Tn and Cach table records.
A SBUC is said to be balanced if every sensitive value in its signature is owned by the same number of tuples.
There must be atleast one record respondent in the SBUC otherwise the bucket will be deleted. In the proposed
approach we
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18 of 32 KHAN et al.

Algorithm 5. Balancing (SBs from Classifications phase, Tn, Cach)

for all records in Tn do
Trep ← Comp rep(SA)
Cach ← single_rec_frm(Trep)
Tso ← Comp single_occured(SA)
Cach ← copy_of(Tso)

end for
return Cach
for all SBi in SBUC do

if SB is unbalanced
if (Sig(SBUC) → Exp[Tn])

put(Exp[(Tn(S(t)))], SB)
else if (Sig(SBUC) → Exp[Cach))

put(Exp[(Cach(S(t)))], SB)
else

(Sig(SBUC)∉Exp[Tn])∧ (Sig(SBUC)∉Exp[Cach])
put(SBUC(S(t)),Cach)

end if
end if

end if
end for

do not simply add counterfeit to balance the SBUCs as in References 10-12 instead the unbalanced SBUCs are filled
with the expected Tn or records from Cach. Balancing Algorithm 5 begins by updating the Cach table (Section 5.4(i)). This
not only populates the Cach but also implies the (e, 𝛿)-differential privacy48 which improves the privacy in the published
release.

Figure 3 illustrates the balancing phase at time 2 and time 3 during T∗2 and T∗3 release. As mentioned in Section 5.2,
at time 2, the three newly inserted tuples Tn={p9 = Malaria, p10 = Diarrhea, p11 = Diarrhea}. Because of the insertion
of two similar sensitive values one (eg, p11) is stored in Cach while the other (p10) is used to create a new signature. p10
balances the second SBUC. The p9 is stored in Cach (see Section 5.2). The remaining SBUCs, first, fourth, and fifth are
balanced with Cach table ch1, ch2, and ch3 tuples. Similarly at time 3, Tn={p12 = Glaucoma, p13 = Pneumonia}. p12
is used to balance signature for third SBUC. A tuple ch4 = Gastritis from Cach is inserted to balance the ch2 = Cardiac
SBUC. Since there is no tuple for p13 to create signature, it is stored in Cach for publishing in next release. At the end of
balancing phase all the SBUCs created during the classification phase are balanced.

(v) Assignment: This phase is the same as in References 11,12 to assign the remaining Tn into their correct SBUCs. After
completion of Algorithm 6, all the remaining Tn records if exist create new SBUCs and satisfy m-uniqueness property.
For ensuring m-eligibility, records from Cach are added. The last records during EC creation in Tn that cannot create
signatures with other records from Tn, are cached back that will help for balancing and signature eligibility during next
release.

Similar to Reference 10 the variables α and 𝛽 are computed, to assign the correct number of records and to handle
the SBUC signatures, respectively. Let C = (svi, sv2, sv3, … , svλ) be the distinct As values list where 𝜆 is the total number
of distinct As values in the Tn. Here, the number of tuples, svi(1≤ i≤ 𝜆) are collected and sorted in descending order. In
addition, 𝛾 = ∣Tn∣ represents the total number of records. Signature of SBUC is created by choosing 𝛽 sensitive values
from each C such that SBUC has signature (svi, sv2, sv3, … , svβ). 𝛼 picks the exact tuples with minimum distance in
QI column from 𝛾 for a SBUC. The process of selecting 𝛼 records repeats iteratively for each sensitive value in svi, sv2,
sv3, … , svβ to form signature of SBUC in each cycle such that the remaining records must be m-eligible. Since the sensitive
values are in descending order the most frequent sensitive value is sv1 or sv𝛽 + 1. Therefore, 𝛼 and 𝛽 are formulated via
inequalities 𝛼 ≤ sv𝛽 and sv1 − 𝛼 ≤

(𝛾−𝛼.𝛽)
m

and sv𝛽+1 ≤
(𝛾−𝛼.𝛽)

m
if 𝛼 exists, otherwise 𝛽 is incremented to solve 𝛼 again. This

assignment condition is also used by the classification phase for Tun and Trn records. At the end of the assignment phase
all the Tn have been assigned to their correct balanced SBUCs.
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KHAN et al. 19 of 32

Figure 3A,B depicts the assignment phase in bucketized form for T∗2 and T∗3. At time 2 and time 3, although
Tn={p9 = Malaria} and Tn={p13=Pneumonia} respectively but have been stored in Cach as explained in balancing.
This means that the last tuples are stored back in Cach because of not having suitable record to create signature with.
After completion of assignment phase all the SBUC are balanced and completed. No tuple in Tn is further lifted to
accommodate.

Algorithm 6. Assignment (Tn, SBUC, Cach)

initialize λ = Total distinct sensitive attribute values in Tn

if
(

Tn

m
≱ m

)

then
add tuples from Cach in Tn //we will not add counterfeit in Tn

end if
while |Tn

≠ ∅| do
γ =∣ Tn ∣
Calculate C = (svi, sv2, sv3, … , svλ), i.e.svi(1 ≤ i ≤ λ)
𝛽 = m
𝛼 = largest positive integer that satisfy the ineqalities below
if!(α ≤ svβ and sv1 − α ≤ (γ−α.β)

m
and svβ+1 ≤

(γ−α.β)
m

then
𝛽 = 𝛽 + 1
go to line 𝛼 calculation above

end if
Create − Bucket SB having (Sig(SB) = (svi, sv2, sv3, … , svβ)
if (SB ∉ SBUC) then

SBUC = SBUC ∪ {SB}
end if
for i = 1 to 𝛽 do

SB ← α nearest tuples with svi from Tn

end for
end while
return SBUC

(vi) Partition: This phase deals with the AQIs. Using Algorithm 7 the microdata T has been transformed to SBUCs and
needs to partition to their individual SBUCs with minimum distance between the AQI values in a sorted form. SBUCs
produced by assignment phase usually contains multiple of s tuples, that is, s≥m sensitive values. The extra s tuples are
removed from SBUCs by splitting or partitioning the SBUCs into balanced new SBUCs that is, . SBUCnew with the same
signature. While creating SBUCnew all those s tuples are selected from a SBUC that have the minimum distance between
the AQI values for the purpose of minimum cell generalization which will increase the utility of the published data. The
partitioning always produces m-eligible SBUCs because SBUCs are multiples of s. The resulted SBUCsnew are sorted in
ascending order with respect to their QI values.

Algorithm 7. Partition (SBUC, SBUCnew)

Ssbuc = {SBUC}
while (SBUC > s),where s ≥ m

SBUC
s

and
Crt_new_SBkt(Sig(SBUCnew) = Sig(SBUC),
with min. Interval w.r.t. AQI

i
end while
for each SBUCnew do

sort each SBUCnew end for
return individual SBUCsnew

 21613915, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ett.4130 by U

niversity O
f E

ast A
nglia, W

iley O
nline L

ibrary on [03/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



20 of 32 KHAN et al.

(vii) Cell Generalization: In a relational approach a cell is an intersection of row and column. In our approach, a cell
is a cross-section of column and a slicedBucket. We adopt a flexible generalization technique named as cell generaliza-
tion (Algorithm 8) where each cell is generalized independently. In a microdata table T, if a column is Cc, (1≤ i≤ c),
a slicedBucket is Bb, (1≤ j≤ b), then a cell is represented as CB(i,j). During the generalization, each attribute value of
CB(i,j) is generalizes till the privacy requirements. Cell generalization has more utility than column or cut generaliza-
tion,15 because it does not generalize the whole slicedBucket. For example, if the dataset T consists of attributes, age,
gender, zipcode, and disease. The following cell generalization rules in a function gen() are followed independently on
each attribute.

a. Age will be generalized to any interval in the range [a, b] where a, b∈A1 and a≤ b.
b. Gender can be M or F, therefore it is generalized by suppression only, that is, the original value is retained or it is

suppressed.
c. Zipcode is generalized in the prefix format. For example zipcode 47901 will be generalized to any of the form, 4790*,

479 * *, 47 * * *, 4 * * * *, * * * * *, but will be generalized as minimum as possible.
d. Disease is a SA and no generalization is allowed.

For example, Tables 6-8 shows the cell generalization for the three anonymized releases T∗1, T∗2, T∗3, respectively.

Algorithm 8. Cell Generalization (Tr)

for each SBUCi in Tr do
check the tuple ti validation
if invalid record exists then do

genr SBUCj = gen(CB(i,j)) to satisfy k-anonymity
end if

end for
return T∗r

After generalization, attribute values on both sides, that is, ACQI and As values are randomly permuted in each SBUC to
break the linking between the uncorrelated attributes, that is, . ACQI and As. This limits the knowledge of an adversary and
prevents the membership disclosure attack. The identifier attributes are removed and T∗r is ready to publish. In the next
section we formally model our proposed approach and show its verification against collusion attacks and membership
disclosure attacks using the HLPN rules.

5.5 Formal modeling and analysis for (𝛕, m)-slicedBucket privacy model

The microdata is processed through the (𝜏, m)-slicedBucket privacy model to produce an anonymized form that can
prevent from collusion attacks and membership disclosure attacks. In this section we provide formal modeling for
the proposed privacy model through HLPN and its invalidation with respect to identified collusion and membership
attacks.

The HLPN for the proposed (𝜏, m)-slicedBucket privacy model with adversarial attacks invalidation is given in
Figure 4, which broadly consists of three entities: end user, trusted data sanitizer, and adversary. There are 27 Places (P)
and 22 Transitions (T) involved in the modeling process. The P description with variable type are described in Table 9
and the identification of P and mapping is in Table 9B. To begin with the model transitions, new token enters the model
through the transition Input 1. The proposed algorithm complete process is depicted in rules 2-21, while rules 22 and 23
shows the prevention from collusion attacks and membership disclosure attacks.

The transitions Comp− rs and Single− rec− frm, compute the repeated AS values records and select single records
from each, respectively. Similarly, transition Comp− so computes single occurred AS value records, while transition
Copy− of stores single copy of that record in Cach table. So, the rules for the transitions to create the Cach table are 2, 3,
4 and 5 as follows.
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KHAN et al. 21 of 32

F I G U R E 4 HLPN of (𝜏, m)-slicedBucket Privacy model with adversarial attacks invalidation

R(Comp − rs) = ∀i2 ∈ x2, i3 ∈ x3|
i3[1] ≔ i2[1] ∧ i3[2] ≔ i2[2] ∧ (i3[3] ≔ Comprs(i2[3])) ∧ x3′ ≔ x3 ∪ {(i3[1], i3[2], i3[3])} Rule 2

R(Single − rec − frm) = ∀i4 ∈ x4, i5 ∈ x5|
i5[1] ≔ i4[1] ∧ i5[2] ≔ i4[2] ∧ (i5[3] ≔ srfrm(i4[3]))
x5′ ≔ x5 ∪ {i5[1], i5[2], i5[3] Rule 3

R(Comp − so) = ∀i6 ∈ x6, i7 ∈ x7|
i7[1] ≔ i6[1] ∧ i7[2] ≔ i6[2] ∧ (i7[3] ≔ Compso(i6[3])) ∧ x7′ ≔ x7 ∪ {(i7[1], i7[2], i7[3])} Rule 4

R(Copy − of) = ∀i8 ∈ x8, i9 ∈ x9|
i9[1] ≔ i8[1] ∧ i9[2] ≔ i8[2] ∧ (i9[3] ≔ Copyof(i8[3])) ∧ x9′ ≔ x9 ∪ {(i9[1], i9[2], i9[3])} Rule 5
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22 of 32 KHAN et al.

T A B L E 9 (A) Description of places and types used in HLPN for (𝛕,m)-slicedBucket model, (B) mapping of data types on places

(A)
Types Description
PID An integer type for Patient user identifier
BID An integer for bucket identifier
Trs Records have repeated same sensitive values
Tso Records have single occurrence of sensitive values.
Sign Signature of SA at a specific level/phase.
Cach′ Place holding updated Cach table
T′ Holding T with correlated attributes after Cach deduction
Tr− 1 Place holding dataset from previous release.
QIDcor Type for Correlated QI attributes
Signs, Signu, Signn Signature for same, updated and new tuples respectively
FlagTF Boolean condition for either one or zero.
SB Holds different record signatures during classification phase
rnSB Holds new signatures for Tr during classification phase
unSB Holding record signatures for Tu during classification phase
SBUC All updated record signatures during classification phase
SBUC′ Holds final record signatures after Balancing & Assignment
Asg_Var Variables to check assignment equ. Inequalities: 𝛼 for no. of buckets in Tn, 𝛽 is the no. of distinct SVs in

bucket and 𝛾 is total number of distinct SVs in Tn.
A_SBUC Holding set of records signatures after assignment phase.
SBUC_new Holds top k individuals QIs in the data set.
SBUC_sort Holds sorted QIs records in the data set.
SBUC_gen Holds k-anonymous data in sliced bucket having QI and SA in each sliced bucket and is ready to publish.
UBK Updated background knowledge
Sign Dis Holds adversarial disclosed signatures.
MShip Dis Holds adversarial disclosed
(B)
Places Description
𝜑 (T) P (PID×QID× SAs)
𝜑 (Trs) P (PID×QID× SAms)
𝜑 (Tso) P (PID×QID× SAso)
𝜑 (Cach) P (PID×QID× SAs)
𝜑 (T′) P (PID×QIDcor × SAs)
𝜑 (Tr− 1) P (QI× Signr− 1)
𝜑 (Ts) P (PID×QID× SAsign)
𝜑 (Tr) P (PID×QID× SAdSign)
𝜑 (Tu) P (PID×QID× SAupdSign)
𝜑 (Tn) P (PID×QID× SAs)
𝜑 (Del) P (PID×QID× Signr− 1)
𝜑 (Upd) P (PID×QID× Signu)
𝜑 (Flag) P (ConditionTF)
𝜑 (SB) P(PID×QI× Signs × Signu × Signr ×BID)
𝜑 (rnSB) P (PID×QI× Signrnc ×BID)
𝜑 (unSB) P (PID×QI× Signunc ×BID)
𝜑 (SBUC) P(PID×QI× Signall ×BID)
𝜑 (SBUC′) P(PID×QID× Signbal & n ×BID)
𝜑 (Asg_Var) P (𝛼 × 𝛽× 𝛾)
𝜑 (A_SBUC) P (PID×QI× Signn ×BID)
𝜑 (SBUC_new) P (PID×QI× SignPRT ×BID× s×m)
𝜑 (SBUC_sort) P (PID×QIsort × SignPRT ×BID)
𝜑 (SBUC_gen) P(QIkAnony × SignPRT)
𝜑 (UBK) P (QIadv × Signadv)
𝜑 (Sign Dis) P (QI× Signdisclosure)
𝜑 (MShip Dis) P (QIdisclosure)
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KHAN et al. 23 of 32

Transition Comp− cor− atr calculates the correlated quasi attributes, that is, . (i10[2(j)])∀j∈T(qi) to reduce the dimen-
sionality of the data in the remaining microdata T, which is mapped to the following rule 6.

R(Comp − cor − atr) = ∀i10 ∈ x10, i11 ∈ x11|
i11[1] ≔ i10[1] ∧ (i11[2] ≔ affinity(i10[2(j)])∀j∈T(qi)) ∧ i11[3] ≔ i10[3]∧
x11′ ≔ x11 ∪ {(i11[1], i11[2], i11[3])} Rule 6

Transition Idntfy− tpls separates the Ts (ie, i15[1]), Tu (ie, i17[1]) and Tn (ie, i16[1]) to create signatures for each
accordingly.

R(Idntfy − tpls) = ∀i12 ∈ x12, i14 ∈ x14, i15x15, i16 ∈ x16, i17 ∈ x17 ∣
i15[1] ≔ i12[1] ∧ (i12[2] = i14[1]) → (i15[2] ≔ i12[2]) ∧ (i12[3] = i14[2]) → (i15[3] ≔ i12[3])
x15′ ≔ x15 ∪ {(i15[1], i15[2], i15[3])}
i16[1] ≔ i12[1] ∧ (i16[2] ≠ (i12[2],∃i12[2] ∉ i14[1])) ∧ (i16[3] ≠ (i12[3],∃( i12[3] ∉ i14[2])))
x16′ ≔ x16 ∪ {(i16[1], i16[2], i16[3])}
i17[1] ≔ i12[1] ∧ (i17[2] ≔ (i12[2],∃i12[2] ∈ i14[1])) ∧ (i17[3] ≠ (i12[3],∃( i12[3] ∉ i14[2])))
x17′ ≔ x17 ∪ {(i17[1], i17[2], i17[3])} Rule 7

Transition Crt− sSBkt mapped in rule 8 creates same as previous buckets through i19[3]≔ ssbkt(i18[3]) for Ts, while
transition Chk− sign checks the signatures for Tu tuples in rule 9. The signatures checking are modeled as either
i20[3]≔ i21[3] or i20[3]≠ i21[3].

R(Crt − sSBkt) = ∀i18 ∈ x18, i19 ∈ x19 ∣
i19[1] ≔ i18[1] ∧ i19[2] ≔ i18[2] ∧ (i18[3] ∈ i19[3]) → (i19[3] ≔ ssbkt(i18[3]))∧
x19′ ≔ x19 ∪ {(i19[1], i19[2], i19[3])} Rule 8

R(Chk − Sign) = ∀i20 ∈ x20, i21 ∈ x21, i22 ∈ x22 ∣
Check((i20[3] ≔ i21[3]) → i22[1] ≔ TRUE ∧ x22′ ≔ x22

⋃
{(i22)}∨

Check((i20[3] ≠ i21[3]) → i22[1] ≔ FALSE ∧ x22′ ≔ x22
⋃
{(i22)} Rule 9

For the TRUE case in rule 9, transition Crt-uSBkt uses signatures (ie, i24[4]≔usbkt(i24[4])) for given Tu tuples
that are already available in place Upd, otherwise new signatures through transition Crt−unSBkt are created using
the Asg_Var place. Both types of signatures creations for Tu tuples are mapped in rules 10 and 11. The addtoUpd
transition insert the new signatures (ie, i24[4]≔usbkt(i24[4])) into Upd place for future references, as shown
in rule 12.

R(Crt − uSBkt) = ∀i23 ∈ x23, i24 ∈ x24 ∣
i23[1] = TRUE → i24[4] ≔ usbkt(i24[4]) ∧ i24[1] ≔ i20[1]∧
x24′ ≔ x24 ∪ {(i24[1], i24[4])} Rule 10

R(Crt − unSBkt) = ∀i25 ∈ x25, i26 ∈ x26, i27 ∈ x27 ∣
i25[1] = FALSE → i27[3] ≔ unSBkt(asg − var(i27[3], (i26[1], i26[2], i26[3])))∃(i27[3]∩(∀i21[3])=0)∧
x27′ ≔ x27 ∪ {(i27[3])} Rule 11

R(addtoUpd) = ∀i28 ∈ x28, i29 ∈ x29 ∣
i29[1] ≔ i28[1] ∧ i29[2] ≔ i28[2] ∧ i29[3] ≔ utUpd(i28[3]) ∧ x29′ ≔ x29 ∪ {(i29[1], i29[2], i29[3])} Rule 12
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24 of 32 KHAN et al.

To handle the Tr tuples, transition Crt− rSBkt creates sliced buckets for re-inserted tuples have same signature (ie,
i33[5]≔ rSBkt(i32[3]) as stored in Del table, otherwise create new signatures such that (Sign∈Tr)∩ (Sign∈Upd) = 0,
based on assignment phase technique. Transition rtDelete deletes the reinserted tuples from Del table.

R(rtDelete) = ∀i30 ∈ x30, i31 ∈ x31 ∣
i31[1] ≔ delrTpl(i30[1]) ∧ i31[2] ≔ i30[2] ∧ i31[3] ≔ i30[3]
x31′ ≔ x31 ∪ {(i31[1], i31[2], i31[3])} Rule 13

R(Crt − rSBkt) = ∀i32 ∈ x32, i33 ∈ x33, i34 ∈ x34, i35 ∈ x35, i36 ∈ x36 ∣
i33[1] ≔ i32[1] ∧ i33[2] ≔ i32[2] ∧ (i33[5] ≔ rSBkt(i32[3]) ∧ x33′ ≔ x33 ∪ {(i33[1], i32[2], i33[5])}∨
i36[1] ≔ i32[1] ∧ i36[2] ≔ i32[2] ∧ (i36[3] ≔ rnSBkt(asg − var(i36[3], i35[1], i35[2], i35[3])))∃(i32[3]∩(∀i34[3])=0)∧
x36′ ≔ x36 ∪ {(i36[1], i36[2], i36[3])} Rule 14

All buckets created in rules 8, 10, 11, are14 are updated through transition CombSBkts by taking union of all those
buckets (where Bkti ∩Bktj = 0, and i≠ j) in order to have signatures for complete dataset at one place. Transition Balancing
adds the records from Cach table or from Tn records to fill the required empty gap in the created sliced buckets. The
transitions CombSBkts and Balancing are mapped to the following rules 15 and 16.

R(CombSBkts) = ∀i37 ∈ x37, i38 ∈ x38, i39 ∈ x39, i40 ∈ x40 ∣
i40[1] ≔ union(i37[1], i38[1], i39[1]) ∧ i40[2] ≔ union(i37[2], i38[2], i39[2])∧
i40[3] ≔ union(i37[3], i37[4], i37[5], i38[3], i39[3]) ∧ i40[4] ≔ union(i37[6], i38[4], i39[4])∧
x40′ ≔ x40 ∪ {(i40[1], i40[2], i40[3], i40[4])} Rule 15

R(Balancing) = ∀i41 ∈ x41, i42 ∈ x42, i43 ∈ x43, i44 ∈ x44 ∣
i44[1] ≔ (i41[1] + (i42[1] ∨ i43[1])) ∧ (i44[2] ≔ i41[2] + (i42[2] ∨ i43[2]))∧
(i44[3] ≔ Balance( i41[3]i∀i41[3]∈i + (i42[3] ∨ i43[3]))) ∧ x44′ ≔ x44 ∪ {(i44[1], i44[2], i44[3])} Rule 16

Algorithm 6 is formally depicted in transitions Chk− asgEq and transition Crt− asgBkts which checks the
assignment equation to create buckets for the remaining Tn tuples (ie, ∀Tn ≠ 0). Transition Partition separates the
multiple QI-groups (ie, i52[3]≔ part(i51[3])∃s≥m)) that exists in a single bucket and keep them in an individual
sliced bucket that have minimum QI distance between them. The buckets with respect to QI columns are sorted
in rule 20.

R(Chk − asgEq) = ∀i46 ∈ x46, i47 ∈ x47, i48 ∈ x48 ∣
i48[1] ≔ i46[1] ∧ i48[2] ≔ i46[2] ∧ (|i46[3]| ≠ 0)→ {i48[3] ≔ asg − var(i46[3]i∀i46[3]∈i, i47[1], i47[2], i47[3])}
x48′ ≔ x48 ∪ {(i48[1], i48[2], i48[3])} Rule 17

R(Crt − asgBkts) = ∀i49 ∈ x49, i50 ∈ x50 ∣
i50[1] ≔ i49[1] ∧ i50[2] ≔ i49[2] ∧ i50[3] ≔ asgBkts(50[3] ∪ i49[3])∃i49[3]x∈49,i50[3]y∈50∣x≠y ∧ i50[4] ≔ i49[4]
x50′ ≔ x50 ∪ {(i50[1], i50[2], i50[3], i50[4])} Rule 18

R(Partition) = ∀i51 ∈ x51, i52 ∈ x52 ∣
i52[1] ≔ i51[1] ∧ i52[2] ≔ i51[2] ∧ i52[3] ≔ part(i51[3])∃s≥m) ∧ i52[4]∀i52[4]∃SingleSign ≔ i51[4]
x52′ ≔ x52 ∪ {(i52[1], i52[2], i52[3], i52[4])} Rule 19

R(Bkts − Sort) = ∀i53 ∈ x53, i54 ∈ x54 ∣
i54[1] ≔ i53[1] ∧ i54[2] ≔ sort − asc(i53[2]) ∧ i54[3] ≔ i53[3] ∧ i54[4] ≔ i53[4]
x54′ ≔ x54 ∪ {(i54[1], i54[2], i54[3], i54[4])} Rule 20
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Transition Validate_kAnony is used to k-anonymize the QI columns for each cell. And the k-anonymous cells along
with the sliced buckets are randomly permuted to prevent against membership attack. This final transition performs the
last step to transform the raw data into the anonymized SBUCs form and is ready to publish. Rules 21 depicts the procedure
as follows.

R(Validate_kAnony) = ∀i55 ∈ x55, i56 ∈ x56 ∣
i56[1] ≔ cellGen(i55[1], i55[2]) ∧ i56[2] ≔ randPermute(i55[3], i55[4])
x56′ ≔ x56 ∪ {(i56[1], i56[2])} Rule 21

The adversary combines the published releases, UBK, and external available information to disclose the SA values
and the corresponding user identifications in a specific release. The transitions Collusion−Attack prevent the intruder
from disclosing an individual record signature that is, ∀(SignPRT ∪ Signadv)≠ Signdisclosure and hence the intruder gets
the ∅ result. The function randPermute() in rule 21 prevents the membership attack (ie, QIkAnony ∪QIadv ≠QIdisclosure) as
depicted in transition Membership−Attack.

Therefore, in each SBUC the proposed (𝜏, m)-slicedBucket keeps a consistent signature against each record or updated
signature with condition: Sig(STi(t))∩ Sig(STj(t)) = 0, ∧ i≠ j and fulfillment of assignment equation to achieve m-unique
signatures. Attraction for slicing to prevent membership disclosure is undoubtful. For example, if an adversary can get
values of AQI of an individual in ACQI in a specific 3-anonymous SBUC then it is 33% chance that he can trace exact patient.
In case if PID is correctly traced even then it is hard to identify its sensitive value because of the signature consistency in
each release. The next section demonstrates the experimental proof of the proposed privacy model.

R(Collusion − Attack) = ∀i57 ∈ x57, i59 ∈ x59, i60 ∈ x60 ∣
SignDis(i57[2]) → (i57[2] ∪ i59[2]) ≠ i60[2] ∨ SignDis(i57[2] ∪ i59[2]) = ∅ Rule 22

R(Membership − Attack) = ∀i61 ∈ x61, i62 ∈ x62, i63 ∈ x63 ∣
MShipDis(i61[1]) → (i61[1] ∪ i62[1]) ≠ i63[1] ∨MshipDisc(i61[1] ∪ i62[1]) = ∅ Rule 23

6 EXPERIMENT AND ANALYSIS

This section validates the proposed (𝜏, m)-slicedBucket privacy model and evaluates the experimental results in com-
parison with m-invariance, 𝜏-safety, and 𝜏-safe (l, k)-diversity algorithms. Various quality measures are available
to test the effectiveness of the privacy models. In this paper, we use the normalized certainty penalty (NCP),29

Kullback-Leibler (KL)-Divergence,11 query accuracy,11,12 number of counterfeits used and algorithm execution time
analysis.

The proposed algorithm has been implemented in Python 3.7, on a machine having Intel Core i5 2.39 GHz pro-
cessor with 4GB RAM, installed on Windows 10 operating system. Though, we did not have code for m-invariance,
𝜏-safety and 𝜏-safe (l, k)-diversity, we implemented these algorithms keeping their values as close to the original as
possible. We have used the publicly available real dataset Adults; taken from U.C. Irvine Machine Learning Reposi-
tory, https://archive.ics.uci.edu/ml/datasets. From the Adult dataset, we have randomly chosen 60 000 tuples and four
attributes to perform experiments. Among the four attributes: age, gender, and zip code have been selected as AQIs
and occupation as AS. After first release, for external updates in each subsequent release almost 3500 tuples have
randomly been deleted and 4000 tuples have been inserted from the remaining tuples. For internal updates, 1000
tuples have been updated from previous release with respect to AS and 1000 tuples have been re-inserted from the
Del table. In this way, 20 times Adults dataset has been produced and has been anonymized by the implemented
algorithm.

6.1 Anonymization quality

This subsection examines the quality of the anonymized releases. NCP12,29 and KL Divergence11 are the statistical metrics
that measure the utility loss caused by anonymization.
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26 of 32 KHAN et al.

i. Normalized Certainty Penalty (NCP)

The NCP used in References 12,29 is a well-known measure of utility loss for the anonymized releases using the QI
attributes in the dataset. The utility loss for a single QI value, for a record t, and for the complete anonymized release T*

are given in Equations (4), (5), and (6) respectively.

NCPQIi(t) =
zi − yi

|QIi|
(4)

NCP(t) =
q∑

i=1
wi.NCPQi(t) (5)

NCP(T∗) =
∑

t∈T∗
NCP(t) (6)

where yi and zi are the generalized lower and upper attribute values in a domain and ∣QIi∣ is the domain of attribute QIi,
q are the total AQIs and wi are weights of attributes.

Figure 5 depicts utility measurement for the anonymized releases using NCP. The algorithm was tested under differ-
ent parameters that is, release time and m value. Figure 5A compares m-invariance, 𝜏-safety, 𝜏-safe (l, k)-diversity and the
proposed (𝜏, m)-slicedBucket privacy algorithms. The proposed algorithm is tested to anonymize the Adults dataset for
20 release times having fixed m = 6 during each release. In Figure 5A the y-axis is the percentage value from Equation (6)
during the 20 releases on x-axis. The higher NCP% value shows the highest utility loss, while (𝜏, m)-slicedBucket has
the lowest information loss. m-invariance algorithm performs worst because it cannot control the generalization while
𝜏-safety divides the records into their nearest ECs. In 𝜏-safe (l, k)-diversity, although there is less information loss but
still generalization exists in each EC and has certain amount of utility loss. The (𝜏, m)-slicedBucket privacy model per-
forms comparatively good because of slicing that has no generalization or cell generalization approach. It also stores
sorted records into their nearest slicedBuckets. The reason for almost straight graph for all the four approaches is
because of the same generalization, bucketization and cell generalization during all the 20 releases in their respective
algorithms.

Figure 5B compares 𝜏-safe (l, k)-diversity and (𝜏, m)-slicedBucket algorithms to calculate NCP% for varying values
of m, that is, m = 4, m = 6, and m = 8 during the 20 anonymized releases. The comparative graphs produced by both
approaches have been encircled. As time evolves, closer records are achieved which results in small generalization. This
reduces the information loss gradually. Though the loss is acceptable but for high parameter values that is, l, k, and m,
more information loss and vice versa because of high generalization. The (𝜏, m)-slicedBucket outperforms the 𝜏-safe (l,

F I G U R E 5 Utility measurements, (A) Inform. loss for fixed m, (B) Inform. Loss of (l,k) and (𝜏, m) for varying m
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KHAN et al. 27 of 32

F I G U R E 6 Utility measurements through KL-divergence

k)-diversity for each parameter during all the releases because of the negligible cell generalization in each sliced bucket
and reduced dimensionality during slicing.

ii. KL-Divergence

Kullback-Leibler (KL)-Divergence11 is also used to measure the utility loss when considering the overall distribution
of QI attribute values in microdata. KL-Divergence is a logarithmic ratio of two probabilities. According to KL-Divergence,
consider P1(t) and P2(t) as the probability distributions of a record in the original microdata and anonymized microdata,
respectively. The KL-divergence for both tables is calculated in Equation (7) as follows.

KL(P1,P2) =
∑

t
P1(t) log P1(t)

P2(t)
(7)

Figure 6 depicts the utility through KL-Divergence. The algorithm executed for 20 releases having m = 10 in
size. During initial releases, the information loss is less while as time evolves the high graph shows more infor-
mation loss. The three approaches that is, m-invariance, 𝜏-safety, (l, k)-diversity, adds the counterfeits to achieve
the record signature in an EC. Adding the counterfeits repeatedly in each release reduces the truthfulness of data
because of fake tuples. The delete list used by 𝜏-safety improves its performance as compared to m-invariance and
the same Del approach is used by 𝜏-safe (l, k)-diversity also, which keeps it closer to 𝜏-safety. The angelization28

approach improves the 𝜏-safe (l, k)-diversity utility from the 𝜏-safety. For (𝜏, m)-slicedBucket privacy model no infor-
mation loss with respect to counterfeit. Because of Cach table the (𝜏, m)-slicedBucket does not use any counterfeit
tuples which enhances its utility a lot as discussed in the algorithm. For initial releases almost no loss while for
higher releases the small increase in graph is because of the cell generalization used and high range values in
generalization.

6.2 Query accuracy

Query accuracy11,12 evaluates utility of the anonymized release by triggering aggregate queries. The anonymized release
T* from original microdata T having q as maximum AQI′s, that is, . AQI

1 ,AQI
2 AQI

3 , … ,AQI
q where D(AQI

i ) is the domain of
the ith AQI. Then the following aggregate query is used to calculate query accuracy.

Query = select count(∗) from R∗ where AQI
1 ∈ D(AQI

1 ) AND . . . AND AQI
q ∈ D(AQI

q )

Query dimensionality and query selectivity (number of records to be selected), are the two predicates in above query
in which dimensionality is dependent on selectivity. If the number of tuples obtained after applying query are ∣TQuery∣ on T
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28 of 32 KHAN et al.

where ∣T∣ are the total number of records in the dataset, the query selectivity is 𝜃 = ∣TQuery∣
∣T∣

. The query error in Equation (8)
is then a difference between the anonymized and original dataset.

QueryError =
∣ Count(anonymized) − Count(original) ∣

Count(original)
(8)

where count(anonymized) is the output from T* and count(original) is the result from T using the aggregate operator
COUNT. Queries with higher selectivity (more predicates) will have higher error rate. The query error was checked
under different parameters, that is, varying m, varying time and varying selectivity. We executed 1000 random queries
for m-invariance, 𝜏-safety, 𝜏-safe (l, k)-diversity, and for our proposed (𝜏, m)-slicedBucket privacy models. On average,
the query errors for different values of m, and for a specific release for example, 10th release, can be seen in Figure 7A
at 10% selectivity. High value of m means high generalization of AQI′s. The proposed (𝜏, m)-slicedBucket uses cell gener-
alization14,15 while the remaining three approaches uses the same classical generalization that leads to their low utility
comparatively. In Figure 7B, the query error for a specific value of m = 8 over different releases, 𝜏-safety performs well
as compared to m-invariance. The smooth increase in 𝜏-safety is because of the new records insertions on minimum dis-
tance basis which reduces the interval of AQI′s over different releases. In the proposed (𝜏, m)-slicedBucket model because
of the reduced dimensionality in AQIs the query error is further reduced with the same minimum distance AQI placement
in an EC. Figure 7C depicts query error with respect to varying selectivity. High selective queries have more predicates
which results in a smaller number of records. So, query error increases for more selective queries and high selectivity
results in decrease query error. For release 10th and m = 8, (𝜏, m)-slicedBucket has the lowest query error as compared
to m-invariance, 𝜏-safety, and 𝜏-safe (l,k)-diversity, even for low selectivity value.

F I G U R E 7 Query error (A) Variable m size (B) Updating release time (C) Change in selectivity
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F I G U R E 8 Counterfeit used

F I G U R E 9 Algorithm execution time

6.3 Counterfeit avoidance

Number of counterfeits added to the published anonymized release is a key factor in decreasing the truthfulness of QI
values. As discussed in Sections 1.1(iii) and 5.3, m-invariance 𝜏-safety, and (l,k)-diversity are using counterfeits in all
their releases while the proposed (𝜏, m)-slicedBucket Cach table helps to perform dynamic publishing without using any
counterfeit tuple. Figure 8 depicts a zero-counterfeit tuple for the proposed (𝜏,m)-slicedBucket model while the remaining
approaches randomly uses counterfeits. Counterfeit even creates more serious problem when the number of deletions is
higher than the inserted tuples. This means that almost more than half of the data in a published release will be having
no truthful QI values. Therefore, with high deletions in m-invariance, 𝜏-safety, and 𝜏-safe (l, k)-diversity will be having
more utility loss and fake publication.

6.4 Execution time analysis

The computational efficiency of a model or an algorithm is expressed in terms of its total execution time. The algorithm
executes for 20 releases with varying m in the range from 2 to 10. The average algorithm execution time obtained for dif-
ferent values of m is shown in Figure 9 that compares m-invariance, 𝜏-safety, 𝜏-safe (l, k)-diversity, and (𝜏,m)-slicedBucket
algorithms. Quicker buckets partitioning makes the 𝜏-safety better than m-invariance in execution but high value of m
responds in a slight increase in execution. The average execution time for 𝜏-safe (l, k)-diversity has very small increase
even if m increases. This is because 𝜏-safe (l, k)-diversity only performs sorting and generalization. Although managing
high size of Del table is time consuming for 𝜏-safe (l,k)-diversity but still takes less time in execution as compared to
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30 of 32 KHAN et al.

(𝜏, m)-slicedBucket. The proposed (𝜏, m)-slicedBucket performs well as compared to m-invariance and 𝜏-safety but has
high execution time in comparison to 𝜏-safe (l, k)-diversity.

Although cell generalization in (𝜏, m)-slicedBucket takes small amount of time however handling the Cach and Upd
tables to avoid the counterfeits are the factors for extra time consumption.. The graph has a slight increase in execution
time for the proposed work as m increases because more records needs to anonymize in an EC while at the same time
contacting Cach and Upd tables needs to be done.

7 CONCLUSION

Privacy preserving data publishing has become a significant research area since the last decade. In this paper, a real-world
challenging scenario for implementing privacy in sequential data publishing has been performed. The proposed
(𝜏, m)-slicedBucket privacy model is a sequential anonymization model over time, which considers all possible opera-
tions that is, insert, update, delete, on given dataset. The proposed algorithm follows certain steps to implement privacy
and utility. For implementing privacy; attributes correlation, classification, balancing, and assignments were performed,
while for utility enhancement; partition and cell generalizations are used. The Cach table creation helps to publish real
anonymized records without using any counterfeit tuples. The counterpart privacy models, that is, m-invariance, 𝜏-safety,
𝜏-safe (l,k)-diversity were found vulnerable to our identified attack; collusion attack, and also have the counterfeit usage
limitations. The formal modeling for 𝜏-safe (l,k)-diversity identifies the collusion attack vulnerability which has been mit-
igated in the proposed privacy model formal modeling. The proposed (𝜏, m)-slicedBucket algorithm creates consistent
signatures for a specific record respondent during all its releases. The experimental results proved the effectiveness for
the proposed privacy model.

For future work, we consider the sequential dynamic data publication with progressive internal updates instead of
arbitrary updates. Three other research directions can be (i) sequential dynamic data publication with multiple SAs
(MSA),49 (ii) sequential dynamic data publication with individual having more than one records that is, 1:M microdata,29

and the more challenging work is to propose a solution for (iii) 1:M-MSA with sequential dynamic data publishing.

ACKNOWLEDGEMENT
This work was supported by the National Natural Science Foundation of China under Grant 61932005.

CONFLICT OF INTERESTS
The authors declare no potential conflict of interest.

ORCID
Razaullah Khan https://orcid.org/0000-0002-4144-050X

REFERENCES
1. Asghari P, Rahmani AM, Javadi HHS. A medical monitoring scheme and health-medical service composition model in cloud-based IoT

platform. Trans Emerg Telecommun Technol. 2019;6:30. https://doi.org/10.1002/ett.3637.
2. Chen C-L, Yang T-T, Deng Y-Y, Chen C-H. A secure Internet of Things medical information sharing and emergency notification system

based on nonrepudiation mechanism. Trans Emerg Telecommun Technol. 2020;e3946;1–21. https://doi.org/10.1002/ett.3946.
3. Azad MA, Arshad J, Mahmoud S, Salah K, Imran M. A privacy-preserving framework for smart context-aware healthcare applications.

Trans Emerg Telecommun Technol. 2019;e3634;1–20. https://doi.org/10.1002/ett.3634.
4. Largest healthcare data breaches of 2019. https://www.hipaajournal.com/2019-healthcare-data-breach-report/. Accessed April 27, 2020.
5. Healthcare breaches cost $6.2 billion annually. https://www.beckershospitalreview.com/healthcare-information-technology/healthcare-

breaches-cost-6-2b-annually.html. Accessed on April 27, 2020.
6. Sweeney L. k-Anonymity: A model for protecting privacy. Int J Uncertainty Fuzziness Knowl Based Syst. 2002;10(5):1-14.
7. Sweeney L. Achieving k-anonymity privacy protection using generalization and suppression. Int J Uncertainty Fuzziness Knowl Based Syst.

2002;10(5):1-18.
8. Machanavajjhala A, Kifer D, Gehrke J. l-Diversity: Privacy Beyond k-Anonymity. ACM Trans Knowl Discov Data. 2007;1(1):1-52.
9. Li N, Li T, Venkatasubramanian S. t-Closeness: privacy beyond k-anonymity and l-diversity. Paper presented at: IEEE 23rd Int. Conf. Data

Eng.; 2007; Istanbul:106-115.
10. Xiao X Tao Y. m-invariance: towards privacy preserving re-publication of dynamic datasets. Paper presented at: Proceedings of the ACM

SIGMOD International Conference on Management of data; 2007:689–700.
11. Anjum A et al. 𝜏-safety: A privacy model for sequential publication with arbitrary updates. Comput Secur. 2017;66:20-39.

 21613915, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ett.4130 by U

niversity O
f E

ast A
nglia, W

iley O
nline L

ibrary on [03/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0002-4144-050X
https://orcid.org/0000-0002-4144-050X
https://doi.org/10.1002/ett.3637
https://doi.org/10.1002/ett.3946
https://doi.org/10.1002/ett.3634
https://www.hipaajournal.com/2019-healthcare-data-breach-report/
https://www.beckershospitalreview.com/healthcare-information-technology/healthcare-breaches-cost-6-2b-annually.html
https://www.beckershospitalreview.com/healthcare-information-technology/healthcare-breaches-cost-6-2b-annually.html


KHAN et al. 31 of 32

12. Zhu H et al. 𝜏-Safe (l,k)-diversity privacy model for sequential publication with high utility. IEEE Access. 2019;7:687-701.
13. Li T, Li N, Zhang J, Molloy L. Slicing: A new approach for privacy preserving data publishing. IEEE Trans Knowl Data Eng.

2012;24(3):561-574.
14. Touhidul Hasan ASM et al. A new approach to privacy-preserving multiple independent data publishing. Appl Sci. 2018;783:8.
15. Shmueli E, Tassa T, Wasserstein R. Limiting disclosure of sensitive data in sequential releases of databases. Inform Sci. 2012;191:98-127.
16. Riboni D, Pareschi L, Bettini C. JS-reduce: defending your data from sequential background knowledge attacks. IEEE Trans Dep Sec Comp.

2012;9(3):387-400.
17. Liang H, Wu J, Mumtaz S, Li J, Lin X, Wen M. MBID: micro-blockchain-based geographical dynamic intrusion detection for V2X. IEEE

Commun Mag. 2019;57(10):77-83.
18. Chen J et al. Collaborative trust blockchain based unbiased control transfer mechanism for industrial automation. IEEE Trans Indus Appl.

2019;56(4):4478–4488. https://doi.org/10.1109/TIA.2019.2959550.
19. Domingo-Ferrer J, Soria-Comas J. From t-closeness to differential privacy and vice versa in data anonymization. Knowl Based Syst.

2015;74:151-158.
20. Cao J, Karras P. Publishing microdata with a robust privacy guarantee. Paper presented at: Proceedings of the 38th International

Conference on Very Large Data Bases(VLDB), VLDB Endowment; 2012, vol. 5, no. 11:1388-1399.
21. Khan R, Tao X, Anjum A, Kanwal T, Khan A, Maple C. 𝜃-Sensitive k-anonymity: an anonymization model for iot based electronic health

records. Electronics. 2020;9(5):1–24. https://doi.org/10.3390/electronics9050716.
22. Cormode G, Srivastava D, Shen E. Aggregate query answering on possibilistic data with cardinality constraints. Paper presented at: IEEE

28th International Conference on Data Engineering; 2012; Washington, DC:258-269.
23. Shi Y, Zhang Z, Chao HC. Data privacy protection based on micro aggregation with dynamic sensitive attribute updating. Sensors (Basel).

2018;7:18.
24. Zhang Q, Koudas N, Srivastava D Yu T. Aggregate query answering on anonymized tables. Paper presented at: IEEE 23rd International

Conference on Data Engineering; 2007; Istanbul:116-125.
25. Domingo-Ferrer J Soria-Comas J. Steered microaggregation: a unified primitive for anonymization of data sets and data streams. Paper

presented at: IEEE International Conference on Data Mining Workshops; 2017; New Orleans, LA:995-1002.
26. Soria-Comas J, Domingo-Ferrer J. Enhancing data utility in differential privacy via micro-aggregation based k-anonymity. VLDB J.

2014;23(5):771-794.
27. Xiao X, Tao Y. Anatomy: simple and effective privacy preservation. Paper presented at: Proceedings of the 32nd International Conference

on Very Large Data Bases; 2006:139-150.
28. Tao Y, Chen H, Xiao X, Zhou S, Zhang D. Angel: enhancing the utility of generalization for privacy preserving publication. IEEE Trans

Knowl Data Eng. 2009;21(7):1073-1087.
29. Gonga Q, Luoa J, Yang M. Anonymizing 1:m microdata with high utility. Knowl Based Syst. 2016;115:15-26.
30. Shannon CE. Prediction and entropy of printed english. Bell Syst Tech J. 1951;30(1):50-64.
31. Saba Yaseen SM, Abbas A, Anjum A. Improved generalization for secure data publishing. IEEE Access. 2018;6:27156-27165.
32. Amiri F et al. Hierarchical anonymization algorithms against background knowledge attack in data releasing. Knowl Based Syst.

2016;101:71-89.
33. Song F, Ma T, Tian Y. A new method of privacy protection: random k-anonymous. IEEE Access. 2019;7:75434-75445.
34. Fung BCM, Wang K, Yu PS. Top-down specialization for information and privacy preservation. Paper presented at: Proceedings of the 21st

IEEE International Conference on Data Engineering (ICDE); 2005:205-216.
35. Wang K, Yu PS, Chakraborty S. Bottom-up generalization: a data mining solution to privacy protection. Paper presented at: Proceedings

of the 4th IEEE International Conference on Data Mining (ICDM); 2004:249–256.
36. Barak B, Chaudhuri K, Dwork KC, Kale S, Mcsherry F Talwar K. Privacy, accuracy, and consistency too: A holistic solution to contingency

table release. Paper presented at: Proc. the 26th ACM Symposium on Principles of Database Systems (PODS); 2007:273-282.
37. Shmueli E, Tassa T. Privacy by diversity in sequential releases of databases. Inform Sci. 2015;298:344-372.
38. Wang K, Fung B. Anonymizing sequential release. Paper presented at: Proceedings of the 12th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining; 2006:414–423.
39. Bu Y, Fu AWC, Wong RCW, Chen L Li J. Privacy preserving serial data publishing by role composition. Paper presented at: Proc the VLDB

Endowment; 2008, vol. 1, no. 1:845-856.
40. Bouna BA, Clifton C, Malluhi Q. Efficient sanitization of unsafe data correlations. Paper presented at: Proc. the Workshops of the

EDBT/ICDT Joint Conf; 2015:278-285.
41. Li T, Li N, Zhang J. Modeling and integrating background knowledge in data anonymization. Paper presented at:Proc the 25st IEEE Int

Conf on Data Engineering (ICDE); 2009:6-17.
42. Wang H, Liu R. Privacy-preserving publishing microdata with full functional dependencies. Data Knowl Eng. 2011;70:249-268.
43. Byun JW, Sohn Y, Bertino E. Secure anonymization for incremental datasets. Secure Data Management. Lecture Notes in Computer

Science. Vol 4165. Berlin, Heidelberg: Springer; 2006. https://link.springer.com/chapter/10.1007/118446624#citeas.
44. Anjum A et al. An efficient privacy mechanism for electronic health records. Comput Secur. 2018;72(C):196–211.
45. Malik SU, Khan SU. Modeling and analysis of state-of-the-art VM-based cloud management platforms. IEEE Trans Cloud Comput.

2013;1(1):1-1.
46. Kanwal T et al. Privacy-preserving model and generalization correlation attacks for 1:M data with multiple sensitive attributes. Inform Sci.

2019;488:238-256.

 21613915, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ett.4130 by U

niversity O
f E

ast A
nglia, W

iley O
nline L

ibrary on [03/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1109/TIA.2019.2959550
https://doi.org/10.3390/electronics9050716
https://link.springer.com/chapter/10.1007/118446624#citeas


32 of 32 KHAN et al.

47. Dwork C, Roth A. The algorithmic foundations of differential privacy. Found Trends Theoret Comput Sci. 2014;9(3–4):211-407.
48. Li N Qardaji W, Su D. Provably private data anonymization: Or, k-anonymity meets differential privacy. https://www.cerias.purdue.edu/

assets/pdf/bibtex_archive/2010-24.pdf. Accessed February 11, 2020.
49. Razaullah Khan, Xiaofeng Tao, Adeel Anjum, “Privacy preserving for multiple sensitive attributes against fingerprint correlation attack sat-

isfying c-diversity,” Wirel Commun Mobile Comput. 2020;2020:1–18. https://www.hindawi.com/journals/wcmc/2020/8416823/. Accessed
February 12, 2020.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Khan R, Tao X, Anjum A, et al. (𝜏, m)-slicedBucket privacy model for sequential
anonymization for improving privacy and utility. Trans Emerging Tel Tech. 2022;33:e4130. https://doi.org/10.1002/
ett.4130

 21613915, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ett.4130 by U

niversity O
f E

ast A
nglia, W

iley O
nline L

ibrary on [03/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.cerias.purdue.edu/assets/pdf/bibtex_archive/2010-24.pdf
https://www.cerias.purdue.edu/assets/pdf/bibtex_archive/2010-24.pdf
https://www.hindawi.com/journals/wcmc/2020/8416823/
https://doi.org/10.1002/ett.4130
https://doi.org/10.1002/ett.4130

	[[math]]-slicedBucket privacy model for sequential anonymization for improving privacy and utility 
	1 INTRODUCTION
	1.1 Motivation
	1.2 Contributions

	2 RELATED WORK
	3 PRELIMINARIES
	3.1 Adversarial BK
	3.2 Adversarial model

	4 FORMAL MODELING AND ANALYSIS OF [[math]]-SAFE [[math]]-DIVERSITY PRIVACY MODEL WITH ADVERSARIAL ATTACK IDENTIFICATION
	5 PROPOSED [[math]]-SLICEDBUCKET PRIVACY MODEL
	5.1 slicedBucket (SBUC)
	5.2 [[math]] Persistent invariance
	5.3 Empowering [[math]] tuples over counterfeit tuples
	5.4 Proposed algorithm
	5.5 Formal modeling and analysis for [[math]]-slicedBucket privacy model

	6 EXPERIMENT AND ANALYSIS
	6.1 Anonymization quality
	6.2 Query accuracy
	6.3 Counterfeit avoidance
	6.4 Execution time analysis

	7 CONCLUSION

	ACKNOWLEDGEMENT
	CONFLICT OF INTERESTS
	ORCID
	REFERENCES
	Supporting Information

