
PHYSICAL REVIEW RESEARCH 7, 023248 (2025)

Kibble-Zurek scaling of the superfluid-supersolid transition in an elongated dipolar gas
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We simulate interaction quenches crossing from a superfluid to a supersolid state in a dipolar quantum gas of
164Dy atoms, trapped in an elongated tube with periodic boundary conditions, via the extended Gross-Pitaevskii
equation. A freeze-out time is observed through a delay in supersolid formation after crossing the critical point.
We compute the density-density correlations at the freeze-out time and extract the frozen correlation length for
the solid order. An analysis of the freeze-out time and correlation length versus the interaction quench rate allows
us to extract universal exponents corresponding to the relaxation time and correlation length based on predictions
of the Kibble-Zurek mechanism. Over several orders of magnitude, clear power-law scaling is observed for both
the freeze-out time and the correlation length, and the corresponding exponents are compatible with predictions
based on the excitation spectrum calculated via Bogoliubov theory. Defects due to independent local breaking
of translational symmetry, contributing to globally incommensurate supersolid order, are identified, and their
number at the freeze-out time is found to also scale as a power law. Our results support the hypothesis of a
continuous transition whose universality class remains to be determined but appears to differ from that of the
(1 + 1)-dimensional XY model.
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I. INTRODUCTION

Spontaneous breaking of translational symmetry in a su-
perfluid can result in an exotic phase of matter that maintains
phase coherence while exhibiting periodic crystalline order: a
supersolid [1–6]. Supersolids have been realized in ultracold
quantum gases using spin-orbit-coupled systems [7,8] and
with strongly magnetic dipolar atoms [9–11]. In the latter, the
transition to a solid phase can be achieved either by starting
from a thermal gas and quenching the temperature [11–13] or
starting from a superfluid and changing the interparticle inter-
action strength [9–11]. Furthermore, depending on the system
parameters and geometry, the quantum phase transition from
superfluid to supersolid has been found to be either continuous
or discontinuous [14–20]; however, the exact critical behavior
and the corresponding universality classes of these transitions
have yet to be determined.

When tuning a control parameter λ towards its critical
value λc at a continuous phase transition, characteristic scales
diverge following universal power laws, defining the critical
behavior at the phase transition and being independent of the
microscopic details. Precisely, the correlation length ξ and re-
laxation time τ diverge as ξ (λ) ∼ |λ − λc|−ν and τ (λ) ∼ ξ z ∼
|λ − λc|−νz, respectively, with ν and z the critical exponents
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determined by the universality class of the transition [21–23],
see Figs. 1(a) and 1(b).

The theory of the Kibble-Zurek mechanism (KZM)
[24–27] provides a framework for understanding symme-
try breaking in a dynamical setting. It predicts that critical
slowing down and the divergence of both the characteristic
length and time scales prevent the system from preserving
an instantaneous parametric equilibrium state in quenches
across continuous phase transitions. More specifically, in a
quench of the control parameter λ, such as λ − λc ∝ t/τQ,
the relaxation time τ (t ) rapidly increases and surpasses the
time left to the transition at time t = −τ̂ = −τ (τ̂ ), so-called
freezing-out time. For t > −τ̂ , adiabaticity is broken, the
system becomes frozen, and fluctuations present remain em-
bedded in the system until it unfreezes, which similarly occurs
at a certain time after crossing the critical point, namely for
t > τ̂ . During the freeze-out period and as adiabaticity is lost,
domains with distinct local order roughly of size ξ̂ = ξ (τ̂ )
persist.

Based on the equilibrium scaling laws above, the freeze-
out time and domain size for a linear quench of the order
parameter at a constant rate τQ scale as

τ̂ ∝ τ
zν/(1+zν)
Q ≡ τ

ζKZ
Q and ξ̂ ∝ τ

ν/(1+zν)
Q ≡ τ

νKZ
Q , (1)

respectively, see Figs. 1(a) and 1(b). Higher quench rates lead
to the breakdown of adiabaticity at lower values of τ̂ (faster
supersolid formation) and correspondingly lower ξ̂ (smaller
domain sizes). The boundaries of these domains can be
identified as defects, corresponding to sudden changes in
the value of the order parameter in space, and separating
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FIG. 1. The KZM in quenches across the superfluid-supersolid transition. Panel (a) depicts the typical KZM schematic. The coherence
time τ (blue curve) diverges at the critical point. Two quench ramps linear in time t (slow: green dashed, fast: yellow dotted) of a control
parameter are indicated. The freeze-out time τ̂ occurs when |t | crosses τ . Panel (b) depicts the diverging correlation length ξ (gray solid
curve), which becomes frozen at ξ̂ , as depicted here for the two ramps of panel (a). Panel (c) shows the phase diagram for the elongated
dipolar system, with a continuous (solid line) or discontinuous (dotted line) transition from superfluid to supersolid phases, and a crossover
from supersolid to insulating droplet (dashed line). Sample isodensity surfaces for each phase are shown. The start (empty circle) and end
points (filled circle) for the quenches considered in this paper are indicated. The quench protocol is shown in panel (d), with the total quench
time τQ varying throughout the paper. Most quenches follow the solid line, while for extremely fast quenches (τQ < 10 ms), the dashed line
is followed.

independent causally disconnected regions where the symme-
try is independently broken. By studying the scaling of the
freeze-out time, domain size, or remaining defects, one can
extract critical scaling exponents of the underlying transition
and thereby probe the transition universality class.

The KZM has been successfully applied to a wide range
of systems [27–29]. This is in particular true for quantum
gases where it has been studied both theoretically [30–44],
and experimentally, via temperature quenches [45–58] and
in quantum phase transitions [51,59–67]. The transition to
supersolid states offers a new context, where the KZM could
be induced, and its study may yield new insights into the
nature of the underlying transitions.

In this paper, we study the KZM in the context of a
continuous quantum phase transition from a superfluid to a
one-dimensional supersolid in an elongated tube at a fixed
density by tuning the s-wave scattering length as, see Fig. 1(c).
We cross the transition at a finite rate and examine the scalings
of the characteristic scales with the quench rate. In Sec. II, we
present the equations of motion for the dipolar gas, illustrate
how the ground state phase diagram is calculated, and present
details of our dynamical simualtions. Sections III D and III C
present our observations for power-law scalings of the freeze-
out time, domain size, and defect densities, respectively, along
with the corresponding scaling exponents. In Sec. III D, based
on these KZM scalings, we extract the critical exponents ν

and z of the superfluid-to-supersolid transition and comment
on its universality class.

II. MODEL

A. Equations of motion

To simulate the dipolar gas, we begin with the extended
Gross-Pitaevskii equation (eGPE),

ih̄
∂�(r, t )

∂t
=

[
− h̄2∇2

2m
+ V (r) + g|�(r, t )|2

+ γQF|�(r, t )|3

+
∫

d3r′Udd(r − r′)|�(r′, t )|2
]
�(r, t ), (2)

for atomic species with mass m and contact interaction
strength g = 4π h̄2as/m for an s-wave scattering length as.
We assume the system is harmonically trapped along two
directions via V (r) = 1

2 m(ω2
y y2 + ω2

z z2) while the x direction
is untrapped. The dipole-dipole interaction (DDI) is given by
Udd(r) = μ0μ

2
m(1 − 3 cos2 θ )/(4π |r|3) where θ is the angle

between r and the z axis along which the dipoles are polarized.
Each atom has a magnetic moment μm, and μ0 is the vacuum
permeability. The supersolid phase is protected from col-
lapse [68–70] by the beyond-mean-field quantum fluctuations
term proportional to γQF = 32

3 g(a3
s /π )1/2Q5(εdd) [71,72],

with Q5(ε) = Re{∫ 1
0 du[1 + (3u2 − 1)ε]5/2}, where Re{·} de-

notes the real part, εdd = add/as, and add = μ0μ
2
m/(12π h̄2).

The wavefunction is normalized to the total particle number
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N = ∫
d3r|�(r)|2. Note that the eGPE does not account for

the quantum fluctuations in a fully self-consistent manner (as
the higher-order diagrams are taken into account nondynam-
ically). The resulting equation of motion [Eq. (2)] is thereby
again mean-field-like.

We use a reduced three-dimensional (3D) model intro-
duced in Refs. [15,73,74], which assumes that the wavefunc-
tion �(r) is separable,

�(r) = ϕ(y, z)ψ (x, t ), (3)

with the radial wavefunction

ϕ(y, z) = 1

�
√

π
exp

[
−ηy2 + z2/η

2�2

]
, (4)

where � and η are variational parameters corresponding to
the 1/e condensate width and ellipticity (due to magnetostric-
tion), respectively, obtained via minimization of the eGPE in
imaginary time. The reduced eGPE then reads

ih̄
∂ψ (x, t )

∂t
=

[
− h̄2

2m

∂2

∂x2
+ E⊥ + g

2π�2
|ψ (x, t )|2

+ 2γQF

5π3/2�3
|ψ (x, t )|3

+
∫

dx′U 1D(x − x′)|ψ (x′, t )|2
]
ψ (x, t ), (5)

where E⊥ = h̄2(η + 1/η)/(4m�2) + m�2(ω2
y/η + ηω2

z )/4,
and where we have defined the effective quasi-one-
dimensional (quasi-1D) DDI U 1D(x − x′), which, for
dipoles polarized along the z axis, has the Fourier
representation, Ũ 1D(k) = μ0μ

2
m[4 − 2η − 3

√
ηk2�2 e

√
ηk2�2/2

Ei(−√
ηk2�2/2)]/[12π�2(1 + η)], where Ei(k) is the

exponential integral, and k is the conjugate momentum
to the x coordinate. We will focus on an elongated
gas of 164Dy, with μm = 9.93μB in terms of the Bohr
magneton μB, in an elongated tube with trapping frequencies
{ωy, ωz} = 2π × {150, 150} Hz. The eGPE results in unitary
time evolution, conserving total atom number. However, due
to the fact that we are quenching the scattering length, total
energy is not conserved over the course of the dynamics.

B. Ground states

Prior to performing any quenches, we consider the ground
state properties of the system. In order to determine the ground
state of the system, and therefore the phase diagram, we per-
form an imaginary-time evolution of the reduced eGPE given
in Eq. (5). We apply a split-step Fourier algorithm with an
adaptive time step. For the ground state and dynamic simula-
tions (next section), a spatial grid of approximately 0.04 µm
is selected, such that there are always approximately 5–8 grid
points per healing length, depending on the location in the
phase diagram. By evaluating the long-range interaction term
in momentum space, it is computationally efficient to simulate
a single unit cell of the supersolid crystal (for ground-state
calculations only) and allow alias Fourier copies of the simu-
lation cell to self-interact [75]. By minimizing the energy per
particle with respect to the variational parameters �, η, and

primitive unit cell length Luc, it becomes possible to determine
the ground state at each point in the phase diagram.

The phase diagram for this system is sketched in Fig. 1(c),
cf. Refs. [15,16]. In order to characterize the phases of the
system, we make use of Leggett’s estimate on the upper bound
of the superfluid fraction [5],

f s = L2

N

[∫
dx

(∫
dydz|�|2

)−1
]−1

, (6)

where L = ∫
dx. A value of f s = 1 indicates the uniform

superfluid regime, 0.1 < f s < 1 for the supersolid phase, and
f s � 0.1 corresponds to insulating droplets. The boundary to
the latter is not captured by our eGPE simulation, and the
threshold choice of 0.1 is arbitrary, yet the details of this tran-
sition are irrelevant to the present work. We will be using f s as
an order parameter for the superfluid-supersolid transition. It
should be remarked that the expression in Eq. (6) corresponds
strictly to an estimate of the upper bound of the superfluid
fraction. However, a lower bound has also been derived [76],
and in the case of a 1D system where the modulation ex-
ists along one direction (the case we consider here), the two
bounds are exactly equal. Using the density modulation con-
trast C = [max(n) − min(n)]/[max(n) + min(n)] as an order
parameter instead of f s was found to give similar results.

The order of the transition depends on the linear den-
sity [15,16,77] (see also the experiment in Ref. [78]), n̄ =
N/L, and is discontinuous at both low (n̄ � 800 µm−1) and
high (n̄ � 4500 µm−1) densities. In the intermediate regime,
the transition is continuous: the ground state’s modulation
emerges smoothly, precisely when the roton mode, calculated
with Bogoliubov theory, becomes unstable in the dispersion
relation. In this way, the continuous phase transition can
be pinpointed precisely, whereas in the first-order regime, a
bistable region emerges where the true ground state is already
modulated, even though the roton has not yet fully softened.
In this paper, as a first study of the KZM applied to dipolar su-
persolids, we restrict our quenches to an intermediate regime
in which the transition is expected to be continuous, taking
n̄ = 2500 µm−1, for which the superfluid-supersolid transition
is found to occur at as = a(GS)

c ≈ 90.5a0.

C. Ramp into the supersolid phase

In this work, the initial state is selected to be the ground
state of the uniform superfluid regime at ai

s = 96a0. Ther-
mal noise at a temperature of T = 20 nK is then added (see
Appendix A for details), typically adding approximately 3%–
5% excited atoms, and allowed to equilibrate for 10 ms. The
initial noise is crucial to trigger the dynamics away from the
unstable equilibrium. The parameters of this noise are cho-
sen to be close to experimentally relevant parameter ranges
and noise structures, while remaining sufficiently close to the
ground state. We then simulate the evolution of the system
through the eGPE (unitary evolution) and implement a linear
ramp of the scattering length into the supersolid regime to
a f

s = 88a0, i.e., as(t )/a0 = 96 − 8t/τQ, with the ramp time
set by τQ, which takes values between 1 ms and 770 ms. A
schematic of the quench protocol is shown in Fig. 1(d). By
including stochastic noise in the initial state, and performing
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500 independent simulations with identical quench parame-
ters, the dynamics are simulated within a truncated Wigner
framework, thereby going beyond a pure mean-field analysis
[79].

The variational parameters are fixed at � = 1.08 µm, η =
4.25, corresponding to the values in the ground state at
88a0. The total system size is selected to be approximately
L = 344 µm such that the ground state achievable by per-
fect adiabaticity would consist of exactly Nuc = 128 primitive
unit cells of the supersolid crystal. See also the appendixes
for results with zero temperature (quantum) noise only (Ap-
pendix A), and at larger system sizes (Appendix C).

For the fixed values of the variational parameters above,
the critical point of the system is located at ac ≈ 91.05a0.
It should be noted that this is slightly shifted from the
ground-state critical point a(GS)

c ≈ 90.5a0 [see previous sec-
tion, Fig. 1(b), and Ref. [15]]. This shift is expected since
� and η vary slightly across the phase diagram and do not
remain fixed. We do not expect this effect to have a signif-
icant impact on our results due to the continuous character
of the transition. The shift of the critical point due to fixing
the variational parameters is less than the shift set by using
the dimensionally reduced theory. In Appendix B, we show
some comparisons of our results with full 3D simulations.

Figure 2 shows a sample quench across the superfluid-
supersolid transition for τQ = 100 ms. In Fig. 2(a), a portion
of the 1D density as a function of time is shown. Density
modulations emerge after the critical point is crossed with an
apparent delay compared with the expectation for an adiabatic
crossing of the transition [80,81]. The nonuniformity of the
density modulation front suggests that independent regions
begin to form domains at different times. This is further
emphasized in Fig. 2(b), which shows the full 1D density
profile with clearly identifiable regions where the modulation
has developed only locally. Figure 2(c) shows the number of
density peaks as a function of time (averaged over 500 inde-
pendent runs) relative to the expected number in the ground
state (128 in this case), showing a smooth development of
modulations after the transition is crossed. Furthermore, the
quench appears to produce an excess of density modulation
peaks, first overshooting the long-time average, and then set-
tling to a value above unity within the time scales we consider
here. The number of peaks does not settle down to the ex-
pected Npeaks = Nuc within at least a hundred milliseconds,
indicating that some frustration remains after the quench has
been completed, and thus some excess energy remains. Such
frustration has also been observed in phase transitions of other
superfluids where coarsening dynamics does not occur in low-
dimensional configurations [44,82].

III. SCALING PROPERTIES

A. Freeze-out time

According to KZM theory, for a linear quench across a
continuous phase transition, the freeze-out time is known to
scale as τ̂ ∝ τ

ζKZ
Q , where ζKZ = zν/(1 + zν) as in Eq. (1). In

our system, this indicates that there will exist a quench rate-
dependent delay between the crossing of the phase transition
and formation of a density modulated superfluid, indicative of
a supersolid state.

FIG. 2. Quench across the superfluid-supersolid transition. Panel
(a) shows the density n(z) of a part of the system, for a sample
quench, equilibrating for 10 ms (leftmost dotted line), then ramping
across the critical point (white dashed line) for 100 ms until the final
value of 88a0 (right dotted line) is reached. A density cut along the
black dashed line is shown in panel (b) for the full system. Panel
(c) shows the number of supersolid peaks per ground-state unit cell
as a function of time for the same quench rate as in panels (a) and
(b), averaged over 500 independent noise realizations, with an inset
showing an overshoot and rebound following the transition.

We characterize the emergence of the density modulation
through the evolution of the superfluid fraction, estimated via
Eq. (6) and ensemble averaged over 500 realizations. In Fig. 3,
we show the dynamics of f s, which we take to be an order
parameter for the superfluid-supersolid transition. In Fig. 3(a),
we plot f s across the quench, shifted by the time at which the
transition is crossed, as(tc) = ac, so that all quenches cross
the transition at t − tc = 0. After a delay, density modulation
develops in the system, leading to a depression of the super-
fluid fraction. This reduction is nonmonotonic, and there are
oscillations in f s as the system exhibits a rebounding of the
spatial density modulations. This oscillation suggests that an
amplitude mode is excited, an example of which is the gapped
Higgs excitation that emerges from the roton instability; see
Sec. III D and Ref. [75] for a more in-depth discussion of
the emergence of this Higgs mode. In all quenches, there is
a final trend towards the ground-state superfluid fraction of
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FIG. 3. Delay in supersolid formation for various quenches
shown via the decrease of f s from unity. Panel (a) shows the full
evolution, with the inset focusing on the initial one-dimensional
supersolid formation. Slower quenches lead to a greater delay in the
formation of a supersolid following the crossing of the critical point.
In panel (b), the time delay τ̂ at which the superfluid fraction drops
below 0.98 is shown as a function of the quench time τQ, with the
best fit τ̂ ∝ τ

0.352(3)
Q shown as a dashed straight line. Standard errors

on the data are shown due to the statistical spread over 500 trials.
The inset shows the normalized residuals from the data to the best
fit. Open markers represent quenches past 88a0 (see main text).

approximately f s = 0.323, settling slightly above this value
with some oscillations remaining, indicating some residual
excitations [see also discussion of Fig. 2(c)].

In order to avoid the influence of the excited amplitude
mode and any coarsening effects it may have on the system, in
this section we consider only the onset of supersolid formation
by taking τ̂ to be defined by the difference between the time
at which the critical point is crossed to when f s first drops
below 0.98, see inset to panel (a). Using this definition of τ̂ ,
in Fig. 3(b), we show the scaling as a function of the quench
time τQ. We see clear power-law scaling in agreement with
Eq. (1) and fit τ̂ ∝ τ

0.352(3)
Q . For the data in this and subsequent

figures, we also plot the normalized residual, for Fig. 3 defined
by (τ̂ − fit[τ̂ ])/fit[τ̂ ], where fit[τ̂ ](τQ) = Aτ

ζKZ
Q is the best fit

of τ̂ (τQ) in terms of a pure power law, parametrized by a

real constant A and an exponent ζKZ. In Appendix E, we also
demonstrate that the extracted ζKZ exponent can be used to
rescale f s(t ) at early times onto a single universal scaling
function.

We select a broad range of quench times to cover what
might be considered “reasonable” within an experimental set-
ting, however it should be noted that, for inverse rates faster
than roughly τQ ≈ 10 ms, the quench must be extended past
the selected final as = 88a0, and eventually into the insu-
lating droplet phase (for all these points we choose a final
as = 60a0). This is because for very fast quenches, the finite
width of the supersolid region would require stopping the
ramp during the freeze-out time, resulting in an effectively
nonlinear ramp. The quench protocol shown in the schematic
of Fig. 1(d) becomes modified to follow the dashed line
instead—starting and stopping at higher and lower values
of the scattering length, respectively. Our measures of KZM
should not depend on this fact, since we only concern our-
selves with initial supersolid formation following the crossing
of the critical point. However, it is important to note that from
a practical point of view, there is, generically, an upper limit
to how fast one can quench into a supersolid. Throughout the
present work, we mark the data obtained by quenches that are
taken past the supersolid phase boundary by open symbols.

B. Correlation length

During a linear quench, the correlation length remains
frozen at a value ξ̂ when entering the freeze-out regime,
which, according to KZM theory, scales as ξ̂ ∝ τ

νKZ
Q , with

νKZ = ν/(1 + zν), cf. Eq. (1). Typically, the one-body den-
sity matrix g(1)(x, x′) = 〈ψ∗(x)ψ (x′)〉 is used to characterize
the superfluid nature of condensates [6,83] (i.e., off-diagonal
long-range order) and can be used to define a correlation
length associated with the typical range of phase coherence.
Since the transition to a supersolid is signaled by a growth of
periodic diagonal long-range order via density modulations in
a system that remains largely phase coherent on both sides of
the transition, it can be characterized by the density-density
correlation function, viz.,

g(2)(x − x′) = 1

n̄2
〈ψ∗(x′)ψ∗(x)ψ (x)ψ (x′)〉, (7)

where we take 〈. . .〉 to indicate an ensemble average, in this
case corresponding to a statistical numerical average over
500 independent realizations of the initial noise. Translation
invariance allows us to interpret the ensemble average also
as a spatial average and so this function is evaluated di-
rectly in Fourier space via g(2)(x) = F−1[n(−k)n(k)](x). In
Figs. 4(a)–4(c), the solid colored lines show this function for
three sample quench rates at the onset of supersolid formation
[i.e., when the superfluid fraction is crossing f s(t ) = 0.98].

Due to the periodic crystalline structure, g(2) is highly oscil-
latory while also decaying towards the background superfluid
level at that instant. The decay of the initial oscillations indi-
cates that there exists a range over which the supersolid has
formed a regular density structure. We find that the numeri-
cally extracted g(2) is empirically well approximated by the
function

fit[g(2)](x) = A + (1 − A) cos (Kx)e−x2/X 2
, (8)
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FIG. 4. Scaling of the correlation length. Panels (a)–(c) show
the correlation function g(2)(x) (solid) for τQ = {1, 100, 770} ms,
respectively. In each panel, g(2)

fit (x) is plotted as a black dashed line.
Panel (d) shows the width X for the fit g(2)

fit (x) for all quench dura-
tions. The best fit X ∼ τ

0.335(3)
Q is shown as a dashed straight line.

Colors and marker filling match Fig. 3. The inset shows the normal-
ized residuals (X − fit[X ])/fit[X ] of the best power-law fit fit[X ]
(τQ ) = Bτ

νKZ
Q of X .

where {A,K,X } are fitting parameters. In general, we expect
A to match closely with the average background superfluid
value f s(t ), while the wave vector K of the modulation in g(2)

captures the wave vector of the state’s density modulation and
should be close to the roton wave number krot that triggers the
instability. The decay of supersolid correlations is set by the
width X , which we expect to scale as the correlation length.

In Figs. 4(a)–4(c), the best fit of the function g(2)(x) is
shown as a black dashed line in each panel. Figure 4(d) shows
the fit parameter X over all quenches: we are able to observe
a clear power-law scaling in agreement with Eq. (1), and plot
log10(X /µm) together with the corresponding KZM power-
law fit, X ∼ ξ̂ ∼ τ

0.335(3)
Q . Similar scaling can be extracted

by simply considering the width of a root-mean-squared en-
velope of g(2)(x) as the oscillations decay (not shown here).
The decaying envelope indicates that regular periodic order
is not maintained globally across the crystal, but rather that

the system forms locally regular domains that are globally
incommensurate. There also appears to be a small revival in
supersolid coherence in Fig. 4(a) that is not captured by our
fitting function. We expect that revivals of this kind become
less relevant with larger statistical ensembles. As in the case
of the superfluid fraction, we are able to use the extracted
νKZ in order to rescale g(2)(x) at different quench rates onto
a universal scaling function, shown in Appendix E. In this
case, it is only the envelope of the oscillations that scales
universally, since the typical supersolid oscillation period is
set by the roton.

The Gaussian spatial decay of the supersolid order is also
notable, since generically order parameters will decay ex-
ponentially in the noncritical regime. Exceptions exist, for
example, in free-fermion spin chains, where interdefect cor-
relators follow Gaussian decay [84–87] following a quench.
Nonconservative fields undergoing phase ordering (e.g., in the
1D XY model) at late times [88], beyond the Kibble-Zurek
regime, can also yield transient Gaussian correlators.

C. Crystal phase and defect densities

Another way to define supersolid correlation is to identify
a spatially varying crystal phase along the full system and
evaluate the phase coherence over space. This definition is
instructive and allows us to directly identify the defects in
the crystal structure through phase jumps. Below, we describe
how to define the crystal phase, check the scaling of the
correlation length through that of the crystal phase coherence,
and study the scaling of the number of defects.

The local phase φ of the crystal at a point x = x j can be
defined in the following way:

φ(x j ) = 2π

d̄
(x j − jd̄ ), (9)

where d̄ = N−1
peaks

∑′
j (x j+1 − x j ) is the average peak-to-peak

distance, and the prime indicates that the sum is taken over
the density peaks, numbered from j = 1 to Npeaks. This phase
is schematically depicted in Fig. 5(a), defining φ(x j ) as the
normalized distance of the individual peaks from their respec-
tive adjacent minimum in some reference lattice with lattice
constant d̄ (vertical dashed lines). In analogy with a perfectly
coherent uniform superfluid, a globally coherent crystal would
therefore have φ(x j ) = constant. Numerically, this phase is
the phase factor of a Fourier transform of each unit cell of
size d̄ .

The supersolid coherence can also be quantified via its cor-
responding crystal phasor eiφ(x) and its two-point correlation
function,

C(x − x′) = 〈e−iφ(x)eiφ(x′ )〉. (10)

Unlike for g(2), the phase φ(x) is, in each run, only evaluated
at the (randomly located) positions x j of the density maxima,
which results in a much coarser structure. Figure 5(b) shows
the crystal correlation function (10) following the quench,
at the moment t when the superfluid fraction drops below
f s(t ) = 0.98, i.e., at t = τ̂ . The full width at half maximum of
C(x) is proportional to the correlation length ξ̂ at the freeze-
out time and is then plotted as a function of quench time in
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FIG. 5. Crystal phase and correlation function C(x). A schematic
for the crystal phase is shown in panel (a), where a modulated
supersolid density structure with (in general unevenly spaced) peaks
at x j , marked with dotted lines. The normalized distance from those
peaks to some reference set of points equally spaced by d̄ , shown as
vertical dashed lines, gives the crystal phase φ(x j ) at that peak. Panel
(b) shows the correlation function (10) for the same quenches as
used for Fig. 3. The half width at half maximum is depicted in panel
(c), together with the power-law fit ξ̂ ∝ τ

0.275(3)
Q , with the normalized

residuals computed in analogy to those in Fig. 3 and shown in the
inset. Colors and marker filling for panels (b) and (c) match those in
Fig. 3.

Fig. 5(c). The extracted correlation length shows power-law
scaling, ξ̂ ∝ τ

0.275(3)
Q , a somewhat smaller estimate than the

scaling of g(2). In Appendix D, we discuss the close relation-
ship between C(x) and g(2)(x).

In computing C(x), it is the averaging over hundreds
of trials that ultimately smooths out the data. From the
resulting averages, one obtains a smooth function that nev-
ertheless develops kinks where its slope changes suddenly
due to the higher likelihood of finding a lattice site below
that distance. Importantly, at faster quenches, the separa-
tion of scales begins to break down: the width of C(x)
becomes on the order of the density modulation periodicity
Luc ≈ 2.6 µm. Without the separation of scales, the notion

of a KZM domain and a supersolid defect becomes poorly
defined.1

The KZM is often associated with the formation of
topological defects [89,90], which in the case of uniform
superfluids typically take the form of vortices or solitons
[30,31,33,35,41,61,91], presenting themselves as jumps in
the phase, ultimately separating regions of different gauge
symmetry. KZM-induced supersolid defects in the one-
dimensional system can be understood instead as sudden
jumps in the crystal phase φ, noted �φ. Based on the fun-
damental predictions of KZM theory quoted above, the defect
density can be estimated to scale as

nd ∼ ξ d

ξD
∼

(
1

τQ

)(D−d ) ν
1+zν

≡ τ
(d−D)νKZ
Q , (11)

where d and D are the dimensionality of the defects and
system, respectively. In the case of sudden kinks in the crystal
phase alone, we therefore expect our results to correspond to
d = 0 and D = 1, indicating that the defect density scaling
should match that of ξ̂ .

In Fig. 6, we plot the number of defects (∝nd ) as a function
of quench rate. Due to the continuous nature of φ, there
remains some ambiguity as to the required size of the crystal
phase jump to correspond to a defect. We therefore show the
scaling for a range of phase jumps corresponding to �φ >

{π/6, π/5, π/4, π/3, 2π/5, π/2}. In all cases, a clear scaling
of the number of defects with the quench rate is observed.
At faster quench rates, the data appear to curve and saturate
towards a behavior that indicates that the defect density begins
to be independent of the quench rate. In our case, we again
attribute this to the breakdown of scale separation in our sys-
tem: typical KZM domain sizes begin to approach the crystal
wavelength, below which any notion of a supersolid defect
becomes poorly defined. This saturation behavior has also
been seen in other systems [50,53,56] and has been described
in terms of a universal breakdown [92] of the KZM at fast
quench rates.

In order to select an appropriate definition of a crystal
defect, we consider their number distribution statistics. In
what has become known as beyond-KZM physics [93,94],
universality in defect formation is not restricted to their mean
number, but the distribution itself. Since defect formation
due to the KZM corresponds to statistically independent
events (random successes of Bernoulli trials at different points
in space), the discrete probability distribution is binomial
[95,96]. In the continuum limit, where the defects are suffi-
ciently dilute to remain uncorrelated, we therefore expect the
probability of counting N defects to obey a Poisson distribu-
tion [93,97,98],

P(N ) = 1

N !
λN e−λ, (12)

where the expected value λ = 〈N 〉 is then set by the quench
rate according to the standard KZM scaling.

1We therefore suggest that care must be taken when using a func-
tion like C(x) to determine KZM scaling results, especially at quench
rates where ξ begins to approach Luc, and perhaps greater statistics
are needed for proper convergence of this measure.
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FIG. 6. Defect density scaling. Panel (a) illustrates a crystal de-
fect from one simulation run in the density n(x) (brown shaded
area) and the crystal phase φ(x). Defects are identified as lo-
cal jumps in the crystal phase φ(x). Panel (b) reports on the
number of crystal defects observed at the supersolid formation
time for different minimum thresholds of phase jumps, �φ >

{π/6, π/5, π/4, π/3, 2π/5, π/2}, marked as {circles, triangles,
squares, inverted triangles, diamonds, stars}, respectively. Light-gray
lines along data sets with the same defect size are shown to guide the
eye. The best fit line for nd ∝ τ

−νKZ
Q is shown for �φ > π/2 only

(dashed). Normalized residuals determined in analogy to those in
Fig. 3 are shown in the inset. Colors and marker filling for panel
(b) match those in Fig. 3.

For a selection of defect sizes and quench rates, we plot in
Fig. 7 the defect count probabilities within our total system
following a quench, and compare them to the best-fit Poisson
distribution curves P(N ). The difference between the curves
is quantified through the average sum of squared residuals
(RSS). A stricter definition of a defect (i.e., larger �φ) leads
to better agreement (smaller RSS) with Poisson distributions
across different τQ, while smaller phase jumps yield narrow
peaks that disagree with the Poissonian hypothesis, especially
at fast quench rates. Deviations from Poisson statistics imply
that the phase jumps being counted no longer result from
independent random events and thus are no longer “defects”
in the KZM sense, but are somehow correlated. We suspect
that small changes in the crystal regularity may not only arise
due to KZM scaling, but as excitations in the crystal due
to propagation of, e.g., sound modes (phonons) within an
otherwise coherent domain.

The analysis of Fig. 7 indicates that a strict definition of
a defect, using a large minimal phase jump �φ > π/2 is
required for identifying KZM defects. Returning to Fig. 6 we

FIG. 7. Defect counting statistics. The probability of occurrence
of a certain number of phase jumps within a fixed system size L
is plotted (filled symbols) for different τQ ∈ {10, 100, 404, 709} ms,
and different �φ (see panel captions, symbols match those in Fig. 6).
The Poisson distribution corresponding to the maximum likelihood
estimate for λ for each dataset is shown as a shaded area. Lines serve
as a guide to the eye. The residual sum of squares (RSS) is quoted in
each panel. Colors match those in Fig. 3

fit the τQ scaling of the numbers of defects with �φ > π/2
with a power law and extract νKZ = ν

1+zν ≈ 0.37(2). This
scaling measure is independent of the g(2) scaling of the
correlation length in Sec. III B and again appears to give a
scaling result relatively close to 1/3, albeit it is slightly outside
the standard error bounds. We would also like to remark
here that considering defects with large phase jumps may
introduce a larger statistical spread: With the system sizes we
simulate here, slow quench rates may only produce a handful
of defects (�5), and so the relative point spread error due to
a single defect can be large. In the following section, we shall
further examine the compatibility of these results with respect
to critical scaling exponents as extracted from Bogoliubov
theory.

We note that, in the above analysis, we did not consider
the influence of extended (d = 1) excitations playing a role
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in supersolid formation. It is known that, for the temperature-
quench-induced BEC transition [50,57], the interplay between
defects of different dimensions (e.g. vortices vs solitons)
may hybridize the scaling result of Eq. (11). Similarly, any
incidence of nonlinear excitations induced by the transition or
by the initial thermal fluctuations would therefore, in princi-
ple, also contribute to the flattening of the curves in Fig. 6.

D. Scaling exponents

Using the numerical results for ζKZ and νKZ from Secs.
III A and III B, respectively, we extract the scaling exponents,

ν = 0.57(1), (13)

z = 1.05(2), (14)

for the superfluid-to-supersolid transition.
We may compare these dynamical KZM results to equi-

librium estimates within the mean-field approximation. The
characteristic time scale of a system near a quantum crit-
ical point is determined by the inverse of the energy gap,
which closes as � ∼ |λ − λc|zν near the critical value λc of
some tuning parameter λ [99]. Meanwhile, in the theory of
dynamical critical phenomena [100] the low-energy vs low-
momentum scaling of the dispersion defines the dynamical
critical exponent as ω ∝ kz. In the uniform superfluid, the
dispersion relation can be calculated analytically within Bo-
goliubov theory based on the eGPE [73],

h̄ω =
√√√√ h̄2k2

2m

(
h̄2k2

2m
+ 6γQFn3/2

5π3/2�3
+ gn

π�2
+ 2nŨ 1D(k)

)
,

(15)

while in the supersolid phase, only numerical solutions are
possible. At zero temperature and for as > ac ≈ 91.05a0,
there exists a single gapless low-energy sound branch (i.e.,
Goldstone mode) associated with the phase rigidity of the
system. At higher k, the attractive contribution of the DDI
results in a rotonic minimum at momentum k = krot and of
energy εrot, and it is the softening and instability of the roton
mode that leads to supersolid formation, see, e.g., Ref. [15].
Figure 8(a) shows the dispersion relation in the uniform
regime (green curves), with a roton minimum developing as
as is reduced. In the regime of the phase diagram where
the transition is continuous, the onset of supersolidity occurs
as the roton minimum touches zero, εrot = 0 (black curve,
as = ac), and proceeds to go unstable.

The emergence of periodic density modulation in real
space also leads to a periodic dispersion in momentum space
and thus to a band structure. Figure 8(b) shows the band
structure precisely at the critical point, with the Brillouin
zone (BZ) edges set at multiples of the roton momentum at
criticality, krot ≡ kc, see, e.g., Ref. [75]. This corresponds to
the mapping of the dispersion relation at as = ac of Fig. 8(a)
into the first BZ. In this mapping, the roton minimum yields
a second Goldstone (crystal-sound) mode associated with the
breaking of the translational symmetry, and a third branch,
which appears gapless at the transition. Precisely at the critical
point, the roton wavelength sets the unit cell length via Luc =
2π/kc; however, the unit-cell size does not remain constant
throughout the supersolid regime. Just below the transition,

FIG. 8. Panel (a) shows the dispersion relation and the clos-
ing of the roton gap from Bogoliubov theory [Eq. (15)] as as is
tuned through the superfluid regime. The roton minimum is marked
by black circles. The scaling of the roton gap as as approaches
ac ≈ 91.05a0 from above is shown in the inset and satisfies εrot ∼√

as − ac. Panel (b) shows the mapping of the spectrum at the crit-
ical point [black curve in panel (a)] into a periodic Brillouin-zone
structure with periodicity krot ≡ kc. Panel (c) shows the dispersion
in the supersolid regime with a periodic Brillouin-zone structure
whose periodicity is 2π/Luc. BZ edges are marked as vertical gray
dashed lines. The excitation frequencies ω are shown in units of the
transverse trapping frequency ωy = ωz = 2π × 150 Hz.

as shown in Fig. 8(c) for as = 90a0, the dispersion relation
shows two gapless Goldstone modes while a gap (re)opens in
the first branch at k = {0, kc, 2kc, . . .}, corresponding to the
Higgs mode that drives the amplitude of density modulations.

Within Bogoliubov theory, we therefore expect the char-
acteristic time to scale inversely to the closing of the rotonic
energy gap [99],

τ−1 ∼ εrot ∼ |as − ac|zν . (16)

It has been previously shown [73] and is verified here in the
inset to Fig. 8(a) that the roton gap closes as εrot ∼ √

as − ac

so that zν = 1/2. Meanwhile, precisely at the critical point,
the dispersion relation linearizes around the roton momentum,

εrot ∝ |k − kc|, (17)

and from the BZ mapping, the gapless roton mode emerges
periodically about the zone edges, εrot ∝ |k − mkc|, m ∈ Z.
Due to the linearization of the dispersion relation around mkc,
for the superfluid to one-dimensional supersolid transition
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considered here, Bogoliubov theory suggests z = 1. Inter-
estingly, while the presence of the Lee-Huang-Yang (LHY)
correction to Eq. (5) and by extension Eq. (15) does change
the location of the critical point slightly, it does not change
the exponents extracted using Bogoliubov theory [73]. In this
sense, the analytic “mean-field” analysis is not changed by the
inclusion of a beyond-mean-field correction. A direct numeri-
cal analysis without the LHY correction is not possible, since
the supersolid state requires stabilization.

The scaling exponents extracted from our numerical simu-
lations, ν = 0.57(1) and z = 1.05(2), appear compatible with
the mean-field scaling exponent extracted from Bogoliubov
theory, ν = 1/2, of the correlation length and the quantum-
critical value z = 1 of the dynamical exponent, although these
fall slightly outside the statistical error bars of our results.
Our numerical simulations go beyond mean-field dynamics,
not because of the inclusion of the LHY correction, but be-
cause they are performed with a truncated Wigner framework
[79,101,102], which incorporates classical fluctuations in a
fully nonperturbative manner. The close agreement between
the extracted exponents and mean-field theory may be due
to the scaling behavior being relatively independent from
beyond-mean-field effects, e.g., as in the case of systems
above the upper critical dimension. Due to the relatively low
depletion (typically less than 5% in our simulations at 20 nK
here), we can expect modifications arising from interaction
with excitations to be negligible.

A universality class that we had foreseen to apply to our
transition is that of the (D + 1)-dimensional XY model, with
Dlc = 1 and Duc = 3 being the respective lower and upper
critical dimensions. In our case, D = 1, such that the transi-
tion would be of the Berezinskii-Kosterlitz-Thouless (BKT)
type [103–106], for which a nonpolynomial correlation length
and relaxation time scaling could be expected, which reaches
power-law scaling with ν → ∞, z = 1 only asymptotically,
for exponentially large quench times τQ [104]. This is in
contrast to the clean power-law scaling observed here already
for relatively small τQ, resulting in the above near-mean-field
value of the exponent ν. Furthermore, Blakie et al. [75], who
examined the critical behavior at the continuous superfluid-
supersolid transition line, using Bogoliubov theory, found that
there is a discontinuity in the compressibility, consistent with
the transition being second order (the single exception being
at the tip of the phase transition curve, which we do not
encounter in any quenches performed in this paper). This
discontinuity contrasts with the BKT expectation and sup-
ports the hypothesis of a universality class different from
(1 + 1)DXY. Even in D = 3 spatial dimensions, i.e., at the up-
per critical dimension of the XY model, the exponents, near the
quantum critical point, would receive small anomalous contri-
butions, and z � (D + 1)/2 = 2 instead of the exponent z � 1
we find, which is indeed compatible with dynamical critical
scaling in D = 1 dimensions [100]. The exact universality
class of the transition remains undetermined. We, however,
note that our extracted near-mean-field exponents have been
previously found to characterize the universality class for the
superfluid-to-Mott insulator transition in the Bose-Hubbard
model in D � 3 spatial dimensions, when crossing precisely
at the Mott lobe tips with integer filling factor, i.e., at the quan-
tum multicritical point [107,108], and exponents similar to our

KZM results have been previously observed in density-wave
order (supersolid) transitions in D = 2 dimensions [109].

IV. CONCLUSION

We have explored the formation of a supersolid in an
elongated dipolar quantum gas following a quench of the
scattering length, using a reduced 3D model and via the
extended Gross-Pitaevskii equation. We extract power-law
scaling exponents corresponding to diverging relaxation time
and correlation length scales. In particular, the divergence
in relaxation time was estimated by identifying the freeze-
out time with the delay in supersolid formation during the
quench. The supersolid correlation length scaling was ex-
tracted by fitting a spatially oscillating function with a
Gaussian-shaped envelope to the density-density correlation
function g(2)(x). We found that the results for the extracted
critical exponents ν = 0.57(1) and z = 1.05(2) appear to be
nearly compatible with the corresponding values expected
from mean-field theory. When considering a measure for the
crystal phase φ(x), we found that there appears to be a sys-
tematic breakdown of scaling results and an onset of defect
density saturation at very fast quench rates. We posit that this
breakdown [92] is explained by the fact that typical KZM
domain sizes in the supersolid approach the crystal lattice
size set by the roton. Nevertheless, over multiple orders of
magnitude, defect densities appear to obey power-law scaling.

We consider an elongated system for statistical purposes;
however, our study is performed with experimental con-
siderations in mind. In particular, we selected parameters
corresponding to 164Dy, including scattering lengths, typical
trap frequencies, and reasonable temperatures used in dipolar
quantum gas experiments [9–11]. For a dipolar gas confined
in a harmonic trap, the direct applicability of our results
will depend on the cloud aspect ratio and quench rates [41],
since in some regimes the inhomogeneous KZM [33,57] may
lead to a different set of exponents. One candidate for the
uniform tubular geometry we have proposed is a ring-shaped
trap [110–112], which has been realized for 23Na [113–116]
and 87Rb [47,117–122], and has been theoretically shown to
support the dipolar supersolid phase [123,124]. While su-
persolid lifetimes remain a challenge for these experiments,
particularly due to high densities in the dipolar droplets, the
advantage of the measures we have introduced in this paper
is that only the onset of supersolidity needs to be considered;
thus, long lifetimes are not required to verify our results.

An interesting future direction is to consider melting the
supersolid via a reverse-quench protocol [86,125–127], al-
lowing us to probe the symmetrical of the KZM schematic
curves shown in Fig. 1. Finally, we have only focused on the
transition from the uniform superfluid to a one-dimensional
droplet chain. If an additional trapping direction is relaxed,
there exist transitions to many more kinds of two-dimensional
supersolid lattices that are also possible, leaving the door open
to further examination of dynamical symmetry breaking in
more complex supersolids.
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APPENDIX A: THERMAL AND QUANTUM NOISE

In the variational 1D simulations, thermal and quantum
noise are included via

ψ (x, 0) = √
n̄ +

∑
l

′
[A+

l eikl x + A−
l e−ikl x], (A1)

where A±
l are Gaussian random variables subject to 〈|A+

l |2〉 =
〈|A−

l |2〉 = (eε
f
l /kBT − 1)−1 + 1

2 for temperature T and free-

particle dispersion ε
f
l = 2h̄2l2/(mL2) for l ∈ N+. The sum∑′ is restricted to eigenstates such that ε

f
l < 2kBT .

In full 3D calculations (see Appendix B), thermal and
quantum noise include amplitudes in the transverse harmonic
oscillator modes,

�(r, 0) = √
n̄ +

∑
lγ δ

′
φγ (y)φδ (z)[A+

lγ δeikl x + A−
lγ δe−ikl x],

(A2)

where now 〈|A+
lγ δ

|2〉 = 〈|A−
lγ δ

|2〉 = (eεlγ δ/kBT − 1)−1 + 1
2 for

dispersion εlγ δ = h̄ωy(γ − 1
2 ) + h̄ωz(δ − 1

2 ) + 2h̄2l2/(mL2),
now with l, γ , δ ∈ N+. The sum has again been restricted
such that εlγ δ < 2kBT .

In the main text, we consider a system populated with
stochastic noise drawn from a thermal distribution at 20 nK.
We have assumed that this is close enough to zero temperature
such that we are not greatly affecting the location of the
transition due to thermal effects. Here, we verify that this
assumption holds by considering quenches where the only
source of noise is a half-particle per mode. Specifically, we
populate modes as in Eq. (A1), but A±

l are now subject to
the zero-temperature limit 〈|A+

l |2〉 = 〈|A−
l |2〉 = 1/2. Rather

than a temperature-dependent cutoff, we now restrict the sum
to include states with momenta less than the inverse healing
length: k−1 < ξh = h̄/

√
mμ. In this limit, the particle and

energy added due to noise have been reduced to less than 1%.

FIG. 9. Delay in supersolid formation, similar to Fig. 3, with the
only difference being that each simulation is populated only with
quantum noise. As in the main text, panel (a) shows the full f s(t )
with an inset focusing on the initial moments after crossing the
critical point. In panel (b), we show the time delay, with the best
fit τ̂T =0 ∝ τ

0.346(2)
Q .

In Figs. 9 and 10, we present the results for our system
populated only with the zero-temperature quantum noise de-
scribed above, rather than the low-temperature thermal noise
of the main text. In these figures, we have selected again the
same system size as described in the main text, now averaged
over 400 independent trials. The resulting scaling, described
in the captions of each figure, seems to indicate that there is
very minimal difference due to the choice of noise. This indi-
cates that the T = 20 nK noise used in the main text is suffi-
ciently small for our parameters to be considered representa-
tive of dynamics to be expected in the zero-temperature limit.

APPENDIX B: COMPARISON WITH
THREE-DIMENSIONAL SIMULATIONS

Here, we compare our results with full 3D simulations,
i.e., evolving under Eq. (2), for select quench rates. Sim-
ilar to the variational model, we perform quenches from
as = 96a0 to as = 88a0, now with a grid size of ≈160 µm,
corresponding to 64 unit cells in the supersolid ground
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FIG. 10. Similar to Fig. 3 of the main text, now with quenches
where the initial state is populated with quantum noise only. Panels
(a)–(c) show the density-density correlation function at the indicated
times, and panel (d) shows the envelope scaling as in the main text,
with XT =0 ∼ ξ ∼ τ

0.334(5)
Q .

state at 88a0. At n̄ = 2500 µm−1, 3D simulations indicate
that the critical point is located at as = a3D

c = 92.27a0 [16].
Due to the size of the simulation grids and the resulting
datasets, the results are averaged over only five realizations
each of the noise in Appendix A, and for a more limited
range of τQ, resulting in much larger standard errors in
the data.

The superfluid fraction f s as a function of time is presented
in Fig. 11(a). Similar to the main text, we can extract the
supersolid delay by the time it takes for f s to drop below 0.98.
The scaling of the delay is plotted in Fig. 11(b), along with
the corresponding quench data using the variational model.
We are able to extract τ̂3D ∝ τ

0.33(1)
Q , which, within the er-

ror range quoted, is compatible with our results from the
reduced model.

We can also measure the g(2) correlation function along
the z axis for full 3D simulations, as shown in Fig. 12. Sim-
ilar to Fig. 4 of the main text, we plot in Figs. 12(a)–12(c)
the correlation function g(2)(x), now after integrating out the
wavefunction in the radial directions, ψ (x) = ∫

dydz�(r),
for τQ = {10, 60, 161}, respectively. Figure 12(d) shows the

FIG. 11. Delay in supersolid formation for various quenches for
full 3D simulations. Similar to Fig. 3 of the main text, panel (a) shows
the full f s(t ), with the inset focusing on the initial supersolid for-
mation. Panel (b) shows the time delay at which f s crosses 0.98,
indicating supersolid formation, with the best fit τ̂3D ∝ τ

0.33(1)
Q shown

as a dashed line. Note that the difference in colorbar scale from the
other figures, which is due to the limited range of τQ.

best fit X from Eq. (8), giving an approximate scaling of
X ∼ ξ̂ ∼ τ

0.40(16)
Q .

APPENDIX C: SYSTEM LENGTH DEPENDENCE

In this appendix, we present results for the freeze-out time
and correlation functions in our reduced theory for system
sizes consisting of 1024 unit cells, compared to 128 in the
main text. The aim of this section is to verify that finite-size
effects do not strongly affect the main results of the paper. Due
to the large size of the system, we only perform 10 quenches
for each τQ.

Figure 13 shows the superfluid fraction over time in the
longer system, governed by Eq. (5). The results for the freeze-
out time appear to be similar to the results of the shorter
system in the main text, with an extracted scaling of τ̂long ∝
τ

0.344(1)
Q . This result is not unexpected: for a uniform system,

the delay in supersolid formation should not depend on the
system size. It is notable that relatively few trials are sufficient
to give similar results to the main text.
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FIG. 12. Supersolid correlation length g(2)(x), similar to Fig. 4,
now for 3D simulations, at τQ = {10, 60, 161} in panels (a)–(c),
respectively, giving an approximate scaling of X3D ∼ ξ̂ ∼ τ

0.40(16)
Q .

In Fig. 14, we show the correlation function g(2)(x)
similarly to Fig. 4 of the main text, now for the longer system.
We again perform a fit according to Eq. (8) at the onset of
supersolid formation, and extract a scaling result of X ∼ ξ̂ ∼
τ

0.332(8)
Q , similar to the main text. Due to the fact that g(2)(x) is

spatially averaged over a much longer system, the results pre-
sented here do not suffer from any dramatic loss of statistics
due to averaging over only 10 quenches. However, the limited
number of quenches does prevent us from achieving statisti-
cally meaningful results in terms of defect counting, so we do
not attempt any analysis of defect density scaling in the longer
system.

APPENDIX D: RELATIONSHIP BETWEEN g(2) AND C(x)

Assuming the following ansatz for the density:

n(x) = n̄ + λ cos[kx + φ(x)], (D1)

where φ(x) is some locally varying phase, and λ is the strength
of the supersolid modulation, the correlation function can be

FIG. 13. Delay in supersolid formation in the reduced theory for
a much longer system size of 1024 unit cells. Similar to Fig. 3 of
the main text, panel (a) shows the full f s(t ), along with a zoomed-in
inset. Panel (b) gives the log-log time delay at which f s crosses 0.98,
with the best fit as a dashed line.

determined from

n(x)n(x′) = {n̄ + λ cos[kx + φ(x)]}
× {n̄ + λ cos[kx′ + φ(x′)]}

= n̄2 + n̄λ{cos[kx + φ(x)] + cos[kx′ + φ(x′)]}
+ λ2 cos[kx + φ(x)] cos[kx′ + φ(x′)]

= n̄2 + n̄λ{cos[kx + φ(x)] + cos[kx′ + φ(x′)]}

+ λ2

4
[ei(kx+φ(x)) + e−i(kx+φ(x))]

× [ei(kx′+φ(x′ )) + e−i(kx′+φ(x′ ))]. (D2)

Averaged over realizations, terms like cos[kx + φ(x)] will
vanish, leaving

〈n(x)n(x′)〉 = n̄2 + λ2

4
〈ei(k(x+x′ )+φ(x)+φ(x′ ))

+ ei(k(x−x′ )+φ(x)−φ(x′ )) + H.c.〉

= n̄2 + λ2

4
〈e2ikRei(φ(x)+φ(x′ ))

+ ei(ks+φ(x)−φ(x′ )) + H.c.〉, (D3)
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FIG. 14. Supersolid correlation length g(2)(x), similar to Fig. 4,
now for long system sizes of 1024 unit cells, at τQ = {10, 252, 770}
in panels (a)–(c), respectively. The best fit of X using Eq. (8) is
shown as a dashed line.

where we let s = x − x′ and R = (x + x′)/2. Now, let us as-
sume that across different trials, the supersolid wavelength is
roughly the same, in other words 〈k〉 = k̄, 〈k2〉 = k̄2, etc., but
variations in the crystal phase φ(x) are responsible for defects
in the coherent crystal. In that case, we can write

〈n(x)n(x′)〉 = n̄2 + λ2

4
[e2ik̄R〈ei(φ(x)+φ(x′ ))〉

+ eik̄s〈ei(φ(x)−φ(x′ ))〉 + H.c.], (D4)

since the exponential prefactors will not change from trial to
trial. Thus,

〈n(x)n(x′)〉 = n̄2 + λ2

4
[e2ik̄R〈ei(φ(x)+φ(x′ ))〉 + H.c.

+ eik̄sC∗(x − x′) + e−ik̄sC(x − x′)], (D5)

≈ n̄2 + λ2

2
cos(k̄s)C(s), (D6)

where, in the last line, we have made the following two
assumptions: (i) terms which depend on the absolute posi-
tion of the phase in space, i.e., 〈ei(φ(x)+φ(x′ ))〉, will average
out over many trials; (ii) C(s) = C(x − x′) is a real-valued
function that only depends on the distance |x − x′|. In this
way, the decay of g(2)(x) and C(x − x′) appear to be related
since they take a similar functional form, see Eq. (8). We

FIG. 15. Universal scaling functions. Panel (a) shows the same
superfluid fraction data as in Fig. 3, now with the time domain
rescaled by the extracted Kibble-Zurek exponent ζKZ, while panel
(b) shows the data from Fig. 4 with the spatial domain rescaled by
the extracted νKZ. While in panel (a) the full curves fall on top of one
another, in panel (b) it is only the modulation envelopes that collapse
to a single curve. The inset shows g(2) over the unscaled domain,
demonstrating that the supersolid periodicity is relatively constant
across different quench rates.

note that when extracting ξ̂ from C(x) in Fig. 5, we do
not require C(x − x′) to necessarily be exponential (or Gaus-
sian, etc.)—this is difficult to characterize due to the discrete
nature of C(x − x′)—we are simply extracting the width at
half maximum.

APPENDIX E: UNIVERSAL SCALING FUNCTIONS

In Fig. 15, we demonstrate that after determining the
universal scaling exponents associated with the KZM,
the observables can be collapsed to a single universal
Kibble-Zurek scaling function. In particular, Fig. 15(a) shows
that a rescaling of time with respect to ζKZ allows for the
superfluid fraction curves to lie on top of one another, at least
within the relatively early regimes we consider to be relevant
for the KZM. Later, as more nonlinearities become relevant
to the dynamics, there is a departure from the universal
scaling function. In Fig. 15(b) there is a similar effect for
the g(1) correlator with respect to the exponent νKZ now

023248-14
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plotted for all quench rates. It can be seen that rescaling the
spatial domain shows that the supersolid oscillation envelopes
scale in a universal way, but not the oscillations themselves,
since the periodicity of the latter is instead set by the roton.
Extremely fast quenches (τQ � 10 ms) depart slightly from
the universal envelope, likely due to large fluctuations. See

the inset of (b) for the unscaled g(2), where it is clear that the
oscillations lie on top of one another, while the envelopes do
not. Faster quenches also seem to result in a suppression of
overall long-range correlations, likely due to the relatively
large amount of excitations produced in the system during the
quench.
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