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Abstract
Maternal gestatonal diabetes mellitus (GDM) and offspring high-fat diet (HFD) have been shown to have sex-specific
detrimental effects on the health of the offspring. Maternal GDM combined with an offspring HFD alters the lipi-
domic profiles of offspring reproductive organs with sex hormones and increases insulin signaling, resulting in
offspring obesity and diabetes. The pre-pregnancy maternal GDM mice model is established by feeding maternal
C57BL/6 mice and their offspring are fed with either a HFD or a low-fat diet (LFD). Testis, ovary and liver are collected
from offspring at 20 weeks of age. The lipidomic profiles of the testis and ovary are characterized using gas
chromatography-mass spectrometry. Male offspring following a HFD have elevated body weight. In reproductive
organs and hormones, male offspring from GDM mothers have decreased testes weights and testosterone levels,
while female offspring from GDM mothers show increased ovary weights and estrogen levels. Maternal GDM
aggravates the effects of an offspring HFD in male offspring on the AKT pathway, while increasing the risk of
developing inflammation when expose to a HFD in female offspring liver. Testes are prone to the effect of maternal
GDM, whereas ovarian metabolite profiles are upregulated in maternal GDM and downregulated in offspring
following an HFD. Maternal GDM and an offspring HFD have different metabolic effects on offspring reproductive
organs, and PUFAs may protect against detrimental outcomes in the offspring, such as obesity and diabetes.
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Introduction
Gestational diabetes mellitus (GDM), defined as glucose intolerance
with onset or first recognition during pregnancy [1], influences
about 18.4 million pregnancies worldwide annually [2,3]. In China,
the incidence of GDM is approximately 17.5% [4]. Maternal GDM is
associated with short-term and long-term adverse health outcomes
in their offspring later in life [5]. These offspring are at risk of poor
metabolic health, including impaired glucose tolerance, impaired

insulin secretion, changes in adipokines [6,7], and increased risk of
diabetes and obesity throughout childhood and adulthood [8,9].
High-fat diet (HFD) is a major contributor to chronic metabolic

diseases and obesity worldwide [10,11]. Previous rodent studies
have demonstrated that a maternal HFD could lead to sex-specific
responses in their offspring, with female offspring having increased
lipid, glucose and insulin levels in the serum [12], whilst male
offspring exhibit detrimental effects on elevated fasting serum levels
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of free fatty acids [13]. It is widely acknowledged that sex steroid
hormones contribute to sex-specific differences in body composi-
tion. Feeding offspring with an HFD postnatally has been found to
cause alterations in metabolic and hormonal profiles, such as ele-
vated levels of glucose, insulin, and lower testosterone levels
[14,15].
Previous studies have elucidated that maternal obesity combined

with an offspring high carbohydrate diet results in dynamic altera-
tions of the lipidomic profiles of adipose tissue in male offspring
[16,17]. Although some studies have directly investigated the
effects of HFD consumption in the offspring after exposure to GDM
in utero [18,19], few studies have investigated its effect on meta-
bolic health outcomes with a focus on sex-specific effects. The
effects of an offspring diet intervention and maternal GDM on
insulin signaling pathways and sex hormones in reproductive
organs of the offspring remains unclear.
In this study, we aim to evaluate sex-specific lipidomic changes in

reproductive organs and hormones in the offspring after exposure to
maternal GDM in utero combined with an offspring HFD.

Materials and Methods
HFD-induced GDM mouse model
All wild-type C57BL/6 mice in this study were purchased from the
Model Animal Research Center of Nanjing University (Nanjing,
China). All animal experiments complied with the ARRIVE guide-
lines and approved by the Ethics Committee of the First Affiliated
Hospital of Chongqing Medical University (Batch number: 2020-
41).
The mice were randomly divided into two groups (n=20 per

group): control or GDM group after adaptive feeding for one week.
The normal maternal mice were fed with a low-fat diet consisting of
20.3% protein, 63.9% carbohydrate, and 15.8% fat (Research Diets
AIN-93G) from weaning. A high-fat diet (HFD) consisting of 20%
protein, 35% carbohydrate, and 45% fat (Research Diets D12451)
was utilized for one week prior to mating and throughout pregnancy
(18.5 days) to build a GDM mouse model that closely resembled
metabolic abnormalities similar to human GDM [20]. Female mice
in the normal and GDM groups were mated with males of the same
genotype in a ratio of 1:2 at week 12. The overall experimental
design is illustrated in Figure 1A. The protein was obtained from
casein, isolated soybean protein, egg white solids, lactalbumin and
wheat gluten. The carbohydrate was from sucrose and cornstarch.
The fat source was the soybean oil [21].
After 16.5 days, OGTT was performed by first fasting mice for six

hours and then administering the mice with glucose (2 g/kg body
weight) via gavage. At 0, 30, 60, 90, and 120 min, blood samples
were collected from the tail vein, and a glucometer (Nova StatStrip
Xpress; Nova Biomedical, Waltham, UK) was used to measure the
blood glucose concentration. After 18.5 days, maternal blood sam-
ples were collected from tail vein after six hours of fasting. The
serum was collected and separated by centrifugation for 10 min at
4000 g and 4°C, and the insulin levels were measured using the
ELISA kit (Beyotime, Shanghai, China).

Offspring generation and diet intervention
The GDM mice were mated with the C57BL/6 male mice and the
offspring were reduced to seven pups after birth to avert food com-
petition during the suckling period. All parental mice were con-
tinuously fed with the low-fat diet (LFD). Supplementary Table S1

showed the birth information of offspring from the normal and GDM
maternal mice. All the offspring were separated from the maternal
mice from three weeks old. Mice from the same litter were separated
into different cages depending on their allocation and fed with an
LFD. At 8 weeks of age, mice were fed with either an LFD or an HFD.
This led to the establishment of eight diverse experimental groups:
Female offspring from GDM mothers who were then fed with an
LFD (F-G-L, n=8); female offspring from GDM mothers who were
then fed with an HFD (F-G-H, n=6); female offspring from normal
mothers who were then fed with an LFD (F-N-L, n=9); female
offspring from normal mothers who were then fed with an HFD (F-
N-H, n=10); male offspring from GDM mothers who were then fed
with an LFD (M-G-L, n=8); male offspring from GDMmothers who
were then fed with an HFD (M-G-H, n=9); male offspring from
normal mothers who were then fed with an LFD (M-N-L, n=6); and
male offspring from normal mothers who were then fed with an
HFD (M-N-H, n=7).

Measurement of offspring characteristics
Offspring body weights were measured at 8, 14 and 20 weeks of age.
At 20 weeks of age, the systolic blood pressure was recorded using
the method with “tail-cuff” by a blood pressure recorder (IITC Life
Science, Woodland Hills, USA). The mice tails were occluded with
the proper size tube-shaped tail cuff linked to the tail cuff device and
the basal level blood pressure was recorded according to the in-
struction [22,23]. The OGTTwas performed in offspring at 20 weeks
of age and the protocol was identical to that in the maternal mice.
At 20 weeks of age, blood samples were only collected from a tail

vein after 6 h of fasting, and the collected serum was separated by
centrifugation for 10 min at 4000 g and 4°C, and frozen at −80°C
for storage. The concentrations of plasma insulin, estrogen, and
testosterone were determined using the corresponding ELISA kits
(Beyotime) and the concentrations of plasma FSH were measured
using the ELISA kit obtained from Jianglai Biotechnology (Shang-
hai, China) according to the manufacturer’s instructions.
At 20 weeks of age, the offspring livers were collected after 6 h of

fasting for the Folch lipid extraction which was performed for the
isolation in offspring liver and purification of total lipids from off-
spring liver following the previous protocol [24].

Western blot analysis
Proteins were extracted from the mice liver, gonadal adipose tissue,
ovaries and testes with RIPA lysis buffer (Thermo Scientific, Wal-
tham, USA). Protein concentrations were measured using a BCA
estimation kit (Thermo Scientific) according to the manufacturer’s
protocol. Western blot analysis was performed following the in-
struction. Protein samples were subject to SDS-PAGE (7%, 10% or
12%) and then transferred to PVDF membranes (Millipore, Bill-
erica, USA). The Primary antibodies were anti-ERS1 (1:1000 dilu-
tion; Abcam, Cambridge, UK), anti-AR (1:1000 dilution; Abcam),
anti-IRS1 (1:1000 dilution; Abcam), anti-pIRS1 (1:1000 dilution;
Abcam), anti-PI3K (1:1000 dilution; Abcam), anti-pPI3K (1:1000
dilution; Abcam), anti-AKT (1:1000 dilution; Abcam), anti-pAKT
(1:1000 dilution; Abcam), anti-TNFα (1:1000 dilution; Abcam), and
β-actin (1:1000 dilution; Abcam). The secondary antibody was goat-
anti mouse IgG and goat-anti rabbit IgG (1:5000 dilution; Abcam).
The protein bands were scanned and relative intensity of each band
was quantified using Quantity One software (Bio-Rad, Hercules,
USA).

737Maternal GDM affects offspring reproductive organ metabolites

Wang et al. Acta Biochim Biophys Sin 2022

https://www.sciengine.com/doi/10.3724/abbs.2022052


Figure 1. Experimental design and maternal characteristics (A) Graphical display of the experimental design of the study. (B) The body weight of
normal mothers (n=9) and GDM mothers (n=13) in grams at week 14. (C) Oral glucose tolerance test of normal mothers and GDM mothers (blue
line and square; n=13) at 14 weeks. (D) The plasma insulin levels of normal mothers (n=9) and GDM mothers (n=13) at week 14. (E) The relative
abundances of fatty acids were plotted using log2 scale. Fold changes of metabolite concentrations compared with their control groups are
illustrated in the heatmap. The yellow color indicates decreasing levels. Only the fatty acids with significant P values (Tukey’s HSD: P<0.05) and q
values (FDR: q<0.05) are shown. Statistical differences between the normal mother and GDM mother were determined using an unpaired
Student’s t-test for B and D or a two-way ANOVA followed by a Tukey’s post hoc test for C. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
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Quantitative real-time PCR
Quantitative real-time PCR (qRT-PCR) TsingZol (TaKaRa, Dalian,
China) was used to isolate RNA and the NanoDrop-2000 spectro-
photometer (Thermo Scientific) was utilized to analyze RNA qual-
ity. RNA was reversely transcribed to cDNA by using the high-
capacity cDNA synthesis kit (TaKaRa) according to the manu-
facturer’s instructions, and PCR was performed using PCR instru-
ment. The gene expression was calculated using the 2–∆∆Ct method
[25], and data were normalized to that of GAPDH which is the
reference gene across all groups of offspring. Primer sequences are
listed in Supplementary Table S2.

HE staining
The mice were fasted for 6 h to remove existing intestinal lipid
stores. The liver tissue was fixed with 4% paraformaldehyde
overnight. After being washed with flow water for 4 h, the tissue
was dehydrated with gradually increasing concentrations of
ethanol: 70% for 2 h, 80% overnight, 90% for 2 h, and 100% for
1 h, and finally xylene for 30 min. The liver tissue was then
embedded with paraffin at 60°C for 2 h, and the paraffin mass
was cut into sections of 5 μm. The sections were deparaffinized
twice with xylene for 15 min, treated twice with 100% ethanol
for 5 min, and then with 95%, 85%, and 75% ethanol (2 min
each). The liver sections were stained with hematoxylin (Beyo-
time) for 5 min, soaked with 1% hydrochloric acid for several
seconds, and counterstained with eosin (Beyotime) for 3 min.
Finally, the liver sections were dehydrated again with gradually
increasing concentrations of ethanol: 75% for 2 min, 85% for
2 min, 95% for 2 min, 100% for 5 min (repeated twice), and
xylene for 10 min (repeated twice). Then liver sections were
mounted with gum and examined with a Leica DM4000 micro-
scope (Leica, Wetzlar, German) at 20× magnification. Images
were collected from liver sections of 3 mice per group for Cell-
Profiler analysis.

Measurement of testis and ovary tissue metabolites by
GC-MS
Testes and ovaries were collected from the mice and immediately
frozen at –80 °C until the metabolite extraction was performed.
Metabolites were extracted from 20 mg of testis or ovary tissues
using 2 mL methanol/toluene (1:4 v/v ratio) solution containing
20 μg/mL tridecanoic acid (Nu-Chek Prep, Elysian, USA) and
20 μg/mL nonadecanoic acid (Nu-Chek Prep) as internal standards.
Subsequent steps were performed as previously described [26]. The
extracted metabolites were analyzed using the Agilent 5977 A MSD
system and the Agilent 7890B GC system (Agilent Technologies,
Santa Clara, USA). The metabolites were separated using the
ReSTEK RTX α-2330 capillary column (100 m, 0.25 mmID, 0.2 μm
df, 90% biscyanopropyl/10% phenylcyanopropylpolysiloxane). A
total of 1 μL of each sample was injected into the inlet and operated
in a split-less mode at 250°C throughout the analysis. The helium
pressure was set to a constant flow rate of 1 mL/min.

Metabolite identification and normalization
The GC-MS peaks were deconvoluted using an automated mass
spectrometry deconvolution identification system (AMDIS) soft-
ware. Identification was performed by comparing the peaks’ ion
fragmentation pattern and retention time (within 20 s window) to
an internal lipid mass spectrometry library established using che-

mical standards [27]. The relative quantification of the identified
metabolites was extracted with the most abundant reference ion
using MassOmics. Metabolite levels were normalized in the order of
internal standards (nonadecanoic acid and tridecanoic acid), batch
calibration via quality control (QC) samples, and mass of the re-
productive tissues [28].

Statistical analysis
Data are presented as the mean±SEM. The comparisons between
the two groups were conducted using an unpaired Student’s t-test.
Comparisons within four groups (G-L, G-H, N-L, N-H) were de-
termined for both male and female animals using two-way ANOVA
and Tukey post-hoc analysis. The tests were performed using
GraphPad Software Prism 9 (GraphPad Software, San Diego, USA).
The false discovery rates (FDR) were calculated using the q-value
function in the R program to account for multiple comparisons. The
important variables in the partial least squares discriminant analysis
(PLS-DA) projection were determined using the ropls R-package.
P<0.05 with corresponding q-value (FDR)<0.05 were considered
statistically significant [29]. A receiver operating characteristic
(ROC) curve was constructed using pROC to plot significant meta-
bolites [30]. A graphical representation of the significant metabo-
lites was displayed in heat maps using the gplot and ggplot2 R
packages [31]. Correlations between fatty acids (FAs) were de-
termined by nonparametric (Spearman rho) test.

Results
Characteristics and serum fatty acid levels of normal
maternal mice and GDM maternal mice
At 18.5 days of gestational age, the normal mice were significantly
lighter than the GDM mice (Figure 1B). The blood glucose con-
centration and insulin level were increased in GDM mice compared
to those in normal mice (Figure 1C,D). A total of 13 serum meta-
bolites were significantly different (P<0.05 and q-value <0.05)
between the normal maternal mice and GDMmaternal mice (Figure
1E). Lower serum levels of four long-chain unsaturated FAs, 7 long-
chain saturated FAs, and 2 medium-chain saturated FAs were found
in the GDM maternal mice when compared to those in the normal
maternal mice. The principal component analysis (PCA) showed a
clear separation in the metabolic profiles between HFD and LFD
compositions (Supplementary Figure S1A). A total of 21 metabolites
were significantly increased (P<0.05 and q-value<0.05) in HFD
group compared to those in LFD group, including 6 amino acids, 1
short-chain unsaturated FA, 5 medium-chain saturated FAs, 5 long-
chain saturated FAs and 4 long-chain unsaturated FAs, while the
concentration of three metabolites were reduced, including 1 amino
acid, 2 long-chain saturated FAs (Supplementary Figure S1B). Fur-
thermore, the correlation of diet composition (HFD or LFD) with
either maternal plasma (GDM mother or normal mother) or off-
spring testes (fed with HFD or LFD) is depicted in Supplementary
Figure S1C. The FAs in HFD group showed significantly positive
correlation with GDM maternal plasma, while correlated negatively
with testes of offspring fed with LFD. Moreover, the FAs in LFD
group exhibited a remarkably positive correlation with offspring fed
with LFD, while correlated negatively with testes of offspring fed
with HFD.

Characteristics of the offspring
At 20 weeks of age, the body weights of both offspring from the
normal mothers or GDM mothers fed with HFD were higher in the
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male than in the female within each treatment group. Offspring fed
with an LFD from normal mothers had higher body weight in the
male than in the female. Male offspring from the normal mothers
were significantly heavier if they had followed the HFD after
weaning, compared to the LFD group (Figure 2A).
A significantly higher ovary weight was observed in the offspring

following an HFD when compared to the LFD group (Figure 2B),
while inverse results were observed in testes weights (Figure 2C).
Female offspring from normal mothers subsequently fed with an
HFD had significantly higher systolic blood pressure when com-
pared to the LFD group (Figure 2D).
In female offspring from normal mothers, a higher blood glucose

concentration was found throughout the OGTT experiment in those
following an HFD compared to those receiving an LFD. Male offspring
from GDMmothers, who were subsequently fed with an HFD had an
increased blood glucose level from 0 min to 120 min compared to the
LFD group. Whereas, male offspring from normal mothers, who were
subsequently fed with an HFD had an increased blood glucose level
only at 0 min and 30 min, compared to the LFD group (Figure 2F,G).
Plasma insulin levels were elevated in both female and male offspring

born to normal mothers and fed with an HFD compared with the LFD
group. On the other hand, elevated insulin levels were only observed
in male offspring fed with an HFD from GDM mothers when com-
pared to those from normal mothers (Figure 2H,I).
Plasma estrogen concentrations were significantly higher in fe-

male offspring from normal mothers, who were subsequently fed
with an HFD compared to the corresponding LFD group (Figure 2J).
A significant reduction was also observed in plasma testosterone in
male offspring from GDM mothers when compared to male off-
spring from normal mothers (Figure 2L). There was no significant
difference in plasma FSH between female and male offspring (Fig-
ure 2K,M). Two-way ANOVA statistical results are listed in Sup-
plementary Table S3.
Higher hepatic lipid weight was observed in both offspring fed

with HFD from GDM mother than in offspring fed with LFD from
GDM mother, with an increase of 25.80±6.18 mg in female off-
spring and 22.00±8.05 mg in male offspring (Supplementary Figure
S2A,B). Two-way ANOVA statistical results are listed in Supple-
mentary Table S4. Similar accumulation of hepatic lipid was ob-
served between female and male offspring, while the offspring

Figure 2. Characteristics of the offspring (A) Body weight of the offspring. (B) Ovary weight of the female offspring. (C) Testis weight of the male
offspring. (D) Blood pressure of the female offspring. (E) Systolic blood pressure of the male offspring. (F) OGTT results from the female offspring.
(G) OGTT results from the male offspring. (H) Plasma insulin levels of the female offspring. (I) Plasma insulin levels of the male offspring. (J)
Plasma E2 levels of the female offspring. (K) Plasma FSH levels of the female offspring. (L) Plasma testosterone levels of the male offspring. (M)
Plasma FSH levels of the male offspring. Statistical differences for the characteristics of offspring were determined using a two-way ANOVA
followed by a Tukey’s post hoc test for A to M. *P<0.05, ** P<0.01, *** P<0.001, **** P<0.0001.
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bodyweight of the male was higher than that of the female, implying
a higher liver weight/body weight ratio in the female offspring than
in the male offspring.

Expressions of sex hormone receptors and AKT
signaling in the offspring liver and gonadal adipose
tissue
The protein expression of estrogen receptor 1 (ESR1) was increased
in the ovaries of female offspring fed with an HFD, whereas the
protein expression of androgen receptors (AR) was reduced in the
testes of male offspring fed with an HFD from normal mothers and
in the male offspring fed with LFD from GDMmother (Figure 3A,C).
In addition, in male offspring testes, the interactive effect of ma-
ternal GDM and offspring HFD showed significance in AR. We
measured the mRNA expression of sex hormonal receptors in the
offspring reproductive organs. The mRNA expression of ESR1 was

significantly increased in the ovary from the female offspring fed
with a postnatal HFD from GDM mother, whereas AR expression
was significantly reduced in the testis from offspring fed with an
HFD (Supplementary Figure S2C,D). Two-way ANOVA statis-
tical results are listed in Supplementary Table S4. Insulin sig-
naling-related molecules are depicted in Figure 3 and
Supplementary Table S5. Female offspring exhibited increased
AKT signaling activation in the liver in response to an HFD.
Meanwhile, maternal GDM increased the insulin signaling in li-
ver (pIRS1, pPI3K) and adipose tissue (pIRS1, pAKT) in the male
offspring. The total AKT levels in female liver and male adipose
tissue have no significant difference among the 4 groups re-
spectively (Supplementary Figure S2E,F).
Furthermore, we observed a combined effect of maternal GDM

and offspring HFD, resulting in elevated expression of TNFα in fe-
male and male offspring liver. Notably, in both male and female

Figure 3. Effects of maternal GDM and offspring HFD on the liver, gonadal adipose tissue, and reproductive organs of the offspring (A) Protein
levels of ESR1 in female offspring ovaries (upper panel). Protein levels of pIRS1, pPI3K, pAKT were normalized against total IRS1, PI3K, AKT and
TNFα separately in female offspring livers (lower panel). (B) Protein levels of pIRS1, pPI3K, pAKT were normalized against total IRS1, PI3K, AKT
separately and TNFα in female offspring gonadal adipose tissue. (C) Protein levels of AR in male offspring testes (upper panel). Protein levels of
pIRS1, pPI3K, pAKT were normalized against total IRS1, PI3K, AKT separately and TNFα in male offspring livers (lower panel). (D) Protein levels of
pIRS1, pPI3K, pAKT were normalized against total IRS1, PI3K, AKT separately and TNFα in male offspring gonadal adipose tissue. (E) Re-
presentative HE-stained liver section images in female offspring. Scale bar=100 μm. (F) Representative HE-stained liver section images in male
offspring. Scale bar=100 μm. Statistical differences for the characteristics of offspring were determined using a two-way ANOVA followed by a
Tukey’s post hoc test. *P<0.05, ** P<0.01, *** P<0.001, **** P<0.0001.
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offspring gonadal adipose tissue, the prominent increase of TNFα
was only observed in the HFD groups.

Offspring liver histology
HE-stained sections of liver were evaluated for signs of pathology.
Histological evidence showed more lipid droplets in the liver sec-
tions of male offspring than in the female offspring in all groups
(Figure 3E,F). Only offspring HFD increased the lipid droplets in
both female and male offspring liver (Supplementary Figure S2G,H).

Metabolite profiles of offspring ovaries and testes
The principal component analysis (PCA) demonstrated an obvious
overlap in the metabolic profile of the offspring ovaries in different
groups, while a clear separation was observed in the metabolic
profile of the offspring testes. The first three major components of
the PCA, i.e., PC1, PC2 and PC3, accounted for 33.9%, 16.2% and
10.5% respectively of the metabolite variation in the ovaries and

33.0%, 11.3% and 7.5% respectively of the variation in the testes
(Figure 4A,B). The heatmap showed substantial differences in the
lipidomic entities of the offspring ovaries among groups (Figure 4C).
Ovaries from offspring born to GDM mothers and fed with an LFD
had increased levels of 7 long-chain unsaturated FAs and 1 long-
chain saturated FA, and decreased levels of 2 medium-chain un-
saturated FAs compared to offspring born to normal mothers and
fed with an LFD. A decrease in 4 long-chain unsaturated FAs, 1
long-chain saturated FA, and 1 short-chain saturated FA was ob-
served in offspring born to normal mothers and subsequently fed
with HFD, compared to the corresponding LFD group. Interesting,
almost no difference was found between maternal GDM in offspring
that were fed with HFD and those fed with LFD. The metabolomic
analyses of the male offspring testes revealed that the concentra-
tions of all FA and cholesterols were increased in offspring from
GDMmothers compared to those in offspring from normal mothers,
regardless of their diet after weaning (Figure 4D). Whereas, 2

Figure 4. Principal component analysis (PCA) and lipidomic profiles of ovaries and testes in the offspring (A) The PCA analysis of offspring
ovaries. (B) The PCA analysis of offspring testes. The color codes of the balls are listed as follows: purple color represents offspring sex (M=male;
F=female)-GDM mother-high-fat diet (M/F-G-H); blue color represents offspring sex-GDM mother-low-fat diet (M/F-G-L); red color represents
offspring sex-normal mother-high-fat diet (M/F-N-L); green balls represent offspring sex-normal mother-low-fat diet (M/F-N-H). (C) The heatmap
demonstrates the female offspring’s ovary lipidomic profiles. (D) The heatmap demonstrates the male offspring’s testis lipidomic profiles. The
maternal obesity indicated that comparisons between the GDM mother normalized against the normal mother (GDM/N) for the offspring fed with
the same diet (L=LFD or H=HFD). The offspring diet indicated that comparisons between the offspring HFD normalized against the offspring LFD
(H/L) from the same mother (GDM or N). The relative abundances of metabolites were plotted using log2 scale. Fold changes of metabolite
concentrations when compared with their control groups are illustrated by purple color (increasing levels) and yellow color (decreasing levels).
Only the metabolites with a significant P value (Tukey’s HSD: P<0.05) and q value (FDR: q<0.05) are shown.
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branched FAs and 2 long-chain unsaturated FAs were consistently
reduced in offspring fed with an HFD compared to those fed with an
LFD, regardless of exposure to GDM in utero.

ROC analysis for the metabolic profile of offspring
reproductive organs
ROC analysis was performed in the metabolic profiles of offspring
ovaries and testes across the groups and an AUC value above 0.95
was considered to be significant. The results showed that
7,10,13,16-cis-docosatetraenoic acid in the offspring ovaries ex-
hibited high sensitivity and specificity to discriminate between the
diet groups in offspring from normal mothers. The 7,10,13,16-cis-
docosatetraenoic acid and 11-cis-eicosenoic acid in offspring testes
could significantly discriminate between the offspring from GDM or
normal mothers, subsequently fed with an HFD. The 6,11-eicosa-
dienoic acid, 11-trans-eicosenoic acid, 5,8,11,14,17-cis-eicosa-
pentaenoic acid, and 13-cis-eicosenoic acid in offspring testes could
significantly discriminate between the offspring from GDM and
normal mothers, subsequently fed with an LFD (Figure 5).

Correlation of metabolic profiles in maternal serum with
male offspring testes
Due to the great effect of exposure to GDM in utero and offspring HFD
on the male offspring testes metabolome, a correlation analysis was
performedwith thematernal serummetabolome. In general, offspring
fed with an HFD exhibited mostly negative correlations with the

maternal serum metabolites in both offspring from GDM and normal
mothers. Offspring fed with an LFD showed all positive correlations
with the maternal serum metabolites. In particular, a positive corre-
lation was observed between EPA levels in the three different group
comparisons (GDM mother vs offspring LFD, normal mother vs off-
spring LFD, and normal mother vs offspring HFD, Figure 6).

Discussion
It has been demonstrated that maternal GDM and offspring HFD
lead to increased blood glucose, insulin signaling and inflammatory
response in offspring. In the present study, we found sex differences
in either separate or interactive metabolic effects of maternal GDM
and offspring HFD on offspring liver, adipose tissue, and re-
productive organs. In particular, maternal GDM influences the FA
metabolism in male offspring testes, among which both offspring
HFD and sexual dimorphism have synergy. These impacts may be
associated with the AKT signaling pathway and sex hormones.
We elucidated how PUFAs are altered in offspring reproductive

organs with the effects of maternal GDM and offspring HFD. The
7,10,13,16-cis-docosatetraenoic acid, an ω-6 PUFA, was elevated in
both female offspring ovaries and male offspring testes in response
to an HFD. The 7,10,13,16-cis-docosatetraenoic acid plays an im-
portant role in inflammatory mediation by acting as a ligand for
immune receptors and triggering increased TNFα levels [32]. In our
study, female offspring fed with a postnatal HFD increased TNFα
expression only when they were born to GDM mother. These in-

Figure 5. Receiver operating characteristic curves All fatty acids exhibited an area under the ROC curve greater than 0.95. (A) Comparison between
F-G-L and F-N-L for methyl stearate. (B) Comparison between F-N-H and F-N-L for 7,10,13,16-cis-docosatetraenoic acid. (C) Comparison between M-
G-H and M-N-H for 7,10,13,16-cis-docosatetraenoic acid and 11-cis-eicosenoic acid. (D) Comparison between M-N-H and M-N-L for cholest-5-ene.
(E) Comparison between M-G-L and M-N-L for 6,11-eicosadienoic acid, 11-trans-eicosenoic acid, 5,8,11,14,17-cis-eicosapentaenoic acid and 13-cis-
eicosenoic acid. G: GDM mother; N: normal mother; H: high-fat diet; L: low-fat diet.
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teractions suggest that exposure to GDM in utero may raise the risk
of developing inflammation when subsequently exposed to an HFD
challenge. Additionally, the maternal GDM strengthened the in-
flammatory factor TNFα in the male offspring adipose tissue with
the synergy of offspring HFD. Similar to our study, prenatal ex-
posure to maternal obesity and HFD programmed the offspring liver
toward a pro-inflammatory phenotype, with an upregulation of
TNFα [33]. This low-grade inflammation leads to a cascade of
events, including inflammatory cell activation, adipocyte growth
and dysfunction, and obesity [34,35].
In our GDM mouse model, the reduced concentration of plasma

PUFAs was observed. Michael et al. [36] demonstrated that the
combination of the low milieu of PUFAs and high adiponectin could
mediate fetal programming. This evidence suggested that maternal
PUFAsmay play a potential role in the development of the offspring.
Insulin has been shown to modulate the expressions of FA synthase
and stearoyl-CoA desaturase, and the latter catalyses FA synthesis
[37]. The fetal liver and adipose tissue are often directly affected by
altered in-utero conditions [38]. Liver and adipose tissue play a

significant role in the whole-body insulin action [39]. In our mouse
model, insulin signaling increased by maternal GDM was detected
in male offspring liver and adipose tissue. Studies on the effects of
maternal obesity on both male and female offspring have frequently
elucidated that male offspring have a more pronounced detrimental
phenotype, including adiposity and impaired islet function [40,41].
Indeed, the insulin signaling was elevated in the female offspring
fed with an HFD. The impact of maternal GDM is inconspicuous in
our study. Yokomizo and colleagues [42] showed that plasma es-
tradiol levels from HFD-induced obesity mothers were higher in
female offspring than in male offspring, providing evidence that
females may be protected from deficient insulin level in the ma-
ternal HFD state. It should be noted that female but not male off-
spring appear to be primed to cope with a nutritionally rich in utero
environment, which may lead to differences in future obesity risk.
The decreased concentration of eicosapentaenoic acid (EPA) was

observed in the serum of maternal mice with GDM. EPA is an es-
sential fatty acid [43] that must be delivered by placental transfer to
serve as an important substrate for fetal development [44]. Ac-

Figure 6. Correlation plots of fatty acids in offspring testes and maternal plasma The blue color represents a positive correlation and the red color
represents a negative correlation. The grey numbers are correlation coefficients and only the correlations with P values less than 0.05 are colored.
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cordingly, an abnormal level of maternal circulating fatty acids may
result in adverse maternal-fetal interactions and affect offspring
phenotype. Interestingly, the concentration of EPA was also atte-
nuated in male offspring testes from GDM mothers and fed with a
postnatal HFD. Notably, we found that in male offspring liver ex-
posure to maternal GDM contributes to the increased insulin sig-
naling only when given an HFD again, implying that GDM
exacerbates the impacts of a postnatal HFD challenge. This result is
consistent with another recent study demonstrating that post-
weaning fat exposure promotes glucose intolerance and compro-
mises insulin-stimulated glucose uptake, which is aggravated by
maternal fat exposure [19]. On the other hand, the correlation plots
of FA between offspring testes and maternal plasma suggest that the
correlation is likely with the offspring diet. We also observed that an
LFD was associated with better outcomes for the offspring and was
positively correlated with PUFAs. Indeed, PUFAs have been re-
ported to reduce chronic inflammation and have potential anti-
obesogenic effects [45,46]. Taken together, we can conclude that
the reduced PUFA levels are involved in the combined effect of
maternal GDM and offspring HFD on offspring reproductive organs,
leading to offspring obesity later in life.
The obesogenic consequences resulted from the insulin signaling

activation are partially associated with the sex hormone levels in the
male offspring. Fetal programming by maternal GDM has been
proposed as a predictive-adaptive response to in utero conditions
[47]. Our study seems to be the case with male offspring, particu-
larly influencing the offspring sex hormone. The male offspring in
this study whowere born to GDMmothers had reduced testosterone
levels and decreased androgen receptor (AR) expression in their
testes. There is considerable evidence that testosterone deficiency is
involved in the pathological changes in body fat composition by
causing the onset of visceral obesity and subsequently contributing
to insulin signaling activation [48]. In addition, previous research
demonstrated that androgen may exhibit sex-specific effects on the
body fat composition through the FABP4-PPAPγ pathway [49] and
further mediate the PUFAs content [50]. Interestingly, a higher liver
weight/body weight ratio was observed in the female offspring with
HFD. Previous studies showed that female mice are more prone to
hepatic lipid storage than male mice. Schiffrin et al. [51] suggested
that it might be related to the female-specific overexpression of
genes (e.g. G0s2, Plin2, Scd1) involved in lipid storage. Della et al.
[52] also reported that females could effectively utilize dietary and
available amino acids in the liver by ERα-dependent signaling
pathways. The possible reason for the female mice to exhibit a
higher insulin level than the male mice is that the female mice
express higher levels of estrogen receptors to promote insulin sen-
sitivity in response to HFD intervention [53]. Moreover, previous
studies also demonstrated that estrogen improved the ability of in-
sulin to regulate hepatic and peripheral glucose metabolism in HFD-
induced obesity in female mice with ovariectomy [54]. Overall, the
maternal GDM and offspring HFD could cause diverse metabolic
consequences in the female and male offspring which might be
related to sex hormones.
In summary, we confirmed that GDM aggravates the effects of a

postnatal HFD in male offspring, and increases the risk of devel-
oping inflammation in female offspring exposed to an HFD. Im-
portantly, maternal GDM affects FAmetabolism with the synergistic
effect of offspring HFD inmale offspring testes related to the impacts
of sex hormones and the increase in insulin signaling. PUFAs might
have the potential to be the new therapeutic target for preventing

the detrimental effects of GDM on male offspring.
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