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We consider small-amplitude deformations of a long thin-walled elastic tube, caused by a pressure dif-
ference between the interior and exterior. The tube initially has a uniform elliptical cross-section and is
subject to a large axial pre-stress. The tube length and wall thinness can be exploited to derive simplified
models of the wall mechanics. Such models typically neglect effects such as axial bending, which are
small over most of the tube but contain higher-order axial derivatives. The resulting models are unable
to satisfy the full set of clamped boundary conditions where an elastic section of tube is joined to a rigid
support. In this work, we examine the asymptotic boundary layers that arise near the clamped end of an
elastic-walled tube, which allow a bulk solution to a simplified model in the interior to be matched to
the boundary conditions at the tube ends. We consider the region of parameter space where the width
of the thinnest bending boundary-layer is small compared with the tube diameter, but still much larger
than the thickness of the tube wall. Within this region, we find three distinct regimes which give rise
to different sets of nested boundary layers involving different physical effects. Our matched asymptotic
solutions show excellent agreement with an exact solution in a case where the full problem can be solved
analytically.

Keywords:Starling resistor; solid mechanics; boundary-layers; elastic-walled tube; tube laws.

1. Introduction

Fluid conveying elastic-walled tubes occur in many different biological, medical, and industrial con-
texts. Instabilities in such flows, involving fluid-structure interaction between the conveyed fluid and
the tube wall, are well-known and have been extensively studied, using experimental, numerical, and
asymptotic techniques (see, e.g., the reviews byHeil & Jensen, 2003; Grotberg & Jensen, 2004; Heil &
Hazel, 2011).

The canonical experimental setup for studying such flows is know as the ‘Starling resistor’. As
shown in Figure1, a finite length of elastic-walled tube is clamped between tworigid tubes and placed
inside a pressure chamber. Fluid is driven through the tubes by imposing a pressure difference between
the inlet and outlet, or by using a volumetric pump at one end. The external pressure in the chamber
can be adjusted to alter the degree of collapse of the elastic section of the tube. The axial tension in the
elastic tube can also be adjusted by altering the distance between the two rigid sections of tube after
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2 M.C. WALTERS & R.J. WHITTAKER

Fig. 1. A schematic diagram of the Starling resistor setup, showing afinite length of elastic-walled tube clamped between two
rigid tubes and placed inside a pressure chamber. A fluid flowu is induced through the tubes either by imposing a pressure
difference between the ends (as shown) or by using a volumetric pump at one end.

the elastic section has been clamped. Experimental studies using this setup have revealed a rich variety
of behaviour, including the growth of large-amplitude self-excited oscillations (see, e.g.,Bertram &
Tscherry, 2006; Bertram, 2008).

In order to effectively model the fluid–structure interaction in such situations, one needs a descri-
ption of the mechanics of the elastic tube wall. In many applications, the tube is long compared to its
diameter, and the wall is relatively thin. Both of these can beexploited in both ad-hoc and asymptotic
modelling.

A common way of modelling the wall mechanics (particularly in the long-wavelength thin-walled
limit) is to use a so-called ‘tube law’. This is an equation of theform p=P(A) that relates the transmural
(interior minus exterior) pressurep at a given axial position to the cross-sectional areaA of the tube at
that position. Such tube laws have been proposed based on fitting experimental data (e.g.Shapiro, 1977;
Kececiogluet al., 1981) and have also been derived theoretically (e.g.Flahertyet al., 1972; McClurken
et al., 1981).

More recently,Whittakeret al. (2010) used shell-theory and long-wavelength approximations to
derive a tube law for the asymptotic limit of small-amplitude deformations a long thin-walled elastic
tube with an initially elliptical cross-section. The resulting tube law took the form

p= k0A+k2
∂ 2A
∂z2 (1.1)

wherek0 andk2 are numerically determined constants. The two terms in (1.1) arise physically from
azimuthal bending and the interaction between axial tensionand curvature respectively. Other physical
effects are found to be asymptotically small provided we remain ina long-wavelength thin-walled
regime.

However, the full set of boundary conditions at the ends of the elastic-walled tube in a Starling
resistor setup involves the elastic part beingclampedto the rigid supports. This means that both the
position and gradient of the wall is fixed there. Within the asymptotic model ofWhittakeret al. (2010),
the normal and azimuthal displacements can be fixed at the ends, but the axial displacement and gradient
cannot. This inability to set all the boundary conditions results from the neglect of terms containing
higher derivatives inz in the long-wavelength asymptotic regime.
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In order to satisfy the remaining boundary conditions, we would expect to find that boundary layers
occur near the ends of the tube. Within such layers, a shorter axial length-scale allows some of the
neglected effects to re-enter the problem at leading order.

Initial progress in this area was made byWhittaker(2015). To satisfy ‘pinned’ boundary conditions
(in which the position of the tube wall is fixed but not its gradient) the additional physical effect of
in-plane shear was found to be needed, resulting in two nested boundary layers. In certain regimes it
was found that the boundary layers could have a significant effecton the bulk solution in the main part
of the tube. However, this work still did not address the issue of what boundary layers would be needed
in order to satisfy fully clamped boundary conditions.

In the present work, we re-analyse the full shell equations for the tube wall in the thin-walled small-
deformation limit, and seek distinguished axial length scales that give rise to asymptotic balances in
the equations. This leads to the discovery of a number of different boundary layers in three distinct
regimes. These boundary layers involve different balances of forces from azimuthal bending, azimuthal
hoop stress, the interaction of the axial pre-stress with curvature, the in-plane shear stress, and the
applied transmural pressure. In each of the regimes, the solutionsin the relevant boundary layers are
matched to provide a full solution that is able to satisfy the clamped boundary conditions at the tube
end and match to bulk solutions valid over most of the length of the tube.

This paper is organised as follows. In§2 we describe the mathematical setup of the problem and
the parameter regimes we shall be considering. In§3 we derive the linearised equilibrium equations
that must be satisfied. In§§4–6 we consider the possible asymptotic balances in boundary layers with
different axial length scales. In§§7–9 we consider in detail the asymptotic boundary-layer structures
in three different regimes. In§10 we validate the asymptotic results by comparing them with an exact
solution in a special case. Finally, discussion and conclusions are presented in§11.

2. Mathematical setup and scaling analysis

2.1. Problem description

We follow the setup ofWhittaker(2015), and consider an elastic-walled tube that is initially an axially
uniform elliptical cylinder of axial lengthL, azimuthal circumference 2πa, and wall thicknessd, as
shown in Figure2. The ellipticity of the tube is set by a parameterσ0 so that the major–minor axis
ratio is given by cothσ0. For reasonable ellipticities,a will be the length scale of the semi-axes of the
tube’s cross-section. The tube wall is made of linearly elasticmaterial with bending stiffnessK and
Poisson ratioν . The two ends of the tube are clamped to rigid elliptical supports. In its initial elliptical
configuration, the tube is subject to an externally applied uniform axial pre-stress, due to an axial tension
F . We then wish to consider deformations induced by an applied transmural pressurep (possibly non-
uniform), with dimensional scaleP. The dimensional scale for the induced normal deformations in the
bulk of the tube is denotede.

2.2. Dimensionless parameters and parameter regime

In general, we shall use the cross-sectional length scalea to non-dimensionalise lengths, and the ben-
ding stiffnessK to non-dimenionalise stresses. FollowingWhittaker et al. (2010), we introduce the
following dimensionless parameters and their asymptotic sizes:

ℓ=
L
a
≫ 1, ϑ =

d
a
≪ 1, F =

aF
2πKℓ2 = O(1) , ε =

e
a
≪ 1. (2.1)
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4 M.C. WALTERS & R.J. WHITTAKER

Fig. 2. The general setup of the elastic-walled tube. The tube has length L, wall-thicknessd, and an initially elliptical cross-
section with semi-axesaccoshσ0 andacsinhσ0 and a circumference of 2πa. The tube is subject to an axial tensionF and a
transmural pressurep. Also shown are the dimensionless Cartesian coordinatesx, y, z. The dimensionless coordinateτ ∈ [0,2π)
is the elliptical angle around the circumference, rather than arclength.

The parametersℓ andϑ are aspect ratios, assumed to be large and small respectively fora long thin-
walled tube.F is a dimensionless measure of the axial tension, taken to beO(1) so that the restoring
force from the axial tension has the same magnitude as the restoringforce from azimuthal bending of
the tube wall. The parameterε measures the dimensionless amplitude of the deformations induced by
the pressure. We assumeε ≪ 1, so that allO(ε2) terms can be neglected, allowing us to linearise the
problem for small amplitude perturbations.

It will also be convenient to introduce the additional parameter

F̃ =
ϑ 2ℓ2F

12(1−ν2)
, (2.2)

which will appear naturally in the asymptotic equations below. In this work we consider only the case
whereϑℓ≪ 1, so thatF̃ ≪ 1.

In our linearised problem, the size of the deformations (and henceε) is proportional to the pressure
scaleP. The constant of proportionality depends on the dominant mechanics in the coupling between
the pressure and the deformations. This in turn depends on the precise parameter regime. In this work,
we consider three distinct regimes, referred to as Regimes Ia, Ib and Iab. As we shall see below in§4,
appropriate expressions forε are:

ε =















a3P
K

: Regime Ia

a3ϑ 3ℓP

KF̃ 3/2
: Regimes Ib and Iab

. (2.3)

The first expression followsWhittaker(2015); the second is derived here in AppendixC.

2.3. Coordinates for the tube wall and deformation

We describe the deformed position of the tube wall parametricallyby r(τ,z). Motivated by an elliptical
cylindrical coordinate system, we takeτ andz to be dimensionless material coordinates, defined so that
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the position of the undeformed tube wall is is given by

r̄(τ,z) = a





c coshσ0 cosτ
c sinhσ0 sinτ

z



 . (2.4)

The coordinates therefore lie in the rangesτ ∈ (0,2π) andz∈ (0, ℓ). The dimensionless constantc is
given by

c=
π sechσ0

2Ee(sechσ0)
, (2.5)

so that the circumference of the undeformed tube is precisely 2πa. (Here Ee(k) is the complete elliptic

integral of the second kind, given by Ee(k)≡ ∫ π/2
0

√

1−k2sin2 θ dθ .)
We also define unit vectorst̂ andẑ aligned respectively with theτ andz coordinates in the undefor-

med surface, and a unit vector ˆn normal to the undeformed surface. FollowingWhittakeret al. (2010),
we introduce the scale factor

h(τ) =
1
a

∣

∣

∣

∣

∂ r̄
∂τ

∣

∣

∣

∣

= c
(

1
2 cosh2σ0− 1

2 cos2τ
)1/2

. (2.6)

The unit vectors are then given by

t̂ =
1
ah

∂ r̄
∂τ

, ẑ=
1
a

∂ r̄
∂z

, n̂= t̂ × ẑ. (2.7)

For later use, we also define the dimensionless base-state azimuthal curvature by

B̄≡ n̂· 1
h

∂ t̂
∂τ

=−c2sinh2σ0

2h3 . (2.8)

We adopt the same representation of the wall displacements as in Whittaker(2015), namely

r − r̄ =
εa
ℓ

(

1
h(τ)

[

ξ (τ,z)n̂+η(τ,z)t̂
]

+ζ (τ,z)ẑ
)

, (2.9)

where the functions(ξ ,η ,ζ ) describe the dimensionless displacements in the normal, azimuthal and
axial directions, respectively. (Note that theεa/ℓ in the pre-factor in (2.9) means that we needξ = O(ℓ)
in the bulk of the tube. This choice of scaling may appear slightly unconventional, but is used here for
consistency withWhittaker(2015).)

The clamped boundary conditions at the tube ends imply that

r(τ,z) = r̄(τ,z) and n̂· ∂ r
∂z

(τ,z) = 0 at z= 0, ℓ . (2.10)

In terms of the dimensionless functions in (2.9), these boundary conditions correspond to

ξ = 0,
∂ξ
∂z

= 0, η = 0, ζ = 0. (2.11)

Standard periodic boundary conditions apply atτ = 0 andτ = 2π.
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6 M.C. WALTERS & R.J. WHITTAKER

3. Equilibrium equations

In the absence of tangential and axial forces on the wall, and of wall inertia, the Kirchhoff–Love shell
equations used byWhittakeret al. (2010) to model the wall displacements are

∇α ∇β Mαβ +Nαβ bαβ = −p, (3.1)

∇β Nβ1−b1
γ ∇β Mβγ = 0, (3.2)

∇β Nβ2−b2
γ ∇β Mβγ = 0. (3.3)

wherebαβ is the curvature tensor,Nαβ is the in-plane stress tensor,Mαβ is the bending moment tensor,
and∇α is the covariant derivative in the directionxα . The Greek letter indices range over(1,2), for two
in-plane directions, and the summation convention is adopted. As in Whittakeret al. (2010), we take
the material coordinatesxα to satisfy dx1 = ah(τ)dτ and dx2 = adz, so they are aligned with the tube
geometry in the undeformed state. Following the usual convention, subscript and superscript indices
represent covariant and contravariant tensor components respectively. Indices can be raised or lowered
using the metric tensoraαβ (defined in (A.2)), so e.g.bαγ = aαβ bβ

γ .
The curvature tensorbαβ is obtained geometrically from the displacements, while the stressesNαβ

andMαβ are related to the displacements through the elastic constitutive law, which we assume to be
linear. FollowingWhittaker(2015), we obtain leading-order expressions for these tensors in terms of
the displacement functions(ξ ,η ,ζ ). The detailed calculations can be found in AppendixA. We obtain

bαβ =
B̄
a

(

1 0
0 0

)

+
ε

aℓh

(

b̃11 b̃12

b̃21 b̃22

)

+O
( ε

aℓ
· ε
ℓ

)

, (3.4)

Nαβ =
K
a2

(

0 0
0 ℓ2F

)

+
εK

a2ϑ 2ℓ

(

Ñ S̃
S̃ Σ̃

)

+O

(

εK
a2ϑ 2ℓ

(

ϑ 2,
ε
ℓ

)

)

, (3.5)

Mαβ =
εK
aℓ

(

M̃11 M̃12

M̃21 M̃22

)

+O

(

εK
aℓ

· ε
ℓ

)

, (3.6)

in terms of the dimensionless curvature componentsb̃αβ , the dimensionless azimuthal hoop stress
Ñ, the dimensionless in-plane shear stressS̃, the dimensionless axial stress perturbationΣ̃, and the
dimensionless bending momentsM̃αβ (all functions ofτ andz).

The leading-order dimensionless curvature components are

b̃11 = B̄

(

−ξ B̄+
∂

∂τ

(η
h

)

)

+
∂

∂τ

(

ηB̄
h

+
1
h

∂
∂τ

(

ξ
h

))

, (3.7)

b̃12 = b̃21 =
∂ 2

∂ r∂z

(

ξ
h

)

+ B̄
∂η
∂z

, (3.8)

b̃22 =
∂ 2ξ
∂z2 ; (3.9)
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the leading-order dimensionless in-plane stress components are

Ñ = 12

(

− B̄ξ
h

+
1
h

∂
∂τ

(η
h

)

+ν
∂ζ
∂z

)

, (3.10)

S̃ =
12(1−ν)

2h

(

∂η
∂z

+
∂ζ
∂τ

)

, (3.11)

Σ̃ = 12

(

∂ζ
∂z

+ν
(

− B̄ξ
h

+
1
h

∂
∂τ

(η
h

)

))

; (3.12)

and the leading-order dimensionless bending moments are

M̃11 = B̄

(

−ξ B̄
h

+
1
h

∂
∂τ

(η
h

)

)

− 1
h

∂
∂τ

(

ηB̄
h

+
1
h

∂
∂τ

(

ξ
h

))

−ν
∂ 2

∂z2

(

ξ
h

)

, (3.13)

M̃12 =
(1−ν)

h

[

− ∂ 2

∂τ∂z

(

ξ
h

)

+
B̄
2

(

∂ζ
∂τ

− ∂η
∂z

)]

, (3.14)

M̃21 =
(1−ν)

h

[

− ∂ 2

∂τ∂z

(

ξ
h

)

+ B̄
∂ζ
∂τ

]

, (3.15)

M̃22 = B̄
∂ζ
∂z

+2νB̄

(

−ξ B̄
h

+
1
h

∂
∂τ

(η
h

)

)

− ∂ 2

∂z2

(

ξ
h

)

− ν
h

∂
∂τ

(

ηB̄
h

+
1
h

∂
∂τ

(

ξ
h

))

. (3.16)

FromWhittaker(2015), the covariant derivatives∇α are given by

∇1 =
1
ah

∂
∂τ

+O(ε) , ∇2 =
1
a

∂
∂z

+O(ε) . (3.17)

As in Whittaker(2015), the only place we need to include theO(ε) correction terms in (3.17) is where
the derivatives are applied to the large axial pre-stress inN22. The relevant expression is

∇αNαβ =
∂Nαβ

∂xα +Γα
γαNγβ +Γβ

γαNαγ , (3.18)

where

Γ1
21 =

1
a

∂γ11

∂z
, Γ1

22 =
ε

aℓh
∂ 2η
∂z2 , Γ2

22 =
ε
aℓ

∂ 2ζ
∂z2 , (3.19)

andγ11 is a component of the in-plane shear, as defined in (A.3) and expressed in terms ofξ andη in
(A.15). Finally, we introduce a non-dimensional pressure ˜p, by writing

p= Pp̃. (3.20)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
at/advance-article/doi/10.1093/im

am
at/hxaf012/8157712 by U

niversity of East Anglia user on 11 June 2025



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

8 M.C. WALTERS & R.J. WHITTAKER

Substituting the above expressions into (3.1)–(3.3), and neglecting terms ofO(ε2), we obtain the
following equilibrium equations:

ϑ 2
(

M̃11
ττ + M̃12

τz + M̃21
zτ + M̃22

zz

)

+ B̄Ñ+12(1−ν2)F̃

(

ξ
h

)

zz
= −P p̃, (3.21)

(

Ñτ + S̃z

)

+12(1−ν2)F̃
(η

h

)

zz
−ϑ 2B̄

(

M̃11
τ + M̃21

z

)

= 0, (3.22)

(

S̃τ + Σ̃z

)

+12(1−ν2)F̃

[

−
(

ξ B̄
h

)

z
+
(η

h

)

τz
+2ζzz

]

= 0, (3.23)

whereÑ, S̃, Σ̃ andM̃αβ are given by (3.10)–(3.16), ( · )z ≡ ∂ /∂z, ( · )τ ≡ h−1∂ /∂τ , and the pressure
scaleP is given by

P =
ϑ 2ℓa3P

εK
. (3.24)

The size ofP is fixed by the relationship betweenε andP, which will be determined in§4 below.
The boundary conditions on the system are (2.11) at z= 0 andz= ℓ, together with periodic conditions
betweenτ = 0 andτ = 2π.

For ϑ ≪ 1 andF̃ ≪ 1, the highest axial derivatives in each of the equations (3.21)–(3.23) are
multiplied by small parameters, so we expect to find boundary layers. We wish to find a matched
asymptotic solution to (3.21)–(3.23) and (2.11) involving boundary layers of different thicknesses in
the axialzdirection. To find the possible boundary-layer widthsδ , we consider possible balances in the
equations whenz= O(δ ). (The scalings are such thatδ = 1 corresponds to a thickness inzof the same
order as the diameter of the tube, whileδ = ℓ corresponds to the length of the tube.) We compile table1,
which gives the sizes and origins of the various terms in the equilibrium equations (3.21)–(3.23) when
z= O(δ ) . 1. In the sections that follow, we shall use this table to consider the dominant balances at
different magnitudes ofδ that give rise to different boundary layers in the region of parameter space
whereϑ ≪ 1 andF̃ ≪ 1.

4. Analysis for δ ≫ 1

For a boundary-layer of widthδ ≫ 1, we make use of the analysis inWhittaker(2015), where a ‘bulk
solution’ with δ = O(ℓ) and an ‘outer shear layer’ withδ = O(F̃−1/2) are found. The analysis there
must be adapted for our case here, in two different ways dependingon the precise regime.

When F̃−1/2 ≪ ℓ, we expect the same boundary-layer structure for the outer shear layer as in
Whittaker(2015). The bulk solution is forced directly by the transmural pressure, which is balanced
by azimuthal bending and axial pre-stress/curvature effects. Thestructure of the outer shear layer is
primarily set by a balance between between the axial stress and axial pre-stress/curvature effects. In
both the outer shear layer and the bulk, azimuthal hoop stressand in-plane shear stress are also present
at leading order. The transmural pressure does not appear directlyin the equations for the outer shear
layer. Instead the displacements there are forced by the matchingof this layer to the bulk solution.

The inner boundary conditions on the outer shear layer that weneed here are different from those in
Whittaker(2015), as we expect a different boundary-layer structure forδ . 1. The details of the outer
shear layer whenF̃−1/2 ≪ ℓ can be found in AppendixB below, where a solution is derived in terms
of the azimuthal eigenfunctionsYn(τ) of a particular linear operator. The relationship between the size
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Physical
Effect

Contribution to
Normal Balance
(3.21)

Contribution to
Azimuthal
Balance (3.22)

Contribution to
Axial Balance
(3.23)

Hoop Stress B̄Ñ ∼ (ξ ,η ,ζ/δ ) Ñτ ∼ (ξ ,η ,ζ/δ )
Shear Stress — S̃z ∼ (η/δ 2,ζ/δ ) S̃τ ∼ (η/δ ,ζ )
Axial Stress — Σ̃z ∼ (ξ/δ ,η/δ ,ζ/δ 2)

Pre-Stress/
Curvature

F̃ξzz∼ F̃ξ/δ 2 F̃ηzz∼ F̃η/δ 2 F̃ (γ11z+ζzz)
∼

F̃ (ξ/δ ,η/δ ,ζ/δ 2)

Azimuthal
Bending

ϑ 2(M̃11)ττ
∼ ϑ 2(ξ ,ξ/δ 2,η)

ϑ 2B̄(M̃11)τ
∼ ϑ 2(ξ ,ξ/δ 2,η)

—

Torsion ϑ 2
(

(M̃12)τz+(M̃21)zτ
)

∼ ϑ 2(ξ/δ 2,η/δ 2,ζ/δ )
ϑ 2B̄(M̃21)z

∼ ϑ 2(ξ/δ 2,ζ/δ )
—

Axial
Bending

ϑ 2(M̃22)zz

∼ ϑ 2(ξ ,ξ/δ 2,η ,ζ/δ )/δ 2
— —

Transmural
Pressure

P — —

Table 1 Scale estimates of the dimensionless contributions to the dimensionless equilibrium
equations (3.21)–(3.23) from the different physical effects, over an arbitrary axial length scale
z∼ δ , whereδ . 1. (All three equations have been non-dimensionalised on the common scale
εK/(a3ℓϑ 2), and the axial coordinate z has been non-dimensionalised using the length scale a
of the tube cross-section.)

of the deformations and the pressure scale is as found byWhittaker(2015), so we have

ε =
a3P
K

⇒ P = ϑ 2ℓ . (4.1)

For F̃−1/2 & ℓ on the other hand, the outer shear layer extends to the whole of the length of the
tube, and there is no separate bulk solution. The forcing of the displacements in this single ‘bulk shear
layer’ must come directly from the transmural pressure acting withinthat layer. The displacements must
therefore be smaller, so that the transmural pressure appears at leading-order in the equations for the
bulk shear layer. The relevant calculations can be found in AppendixC below, where the solution is con-
structed in terms of the same azimuthal eigenfunctionsYn(τ). We find that, at leading-order, the applied
transmural pressure is balanced by the combination of all three in-plane stresses. The relationship
between the size of the deformations and the pressure scale is found to be

ε =
ϑ 2ℓ4a3P

K
⇒ P = ℓ−3 . (4.2)

5. Analysis for δ = O(1)

We refer to table1 and considerδ = O(1). Following our chosen parameter regime (2.1), we take
ϑ ≪ 1, F̃ ≪ 1 andF = O(1). We also assume that theO(P) contribution from transmural pressure
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in (3.21) is negligible at this axial length scale. (This is appropriatesince the pressure is forcing the
displacements in a region with a longer axial length scale. The shorter length scale here will increase
the magnitude of some of the other terms in the equilibrium equations, meaning that the pressure no
longer contributes to the leading-order balances.)

Whenδ =O(1) we have equal axial and azimuthal length-scales. This suggests that the three displa-
cements(ξ ,η ,ζ ) should all have the same scaling, which also leads to the principal stresses(Ñ, S̃, Σ̃)
having this same expected scaling too. We defineC to be this common scale. Since the equations we
are considering are linear and homogeneous, the common scalingis arbitrary as far as the equations are
concerned. It will instead be determined by the matching conditions. It will turn out that appropriate
choices will beC = F̃ 1/2 whenϑ ≪ F̃ ≪ 1 (Regime Ia) andC = ℓ−1 whenF̃ . ϑ ≪ 1 (Regimes
Ib and Iab), both of which satisfyC ≪ 1.

5.1. Dominant balances in the equilibrium equations

Referring to table1, we first consider the normal balance (3.21). Sinceϑ ≪ 1, F̃ ≪ 1 andδ = O(1),
the hoop-stress term̄BÑ dominates (3.21). With no other terms at this order,̃N must vanish at its
O(C ) expected order. In other words, the variousO(C ) contributions toÑ from the displacements
cancel between themselves at this order. The actual size ofÑ is then set by the maximum size of the
other terms in (3.21): O(ϑ 2C ), O(F̃C ) andO(P). The definition (2.2) givesF̃ ∼ ℓ2ϑ 2F , and we
have assumed thatF = O(1) and ℓ ≫ 1. Therefore,ϑ 2 ≪ F̃ , and henceÑ is at least a factor of
O(F̃ ,C−1P) smaller than itsO(C ) anticipated scale.

In the azimuthal balance (3.22), the hoop stress̃Nτ and shear stress̃Sz would be present at leading
order if they both had their expectedO(C ) magnitudes. However,̃Nτ vanishes at that order. Hence
we haveS̃z = 0 at its O(C ) expected order, with non-zero corrections coming in only at a relative
O(F̃ ,C−1P) smaller.

In the axial balance (3.23), the shear stress̃Sτ and axial stress̃Σz are present at leading order, with
anO(C ) magnitude. However,̃Sτz must vanish at that order. So, taking thez derivative of (3.23), we
have thatΣ̃zz= 0 at itsO(C ) expected order, with non-zero corrections coming in only at a relative
O(F̃ ,C−1P) smaller.

5.2. Form of the stress components

Based on the above arguments, we can write the stress components as

Ñ = C

[

0+O(F̃ ,C−1
P)
]

, (5.1)

S̃ =
C

2(1+ν)h(τ)

[(

A0(τ)+C A1(τ)
)

+O(F̃ ,C−1
P)
]

, (5.2)

Σ̃ = C

[(

B0(τ)z+C0(τ)
)

+C

(

B1(τ)z+C1(τ)
)

+O(F̃ ,C−1
P)
]

, (5.3)

whereAi , Bi andCi are arbitraryO(1) functions ofτ, and the denominator in the expression forS̃ is
chosen for later convenience. Thei = 1 functions are included because we know that the expression (5.2)
will need to be matched to (B.5) in the outer shear layer or (C.16) in the bulk shear layer. Both (B.5)
and (C.16) turn out to have magnitudes equivalent toO(C 2), and so may induceO(C 2) corrections in
(5.2).

Substituting the forms (5.1)–(5.3) into the equilibrium equations (3.21)–(3.23), we find that the
normal balance (3.21) and the azimuthal balance (3.22) are automatically satisfied too(C F̃ ,P) with
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no constraints on the functionsA0, Bi andCi . The axial balance (3.23) however, requires

1
2(1+ν)h

∂
∂τ

(

A0

h

)

+B0 = 0,
1

2(1+ν)h
∂

∂τ

(

A1

h

)

+B1 = 0. (5.4)

This allows us to expressB0 andB1 in terms ofA0 andA1, though it is more convenient not to eliminate
B0 andB1 at this point.

5.3. Displacement recovery

Recovering the leading-order displacements from (5.1)–(5.3) using equations (A.34)–(A.36), we obtain

ξ =
C

12(1−ν2)B̄

[

νh(B0z+C0)−
∂

∂τ

(

1
6B′

0z3+ 1
2C′

0z2− (A0−D′
0)z−E0

h

)]

, (5.5)

η =
C

12(1−ν2)

(

−1
6B′

0z3− 1
2C′

0z2+
(

A0−D′
0

)

z+E0

)

, (5.6)

ζ =
C

12(1−ν2)

(

1
2B0z2+C0z+D0

)

, (5.7)

whereA0,B0,C0 are the arbitraryO(1) functions ofτ introduced in (5.1)–(5.3); D0 andE0 are additional
arbitraryO(1) functions ofτ (arising as constants of integration); and a prime denotes differentiation
with respect toτ.

6. Analysis for δ ≪ 1

We again make use of table1, and consider balances in a boundary-layer of axial lengthδ , where
δ ≪ 1. As before, we takeϑ ≪ 1, F̃ ≪ 1 andF = O(1), and assume that theO(P) transmural
pressure is negligible at this length scale. (The latter assumption is found to be consistent with the
solutions obtained.)

6.1. Azimuthal balance

Examining the ‘Azimuthal’ column of table 1, the possible dominant terms in the azimuthal balance
(3.22) are: theO(ξ ) andO(ζ/δ ) contributions from the hoop stress, theO(η/δ 2) andO(ζ/δ ) contri-
butions from the shear stress, andO(ϑ 2ξ/δ 2) contributions from azimuthal bending and torsion. The
other terms are all asymptotically smaller than one of these.

We now consider theO(η/δ 2) contribution from the shear stress. If this is asymptotically larger
than all the other terms, thenηzz itself must vanish at that order. Otherwise there must be other terms in
the leading-order balance, in which case we need

η . max
{

δ 2ξ ,ϑ 2ξ ,δζ
}

. (6.1)

From the latter we can deduce that
η ≪ max

{

ξ ,ζ/δ
}

, (6.2)

and also
ϑ 2η
δ 2 . max

{

ϑ 2ξ ,ϑ 4ξ/δ 2,ϑ 2ζ/δ
}

≪ max
{

ξ ,ϑ 2ξ/δ 2,ζ/δ
}

. (6.3)
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6.2. Axial balance

Examining the ‘Axial’ column of table 1, the possible dominant terms in the axial balance (3.23) are:
the O(η/δ ) contribution from the shear stress, and theO(ξ/δ ), O(η/δ ) andO(ζ/δ 2) contributions
from the axial stress.

If (6.2) holds, then we see that the twoη terms in (3.23) must be asymptotically smaller than at least
one of the other terms. Hence only theO(ξ/δ ) andO(ζ/δ 2) contributions from the axial stress can be
present at leading order. Considering theO(ζ/δ 2) term, we must either haveζzz= 0 at that order, or
else

ζ . δξ . (6.4)

6.3. Normal balance

Examining the ‘Normal’ column of table 1, the possible dominant terms in the normal balance (3.21)
are: theO(ξ ), O(η) and O(ζ/δ ) contributions from the hoop stress, theO(F̃ξ/δ 2) contribution
from the axial pre-stress/curvature, theO(ϑ 2η/δ 2) contribution from the torsion, and theO(ϑ 2ξ/δ 4),
O(ϑ 2η/δ 2) andO(ϑ 2ζ/δ 3) contributions from the axial bending.

If (6.2) holds, we see that theO(η) term from the hoop stress is asymptotically smaller than one
of the other two hoop stress contributions in (3.21), and so cannot be present in the leading-order bala-
nce. Similarly, (6.3) shows that theO(ϑ 2η/δ 2) contribution from the torsion is always asymptotically
smaller than one of the other terms.

If (6.4) holds, we see that theO(ϑ 2ζ/δ 3) term in the axial bending is smaller than theO(ϑ 2ξ/δ 4)
term in (3.21), so cannot be present at leading order. We also see that that theO(ζ/δ ) term in the hoop
stress is no larger than theO(ξ ) term there.

Hence, in the case where (6.1) and (6.4) hold, the possible terms in the leading-order balance are
O(ξ ,ζ/δ ,F̃ξ/δ 2,ϑ 2ξ/δ 4).

6.4. Distinguished limits

We now seek values ofδ that could give rise to distinguished limits in the three equilibrium equations,
and hence determine the possible boundary-layer thicknesses.

We focus on the normal balance, and start with the case in which (6.1) and (6.4) hold. From§6.3, the
possible terms in the leading-order balance areO(ξ ,ζ/δ ,F̃ξ/δ 2,ϑ 2ξ/δ 4), and we note thatζ . δξ
from (6.4). However, ifζ ∼ δξ , then the leading-order balance in the axial equation sets therelation
betweenξ andζ , which means that we cannot just have theO(ξ ) andO(ζ/δ ) terms alone at leading
order in the normal equation. (If this were the case, there would be asecond conflicting relation between
ξ andζ .) This means that at least two of the following terms must be present in the normal balance:
O(ξ ), O(F̃ξ/δ 2), O(ϑ 2ξ/δ 4).

Otherwise one or both of (6.1) and (6.4) do not hold. In this case, then at leading order, one of the
equations is eitherηzz= 0 or ζzz= 0. We would then have a polynomial solution for the corresponding
variable(s), which would appear as a forcing in the remaining equations. Since the system is linear, we
can subtract off these polynomials and the corresponding particular integrals for the other variables, lea-
ving behind a system in which (6.1) and (6.4) do both hold. These polynomials and particular integrals
cannot give rise to any additional distinguished limits not already occurring in the the system where
(6.1) and (6.4) hold.

This means that the normal balance considered above sets the boundary layer widths, via balances
between the following components: the hoop stress scaling with ξ , the pre-stress/curvature scaling with
F̃ξ/δ 2 and the axial bending scaling withϑ 2ξ/δ 4. Boundary layers occur when two or more of the
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Fig. 3. Sketches of the variation in the scale estimates for the termsin the normal force balance as the axial scaleδ varies,
showing the distinguished limits (filled circles) in Regimes Iaand Ib. The scales areξ for the hoop stress (HS),̃Fξ/δ 2 for the
pre-stress/curvature (PC), andϑ 2ξ/δ 4 for the axial bending (AB). Solid lines indicate when these effects are present at leading
order; dashed lines are used otherwise. The distinguished limits occur when two of the three effects have the same magnitude,
and the third is smaller.

components balance, and any remaining component is asymptotically smaller. Different pairs of these
terms balance whenδ = O(F̃ 1/2), δ = O(ϑ 1/2) andδ = O(ϑF̃−1/2). Whether or not the third term
is smaller (and hence we have a distinguished limit) in each ofthese cases is controlled by the relative
sizes ofϑ andF̃ , as shown in Figure3.

For ϑ ≪ F̃ ≪ 1, which we term Regime Ia, we have two relevant distinguished limits, which
occur atδ = O(ϑF̃−1/2) and δ = O(F̃ 1/2). Azimuthal bending dominates forz≪ ϑF̃−1/2, pre-
stress/curvature forϑF̃−1/2 ≪ z≪ F̃ 1/2, and the hoop stress for̃F 1/2 ≪ z. At z= O(ϑF̃−1/2), we
have a balance between the pre-stress/curvature and azimuthal bending, in what we shall term the ‘Ia
bending layer’. Atz=O(F̃ 1/2), we have a balance between the hoop stress and the pre-stress/curvature,
in what we shall term the ‘inner shear layer’.

For F̃ ≪ ϑ ≪ 1, which we term Regime Ib, we have only one relevant distinguished limit, which
occurs atδ = O(ϑ 1/2). Azimuthal bending dominates forz≪ ϑ 1/2, and the hoop stress dominates for
ϑ 1/2 ≪ z. At z= O(ϑ 1/2), we have a balance between the hoop stress and azimuthal bending, in what
we shall term the ‘Ib bending layer’. In this regime, the pre-stress/curvature effects are always smaller,
and never contribute at leading order.

For F̃ ∼ ϑ ≪ 1, which we term Regime Iab, there is one special distinguished limit. This occurs
at δ = O(ϑ 1/2) = O(F̃ 1/2) = O(ϑF̃−1/2), where all three terms are present at leading order. As in
Regime Ib, azimuthal bending dominates forz≪ F̃ 1/2, and the hoop stress dominates forF̃ 1/2 ≪ z.
The difference here is that pre-stress/curvature is also present atz= O(F̃ 1/2).

(The Regime nomenclature comes fromWalters(2016), where a ‘Regime II’ withF̃ ≫ 1 was
also considered. Consideration of that regime, in which shell theory no longer applies in the bending
boundary layer, is beyond the scope of this paper.)

7. Regime Ia (ϑ ≪ F̃ ≪ 1)

We now consider in detail the boundary layers that exist in Regime Ia, whereϑ ≪ F̃ ≪ 1. The
governing equations in each layer are derived and solved at leading order, and then the individual
boundary-layer solutions are matched to give a full solution. In this regime, we haveϑ ≪ F̃ , which
impliesF̃−1/2 ≪ ℓ. Hence, from the analysis of§4, we have an outer shear layer forz= O(F̃−1/2) and
a bulk solution forz= O(ℓ). From (4.1), we haveε = a3P/K andP = ϑ 2ℓ. The intermediate region
at z= O(1) was considered in§5. Here we consider the expected layers forz≪ 1, as anticipated in
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§6.4, namely an inner shear layer atz= O(F̃ 1/2) and Ia bending layer atz= O(ϑF̃−1/2). We will then
complete the matching between the various boundary layers.

7.1. Inner shear layer z= O(F̃ 1/2)

In the inner shear layer withδ = F̃ 1/2, we expect a dominant balance in the normal direction between
the azimuthal hoop stress and the pre-stress/curvature terms, withξ present in both these terms at
leading order. We then takeζ ∼ δξ (the largest permitted scale forζ ) so thatζ can also contribute
to the hoop stress. Forη , the magnitude is constrained by (6.2)–(6.3), meaning it is absent from the
normal and axial balances. We thus takeη ∼ δζ to allow a contribution to the shear stress in the
azimuthal balance.

With the relative sizes ofξ , η , andζ fixed, the only remaining degree of freedom in the scalings is
the overall scaling of the displacement amplitudes. This is arbitrary as far as the equations are concer-
ned, as they are linear and homogeneous at leading-order. The magnitude will be set by the matching
later on. Nevertheless, it is convenient to chose the right scaling now to simplify the matching below. It
turns out thatξ = O(F̃ 1/2) is appropriate, to match the magnitude of the small-z limit of (5.5).

We therefore introduce theO(1) scaled variables{ẑ, ξ̂ , η̂ , ζ̂}, and write:

z= F̃
1/2 ẑ, ξ = F̃

1/2 ξ̂ , η = F̃
3/2 η̂ , ζ = F̃ ζ̂ . (7.1)

Substituting these expressions into the equilibrium equations (3.21)–(3.23), we obtain the following
leading-order equations for the inner shear layer:

B̄

(

−B̄ξ̂ +νh
∂ ζ̂
∂ ẑ

)

+(1−ν2)
∂ 2ξ̂
∂ ẑ2 = 0, (7.2)

∂
∂τ

(

−2B̄
h

ξ̂ +(1+ν)
∂ ζ̂
∂ ẑ

)

+(1−ν)
∂ 2η̂
∂ ẑ2 = 0, (7.3)

∂ 2ζ̂
∂ ẑ2 − νB̄

h
∂ ξ̂
∂ ẑ

= 0, (7.4)

with neglected terms ofO(ϑ 2F̃−2,F̃ ), O(F̃ ), andO(F̃ ), respectively.
Eliminating ζ̂ between (7.2) and (7.4) we obtain

∂ 3ξ̂
∂ ẑ3 − B̄2 ∂ ξ̂

∂ ẑ
= 0. (7.5)

The general solution of (7.5) is
ξ̂ = Âe−|B̄|ẑ+ B̂e|B̄|ẑ+Ĉ, (7.6)

whereÂ, B̂, andĈ are arbitrary functions ofτ.
Substituting this into (7.2) and integrating, we then find

ζ̂ =
ν
h

(

Âe−|B̄|ẑ− B̂e|B̄|ẑ+
B̄
ν2Ĉẑ+ D̂

)

, (7.7)

whereD̂ is another arbitrary function ofτ, and we have used the fact thatB̄< 0.
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Substituting (7.6) and (7.7) into (7.3) and integrating, we obtain

η̂ =
∂

∂τ

[

(2+ν)
hB̄

(

Âe−|B̄|ẑ+ B̂e|B̄|ẑ
)

− B̄
2νh

Ĉẑ2
]

+ Êẑ+ F̂ , (7.8)

whereÊ andF̂ are two more arbitrary functions ofτ.
Finally, we can use (3.11) to evaluate the shear stress as

S̃ = F̃
12(1−ν)

2h

(

∂ η̂
∂ ẑ

+
∂ ζ̂
∂τ

)

= F̃
12(1−ν)

2h

[

∂
∂τ

(

2(1+ν)
h

(

Âe−|B̄|ẑ− B̂e|B̄|ẑ
)

+
νD̂
h

)

+ Ê

]

. (7.9)

This will be required for the matching below.

7.2. Ia bending layer z= O(ϑF̃−1/2)

In the Ia bending layer, we expect a dominant balance in the normal direction between the axial bending
and the pre-stress/curvature terms. This sets theO(ϑF̃−1/2) boundary-layer width. The appropriate
scales for the three displacements arise from the matching with the inner shear layer from§7.1. Linear
behaviour of the displacements in the matching region leads to ξ = O(ϑF̃−1/2), η = O(ϑF̃ 1/2) and
ζ = O(ϑ). (These scales mean that sizes ofη andζ relative toξ are larger than the maximums envi-
saged in§6.1 and§6.2. So the alternative options ofηzz= 0 andζzz= 0 for the azimuthal and axial
balances come in to play.)

We introduce theO(1) scaled variables{ž, ξ̌ , η̌ , ζ̌}, and write

z=
ϑF̃−1/2 ž
√

12(1−ν2)
, ξ =

ϑF̃−1/2 ξ̌
√

12(1−ν2)
, η =

ϑF̃ 1/2 η̌
√

12(1−ν2)
, ζ =

ϑ ζ̌
√

12(1−ν2)
. (7.10)

(The O(1) factors of
√

12(1−ν2) have been introduced for convenience in the calculations below.)
Substituting these expressions into the equilibrium equations (3.21)–(3.23), we obtain the following
leading-order equations for the Ia bending layer:

∂ 4ξ̌
∂ ž4 − ∂ 2ξ̌

∂ ž2 = 0, (7.11)

∂ 2η̌
∂ ž2 = 0, (7.12)

∂ 2ζ̌
∂ ž2 = 0, (7.13)

with errors ofO(ϑF̃−1), O(ϑF̃−1,F̃ ), andO(ϑF̃−1,F̃ ), respectively.
By inspection, the general solution of (7.11)–(7.13) is

ξ̌ = Ǎe−ž+ B̌ež+Čž+ Ď , (7.14)

η̌ = Ěž+ F̌ , (7.15)

ζ̌ = Ǧž+ Ȟ , (7.16)

whereǍ–Ȟ are all arbitrary functions ofτ.
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7.3. Boundary conditions and matching

Applying the boundary conditions (2.11) at z= 0 to solution (7.14)–(7.16) in the Ia bending layer, and
suppressing the exponential growth into the interior (ˇz→ ∞), we obtain

B̌= F̌ = Ȟ = 0, Ǎ= Č=−Ď . (7.17)

Hence the solution in the Ia bending layer simplifies to

ξ̌ = Ǎ
(

e−ž−1+ ž
)

, (7.18)

η̌ = Ěž, (7.19)

ζ̌ = Ǧž. (7.20)

We now consider the solution (7.6)–(7.8) in the Ia inner shear layer. Suppressing the exponential
growth into the interior (ˆz→ ∞), and ensuring decay of the displacements as ˆz→ 0 to match with the
smaller scales in the bending layer, we must takeB̂ = 0, Ĉ = D̂ = −Â, andF̂ = − ∂

∂τ
(

(2+ ν)Â/hb̄
)

.
The solution (7.6)–(7.8) in the Ia inner shear layer solution then simplifies to

ξ̂ = Â
(

e−|B̄|ẑ−1
)

, (7.21)

η̂ =
∂

∂τ

[

(2+ν)
hB̄

Â
(

e−|B̄|ẑ−1
)

+
B̄

2νh
Âẑ2
]

+ Êẑ, (7.22)

ζ̂ =
νÂ
h

(

e−|B̄|ẑ−1− B̄
ν2 ẑ

)

, (7.23)

S̃ = F̃
12(1−ν)

2h

[

∂
∂τ

(

2(1+ν)
h

Âe−|B̄|ẑ− νÂ
h

)

+ Ê

]

. (7.24)

We now complete the matching between the bending layer solution (7.18)–(7.20) as ž→ ∞ and the
shear layer solution (7.21)–(7.23) asẑ→ 0. Equating the linear behaviour ofξ , η andζ in the matching
region, we obtain

Ǎ= B̄Â, Ě = (2+ν)
∂

∂τ

(

Â
h

)

+ Ê , Ǧ=− (1−ν2)B̄
νh

Â, (7.25)

sinceB̄ < 0. (Note thatS̃ in (7.24) has not been used in this matching, but will be needed in the next
matching below.)

Next, we match the solution (7.21)–(7.24) in the Ia inner shear layer as ˆz→ ∞ to the intermediate
solution (5.2) and (5.5)–(5.7) asz→ 0. We find that

Â=− νh
12(1−ν2)B̄

C0 , Ê =
1

12(1−ν2)

[

A1−
∂

∂τ

(

ν2C0

B̄

)]

, (7.26)

and
A0 = D0 = E0 = 0; (7.27)

while B0, B1 andC1 are unconstrained at this order. (Observe that matchingS̃ is necessary to obtain the
equation forÊ.)
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Finally, we match the outer limit of the stresses (5.1)–(5.3) and displacements (5.5)–(5.7) in the
intermediate solution asz→ ∞, with the inner limit of the corresponding outer-shear-layer solutions
(B.4)–(B.6) and (B.7)–(B.9) asz̆→ 0. First, we setC = F̃ 1/2 to match the dominant behaviour between
the layers (in particular, thez0 terms inΣ̃). Then, completing the matching, we find that

A0 = B0 = 0, (7.28)

C0 =
∞

∑
n=1

B̆nYn(τ) , (7.29)

A1 = 2(1+ν)
∞

∑
n=1

B̆n

µn

∂
∂τ

[

1
B̄2h

∂
∂τ

(

1
h

∂Yn

∂τ

)

−Yn(τ)
]

, (7.30)

B1 = −
∞

∑
n=1

µnB̆nYn(τ) , (7.31)

D̆n = Ĕn = 0, (7.32)

whileC1, D0, andE0 are unconstrained. Note that the expressions here forA0 andB0 are consistent with
(5.4), as are those forA1 andB1 by virtue of the eigenvalue equation (B.1).

This concludes the matching. All the arbitrary constants/functions of integration have been deter-
mined in terms of the coefficients̆Bn from the outer shear layer, with the exception ofC1 that would
require higher-order matching.

7.4. Final matched solutions

Combining the matched results above, the leading-order solutions in each layer are as follows. The
solutions are written in terms of a single set of amplitudesB̆n for the azimuthal modesYn(τ) in the outer
shear layer. In any given problem, these amplitudesB̆n would be determined by matching the outer
shear layer to the bulk solution atz= O(ℓ).

In the outer shear layer 1≪ z≪ ℓ with z̆= z/F̃−1/2 we have

ξ =
F̃−1/2

12(1−ν2)B̄(τ)

∞

∑
n=1

B̆n

µn

[

1
µn

(

1−e−µnz̆
)

− z̆

](

Y′
n

h

)′
, (7.33)

η =
F̃−1/2

12(1−ν2)

∞

∑
n=1

B̆n

µn

[

1
µn

(

1−e−µnz̆
)

− z̆

]

Y′
n(τ) , (7.34)

ζ =
1

12(1−ν2)

∞

∑
n=1

B̆n

µn

(

1−e−µnz̆
)

Yn(τ) . (7.35)
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In the intermediate regionF̃ 1/2 ≪ z≪ F̃−1/2 we have

ξ =
F̃ 1/2

12(1−ν2)B̄

[

νh
∞

∑
n=1

B̆nYn−
1
2

∞

∑
n=1

B̆n

(

Y′
n

h

)′
z2

]

, (7.36)

η =
F̃ 1/2

12(1−ν2)

(

−1
2

∞

∑
n=1

B̆nY
′
n

)

z2 , (7.37)

ζ =
F̃ 1/2

12(1−ν2)

(

∞

∑
n=1

B̆nYn

)

z. (7.38)

In the Ia shear layerϑF̃−1/2 ≪ z≪ 1 with ẑ= z/F̃ 1/2, we have

ξ =
F̃ 1/2 νh

12(1−ν2)B̄

(

∞

∑
n=1

B̆nYn

)

(

1−e−|B̄|ẑ
)

, (7.39)

η =
F̃ 3/2

12(1−ν2)

∂
∂τ

[(

∞

∑
n=1

B̆nYn

)

(

(2+ν)ν
B̄2

(

1−e−|B̄|ẑ
)

− 1
2

ẑ2
)

+
∞

∑
n=1

B̆n

{

2(1+ν)
µnB̄2h

∂
∂τ

(

1
h

∂Yn

∂τ

)

−
(

ν2

B̄
+

2(1+ν)
µn

)

Yn

}

ẑ

]

, (7.40)

ζ =
F̃

12(1−ν2)

(

∞

∑
n=1

B̆nYn

)

(

ν2

B̄

(

1−e−|B̄|ẑ
)

+ ẑ

)

. (7.41)

In the Ia bending layerz≪ F̃ 1/2 with ž= z
√

12(1−ν2)/(ϑF̃−1/2), we have

ξ =
ϑF̃−1/2 νh

[12(1−ν2)]3/2

(

∞

∑
n=1

B̆nYn

)

(

1− ž−e−ž
)

, (7.42)

η =
ϑF̃ 1/22(1+ν)
[12(1−ν2)]3/2

∞

∑
n=1

B̆n

{

−ν
(

Yn

B̄

)′
+

1
µn

(

1
B̄2h

(

Y′
n

h

)′
−Yn

)′}

ž, (7.43)

ζ =
ϑ

123/2(1−ν2)1/2

(

∞

∑
n=1

B̆nYn

)

ž. (7.44)

The order-of-magnitude ofξ , η andζ in the different boundary layers, and the power-law behaviour
between them is shown in Figure4(a).

8. Regime Ib (F̃ ≪ ϑ ≪ 1)

We now consider in detail the boundary layers that exist in Regime Ib, whereF̃ ≪ ϑ ≪ 1. The gover-
ning equations in each layer are derived and solved at leading order, and then the solutions are matched
to give a full solution. In this regime, we haveϑ ≫ F̃ , which impliesF̃−1/2 ≫ ℓ. Hence, from the
analysis in§4, we have a single bulk shear layer whenz≫ 1, with width O(ℓ). From (4.2), we have
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Fig. 4. The order-of-magnitude of the three displacement functionsξ , η andζ in the different boundary layers, and the power-
law behaviour (zα for α = 0,1,2) in the regions between them. The two intersecting dashed lines in (b) reflect a change in the
asymptotic order of thez andz2 terms in the expansion ofη between the Ib Bending layer and the Intermediate region.

ε = ϑ 2ℓ4a3P/K andP = ℓ−3. The intermediate region atz= O(1) was considered in§5. Here we
consider the expected layer forz≪ 1, as anticipated in§6.4, namely a Ib bending layer atz= O(ϑ 1/2).
We will then complete the matching between the various boundary layers.

8.1. Ib bending layer z= O(ϑ 1/2)

In the Ib bending layer, we expect a dominant balance between axial bending and the azimuthal hoop
stress in the normal direction, withξ is present at leading order in both of these terms (see§6.4). The
scaling forξ is set by the need to match to the behaviourξ = O(ℓ−1) asz→ 0 from the intermediate
region. We then takeζ ∼ δξ so that it can also contribute to the hoop stress. The scaling forη is
determined by the need to match the shear stressS̃with the intermediate region.1

1 We haveS̃∼ ∂ η/∂z here, and it turns out this needs to match with theA1 term in (5.2), which has a magnitude ofO(C 2) =

O(ℓ−2). Henceη ∼ ϑ 1/2ℓ−2.
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We therefore introduceO(1) scaled variables{z̊, ξ̊ , η̊ , ζ̊} and write:

z= ϑ 1/2 ·
√

2
[

12(1−ν2)
]1/4

· z̊, ξ = ℓ−1 ·νh· ξ̊ , (8.1)

η = ℓ−2ϑ 1/2 ·
√

2
[

12(1−ν2)
]1/4

· η̊ , ζ = ℓ−1ϑ 1/2 ·
√

2ν2

[

12(1−ν2)
]1/4

· ζ̊ . (8.2)

(TheO(1) factors of
√

2, 12(1−ν2), ν andh are introduced for convenience in the calculations that fol-
low.) On substituting (8.1)–(8.2) into (3.21)–(3.23), we obtain the following leading-order equilibrium
equations for the Ib bending layer:

(1−ν2)
∂ 4ξ̊
∂ z̊4 +4B̄2ξ̊ −4ν2B̄

∂ ζ̊
∂ z̊

= 0, (8.3)

∂ 2η̊
∂ z̊2 = 0, (8.4)

∂ 2ζ̊
∂ z̊2 − B̄

∂ ξ̊
∂ z̊

= 0, (8.5)

with errors ofO(ℓ−2,F̃ϑ−1), O(ℓϑ 1/2,F̃ ) andO(ℓ−1ϑ 1/2,F̃ ) respectively.
We eliminate ξ̊ between (8.3) and (8.5) by differentiating (8.3) with respect to ˚z, and then

substituting for∂ ξ̊/∂ z̊ using (8.5). We obtain

∂ 6ζ̊
∂ z̊6 +4B̄2 ∂ 2ζ̊

∂ z̊2 = 0. (8.6)

The general solution of this equation is

ζ̊ =
(

Åcos(|B̄|1/2z̊)+ B̊sin(|B̄|1/2z̊)
)

e−|B̄|1/2z̊

+
(

C̊cos(|B̄|1/2z̊)+ D̊sin(|B̄|1/2z̊)
)

e|B̄|
1/2z̊+ E̊+ F̊ z̊, (8.7)

whereÅ–F̊ are arbitrary functions ofτ.
We now re-arrange (8.3) for ξ̊ , and eliminate∂ 4ξ̊/∂ z̊4 using (8.5). Noting thatB̄< 0, this gives

ξ̊ =
(1−ν2)

4|B̄|3
∂ 5ζ̊
∂ z̊5 − ν2

|B̄|
∂ ζ̊
∂ z̊

, (8.8)

from which we obtain

ξ̊ = |B̄|−1/2
(

(Å− B̊)cos(|B̄|1/2z̊)+(Å+ B̊)sin(|B̄|1/2z̊)
)

e−|B̄|1/2z̊

+ |B̄|−1/2
(

−(C̊+ D̊)cos(|B̄|1/2z̊)+(C̊− D̊)sin(|B̄|1/2z̊)
)

e|B̄|
1/2z̊− ν2

|B̄| F̊ . (8.9)

The general solution of (8.4) for η̊ is
η̊ = G̊z̊+ H̊ , (8.10)

whereG̊ andH̊ are two more arbitrary functions ofτ.
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8.2. Boundary conditions and matching

Applying the boundary conditions (2.11) atz= 0 to the Ib bending-layer solution (8.7), (8.9) and (8.10),
and suppressing exponential growth into the interior (˚z→ ∞), we find that we must take

B̊= C̊= D̊ = H̊ = 0, E̊ =−Å, F̊ = |B̄|1/2Å/ν2 . (8.11)

The solution in the bending layer then simplifies to

ξ̊ = −Å|B̄|−1/2
[

1−
(

cos(|B̄|1/2z̊)+sin(|B̄|1/2z̊)
)

e−|B̄|1/2z̊
]

, (8.12)

η̊ = G̊z̊, (8.13)

ζ̊ = −Å
[

1−ν−2|B̄|1/2z̊−cos(|B̄|1/2z̊)e−|B̄|1/2z̊
]

. (8.14)

From (3.11), the shear stress in the bending boundary layer (which we need forfurther matching) is
then given by

S̃= ℓ−2 12(1−ν)
2h

∂ η̊
∂ z̊

+O
(

ℓ−1ϑ 1/2
)

∼ ℓ−2 12(1−ν)
2h

G̊. (8.15)

Matching the bending-layer solution (8.12)–(8.15) asz̊→∞ with the intermediate solution (5.2) and
(5.5)–(5.7) asz→ 0, we find that

A0 = D0 = E0 = 0, C0 = 12(1−ν2)|B̄|1/2 Å, A1 = 12(1−ν2)G̊. (8.16)

The other coefficients are unconstrained at leading order.
Finally, we match the outer limit of the stresses (5.1)–(5.3) and displacements (5.5)–(5.7) in the

intermediate solution asz→ ∞, with the inner limit of the corresponding solutions (C.13), (C.16),
(C.11), and (C.17)–(C.19) in the Ib bulk shear layer as“z→ 0. The latter involves a set of amplitude
functionsqn(“z) for the azimuthal modesYn(τ). TheYn(τ) are fully determined, while theqn(“z) must
satisfy the ordinary differential equations (C.10) and (C.15). The matching provides boundary conditi-
ons on theqn(“z), and also expressions for the unknown amplitudes in the intermediate solution in terms
of higher derivatives ofqn at“z= 0. First, we note thatP = ℓ−3 from (C.20), and setC = ℓ−1 to match
the dominant behaviours between the layers (in particular, thez0 terms inΣ̃). Then, completing the
matching, we find that

q0(0) = 0, qn(0) = q′n(0) = 0 (n= 1,2,3, . . .) , (8.17)

together with

A0(τ) = 0, B0(τ) = 0, C0(τ) = q′0(0)+
∞

∑
n=1

q′′n(0)Yn(τ) , (8.18)

A1(τ) =−2(1+ν)
∞

∑
n=1

q′′′n (0)
µ2

n

∂
∂τ

(

1
B̄2h

∂
∂τ

1
h

∂Yn

∂τ
−Yn

)

, B1(τ) =
∞

∑
n=1

q′′′n (0)Yn(τ) . (8.19)

The remaining functionsD0, E0 andC1 in the intermediate solution are unconstrained by this matching
at leading order. Note that the expressions here forA0 andB0 are consistent with (5.4), as are those for
A1 andB1 by virtue of the eigenvalue equation (B.1).

An analysis of the boundary layers and matching near thez= ℓ end of the tube will result in equi-
valent conditions to (8.17)–(8.19) involving the coefficients for the boundary layers at the otherend of
the tube, and with“z= 0 replaced by“z= 1. Sinceq′′0(“z) = 0, the conditionsq0(0) = q0(1) = 0, mean
thatq0(“z)≡ 0 for all “z.
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8.3. Final matched solution

Combining the matched results above, the leading-order solutions in each layer are as follows. The solu-
tions are written in terms of a single set of functionsqn(“z) for n= 1,2,3. . ., which give the amplitudes
of the azimuthal modesYn(τ) in the bulk shear layer. These functions satisfy

q′′′′n −
(

ℓ2
F̃ µ2

n

)

q′′n =−Qn , (8.20)

subject to
qn(0) = q′n(0) = 0, qn(1) = q′n(1) = 0, (8.21)

where theQn (which may be“z-dependent) are defined in terms of the pressure forcing ˜p by (C.8).
In the bulk shear layer 1≪ z and 1≪ ℓ−zwith “z= z/ℓ we have

ξ ∼ − ℓ

12(1−ν2)B̄

∞

∑
n=1

∂
∂τ

(

1
h

∂Yn

∂τ

)

qn(“z) , (8.22)

η ∼ − ℓ

12(1−ν2)

∞

∑
n=1

∂Yn

∂τ
qn(“z) , (8.23)

ζ ∼ 1
12(1−ν2)

∞

∑
n=1

Yn(τ)q′n(“z) . (8.24)

In the intermediate regionϑ 1/2 ≪ z≪ F̃−1/2 we have

ξ =
ℓ−1

12(1−ν2)B̄

[

νh
∞

∑
n=1

q′′n(0)Yn−
1
2

∞

∑
n=1

q′′n(0)
∂

∂τ

(

1
h

∂Yn

∂τ

)

z2

]

, (8.25)

η = − ℓ−1

12(1−ν2)

(

1
2

∞

∑
n=1

q′′n(0)
∂Yn

∂τ

)

z2 , (8.26)

ζ =
ℓ−1

12(1−ν2)

(

∞

∑
n=1

q′′n(0)Yn

)

z. (8.27)

In the Ib bending layerz≪ 1 with z̊= z
[

12(1−ν2)
]1/4

/(
√

2ϑ 1/2), we have

ξ = − ℓ−1νh
12(1−ν2)|B̄|

∞

∑
n=1

q′′n(0)Yn(τ)
[

1−
(

cos(|B̄|1/2z̊)+sin(|B̄|1/2z̊)
)

e−|B̄|1/2z̊
]

, (8.28)

η = −ℓ−2ϑ 1/22
√

2(1+ν)
[12(1−ν2)]5/4

∞

∑
n=1

q′′′n (0)
µ2

n

∂
∂τ

(

1
B̄2h

∂
∂τ

1
h

∂Yn

∂τ
−Yn

)

z̊, (8.29)

ζ =
ℓ−1ϑ 1/2

√
2

[12(1−ν2)]5/4

∞

∑
n=1

q′′n(0)Yn(τ)
[

− ν2

|B̄|1/2

(

1−cos(|B̄|1/2z̊)e−|B̄|1/2z̊
)

+ z̊

]

(8.30)

The orders-of-magnitude ofξ , η and ζ in the different boundary layers, and the power law
behaviour between them is shown in Figure4(b).
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9. Regime Iab (F̃ ∼ ϑ ≪ 1)

WhenF̃ andϑ are both small, but comparable in size, we find ourselves in an intermediate regime
between Regime Ia and Regime Ib. In this case, usingF̃ ∼ ℓ2ϑ 2 from (2.2), we have

ϑ ∼ F̃ ∼ F̃
1/2 · ℓϑ ⇒ ℓF̃ 1/2 = O(1) . (9.1)

With ϑ ∼ F̃ , the three distinguished limits depicted in Figure3 all coincide atδ =O(F̃ 1/2). Hence
there is just one inner boundary layer forz≪ 1, which involves all three effects (azimuthal hoop stress,
pre-stress/curvature, and axial bending). Withℓ ∼ F̃−1/2, we have a single single bulk outer layer for
z≫ 1, which combines the pressure forcing and in-plane shear effects.The behaviours in these two
layers must be matched through the intermediate regionz= O(1). The boundary layer structure is thus
the same as in Regime Ib, though additional physical effects arepresent in each layer here.

Regime Iab can be analysed in a similar manner to the other two Regimes, though we omit the full
details for brevity. If we writeϑ = λ 2F̃ , whereλ = O(1), and use the previous variablesξ̂ = ξ/F̃ 1/2

andẑ= z/F̃ 1/2, then the differential equation governing the leading-order normal displacements in the
inner boundary layer is

λ 4

12(1−ν2)

∂ 5ξ̂
∂ ẑ5 − ∂ 3ξ̂

∂ ẑ3 + B̄2 ∂ ξ̂
∂ ẑ

= 0. (9.2)

In the (singular) limitλ → 0, we recover the Ia shear layer of§7.1, with the Ia bending layer of§7.2as
a boundary layer within it. In the limitλ → ∞, a re-scaling will recover the Ib bending layer of§8.1.

The outer bulk shear layer in this regime is considered in Appendix C. Sinceℓ2F̃ = O(1), that term
must be retained in the equation (C.10) for the qn(“z). In the limit λ → ∞, the Regime Ib bulk shear
trivially layer is recovered. In the limitλ → 0 a boundary-layer analysis would be required to recover
the separate bulk and outer shear layers of Regime Ia.

In Regime Iab, the boundary-layer structure and the order-of-magnitude of ξ , η andζ in the diffe-
rent boundary layers is the same as in Regime Ib, as shown in Figure4(b), with the additional relations
ℓ∼ F̃−1/2 andϑ ∼ F̃ .

10. Comparison

To assess the validity of the matched asymptotic solutions derived here, we compare them with solutions
to the full problem (3.21)–(3.23). We consider the limiting case of a circular initial cross-section, since
in this case, exact solutions can be obtained to (3.21)–(3.23).

We consider an initially circular tube, corresponding toσ0 = ∞, with deformations induced by the
non-azimuthally-uniform transmural pressure ˜p = −cos2τ. The details of the exact solutions can be
found in AppendixD, while the corresponding calculations for the asymptotic solutions in each regime
can be found in AppendicesE andF. In all cases, the solutions forξ (τ,z) andζ (τ,z) are proportional
to cos2τ, while the solutions forη(τ,z) are proportional to sin2τ.

An axially uniform pressure has been used for comparison to simplifythe computation of the exact
solution. The asymptotic theory developed here is also valid with non-axially uniform transmural pres-
sures. But since the boundary-layer systems contain no direct forcing from the pressure, and are forced
only by matching to the limiting form of the bulk solution as theboundary layers are approached, the
comparison with an axially uniform pressure should be sufficient to validate the asymptotic theory.

For Regime Ia, graphs comparing the asymptotic and exact solutions in each layer can be found in
Figures5 and??. (To avoid cluttering the figures, we just show the asymptotic solution corresponding
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to the layer being depicted in each plot, rather than a composite solution. Thus in figure5a for the
bulk, the asymptotic solutions do not show boundary-layer behaviour.) For Regime Ib, similar graphs
comparing the asymptotic and exact solutions can be found in Figure7. In each case, two different
exact solutions are shown with different parameter values, to show the effect of being further from, and
closer to, the asymptotic limit. The exact solutions from the closer sets of parameters (dotted lines)
show excellent agreement with the asymptotic results (continuous lines), and the graphs are almost
indistinguishable. The exact solutions that are further from theasymptotic limit (dot-dashed lines) show
noticeable discrepancies on many of the graphs.
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Fig. 5. Comparison of the asymptotic and exact solutions for RegimeIa, in (a) the bulk and (b) outer shear layer, as functions
of the axial coordinatez. We consider the circular limitσ0 = ∞ with ν = 0.49 and transmural pressure ˜p = −cos2τ. For the
normal and axial displacementsξ andζ , we plot the coefficient of cos2τ in the solutions; for the azimuthal displacement, we
plot the the coefficient of sin2τ. In each case, the continuous line is the asymptotic solutionfor the layer from§7.4or AppendixE,
while the dot-dashed and dotted lines are exact solutions with(ℓ,F̃ ,ϑ) = (102,10−2,10−3) and(ℓ,F̃ ,ϑ) = (104,10−4,10−6)
respectively, from AppendixD. The short vertical lines of the same style below the abscissa in (a) show the axial extent of the
graphs in (b), and those in (b) show the axial extent in Figure??(a).

11. Discussion and conclusions

This paper provides the answer to the question of how solutions to a second-order (in the axial coor-
dinate) tube-law used to describe fluid–structure-interaction problems should be adjusted to cope with
the full set of clamped boundary conditions at the tube end in a particular region of parameter space.
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26 M.C. WALTERS & R.J. WHITTAKER

Fig. 7. Comparison of the asymptotic and exact solutions for RegimeIb, in (a) the bulk shear layer and (b) the bending layer, as
functions of the axial coordinatez. We consider the circular limitσ0 = ∞ with ν = 0.49 and transmural pressure ˜p=−cos2τ. For
the normal and axial displacementsξ andζ , we plot the coefficient of cos2τ in the solutions; for the azimuthal displacement, we
plot the the coefficient of sin2τ. In each case, the continuous line is the asymptotic solutionfor the layer from§8.3or AppendixF,
while the dot-dashed and dotted lines are exact solutions with(ℓ,F̃ ,ϑ) = (10,10−4,10−3) and(ℓ,F̃ ,ϑ) = (102,10−8,10−6)
respectively from AppendixD. The short vertical lines of the same style below the abscissa in (a) show the axial extent of the
corresponding graphs in (b).

The initially elliptical elastic-walled tube considered herehas circumference 2πa and lengthL, and
is subject to an axial tensionF . The tube wall has thicknessd, Poisson ratio isν , and bending stiffness
K. An applied transmural pressurep causes deformations of the tube wall with normal amplitudee.

The key dimensionless parameters in the problem are: the dimensionless thickness of the
tube wall, ϑ = d/a; the dimensionless length of the tube,ℓ = L/a; a scaled axial tension,
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F̃ = d2F/[2πaK(1−ν2)]; and the dimensionless deformation amplitude,ε = e/a. The problem is
first linearised forε ≪ 1. We have then derived leading-order matched asymptotic solutions for the
boundary-layer structure whenℓ−1,ϑ ,F̃ ≪ 1, and showed that there are three distinct parameter regi-
mes. In each regime, the axial thicknesses of the different boundary layers are described in terms of the
dimensionless axial coordinatez, which is scaled on the cross-sectional length scalea. We therefore
have thatz= 1 corresponds to a length that is comparable with the width of thetube, whilez= ℓ is the
length of the tube.

In Regime Ia (ϑ ≪ F̃ ≪ 1) there are three boundary layers: a bending layer withz= O(ϑF̃−1/2),
an inner shear layer withz= O(F̃ 1/2), and outer shear layer withz= O(F̃−1/2). These are matched
to each other and to the bulk solution withz= O(ℓ). The bending layer arises as a result of a balance
between axial bending and axial pre-stress/curvature effects. The inner shear layer arises as a result of a
balance between azimuthal hoop stress and axial pre-stress/curvature effects, with axial stress and shear
stress also present at leading order. The outer shear layer arises as a result of a balance between axial
stress and axial pre-stress/curvature effects, with shear stress and azimuthal hoop stress also present at
leading order. In the bulk, the applied transmural pressure is balanced by a combination of azimuthal
bending and axial pre-stress/curvature effects, with shear stressand azimuthal hoop stress also present
at leading order.

In Regime Ib (F̃ ≪ϑ ≪ 1) there is only one boundary layer: a bending layer withz=O(ϑ 1/2). This
is matched to a bulk solution withz= O(ℓ). The bending layer arises as a result of a balance between
axial bending and azimuthal hoop stress, with axial press-stress/curvature effects and axial stress also
present at leading order. The leading-order balances in the bulkinvolve the applied transmural pressure
and all three in-plane stresses.

In Regime Iab (ϑ ∼ F̃ ≪ 1) the structure is as in Regime Ib, but with additional physicaleffects
present in the boundary layer and bulk solutions. Both layers also contain axial pre-stress/curvature
effects, in addition to the physical effects present in Regime Ib.

Since we are considering a linearised system, the magnitudeP of the forcing from the transmural
pressure affects neither the axial thicknesses nor the structureof the boundary layers. It only affects the
amplitude of the deformations, through the dimensionless amplitudeε, as given in (2.3). The pressure
scale just needs to be small enough so thatε ≪ 1 holds. Moreover, as the boundary layers are only
forced through the matching with the bulk solutions, the preciseform of the transmural pressure (i.e.
any z andτ dependence) also has no effect on the thicknesses and structureof the boundary layers.
It can however affect the relative amplitudes of different azimuthal modes in the layers, through the
coefficientsB̆n in Regime Ia, andq′′n andq′′′n in Regimes Ib and Iab.

The asymptotic solutions in Regimes Ia and Ib are shown in Figures5–7, where they are seen to be
in excellent agreement with full semi-analytic solutions for representative parameter values.

At leading order, the Ia shear layer here is the same as the inner shear layer that was found by
Whittaker(2015) for the case where axial bending was ignored and only pinned boundary condition
was imposed atz= 0. (A stress-variable formulation was used to derive it there, as opposed to the
displacement formulation used here.) Corrections at the next order will alter the boundary layer slightly.

In the regimes considered here, the new bending boundary layers are passive, and have no leading-
order effect on the interior solutions. (The outer shear layer can have an effect, as discussed inWhittaker
(2015).)

The boundary layers described here were first considered in the PhD Thesis ofWalters(2016). A
slightly different approach was used to derive them in Regimes Ia and Ib, but here we prefer a common
approach to both regimes. The results for the boundary layers are thesame. However,Walters(2016)
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did not realise the need to change thez≫ 1 behaviour in Regime Ib. It is possible to consider the
solutions here as the first terms of an expansion in powers ofϑ andF̃ . Some of the first few correction
terms can be found inWalters(2016).

We have not considered the regime in which̃F ≥ O(1) in this paper. In this case, based on
Kirchhoff–Love shell theory, the bending boundary layer would be predicted to be comparable to or
narrower than the wall thickness. This means shell theory is no longer appropriate to describe the
boundary layer. Initial work on the regime wherẽF ≫ 1 can be found inWalters(2016).

A. Tensor evaluation

In this Appendix, we perform the calculations to evaluate the bending and stress tensors in terms of the
displacement functions, in order to obtain the equilibrium equations in§3.

A.1. Coordinates and strain

If the wall centre-surface is given byr(x1,x2) in terms of material coordinatesx1 andx2, we can define
basis vectors in the usual way by

aα =
∂ r

∂xα for α ∈ 1,2; a3 =
a1×a2

|a1×a2|
. (A.1)

Then the metric and curvature tensors are given by

aαβ = aα ·aβ , bαβ = a3 ·
∂aα

∂xβ . (A.2)

The deformation of the wall material is characterised by in-plane strain and bending strain tensors,
which we define as

γαβ =
1
2

(

aαβ − āαβ

)

, καβ =−bαβ + b̄αβ +2b̄δ
α γδβ , (A.3)

where over-bars denote the values of quantities in the undeformedconfiguration.
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A.2. Constitutive laws

Linear constitutive laws relate the stress and stress moment resultantsNαβ andMαβ to the strainsγαβ
andκαβ as follows (Flügge, 1972, §9.4):2

Nαβ = δ α
2 δ β

2
F

2πa
+D

[

(1−ν)γαβ +νγλ
λ aαβ

]

+K

{

(1−ν)
2

[

2aβδ bαγ +aβγbαγ +aαδ bβγ −bλ
λ (a

αδ aβγ +aαγaβδ )
]

+ν
[

aαβ bγδ +aγδ bαβ −aαβ aγδ bλ
λ

]

}

κγδ , (A.4)

Mαβ = K
[

−(1−ν)(bα
γ γγβ −bλ

λ γαβ )−ν(bαβ −bλ
λ aαβ )γµ

µ

+ 1
2(1−ν)(καβ +κβα)+νaαβ κλ

λ

]

, (A.5)

whereδ β
α is the Kronecker delta,ν is the Poisson ratio, and the extensional stiffnessD is related to the

bending stiffnessK by

D =
12K
a2ϑ 2 . (A.6)

The constitutive laws (A.4) and (A.5) arise from inserting the plane-stress form of Hooke’s law
into the definitions ofNαβ andMαβ , rewriting the resulting equations in terms ofγαβ andκαβ , and
neglecting some higher-order terms inϑ .

A.3. Relation between the(x1,x2) and(τ,z) coordinates

Our dimensionless coordinatesτ andz are defined so that dx1 = ahdτ and dx2 = adz. Hence

∂
∂x1 =

1
ah

∂
∂τ

,
∂

∂x2 =
1
a

∂
∂z

. (A.7)

With the definitions of the unit vectors in (2.7), we then have

∂ t̂
∂τ

= B̄hn̂,
∂ n̂
∂τ

=−B̄ht̂ ,
∂ ẑ
∂τ

= 0. (A.8)

The corresponding partial derivatives with respect toz are all zero.

2 Some signs in (A.2) differ from those inFlügge(1972). This is due to our opposing sign conventions onκαβ andMαβ , and

later because of a sign error on the(καβ +κβα ) term inFlügge’s expression forMαβ .
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A.4. Basis vectors

The basis vectorsai are computed from the definitions (A.1) using the expression for the position vector
r in (2.9). The results are the same as inWhittaker(2015):

a1 = t̂ +
ε
ℓh

[(

−ξ B̄+
∂

∂τ

(η
h

)

)

t̂ +

(

ηB̄+
∂

∂τ

(

ξ
h

))

n̂

]

+
ε
ℓh

[

∂ζ
∂τ

ẑ

]

, (A.9)

a2 = ẑ+
ε
ℓ

[

1
h

∂ξ
∂z

n̂+
1
h

∂η
∂z

t̂ +
∂ζ
∂z

ẑ

]

, (A.10)

a3 = n̂− ε
ℓh

[(

ηB̄+
∂

∂τ

(

ξ
h

))

t̂ +
∂ξ
∂z

ẑ

]

+O

(

ε2

ℓ2

)

. (A.11)

A.5. Components of bαβ , γαβ andκαβ

The following components were not all evaluated explicitly inWhittaker(2015), but are needed here
for consideration of the bending layers.

From the expression (A.2) for the curvature tensorbαβ , we obtain

b11 = a3 ·
1
ah

∂a1

∂τ

=
B̄
a
+

ε
aℓh

[

B̄

(

−ξ B̄+
∂

∂τ

(η
τ

)

)

+
∂

∂τ

(

ηB̄
h

+
1
h

∂
∂τ

(

ξ
h

))]

+O

(

1
a

ε2

ℓ2

)

, (A.12)

b22 = a3 ·
1
a

∂a2

∂z
=

ε
aℓh

∂ 2ξ
∂z2 +O

(

1
a

ε2

ℓ2

)

. (A.13)

b12 = b21 = a3 ·
1
a

∂a1

∂z
=

ε
aℓh

[

∂ 2

∂τ∂z

(

ξ
h

)

+ B̄
∂η
∂z

]

+O

(

1
a

ε2

ℓ2

)

. (A.14)

From the expression (A.3) for the in-plane strain tensorγαβ we obtain:

γ11 =
ε
ℓh

(

−ξ B̄+
∂

∂τ

(η
h

)

)

+O

(

ε2

ℓ2

)

, (A.15)

γ12 = γ21 =
1
2

ε
ℓh

(

∂η
∂z

+
∂ζ
∂τ

)

+O

(

ε2

ℓ2

)

, (A.16)

γ22 =
ε
ℓ

∂ζ
∂z

+O

(

ε2

ℓ2

)

. (A.17)
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Finally, from the expression (A.3) for καβ , we obtain:

κ11 =
ε

aℓh

[

B̄

(

−ξ B̄+
∂

∂τ

(η
h

)

)

− ∂
∂τ

(

ηB̄
h

+
1
h

∂
∂τ

(

ξ
h

))]

+O

(

1
a

ε2

ℓ2

)

, (A.18)

κ12 = − ε
aℓh

[

∂
∂τ

(

1
h

∂ξ
∂z

)

− B̄
∂ζ
∂τ

]

+O

(

1
a

ε2

ℓ2

)

, (A.19)

κ21 = − ε
aℓh

[

∂
∂τ

(

1
h

∂ξ
∂z

)

+ B̄
∂η
∂z

]

+O

(

1
a

ε2

ℓ2

)

, (A.20)

κ22 = − ε
aℓh

∂ 2ξ
∂z2 +O

(

1
a

ε2

ℓ2

)

. (A.21)

A.6. Components of the in-plane stress Nαβ

The in-plane stress is given by (A.4). The components must be evaluated in terms of the displacement
functions(ξ ,η ,ζ ). The calculations have already been completed byWhittaker(2015), so we just quote
their results in (3.5).

A.7. Components of the bending stress Mαβ

The bending stress is given by (A.5). We wish to express the components ofMαβ in terms ofξ , η , ζ , to
O(ε) accuracy. We note thataαβ andbαβ always appear in (A.5) multiplied by anO(ε) quantity, so we
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need only retain theO(1) parts of these two tensors: ¯a11 = ā22 = 1 andb̄11 = b̄1
1 = B̄/a. We then have

M11 = K
[

−(1−ν)(b̄1
1γ11− b̄1

1γ11)−ν(b̄11− b̄1
1)(γ1

1 + γ2
2)

+(1−ν)κ11+ν(κ1
1 +κ2

2)
]

+O

(

K
a

ε2

ℓ2

)

, (A.22)

= K
(

κ11+νκ22)+O

(

K
a

ε2

ℓ2

)

, (A.23)

=
εK
aℓh

[

B̄

(

−ξ B̄+
∂

∂τ

(η
h

)

)

− ∂
∂τ

(

ηB̄
h

+
1
h

∂
∂τ

(

ξ
h

))

−ν
∂ 2ξ
∂z2

]

+O

(

K
a

ε2

ℓ2

)

, (A.24)

M12 = K
[

−(1−ν)(b̄1
1γ12− b̄1

1γ12)−ν(b12−b1
1)(γ1

1 + γ2
2)

+ 1
2(1−ν)(κ12+κ21)

]

+O

(

K
a

ε2

ℓ2

)

, (A.25)

= 1
2K(1−ν)(κ12+κ21)+O

(

K
a

ε2

ℓ2

)

, (A.26)

=
εK
aℓh

(1−ν)
[

− ∂ 2

∂τ∂z

(

ξ
h

)

+
B̄
2

(

∂ζ
∂τ

− ∂η
∂z

)]

+O

(

K
a

ε2

ℓ2

)

, (A.27)

M21 = K
[

−(1−ν)(−b̄1
1γ21)+ 1

2(1−ν)(κ21+κ12)
]

+O

(

K
a

ε2

ℓ2

)

, (A.28)

= K(1−ν)
[

B̄
a

γ21+ 1
2(κ

12+κ21)

]

+O

(

K
a

ε2

ℓ2

)

, (A.29)

=
εK
aℓh

(1−ν)
[

− ∂ 2

∂τ∂z

(

ξ
h

)

+ B̄
∂ζ
∂τ

]

+O

(

K
a

ε2

ℓ2

)

, (A.30)

M22 = K
[

−(1−ν)(−b̄1
1γ22)−ν(−b̄1

1)(γ1
1 + γ2

2)

+(1−ν)κ22+ν(κ1
1 +κ2

2)
]

+O

(

K
a

ε2

ℓ2

)

, (A.31)

= K

[

B̄
a
(γ22+νγ11)+(κ22+νκ11)

]

+O

(

K
a

ε2

ℓ2

)

, (A.32)

=
εK
aℓh

[

hB̄
∂ζ
∂z

+2νB̄

(

−ξ B̄+
∂

∂τ

(η
h

)

)

− ∂ 2ξ
∂z2 −ν

∂
∂τ

(

ηB̄
h

+
1
h

∂
∂τ

(

ξ
h

))]

+O

(

K
a

ε2

ℓ2

)

. (A.33)

A.8. Displacement recovery from the components of the stress tensor
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Whittaker(2015) derived the following expressions to recover the leading-order displacement variables
from the three leading-order components (Ñ, S̃andΣ̃) of the in-plane stress tensor:

ζ (τ,z) =
1

12(1−ν2)

∫ z

0

(

Σ̃(τ,z′)−νÑ(τ,z′)
)

dz′ , (A.34)

η(τ,z) =
∫ z

0

(

2h(τ) S̃(τ,z′)
12(1−ν)

− ∂ζ (τ,z′)
∂τ

)

dz′ , (A.35)

ξ (τ,z) = − h(τ)
B̄(τ)

(

Ñ(τ,z)−νΣ̃(τ,z)
12(1−ν2)

− 1
h(τ)

∂
∂τ

(

η(τ,z)
h(τ)

))

. (A.36)

These results are utilised in the present work.

B. The outer shear layer in Regime Ia

For a boundary-layer of widthδ ≫ 1 in this regime, we defer to the analysis inWhittaker (2015),
where the bulk solution withδ = O(ℓ) and an outer shear layer withδ = O(F̃−1/2) are found. This is
appropriate for Regime Ia since 1≪ F̃−1/2 ≪ ℓ.

Whittaker(2015) only considered transmural pressures that are even andπ-periodic inτ, leading to
deformations have mirror symmetry in thex andy axes. It is possible to relax this and consider more
general deformations, but we retain this restriction here for simplicity.

With this symmetry restriction,Whittaker(2015) showed that the solution in the outer shear layer
can be written as a sum over azimuthal eigenmodesYn(τ) which are odd andπ-periodic inτ. These
eigenmodes satisfy the eigenvalue equation

L (Yn) = µ2
n Yn for n= 1,2,3, . . . (B.1)

where the linear operatorL is given by

L ≡ 1
h

∂
∂τ

1
h

∂
∂τ

(

1
B̄2h

∂
∂τ

1
h

∂
∂τ

−1

)

(B.2)

and 0= µ0 < µ1 < µ2 < · · · . The operatorL is self-adjoint with respect to the inner product〈u,v〉 =
∫ 2π

0 uvhdτ and so its eigenfunctions form a complete set. We chose to normalise the eigenfunctions so
that〈Yn,Yn〉= 1. This means we have

〈Yn,Ym〉 ≡
∫ 2π

0
Yn(τ)Ym(τ)h(τ)dτ = δnm, (B.3)

whereδnm is the Kronecker delta.
Taking the general solutions fromWhittaker(2015) and applying only the conditions that arise from

matching with the bulk exterior solution, the leading-order stresses in the outer shear layer are given by

Ñ = F̃
3/2

∞

∑
n=1

B̆n

B̄2h
∂

∂τ

(

1
h

∂Yn

∂τ

)

e−µnz̆+ . . . , (B.4)

S̃ = F̃

∞

∑
n=1

B̆n

µnh
∂

∂τ

(

1
B̄2h

∂
∂τ

1
h

∂Yn

∂τ
−Yn

)

e−µnz̆+ . . . , (B.5)

Σ̃ = F̃
1/2

∞

∑
n=1

B̆nYn(τ)e−µnz̆+ . . . , (B.6)
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34 M.C. WALTERS & R.J. WHITTAKER

wherez̆= z/F̃−1/2, theB̆n are a set of constants giving the amplitude of each mode. The displacements
in the outer shear layer are recovered from these expressions using(A.34)–(A.36). Again, we apply only
the conditions that arise from matching with the bulk exterior solution, and obtain, to leading order,

ξ =
F̃−1/2

12(1−ν2)B̄(τ)

∞

∑
n=1

{

B̆n

µn

[

1
µn

(

1−e−µnz̆
)

− z̆

]

+ Ĕn+ D̆nz̆

}(

Y′
n

h

)′
, (B.7)

η =
F̃−1/2

12(1−ν2)

∞

∑
n=1

{

B̆n

µn

[

1
µn

(

1−e−µnz̆
)

− z̆

]

+ Ĕn+ D̆nz̆

}

Y′
n(τ) , (B.8)

ζ =
1

12(1−ν2)

{

D̆0+
∞

∑
n=1

[

B̆n

µn

(

1−e−µnz̆
)

+ D̆n

]

Yn(τ)

}

, (B.9)

where theD̆n andĔn are additional set of constants giving the amplitudes of further modes. (There is no
Ĕ0 constant term in the expression forη since the assumed symmetry requiresη to be an odd function
of τ.)

The constants̆Bn, D̆n andĔn appear in matching conditions with the bulk solution in the rest of the
tube and the intermediate solution of§5.

C. Bulk shear-layer solution in Regimes Ib and Iab

In Regimes Ib and Iab, the estimatedO(F̃−1/2) thickness of the outer shear layer fromWhittaker
(2015) is greater than or comparable with the lengthℓ of the elastic tube. Hence the bulk interior
solution comprises a modified form of the outer shear layer, in which the transmural pressure is also
present at leading order. In this appendix, we solve for the displacements in this bulk region.

In Whittaker(2015), the outer shear layer was forced by the matching with the bulk interior solution.
The amplitude of the deformations was such that the transmural pressure did not contribute in the outer
shear layer at leading order. Now there is no separate bulk interior solution to force the displacements
in the outer shear layer. The displacement amplitude in the bulk shear layer is reduced, so that the
leading-order terms in the normal equilibrium equation have the same magnitude as the transmural
pressure.

We now follow the outer shear layer derivation inWhittaker (2015), but using slightly adjusted
scalings to account for theO(ℓ) axial length scale and the altered amplitude of the displacements. We
define scaled variables for the axial coordinate, hoop stress, axial stress and in-plane shear stress as:

“z=
z
ℓ
, “N =

Ñ
P

, “Σ =
Σ̃

ℓ2P
, “S=

S̃
ℓP

. (C.1)

whereP is the dimensionless pressure scale defined in (3.24). These scales arise from altering the axial
length scale fromF−1/2 to ℓ in the Ia outer-shear-layer scales in (B.4)–(B.6), and then scaling the three
stresses by a factor ofℓ3P in order for the forcing from the transmural pressure to appear at leading
order.

Substituting the scales (C.1) into (A.34)–(A.36) we obtain leading-order expressions for the
displacements in terms of the scaled stresses:

ζ“z ∼
ℓ3P

12(1−ν2)
“Σ , η“z“z ∼− ℓ4Ph

12(1−ν2)
“Στ , ξ“z“z ∼− ℓ4Ph

12B̄(1−ν2)
“Σττ , (C.2)

where subscripts denote partial derivatives, but a subscriptτ represents the operatorh−1∂ /∂τ .
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Then, substituting (C.1) and (C.2) into (3.21)–(3.23), we obtain the following leading-order
equations governing the bulk shear layer:

−“N+(ℓ2
F̃ )B̄−2“Σττ = B̄−1p̃, (C.3)

“Nτ + “S“z− (ℓ2
F̃ )“Στ = 0, (C.4)

“Sτ + “Σ“z = 0, (C.5)

Equations (C.3)–(C.5) differ from those inWhittaker(2015) for the outer shear layer only by the prese-
nce of the ˜p forcing term on the right-hand side of the first equation, and the factors ofℓ2F̃ multiplying
the two“Σττ terms.

In Regime Ib, we haveℓ2F̃ ≪ 1, so the terms containingℓ2F̃ are asymptotically small and can be
neglected. However, we shall retain these terms in the working here, to simultaneously cover the case
of Regime Iab, whereℓ2F̃ = O(1).

For simplicity, we restrict attention here to the case where ˜p is even andπ-periodic inτ. The stresses
“N and“Σ and the displacementsξ andζ then share this symmetry, while“Sandη are odd andπ-periodic
in τ.

Eliminating “Sbetween (C.4) and (C.5), we obtain

− “Nττ +(ℓ2
F̃ )“Σττ + “Σ“z“z = 0. (C.6)

Then, eliminating“N between (C.3) and (C.6) yields

“Σ“z“z− (ℓ2
F̃ )L

(

“Σ
)

=−
(

B̄−1p̃
)

ττ
, (C.7)

whereL is the operator fromWhittaker (2015) defined here in (B.2). As before, we represent the
eigenfunctions ofL by Yn(τ) for n= 0,1,2, . . . , with corresponding eigenvaluesµ2

n , where 0= µ0 <
µ1 < µ2 < · · · . We have the same orthogonality and normalisation as in (B.3).

From the completeness, orthogonality and normalisation of theeigenfunctions, if we define

Qn =
〈(

B̄−1p̃
)

ττ
,Yn

〉

≡
∫ 2π

0

(

B̄−1p̃
)

ττ
Ynhdτ , (C.8)

then we have that
(

B̄−1p̃
)

ττ
=

∞

∑
n=1

Qn(“z)Yn(τ) . (C.9)

(Then= 0 term is not needed in (C.9) sinceQ0 = 0. This can be seen by noting thatY0(τ) is constant
in τ, and then using integration by parts in (C.8) whenn= 0.)

We now introduceqn(“z) as the general solutions of the ordinary differential equations

q′′′0 = 0, q′′′′n − (ℓ2
F̃ µ2

n)q′′n =−Qn(“z) (n= 1,2,3, . . .) . (C.10)

The general solution of (C.7) for “Σ can then be written in terms of the eigenfunctions and theqn as

“Σ = q′0(“z)+
∞

∑
n=1

Yn(τ)q′′n(“z) . (C.11)
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Noting thatµ2
nYn = L (Yn) = (B̄−2Ynττ −Yn)ττ , we can integrate (C.9) twice with respect toτ to

obtain

B̄−1p̃= Q∗
0(“z)+

∞

∑
n=1

Qn

µ2
n

(

1
B̄2h

∂
∂τ

1
h

∂Yn

∂τ
−Yn

)

. (C.12)

The new functionQ∗
0(“z) is one of the ‘constants’ of integration. It must be set in terms ofp̃ and theQn

to ensure that equality holds in (C.12). The other constant of integration is necessarily zero, due to the
periodicity of all the other terms.

Using the expressions for“Σ in (C.11) and B̄−1p̃ in (C.12), we can recover“N using (C.3). After
eliminatingQn(“z) in favour ofqn(“z) using (C.10), we obtain

“N =−Q∗
0(“z)+

∞

∑
n=1

{

1
B̄2h

∂
∂τ

(

1
h

∂Yn

∂τ

)

q′′′′n (“z)
µ2

n
+Yn(τ)

(

(ℓ2
F̃ )q′′n(“z)−

q′′′′n (“z)
µ2

n

)}

. (C.13)

Similarly, “S is recovered using (C.4) and (C.5), giving

“S= S∗0−
(

∫ τ

0
h(τ ′)dτ ′

)

q′′0(“z)−
∞

∑
n=1

1
µ2

nh
∂

∂τ

(

1
B̄2h

∂
∂τ

1
h

∂Yn

∂τ
−Yn

)

q′′′n (“z) , (C.14)

whereS∗0 is an arbitrary constant of integration. To ensure“S is odd and periodic inτ, we must have

S∗0 = 0, q′′0(“z)≡ 0. (C.15)

Hence
“S=−

∞

∑
n=1

1
µ2

nh
∂

∂τ

(

1
B̄2h

∂
∂τ

1
h

∂Yn

∂τ
−Yn

)

q′′′n (“z) . (C.16)

The leading-order displacements can then be recovered by substituting (C.11) into (C.2). We obtain

ζ ∼ ℓ3P

12(1−ν2)

{

q0(“z)+
∞

∑
n=1

Yn(τ)q′n(“z)

}

, (C.17)

η ∼ − ℓ4P

12(1−ν2)

∞

∑
n=1

∂Yn

∂τ
qn(“z) , (C.18)

ξ ∼ − ℓ4P

12(1−ν2)B̄

∞

∑
n=1

∂
∂τ

1
h

∂Yn

∂τ
qn(“z) . (C.19)

The constants of integration that would have been expected toappear in the first two expressions are
already accounted for by the generality of the solution forqn, given the symmetries ofζ andη .

At this point, the solution is still undetermined, since we donot have any boundary conditions on
qn(“z) for the ODEs (C.10). These missing boundary conditions will be determined when the solutions
are matched with the boundary-layer solutions as“z→ 0 and“z→ 1.

We can, however, use (C.19) to setε, the scale for the normal displacements in the bulk. Referring
to (2.9), we require thatξ = O(ℓ) when“z= O(1), which means we must haveP = O(ℓ−3). Referring
to (3.24), we can achieve this by setting

ε =
ϑ 2ℓ4a3P

K
⇒ P = ℓ−3 . (C.20)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
at/advance-article/doi/10.1093/im

am
at/hxaf012/8157712 by U

niversity of East Anglia user on 11 June 2025



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

37

D. Exact solution in the limit of a circular cross-section

We consider the special case of a base state with a circular cross section. This corresponds to the limit
σ0 → ∞. Thenh(τ)≡ 1, B̄(τ)≡−1. The equations (3.21)–(3.23) then become

ϑ 2
(

M̃11
ττ + M̃12

τz + M̃21
zτ + M̃22

zz

)

− Ñ+12(1−ν2)F̃ξzz = −P p̃, (D.1)
(

Ñτ + S̃z

)

+12(1−ν2)F̃ηzz+ϑ 2
(

M̃11
τ + M̃21

z

)

= 0, (D.2)
(

S̃τ + Σ̃z

)

+12(1−ν2)F̃
(

ξz+ητz+2ζzz

)

= 0, (D.3)

where( · )z ≡ ∂ /∂z as before, but we now have( · )τ ≡ ∂ /∂τ .
Due to the periodicity and symmetry, and the constant coefficients in the equations, theτ

dependence can be captured in Fourier modes, which then decouple. For a transmural pressure

p̃=
∞

∑
n=0

pn(z)cos(2nτ) , (D.4)

we write

ξ =
∞

∑
n=0

ξn(z)cos(2nτ) , η =
∞

∑
n=0

ηn(z)sin(2nτ) , ζ =
∞

∑
n=0

ζn(z)cos(2nτ) . (D.5)

Then, from (3.10)–(3.12), the stresses are given by

Ñ = 12
∞

∑
n=0

(

ξn+2nηn+νζ ′
n

)

cos(2nτ) , (D.6)

S̃ = 6(1−ν)
∞

∑
n=0

(

η ′
n−2nζn

)

sin(2nτ) , (D.7)

Σ̃ = 12
∞

∑
n=0

(

ζ ′
n+ν(ξn+2nηn)

)

cos(2nτ) ; (D.8)

and from (3.13)–(3.16) the bending moments are

M̃11 =
∞

∑
n=0

(

−ξn+4n2ξn−νξ ′′
n

)

cos(2nτ) , (D.9)

M̃12 =
1−ν

2

∞

∑
n=0

(

4nξ ′
n+η ′

n+2nζn
)

sin(2nτ) , (D.10)

M̃21 = (1−ν)
∞

∑
n=0

2n
(

ξ ′
n+ζn

)

sin(2nτ) , (D.11)

M̃22 =
∞

∑
n=0

(

(4n2−1−2ν)ξn−ξ ′′
n −2nνηn)

)

cos(2nτ) . (D.12)
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38 M.C. WALTERS & R.J. WHITTAKER

Substituting these forms into the equilibrium equations (3.21)–(3.23), the system decouples, and for
eachn∈ {0,1,2, . . .} we have

−ϑ 2 ∂ 4ξn

∂z4 +
[

(4(3−ν)n2−2ν −1)ϑ 2+12F̃ (1−ν2)
]∂ 2ξn

∂z2

−ϑ 2(3ν −1)n
∂ 2ηn

∂z2 +
[

6n2(1−ν)ϑ 2−12ν
]∂ζn

∂z

−
[

12+4n2(4n4−1)ϑ 2
]

ξn−24nηn = −P pn , (D.13)

2nϑ 2 ∂ 2ξn

∂z2 +
[

12F̃ (1−ν2)+6(1−ν)
]∂ 2ηn

∂z2

+2n
(

(1−ν)ϑ 2−6(1+ν)
)∂ζn

∂z

−2n
(

(4n2−1)ϑ 2+12
)

ξn+48n2ηn = 0, (D.14)

[

2F̃ (1−ν2)+1
]∂ 2ζn

∂z2 +
[

F̃ (1−ν2)+ν
]∂ξn

∂z

+n
[

2F̃ (1−ν2)+(1+ν)
]∂ηn

∂z
−2n2(1−ν)ζn = 0, (D.15)

apart fromn= 0, where the azimuthal equation (D.14) is absent. From (2.11), the boundary conditions
are

ξn(z) = ηn(z) = ζn(z) = ξ ′
n(z) = 0 at z= 0, ℓ , (D.16)

except forn= 0, where the condition onη0 is absent.
For eachn, this is a coupled set of forced linear ordinary differential equations with constant coeffi-

cients. It is amenable to solution by the standard solution technique of seeking a particular integral and
a complimentary function made up of a sum of terms of the form ekz.

For simplicity we now concentrate on the case where eachpn(z) is uniform in z. For n > 0, the
system is 8th order, and the solution takes the form

ξn(z) = A(0)
n +

4

∑
i=1

A(i)
n

(

e−k(i)n (ℓ−z)+e−k(i)n z
)

, (D.17)

ηn(z) = B(0)
n +

4

∑
i=1

B(i)
n

(

e−k(i)n (ℓ−z)+e−k(i)n z
)

, (D.18)

ζn(z) =
4

∑
i=1

C(i)
n

(

e−k(i)n (ℓ−z)−e−k(i)n z
)

, (D.19)

whereA(i)
n , B(i)

n , C(i)
n , andk(i)n > 0 are constants, and the

(

k(i)n
)2

are the roots of a 4th-order polynomial.
(Thez↔ ℓ− z symmetry in the system means the values ofk occur in positive/negative pairs, and the
solution is symmetric aboutz= ℓ/2.)
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The constantsA(0)
n andB(0)

n are the particular integral for (D.13)–(D.15), and are found to be given
by

A(0)
n =

P pn

(4n2−1)2 ϑ 2
, B(0)

n =−
(

(4n2−1)ϑ 2+12
)

P pn

24n(4n2−1)2 ϑ 2
. (D.20)

The sums in (D.17)–(D.19) represent the complementary function for the ODE system. For each

i ∈ {1,2,3,4}, the equations (D.13)–(D.15) determineB(i)
n andC(i)

n in terms ofA(i)
n . The four boundary

conditions (D.16) then determine theA(i)
n .

For n = 0, we instead have a 6th-order system. The solution procedure is similar, exceptη0 does

not contribute, (D.14) is absent, and there are only three pairs of roots±k(i)n . The particular integral is
given by

A(0)
0 =

P p0

12
, (D.21)

while B(0)
0 is not required. For eachi ∈ {1,2,3}, the equations (D.13) and (D.15) determineC(i)

0 in terms

of A(i)
0 . The three boundary conditions in (D.16) that do not involveη0 then determine theA(i)

0 .
These solutions can, in principle, be computed purely analytically in terms of the parametersν , ℓ,

F̃ , ϑ , andP. However, the resulting expressions are extremely unwieldy. Soinstead, we use Maple to
compute the general polynomial forkn symbolically, before substituting in specific parameter values.

Maple is then used to compute numerical values for the rootsk(i)n , and then the coefficientsA(i)
n , B(i)

n ,

C(i)
n . The full solutions can then be constructed from (D.5) and (D.17)–(D.19). Results are compared

with the asymptotic solutions in§10.

E. Regime Ia asymptotic bulk solution in the circular limit

Netherwood & Whittaker(2023) considered an extension to the idea of a ‘tube law’ to govern the
perturbation in the bulk of a finite-length elastic-walled tube,with an initially elliptical cross-section
subjected to a transmural pressure that is even andπ-periodic inτ. They used an expansion forη in
terms of a set of azimuthal eigenfunctionsWn(τ) and axially varying amplitudesan(z):

η(τ,z) = ℓ
∞

∑
n=1

an(z)Wn(τ) , (E.1)

where theWn(τ) are the normalised solutions of a generalised eigenvalue problem, and each amplitude
satisfiesan(0) = an(ℓ) = 0.3

Using this expansion,Netherwood & Whittaker(2023) obtained tube-law like expressions gover-
ning eachan(z):

F ℓ2 d2an

dz2 −λnan = Qn , (E.2)

whereλn is the eigenvalue corresponding toWn(τ), and

Qn = tanh2(2σ0)
∫ π/2

0

1
h

∂
∂τ

(

p̃
B̄

)

Wndτ . (E.3)

3 Netherwood & Whittaker(2023) used a different scaling for the displacements, which explains the additional factor ofℓ in
(E.1). They also used the notationYn(τ) for these eigenfunctions, but in the present work,Yn(τ) corresponds to a different set of
eigenfunctions.
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In the circular limitσ0 = ∞, we haveB̄ = −1 andh = 1. In this limit, Netherwood & Whittaker
(2023) showed that the limiting forms of the eigenfunctions and eigenvalues are

Wn(τ) =
2sin(2nτ)
√

π(4n2+1)
, λn =

4n2(4n2−1)2

4n2+1
. (E.4)

So in the circular limit, with a pressure forcing of ˜p = −cos(2mτ) for m∈ Z
+, the orthogonality

of the trigonometric functions in (E.3) means that only themth mode is excited, i.e.Qn = 0 for n 6= m.
From (E.1)–(E.4), the solution forη is then

η(τ,z) = ℓa(z)
2sin(2mτ)
√

π(4m2+1)
, (E.5)

wherea(z) is the solution of the linear two-point boundary-value problem

F ℓ2 d2a
dz2 −λma=− m

√
π√

4m2+1
, a(0) = a(ℓ) = 0. (E.6)

Solving (E.6) for a(z) and inserting into (E.5), we obtain

η(τ,z) =
ℓ

2m(4m2−1)2

[

1− cosh
(

k(z− 1
2ℓ)
)

cosh
(

1
2kℓ
)

]

sin(2mτ) , (E.7)

where

k=

√

λm

F ℓ2 =
2m(4m2−1)√

4m2+1

ϑF̃−1/2
√

12(1−ν2)
. (E.8)

Netherwood & Whittaker(2023) provided equations for the recovery of the other two displacement
variables fromη(τ,z):

ξ sinh(2σ0)+
2h2

c2

∂η
∂τ

−η sin(2τ) = 0,
∂η
∂z

+
∂ζ
∂τ

=
h

2π
d
dz

∫ 2π

0
η dτ , (E.9)

wherec andh is as defined in (2.5) and (2.6). In theσ0 = ∞ limit and with the symmetry of the pressure
forcing, these equations simplify to

ξ +
∂η
∂τ

= 0,
∂ζ
∂τ

+
∂η
∂z

= 0, (E.10)

from which we obtain

ξ (τ,z) = − ℓ

(4m2−1)2

[

1− cosh
(

k(z− 1
2ℓ)
)

cosh
(

1
2kℓ
)

]

cos(2mτ) , (E.11)

ζ (τ,z) = − kℓ
4m2(4m2−1)2

[

sinh(k(z− 1
2)ℓ)

cosh(1
2kℓ)

]

cos(2mτ) . (E.12)

We now match these solutions to the Ia outer shear layer of§4 and AppendixB. In the circular limit,
we haveB̄ = −1, andh = 1. The operator (B.2) for the shear-layer eigenfunctions then simplifies to
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L (Y)≡−Y′′′′−Y′′. The eigenfunctions and eigenvalues are then given by

Yn(τ) =
1√
π

cos(2nτ) , µn = 2n(4n2+1)1/2 , (E.13)

where we have applied the normalisation (B.3). Now, comparing the bulk solution (E.7) and (E.11)–
(E.12) asz→ 0 with the Ia shear layer solution (B.7)–(B.9) asz̆→ ∞, and noting that̆Dn = Ĕn = 0 from
(7.32), we find that

B̆n = 0 for n 6= m, B̆m =
3
√

π(1−ν2)kℓµm

m2(4m2−1)2 tanh
(

1
2kℓ
)

. (E.14)

This result for theB̆n, together with the expression (E.13) for the eigenfunctionsYn(τ) and eigenvalues
µn can be substituted into the matched solutions in§7.4. The results are compared with the full solutions
in §10.

F. Regime Ib asymptotic bulk shear-layer solution in the circular limit

The aim of this appendix is to compute the axial functionsqn(“z) for an axially uniform pressure forcing
of p̃ = −cos(2mτ) for m∈ Z

+ in the limit of a circular cross-section. Theqn(“z) are the solutions to
(8.20)–(8.21), with theQn given by (C.8).

In the circular limit, the eigenfunctions and eigenvalues are again given by (E.13). From (C.8), we
have that

Qn =−
∫ 2π

0

∂ 2p̃
∂τ2 Yn(τ)dτ =−4m2

√
π

∫ 2π

0
cos(2mτ) cos(2nτ)dτ =−4m2√π δnm, (F.1)

whereδnm is the Kronecker delta.
Since theQn are uniform in“z, the solution to (8.20)–(8.21) for qn can be written as

qn(“z) =− Qn

2k2
n

{

“z(1−“z)+
coshkn(“z− 1

2)−cosh(1
2kn)

knsinh(1
2kn)

}

, (F.2)

wherekn = ℓF̃ 1/2µn.
In Regime Ib, we haveF̃ 1/2ℓ≪ 1. Providedn is not too large, we will havekn ≪ 1. We can then use

the Taylor expansions of the hyperbolic functions in (F.2) to obtain the simpler asymptotic expression

qn(“z)∼− 1
24

Qn “z2(1−“z)2 . (F.3)

Hence for the pressure forcing ˜p=−cos(2τ) we have, at leading order,

q1(“z) =

√
π

6
“z2(1−“z)2 , qn(“z) = 0 for n≥ 2. (F.4)

This result for theqn(“z), together with the expression (E.13) above for the eigenfunctionsYn(τ) can be
substituted into the matched solutions in§8.3. The results are compared with the full solutions in§10.
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Flügge, W. 1972Tensor Analysis and Continuum Mechanics. Springer-Verlag.
Grotberg, J. B. & Jensen, O. E. 2004 Biofluid mechanics in flexible tubes.Annu. Rev. Fluid Mech.36, 121–147.
Heil, M. & Hazel, A. L. 2011 Fluid–structure interaction in internal physiological flows.Annu. Rev. Fluid Mech.

43, 141–162.
Heil, M. & Jensen, O. E. 2003 Flows in deformable tubes and channels: Theoretical models and biological

applications. InFlow Past Highly Compliant Boundaries and in Collapsible Tubes(ed. P. W. Carpenter & T. J.
Pedley), chap. 2, pp. 15–49. Kluwer Academic, Dordrecht.

Kececioglu, I., McClurken, M. E., Kamm, R. D. & Shapiro, A. H. 1981 Steady, supercritical flow in collapsible
tubes. Part 1. Experimental observations.J. Fluid Mech.109, 367–389.

McClurken, M. E., Kececioglu, I., Kamm, R. D. & Shapiro, A. H. 1981 Steady, supercritical flow in collapsible
tubes. Part 2. Theoretical studies.J. Fluid Mech.109, 391–415.

Netherwood, D. J. & Whittaker, R. J. 2023 A new solution for the deformations of an initially elliptical
elastic-walled tube.Q. J. Mech. Appl. Math.76 (1), 49–77.

Shapiro, A. H. 1977 Steady flow in collapsible tubes.ASME J. Biomech. Engr99, 126–147.
Walters, M. C. 2016 The Effects of Wall Inertia and Axial Bending on Instabilities in Flow

through and Elastic-Walled Tube. PhD Thesis, University of East Anglia. Available online at
https://ueaeprints.uea.ac.uk/58536/.

Whittaker, R. J. 2015 A shear-induced boundary layer near the pinned ends of a buckled elastic-walled tube.
IMA J. Appl. Math.80 (6), 1932–1967.

Whittaker, R. J., Heil, M., Jensen, O. E. & Waters, S. L. 2010 A rational derivation of a tube law from shell
theory.Q. J. Mech. Appl. Math.63 (4), 465–496.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
at/advance-article/doi/10.1093/im

am
at/hxaf012/8157712 by U

niversity of East Anglia user on 11 June 2025


	1 Introduction
	2 Mathematical setup and scaling analysis
	2.1 Problem description
	2.2 Dimensionless parameters and parameter regime
	2.3 Coordinates for the tube wall and deformation

	3 Equilibrium equations
	4 Analysis for 1
	5 Analysis for =O(1)
	5.1 Dominant balances in the equilibrium equations
	5.2 Form of the stress components
	5.3 Displacement recovery

	6 Analysis for 1
	6.1 Azimuthal balance
	6.2 Axial balance
	6.3 Normal balance
	6.4 Distinguished limits

	7 Regime Ia (1)
	7.1 Inner shear layer z=O(1/2)
	7.2 Ia bending layer z=O(-1/2)
	7.3 Boundary conditions and matching
	7.4 Final matched solutions

	8 Regime Ib (1)
	8.1 Ib bending layer z=O(1/2)
	8.2 Boundary conditions and matching
	8.3 Final matched solution

	9 Regime Iab (1)
	10 Comparison
	11 Discussion and conclusions
	A Tensor evaluation
	A.1 Coordinates and strain
	A.2 Constitutive laws
	A.3 Relation between the (x1,x2) and (,z) coordinates
	A.4 Basis vectors
	A.5 Components of b,  and 
	A.6 Components of the in-plane stress N
	A.7 Components of the bending stress M
	A.8 Displacement recovery from the components of the stress tensor

	B The outer shear layer in Regime Ia
	C Bulk shear-layer solution in Regimes Ib and Iab
	D Exact solution in the limit of a circular cross-section
	E Regime Ia asymptotic bulk solution in the circular limit
	F Regime Ib asymptotic bulk shear-layer solution in the circular limit

