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Integrating the Space of Reflectance Spectra
Graham D. Finlayson , Member, IEEE, Javier Vazquez-Corral , and Fufu Fang

Abstract—Color imaging algorithms - such as color correction,
spectral estimation and color constancy - are developed and
validated with spectral reflectance data. However, the choice of
the reflectance data set - used in development and tuning - not
only affects the results of these algorithms but it also changes
the ranking of the different approaches. We propose that this
fragility is because it is difficult to measure/sample enough data
to statistically represent the large number of degrees of freedom
apparent in spectral reflectances. In this paper, we propose that
the space of reflectance data should not be sampled but, rather,
integrated. Specifically, we advocate that the convex closure of
a reflectance data set - all convex combinations of all spectra -
should be used instead of discrete reflectance samples. To make
the integration computation tractable, we approximate these
convex closures by their enclosing hyper-cube in a privileged
coordinate system. We use color correction as an exemplar color
imaging problem to demonstrate the utility of our approach.

Index Terms—Color imaging, integration, color correction,
camera characterization.

I. INTRODUCTION

UNSURPRISINGLY, many color algorithms ranging from
color correction to color constancy to spectral estimation

are developed from and tuned using measured reflectance data.
In Figure 1, we show a typical color correction scenario. Here
we take a picture of the Macbeth Color checker and then
regress the captured-RGBs to corresponding display-RGBs
here, using a linear transform, so that the captured image looks
as close as possible to the correct colors (i.e. the colors we
see ourselves when viewing the checker). In this example, the
Macbeth color checker is used as training data for deriving the
color correction linear transform. As well as making the colors
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Fig. 1. Left and right, top, shows respectively raw and color corrected image
(both images with an sRGB gamma applied). The, ungammaed corrected
linear RGBs, of the RAW are mapped to display counterparts by a 3 × 3
matrix. This matrix is chosen to best fit the data.

in the checker to look correct, it is hoped that the derived
transform also maps other unseen colors with low visual error.

Clearly, the choice of reflectance ‘training data’ is an
important consideration. Indubitably, if different reflectance
training sets are used then different correction matrices would
be calculated and, on unseen testing data, their performance
would vary. A more ornery issue is that one algorithm might
be ranked better than another - irrespective of how colors
are corrected - simply because different training and testing
data is used. In this paper, we are going to consider this
reflectance dependency problem in detail. A visual explanation
is presented in Figure 2.

First, we wonder whether the problem isn’t with the ques-
tion of “which data set” but with the premise that that there
exists an ideal dataset. While one might imagine that an
ideal dataset exists for some target applications (e.g. correctly
measuring skin color), it seems less obvious that one exists
for color photography in general.

A central idea we test in this paper is that the number of
reflectances in typical data sets is small given the intrinsic
dimensionality of the data (reflectances are typically rep-
resented by 31 or more sampled measurements across the
visible spectrum). To motivate our work, let us carry out
a sampling ‘thought’ experiment which, while unrelated to
color correction, highlights the problem of sampling when
the data dimension is large. We ask “how many points
do we need to generate -uniformly and randomly in a d-
dimensional unit cube- to ‘cover’ the cube?” A priori we know
that square, cube or d-dimensional hypercube have an area,
volume or hyper-volume of 1 (by definition). So, for a given
d-dimensional space, we randomly sample the unit hyper-cube,
calculate the convex hull of the points and then we compute
the corresponding volume. How many points do we need to
randomly sample in order to approximate the volume?
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Fig. 2. Correcting with different training sets of reflectances leads to different color correction solutions. In this particular example, an original RAW image
is corrected to sRGB using both the Munsell Chips reflectances [1] and the reflectances captured by Westland [2]. Then, the perceptual color difference
between the two sRGBs images—that should theoretically be almost identical— is computed. However, we can see that these differences are large enough
to be perceived by human observers (values of up to 5 Delta E, see the image crops). Even worst, the ranking of algorithms may therefore depend on the
training and testing data that is used. In this paper, we propose a solution to this problem by proposing that reflectance sets should be represented by the set
of all derived (e.g. from convex combinations) reflectances.

Fig. 3. Volume of the convex hull of uniformly and randomly selected points
in dimensions 3, 4, 5 and 6. To cover 99% of the hypercube we need O(10d)
points.

In Figure 3, we plot log10(number of points) on the x axis
against the volume of the convex hull of the points on the
y-axis. As we can see in the Figure, our experiment indicates
that to cover 99% of the actual volume we need on the order
of 10dimension+1 points. That is, the number of sample points
needed to cover a hypercube is exponential in the dimension
of the data. This simple empirical observation turns out to be
true in the limit when the dimension becomes large [3].

Let us return to the problem at hand: representing
reflectance data. Spectral datasets, that are used in color
imaging research, range from a few 10s of reflectance spectra
measurements to a few thousands, e.g. the Macbeth Color
checker (24 reflectances) [4], the Dupont reflectance set (120
reflectances), the object dataset (170 reflectances) [5] and
the SFU composite reflectance set [6] (2000 reflectances
including the Macbeth and Object dataset). Reflectances are
often represented by their values measured in the interval

400 to 700 Nanometres (i.e. across the visible spectrum) with
a 10 Nm sampling. As such reflectances are represented as
31-component vectors of measurements. It follows that each
reflectance dataset - which comprise points in 31dimensional
space, are modest in size. Given the high dimensionality
the measurements (31)-vectors), can even 2000 reflectances
adequately represent all reflectances we might encounter in
the natural world?

If the intent is to represent all spectra that might occur in
nature, a few thousand spectra will not be enough. However,
in nature, reflectances often blend together when viewed from
a distance. So even though a given reflectance set comprises
a small number of measurements, we propose that the set can
be usefully thought of as a sort of dictionary that might blend
together to form new reflectances.

In detail, suppose we have a surface that is a patchwork
of materials (e.g. a simple colored texture) and we view this
texture from far enough away. The effective reflectance we
see is a combination of the underlying reflectances. Or, to
say the same thing mathematically, the combined reflectance
is a convex combination of the individual reflectances (in
proportion to the area that each reflectance covers). By making
mosaics of colors by taking the reflectances in a given sampled
data set we can -when viewing the mosaic from far enough
away- make every reflectance that lies in the convex closure
of the reflectance dataset [7].

In this paper, we propose that reflectance sets should
be represented by the set of all derived (e.g. from convex
combinations) reflectances. Moreover, as well as representing
spectral data by its convex hull (more precisely, its convex
closure), we also propose that the convex closure should be
sampled uniformly and randomly. Of course, in doing so, we
are changing the underlying distribution of the measured data.
We argue that this is not a problem. Indeed, an argument can
be made that we want to change the distribution. By uniformly
and randomly sampling, we admit all possible physically
plausible stimuli to be considered and every reflectance is
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equally as important as any other. In a sense, we are taking
a sort of maximal ignorance stance (commonly used in color
imaging research [8], [9], [10]) and being agnostic - save for
the fact that it is statistically plausible - of the likelihood of
saying that one measured spectrum is more or less likely than
another.

Given the assumption that we can represent a reflectance set
by its convex hull (and that all reflectances within this hull,
its convex closure, are possible) then this begs the question
of how do we make use of this representation. One might
naively suppose that we could sample our data set but the
dimensionality of the problem is against us. Rather, we will
argue that we should integrate over the entire convex closure.
And, for the problem of color correction, we show how this
can be achieved.

Color correction algorithms attempt to map camera RGBs to
a human vision system referenced color space, typically with
a 3× 3 matrix transform e.g. we map to XYZ tristimuly [11]
or, as shown in Figure 1, to RGBs that drive a display (sRGB
[12]). Figure 1 also teaches that the correction transform can
be found by regression. There, we find the best linear map
taking the 24 RGBs from the Macbeth color checker to the
display sRGB counterparts.

The convex closure of a discrete set of surface measure-
ments delimits an infinite set of reflectances. This seems to
pose a problem for regression-based color correction. In Figure
1, it appears that one can only carry out a regression given a
finite set of corresponding samples. To sidestep this problem,
we will show that the least-squares regression depends on the
spectral autocorrelation matrix which, assuming 31 sampling
wavelengths, is a 31×31 matrix. We might still use regression
if we can solve for the autocorrelation corresponding to an infi-
tite set of reflectances. Unfortunately, for our convex closure
of reflectances, calculating the autocorrelation is surprisingly
laborious to compute (and, practically, is solved by random
point generation which, again, brings us back to the question
of ‘how many samples?’).

To make the computation feasible, we make two contribu-
tions. First, if a reflectance set is represented by its enclosing
hypercube (which is itself a superset of dataset’s convex
closure) then we will show that it is easy to solve for a color
correction matrix by integrating over a hypercube. However,
it’s important that the bounding hypercube fits our data well.
Since, if the difference in volume between the convex closure
of reflectance set and its bounding hyper cube is too large then
we will have admitted many more reflectances just to make
the integration problem easier to solve.

Our second contribution is to show how to characterize a
reflectance set by computing the bounding hypercube with
respect to a privileged basis. Importantly, in the privileged
basis - related to a PCA decomposition of the data - the
enclosing hypercube is a tighter fit (i.e. it is smaller and more
tuned to the data) than if the hypercube were applied in the
spectral domain.

Experiments will establish that integrating reflectance sets
(not sampling) leads to good color correction - competitive
with using the sampled reflectances themselves - when we

train on a hyper-cube reflectance set and test on the individual
sampled reflectances. This is an encouraging result since, as
is always the case for least-squares, the best result in fitting
data will be when the test and training sets are the same.
That our method delivers almost as good results - training
on our integrated reflectance set - but with the promise of
better generalization to unseen data is a key contribution for
our method. Further, viewed through the lens of the enclosing
hypercube, we find different reflectance sets are much more
similar. This is an important result since the question of
‘what reflectance data should we use?’ is often posed in color
imaging research. The work we present here indicates the
choice of which dataset is less important if it is integrated (i.e.
all data sets become more similar to one another). Finally, a
preliminary version of this work was presented in [13].

In section II, we review color correction and the idea of
representing reflectances using a linear model. In sections III
and IV we explain our core contribution solving for color
correction by integrating over a sampled data set. Experiments
validate our method in section V. The paper concludes in
section VI.

II. REPRESENTING REFLECTANCE AND LINEAR
LEAST-SQUARES COLOR CORRECTION

Let us begin by recapitulating the integrated response equa-
tion that relates the eye’s or camera’s response to a spectrum
of light E(λ) striking a surface with the Lambertian spectral
reflectance function S (λ):

ρ =

Z
ω

E(λ)S (λ)Q(λ)dλ. (1)

In Equation 1, Q(λ) is a vector function of three camera
or three human vision system referenced sensors and ρ is
the trichromatic response vector. The integral is computed
over the visible spectrum ω, which runs from 400 to 700
Nanometres. Here and thoughout this paper we will only
consider the Lambertian part of surface reflectance —e.g. we
will not consider properties such as Fluorescence. To our
knowledge all prior-art research into color correction also
make this simplifying assumption.

It is common to represent spectral quantities at 10 Nanome-
tre sample points across the visible spectrum. This means that
the spectral quantities E(λ), S (λ) and Qi(λ) (i ∈ {R,G, B})
in Equation 1 are represented by the corresponding 31-
component vectors: E, S and Q

i
(where Q

i
also incorporates

the 10Nm sampling distance). Grouping the 3 sensors in a
31× 3 matrix Q, Equation 1 can be rewritten [5] as:

ρ = Qtdiag(E)S t, (2)

where diag() makes a diagonal matrix from the vector
argument and t denotes vector/matrix transpose.

Let us represent a set of n surface reflectance spectra by
the 31 × n matrix S. Each row of the matrix represents the
reflectances at a single wavelength, and each column is one
reflectance spectrum. We will denote camera sensors and the
XYZ color matching functions (CMFs) by respectively R and
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Q (both 31× 3 matrices). The camera and XYZ trichromatic
responses to all the reflectances in S are computed as:

P = Rtdiag(E)S (3a)
X = Qtdiag(E)S . (3b)

Both P and X are 3× n matrices.
In Equations 3, we are calculating the XYZ response but we

could also have calculated triplets for another human vision
referenced color space such as sRGB [12]. But, here and
henceforth in this paper we will calculate XYZs.

In color correction, we seek to map RGBs to XYZs,
typically with a 3× 3 matrix. Unless the camera sensitivities
are a linear transform from the XYZs - the so called Luther
conditions [10] are met - the correction is necessarily inexact
[10]. The least-squares color correction optimization problem
is written as:

min
M
‖MP − X‖F (4)

where ‖·‖F above denotes Frobenius norm.
Equation 4 can be solved in closed form using the Moore-

Penrose inverse [14]:

M = XPt(PPt)−1. (5)

To simplify matters, it is useful to define a color signal
matrix as

C = diag(E)S , (6)

which means we can rewrite Equation 3 as:

P = RtC (7a)
X = QtC. (7b)

Let’s substitute Equation 7 into Equation 5

M = QtCCtR(RtCCtR)−1. (8)

Equation 8 teaches that the correction matrix M only
depends on the 31 × 31 color signal autocorrelation matrix
CCt and camera and XYZ spectral sensitivities. If we calculate
Equation 8 using a fixed reflectance autocorrelation S S t but
with two lights: E and kE (where k is a scaling factor) we
arrive at the same linear transform. This is a useful property
since it implies that a 3× 3 color correction matrix will work
even if exposure changes.

It is sometimes useful to make the role of the illumination
explicit in the autocorrelation:

CCt = diag(E)S S tdiag(E). (9)

In [15] it was shown that we could rewrite Equation 9 as:

diag(E)S S tdiag(E) = [E Et] ⊗ [S S t]. (10)

where the operator ⊗ ‘means’ the component-wise multipli-
cation of two matrices.

In the same work it was also shown that if there were k
measured lights in the 31 × k matrix E then the color signal
correlation matrix (all lights and all surfaces) equals:

CCt = [EEt] ⊗ [S S t]. (11)

Again the central role of the spectral autocorrelation S S t is
clear

Fig. 4. In (a), (b) and (c) the autocorrelations, S S t/n (n denotes the number
of samples) of the Munsell, Object and Dupont reflectance datasets.

In Figure 4, respectively, in panels (a), (b) and (c), we plot
the autocorrelation for the 170 object reflectances [5], the 462
Munsell’s [16] and the 120 Dupont reflectances [5].

Encouragingly, the autocorrelations look, broadly, similar.
As a function of increasing wavelength each of the reflectance
datasets appear more correlated. And, the further apart two
wavelengths are, the less they are correlated. This said, the
autocorrelations are not the same and, as we will see, the
different autocorrelations lead to significantly different color
correction transforms (we will discuss further in the experi-
ments section).

In panel d) of Figure 4, we show the autocorrelation cor-
responding to the Maximum ignorance with positivity (MIP)
assumption, where any vector that is all positive between 0
and 1 is equally likely. Relative to this assumption, very jaggy
spectra as well as smooth spectra can occur even though the
former do not appear in nature. We include the MIP autocor-
relation to show how different it is from the autocorrelations
of real reflectance data. Previous work has shown that the
MIP assumption (i.e. adopting the MIP autocorrelation matrix)
leads to poor color correction performance.

The least-squares solution is only one way to calculate the
3×3 correction matrix. Indeed, various authors [17], [18] sug-
gest that we should find a matrix that minimizes a perceptual
error. In other research the color correction transform is not a
matrix [19], [20], [21]. This said the venerable linear matrix
and least-squares is widely deployed not least because image
formation itself is linear. Here we will use linear regression not
only because it is tried and tested but also because computing
the best least-squares transform for our enclosing hypercube of
reflectances - developed in this paper - can also be computed.

A. Representing Reflectance Data

It has been observed that because surfaces are smooth they
can be represented by an s-dimensional linear model (where
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Fig. 5. In (a), (b) and (c) the best 3-dimensional bases for the Munsell, Object
and Dupont reflectance datasets. Respectively, in blue, red and yellow are the
1st, 2nd and 3rd Characteristic vectors.

s � 31):

S (λ) ≈
mX

i=1

Ui(λ)σi ≡ S ≈ Uσ, (12)

here the ith column of U, Ui, (or Ui(λ)) is called a basis
function and σi is a scalar weighting its contribution, σ is
a m × 1 vector. In Equation 12, U is a 31 × m matrix and
represents the discrete linear basis for modelling reflectances.
The interesting question, of course, is what is the value of m.
Different studies have concluded that the answer is between 6
and 9 basis functions [22], [23]. Though, for some applications
even a 3-dimensional basis set suffices [24], [25].

For an n-reflectance data set S and a fixed dimension m we
would like to find the basis U that best approximates:

minU,Ω ||S − UΩ||2, (13)

where U and Ω are, respectively, a 31× m and m× n and
the ith column of Ω is σi. Characteristic Vector Analysis (like
PCA where the mean is not subtracted) is the apposite tool.
CVA returns the optimal solution to Equation 13.

In Figure 5, we find the best 31 × 3 basis functions
for the Munsell, Object and Dupont datasets. As for their
autocorrelations, we find the bases have much in common.
In blue we see the first characteristic vector which accounts
for the greatest amount of variance in the respective datasets.
Each function is broadly flat and represents a sort of DC
function (in analogy to a Cosine basis expansion). The 2nd
characteristic vectors are increasing functions from left to right
and the 3rd are smooth functions with a single peak (at more or
less the same position). These functions have a similar shape
to cos 0.5x and cos x (the second and third terms in a cosine
basis expansion).

The CVA solution has a number of attractive properties.
First, the basis matrix U is orthonormal, U tU = Im×m. Second,
the basis is ordered. The first basis function is the direction
(among all others) that best captures the variance in the
spectral data S. The second basis function is the direction

orthogonal to the first that captures the most variance and so
on.

Further, in CVA, the m × m matrix ΩΩt is the diagonal
matrix D2 with all positive diagonal components that decrease
monotonically, from first to last diagonal component. Placing
the diagonal components of D2 in the vector d, the ratio�Pk

i=1 di

�
/
�Pm

i=1 di
��

reports the % of variance captured by
the first k basis functions. We can write Ω as DV t (note D is
the diagonal matrix that is the square-root of D2) where V is
also orthonormal.

It follows that we can decompose the autocorrelation of S S t

as:
S S t ≈ UD2U t. (14)

Since U is orthonormal, it also follows that,

σi = U tS i, (15)

and
U tS = Ω. (16)

See [26] for a wider review of representing spectra by
characteristic vector analysis.

III. INTEGRATED REFLECTANCE SETS

As presented in the last section, least-squares regression
color correction is driven by the autocorrelation of the
reflectance data set S S t (or the autocorrelation of the color
signal matrix that itself also depends on the reflectance auto-
correlation).

In this section we make two contributions. First, we re-
describe all reflectance datasets with a common privileged
basis and we discuss how such a basis is computed. Second,
we develop our convex closure representation: i.e. the idea
that the convex hull of a reflectance set delimits all physically
plausible reflectances. For applications like color correction we
need to integrate over the convex closure e.g. to calculate the
best color correction transform. But, integrating over convex
sets is hard. Thus our second contribution, is directed towards
making computations feasible. We represent reflectance data
by the enclosing hypercube with respect to the common basis
coordinates.

A. Deriving a Common Reflectance Basis

As illustrated in Figure 5, different reflectance data sets have
different basis functions. This fact alone means it is difficult -
if we use a low dimensional representation of reflectance - to
compare one reflectance set against another. We can compare
basis coordinates (the σ) if and only if we use the same basis
functions. To solve this problem we could solve for a single set
of basis functions which is suitable to represent all reflectance
datasets.

1) The Statistical Approach: One might start by combining
the autocorrelation of the different datasets using a weighted
sum:

S S t =
X

i

S iS t
i

ni
, (17)

where S i is the set of reflectances in dataset i and ni is the
number of samples in this dataset. This weighted summation
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gives each reflectance dataset equal weight on its influence on
the final basis functions, regardless the size of the reflectance
dataset itself. Now, as described in the last section, single
value decomposition (SVD) [27] is used to find the optimal
31 × m basis matrix U. As written the magnitude of the
autocorrelation would grow with the number of datasets. Thus
we might calculate S S t

#datasets . Though, this is not required in
least-squares regression which is independent of the magnitude
of the autocorrelation.

2) The Cosine Series Expansion: The optimal basis func-
tions (set of characteristic vectors) found for a reflectance set
- at least from an abstract vantage point - looks somewhat
like the first three terms in discrete cosine series expansion
(see Figure 5). Thus, it is natural that we consider using the
discrete cosine expansion as the common priveleged basis.
Importantly, the discrete cosine basis has well known energy
compaction properties [28]. It is a reasonable choice for the
common basis if we wish to be a priori agnostic about the
shape of reflectances.

As a cosine series, the basis matrix U is written in closed
form. Here i ∈ {0, 1, 2, · · · , 31} and j ∈ {1, 2, · · · ,m}

Ui j = cos
�

( j − 1)π
N

�
i +

1
2

��
/k j. (18)

where the form of above equation is chosen so that U is
orthogonal. The scalar k j chosen so that the individual columns
of U have magnitude 1 (it accounts for the Wavelength
sampling).

Henceforth, for our common privileged basis, we will use
cosine series basis in the following discussion and in the
experimental section.

B. Convex- and Hyper-Cube Closures of Reflectances

Physically, if we have a checker-board pattern comprising
two reflectances S 1(λ) and S 2(λ) in equal proportions then
if we view this checker board from far enough away the
checker will appear to have a single color (with an effective
reflectance 0.5S 1(λ) + 0.5S 2(λ)). More generally, viewed at
distance a texture of colors blends to a single color (with
the new effective reflectance being a convex sum of the
individual reflectances in proportion to their % area coverage).
That is, given a dataset of reflectances, if they are allowed
appear in patterns of arbitrary shape and complexity, then all
convex combinations of the reflectances in a dataset might be
physically measured.

It follows that the set of plausible spectra is the convex
closure of the reflectance samples found in a given data set.
And, this convex closure in turn is delimited by the convex
hull of the dataset. Unfortunately, calculating a convex hull
in d dimensions (for reflectances d is 31) is computationally
hard (complexity O

�
nb

d
2 c
�

, [29]). Even for 16 dimensional
data and a few 100s of reflectances the problem is intractable
(at least given the current implementation in Matlab which in
turn builds on the efficient Qhull algorithm [29]). In the 16-
dimensional case, given 1000 points leads to on the order of
1 trillion operations to solve for the convex hull! (convex hull
computation is O(nbd/2c), where n is the number of points, d
denotes dimension and b c denotes floor.

Suppose we can compute the convex hull of a reflectance
set. For color correction we need to integrate over this set.
Arguably, the cost of integrating over a convex hull is even
greater than the cost of computing the hull itself. Perhaps the
simplest integration problem is computing the volume of the
convex hull. Here, the cost of computing an analytical solution
is the same as the convex hull computation. Indeed, the cost
is sufficiently high, that volumes are generally computed via
a Monte Carlo simulation (i.e. by sampling).

To illustrate the Monte Carlo simulation suppose we are
given a convex hull and we compute the bounding hypercube
(the min and max coordinates in the hull per dimension, an
easy computation). The volume of this enclosing hypercube
is the product of the dimensions (of the hypercube). For the
purposes of this example, suppose the volume of the hypercube
is k. Now, we generate p points uniformly and randomly in
the cube. For each point we check if it is inside or outside
of the convex hull (a fast operation). If we find that 90% of
the points are inside the hull then the computed volume -
by random sampling- is 0.9k. Of course, we have to choose
enough random points to calculate the volume with good
accuracy. From the introduction to this paper ‘enough’ can
be very large (see Figure 2 and the associated discussion)

To sidestep the issue of the complexity of integration, we
will find the enclosing hypercube of the data with respect to the
common basis. For a d dimensional dataset S, the coordinates
of S in basis U are equal to Ω = U tS (see Equation 16).
Denoting the kth row of Ω as Ωk, the min and max values (µk

and Mk) for the coefficient σk are calculated:

µk = min(Ωk) ≤ σk ≤ max(Ωk) = Mk. (19)

The 2d min and max coordinates in µ and M delimit
a hypercube. We illustrate this idea by making clear the
bounding hyper-cube (in this case the 3 dimensional rectangle
plotted in red in Figure 6).

Notice there is a significant ‘gap’ between the boundary
of the points and the edge of the cube. For this example,
the enclosing hypercube has more than twice the volume
compared to the convex set. The physical meaning of the ‘gap’
is that under the hypercube model we admit reflectances that
we both haven’t seen before and may well be non-physically
realizable. That is, they have either reflectivity less than 0
or greater than 1. This kind of extrapolation is common. The
Maximum Ignorance, Maximum Ignorance with positivity and
Toeplitz assumptions [9], [10], [30] all effectively admit non-
physically realizable reflectances.

Under the Maximum ignorance with positivity assumption,
we allow each spectral wavelength to be in the interval [0,1]
and the value selected per wavelength to be independently of
all other wavelengths. Here, all reflectances in the 31dimen-
sional unit cube are equally likely. For our worked example,
we can also compute the bounding hypercube - relative to
the Dupont 3-dimensional basis - for the Maximum ignorance
assumption with positivity. The corresponding MIP hypercube
is shown in blue. The MIP cube is 8 times larger than the
red hyper-cube based on real data (so, a substantially weaker
assumption that admits many more infeasible reflectances).
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Fig. 6. For the Dupont data set we plot the coordinates with respect to an optimal basis. See the first three panels for plots of 1st against 2nd, 1st against
3rd and 2nd against 3rd basis pairs. On the last plot, we replot the data in 3D. The convex hull of the data points is shown as the shaded convex hull. The
enclosing hypercube is shown in red. Assuming we projected all possible spectral data (the maximum ignorance with positivity assumption) on the same basis
the corresponding enclosing hypercube is shown in blue.

C. The Importance of the Coordinate Space

The reader might wonder why all the analysis building to
this point has represented spectra with respect to a basis.
The reason is that we are seeking a representation where the
bounding hypercube idea makes sense. While we are willing
to allow some spectra that are not in the convex closure of the
data set, we do not wish to admit too many.

Arguably, by decorrelating the data, CVA - or indeed the
cosine basis that achieves a similar decomposition - finds a
representation that is more cube-like. Indeed, data uniformly
randomly distributed in a cube is completely decorrelated
(knowledge of one coordinate tells you nothing about the
other). And, of course by coding a reflectance with respect
to a basis, we can choose to use fewer than 31 parameters
(fewer than the total number of wavelengths).

Suppose instead we carried out a similar analysis in the
primal domain (the primal domain here is the reflectance
spectra themselves). For each wavelength, we can calculate
the max and minimum reflectance values. In all likelihood
this will give reflectances close to 0 and 1 respectively since
there are very dark and very bright colors of all hues. If, per
wavelength, we assume that reflectance lies in [0,1] and that
one wavelength is not correlated with another then this is the
definition of the Maximum ignorance with positivity assump-
tion. This assumption leads us to accept many reflectances
(think very jaggy spectra) which are not similar to any actual
measured data.

We note that the volume of a geometric object does not
change when we rotate the object (or more generally apply a
unitary transform). When we project reflectances onto a basis,
such as the cosine expansion we are re-describing the data
with respect to new axes but we are not changing the shape
of the data. As a test we projected the 120 Dupont data onto
the full 31dimensional cosine expansion (i.e. we applied a full
rank unitary 31 × 31 matrix) to the reflectances -see Figure
5-. Using the bounded hypercube we can calculate the volume
before and after the unitary transform. Literally, we find the
volume with respect to the discrete cosine basis to be orders
of magnitude less than in the primal wavelength domain. That
is the minimum bounding hypercube depends on the basis in
which data is described.

We illustrate this concept in Figure 7 for the data shown
(blue dots) in 2 dimensions. The rectangle at 45 degrees has a

Fig. 7. In the left we see points scattered at 45 degrees. Relative to the x-
and y- axes the bounding box - enclosing hypercube - of the data has area 1.
Right, we rotate the axes 45 degrees (analogous to CVA). Now the bounding
box fits the data better and has area 0.21.

large bounding box (according to the primal axis). Rotating to
a new basis returns a bounding box that more closely describes
the shape of the underlying data.

IV. CALCULATING THE AUTOCORRELATION MATRIX
FROM THE REFLECTANCE HYPERCUBE

We have already seen that the least-squares computation is
carried out given knowledge of the spectral sensitivities of the
camera and XYZ sensors, the autocorrelation and the light (or
lights). In the discrete world the autocorrelation is simple to
compute:

auto(S ) =
S S t

n
, (20)

where n is the number of surfaces in the reflectance
dataset. We would like to calculate the autocorrelation given
the bounding hypercube. First, remember that in our basis
representation we can write S = UΩ where U is the
31 × m reflectance basis and each column of (the m ×
n matrix) Ω is the basis coordinates that define a single
reflectance. Here, and henceforth - unless otherwise stated
- we will assume m = 31 and that U is the cosine
series basis. Moreover, we will set m = 31 so that U
plays a decorrelating role - allows a bounding hypercube to
better fit the data - but the transform is lossless.

This lossless property is important as even though
reflectances are smooth, all the terms in the basis expansion
are necessary for some reflectances. Indeed, for the Simon
Fraser reflectance data set [6] (which also contains some of
the reflectance data we use in this paper) we found that using
only the first 30 components in a cosine basis expansion
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would occasionally result in a reflectance that had a non-
negligible fitting error. Removing the highest frequency basis
term resulted in the least well fitted spectrum being almost
1% different to the actual measured data. Put another way,
removing a single term in the cosine basis expansion can
result in a model of reflectance that cannot describe all the
reflectances in a dataset. Henceforth we will always use the
same number of terms in a cosine expansion as there are
sampling wavelengths in a dataset.

Now, let us write

auto(S ) =
UΩΩtU t

n
(21)

Given that U is fixed, the autocorrelation for a reflectance
set depends on ΩΩt (the autocorrelation of the coordinates of
the reflectances with respect to the basis).

auto(Ω) =
ΩΩt

n
. (22)

Let us rewrite Equation 22 as a summation:

[auto(Ω)]i j =

31X
k=1

ΩikΩ jk/n, (23)

for the special case when i = j,

[auto(Ω)]ii =

31X
k=1

Ω2
ik/n. (24)

When we come to computing the autocorrelation over the
hypercube, the special case of Equation 24 is important. In
Equation 23 (when i , j) there are two statistical variables
but in 24 there is only one. This an important detail.

Let us denote the ith row of Ω as Ωi. The bounding
hypercube Ω is defined by the min and max row coordinates
in Ω.

Box(Ω) = {µ,M} ,

where µi = min(Ωi) and Mi = max(Ωi). (25)

We denote the autocorrelation of all the reflectances in
a bounding hypercube for Ω as auto(Box(Ω)). To calculate
auto(Box(Ω)) we need to integrate over the bounding box.

A. Integrating Over a Hypercube

Because the hypercube is a continuous set, the summations
in Equations 23, 24 become integrals. We will use the notion
σi to denote a sample in the ith coordinate (σi denotes a
continuous variable). Given that the enclosing hypercube is
defined by the min and max coordinates in each dimension
(see Equation 22) then µi < σi < Mi. The Expected value of
the autocorrelation is computed as:

[E(auto(Box(Ω)))]i j =

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

R Mi

µi
σ2

i dσi

Mi − µi
when i = jR M j

µ j

R Mi

µi
σiσ j dσidσ j

(Mi − µi)(M j − µ j)
when i , j.

(26)

We have different expressions for the diagonal and off-
diagonal terms where they are the same in the discrete case

(see Equations 23 and 24 and discussion). For the diagonal
case there is only one statistical variable but for the off-
diagonal there are two. This in turn means computing the
expectation along the diagonal of the autocorrelation is a single
integral problem and the off-diagonal computation involves
solving a double integral.

Notice that the numerator terms of the continuous integral
in Equation 26 look similar, as we would expect, to the
discrete summations. The denominator terms are different from
‘dividing’ by n (of Eqns 23 and 24). When we compute
expectations in the continuous domain, as commented above,
we need to divide by the length of the interval (for the 1D case)
and the area of integration for the 2D case. Equation 26 can
be solved for in closed form with the autocorrelation defined
as:

[E(auto(Box(Ω)))]i j =

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

M3
i − µ

3
i

3(Mi − µi)
when i = j

M2
i M2

j + µ2
i µ

2
j − µ

2
i M2

j − M2
i µ

2
j

4(Mi − µi)(M j − µ j)
when i , j.

(27)

For the continuous case (integrating over the bounding
hypercube) the estimated autocorrelation is calculated as
UE(auto(Box(Ω)))U t.

We remark that given that we know the enclosing hypercube
(min-max coordinates), the computation of the autocorrelation
is very rapid. Indeed, it will be quickler than calculating the
autocorrelation of a real dataset. Yet, this said, color correction
calculation is, in both cases, a very fast computation.

B. Integrating Over a Scaled Hypercube, sBox

Suppose we calculate a scaled hypercube that is k times the
size in each dimension

sBox(Ω, k) = {µ,M} ,

where µi = k · min(Ωi) and Mi = k · max(Ωi)
(28)

From Equation 27, it is easy to show that:

E(auto(sBox(Ω, k))) = k2E(auto(Box(Ω))) (29)

That is, by scaling the bounding coordinates of the hyper-
cube the corresponding autocorrelation also scales. From
Section II we know that least-squares color correction is inde-
pendent of the magnitude of the autocorrelation. Moreover,
and perhaps more importantly, we have shown that the terms
in the autocorrelation scale to the square of the scaling applied
to the data.

We now refer the reader back to Equations 8 through 10
(how a reflectance autocorrelation is used in least-squares color
correction). We simply substitute the expected autocorrela-
tion, E(auto(sBox(Ω, k))), for S S t, the autocorrelation from
measured data in Equation 9. Given a measured illuminant
spectrum, we calculate the color signal autocorrelation which
can be substituted into Equation 8.
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Fig. 8. In a), 3 reflectances from the Model reflectance dataset. Note there
can be values larger than 1 and less than 0. Panels (b) and (c) show the
autocorrelations for the NAT and MOD spectral datasets.

V. EXPERIMENTS

A. Reflectance Datasets

Hitherto in this paper, we have considered the respectively
462, 170 and 120 reflectance MUNsell, OBJect and DUPont
reflectance sets. The Munsell reflectances are painted patches
designed to have a large color gamut. The Object dataset
contains spectral of typical objects including bricks, wood and
pavement. The Dupont set contains the spectra of colorful dyed
material. All of these datasets are similar in that they do not
a priori place constraints on the shape of spectra.

To these three exemplar measured reflectance datasets, we
add two more. First is the NATural dataset measured by
Westland et al [2] which comprises 404 measured spectra of
plants, foliage and flowers. Second, we add a MODel that
comprises 500 randomly selected spectra from the bounding
hypercube of the bounding hypercubes of the MUN, OBJ,
DUP and NAT datasets.

To construct the reflectance dataset MOD, using an index
k ∈ {MUN,OBJ,DUP,NAT}, we calculate the enclosing
hypercube - denoted by ENC - of these sets (where as before
the spectra are represented by their Ω coordinates with respect
to the Cosine Series Basis U):

box(ΩENC) = {µ
ENC

,MENC},

µ
ENC

= min
k
µ

k
,

MENC = max
k

Mk. (30)

For the ith of 500 trials we select a vector σi ∈

U(µ
ENC

MENC) (i.e. uniformly and randomly from the
hypercube) and the corresponding reconstructed spectrum is
calculated as Uσi.

In Figure 8, panel (a), we show 3 of the randomly generated
reflectances in MOD. Notice that they look like plausible
spectra but there are - as expected - values less than 0
and greater than 1. Notice also that the reflectances are not
completely smooth. This non smoothness ‘local scale’ appears
to occur in nature, especially in the spectra of flowers and
plants [2]. Though, by construction, all the smooth spectra

Fig. 9. On the left the 4 autocorrelation matrices and on the right the
corresponding autocorrelation of the bounding box hypercubes.

in Figure 8a (from the Macbeth Color Checker) must be in
box(ΩMOD). For our 5 data sets we found that more than 85%
of our data are physically realizable: 85% of the volume of
the hypercube correspond to reflectances with values in [0,1].

Finally, we remark that we could of course simply ignore
the 15% of reflectances that are infeasible (reflect more than
100% or less than 0% of the incident light). However, then
the autocorrelation statistics for MOD would not be well
described by our enclosing hypercube autocorrelation. Thus,
even though they are not physically realiseable, we keep them
in the MOD set to ensure congruence with our bounding
hypercube model.

In Figure 8 in panels (b) and (c) we respectively show
the autocorrelations of NAT and MOD. In Figure 9 (left
column) we show the autocorrelations of our sets of measured
reflectances. On the right are the autocorrelations computed
from their enclosing hypercubes.

B. Comparing the Autocorrelations of Reflectance Datasets

Let us begin by comparing directly all pairs of autocorrela-
tions using a % error metric, where ||.||F denotes the Frobenius
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TABLE I
%

100 REFLECTANCE SET AUTOCORRELATION ERRORS

TABLE II
% ENCLOSING HYPERCUBE OF REFLECTANCE SET

AUTOCORRELATION ERRORS

norm.
errA,B =

||auto(ΩA) − auto(ΩB)||F
||auto(ΩA)||F

. (31)

The results for the 5 data sets are summarized in Table I.
The autocorrelations A and B from Equation 31 correspond to
row and column respectively (the % autocorrelation error is
not commutative). The last column and row are respectively
the average errors of the first 5 rows and columns. Bottom
right is the overall average error.

Looking at the Table I, errors range from 25% to almost
200% with the overall average as 57%. However, remembering
that MOD, by construction is designed to be a superset
of the other 4 datasets, it is perhaps unsurprising that the
comparisons that involve the autocorrelation of MOD are the
ones that, typically, have the highest errors. An interesting
lesson we draw from the table is that the Dupont data -that
comprises man-made dyed textiles- actually, has the lowest
errors compared with the other data sets (see third row). That
is, if we were to use only one of these datasets to represent
the others (in terms of their autocorrelations), then we would
choose the Dupont reflectances.

In Table II we repeat the experiment for the autocorrelations
of the enclosing hypercubes of the different datasets. Here,
the datasets are labelled as MUNb, OBJb, DUPb, NATb
and MODb, the ‘b’ stands for ‘box’ (i.e. the figures are for
the autocorrelations of the enclosing hypercube). The error is
calculated as:

errBox
A,B =

||E(auto(box(ΩA))) − E(auto(box(ΩB)))||
||E(auto(box(ΩA)))||

. (32)

With two exceptions (NAT compared with OBJ) and (DUP
compared with NAT) the autocorrelations calculated over
reflectance set’s bounding hypercube are closer to each other
(and usually much closer). Overall, the error is reduced from
57% to just 23% and the composite MOD set is now much
closer to all other sets. Either the MUN and MOD would seem
to be the best choice to represent all 5 datasets.

See again, in Figure 9, the autocorrelations of the sam-
pled reflectance sets contrasted with corresponding enclosing

TABLE III
CROSS VALIDATED COLOR CORRECTION. AVERAGE FOR THE 28 CAM-

ERAS OF THE MEDIAN DELTA E FOR THE STANDARD LEAST-SQUARES
COMPUTATION ON THE AUTO-CORRELATION

hypercube autocorrelations on the right. According to our
measure of similarity the autocorrelations on the right are more
similar than those on the left, on average. Visually, they do
look more similar: they appear flatter overall. Notice also that
the characteristic contours of the Munsell data -see Figure 4-
are now replicated in the enclosing hypercube autocorrelations
for the Object and Dupont datasets.

C. Color Correction Experiments

1) Reflectance Sets: In our color correction experiment we
use the spectral sensitivities of 28 cameras in [31], the set of
102 illuminants in [6] and the OBJ, DUP, NAT and MUN
reflectance data sets. For each light we also compute the
reference XYZ tristimuli.

We wish to investigate how well least-squares color correc-
tion works when we train on one dataset and test on another.
As an example we can train on the MUN reflectances to
obtain a 3 × 3 correction matrix and then test on the OBJ
reflectances. For one light and one camera, as there are 170
OBJ reflectances we map the 170 recorded RGBs to predict
the corrresponding 170 XYZs. We calculate the CIELAB Delta
E error for the 170 samples. We repeat this experiment 102
times (for the 102 lights). Ultimately, this yields 170 ∗ 102 =

17340 Delta E values. We compute the median of these entries,
and then we repeat the operation for the other 27 cameras,
obtaining a 28-d vector. We finally compute the average of this
vector. The result of this procedure is shown in row 1, column
2, of Table III, and is 1.49. All pairs of training and testing
surface sets -and their, analogously calculated respective Delta
E values are also shown in Table III.

The averages over columns are shown in the rightmost
column. These averages encode how well a reflectance set
performs when it is used to determine the color correction
transform. The average over rows speaks to the difficulty of
correcting a given reflectance test set. Training with the DUP
set gives the lowest error overall, on average 1.34 Delta E.
On the other side, the Natural reflectances are hardest to color
correct (an average of, 1.81).

We now repeat this experiment where we now train on the
autocorrelation of all reflectances in the enclosing hypercube.
We then test on the reflectance sets themselves. Here we do
include the MOD dataset for training. Returning to Figure 6,
the bounding hypercube of a reflectance set is many multiples
in volume larger than the reflectances set itself (as defined
by the convex closure). So, we are training on many more
reflectances than the samples themselves. This said, we do
not expect better color correction results (certainly we must
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TABLE IV

CROSS VALIDATED COLOR CORRECTION, USING ENCLOSING HYPERCUBE
TO TRAIN. AVERAGE FOR THE 28 CAMERAS OF THE MEDIAN DELTA E

do worse than when we train and test on the same data). But
if we obtain competitive performance then this means we can
take a much more agnostic stance about which reflectance
appear in the world and still get good color correction.

The color correction results for this second experiment are
reported in Table IV. We obtain similar results (indeed a few
are lower). On average, for corresponding entries, the error -
already very low - remains low. The average over all the
Table indicate a 22% increase than fitting with the actual
reflectances. Four of the common entries are smaller.

D. Correction Performance Using Real-World Data

Here, we begin by building a large set of reflectances drawn
from the hyperspectral images [32]. We select the set of
“Stuff” images —composed of 15 images— and, for each of
the images, we add one of each 16 pixels both horizontally
and vertically to our set. We follow this approach because as
one would expect, the same object in the same images has,
more or less, the same spectrum. Following this approach, we
end up with a set of 14336 real reflectances. We denote this
reflectance set as REP.

Then, given a particular camera, we have synthesized all
the RGBs for each reflectance and illumination. We have
computed the DeltaE error as before for both the standard
Least-Squares and our enclosing hypercube approach. In this
case, we have computed for each camera the median error,
the mean error, and the trimean error over the 14336 × 102
color signals. The mean of this process for the 28 cameras is
presented in Table V.

In Table V, a 3 × 3 matrix is calculated for each of 5
training reflectance sets, MUN, OBJ, DUP, NAT and MOD.
Then we report color correction performance in 3 tranches: see
the first, second and third group of 3 columns. In the first 3
columns, we calculate the correction matrices calculated from
the enclosing hypercube of the reflectance sets. The next 3
columns corresponds to using each reflectance set directly to
drive least-squares. In the last tranche (last 3 columns) we
report the performance of the Minimal Knowledge II method
(MK-II) [33]. This method presents some similarities to ours,
as it constructs the autocorrelation matrix given some weak
statistical assumptions about the set of likely spectra.

In row 4, column 1 we see that defining a 3 × 3 matrix
based on the enclosing hypercube of the NAT reflectances and
testing on the REP reflectances results in a median error of
1.34. Respectively, training on the autocorrelation of the NAT
itself or using the MK-II approach returns median errors of
1.49 and 1.85 respectively.

In Table V, the best results (in bold) for the Mean, Median
and Trimean errors are obtained using enclosing hypercube
autocorrelations, and the best overall is for the enclosing
hypercube for the MUN dataset. The enclosing hypercube
approach also works best overall. In Table V, green highlights
the best result for a given statistic and reflectance training set.

It is remarkable how well colour correction based on the
bounding hypercube works in this experiment. One might
reasonably infer that for the REP reflectances the autocor-
relations calculated using our bounding hypercubes are more
representative than those generated by the raw statistics of the
underlying measured spectral data. Of course, if the REP data
had replicated, for example, the statistics of the MUN or any
other measured data set then the corresponding autocorrelation
(calculated for MUN) would necessarily deliver slightly better
colour correction. However, this experiment has shown that our
bounding hypercube generalizes well to unseen data.

Finally, we comment on the interesting question of what
these numbers practically mean. We point the reader to Fig-
ure 10 which compares the results for our bounding hypercube
correction and those of LS. Here, we can see how our method
obtains lower errors than those of LS. In general, colors are
mapped with low error for both cases. But, as we can see in
the zoomed part of this image, our improvement is clear in
different areas.

For completeness, we also computed correction transforms
using the Maximum Ignorance with Positivity (MIP) [9]
and the Minimal Knowledge-I (MK-I) [34] assumptions. See
Table VI for summary statistics. [35]. Overall, computing the
autocorrelation using bounding hypercubes works better than
either of these two approaches. And, reflectance-based MK-II
works better than MK-I (which works independently of any
assumption about the reflectance set).

1) The Stability of Color Correction: We can ask a further
question regarding Color Correction: Given a color signal, how
stable is the solution computed when training with different
datasets?

Here, we evaluate the stability of 3 color correction meth-
ods: Simple Least-Squares (LS), MKII, and our bounding
hypercube approach. In particular, we want to consider the
variance in the mapping of a set of RGB data. Specifically, if
we train on a reflectance set (the same reflectance set drives
LS, MKII, and Our approach) we will get a set of estimated
XYZs. But, if we train these three color correction methods
using different reflectance sets the estimated XYZs will vary.
It follows, per method, we can calculate the estimated XYZs
for different training reflectance sets and from these XYZ
estimates we can calculate the variance in the estimated data.
Ideally, we would like a color correction method to have a
low bias (it is close to the actual XYZs) and a low variance
(it works well given different training data sets).

The spectral data we use here comprises the 28 cameras
x 102 illuminants x 14336 real world reflectances (REP)
yielding 40943616 RGBs. As training data, we use one of the 5
reflectance sets: MUN, OBJ, DUP, NAT, or MOD. That is per
reflectance training set we will estimate corresponding XYZs.
Per reflectance, illuminant and camera (and per method) we
will have 5 different estimates of the XYZs. We say a color
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TABLE V

COLOR CORRECTION RESULTS WHERE THE CORRECTION TRANSFORMED IS CALCULATED USING THE ENCLOSING HYPERCUBE AUTOCORRELATION,
THE LEAST-SQUARES(STANDARD AUTOCORRELATION), AND MINIMAL-KNOWLEDGE II; AND THEN TESTED ON THE REP REFLECTANCE SET.

AVERAGE FOR 28 CAMERAS OF THE MEDIAN, MEAN, AND TRIMEAN DELTA E

Fig. 10. Visual comparison between our approach and LS for a real image of the REP dataset. This result considers OBJ dataset as training reflectances and
illuminant D65.

TABLE VI

COLOR CORRECTION RESULTS FOR MAXIMUM IGNORANCE WITH POS-
ITIVITY (MIP) AND MINIMAL-KNOWLEDGE I (MK-I) TRANSFORMS

(WHICH ARE DERIVED WITHOUT REFERENCE TO A TRAINING SET)
THEN APPLIED TO THE REP REFLECTANCE SET. AVERAGE FOR

THE 28 CAMERAS OF THE MEDIAN, MEAN, AND TRIMEAN
DELTA E

correction method is stable if these 5 estimates are close to
one another.

To measure the stability of an algorithm we calculate the
following measure. We find the minimum radius (in CIE Lab
space) enclosing all 5 estimates—this means, the smallest
DeltaE radius that will convey all the points—. Thus, we
obtain 40943616 values (28 cameras x 102 illuminants x
14336 reflectances). Then, we calculate the mean, median and
95% from these.

Results for this computation are shown in Table VII. We can
clearly see that our proposed hypercube approach -bottom row-
is more stable than the standard Least-Squares autocorrelation
approach, and the MK-II.

The code for integrating over a hypercube of reflectances in
the privileged cosine basis coordinate space and an example

TABLE VII

STABILITY MEASURE—AS THE RADIUS CONTAINING ALL POSSIBLE
ESTIMATES—FOR THE DIFFERENT METHODS. WE CAN CLEARLY SEE

THAT OUR METHOD IS MORE STABLE THAN THE OTHERS

least squares calculation can be found in https://github.com/

jvazquezcorral/Bounding Hypercube.

VI. DISCUSSION

The representation we developed in this paper —the enclos-
ing hypercube in a privileged coordinate frame— is very much
in the maximum ignorance direction [9], i.e., it is a rich enough
model to account for all likely reflectances. Additionally, the
enclosing hypercube also avoids accounting for many unlikely
reflectances.

Another approach to combining datasets would have been
simply to stack the 4 reflectance sets - MUN, OBJ, DUP and
NAT) - together and use the combined set, denoted STACK,
to calculate the reflectance autocorrelation. However, we do
not believe this is a maximally ignorant way to proceed.
Indeed, the researchers who compiled the 4 datasets did not
claim that the reflectances were in any way representative of

https://github.com/jvazquezcorral/Bounding%5FHypercube
https://github.com/jvazquezcorral/Bounding%5FHypercube
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all the reflectances one might measure. The way to make
them representative would be to allow convex combinations
of the reflectances [36]. But, in making such an allowance,
we follow the same path that led us to the enclosing hyper-
cube of reflectances. In our view, given the dimensionality
of reflectance data, it is not possible to sample all likely
reflectances.

This being said, we repeat the color correction experiment
for the real reflectances REP (28 cameras, 102 lights, and
REP comprising 14336 reflectances). For each camera and
light pair, we calculate least-squares using the autocorrelation
calculated from STACK. The median, mean, and trimean
errors are, respectively, 1.34, 2.02, and 1.45. Note these are a
little worse than for MOD (1.21, 2.01 and 1.34). Of course,
to generalize we could calculate the enclosing hypercube of
STACK, but this simply gives us performance similar to the
enclosing hypercube of MOD. In summary, for the experiment
using real reflectances, color correction using a stacked dataset
does not work as well as an enclosing hypercube approach.

But is our enclosing hypercube representative of all
reflectance data? Almost certainly, there will exist reflectance
that could increase the volume of our enclosing hypercube
and, in so doing, change the related autocorrelation statistics.
However, the reflectance sets used here have been measured
over the last 50 years, often with the idea of measuring typical
reflectances. For example, the natural reflectances measured in
[2] are simply flowers, leaves, and bark found at the University
of Keele campus. There is no evidence that the authors in that
study or, indeed, in any previous studies have sought not to
avoid difficult reflectances.

VII. CONCLUSION

In this paper, we have proposed that the space of reflectance
data should not be sampled but, rather, integrated, introducing
the idea of using the convex closure of a reflectance data
set. To this end, we have shown how to approximate these
convex closures by their enclosing hyper-cube (in a privileged
coordinate system). We have also shown the utility of such an
approach for the case of color correction by integrating over
the border of the defined hypercube. Our proposed approach
avoids the bias present in color correction due to the choice
of reflectance datasets. Our results show that, under simulated
real-life scenarios, i.e. when training and testing reflectance
datasets are different, our method competes with and even
outperforms state-of-the-art color correction algorithms. Addi-
tionally, we have also shown that the results of our approach
are more stable despite the change in the training reflectance
dataset, making our method more reliable for its deployment
in the wild.
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