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Generalized polarization matrix approach to near-field optical chirality
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For paraxial light beams and electromagnetic fields, the Stokes vector and polarization matrix provide equiv-
alent scalar measures of optical chirality, widely used in linear optics. However, growing interest in nonparaxial
fields, with fully three-dimensional polarization components, necessitates an extended framework. Here, we
develop a general theory for characterizing optical chirality in arbitrary electromagnetic fields, formulated
through extensions of the polarization matrix approach. This framework applies to both near- and far-field optical
helicity and chirality. As examples, we demonstrate its relevance to near-zone fields from chiral dipole emission
and the focal plane of tightly focused beams.
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I. INTRODUCTION

The polarization of light has long been a key aspect of
research in optics. Since the pioneering work of Huygens, and
through its long subsequent development, copious theoretical
methods have been devised to describe and quantify optical
polarization [1–5]. Today, understanding and manipulating
the associated electromagnetic field vectors plays a critical
role in modern optics and photonics [6,7]. Widespread theo-
retical representations include the Jones vector and associated
matrices, the Stokes vector, and Mueller matrices. Among
more recent developments, Hermitian polarization density
matrices represent not only the polarization properties of light,
but also coherence. Wolf was one of the principal proponents
of such matrices to describe the coherence and polarization
properties of light, and their interplay [2,3].

Freely propagating electromagnetic fields in vacuum may
be characterized by a multiplicity of conserved quantities
[8,9]. Among them, one conserved quantity of special interest
is the optical helicity [10–12]. It emerges that this parame-
ter is directly engaged in any optical measurement that can
elicit the subtle differences between the properties of chiral
materials with opposite handedness. The optical helicity is a
pseudoscalar, which can be defined in terms of the projection
of spin angular momentum onto the canonical momentum
density. Closely related, and directly proportional to it for
monochromatic fields [13], is the optical chirality [14]. For
paraxial fields, optical helicity is itself directly proportional
to the degree of polarization ellipticity, taking its maximum
value for circular polarizations, while the helicity for linearly
polarized or unpolarized paraxial light is zero.
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In any paraxial formulation, the consistency of the trans-
verse beam profile allows optical helicity to be quantified
in a two-dimensional (2D) polarization basis. In this sense,
plane waves are a classic example of so-called “2D light”:
They are polarized only in the plane transverse to the beam
propagation. In modern nano-optics, however, where light is
spatially confined to wavelength scales, such a description is
insufficient to account for the distinctly different behavior that
is observed, due to longitudinal field components along the
direction of propagation. Such nonparaxial, or 3D, structured
light therefore requires a different approach for a full charac-
terization of its optical properties, necessitating extensions of
the 2D polarization matrix or Stokes vector approach to 3D
[15–21].

It was previously noted that the third Stokes parameter S3,
based on a 2D polarization approach, is not a suitable measure
of near-field optical chirality [22]. Here, we secure general
theory applicable to arbitrary electromagnetic fields, allow-
ing the optical helicity (chirality) to be quantified through
either a polarization matrix or Stokes vector approach. Our
theory highlights how nonparaxality of electromagnetic fields
necessitates a description based on mixed electric-magnetic
3D polarization matrices. We highlight applications of our
general theory via the specific cases of chiral emission, and
tightly focused chiral beam optics.

II. OPTICAL HELICITY AND OPTICAL CHIRALITY

In its most general form, the optical helicity density—
a conserved quantity for arbitrary electromagnetic fields in
vacuum—is given by [9,11,12]

h = ε0c

2
(A⊥ · B − C⊥ · E), (1)

where A⊥ and C⊥ are transverse electromagnetic vector
potentials, and E and B are the corresponding electric
and magnetic fields. These quantities are related via the
dual-symmetric definitions E = −∇ × C⊥ = −Ȧ⊥ and B =
∇ × A⊥ = −Ċ⊥. For quasimonochromatic fields—our focus
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here—the vector potentials are assumed to have har-
monic time dependence, i.e., A⊥(r, t ) = Re{A⊥(r)e−iωt }, C⊥
(r, t ) = Re{C⊥(r)e−iωt }, with complex phasors A⊥(r) and
C⊥(r). This implies iωA⊥ = E, iωC⊥ = B, so Eq. (1) be-
comes

h = −ε0c

2ω
Im(E∗ · B), (2)

where ω is the central angular frequency. In this regime, the
optical helicity density h is directly proportional to the optical
chirality χ ,

χ = −ε0ω

2
Im(E∗ · B) = ω2

c
h. (3)

For a circularly polarized plane wave we have E =
E02−1/2(x̂ + iσ ŷ) exp(ik · r) and B = c−1E02−1/2(ŷ −
iσ x̂) exp(ik · r). Inserting into Eq. (2) gives the following,
well-known expression,

h = Iσ

cω
, (4)

where I is the intensity of the beam and σ = ±1 for left-
(right-) handed circular polarization; χ is easily determined
from Eq. (4) using Eq. (3).

For any plane wave, the orthogonality of the electric and
magnetic fields, whose vector product E × B generates the
Poynting vector in the axial direction, allows a facility to
describe most electromagnetic fields purely in terms of the
electric field, and thus by the electric polarization matrices
and Stokes parameters. These include the energy density,
spin angular momentum density (including transverse spin),
canonical momentum density, and orbital momentum density.
While an involvement of pure magnetic polarization matrices
may be necessary under certain circumstances, we show here
that the optical helicity density for nonparaxial fields neces-
sitates a formulation that entails the mixed electric-magnetic
tensors.

III. TWO-DIMENSIONAL DESCRIPTION

Let us consider a quasimonochromatic paraxial (or plane
wave) propagating from a source along the z axis, with the
transverse plane (x, y) also represented in Cartesian form. The
(electric) polarization matrix may be written as [3]

�
E(2D)
i j = ε0c〈E∗

i E j〉, i, j = x, y,

= ε0c

[
〈E∗

x Ex〉 〈E∗
x Ey〉

〈E∗
y Ex〉 〈E∗

y Ey〉

]
, (5)

where angular brackets represent temporal averaging and the
symbol ∗ denotes the complex conjugate. The Stokes four-
vector, with components Si, is a more direct representation of
polarization information that can be inferred or extracted from
intensity measurements. The polarization matrix Eq. (5) may
be written in terms of the Stokes parameters Si as [3]

�
E(2D)
i j = 1

2

[
S0 + S1 S2 + iS3

S2 − iS3 S0 − S1

]
. (6)

The third Stokes parameter S3 (written as s3 when normal-
ized to the total intensity, i.e., s3 = S3/S0) is often associated

with measures of optical helicity and spin angular momentum
density [20,22–26]. It represents the difference in intensities
measured for right-circularly polarized and left-circularly po-
larized light,

S3 = i
(
�E

yx − �E
xy

) = ε0c Im[〈E∗
x Ey〉 − 〈E∗

y Ex〉]. (7)

On the condition that the trace of Eq. (5) gives the intensity of
the beam Tr �

E(2D)
i j = I , for a circularly polarized monochro-

matic plane wave the polarization matrix is readily determined
as [1]

�E(2D) = I

2

[
1 iσ

−iσ 1

]
. (8)

Inserting Eq. (8) into Eq. (7) gives

S3 = Iσ. (9)

Both S3 and h are pseudoscalar measures. While S3 ∝ h,
the physical dimensions of the Stokes vector are [M][T]−3,
those of the beam helicity density are [M][L]−1[T]−1. Optical
chirality density χ is equally a pseudoscalar but has units of
[M] [L]−2[T]−2. Optical helicity couples to the mixed electric-
magnetic dipole responses (E1M1) of chiral materials [27]: In
contrast, all the Stokes parameters are intensities which en-
gage with purely electric dipole responses E1E1 of a material
detector. Thus, S3 and optical helicity (chirality) are not iden-
tical and engage through different transitions in light-matter
interactions. Nonetheless, in the paraxial (or far-field regime)
there is a direct one-to-one mapping of the measurement of S3

and the optical helicity, spin, and circular polarization of the
beam measured.

Using a purely electric polarization matrix [Eq. (5)] to
describe the optical helicity of paraxial light, a quantity that
explicitly involves the product of electric and magnetic fields
[Eq. (2)], is only possible because in 2D polarized light (the
paraxial approximation, i.e., Ez = 0, Bz = 0), then E (r) =
cB(r) and the scalar spatial distributions of the electric and
magnetic fields are equivalent. This is because cB = ẑ × E
for paraxial and plane-wave light. However, this is not true
in general, and for nonparaxial light the electric and magnetic
fields are not locally locked with each other [9,28]; we discuss
the implications of this in detail in the next section.

IV. THREE-DIMENSIONAL DESCRIPTION

In this section we will show that there is no corresponding
3D Stokes parameter or 3D polarization matrix, based purely
on electric fields, that can describe the optical helicity of a 3D
structured light field, i.e., an arbitrary electromagnetic field.
It is important to reiterate that 3D polarization is principally
a near-field phenomenon, while standard 2D Stokes theory is
widely applied to infer 3D polarization structure in far-field
measurements—see, for example, Ref. [29].

First, it is instructive to show that the pure electric
polarization matrix does not deliver what we require. For 3D-
polarized fields the electric polarization matrix elements can
be written as follows, now including the nonzero longitudinal
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components for nonparaxial fields:

�
E(3D)
i j = ε0c〈E∗

i E j〉, i, j = x, y, z,

= ε0c

⎡
⎢⎣

〈E∗
x Ex〉 〈E∗

x Ey〉 〈E∗
x Ez〉

〈E∗
y Ex〉 〈E∗

y Ey〉 〈E∗
y Ez〉

〈E∗
z Ex〉 〈E∗

z Ey〉 〈E∗
z Ez〉

⎤
⎥⎦. (10)

Noting that for nonparaxial fields E (r) �= cB(r), it is obvious
that the polarization matrix [Eq. (10)] cannot describe the
optical helicity (or chirality) of nonparaxial electromagnetic
fields since Ez(r) �= cBz(r). That is, in contrast to the trans-
verse electric and magnetic fields, the spatial distributions of
the longitudinal electric and magnetic fields are not the same.
As the optical chirality (helicity) [Eq. (3)] entails the inner
product of the electric and magnetic fields, it will in general
have nonzero contributions from E∗

z Bz.
In order to describe optical chirality (helicity) it emerges

that, for a more general case, we can utilize the following
equation,

h = Im δi j

2ω

(
�N

i j − �M
i j

)
, (11)

where the summation is implied of the terms with repeated
indices. In Eq. (11), in order to account for the nonparaxial
optical helicity of 3D light, we introduce mixed electric-
magnetic polarization tensors,

�
M(3D)
i j = ε0c〈E∗

i B j〉,
�

N(3D)
i j = ε0c〈B∗

i E j〉

⎫⎬
⎭i, j = x, y, z. (12)

Equation (11) represents the key result of this work. It is a
measure of optical helicity (chirality) that is applicable to both
near- and far-field electromagnetic fields. Duly taking account
all 3D components of both electric and magnetic field com-
ponents enables the optical helicity density to be calculated
for arbitrary electromagnetic fields. As explicit proof of this
approach to measure the optical helicity and chirality densities
of electromagnetic fields we now apply these results to two
important near-field chiral phenomena.

V. CHIRAL DIPOLE RADIATION

In work by Leeder et al. [22], duly appropriating retarded
fields to study the range dependence of emission from a chiral
dipole, it was correctly concluded that S3 is not in any sense
a viable measure of optical chirality in the near field. With
the present, general formulation for optical helicity of arbi-
trary fields, we now show how the method described above
also works when cast in terms of the corresponding field
propagation tensors. This enables results to be secured for
the optical helicity of radiated fields over arbitrary distances
from a chiral source. Radiative emission from any such source
will engage electronic transitions that simultaneously satisfy
both electric and magnetic dipole selection rules. In conse-
quence the radiation has electric and magnetic components
each partially dependent on both kinds of transition moment.
Using the implied summation convention for repeated tensor
indices, the electromagnetic field vectors are expressible

in terms of the oscillating electric and magnetic transition
dipoles, μ and m respectively, as follows,

Ej = −μiVi j − c−1miUi j, (13)

Bj = −μiUi j − c−1miVi j, (14)

where the Green’s function field propagation tensors Vi j and
Ui j are defined in terms of wave number k, and the displace-
ment vector R from the source [30,31],

Vi j = eikR

4πε0R3
[(1 − ikR)(δi j − 3R̂iR̂ j ) − k2R2(δi j − R̂iR̂ j )],

(15)

Ui j = eikR

4πε0R3
εi jk R̂k[ikR + k2R2]. (16)

Interestingly, the element of the electric field given by the
first term on the right-hand side of Eq. (13), associated with
an electric dipole character of the emission, contains terms
of both transverse and longitudinal aspect with respect to the
vectorial displacement from the source—the longitudinal part
associated with the initial term in Eq. (15) for the propagator
Vi j . However, the element of the electric field associated with
magnetic dipole character is purely transverse with respect to
R since the second term in Eq. (13) arises from the propagator
Ui j [Eq. (16)] which includes the Levi-Civita antisymmetric
tensor εi jk (thereby entailing the unit vector R̂ in a vector
cross-product). Previous studies have usually been only con-
cerned with the electric field component [Eq. (13)]—but in
the near-zone one cannot neglect Eq. (14) as its longitudinal
components will differ from those of Eq. (13), as we have
discussed. For both propagation tensors, there is a striking
difference in their forms of amplitude and phase evolution,
for the transverse and longitudinal components: The detailed
time and space evolution are described in detail in Ref. [32].

The electric-magnetic polarization matrices Eq. (12) that
describe Eqs. (13) and (14) are too large to reproduce here,
but after some significant calculations we arrive at

hdipole = Im δi j

2ω

(
�N

i j − �M
i j

)
= − μ0c

(4π )2ω
Im

[
k4

R2
(μxmx + μymy)

+ 4μzmz

(
1

R6
+ k2

R4

)]
. (17)

For distances of around and above an optical wavelength,
the full expression of Eq. (17) shows the emerging retardation
character of optical propagation. Analogous with the unified
theory of resonance energy transfer (RET) [33,34], the “uni-
fied theory” of chiral dipolar emission [Eq. (17)] displays not
only a near-zone R−6 and far-zone R−2 distance dependence,
it also has an R−4 intermediate distance dependence.

In the long-range far zone (FZ), where R is much larger
than the wavelength, we secure the following asymptotic re-
sult, consistent with paraxial 2D polarization,

h(FZ) = − μ0c

(4π )2ω

k4

R2
Im[μxmx + μymy], (18)
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the anticipated inverse-square dependence on distance match-
ing the result of Leeder et al. [12].

Conversely, for the near-zone (NZ) limit applicable close to
the source, where kR � 1 is much less than unity, we retrieve

h(NZ) = − μ0c

(4π )2ω

1

R6
Im 4μzmz. (19)

The result Eq. (19) thus represents the conveyance of optical
helicity over subwavelength dimensions. The helicity density
at short distances from a chiral source is a subject that it-
self may have significant analytical applications for nanoscale
sensing as, for example, in studying the transmission of a
structured beam focused upon a planar medium [35] and
the near-field optical chirality of plasmonic nanostructures
[36,37].

The aforementioned work by Leeder et al. [22] focused
on the electric field contributions to the emission [Eq. (13)],
consistent with the conventional form of the Stokes parameter
representation. As was shown, whereas the Stokes vector can
adequately portray optical helicity far from a source of chi-
ral emission, it gives an incorrect picture in the near zone.
However, the inclusion of the magnetic field contributions
from Eq. (14) and using Eq. (11) now enables results to be
secured that fully describe the near-field (and intermediate-
field) chirality, including terms that originate solely from the
longitudinal components of the transition moments, μz and mz

as highlighted in Eq. (17).

An additional insight is afforded by considering this result
as the time inverse of light converging to a focus. We now con-
sider its application as a direct measure of helicity conveyance
in the nonparaxial regime within the focal region of a focused
laser beam.

VI. FOCUSED VORTEX OPTICS

Optical vortices are beams of light that have helical wave
fronts described by the multiplier ei	φ , where φ is the polar an-
gle in the beam transverse plane, and 	 ∈ Z is the pseudoscalar
topological charge. These helical wave fronts engender such
beams with optical orbital angular momentum (OAM) of 	h̄
along the direction of propagation. There has been significant
interest in whether geometrically chiral optical vortex beams
with helical wave fronts, 	 > 0 being left handed, 	 < 0 right
handed, could engage in chiral light-matter interactions and
optical activity. For a historical perspective and review of this
exciting field, see Refs. [38,39]. It is now well understood
that 2D linearly polarized tightly focused optical vortex beams
possess optical helicity density that is independent of the
2D polarization ellipticity [40–42]. Consider for example an
x-polarized Laguerre Gaussian beam which includes a longi-
tudinal component. The electric polarization matrix emerges
as follows, in which (r, φ) are the transverse polar coordinates
(radial distance and azimuthal angle) and γ is defined as

γ = |	|
r − 2r

w2 + ikr
R[z] − 4r

w2

L|	|+1
p−1

L|	|
p

(see Ref. [41] for details),

�
E(3D)
i j = I

⎡
⎣ 1 0 i

k

(
γ cos φ − i	

r sin φ
)

0 0 0
− i

k

(
γ cos φ + i	

r sin φ
)

0 1
k2

(|γ |2 cos2 φ + 	2

r2 sin2 φ
)
⎤
⎦. (20)

The optical helicity density for this field, experimentally verified [43,44], takes the form [41,45]

h = − ILG

cω

	

k2r
γ . (21)

Note this helicity (chirality) density is completely independent of σ , i.e., the state of circular polarization. From the pure electric
polarization matrix [Eq. (20)] there is insufficient information to extract the optical helicity density [Eq. (21)]. However, the
corresponding mixed electric-magnetic matrix �

M(3D)
i j [Eq. (12)] is cast as follows:

�
M(3D)
i j = I

c

⎡
⎢⎣

0 0 i
k

(
γ sin φ + i	

r cos φ
)

0 0 0

0 − i
k

(
γ ∗ cos φ + i	

r sin φ
)

1
k2

(
i	
r γ + {|γ |2 − 	2

r2

}
cos φ sin φ

)
⎤
⎥⎦. (22)

Then, using �M
i j = �∗N

ji and inserting into Eq. (11) gives the
correct helicity of Eq. (21).

VII. THREE-DIMENSIONAL STOKES
PARAMETER APPROACH

As we saw in Sec. III, the 2D polarization matrix [Eq. (5)]
approach is equivalent to an alternative description framed in
terms of the four real Stokes vectors S0, S1, S2, and S3. Simi-
larly, 3D polarization matrix formulations have a counterpart
in terms of nine real (3D) Stokes parameters �i [18]. Here, we
briefly outline the approach of measures of optical chirality
through the 3D Stokes vector, applicable to both near and

far fields, as an alternative to the 3D polarization matrix we
have introduced in this work. The nine individual expressions
for �i, and details of how they relate to the components
of the 3D polarization matrices, can be found in Ref. [18],
and we only explicitly require �0 = �xx + �yy + �zz. The
electric 3D Stokes parameter which plays an analogous role
to S3 is �E

2 = 3
2 i(�E(3D)

xy − �E(3D)
yx ): This 3D Stokes parameter,

using Eq. (20), will clearly not generate the optical helicity
[Eq. (21)], for example, for reasons we have established. The
correct way to apply the 3D Stokes parameter is to formulate
it as follows,

h = Im
(
�N

0 − �M
0

)
2ω

, (23)
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where �
N(M)
0 = �N(M)

xx + �N(M)
yy + �N(M)

zz are the elements of
the mixed electric-magnetic matrices [Eq. (12)]. The measure
of chirality based on 3D Stokes parameters [Eq. (23)] gives
equivalent results to Eq. (11) which is based on a polarization
matrix approach.

VIII. DISCUSSION AND CONCLUSION

It was remarked in Ref. [22] that the third Stokes parameter
S3 was not a suitable measure of optical chirality in the near
field. We have now provided the general theory to calculate
the optical helicity density using both polarization matrices
and Stokes vector representations for arbitrary electromag-
netic fields. Crucial to our method is recognizing that in
nonparaxial fields E (r) �= B(r) and we thus require the use of
mixed electric and magnetic polarization matrices [Eq. (12)].
A key insight that this theory provides is that, for arbitrary
electromagnetic fields, optical helicity (chirality) cannot be
directly identified with either spin or circular polarization (or a
degree of ellipticity) [26]. The longitudinally polarized fields
produce optical chirality and helicity, and of course these
cannot be circularly polarized as they both oscillate along the
same single axis. In the far field, optical helicity (chirality)
is unequivocally proportional to the circularity of the 2D
polarization state. However, in the near field (and therefore
in general) circularity in the polarization of the light is not
required for optical helicity (chirality).

For 3D structured light, the electric polarization matrix
cannot describe conserved electromagnetic field properties in

general, such as the energy density and spin angular mo-
mentum density. Both of these, for example, have magnetic
contributions due to the dual symmetry of Maxwell’s equa-
tion [9], and thus their formulation requires the inclusion of
a pure magnetic polarization tensor �

B(3D)
i j = 〈B∗

i B j〉, i, j =
x, y, z. Moreover, the whole dual-symmetric nature of the
optical properties of 3D polarized light could be completely
described by a single 6 × 6 electric-magnetic matrix if de-
sired. What is crucially important with optical helicity and
chirality is that it engages both the electric and magnetic
transitions of the material. Although nonparaxial fields have
different distributions of energy and spin for the electric
and magnetic parts, for example, due to Ez(r) �= cBz(r), in
experiments we generally measure the former, due to the
electric-biased (dual asymmetric) nature of most materials.
As such, the electric polarization matrix is usually sufficient
for the characterization of these quantities. We have shown
here that this does not extend to optical helicity or chirality
and that we require the use of mixed electric-magnetic de-
scriptions [Eqs. (11), (12), and (23)]. We applied this general
theory successfully to two specific examples: chiral dipolar
emission and tightly focused optical vortex beams. The former
resulted in a unified theory of chiral emission from a dipolar
source.
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