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Abstract 
Taxonomic annotation is a substantial challenge for Archaea metabarcoding. A limited number of reference sequences are available; a 
substantial fraction of phylogenetic diversity is not fully characterized; widely used databases do not reflect current archaeal taxonomy 
and contain mislabelled sequences. We address these gaps with a systematic and tractable approach based around the Genome 
Taxonomy Database (GTDB) combined with the eukaryote PR2 and MIDORI mitochondrial databases. After removing incongruent, 
chimeric and duplicate SSU sequences, this combination (GTDB+) provides a small improvement in annotation of a set of estuarine 
Archaea Operational Taxonomic Units (OTUs) compared to SILVA. We add to this a collection of near full length rRNA sequences and the 
prokaryote SSU sequences in SILVA, creating a new reference database, KSGP (Karst, Silva, GTDB, and PR2). The additional sequences 
are (re-)annotated using three different approaches. The most conservative, using lowest common ancestor, gives a further small 
improvement. Annotation using SINTAX increases Class and Order assignments by 2.7 and 4.2 times o ver SILVA, although this may
include some “lumping” of un-named and named clades. Still further improvement can be made using similarity based clustering to
group database sequences into putative taxa at all taxonomic levels, assigning 60% and 41% of Archaea OTUs to putative family and
genus level taxa respectively. GTDB without cleaning and GreenGenes2 both perform poorly and cannot be recommended for use with
Archaea. We make the GTDB+ and KSGP databases available at ksgp.earlham.ac.uk; integrate them into a metabarcoding pipeline, 
LotuS2 and outline their use to a nnotate Archaea OTUs and metatranscriptomic data.
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Introduction 
Archaea were initially viewed as extremophiles, but are now 
recognized as ubiquitous, diverse and sometimes common in 
benign en vironments, carrying out important biogeochemical
processes including methanogenesis and nitrification [1–5]. How-
ever metabarcoding methods for Archaea, particularly taxonomic 
annotation, are not as well established as for bacteria [6, 7]. 
Important reference databases such as SILVA [8], Greengenes 
[9, 10], and RDP [11] contain archaeal sequences in much lower 
numbers than bacteria. These are often incompletely annotated 
and archaeal taxonomy lags behind the much more well-defined
bacterial taxonomy [12, 13]. NCBI RefSeq reference small subunit 
(SSU) sequences suffer from taxonomic mis-annotations [14]  and  
Edgar [15] estimated that ∼17% of taxonomic annotations in SILVA 
and Greengenes are incorrect. It is unlikely that annotations for 
the much less well studied Archaea will be more reliable than 
this average. In addition, there is substantial discordance between
archaeal phylogeny and NCBI taxonomy [13] and “universal” 16S 
rRNA gene primers are often biassed against Archaea, especially 
newly discovered, lineages [7, 16, 17]. 

A route to improve this is provided by the standardized 
archaeal phylogeny and taxonomy constructed from conserved 
single copy mark er genes in the prokaryote Genome Taxonomy
Data Base [hereafter GTDB; [13, 18]]. This assigns all available 
Archaea genomes, including metagenomic assembled genomes 
(MAGs), to “species clusters” and normalizes taxonomic ranks 
from genus to phylum based on coding gene sequence divergence. 
16S rRNA gene sequences have been identified in genomes,
but were not used in phylogeny reconstruction [13]. Here we 
demonstrate that after removal of contaminant and chimeric 
16S rRNA sequences, GTDB can be used both on its own and in 
conjunction with collections of near full length SSU sequences
and PCR amplicons to obtain improved and consistent taxonomic
annotations of Archaea sequences from both metabarcoding and
RNASeq.

Materials and methods
The methods described are those used to generate version 3.1 of 
KSGP and GTDB+. Grant et al. [19] give details of methods used to 
generate version 1.0.

Databases used 
Results are based on GTDB version 220.0; the Sativa subset of 
GTDB release 207 [20, hereafter Sativa]; SILVA version 138.1 [20]; 
Greengenes 13.5 [10] Greengenes2 2022.10 [21]; MIDORI2 GB259, 
using the longest sequence for each species [22] and PR2 5.0.0
[23, 24]. 

Cleaning the GTDB 16S rRNA sequence database
Initial analyses of GTDB indicated the presence of Archaea 
annotated as Bacteria and vice versa and contamination 
with Eukaryote 18S, plastid and mitochondrial sequences. The 
Greengenes2 backbone and SATIVA are subsets of GTDB produced 
b y removal of misclassified sequences, but their tree-based
methods require removal of short and low quality sequences
[21, 25]. To allow inclusion of GTDB sequences that are short or 
contain gaps, we used the Ribotyper tool of Ribovore 1.0.2 [26] 
to identify sequences as SSU or LSU (large subunit) and assign 
to major taxonomic categories. Eukaryote and LSU sequences 
and Prokaryote SSU sequences not matching the correct domain 
were r emoved. This was followed by two iterations of RDPtools

2.0.3 Loot (leave one out) (https://github.com/rdpstaff/RDPTools) 
firstly to remove sequences incorrectly assigned at Domain level, 
then at Domain, Phylum or Class level followe d by elimination of
duplicate sequences with the rm dupseq command of RDPtools.

PCR primers targeting archaeal SSU can amplify eukaryote 
sequences (AG, personal observation; and see results), so tax-
onomic databases must cover the range of eukaryote diversity 
likely to be present. Without this, eukaryote sequences can be
incorrectly identified as highly divergent Archaea. We use eukary-
ote 18S and plastid sequences from the PR2 database [24]  and  
mitochondrial sequences from MIDORI2 [22] after removing mis-
classified sequences using Ribotyper and a number of chimeric
plastid sequences (see supplementary methods, and Table S1). We 
use GTDB+ as shorthand for the cleaned and deduplicated GTDB 
sequences concatenated with these PR2 and MIDORI2 sequences.

Annotating the Karst et al. and SILV A archaea
and bacteria sequences
Karst et al. [17, ENA accession GCA 900214305] provide an unan-
notated collection of >1 million sequences longer than 1200 bp 
consisting primarily of bacterial, archaeal and eukaryote SSU 
rRNA (hereafter KARST). 101 537 were identified as LSU by Ribo-
typer and removed. Sequences annotated as bacteria and archaea
were extracted from the Ref NR99 SILVA SSU database [20]. We 
refer to the combined database of GTDB+ and the (re)annotated 
Karst and SILVA sequences as KSGP (Karst, Silva, GTDB, and
PR2).

Taxonomic assignments of these were made using GTDB+ 
combined with three different approaches. The most conservative 
(KSGP LCA) used lowest common ancestor (LCA) assignments 
with USEARCH local matches to GTDB+ (minimum identity 75%; 
gap extension penalties 10 internal, 0 external; minimum query 
coverage of 25%, maxaccepts 100 maxrejects 200) and LCA v0.24
of LotuS2 with default parameters. The next most conservative
(KSGP Sintax) carries out taxonomic assignments using SINTAX
[27] with a probability cut-off of 80%. SINTAX is a high accuracy
classifier [28] which is more tolerant of database sequences of 
varying lengths than a pproaches based on phylogenetic tree con-
struction.

Finally (KSGP+), all sequences in KSGP were clustered at 98.5% 
similarity using the UClust algorithm of USEARCH after sorting by 
sequence length. Each cluster groups together sequences falling 
within a hypersphere with a radius of 1.5% divergence from its 
centroid, approximating a diameter of 3% divergence and 97% 
a verage nucleotide identity (ANI). This definition of a “species”
is incorporated into LotuS2, but is not intended as indicating
the “correct” similarity threshold to define prokaryote “species”
[c.f. [29]]. These “species” were then clustered hierarchically at 
“genus”, “family”, “order”, “class”, “phylum”, and “kingdom” level 
using cluster radii of 2.5%; 3.5%; 4.5%; 6%; 11%, and 12.5%, approx-
imating 95%; 93%; 91%; 88%; 78%, and 75% ANI, respectively. Each 
group at each taxonomic level is characterized by the longest 
sequence in that cluster. Karst and SILVA sequences were allo-
cated to these putative taxa at levels where the LCA algorithm 
was unable to resolve taxonomy. Every database sequence then 
has a full set of taxonomic assignments from phylum to species 
level. These will be GTDB taxa where LCA yields a robust result 
and the sequence identifier of a cluster centroid where it does not.
Database sequences which match an OTU at the same sequence
similarity may have annotations which move from GTDB taxo-
nomic categories to putative taxon clusters at different taxonomic
levels, causing most LCA algorithms to stop classifying at this
point even if the retrieved database matches are assigned to
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the same taxa at levels below this point. So KSGP+ must only 
be used with annotation algorithms based on the single best 
database match. An OTU is not assigned to a putative or GTDB 
taxon at a particular level if the nearest database match is below 
the same sequence identity threshold for that taxonomic level 
used in the LCA analysis in LotuS2 and indicated by the sym-
bol “?” in output. This enables the user to readily see which 
elements of a taxonomic assignment are based on matches to 
GTDB; which ar e based on similarity to database sequences from
taxa that are either undescribed or are not yet represented in
GTDB; and which represent novel phylogenetic diversity not yet
present in the databases being used. Subsequent references to
SILVA are to version 138.1 of Ref NR99 SILVA SSU with its original
annotations.

Example metabarcoding and metatranscriptomic 
data sets
Archaea metabarcoding and RNASeq data were generated using 
DNA and RNA extracted from estuarine sediments along a metal
pollution gradient [30]. 

Sample collection, DNA & RN A extraction
DNA and RNA were extracted from 1.4–2.7 g of 45 intertidal sedi-
ments [locations in 30] using the RNeasy PowerSoil Total RNA kit 
and DNA elution accessory kit (Qiagen, Hilden, Germany) follow-
ing an optimized version of the manufacturer’s instructions with 
an added heat block step (45◦C for 15 min) prior to the solution 
being ad ded to the column. Nucleic acids were quantified using
Invitrogen Qubit RNA and dsDNA broad range kits (ThermoFisher,
Loughborough, UK) measuring fluorescence with either a qPCR
machine or a Qubit 4 fluorimeter.

PCR and sequencing
PCR amplification was carried out using the SSU1ArF/SSU520R
primer pair [7] with Illumina sequencing adapters, barcodes and 
length heterogeneity spacers appended to their 5′ ends [following 
[31]]. Cycling parameters were an initial denaturation at 98◦C 
for 10 min, followed by 35 cycles of denaturation at 98◦C  for  
30s; annealing at 50◦C 30s; extension at 72◦C for 30s and a final 
extension at 72◦C for 5 min. Sequencing was carried out using 
a single Illumina Novaseq SP flow cell with 250 bp paired end
reads, in combination with PCR generated libraries for amplicons
of similar length for several other target genes from the same
sites.

Total RNA library prep and sequencing
Sequencing libraries were prepared from total RNA using a Corall 
total RNA-seq library preparation kit (Lexogen, Vienna, Austria) 
following the manufacturer’s instructions. Sequencing was car -
ried out using a single Illumina MiSeq nano flow cell, with 250 bp
paired end reads.

Bioinformatics 
The bulk of analyses were carried out using the LotuS2 pipeline
[32]. Analysis of sequence data, including OTU and tree con-
struction and taxonomic annotation with an individual database, 
required a single command and was completed i n under 2 h on
a 64 core Intel Xeon computer. Sequences were demultiplexed
and cleaned [33, 34]; OTUs were clustered at 97% similarity using
UPARSE [35]; zero radius OTUs (zOTUs) were identified using
UNoise [36] and reads mapped to OTUs/zO TUs using Minimap2
[37]. Database coverage was assessed by finding the best single 
match to each OTU using the UBLAST option of USEARCH ([38], 

with an E-value of 0.05) in SILVA, Greengenes, Greengenes2, GTDB, 
SATIVA, KARST and KSGP. Matches in the NCBI nt database as 
at 29 April 2024 were found using the BlastN executable version
2.14.0 [39] with an E-value cut-off of 0.05 and a query coverage 
cut-off of 50%. Database coverage was visualized by plotting 
sequence similarities of the best match in descending o rder;
coverage of pairs of databases was compared using scatter plots
of these similarities with density contours superimposed.

Taxonomic assignments from species to phylum were car-
ried out using USEARCH local searches against the SILVA, GG2, 
GTDB+, and KSGP databases followed by LCA v0.24 within LotuS2, 
using default parameters. Best matches for individual RNAseq 
reads in KSGP wer e found using USEARCH local with an identity
cut-off of ≥0.75 and minimum query coverage of 0.3 (equivalent
to a 75 bp match).

Data handling, graph plotting and statistical analyses were 
carried out using R version 4.4.1 and the Phyloseq, ggplot2 and
ggtree libraries [40–43]. Subsetting and interconversion of fasta 
and fastq files was carried out using SeqKit [44]. Sequencing reads 
are deposited at ENA (project accession PRJEB65254). Scripts used 
to generate the database and graphs are available at https:// 
github.com/AGrantUEA/KSGP 

Results 
Congruence of 16S rRNA sequences with GTDB 
taxonomy based on coding genes
Ribotyper identifies 210 of 10 186 “Archaea” sequences in GTDB 
as bacterial in origin, often representing contamination of MAGs 
with 16S rRNA sequences from co-occurring organisms. In addi-
tion, some “Bacteria” sequences in GTDB are assigned to Archaea 
or eukaryotes, including plastids and mitochondria. After remov-
ing LSU and bacterial and archaeal SSU sequences misclassi-
fied at domain, phylum or class level and deduplicating the
remainder, 178 348 unique sequences remain (further details in
supplementary materials).

Sequencing success and O TU construction
20 million sequences were used for OTU construction. UNoise 
generated 25 188 zero radius OTUs (zOTUs), compared with 15 179 
OTUs generated by UPARSE. Around 52% of zOTUs were 100% 
identical to individual UPARSE OTUs, whilst 94% had at least 97% 
sequence similarity. The most abundant three OTUs represented 
11%, 6%, and 5% of a ssigned reads, whilst the comparable figures
for zOTUs were between 0.83% and 0.7%. Below we use OTUs, but
recognize ASVs/zOTUs may be preferred for some purposes (see
Box 1). 

Box 1 A recommended strategy to annotate 
Ar chaea OTUs.

Based on the analyses presented above, we recommend 
the following approach to the analysis and taxonomic 
annotation of archaeal metabarcoding data:

1. Use UPARSE (or another similar approach) to generate 
0.97 similarity radius OTUs, unless there are a priori 
re asons for focussing on strain-level patterns and using
ASVs/zOTUs.

2. The taxonomic database used must cover eukaryotes 
and bacteria to distinguish OTUs from these domains
from divergent archaeal sequences.
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3. Examine the extent to which GTDB+, KSGP (and SILVA 
if desired) cover the phylogenetic div ersity represented 
using the approaches in Figs 1 and 2. 

4. Use KSGP LCA (or GTDB+) to carry out conservativ e 
assignments to the GTDB taxonomy.

5. Use KSGP to provide more comprehensive taxonomic 
assignments based on environmental SSU sequences 
annotated with the GTDB taxonomy, recognizing that 
assignments that are substantially better than those 
using GTDB alone should be prefaced by c.f. and that 
phyla, classes and orders that are not resolved in this 
process may represent undescribed taxa, which can be
investigated further using the options below.

6. For many users, the phylum level assignments from 
either (4) or (5) and removal of un-classified and non-
archaeal sequences will be all that is required.

Additional options. 

a) Examine OTUs without database matches, carry out 
NCBI nt searches on the commonest and compare ML 
trees with and without these OTUs. If substantial num-
bers of common (low numbered) O TUs do not have 
database matches, these should be examined in mor e
detail to understand what they represent.

b) Use KSGP+ to assign OTUs to GTDB taxa where possible 
and to unnamed putative taxa at levels where it is not. 
The cluster centroids provide a relatively long sequence 
for more detailed characterization of these putative 
taxa, including Blast searches against NCBI nt; place-
ment of the taxon on an SSU based phylogenetic tree or 
design of probes to facilitate isolation and sequencing of 
individual cells using approaches such as fluorescence-
activated cell sorting [60]. 

c) Total RNAseq using short reads provides estimates of 
the relative abundance of taxa without PCR bias so is 
a very valuable addition to metabarcoding. Long rRNA 
sequences obtained using a linked read approach simi-
lar to that used by Karst et al. or PacBio reads of cDNA 
prepared from total RNA would facilitate the approach
that we have used here for environments where equiv-
alent data to Karst et al. are not available.

Database covera ge
We can view OTUs as scattered throughout a hypervolume. For 
a particular search radius, the number of OTUs with a database 
match indicates the proportion of the hypervolume covered by 
the database. This proportion varies between 75.3% and 77.3%
for the Greengenes, Greengenes2, GTDB+, SILVA, KARST and KSGP
databases, with a slightly higher proportion for NCBI nt (Table 1). 
OTUs without a match could represent uncharacterized phylo-
genetic diversity or PCR/sequencing artefacts. The number of 
unique reference sequences that are the closest match to an 
OTU indicates how densely database sequences are distributed
within this hypervolume, varying from 618 for Greengenes2 to
4536 in KARST and 4624 in KSGP (Table 1). Matches in NCBI nt 
fall between these extremes, with 2947 unique accessions. Cumu-
lative plots of similarities to the closest match (Fig. 1) provide 
more detail on proximity of matches. SILVA has more matches at 
high similarity (>90%) than GTDB+, but  GTDB+ performs slightly 
better at lower similarities indicating that it captures a greater 

proportion of overall phylogenetic diversity. If phylogenetic cov-
erage were uniform, the number of unique reference sequences 
should be greater for larger databases. However, this is lowest 
for the largest database, Greengenes2, presumably resulting from
stringent pruning of GTDB during the construction of the Green-
genes2 backbone. There are many more high similarity matches in
the >1 million sequences provided by Karst et al. [17, black line in
Fig. 1] than in NCBI nt (purple), with the full KSGP database (blue) 
performing only slightly better than this. Karst et al. [17]  report  
that their data contains 61 266 archaeal sequences, which cluster 
into 3410 OTUs at 97% similarity, but note that many of these have 
relatively low similarity to previously detected SSU sequences. 
The bulk of these novel sequences are from “sediments” (seven 
estuarine and marine and five freshwater). Inclusion in KSGP of 
the KARST sequences means that KSGP provides much better 
coverage than all other databases with the exception of a small
number of OTUs which have a match only in NCBI nt. The SATIVA,
Greengenes and Greengenes2 databases perform more poorly
than either GTDB+ or SILVA.

When plotted by cumulative sequence abundance rather than 
OTU rank order (blue dotted lines in Fig. 1), over 95% of individual 
Archaea sequences have a match in KSGP at >90% similarity, 
showing that common OTUs are more likely to be successfully 
annotated than rare ones. By contrast, bacterial OTUs from the
same sediments almost all have matches in GTDB+ at higher
sequence similarity than do Archaea (Fig. 1, red dashed line), illus-
trating our much greater understanding of bacterial ph ylogenetic
diversity.

Figure 2 provides more detailed comparison of taxonomic cov-
erage between the GTDB+ and both SILVA and K SGP. The modal
similarity with GTDB+ is 85% (Fig. 2A) and that for SILVA a little 
lower, although SILVA also contains more high similarity matches
than GTDB+ (Fig. 2B). Similarities with KSGP have modes at 95% 
and ≥ 99%, showing that the KARST sequences match a sub-
stantial fraction of the phylogenetic diversity in our samples at 
family/genus and species level respectively and suggesting that 
the SSU1ArF/SSU520R primer pair successfully amplif ies a wider
range of phylogenetic diversity than do older PCR primers used
to amplify many environmental Archaea sequences present in
SILVA.

OTUs without database ma tches
Of 15 179 OTUs, 22.8% (3456) did not have matches in KSGP. Of the 
remainder, 11 450 (75.4%) are identified as Archaea using KSGP 
Sintax, 1.7% are eukaryotes, including the 51st most abundant 
OTU and 13 of the 1000 commonest and 0.1% did not have their 
domain resolved. OTUs without database matches could repre-
sent novel phylogenetic diversity; organisms other than Archaea
and/or sequencing/PCR artefacts. The great majority are rare
and none are within the most common 1000 OTUs. The bulk
are located on long branches of the maximum likelihood tree
(Fig. 3A), forming a large group just below the centre and had only 
short (20–30 bp) matches in NCBI nt, suggesting they represent 
sequencing errors or PCR artefacts. Removing these O TUs shifts
the cumulative similarity curves rightwards, but has little impact
on their relative positions (Fig. 1B). 

Archaea taxonomic annotation performance of
KSGP
Excluding OTUs without a database match eliminated almost all
long branches (Fig. 3B). The number of OTUs identified as Archaea 
was similar for KSGP Sintax, KSGP+,  KSGP LCA, GTDB+, and

D
ow

nloaded from
 https://academ

ic.oup.com
/ism

ecom
m

un/article/5/1/ycaf094/8155774 by 93000 user on 30 June 2025



Improved taxonomic annotation of Archaea | 5

Table 1. Coverage of Archaea OTUs by the different databases as indicated by the percentage of OTUs for which a Blast match was 
found and the number of unique accessions in the database represented amongst these hits.

Database Percentage of OTUs with 
a Blast hit

Number of unique accessions with 
highest similarity to an OTU

KSGP 77.3 4962 
KARST 77.1 4536 
NCBI nt 78.8 2587 
SILVA 77.1 1571 
Greengenes 75.3 1134 
GTDB+ 77.2 1017 
SATIVA subset of GTDB 76.3 666 
Greengenes2 76.5 618 

Figure 1. Database coverages. (A) Percentage similarity of all individual OTUs to best hit in Greengenes2, GTDB+, NCBI nt, and KSGP sorted in 
descending order and plotted against cumulative OTU rank (solid lines) or cumulative OTU abundance (dotted lines). Similarities for bacterial OTUs 
from the same environment ar e plotted for comparison (brown dashed line). (B) Comparable plot of sequence similarities after excluding unclassified 
OTUs. Details as (A) plus Greengenes, sativa, SILVA, and Karst databases.

SILVA. Using KSGP Sintax, 98.0% of KSGP Archaea were assigned 
to ph ylum, 85.3% to class and 66.1% to order (Fig. 4A). Using SILVA, 
only 94.6% were assigned to phylum with substantially lower 
proportions for taxonomic levels below this (by a factor of 2.7 for 
Class and 4.2 for Order). This reflects the presence in KSGP of 
many mor e high similarity matches than GTDB, particularly for
Altiarcheota, Iainarcheota, Nanoarcheota, and OTUs not assigned
to a phylum (Fig. 4B). When GTDB was used without database 
cleansing, only 91% of OTUs could be classified at Phylum level 
and this figure reduced to only 75% for the GreenGenes2 database, 
with taxonomy not resolved at Domain level for 12% and 6%
misclassified as bacteria.

KSGP LCA assigns 99% of OTUs to phyla, but performs only a 
little better than GTDB+ at lower taxonomic levels, so some of 
the improvement obtained using KSGP may reflect assignment 
of OTUs from unnamed lineages to the nearest named taxon at 
the same level. KSGP+ achieves higher classification success at all
taxonomic levels, including 60 and 41% at family and genus level
(Fig. 4A). These clusters are likely to represent phylogenetically 
distinct uncharacterized lineages, as noted by Karst et al. [17]. For 
example, 19 OTUs are assigned to a phylum level cluster and 95 
to a class level cluster, with OBEP011221528 and OBEP011253457
from the Karst et al. data as their respective centroids.

For OTUs not assigned to phylum using KSGP, the median 
sequence similarity of the nearest match increases from well 
below the 88% threshold for classification at Class level using 
GTDB+ to around the 93% threshold for assignment to families 
using KSGP. The level of annotation success for an individual 
OTU depends upon both the sequence similarity of the near-
est matches and the level to which these matches are anno-
tated. Although SILVA has a greater number of high-similarity
matches than GTDB+, many of these have limited taxonomic
information. By contrast, all sequences in GTDB are annotated
to species level and as a result, LCA analysis based on GTDB+
has a slightly higher success rate than that based on SILVA
(Fig. 4A). 

We examine the taxonomic assignments of our two com-
monest OTUs to illustrate what lies behind these improvements. 
Within GTDB+, our most abundant OTU has 100% sequence sim-
ilarity with four Nitrosopumilus species, and is placed in this genus 
using GTDB, KSGP and KSGP+. The second OTU has 92% sequence 
similarity to a species of Thermoproteota (Bathyarchaeum)  in  
GTDB+ and is assigned to order Bathyarchaeales on this basis.
It assigned to family Bathyarchaeacea using KSGP Sintax on the
basis of 97% similarity to 7 sequences in this family. KSGP+
assigns it to putative genus and species centred on the longest
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Figure 2. (A) Similarity of the best match in KSGP (y-axis) against similarity of the best match in GTDB+ (x-axis). The scatter diagram has density 
contours superimposed (blue), with marginal histograms depicting density of matches against single databases. Straight line (black) indicates identical 
similarity in both databases; curved green line is loess fit to the data. (B) Best matches in SILVA (y-axis) plotted against those in GTDB+. Other details
as (A).

Figure 3. (A) Maximum likelihood tree of all OTUs classified at domain level. “Unresolved by LCA” do have matches in KSGP, whilst “No hits” do not 
and are likely to be PCR artefacts (see text). (B) Maximum likelihood tree after removing OTUs without a database match (“No hits” Fig. 1A)  or  
identified as eukaryotes. The five dominant phyla are indicated. Other phyla are grouped together (blue) and archaea where taxonomy is not resolved 
at phylum level by LC A are indicated in pink.

of these, a near full length 16S rRNA sequence (EU420690, from a 
coastal wetland) to which it has 97.3% similarity.

KARST also includes information on the environment from 
which each sequence was retrieved. The great majority of our 
OTUs have a closest match to a sequence from sediments and 
45% of these are from one sample sd04, a muddy sediment 
from Limfjorden, Denmark. The great majority of their archaeal 
sequences are from sediments and the largest number of these 
are from sample sd04. However, when standardized for database 
coverage our OTU sequences show significantly more matches

than expected with many of Karst et al.’s (2018) marine sediment
samples, including sd04, and significantly fewer matches with
freshwater sediments and an anaerobic digestor. Surprisingly, an
estuarine sediment (sd10) also has significantly fewer matches.

In our metabarcoding data, 79.8% of archaeal OTUs are 
assigned to the phylum Nanoarchaeota (Fig. 5), 70.7% to class 
Nanoarchaeia and 47.9% to order Woesearcheales. However, the 
relative abundance of these OTUs is lower than for those in o ther
phyla, so Thermoproteota and Thermoplasmatota make up a
greater proportion of sequences (Fig. 5).
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Figure 4. Taxonomic assignments. (A) Percentages of archaeal OTUs with taxonomic assignment at levels from phylum to family based on four 
different databases—KSGP, GTDB+, and SILVA. In addition to the standard version of KSGP, results are presented for KSGP+ (dot/dash blue line) and 
the LCA annotated version of the KSGP database (dotted blue line). (B) Box plot of sequence similarities to closest match to individual OTUs in GTDB+ 
(yellow) and KSGP (green), broken down by archaea phylum as assigned using KSGP. Blue dotted and red dashed lines indicate 91% and 88% sequence 
similarity, the cut-offs used within LotuS2 for order and class level assignments respectively. Phyla with fewer than 10 OTUs are excluded.

Figure 5. Phylum assignments of archaeal sequences from estuarine sediment samples using KSGP, after excluding eukaryotes, bacteria and OTUs 
without a database match. Columns are metabarcoding data annotated by proportion of OTUs and proportion of reads, both of which are subject to 
PCR primer bias , and proportion of RNAseq reads.

RNASeq results 
We obtained 537 330 RNA reads. Ribosomal depletion was not 
used, so most represent rRNA, predominantly SSU and LSU in
approximately equal numbers [45]. Archaea make up a rather 
small proportion of annotated reads (436) compared to bacterial 
(189309) and eukaryotic (80678) SSU sequences. In relative terms,
∼0.23% of prokaryote SSU sequences and 0.16% of annotated 
sequences were of archaeal origin, lower than the 0.5% of all
SSU sequences previously reported for soil [45]; the 0.8% of all 
PCR amplicons for boreal lakes [46]; the 4% of prokaryote RNA 
sequences in Karst et al. [calculated from data in 17]  or  the  8%  of  
rRNA genes in oceanic plankton samples [47]. Thermoplasmatota 
make up a similar proportion of reads in the RNASeq data and 
metabarcoding sequences, but Nanoarc haeota are less abundant
whilst Asgardarchaeota are more common (Fig. 5). 

Discussion 
Curated reference databases play a crucial role in metabarcoding 
and metatranscriptomics but there are significant shortcomings 
with current taxonomic databases for Archaea. After removing 
PCR artefacts, only 37% of our Archaea OTUs had a match in SILVA 
at >88% sequence similarity expected within a Class. In addition, 
many of the sequences in SILVA and other databases are relatively 
poorly annotated because phylogenetic tree construction can be 
a significant challenge if only a partial 16S rRNA sequence is 
available. Similarities with GTDB+ are a little higher and all GTDB
sequences have a full taxonomic annotation based on coding
genes so both taxonomies and phylogenies will be more robust
than those based on 16S rRNA genes only, although the 16S rRNA
genes in GTDB require database cleansing before use (see the next
paragraph). Further, GTDB is being regularly updated, whereas
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the most recent full release of SILVA dates from 2019 (https:// 
www.arb-silva.de/) and at the time of writing the RDP w ebsite is
no longer operational (http://rdp.cme.msu.edu/). Greengenes was 
last updated in 2019, although has been superseded by Green-
genes2 (https://greengenes2.ucsd.edu/) in 2023. For all these rea-
sons, GTDB offers a more future proof basis for taxonomies and 
phylogenies, but fully realizing this potential will require genome 
sequence data from representatives of clades that are currently
poorly characterized.

Processing of genomes by GTDB includes checks for contam-
ination in the coding genes used for phylogeny reconstruction
[48] but not in the associated SSU sequences. As a result, a num-
ber of GTDB SSU sequences are not congruent with their GTDB 
classification, some at domain level. Without polishing to remove 
these, 5% of archaeal O TUs could not be assigned to a domain and
a further 4% were not assigned to phyla. GreenGenes2 and The
SATIVA subset of GTDB [20] remove misclassified sequences but 
their use of tree-based methods requires exclusion of sequences 
that are short or contain ambiguities and removes many archaeal 
MAGs. In consequence SATIVA and GreenGenes2 had a substan-
tially poorer coverage of our OTUs, reducing the success of tax-
onomic assignments, with GreenGenes2 performing particularly 
poorly. So Greengenes2, Sativa and an unmodified GTDB cannot
be recommended as taxonomic references for metabarcoding or
metatranscriptomics of Archaea. Archaeal primers often amplify
some eukaryotic SSUs so prokaryotic databases should be supple-
mented with a eukaryote database [c.f. [49, 50]]. 

Significant phylogenetic diversity of Archaea remains to be 
fully characterized, certainly at the le vel of class and perhaps
phylum [18, 51]. Karst et al. identify eight deeply branching lin-
eages of Archaea in their RNASeq data [17]. Our analyses display 
the extent to which GTDB and even SILVA fail to fully ca pture
the phylogenetic diversity present in our samples (Figs 1 and 2). 
This challenge can be partially overcome by using the consistent 
GTDB taxonomy to annotate large sets of environmental rRNA 
gene sets such as that published previously by Karst et al. and
reannotate prokaryote sequences from SILVA. Annotating using
a k-mer matching algorithm such as SINTAX [27] rather than the 
phylogenetic tree based approaches of SATIVA [25] or Greengenes2 
[21] allows us to incorporate information from incomplete SSU 
sequences, leading to a substantially higher level of classification 
success. KSGP and GTDB+ allow us to identify the great majority 
of archaeal OTUs to phylum level whilst also providing a strategy 
to exclude PCR artefacts and bacterial OTUs. KSGP also allowed 
us to substantially increase the number of annotated OTUs to 
class and o rder level. After PCR artefacts are excluded, KARST
contains sequences with >90% sequence similarity to >80% of
our OTUs suggesting that the great majority of our OTUs are
in the same class, order or even family as particular sequences
in KARST [52]. We are not able to annotate all of Karst et al.’s 
deeply branching Archaea, but this will improve as genomes from 
deeply branching lineages are a dded to GTDB over time. The
use of an LCA strategy within LotuS2 [32, 52] will likely remove 
false positive assignments to KSGP, but taxonomic annotations 
of database sequences within poorly characterized parts of the 
phylogeny may be less robust than those achieved with KSGP LCA 
or directly with GTDB+. Assignment of an unknown sequence 
to a particular taxon using LCA requires that most database 
sequences from that taxon match the query at the appropriate 
level of similarity for that taxonomic level. By contrast SINTAX 
classifies sequences based on relative numbers of k-mers shared 
with different taxa. If the query sequence is equidistant between 
two clades, the two approaches will give similar results. But if the 

database contains only one nearby clade, LCA will classify the 
unknown sequence as far the taxonomic level at which sequence 
similarity drops below the threshold being used for that level.
However SINTAX is likely to classify the unknown sequence to
a lower taxonomic level than this as it will share more k-mer
matches with the nearby clade than other more distant clades. So
we can be less confident in the names that KSGP assigns to these
taxa. These should be interpreted as indicating a close match
to a single taxon that is robustly placed on a phylogenetic tree
rather than as a definitive taxonomic assignment. This involves
an element of “lumping” [53] and it may be wise to pre face them
with “c.f.” [sensu [54]] to indicate this. For abundant OTUs one 
can examine in more detail levels of sequence identity with the 
closest matches in both GTDB+ and KSGP, as illustrated above for 
our two commonest OTUs. Such classifications are, nevertheless, 
very useful to guide more detailed study of the components of 
the community. In our case, the relatively high diversity found in
Nanoarchaeota, and order Woesearcheales in particular is intrigu-
ing, and the much higher sequence similarities for this phylum in
KSGP than in GTDB+ (Fig. 4) suggests that phylogenetic diversity 
at the level of class and order within this phylum is not yet 
captured by GTDB and the MAG-centric studies it relies on. The 
same strategy that we have used with the Karst data could be used 
to add other near full-length sequences to a custom database or 
to provide an independent check on taxonomic assignments in 
existing databases. We have chosen to use a threshold probability 
of 0.8 when annotating the SILVA and Karst et al. sequences, but 
a more stringent probability may be preferred by some. Failure 
to assign an OTUs to a known taxon at a particular level can
result from absence of a sufficiently close sequence match in
the database or from incomplete taxonomic characterization of
sequences that are present. KSGP+ annotations make it straight-
forward to distinguish the two and in the latter case, provide the
longest possible sequence for further taxonomic characterization
(see Box 1, additional o ptions b).

The SSU1ArF/SSU520R primer pair was designed to amplify 
as broad a range of Archaea, but there is likely yet phylogenetic
diversity that is still being uncovered [55–57] and the RNASeq data 
suggest this primer pair may generate PCR biases against Asgar-
darcheota and in favour of Nanoarcheota, (or that the former are 
metabolically more active than other Archaea). We recommend 
that RNAseq is carried out alongside metabarcoding to give a 
less biassed taxonomic representation of a comm unity and the
relative importance of Archaea, Bacteria and eukaryotes [c.f. 45].
Full length SSU RNA sequences would be the gold standard for
this RNASeq work, as used in Karst et al. [17], but their methods 
are technically challenging and relatively time consuming [58]. 
For quantifying absolute abundance, we have shown that library 
preparation from total RNA using a commercial RNA kit allows us 
to assess the relative a bundance of Bacteria and Archaea, yielding
more SSU sequences than metagenomic approaches [c.f. 16, 58].

Other studies might see smaller improvements of taxonomic 
annotations than we achieve for our data for two reasons. Archaea 
make up a smaller proportion of prokaryotes in our estuarine 
sediments than the y do in soil, freshwater, seawater and marine
deep (anoxic) sediments [[59] and our RNASeq data], so may be 
under-represented in the MAGs which form a key component 
of GTDB. But more importantly, we have used PCR primers that 
amplify archaeal lineages that are absent or under-represented
in data generated with widely used primers [7]. These lineages 
are poorly represented in SILVA, but are well covered by Karst 
et al.’s RNASeq data, which include many sequences from marine
sediments.
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The coding-gene based taxonomy established by GTDB 
provides a robust foundation for annotation of Archaea metabar-
coding data. However, some of the 16S rRNA sequences in GTDB 
are not from the same organism as the coding genes used for 
taxonomic assignment, so cleaning of these data is required 
and GTDB should be combined with a eukaryote database to 
distinguish eukaryote 18S, plastid and mitochondrial sequences. 
GTDB alone gives a small improvement in the taxonomic 
annotation of our ar chaeal data. However, a much greater
improvement is obtained when GTDB is used to annotate SILVA
archaeal and bacterial sequences and a collection of near full
length rRNA sequences to create the KSGP database. Most of this
improvement comes from including the Karst et al. [17] sequences, 
indicating that future attempts to expand database cover-
age should focus on direct rRNA sequencing rather than on 
PCR amplicons with their associated primer biases, perhaps 
in conjunction with isolation and single cell sequencing of
representatives of poorly characterized lineages [60]. This is 
likely to be particularly useful for environments that are not w ell
covered in the Karst et al. [17] data. KSGP is also likely to facilitate 
annotation of bacterial metabarcoding data.
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