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Abstract
Wecontinue the study of the structure of general subgroups (in particularmaximal subgroups,
also known as groupH-classes) of special inversemonoids. Recent research of the authors has
established that these can be quite wild, but in this paper we show that if we restrict to special
inverse monoids which are E-unitary (or have a weaker property we call R1-injectivity),
the maximal subgroups are strongly governed by the group of units. In particular, every
maximal subgroup has a finite index subgroup which embeds in the group of units. We give
a construction to show that every finite group can arise as a maximal subgroup in an R1-
injective special inverse monoid with trivial group of units. It remains open whether every
combination of a group G and finite index subgroup H can arise as maximal subgroup and
group of units.

Keywords Special inverse monoid · Maximal subgroup · Group H-class · E-unitary ·
R1-injective

Mathematics Subject Classification 20M18 · 20M05

1 Introduction

In this paper we continue the study of so-called special inverse monoids: those inverse
monoids that admit inverse monoid presentations in which each defining relation has the
formw = 1. Motivation for this research programme comes both from the beautiful geomet-
ric nature of these monoids, and from connections to other areas of semigroup theory and
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geometric group theory, such as possible applications to the decidability or otherwise of the
one-relator word problem for monoids (a century-old problem widely regarded as one of the
hardest and most important open problems in semigroup theory). To avoid duplication we
shall refrain from comprehensive historical discussion, referring instead to the survey article
of Meakin [14] for the early theory and the introduction to our own recent article [2] for
subsequent developments.

A key philosophical question about special inverse monoids is the extent to which the
structure of the wholemonoid is governed by the structure locally around the identity element
(by the units, left and right units or more generally by Green’s D-class and J -class of 1).
In the case of special (non-inverse) monoids it is known that the monoid is quite strongly
governed in this way: for example all the maximal subgroups are isomorphic to the group
of units [13]. Early results about special inverse monoids suggested that the same kind of
relationship might hold, but more recent work has led to the realisation that things are more
complex. We recently [2] studied the possible maximal subgroups (also known as group H-
classes) which can arise in finitely presented special inverse monoids, answering a question
of the first author and Ruškuc by showing that the possible groups of units are exactly the
finitely generated recursively presented groups, and more generally that the possible group
H-classes are exactly the (not necessarily finitely generated) recursively presented groups.
This implies in particular that (unlike in the special non-inverse case) the groupH-classes are
not necessarily all isomorphic to the group of units. However, in the examples we constructed
it turns out that the group H-classes all embed in the group of units, and it is natural to ask
if this is always true.

In the present paper we show that this is also not the case: indeed we construct special
inverse monoids with trivial group of units and arbitrary finite groups arising as group H-
classes. However, our main theorem is that under a relatively mild (weaker than E-unitarity)
assumption calledR1-injectivity, everyH-class is virtually embeddable in the group of units,
in other words, has a finite index subgroup which embeds in the group of units.

In addition to this introduction the paper is divided into six sections. Section 2 fixes
notation and collects some basic facts about (mostly special) inverse monoids, some of which
are folklore but some new and potentially of independent interest. Section 3 introduces and
studies the new property ofR1-injectivity. Section 4 shows that the Schützenberger graphs of
R1-injective special inverse monoids all admit a certain kind of block decomposition, which
makes it relatively straightforward to understand their structure modulo the Schützenberger
graph of right units. In Sect. 5 we apply this block decomposition to studymaximal subgroups
of R1-injective special inverse monoids, in particular establishing that they are constrained
to admit a finite index subgroup which embeds in the group of units. Section 6 goes some
way towards proving the previous theorem “sharp”, by constructing a family of examples
with trivial group of units but arbitrary finite groups arising as maximal subgroups. Finally,
Sect. 7 digresses slightly to note an interesting fact about special inverse monoids with a
generator which is neither a right nor a left unit: in such monoids every finite subgroup of
the group of units arises as the maximal subgroup around some idempotent.

2 Special inversemonoids

In this section we fix notation and collect together some preliminary results about special
inverse monoids; some of these are folklore known to experts but hard to find in the literature,
while others (most notably Theorem 2.3) are new and likely to be of independent interest.
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Let A be a (typically, but not necessarily, finite) alphabet, and let A±1 denote the union of
A with a disjoint alphabet {a−1 | a ∈ A}. We extend the inverse operation to be an involution
on A±1 by defining (a−1)−1 = a, and to words over A±1 by (a1 . . . an)−1 = a−1

n . . . a−1
1 . For

brevity we will often write w′ instead of w−1. Where A is viewed as a choice of generators
for an inverse monoid M , we will sometimes writew to denote the element of M represented
by a word w ∈ (A±1)∗.

Recall that the inverse monoid defined by the presentation 〈A | R〉, where R ⊆ (A±1)∗ ×
(A±1)∗ is the quotient of the free inverse monoid on A by the congruence generated by R.
All presentations in this paper will be inverse monoid presentations unless stated otherwise.
An inverse monoid presentation is called special if all relations have the form w = 1, and
an inverse monoid is called special if it admits a special inverse monoid presentation. We
shall assume familiarity with (special) inverse monoids, as well as standard ideas in the field
such as Green’s relations, Schützenberger graphs, Stephen’s procedure, E-unitarity and the
maximal group image. The reader unfamiliar with these is directed to [8] for the classical
theory of inverse monoids in general, and [2] for the more recent theory of special inverse
monoids. Recall that a graph is called bi-deterministic if no two edges with the same label
share a start vertex or an end vertex.

If m ∈ M we write S�(m) for the (right) Schützenberger graph of m, and Hm , Rm and
so forth for the equivalences classes of m under Green’s various relations on M . If M is an
inverse monoid generated by a set A then S�(m) is a bi-deterministic (A ∪ A−1)-labelled
graph. We define the root of the graph S�(m) to be the vertex mm−1, that is, the unique
vertex in this graph that corresponds to an idempotent element of the inverse monoid M . We
say that a word w ∈ (A ∪ A−1)∗ can be be read from the root of S�(m) if there is a path in
S�(m) labelled by the word w that starts at the vertex mm−1.

Remark 2.1 The Schützenberger graphs considered in this paper will usually not be finite.
For this reason, when we talk about obtaining these graphs “using Stephen’s procedure” we
are referring to the most general version of Stephen’s graphical approach to inverse monoids,
as developed in his PhD thesis [15], and then later applied in its general form in papers such
as [18] and [12]. Let us now explain one of the key ways that the results of Stephen will be
used in this paper. Full details can be found in [15] and also [18] and [12].

Let M = 〈
A | R

〉
be a finitely presented special inverse monoid and let w ∈ (A ∪ A−1)∗.

As explained in [18, Sect. 3] (from which we adopt the same definitions and notation) the
Schützenberger graph S�(w) can be obtained as the colimit of directed system of graphs
obtained by starting with a line Lw labelled w and performing expansions (which involves
adding a cycle labelled by a defining relator r at a vertex of a graph where r cannot yet be
read) and folding (which involves identifying two directed edges with the same label and
the same initial or terminal vertex). The colimit of this system is called the closed form of
Lw and is denoted ClR(Lw). Any object in this system, or colimit of a subsystem, is called
an approximate graph of ClR(Lw). Alternatively an approximate graph can be described in
language-theoretic terms; see [15, p. 102, Sect. 5.2] for details. In particular observe that an
approximate graph can be infinite. The closed form ClR(Lw) of Lw is closed in the sense
that no nontrivial expansions or edge foldings can be performed on ClR(Lw). It is proved in
Stephen’s thesis [15, Theorem 5.10] that for any approximate graph � of ClR(Lw) we have
ClR(�) = ClR(Lw) = S�(w). In other words, the closed form of any approximate graph
of S�(w) is equal to S�(w).

Now, let T be the (non-bi-deterministic) infinite graph constructed iteratively by starting
with the line Lw, and adding a cycle labelled by r at every vertex for every r ∈ R, but not
performing any edge folding. It follows from the results of Stephen outlined in the previous
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paragraph that S�(w) is obtained by bi-determinising T . Indeed, T is an approximate graph
for S�(w) since T is clearly the colimit of the subsystem of all graphs that can be obtained
from Lw by only performing expensions and never any foldings. (Alternatively onemay show
that T is an approximate graph S�(w) by verifying that it satisfies the language-theoretic
descriptionof approximate graphs in [15, p. 102, Sect. 5.2].)Then from theprevious paragraph
it follows that ClR(T ) = S�(w). We claim that the closure ClR(T ) of T is equal to the bi-
determinised form of T . Indeed, the collection of graphs C that can be obtained from T
via a finite sequence of expansions or edge foldings is the same as the graphs that can be
obtained from T by finite sequence of edge-foldings. This is because no expansions can be
applied to T and after a finite sequence of folding is applied to T it is still the case that no
expansions can be applied to the resulting graph. Then it follows that the closure of T is the
colimit of the collection C of all partial determinisations of T which is the graph obtained
by bi-determinising T . But S�(w) is equal to the colimit of T , and so S�(w) is the graph
obtained by bi-determinising T . Alternatively, one may verify that the the graph obtained by
bi-determinising T is clearly closed (in the sense that no non-trivial expansions or foldings
can be applied to it) and it is an approximate graph of S�(w) (since it can be seen to satisfy
the language-theoretic description of approximate graphs in [15, p. 102, Sect. 5.2]) and it
then follows, since the closure of Lw is unique [11, Theorem 3], that S�(w) is the graph
obtained by bi-determinising T .

As a slight variation on the description given in the previous paragraph, if we begin with
Lw and attach a copy of S�(1) to each vertex of Lw, then the resulting graph � can also
be seen to be an approximate graph of S�(w) and, arguing as in the previous paragraph, the
closure of � is equal to the graph obtained by bi-determinising �, which must equal S�(w).

The following is well known and easy to prove directly from the definitions.

Proposition 2.2 Let w be a word over the generators for an inverse monoid M. Then w

represents:

• an idempotent element if and only if every path labelled by w in every Schützenberger
graph is a closed path;

• an element of J1 if and only if it labels a path somewhere in S�(1);
• an element of R1 (a right unit) if and only if it labels a path in S�(1) starting at the

identity;
• an element of L1 (a left unit) if and only if it labels a path in S�(1) ending at the identity;

and
• an element of H1 if and only if it labels a path in S�(1) starting at the identity and a

path in S�(1) ending at the identity.

Notably missing from Proposition 2.2 is a description of words representing elements ofD1.
For inverse monoids in general there is no easy way to describe these but, surprisingly, in
special inverse monoids there is a very nice description akin to those above:

Theorem 2.3 Let M be a special inverse monoid generated by X, and w a word over X±1.
Then the following are equivalent:

(i) w represents an element of D1;
(ii) w labels a path in S�(1) which passes through (or starts or ends at) the vertex 1; and
(iii) there is a decomposition w = uv (as words, possibly empty) where u represents a left

unit and v represents a right unit.
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Proof The equivalence of (ii) and (iii) is immediate from the characterisation of left units
and right units given by Proposition 2.2. If (iii) holds then since u represents a left unit we
have u′ u = 1 so that

w = u v L u′ u v = v R 1

and (i) holds.
What remains, which is the main burden of the proof and the only part which does not

hold for inverse monoids in general, is to show that (i) implies (ii) or (iii).
We do this by showing first that every element in D1 has some representative word with a

decomposition of the type in (iii). Then we shall make use of the fact that the inverse monoid
defined by an inverse monoid presentation 〈A | R〉 is equal to the monoid defined by the
infinite monoid presentation

Mon〈A, A−1|R, αα−1α = α, αα−1ββ−1 = ββ−1αα−1(α, β ∈ (A ∪ A−1)∗〉.
This fact follows from [6, Theorem 5.10.1]. We shall prove below that if we take any word
w that decomposes as in (iii) and apply any one of the infinitely many relations from the
infinite monoid presentation above, then word one obtains also admits such a decomposition.
Combined with the fact that every every element in D1 has some representative word with a
decomposition of the type in (iii), this will suffice to show that every word representing an
element in D1 admits a decomposition of the type in (iii).

For the first step, if s ∈ D1 then there exists t ∈ M with sLtR1. Because sLt we have
s′s = t ′t , so that s = ss′s = st ′t = (st ′)t . Now t is a right unit by assumption, and thismeans
we have (st ′)′(st ′) = ts′st ′ = t t ′t t ′ = 1, so that st ′ is a left unit. Thus, if we choose words
representing st ′ and t respectively, concatenating themwill yield a word of the required form
representing (st ′)t = s.

Now suppose w is any word which factorises as in (iii), or equivalently that it can be read
along some path π in S�(1) which visits 1. First note that if we replace a factor of the form
x with xx ′x or vice versa, or replace a factor uu′vv′ with vv′uu′ then the resulting word can
be read along a path in S�(1) starting and ending in the same place as π and traversing the
same set of edges as π (possibly different numbers of times and in a different order). So in
particular the resulting word can be read along a path in S�(1) which visits 1. If we insert
some relator into w then, since every relator can be read around a closed path at every vertex
of S�(1), the resulting path can still be read along a path in S�(1) which visits 1.

Finally, suppose we remove a factor of w which is a relator, say w = prq where r is a
relator and we obtain the word pq . Since all paths labelled by relators are closed, we may
remove a closed subpath from π to obtain a path labelled pq . If this path still visits 1 then we
are done. If it does not visit 1 then the closed subpath we removed from π must do so, which
means there must be a factorisation r = ab (as words) such that pa labels a path ending at
1 (so pa represents a left unit) and bq labels a path beginning at 1 (so bq represents a right
unit). Now a represents both a right unit (because it is a prefix of a relator) and a left unit
(because it can be read along a path ending at 1), so a is a unit. But this means p = (pa)a′
in M , so p represents a left unit, and by Proposition 2.2 can be read along a path ending at
1. By a dual argument, b also represents a unit, so q = b′(bq) in M and q is a right unit and
can be read along a path starting at 1. Thus, the resulting word pq can be read along a path
which visits 1. 	

Corollary 2.4 A generator in a special inverse monoid presentation represents an element of
D1 if and only if represents an element of R1 ∪ L1.
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Proof If x is a generator and xD1 then by Theorem 2.3 it must label some path in S�(1)
passing through 1; since the label is a single letter such a path must have length 1, and
therefore must start and/or end at 1, which means that x isR-related and/or L-related to 1. 	

Remark 2.5 While it is a general andwell-known fact about inversemonoids (which is implic-
itly proved in the third paragraph of the proof of Theorem 2.3) that every element ofD1 can be
decomposed in the monoid as the product of a left and a right unit, it is far more unusual and
surprising that every word representing such an element can be decomposed as a word into
words representing a left and a right unit. This behaviour is very particular to special inverse
presentations, and can fail even for non-special presentations of special inverse monoids.
For example the non-standard presentation Inv〈p, q, r | pq = 1, qp = r〉 for the (special,
bisimple) bicyclic monoid contains a generator r representing an element ofD1 \ (L1 ∪R1);
if the theorem held then r would have to label a path through 1, which since it is a single
letter means a path starting or ending at 1, but in this case it would represent an element of
L1 or R1.

Proposition 2.6 Any special inverse monoid in which R1 = H1 (or L1 = H1) decomposes
as the free product of a group with a free inverse monoid.

Proof Suppose M is a special inverse monoid in which R1 = H1, the case L1 = H1 being
dual.

We claim that in fact J1 = H1. Indeed, suppose not for a contradiction. Notice first
that there must be a generator in J1 \ H1; indeed if not then every word either contains a
generator outside J1 (in which case it does not represent an element of J1, since M\J1 is
an ideal) or has all generators inH1 (in which case it represents an element ofH1, sinceH1

is a subgroup). Clearly in order to be in J1 this generator must appear in a relator, r say.
Write r = uxv where x is the leftmost generator not in H1. Then the factor u represents a
right unit, which since R1 = H1 means it represents a unit. Now in the monoid we have
xv = u−1uxv = u−11 = u−1, so xv represents a unit. But this means x is right invertible,
so x ∈ R1 = H1, giving a contradiction.

Now it is easy to see that the generating set can be split into generators inJ1 = H1, which
generate the group H1, and generators not in J1 which do not appear in any relation and
hence generate a free factor. 	


As a consequence we obtain a very simple proof of the following well-known fact:

Corollary 2.7 Every finite special inverse monoid is a finite group.

Proof It is well known that finite monoids satisfy R1 = H1. Indeed, given x ∈ R1 write
xy = 1, then since the monoid is finite we have xi = xi+ j for some i, j ≥ 1 which, right
multiplying by yi , gives x j = 1 for some j ≥ 1. Hence x ∈ H1. So by the above any finite
special inversemonoid is free product of a groupwith a free inversemonoid. Since non-trivial
free inverse monoids are infinite, the free inverse monoid must be trivial and hence the given
monoid is a (necessarily finite) group. 	


We shall need the following fact, which is established by the argument in the proof of [7,
Proposition 4.2].

Proposition 2.8 In a special inverse monoid the (non-inverse) submonoid R1 [respectively
L1] is generated (under multiplication only) by the set of elements represented by the proper
prefixes [suffixes] of the defining relators.
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We shall need an elementary lemma about bi-deterministic graphs, which is well-known
to experts:

Lemma 2.9 A morphism of connected, bi-deterministic graphs is uniquely determined by
where it takes any single vertex. In particular, non-identity automorphisms of such graphs
are fixed-point free. If two connected, bi-deterministic graphs with distinguished root vertices
admit root-preserving morphisms between them in both directions, then the morphisms are
isomorphisms.

Proof Suppose f : X → Y is a morphism of connected, bi-deterministic graphs. Let v be a
vertex of X . For each other vertex u ∈ X , because X is connected wemay choose a path from
v to u, say with labelw. But now f (u)must be at the end of a path labelledw starting at f (v);
because Y is bi-deterministic there can be only one such path, and so f (u) is determined by
f (v). In particular, if X = Y and f is an automorphism fixing a vertex v then it must be the
identity automorphism.

Now if there are root-preserving morphisms f : X → Y and g : Y → X then the
compositions f ◦ g : X → X and g ◦ f : Y → Y are morphisms which agree with the
identity maps on X and Y on their root vertices; since the identity maps are also morphisms,
by the previous paragraph f ◦ g and g ◦ f must be equal to the respective identity maps, so
f and g are isomorphisms. 	

We shall also need the following lemma, which is proved by a similar technique to [2,

Lemma 3.3].

Lemma 2.10 Let M = 〈A | R〉 be a special inverse monoid and suppose � is a rooted
bi-deterministic A-labelled graph such that some word w ∈ (A±1)∗ can be read from the
root, and every defining relation of M can be read around a closed path at every vertex of
�. Then there is a morphism from S�(w) to �, taking the root to the root.

Proof Let T be the (non-bi-deterministic) infinite graph constructed iteratively by starting
with a line labelled w, and adding a cycle labelled by r at every vertex for every r ∈ R, but
not performing any edge folding. We view each of these cycles as oriented in such a way that
the word r is the label of the path given by reading the cycle clockwise. By a proper subpath
of a cycle of T we mean a path π with initial vertex being the vertex at which the cycle was
attached in the construction of T , and such that π is a simple path which traverses the cycle
clockwise but does not visit every vertex of the cycle, i.e. the end vertex of π is not equal to
the start vertex of π . Note that if r ∈ R is the label of a cycle in T then any proper subpath
of this cycle is labelled by a proper prefix of the word r . From the construction it follows
that for every vertex u of T there is a unique sequence (π0, π1, π2, . . . , πk) where π0 is a
simple path starting at the root and traversing part of the line labelled w, each πi for i ≥ 1 is
a proper subpath of a cycle and π0π1 . . . πk is a path from the root of T to u. We define a map
from the vertex set of T to vertices in � where the vertex u with corresponding sequence
(π0, π2, . . . , πk) of proper subpaths of cycles maps to the vertex in � obtained by following
the path labelled by p0 p1 . . . pk starting at the vertex w of �, where pi is the label of the
path πi for 0 ≤ i ≤ k. This gives a well-defined (by uniqueness of the sequences of proper
subpaths of cycles) map from the vertices of T to the vertices of �. As a consequence of
the assumptions that � is bi-deterministic and every relator from R can be read from every
vertex in �, this map extends uniquely to a morphism of graphs which maps edges of T to
the edges of �. Let us use φ to denote this graph morphism from T to �.

As explained in Remark 2.1, it follows from results of Stephen that S�(w) is obtained by
bi-determinising T . We claim that φ induces a well-defined graph morphism from S�(w) to
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�. To see this note that two vertices v and u of T are identified in S�(w) if and only if there
is a path in T between these vertices labelled by a word that freely reduces to the empty word
in the free group. Since φ is a morphism it follows that there is a path in � between φ(v) and
φ(u) labelled by the same word that freely reduces to the empty word in the free group. Since
the graph � is bi-deterministic it follows that φ(v) = φ(u). Hence φ induces a well-defined
map from the vertices of S�(w) to the vertices of �. Two edges e and f of T are identified
in S�(w) if and only if they have the same label, say a ∈ A, and their start vertices v and u
are identified in S�(1). But we have already seen that this means that φ(v) = φ(u) which,
since � is bi-deterministic means that both e and f must be mapped to the unique edge in �

with start vertex φ(v) = φ(u) and labelled by a. This shows that φ induces a well defined
map from the edges of S�(w) to the edges of �.

It remains to verify that φ induces a morphism of graphs from S�(w) to �. Let e be an
edge in S�(w). Choose an edge f in T such that f is equal to e when T is bi-determinised,
that is, f is a member of the equivalence class of edges that represented e. Since φ is a
morphism from T to � it follows that the start vertex of f in T maps to the start vertex
of φ( f ) in �, and the end vertex of f in T maps to the end vertex of φ( f ) in �. But by
definition φ(e) = φ( f ) and φ maps the start vertex e to the same place as the start vertex of
f , and similarly for the end vertices. It follows that φ induces a morphism of graphs from
S�(w) to �. 	


3 R1-injectivity

In this sectionwedefine a newproperty calledR1-injectivitywhich isweaker than E-unitarity,
establish some of its basic properties and give examples to show that it encompasses many
special inverse monoids of interest which are not E-unitary.

Definition 3.1 We say that an inverse monoid isR1-injective if the morphism to the maximal
group image is injective when restricted to the R-class of the identity.

The following result lists a number of equivalent characterisations; as well as being useful
later, we hope they help to convince the reader that the definition is natural.

Proposition 3.2 Let M be an inverse monoid generated by a set X. Then the following are
equivalent:

(i) M is R1-injective;
(ii) S�(1) naturally embeds in the Cayley graph of the maximal group image M/σ ;
(iii) for some x ∈ D1, the morphism from M to M/σ is injective when restricted to Rx ;
(iv) for every y ∈ D1, the morphism from M to M/σ is injective when restricted to Ry;
(v) σ−1(1) ∩ D1 = E(M) ∩ D1;
(vi) every path in S�(1) labelled by a word representing the identity in M/σ is closed;
(vii) the morphism to the maximal group image is injective when restricted to the L-class

of the identity;
(viii) for some x ∈ D1, the morphism from M to M/σ is injective when restricted to Lx ;
(ix) for every y ∈ D1, the morphism from M to M/σ is injective when restricted to L y.

Proof The equivalence of (i) and (ii) and the fact that (i) implies (iii) are immediate from the
definitions.

Suppose (iii) holds for some x ∈ D1 and let y ∈ D1. Then xDy so there exists z with
xRzLy. In particular we may write z = qy for some q ∈ M , and by Green’s lemma there is
a bijection
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λq : Ry → Rqy = Rz = Rx , i �→ qi .

Now if a, b ∈ Dy with σ(a) = σ(b) then σ(qa) = σ(qb) where qa, qb ∈ Rx , so qa = qb,
which since λq is a bijection means that a = b. Thus, (iv) holds.

Now suppose (iv) holds. If e ∈ E(M) then clearly σ(e) = 1. Now if s ∈ D1 with σ(s) = 1
then sRe for some idempotent e, but now σ(e) = 1 and by assumption σ is injective on Rs

so we must have s = e and s is idempotent. Thus, (v) holds.
Suppose (v) holds, and let x, y ∈ R1 be such that σ(x) = σ(y). Then we have x ′yRx ′L1

so that x ′yD1. Moreover, σ(x ′y) = σ(x)′σ(y) = σ(x)′σ(x) = 1. Thus we may deduce
from (v) that x ′y is idempotent. Now we have

1 = (xx ′)(yy′) = x(x ′y)y′ = x(x ′y)2y′ = (xx ′)(yx ′)(yy′) = yx ′

from which it follows that x ′ = x ′yx ′ and y = yx ′y which implies that the inverse of x ′ is
y and so x = (x ′)′ = y. Thus, (i) holds.

If (ii) holds then (vi) follows from the fact that paths in a group Cayley graph labelled by
words representing the identity are necessarily closed.

Now suppose (vi) holds and let x, y ∈ R1 with σ(x) = σ(y). Choose words wx , wy

representing x and y respectively. Then by Proposition 2.2 there are paths in S�(1) starting
at 1 labelled wx and wy , so there is a path in S�(1) from vertex x to vertex y labelled w′

xwy .
Clearly in M/σ the wordw′

xwy represents σ(x ′y) = σ(x)′σ(y) = 1, so by (vi) we have that
the path from x to y is closed, which must mean x = y. Thus, (i) holds.

The equivalence of (i) and (vii) follows from the facts that they are left/right dual, and that
condition (v) and the hypotheses are left/right symmetric. The equivalence of (vii), (viii) and
(ix) is then dual to the equivalence of (i), (ii) and (iii). 	

Remark 3.3 There are also, of course, further equivalent conditions which are left/right duals
to conditions (ii) and (vi). We omit these as stating them would first require the notion of a
left Schützenberger graph, for which we have no further need here.

Remark 3.4 The equivalence of conditions (i), (iii) and (iv) in Proposition 3.2 can also be
deduced from the fact that Schützenberger graphs of R-classes in the same D-class are
isomorphic [16, Theorem 3.4(a)] together with the fact that group Cayley graphs are homo-
geneous.

Remark 3.5 Notwithstanding the equivalent characterisations given by Proposition 3.2, we
do not expect R1-injectivity to be a useful or interesting property for inverse monoids in
general, since it gives information only about the D-class of 1, and there is no reason to
suppose that this has any influence on the wider structure of the monoid. For example, the
condition would be trivially satisfied in any inverse monoid whose identity is adjoined. But in
special inverse monoids, where the structure of the whole monoid is more strongly influenced
by the right and left units, it seems to be a very powerful property, as we shall see later.

In view of condition (v) in Proposition 3.2 it is natural to ask if R1-injectivity is also
equivalent to the condition σ−1(1) ∩R1 = E(M) ∩R1, in other words σ−1(1) ∩R1 = {1}.
In fact while this condition is self-evidently necessary for R1-injectivity, it is not sufficient
even in special inverse monoids, as the following example shows:

Example 3.6 Consider the special inverse monoid

〈a, b, c, d | acb = adb = cc′ = dd ′ = 1〉.
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Fig. 1 An illustration of S�(1) for the inverse monoid 〈a, b, c, d | acb = adb = cc′ = dd ′ = 1〉 considered
in Example 3.6. The full graph is obtained by repeatedly gluing this building block freely at every vertex

By Proposition 2.8 the right units are generated by the proper prefixes of the relators, which
since ac = ad in the monoid means by the set X = {a, ac, c, d}. The maximal group
image is the group with the same presentation, which is equivalent as a group presentation to
〈a, b, c, d | d = c, b = (ac)−1〉, in other words, a free group generated by a and c (with d
mapping to c and b to (ac)−1). Clearly no positive word over the set X represents the identity
in this group, so no non-idempotent right unit of the monoid maps to 1 in the maximal group
image, in other words, we have σ−1(1)∩R1 = E(M)∩R1. On the other hand, the right units
c and d get identified, but it can be seen (for example by constructing S�(1); see Fig. 1) that
they are distinct in the monoid, so the monoid cannot beR1-injective. Note that the element
c′d is a non-idempotent in D1 which maps to 1 in the maximal group image, witnessing the
failure of condition (v) in Proposition 3.2.

One might also ask if R1-injectivity is equivalent to the stronger (than condition (v) in
Proposition 3.2) condition that σ−1(1) ∩ J1 = E(M) ∩ J1; we shall see in Example 3.9
below that this is not the case.

Proposition 3.7 Every E-unitary inverse monoid is R1-injective.

Proof It is well-known (indeed, sometimes even taken as a definition) that an inverse monoid
(or semigroup) is E-unitary if and only if the pre-image of the identity in the maximal group
image is exactly the set of idempotents [6, Proposition 5.9.1], and it follows immediately
that every E-unitary monoid satisfies condition (v) of Proposition 3.2. 	


The converse of Proposition 3.7 is very far from being true, even in very restricted cases.
The following examples show that it can fail even for positive, special, finite presentations,
and for one-relator special presentations.

Example 3.8 The inverse monoid 〈a, b, c, d | acb = adb = 1〉 is shown in [7, Sect. 3] not to
be E-unitary but isR1-injective. Indeed, the right units are just the submonoid generated by
a and ac (since by Proposition 2.8 the right units in any special inverse monoid are generated
by the proper prefixes of the relators, and it follows from the presentation that ac = ad in
the monoid). The maximal group image is the group with the same presentation, which is
equivalent as a group presentation to 〈a, b, c, d | c = d, b = ac−1〉, in other words, a free
group generated by a and c (with d mapping to c and b to ac−1). Since a and ac are easily
seen to generate a free monoid inside this free group, distinct right units in the monoid must
map to distinct elements of the maximal group image.
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Fig. 2 The Schützenberger graph S�(1) of the inverse monoid 〈x, y | xyx ′ = 1〉 considered in Example 3.9

Example 3.9 Similarly, the one-relator inverse monoid 〈x, y | xyx ′ = 1〉 (a homomorphic
image of that in the previous example with a, b, c and d mapping respectively to x , x ′, y
and y) isR1-injective but not E-unitary. In this case the right units are just 1 and the positive
powers of x (because xy = x in the monoid), and the presentation as a group presentation is
equivalent to 〈x, y | y = 1〉, so the maximal group image is an infinite cyclic group generated
by x with y mapping to 1. Again, distinct right units in the monoid map to distinct elements
of the maximal group image, and so the monoid is R1-injective. On the other hand, y is not
idempotent in the monoid (as can be seen be constructing S�(y) and applying the criterion
for idempotency given by Proposition 2.2) but maps to 1 in the maximal group image, so
the monoid is not E-unitary. Note also that yJ 1, so this example shows that R1-injectivity
is strictly weaker than the condition σ−1(1) ∩ J1 = E(M) ∩ J1. Finally, notice that in
this example the Schützenberger graph S�(1) does not embed into the Cayley graph of the
maximal group image as a full subgraph: indeed the Cayley graph contains a loop at 1 labelled
y, while S�(1) does not; see Fig. 2.

The converse of Proposition 3.7does hold for cyclically reduced (in particular for positive)
one-relator special inverse monoids for the trivial reason that these are known [7] all to be
E-unitary!

While the above examples show thatR1-injectivity is quite common, there are also many
special inverse monoids which are not R1-injective. Indeed, the following examples show
that even a one-relator special inverse monoid can fail to be R1-injective, even if the relator
is a reduced (but not cyclically reduced, since this is known to imply E-unitarity [7]) word.

Example 3.10 The inverse monoid 〈x, y | yy′xyx ′ = 1〉 is not R1-injective. Indeed, the
element y is right invertible (since it is a prefix of the defining relator), is easily seen to map
to the identity in the maximal group image, but is not equal to 1 in the monoid. The latter
point can be seen in S�(1) (see Fig. 3) where y labels both a loop and a non-loop edge. The
fact that it labels a loop means it must map to 1 in the maximal group image, and the fact it
labels a non-loop edge means condition (iv) of Proposition 3.2 fails.

Example 3.11 The inverse monoid 〈x, y | (xyx)y(x ′y′x ′) = 1〉 is notR1-injective, although
the relator is a reduced word (but of course not cyclically reduced, which by [7] would imply
the monoid was E-unitary). Indeed, constructing S�(1) (see Fig. 4) we see that y once again
labels both loop and non-loop edges, so again y represents the identity in the maximal group
image and condition (iv) of Proposition 3.2 fails.

4 Schützenberger graphs and blocks

Throughout this section M will be an R1-injective special inverse monoid generated by a
(not necessarily finite) set X . Our aim is to show that under this assumption, the different
Schützenberger graphs of M admit a decomposition into (not necessarily disjoint) copies
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Fig. 3 The Schützenberger graph S�(1) of the inverse monoid 〈x, y | yy′xyx ′ = 1〉 considered in Exam-
ple 3.10

Fig. 4 The Schützenberger graph S�(1) of the inverse monoid 〈x, y | (xyx)y(x ′y′x ′) = 1〉 considered in
Example 3.11

of S�(1). The existence of such a decomposition stems in large part from the following
elementary result, which extends to the R1-injective case an observation made in the E-
unitary case by Stephen [16, Theorem 3.8].

Lemma 4.1 Let M be an R1-injective inverse monoid generated by a set X, and w a word.
Then for every vertex v of S�(w) there is an injective morphism from S�(1) to S�(w) which
takes 1 to v.

Proof Every word readable from 1 in S�(1) is right invertible and therefore readable from
v in S�(w). Moreover, if two words x and y reach the same vertex when read from 1 in
S�(1) then they represent the same element, and therefore also reach the same place when
read from v in S�(w). Thus, there is a well-defined morphism f : S�(1) → S�(w) given
by setting f (u) to be the unique vertex at the end of a path starting at v and labelled x , where
x is any word labelling a path from 1 to u.
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For injectivity, suppose r , s ∈ R1 are such that f (r) = f (s). This means that vr = vs in
the monoid, so in particular (vr)σ (vs) which since σ is group congruence implies rσ s. But
M is R1-injective, so this means r = s. 	


We shall now build upon Lemma 4.1 to establish a block decomposition for the lower
Schützenberger graphs.

Definition 4.2 A preblock of an X -labelled directed graph � is a subgraph1 of � which is
the image of an injective morphism from S�(1). A root of a preblock is a vertex which is the
image of 1 ∈ S�(1) under such a morphism. A block of � is a preblock which is maximal
under inclusion among preblocks.

Example 4.3 Consider the monoid 〈x, y | xyx ′ = 1〉 from Example 3.9 above, and the
Schützenberger graph S�(1) as illustrated in Fig. 2. It is straightforward to see that there is
a preblock rooted at every vertex (extending to the right of the vertex in the illustration), but
only the preblock rooted at 1, in other words the entire graph, is a block.

Remark 4.4 A preblock (or block) does not typically have a unique root; indeed it is easy to
see that each preblock will have one root for every automorphism of S�(1). By [16, Theorem
3.5] this means the roots of each (pre)block are in (non-canonical) bijection with the units of
the monoid.

Remark 4.5 By inclusion of preblocks, we mean of course that the vertices and edges of one
preblock are contained in those of the other. A priori it might therefore seem possible for
the vertex set of one block to be a proper subset of the vertex set of another block, or even
for two distinct blocks to have exactly the same vertex set, but in fact neither of these things
can happen provided the graph � is bi-deterministic. Indeed suppose a block C contains all
the vertices of another block B. Choose a root vertex r for B. Now because C is isomorphic
to S�(1), Lemma 4.1 tells us that C contains a subgraph isomorphic to S�(1) rooted at r .
Since � is bi-deterministic this means C must contain all the edges of B.

Lemma 4.6 Let M be an R1-injective special inverse monoid generated by a set X, and w

a word over X±1. Then S�(w) has finitely many blocks. Every preblock of S�(w) lies in a
block. Every vertex of S�(w) lies in at least one block. All but finitely many edges of S�(w)

lie in at least one block. Any edge which does not lie in a block is a cut edge, and is traversed
by the path from the root labelled w. Every block has a root which is the vertex corresponding
to some prefix of w.

Proof Let � be the directed, labelled graph obtained by starting with the Munn tree of w

and gluing a copy of S�(1) to every vertex. As explained in Remark 2.1, it follows from
results of Stephen that S�(w) may be obtained from � by folding (or bi-determination, in
Stephen’s terminology).

Clearly the copies of S�(1) glued to the vertices of the Munn tree are a finite set of
preblocks of�, containing all vertices and all but finitely many edges (the missing ones being
those of theMunn tree). It follows fromLemma 4.1, that the bi-determination process applied
to � never identifies two vertices within the same preblock; indeed suppose it identified
distinct vertices v1 and v2 within a preblock with root v. For i = 1, 2 let wi be a word

1 By a subgraph we mean a subset of vertices and a subset of edges between those vertices; there is no
assumption that it is a “full” or “‘induced” subgraph containing all edges between the given vertex set, and
indeed in general a preblock will not be a full subgraph.
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labelling a path from v to vi within the preblock. Then starting at the image of v in S�(w),
there will be paths labelled w1 and w2 leading to the same place, which contradicts the fact
that there is an embedded copy of S�(1) rooted at v. Hence, the image under bi-determination
of a preblock in� is always a preblock in S�(w). LetC be the (finite) set of these preblocks in
S�(w), and B the (finite) subset of preblocks inC which aremaximal inC under containment.

We claim that B is the (finite) set of all blocks of S�(w). Clearly, every vertex in S�(w)

lies in some preblock in B. Now any other preblock of S�(w) is rooted at some vertex in
S�(w), and hence at a vertex of some preblock in B. By Lemma 4.1 again, S�(1) contains a
copy of S�(1) at every vertex, so it follows that every preblock is contained in a preblock in
B. Since the preblocks in B are defined to be maximal in C , and therefore are not contained
in each other, it follows that they are maximal among all preblocks, and therefore comprise
all blocks of S�(w).

Since each block in B is the image of a preblock in � rooted at a Munn tree vertex, and
every vertex of the Munn tree can be reached from the identity by reading some prefix of w,
it follows that each block has a root which can be reached from 1 by reading some prefix of
w from the root of S�(w), and which therefore corresponds to a prefix of w.

It remains to show that those edges in S�(w) which do not lie in a block are cut edges,
and are traversed by a reading of w from the root. Since every preblock lies in a block, it
suffices to show that those edges which do not lie in a preblock are cut edges. As a precursor
to this, we claim that if an edge is a cut edge in some graph then its image after any single
bi-determination step (and hence, by induction, after finitely many bi-determination steps)
either remains a cut edge or is also the image of a non-cut edge. Indeed, suppose that e is
a cut edge, and consider the possible effects of a single bi-determination step, that is, of
folding two edges together. If neither edge is e then, since the two edges must have a vertex
in common, they both lie in the subgraph at the same end of e, and it is clear that folding
them cannot create a connection to the subgraph at the other end of e, so e remains a cut
edge. If one is e and the other is another cut edge, then the resulting folded edge remains the
only connection between the two end-points of e, and hence is still a cut edge. So the only
way e can cease to be a cut edge is by identification with a non-cut edge, as required.

Now suppose that some edge of S�(w), e say, does not lie in a preblock. Then every
preimage of e in�must be a Munn tree edge. It follows in particular that all such pre-images
are traversed by readingw from the root in�, and hence that e itself is traversed by a reading
ofw from the root in S�(w). Now suppose for a contradiction that e is not a cut edge. Letπ be
a path connecting the endpoints of e without traversing e. Since every preimage of e in� is a
Munn tree edge, every preimage of e in� is a cut edge. Let f be one such preimage of e in�.
Now the path π must be created during folding after some finite number of bi-determination
steps, so there is some finite sequence of bi-determination steps after which f ceases to be a
cut edge, having only been identified with other cut edges. But this contradicts the previous
paragraph. 	


Remark 4.7 Lemma 4.6 does not say that the blocks are anywhere close to being disjoint!
We shall see some cases in which they are disjoint, or close to disjoint in the sense that the
intersections are simple to describe, but in general the intersections can be very complicated.
It seems that problems concerning the “lower” regions (D-classes other than D1) of an R1-
injective special inverse monoid often reduce to understanding the intersections of blocks
in its Schützenberger graphs. The lemma also does not say that all cut edges in S�(w) are
traversed by a reading of w from the root: in addition to cut edges not lying in a block, there
may be cut edges which do lie in blocks, and these are not necessarily traversed by a reading
of w from the root.
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Fig. 5 An approximation during
Stephen’s procedure of S�(ac)
for the monoid considered in
Example 4.9

Remark 4.8 Under the stronger assumption of E-unitarity, ideas similar to those inLemma4.6
were first introduced (although not made so explicit) by Stephen [16, 17]. In [9, Sect. 2.2.5]
and [5] it is implicitly suggested (with an incorrect attribution to Stephen [16, 17], who does
not actually make such a claim) that the existence of such a decomposition suffices to reduce
the word problem in the monoid to the problem of deciding whether a given word represents
the identity. This line of reasoning is flawed, since to understand the lower Schützenberger
graphs well enough to solve the word problem requires understanding not only the internal
structure of the blocks (in other words, of S�(1)) but also the intersections of the blocks,
which as discussed above may be very complex. One of the main results of [5], stating
that the word problem is decidable for special inverse monoids with a single sparse (see
[5] for the definition) relator, relies upon this claim and therefore cannot be established by
the argument given. Rather the paper establishes only that in such monoids it is decidable
whether a given word represents the identity. The decidability of the word problem for
these monoids remains open, although we conjecture that it is in fact decidable. It may be
that the methods in [5] can be further developed to directly solve the whole of the word
problem. Alternatively, it may be possible to establish (perhaps using methods from [5]) that
these monoids have Schützenberger graphs quasi-isometric to trees, in which case they have
solvable word problem by subsequent work of the first author, Silva and Szakács [3].

The following example shows that a block decomposition as given by Lemma 4.6 does
not necessarily exist without the hypothesis of R1-injectivity, even for one-relator special
inverse monoids.

Example 4.9 Consider the special inverse monoid

〈a, b, c | c′abc = ab′a′aba′ = 1〉 = 〈a, b, c | ab′a′aba′ c′abc = 1〉.
The equivalence of the two presentations is because the second relator in the left-hand pre-
sentation is an idempotent in the free inverse monoid, so by standard results from the theory
of inverse monoid presentations (see for example [1, Lemma 3.3]) it can be combined into
the other relator.

Consider S�(1) and S�(ac) as constructed by Stephen’s procedure (see Fig. 5). Note that
the former has a simple path starting at 1 labelled ab′a′. On the other hand, consider the
vertex (call it v) at the start of the a-edge in the Munn tree in S�(ac). The path labelled
ab′a′ here folds up so that it ends in the same place as its prefix labelled a; in other words
in this monoid acc′a′ ab′a′ = acc′a′ a even though ab′a′ �= a. This is significant because
there is no path coming into v labelled by an element of R1, which means that vertex v is
not in a block rooted at some other vertex, and it cannot be in a block rooted at itself because
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Fig. 6 An illustration of the Schützenberger graph S�(1) of 〈x, p, y | xpy = xp′y = 1〉 from Example 5.2,
which clearly has trivial automorphism group

the presence of the above relation means there is not an embedded copy of S�(1) rooted at
v. Hence, S�(ac) does not have a block decomposition in the above sense (and so, by the
contrapositive of Lemma 4.6, the given monoid cannot be R1-injective).

5 Automorphisms and subgroups

In this section we apply the block decomposition developed in Sect. 4 to study automor-
phisms of Schützenberger graphs, and hence groupH-classes ofR1-injective special inverse
monoids.

The following statement is key to the way in which anR1-injective special inverse monoid
is governed by R1.

Theorem 5.1 Let M be an R1-injective special inverse monoid. Then every subgroup of M
has a finite index subgroup which embeds in the group of units.

Proof Clearly it suffices to show that every maximal subgroup of M has a finite index sub-
group which embeds in the group of units. Let G be a maximal subgroup of M , and w be
a word representing the identity element of G. Then by [16, Theorem 3.5], G is the group
of labelled digraph automorphisms of the Schützenberger graph S�(w). From here on we
consider G acting on S�(w).

Notice that, because the blocks were defined from the isomorphism type of S�(w), any
automorphism of S�(w) must map blocks to blocks, in the strong sense that its restriction to
(both vertices and edges of) any block is an isomorphism to another block. Thus, the action
of G on S�(w) induces an action of G on the (finite, by Lemma 4.6) set of blocks of S�(w).

Now choose any block X of S�(w), and fix a root r for X . Let K be the stabiliser of
the point X under the action of G on the set of blocks, in other words, the subgroup of all
automorphisms in G which map X to itself. Then K is a finite index subgroup of G. Since
K maps X to itself, the action of K on S�(w) restricts to an action by automorphisms on
X . Moreover, this action is faithful: indeed, since S�(w) is a connected, labelled and bi-
deterministic graph, its automorphisms are fixed-point free, so any element of K which acts
trivially on X must also act trivially on S�(w), meaning it must be the identity element of
K . So K acts faithfully by automorphisms on X , which is isomorphic to S�(1). Hence, K
embeds in the automorphism group of S�(1), which is isomorphic to the group of units by
another application of [16, Theorem 3.5]. 	


One might ask whether the stronger statement, that every subgroup actually embeds in
the group of units, is true. The following example shows that it is not:

Example 5.2 Consider the special inverse monoid

〈x, p, y | xpy = xp′y = 1〉.
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Fig. 7 An illustration of the Schützenberger graph S�(xy) of 〈x, p, y | xpy = xp′y = 1〉 from Example 5.2,
which has automorphism group isomorphic to the cyclic group Z2 of order two

Consider the Schützenberger graphs S�(1) and S�(xy), which are easy to construct and are
illustrated in Figs. 6 and 7. It is easy to see that the former has no automorphisms (so the
group of units is trivial), while the latter has an automorphism exchanging the vertices at the
start and end of the path xy coming from the Munn tree (so there is a subgroup Z2, which in
fact is easily seen to be a maximal subgroup, in the D-class of xy).

The maximal group image of this monoid (in other words, the group given by interpreting
the monoid presentation as a group presentation) is easily seen to be the free product of an
infinite cyclic group generated by x and an order-2 cyclic group generated by yx = p. It is
clear from considering S�(1) that it embeds into the Cayley graph of this group, so that the
monoid is R1-injective by Proposition 3.2.

On the other hand, this monoid is not E-unitary, since one can verify by constructing
S�(p2) that the element p2 is not idempotent.

In Sect. 6 below, we will construct further examples where the group of units is trivial
but arbitrary finite groups arise as maximal subgroups. The example above and those in the
following section are R1-injective but not E-unitary. We have not been able to construct an
E-unitary special inverse monoid where the maximal subgroups do not embed in the group
of units, nor to prove that such a monoid cannot exist. Similarly, we do not know if there are
stronger restrictions on the behaviour of subgroups in the 1-relator case. In these cases we
do not even know if a trivial group of units implies that all subgroups are trivial. We shall see
shortly (Theorem 5.4) that one case in which subgroups do have to embed in the group of
units is for D-classes of anR1-injective special inverse monoid such that the corresponding
block decomposition as given by Lemma 4.6 is disjoint (see Remark 4.7 above):

In order to prove this, we first observe that in the case of aD-class whose Schützenberger
graph has edges not lying in any block, the block decomposition suffices to prove a very
strong statement about the corresponding maximal subgroups: they are necessarily finite
(even if the group of units of the monoid is infinite, and even if the monoid is not finitely
presented).

Theorem 5.3 Let M be an R1-injective special inverse monoid generated by X. Let w be a
word such that S�(w) has an edge not contained in any block. Then the maximal subgroups
in the D-class of w are finite.
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Proof By Lemma 4.6 the graph S�(w) has only finitely many edges not contained in blocks.
Since the block decomposition is automorphism invariant, the automorphisms of S�(w)must
permute these edges. Since the action of the automorphism group is fixed-point free it must
act faithfully on this finite set, and therefore must be finite. 	


We are now ready to consider the special case in which the block decomposition as given
by Lemma 4.6 is disjoint:

Theorem 5.4 Let M be an R1-injective special inverse monoid, w a word and suppose the
blocks of S�(w) have pairwise disjoint vertex sets. Then the maximal subgroups in the D-
class of w are isomorphic to the same subgroup of the group of units, and if w does not
represent an element of D1 this subgroup is finite.

Proof By [16, Theorem 3.5], the maximal subgroups are all isomorphic to the automorphism
group of S�(w), which we will denote by G.

Consider the (finite, typically non-bi-deterministic) labelled digraph � with vertices the
blocks of S�(w), and an edge from X to Y labelled x if and only if S�(w) has an edge from
a vertex of X to a vertex of Y labelled x . Since S�(w) is connected and every vertex lies in a
block, � is connected. Since the blocks of S�(w) are disjoint, edges between distinct blocks
cannot lie within blocks, so by Lemma 4.6 they are cut-edges. It follows that the edges of �

are all cut-edges: in other words, the underlying undirected graph of � is a tree.
Clearly since automorphisms map blocks to blocks, the action of G by automorphisms

on S�(w) induces an action by labelled digraph automorphisms on �. Since � is a finite
digraph whose underlying graph is a tree, there is a vertex of � which is fixed by G (because
by a result of Halin [4, Lemma 2] an automorphism of a finite undirected tree fixes either an
edge or a vertex) and hence a block X of S�(w) which is fixed setwise by the action of G.
Thus, G can be restricted to act by directed graph automorphisms on the block X , and since
non-trivial automorphisms of S�(w) are fixed-point free, this action is faithful. Since X is
isomorphic to S�(1) this means G acts faithfully on S�(1), so embeds in the automorphism
group of S�(1) which is exactly the group of units.

It remains to show that eitherw represents an element ofD1 or G is finite. Consider the set
K of edges in S�(w)which have exactly one end in X . If K is empty then X is not connected
to any other block, which since S�(w) is connected means S�(w) ∼= X ∼= S�(1), so by [16,
Theorem 3.4(a)], w represents an element of D1. On the other, if K is non-empty then G is
finite by Theorem 5.3. 	


Recall that the block decomposition given by Lemma 4.6 leaves open the possibility that
finitely many edges do not lie in any block. One might ask if this can really happen; the
following example shows that it can.

Example 5.5 Consider the inverse monoid

〈x, p, q, y | xpy = xp′y = 1〉.
Note that it is the free product of the monoid in Example 5.2 with a free inverse monoid of
rank 1, and is easily seen to beR1-injective with trivial group of units by a similar argument.
Consider the Schützenberger graph S�(qq ′xyqq ′). This has four blocks, rooted at either end
of the two edges labelled q . The two edges labelled q are cut edges not contained in any block.
See Fig. 8 for an illustration of S�(qq ′xyqq ′). There is clearly an automorphism swapping
the two q edges, and since there are no other q edges and automorphisms are fixed-point
free, there can be no other automorphisms. So the automorphism group of S�(qq ′xyqq ′),
and hence the maximal subgroup in the D-class of qq ′xyqq ′, is isomorphic to Z2.
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Fig. 8 An illustration of the Schützenberger graph S�(qq ′xyqq ′) of 〈x, p, q, y | xpy = xp′y = 1〉 from
Example 5.5, which has automorphism group isomorphic to the cyclic group Z2 of order two. Note that from
the definitions S�(1) for this example is isomorphic to the S�(1) in Fig. 6. The graph S�(qq ′xyqq ′) has four
blocks, rooted at either end of the two edges in the figure labelled q. The two copies of S�(1) rooted at either
end of the two edges in the figure labelled p are not blocks, but they are both pre-blocks

6 Subgroups differing from the group of units

Our aim in this section is to construct examples of R1-injective special inverse monoids
where the group of units is trivial but an arbitrary finite group arises as a maximal subgroup.

Theorem 6.1 For every finite group G, there exists an R1-injective special inverse monoid
with trivial group of units and a maximal subgroup isomorphic to G.

We prove the theorem with a construction and a number of lemmas. Let G be a finite
group. For simplicity we consider a presentation for G with very large sets of generators and
relations.

Specifically, consider the finite special monoid presentation 〈A | R〉 for G where A =
G\{1} and R consists of all 2-letter and 3-letter positive words over A which are equal to 1
in G. For each generator a ∈ A introduce new letters xa and ya and their formal inverses,
and define a = xa ya . For w ∈ (A ∪ A−1)∗ define w = w1 . . . w|w|. Let X = {xa | a ∈ A}
and Y = {ya | a ∈ A}.

For each relator r = r1 . . . r|r | ∈ R, and each 1 ≤ k ≤ |r | introduce a new letter δr ,k , let
� be the alphabet of these letters, and define a word

sr ,k = xrk δr ,k(δr ,k−1)
−1yrk−1 ∈ X��−1Y

where indices are interpreted modulo |r |, so that r0 = r|r | and δr ,−1 = δr ,|r |. Now let M be
the special inverse monoid generated by the set

X ∪ Y ∪ �

subject to the set of four-letter relations

{sr ,k | r ∈ R, 1 ≤ k ≤ |r |}.
We shall study the Schützenberger graphs of the monoid M , and other graphs with edges

labelled by the generators of M . In these graphs, we shall use the terms x-edges, y-edges
and δ-edges to mean edges labelled respectively by some xa , by some ya and by some δr ,k .

Lemma 6.2 The graph S�(1) has the following properties:
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(i) The root is the unique vertex with the property that all edges incident with it are either
x-edges going out or y-edges coming in.

(ii) There are no vertices having both an x-edge coming in and a y-edge going out.

In particular S�(1) has trivial automorphism group, so M has trivial group of units.

Proof We consider the construction of S�(1) by Stephen’s procedure.
Consider first a union of cycles labelled by the defining relations of S, amalgamated at

the root, without bi-determinising. The vertices can be divided into four types:

(a) the root, which has x-edges going out and y-edges coming in;
(b) vertices with an x-edge coming in and a δ-edge going out;
(c) vertices with two δ-edges coming in; note that these two edges will have labels of the

form δr ,k and δr ,k−1 (where as usual k −1 is interpreted modulo |r |) and since R contains
no relations of length 1 these labels are distinct;

(d) vertices with a δ-edge coming in and a y-edge coming out;

Determinising x-edges in this graph will identify various vertices of type (b), and bi-
determinising y-edges will identify various vertices of type (d). Let �′ be the graph resulting
from this bi-determinisation. We claim that �′ is now bi-deterministic. Indeed, the only
remaining thing which could fail is bi-determinism of the δ-edges. However, it follows from
the definition of the relations that each possible δ-edge label appears only twice, once with
its start at a vertex of type (b), and once with its start at a vertex of type (d). Hence, two
δ-edges with the same label cannot have the same start vertex. Moreover, each of the δ-edges
ends at a vertex of type (c), and we have seen that two δ-edges meeting at a type (c) vertex
have differing labels, so two δ-edges with the same label cannot have the same end vertex.

Now notice that vertices of types (b), (c) and (d) in �′ have no x-edges coming out, and
no y-edges coming in, while the root of �′ has only x-edges coming out and y-edges coming
in. It follows that if we attach a new copy of �′ at each non-root vertex of �′, the resulting
graphs remains bi-deterministic.

Thus, by Stephen’s procedure, S�(1) can be constructed iteratively as a tree of copies of
�′. It is clear that the original root remains the only vertex which has only x-edges going
out and y-edges coming in (since every other vertex is constructed as type (b), (c) or (d)
and therefore has other edges incident with it). Moreover, the only way a vertex can have an
x-edge coming in is if it is constructed as a type (b) vertex, while the only way it can have
a y-edge going out is if it is constructed as a type (d) vertex. Thus, no vertex has both an
x-edge coming in and a y-edge coming out.

Finally, it follows from (i) that automorphisms of S�(1) must fix the root, and since
automorphisms of bi-deterministic labelled graphs are fixed-point free, this means that the
automorphism group is trivial. 	


We now define a graph � which has:

• for each element g ∈ G, a vertex vg;
• for each element g ∈ G and generator a ∈ A, a vertex ug,a , an edge from vg to ug,a

labelled xa and an edge from ug,a to vga labelled ya ;
• for each element g ∈ G and relation r = r1 . . . r|r | ∈ R, a new vertex tg,r , and for each

1 ≤ k ≤ |r | an edge from ugr1...rk−1,rk to tg,r labelled δr ,k ; and
• at each vertex ug,a and tg,r an attached copy of S�(1).

We shall refer to the vertex v1 as the root of �. We shall show, eventually, that the graph �

is isomorphic to a Schützenberger graph of M .
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Lemma 6.3 The graph � is bi-deterministic.

Proof By construction,

• the edges explicitly created are readily verified to have the required property;
• the attached copies of S�(1) are by definition internally bi-deterministic; and
• the vertices at which we attached copies of S�(1) do not have explicitly created x-edges

going out or y-edges coming in, so by Lemma 6.2 the attachment of S�(1) at these
vertices does not cause any non-determinism.

	

Lemma 6.4 The automorphism group of � is isomorphic to G.

Proof It is immediate from symmetry of the definition that there is a faithful action of G
where h acts by taking vg to vhg , taking ug,a to uhg,a , taking tg,r to thg,r , and extending in
the obvious way to permute the attached copies of S�(1). What remains is to show that there
are no more automorphisms of �. Suppose, then, that f : � → � is an automorphism.

Fix some a ∈ A. Notice that the vertices of the form ug,a are the only vertices with an
xa-edge coming in and a ya-edge going out. Indeed, by construction none of the vertices of
the form vg or tg,r have this property, and by Lemma 6.2 the vertices in the attached copies
of S�(1) do not have this property either. Hence, the set of vertices {ug,a | g ∈ G} must be
preserved by f . Let h be such that f (u1,a) = uh,a . Now f agrees with the action of h on the
vertex u1,a , so by Lemma 2.9 it must act the same as h on the whole graph. 	

Lemma 6.5 Every defining relation sr ,k can be read around a closed path at every vertex in
�.

Proof Every vertex except those of the form vg by definition lies at the root of an attached
copy of S�(1), and hence certainly has the claimed property. For those of the form vg , we
can let s = r1 . . . rk−1 where r = r1 . . . r|r | and now we have a closed path

vg = v(gs−1)r1...rk−1

xrk−→ ug,rk

δr,k−−→ tgs−1,r
(δr,k−1)

−1

−−−−−−→ ugs−1r1...rk−2,rk−1

yk−→ vg.

(Fig. 10 below illustrates a possible example.) 	

Now let W be the set of all words over A of length 4 or less, and define

w =
n∏

x∈W

(x)(x)−1 ∈ M

noting that the order of the product is unimportant because the factors are idempotent, and
therefore commute. Our aim is to show that the Schützenberger graph S�(w) is isomorphic
to �.

Before proving S�(w) is isomorphic to � we give an example to illustrate the result.

Example 6.6 Let G be the finite cycle group Z3 or order three. Following the construction
outlined above we first write a special monoid presentation 〈A | R〉 for G where A = G\{1}
and R consists of all 2-letter and 3-letter words equal to 1 in G. So we have

〈A | R〉 = 〈a, b | aaa = 1, bbb = 1, ab = 1, ba = 1〉.
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Hence R = {r , t, u, v} where r = aaa, t = bbb, u = ab, v = ba. Then for this example the
definitions above give

X = {xa, xb}, Y = {ya, yb},
and

� = {δr ,1, δr ,2, δr ,3, δt,1, δt,2, δt,3, δu,1, δu,2, δv,1, δv,2}.
Then M is the special inverse monoid with generating set X ∪ Y ∪ � and the following
four-letter relations

{sq,k | q ∈ R, 1 ≤ k ≤ |q|}
which for this example gives the following ten words

sr ,1 = xr1δr ,1(δr ,3)
−1yr3 sr ,2 = xr2δr ,2(δr ,1)

−1yr1

sr ,3 = xr3δr ,3(δr ,2)
−1yr2 st,1 = xt1δt,1(δt,3)

−1yt3

st,2 = xt2δt,2(δt,1)
−1yt1 st,3 = xt3δt,3(δt,2)

−1yt2

su,1 = xu1δu,1(δu,2)
−1yu2 su,2 = xu2δu,2(δu,1)

−1yu1

sv,1 = xv1δv,1(δv,2)
−1yv2 sv,2 = xv2δv,2(δv,1)

−1yv1 .

Here r2 denotes the second letter in the word r ≡ aaa which is a, so xr2 = xa , and similarly
for the other symbols in the equations above. Now, as above, let W be the set of all words
over A of length 4 or less, and define

w =
n∏

x∈W

(x)(x)−1 ∈ M .

Below we shall prove that that the Schützenberger graph S�(w) is isomorphic to the graph
� defined above. Then by applying Lemma 6.4 it will follow that the automorphism group
of S�(w) is isomorphic to the group we started with, in this case the cyclic group of order
three.

A key part of the proof will be that for every relator word abc in the presentation of M
we can read the word abc = xa ya xb ybxc yc in S�(w) from every vertex. To illustrate the
idea for this example, consider the relation aaa = 1 in the presentation of G, that is, the
relation word r . In the presentation of the special inverse monoid M we have the following
three relator words

sr ,1 = xaδr ,1(δr ,3)
−1ya, sr ,2 = xaδr ,2(δr ,1)

−1ya, sr ,3 = xaδr ,3(δr ,2)
−1ya .

By definition aaa ∈ W and so w is a product of idempotent words with one of the factors of
that product being (xa ya xa ya xa ya)(xa ya xa ya xa ya)−1. In particular thismeans that in S�(w)

the word xa ya xa ya xa ya can be read from the root vertexww−1. This is a key difference with
S�(1) where the word xa ya xa ya xa ya cannot be read from the root. Now if we begin with
the path labelled by this word and carry out several steps of Stephen’s procedure we obtain
the graphs given in Figs. 9 and 10. We begin by attaching the relator words sr ,1, sr ,2 and
sr ,3 to the path xa ya xa ya xa ya as in the proof of Lemma 6.8 below to obtain the first graph
in Fig. 9. Then partially bi-determinising the first graph leads to the second graph in Fig. 9.
Then identifying the two edges labelled δr ,3 gives the graph in Fig. 10. In this graph (xa ya)3

can be read around a closed circuit based at the origin, so the same is true in S�(w). The
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Fig. 9 Two steps in the construction of S�(ww−1) in Example 6.6

Fig. 10 Illustrates both the third
step in the construction of
S�(ww−1) in Example 6.6, and
also an example case of
Lemma 6.5

general proof below that S�(w) is isomorphic to � uses this idea applied to all the relations
in the presentation based at every vertex in the Schützenberger graph.

Returning to the general proof, we shall prove that S�(w) is isomorphic to � by showing
that there are morphisms (preserving the root) between these graphs in both directions.

Lemma 6.7 There is a morphism of labelled directed graphs from S�(w) to �, mapping the
root to the root.

Proof We know that

(i) � is bi-deterministic;

123



   23 Page 24 of 32 R. D. Gray, M. Kambites

(ii) w can be read from the root in � (since every word of the form x for x ∈ A∗ can be);
and

(iii) by Lemma 6.5, every defining relation can be read around a closed path at every vertex
in �.

The result now follows from Lemma 2.10. 	

We now proceed to show that there is a morphism in the other direction.
For each relation r = abc let�r be the subgraph of� consisting of v1, va , vab, u1,a , ua,b,

uab,c, t1,r and all the edges between them. Similarly for r = ab let �r be the subgraph of �

consisting of v1, va , u1,a , ua,b and t1,r and edges between them.

Lemma 6.8 With M and w as above, if r = abc [respectively, r = ab] is a relation in R and
the word abc = xa ya xb ybxc yc [respectively, ab = xa ya xb yb] is readable at some vertex v

of S�(w), then there is a morphism from �r to S�(w) taking the root of �r to v.

Proof We prove the case for r of length 3, the length 2 case being very similar. Let v′
1 = v,

and let u′
1,a , v

′
a , u′

a,b, v
′
ab and u′

ab,c be the vertices reached in S�(w) on reading xa , xa ya ,
xa ya xb, xa ya xb yb and xa ya xb ybxc respectively from v. Certainly we can read the relators
sr ,1, sr ,2 and sr ,3 around closed cycles at v, v′

a and v′
ab respectively. The fact that the S�(w)

is bi-deterministic means that the vertices reached after reading the first two letters of each of
these cycles must be the same; call this vertex t1,r ′ . Now it is easy to verify that themap taking
each vertex x of �r to the vertex we have designated as x ′ in S�(w) must be a morphism. 	


We now introduce some more notation. Let z1 be the root vertex of S�(w), and for each
g ∈ A = G \ {1} let zg denote the vertex in S�(w) reached by reading xg yg from the root.

Lemma 6.9 Any path in S�(w) starting at the root and with label of the form a1 . . . an where
a1 . . . an = g in G ends at zg.

Proof The claim holds by definition when n = 0 and n = 1, so assume for induction that it
is true for k and consider a path from the root with label a1 . . . ak+1 which leads to a vertex v.
By the inductive hypothesis the prefix path labelled a1 . . . ak leads to zh where h = a1 . . . ak

in G. If h = 1 then ak+1 = g and there is a path from the root vertex z1 to v labelled ak+1,
so by the case n = 1 already established we have v = zak+1 = zg as required. So assume
from now on that h �= 1.

Now if g = 1 then hak+1 = 1 in G, so the two-letter word r = hak+1 is one of the
defining relators of G. By Lemma 6.8 there is a morphism from �r to S�(w), taking the
root to the root, so the path from the root labelled xh yh xak+1 yak+1 must be closed. But this
path ends at v, so we must have v = z1 = zg .

If g �= 1 then it follows from the definition ofw that hak+1(g−1) is readable from the root
in S�(w) where g−1 is the positive letter of A corresponding to the inverse in G of A, so
that hak+1(g−1) is a positive word over A. Now by definition we have hak+1g−1 = 1 in G,
so the three-letter word r = hak+1(g−1) is one of the defining relators of G. By Lemma 6.8
there is a morphism from �r to S�(w), taking the root to the root, so this path must be
closed. Moreover the word gg−1 is also a defining relator of G and gg−1 is also readable
from the root, and hence by Lemma 6.8 must be read around a closed path. Since the graph
is bi-deterministic, it follows that v = zg . 	

Lemma 6.10 The Schützenberger graph S�(w) is isomorphic to �.
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Proof By Lemma 6.7, there is a morphism from S�(w) to �, taking the root to the vertex
v1, so by Lemma 2.9 it will suffice to show that there is also a morphism from � to S�(w),
taking v1 to the root. We can define such a morphism as follows:

• Each vertex of the form vg is mapped to the vertex zg . (In particular, v1 is mapped to the
root vertex z1.)

• Each vertex of the form ug,a is mapped to the vertex at the end of the unique edge
labelled xa leaving zg; by the definition of w there is an edge in S�(w) from g to this
vertex labelled xa and by Lemma 6.9 and the fact that xg ygxa ya is readable from the
root, there is also an edge from this vertex to wga labelled ya .

• Each vertex of the form tg,r is mapped to the image of the vertex t1,r under the morphism
from �r to S�(w) which takes the root to zg; the existence of a morphism from �r

ensures that this vertex has edges leading to the correct images of vertices of the form
uh,a .

• Since S�(w) is a Schützenberger graph, for every vertex v in it there is a morphism from
S�(1) to S�(w) taking the root to v. Each attached copy of S�(1) in � is attached at
some vertex v on which we have already defined our map. We map the whole copy of
S�(1) to S�(w) by the morphism which takes the root to the appropriate vertex.

At each stage we have verified that the new vertices on which we define the map are sent to
vertices which have the required edges to the images of those vertices on which it is already
defined; thus, the given map on vertices can be extended to edges to give a morphism as
required. 	


Lemma 6.11 The monoid M is R1-injective.

Proof The maximal group image is given by the group presentation

K = Gp
〈
X ∪ Y ∪ � | sr ,k (r ∈ R, 1 ≤ k ≤ |r |)〉

where

sr ,k = xrk δr ,k(δr ,k−1)
−1yrk−1 ∈ X��−1Y

with indices interpreted modulo |r |. Our aim is to identify the group K by performing certain
Tietze transformations to simplify the presentation.

Fix r ∈ R where |r | = n and consider the set of relators sr ,k . We can eliminate δr ,1 and
the relator sr ,1 by rearranging the latter as

δr ,1 = x−1
r1 y−1

rn
δr ,n,

and substituting the right-hand-side in place of δr ,1 in sr ,2, which is the only other relation
in which δr ,1 appears. Then we may eliminate δr ,2 and sr ,2 using

δr ,2 = x−1
r2 y−1

r1 δr ,1 = x−1
r2 y−1

r1 x−1
r1 y−1

rn
δr ,n .

and appropriately modifying sr ,3. Continuing in this way once we have eliminated all of the
generators δr ,1, . . . , δr ,n−2 our original set of relations will be reduced just to the following
two relations

δr ,n−1 = x−1
rn−1

y−1
rn−2

x−1
rn−2

y−1
rn−3

. . . x−1
r2 y−1

r1 x−1
r1 y−1

rn
δr ,n

1 = x−1
rn

y−1
rn−1

δr ,n−1δ
−1
r ,n .
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Finally we eliminate δr ,n−1 using the first of these relations, and substituting into the second
we obtain the single relation

1 = x−1
rn

y−1
rn−1

x−1
rn−1

y−1
rn−2

x−1
rn−2

y−1
rn−3

. . . x−1
r2 y−1

r1 x−1
r1 y−1

rn
δr ,nδ−1

r ,n

= x−1
rn

y−1
rn−1

x−1
rn−1

y−1
rn−2

x−1
rn−2

y−1
rn−3

. . . x−1
r2 y−1

r1 x−1
r1 y−1

rn
.

By cyclically permuting we see that this relation can be replaced by the relation r = 1 where

r = r1 . . . r|r | = xr1 yr1 . . . xrn yrn .

Note that the generators δr ,1, . . . , δr ,n−1 were all eliminated using these Tietze transforma-
tions; the generator δr ,n was not eliminated but no longer features in any relations, and will
therefore generate a free factor.

For each r ∈ R define λr = δr ,|r | and set � = {λr | r ∈ R}. Repeating the above sets of
Tietze transformations for every r ∈ R we obtain the following presentation for the maximal
group image

K = Gp
〈
X ∪ Y ∪ � | r = 1 (r ∈ R)

〉 = FG(�) ∗ Gp
〈
X ∪ Y | r = 1 (r ∈ R)

〉

Now for each a ∈ A add a new redundant generator za and relation za = xa ya to the
presentation and set Z = {za | a ∈ A}. Since ya = xa

−1za we can then eliminate the
redundant generators {ya | a ∈ A} from the presentation giving

K ∼= FG(�) ∗ Gp
〈
X ∪ Z | r̃ = 1 (r ∈ R)

〉

∼= FG(� ∪ X) ∗ Gp
〈
A | R

〉 ∼= FG(� ∪ X) ∗ G

where for r = ai1 . . . aik we define r̃ = zai1
. . . zaik

.
We now move on to proving that the monoid M is R1-injective. By Proposition 2.8 the

submonoid R1 is generated as a monoid by the proper prefixes of the defining relators sr ,k .
Hence every element of R1 can be written as a product of the elements

xrk , y−1
rk

, xrk δr ,k

where r ∈ R, 1 ≤ k ≤ |r |. We compute the image of each of these generators in the maximal
group image:

K = Gp
〈
� ∪ X ∪ Z | r̃ = 1 for all r ∈ R

〉

where � = {λr = δr ,|r | | r ∈ R} and Z = {za = xa ya | a ∈ A}:
• The image of xrk is xrk .
• The image of y−1

rk
is z−1

rk
xrk .

• The image of xr|r |δr ,|r | is xr|r |λr .
• For r ∈ R and 1 ≤ k < |r | = n the image of xrk δr ,k is

xrk δr ,k = xrk x−1
rk

y−1
rk−1

x−1
rk−1

. . . y−1
r1 x−1

r1 y−1
rn

δr ,n

= y−1
rk−1

x−1
rk−1

. . . y−1
r1 x−1

r1 y−1
rn

δr ,n

= z−1
rk−1

. . . z−1
r1 z−1

rn
xrn δr ,n

= z−1
rk−1

. . . z−1
r1 z−1

r|r | xr|r |λr .

Recall that, due to the way in which we chose the original group presentation Gp
〈
A | R

〉
for

the finite group G, none of the generators a ∈ A is equal to the identity of G.

123



Subgroups of E-unitary and R1-injective… Page 27 of 32    23 

Moreover, all the defining relators are positive words over A. Finally, notice that no proper
subword of a defining relator is equal to 1 in G; indeed if it were then (since the relators are
all of length 2 or 3) this would imply that a single letter also equal to 1 in G, but we chose
our generating set to exclude the identity element.

To prove that the monoid isR1-injective we need in particular that all the elements in the
set

{
z−1

rk−1
. . . z−1

r1 z−1
r|r | xr|r |λr | r ∈ R, 1 ≤ k ≤ |r | − 1

}

are distinct in the group K . Because K admits a decomposition as FG(� ∪ X) ∗ G two
such elements can clearly only be equal in K if they correspond to the same relator r , in
other words, if they are z−1

ri−1
. . . z−1

r1 z−1
r|r | xr|r |λr and z−1

r j−1
. . . z−1

r1 z−1
r|r | xr|r |λr for the same r and

different i and j . Assuming without loss of generality that i > j and cancelling, we obtain
z−1

ri−1
. . . z−1

r j
= 1. Now again using the free product decomposition of K , it follows that

r j . . . ri−1 = 1 in G. But this contradicts the fact established above that no proper subword
of a defining relator in G is equal to 1 in G.

Next we claim that the submonoid of

K = FG(� ∪ X) ∗ Gp
〈
Z | r̃ = 1 (r ∈ R)

〉

generated by the set

Q = {xrk , z−1
rk

xrk , xr|r |λr | r ∈ R, 1 ≤ k ≤ |r |}
∪ {z−1

rk−1
. . . z−1

r1 z−1
r|r | xr|r |λr | r ∈ R, 1 ≤ k ≤ |r | − 1}

of all the images of all the prefixes of relators in the presentation of M is a free monoid
freely generated by these generators. These generators are all distinct by the argument above.
Now any product of these generators is in normal form with respect to the free product
decomposition

K = FG(� ∪ X) ∗ Gp
〈
Z | r̃ = 1 (r ∈ R)

〉 = FG(� ∪ X) ∗ G

From this together with the fact that every generator comes from the set G X�we can deduce
that the submonoid of K generated by Q is a free monoid with free generating set Q. Now,
by Proposition 2.8 the submonoid R1 is generated as a monoid by the proper prefixes of
the defining relators sr ,k . Thus given two distinct elements m and n of R1 they can each be
written as a product of the elements

xrk , y−1
rk

, xrk δr ,k

where r ∈ R, 1 ≤ k ≤ |r |. Since m �= n in the monoid these two products of prefixes must
be distinct as words over {xrk , y−1

rk
, xrk δr ,k}. This means that these products map to distinct

products over Q in K from which it follows that m and n map to distinct elements of K , as
the submonoid of K generated by Q is a free monoid with free generating set Q. 	

Notice that the argument in the proof of Lemma 6.11 actually shows that the submonoidR1

of right units of M is a free monoid of finite rank.
We now have all the ingredients needed to prove the main theorem of this section.

Proof of Theorem 6.1 For eachfinite groupG wehave constructed a special inversemonoid M
which isR1-injective (by Lemma 6.11), has trivial group of units (by Lemma 6.2), and has a
Schützenberger graph isomorphic (by Lemma 6.10) to the graph�, which has automorphism
group isomorphic to G (by Lemma 6.4). The result now follows from the fact that maximal
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subgroups of M are precisely the automorphism groups of the Schützenberger graphs [16,
Theorem 3.5].

Remark 6.12 The inverse monoids constructed in the proof of Theorem 6.1 are not in general
E-unitary. Indeed, let M be the inverse monoid constructed in Example 6.6. Two of the
relators in the presentation of that inverse monoid are

xaδr ,1(δr ,3)
−1ya = 1 and xaδr ,3(δr ,2)

−1ya = 1.

It follows that in the maximal group image K we have

xaδr ,1(δr ,3)
−1ya = xaδr ,3(δr ,2)

−1ya

from which it follows that δr ,1δ
−1
r ,3δr ,2δ

−1
r ,3 = 1 in K . Lemma 6.2(i) and points three and

four in Proposition 2.2 together show that every element of � is neither a left unit not
a right unit. Using this, it can then be shown by constructing the Schützenberger graph
S�(δr ,1δ

−1
r ,3δr ,2δ

−1
r ,3) (or alternatively by applying Theorem 7.4 below, which tells us that �

generates a free inverse submonoid of M) that the word δr ,1δ
−1
r ,3δr ,2δ

−1
r ,3 does not represent

an idempotent in M , so M is not E-unitary.
Variations of this argument show that the inverse monoids constructed in the proof of

Theorem 6.1 are never E-unitary. Indeed, if the finite group G has a pair of non-identity
elements g, h ∈ G such that gh �= 1 then a set R of defining relators for G contains distinct
relators gha and agh for some a, from which we obtain two distinct defining relators for M
which begin with xh and ending with yg , and apply a similar argument to that above. If G
does not have such a pair of elements then it must be isomorphic to Z2 or Z3. The case of
Z3 is exactly the above example, while in the case of Z2 the set R contains a relator for G of
the form aa, which yields two relators for M beginning xa and ending ya , to which a similar
argument can again be applied.

We do not know how to construct an E-unitary special inverse monoid with trivial group
of units and non-trivial maximal subgroups, or even just with a maximal subgroup which
does not embed into the group of units. We ask if this is possible.

Question 6.13 Do the maximal subgroups of an E-unitary special inverse monoid necessarily
embed into the group of units?

7 Generators which are not right or left units

In this final section we note the following rather surprising theorem, which allows us in
particular to easily construct examples of finitely presented special inverse monoids with
many different non-isomorphic maximal subgroups. Indeed it suggests that this kind of
behaviour is in some sense “the norm” for special inverse monoids! This contrasts sharply
with the case of special (non-inverse)monoids, where by a result ofMalheiro [13] allmaximal
subgroups lie in the D-class of 1 and therefore are necessarily isomorphic.

Theorem 7.1 Let M be a special inverse monoid defined by a presentation with a generator
which represents neither a left nor a right unit. Then M contains every finite subgroup of the
group of units as a maximal subgroup.
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Proof Choose a generator v which is neither a left nor a right unit. Let Q be a finite subgroup
of the group of units, say |Q| = k, and let u1, . . . , uk be words representing the elements of
Q. Consider the element

w =
k∏

i=1

uivv′u′
i ,

of M , noting that the order of the product is unimportant because the factors are idempotent
and therefore commute. We shall describe the Schützenberger graph S�(w).

By Stephen’s procedure (see Remark 2.1), it is easy to see that S�(w) can be obtained
by starting with S�(1), we shall call this the central subgraph and we shall denote it by C ,
and for each vertex corresponding to an element of Q, gluing on an edge leaving it labelled
v and a new copy of S�(1) rooted at the far end of the edge, and bi-determinising. We
claim that in fact this graph is already bi-deterministic, so that no bi-determinising is needed.
Indeed, clearly no folding can take place within the copies of S�(1) since S�(1) is already
bi-deterministic. The new v-edges cannot fold with each other because they do not share any
endpoints. It remains only to show that the new v-edges cannot fold into an edge in one of
the copies of S�(1). Notice that the new v-edges all connect at both ends into vertices of
S�(1) corresponding to elements of the group of units. If there was an existing v-edge in
S�(1) at one of these vertices for one of the new v-edges to fold into, it would therefore
follow that v is either a right unit or a left unit (depending on the orientation of the edge),
giving a contradiction.

Recall that each preblock P is a subgraph of S�(w) that is isomorphic to S�(1). Next we
claim that for every preblock P of S�(w) either P is contained in C or else P and C have
disjoint vertex sets. Indeed, let P be a preblock. Choose some root p of P . If p is contained
in C then since C is a copy of S�(1) in S�(w) it follows that P is entirely contained in C .
Now suppose p lies outside C . If P did intersect C then we could choose a path of minimal
possible length from a vertex in the intersection of C and P to p. By construction of the
graph, this path must be labelled by a word of the form vh where the v traverses a v-edge
from the Munn tree. By the construction of the graph, h labels a path starting at the root
inside a glued-on copy of S�(1), and hence is right invertible. On the other hand, vh labels
a path inside the preblock P ending at the root p of P , and hence both vh and h are left
invertible. But now conjugating vh by the unit h we again see that hv is left invertible and
thus v is left invertible, which is a contradiction. This completes the proof of the claim.

We say that a preblock P has property (*) if P is not contained in a preblock P ′ such that
P ′ has a v-edge coming into its root. From the previous paragraph, and the construction of
S�(w), it follows that every preblock P with property (*) must be contained in the central
subgraph C . We claim that the central subgraph C itself has property (*). Indeed, otherwise
C would be contained in some preblock P where P has a v-edge coming in. The root of P
must be in C by the claim in the previous paragraph. But this implies that P is contained in C
and thus P = C . If e is a v-edge coming into the root of P then from the structure of S�(w)

given in the second paragraph of the proof above, the initial vertex of e cannot be outside of
P = C , thus the edge e must be contained in P = C . But now the isomorphism from P to
the central subgraph C mapping the root p of P to the root of C (which exists because they
are both isomorphic to S�(1)) gives an automorphism of the central subgraph C taking p to
the root of C . But considering the image of the edge e under this automorphism, this implies
that the root of C has a v-edge coming into it, where that edge is contained in C . But C is
a copy of S�(1), so this means that in S�(1) there is a v-edge coming into the root. This
implies that v is left invertible, which is a contradiction.
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It follows from the previous paragraph that if we consider the collection all preblocks
P with property (*) ordered by subset inclusion then the central subgraph C is the unique
maximal element of this collection of preblocks. That in turn implies that automorphisms of
S�(w) must restrict to automorphisms of the central subgraph C . Now it is easy to see that
the automorphisms of S�(w) are exactly those automorphisms of the central subgraph which
fix the set of vertices corresponding to Q, in other words, the automorphisms corresponding
to elements of Q. Thus, the maximal subgroups in the D-class of w are isomorphic to Q as
required. 	

Remark 7.2 The proof of Theorem 7.1 is clearly reminiscent of our reasoning with blocks
in the R1-injective case above; indeed the similarity is our reason for including the result in
this article, the main focus of which is otherwise on the R1-injective case. Since we are not
here assuming R1-injectivity we do not have access to the machinery above to guarantee a
block decomposition for every Schützenberger graph, but it just so happens that the particular
Schützenberger graph S�(w) constructed in the proof does have a block decomposition.

As a consequence of Theorem 7.1 we obtain the following corollary, which is a very slight
strengthening (because the free inverse monoid has rank 1, rather than 2) of a result which
was established by other means in our recent work [2, Corollary 5.11].

Corollary 7.3 There exists an E-unitary finitely presented special inverse monoid, which is
the free product of a group and a free inverse monoid of rank 1 and which has every finite
group as a maximal subgroup.

Proof Take a finitely presented groupG having every finite group as a subgroup (for example,
Higman’s universal group, which contains every finitely presented group [10, Theorem 7.3]),
and consider the inverse monoid free product of G with a free inverse monoid of rank one.
That themonoid is E-unitary follows easily from the fact that groups and free inversemonoids
are both E-unitary. The result now follows from Theorem 7.1. 	


Our final result gives sufficient conditions for a subset of generators to generate a free
inverse monoid.

Theorem 7.4 Let M = 〈
X | R

〉
be a special inverse monoid and let A be a subset of X

containing neither left nor right units. Then the inverse submonoid of M generated by A is
isomorphic to the free inverse monoid on A.

Proof Consider two words u and w over A±1 that are not equal in the free inverse monoid
on A. Let �u and �w be their Munn trees, that is, the graphs obtained by bi-determinising
the lines labelled by u and v respectively. The Schützenberger graph S�(u) [respectively,
S�(w)] is obtained by attaching copies of S�(1) to every vertex of �u [respectively, �w]
and bi-determinising. By Proposition 2.2, the fact that no element of A is a left or a right unit
means that the root vertex of S�(1) is not incident with any edges labelled by letter in A. It
follows that the graph given by attaching a copy of S�(1) to each vertex of �u [respectively,
�w] is already bi-determinised and hence is already equal to S�(u) [respectively, S�(w)].

Now if the Munn trees �u and �w are not isomorphic as rooted graphs then (by swapping
u and w if necessary) we may assume without loss of generality that �u does not embed into
�w as a rooted subgraph. It follows that u cannot be read from the root in �w. Since by the
previous paragraph S�(w) is obtained from �w by attaching graphs which have no edges
from A incident with the root, it follows that u also cannot be read from the root of S�(w)

and thus u. Hence, u and w are not R-related in M and thus not equal in M .
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The remaining case is that �u and �w are isomorphic as rooted graphs. In this case, since
u �= w in the free inverse monoid it follows that reading w from the root in �u leads to a
different terminal vertex than reading u in �u . Since by the previous paragraph �u embeds
in S�(u), it follows that uu−1u �= uu−1w in M and thus u �= w in M .

It follows that the natural homomorphism from the free inverse monoid on A to M is
injective, as required. 	
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