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Abstract 

Anthropogenic metal contamination, particularly from historic mining, has led to persistent 

copper enrichment in estuarine sediments of southwestern England. Although this 

contamination is well documented, its ecological consequences remain less understood, 

especially in microbial and meiofaunal communities, which can offer early indicators of 

pollution. This thesis aimed to determine (i) whether a multi-marker metabarcoding strategy 

(16S, ITS, 18S, 28S, COI) can better detect pollution-induced changes compared with single-

marker approaches (ii) which taxa respond most consistently to elevated metal levels and (iii) 

whether porewater copper more accurately predicts benthic community shifts than sediment 

copper concentrations. Field sampling encompassed 12- and 34-site datasets across major 

estuaries, covering porewater Cu concentrations from 4.6 to over 400 µg/L. Sediment DNA 

was extracted in triplicate at each site. Amplicon sequencing of multiple markers profiled 

bacterial, archaeal and eukaryotic assemblages. Statistical analyses linked community data to 

copper levels (porewater and sediment), revealing thresholds for compositional turnover. 

Bacterial and archaeal communities underwent threshold-like shifts near 20 µg/L porewater 

Cu, with archaea showed greater sensitivity in more uniform site subsets. Eukaryotic 

assemblages, particularly nematodes and alveolates, exhibited marked changes at heavily 

contaminated sites, corroborating previous morphological observations. Multi-primer 

metabarcoding captured a broader range of taxa than single markers alone but remained limited 

by primer biases and incomplete reference databases. These results refine pollution threshold 

estimates and highlight porewater copper as a strong predictor of community disruption. 

Archaea emerged as potential bioindicators, responding more sharply to contamination than 

bacteria. The multi-marker approach significantly improves ecological resolution, 

underscoring the importance of integrating morphological and molecular data. Moving 

forward, enhancing primer sets, expanding databases and applying functional assays (e.g. 

metatranscriptomics) will further strengthen the use of metabarcoding in environmental 

management and remediation efforts. 
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alongside morphological analysis. ........................................................................................... 94 

Fig. 3.26 Combined boxes and whiskers and K‑dominance plots illustrating the nematode ASV 

richness and species‑dominance patterns detected by various primers and treatments across 
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Fig. 4.1 Overview of a phylogenetic tree constructed using 515F 16S rRNA data across all 

datasets. The tree includes all ASVs and highlights the presence of Bacteria (red), Archaea 
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(green) and Eukaryota (blue). Taxonomic assignments were performed using the KSPG 

database. ................................................................................................................................. 107 

Fig. 4.2 Phylogenetic representation of bacterial phyla derived from 515F 16S rRNA data, 

following the removal of non‑bacterial branches. The main phyla identified are 

Pseudomonadota (red), Bacteroidota (dark orange), Planctomycetota (green) and 

Acidobacteriota (brown), with unknown phyla shown in medium blue. Taxonomic assignments 

were performed using the KSPG database. ............................................................................ 108 

Fig. 4.3 Distribution of reads across phyla for all datasets after excluding non‑bacterial reads. 

Based on the total number of reads, taxonomic assignments were made using the KSPG 

database for (A) and the SILVA database for (B). Phyla making up less than 2.2% of the total 

are combined into “other phyla.” The ‘?’ symbol indicates that taxonomy was not resolved at 

the phylum level by LCA classification based on matches in the assigned databases. ......... 110 

Fig. 4.4 Distribution of ASVs across phyla for all datasets after excluding non‑bacterial reads. 

Taxonomic assignments were made using the KSPG database for (A) and the SILVA database 

for (B). Phyla making up less than 1.2% of the total are combined into “other phyla.” The ‘?’ 

symbol indicates that taxonomy was not resolved at the phylum level by LCA classification 
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Fig. 4.5 Sample ordination using Non-metric Multi-dimensional Scaling (NMDS) of Bray-

Curtis similarity matrix of bacterial abundances, based on square root transformed data, derived 

from all datasets; Pilot, 12-sites, 34-sites and experiment. Each two-letter sample label 

represents site, colours represent the different datasets. Outlier samples were excluded as 

described in the methods section. All datasets performed with 0.1% ASV pruning. Data 

processed using LotuS2 in conjunction with the KSPG database. Site codes as in Table 2.1.
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Fig. 4.6 Sample ordination using NMDS of Bray-Curtis similarity matrix of square root 

transformed bacterial abundance data, showing the 12 and 34 site datasets. Each two-letter 

sample label represents site, colours represent the different datasets. All datasets performed 

with 0.1% ASV pruning. Data processed using LotuS2 in conjunction with the KSPG database. 
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Fig. 4.7 Sample ordination using NMDS of Bray-Curtis similarity matrix of square root 

transformed bacterial abundance data from the 12-site dataset. A) includes Breydon Water sites 

(stress value = 0.18), while B) excludes them (stress value = 0.16). Each two-letter sample label 

represents site, colours represent the different datasets. All datasets performed with 0.1% ASV 

pruning. Data processed using LotuS2 in conjunction with the KSPG database. Site codes as 
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Fig. 4.8 Sample ordination using NMDS of Bray-Curtis similarity matrix of square root 

transformed bacterial abundance data from the 34-site dataset (stress value = 0.14). Each two-

letter sample label represents site. All datasets performed with 0.1% ASV pruning. Data 

processed using LotuS2 in conjunction with the KSPG database. Site codes as in Table 2.1.
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Fig. 4.9 Sample ordination using NMDS of Bray-Curtis similarity matrix of square root 

transformed bacterial abundance data from the experiment set samples (stress value = 0.17). 

Colours represent the different test sediments. The first two letters in the sample labels indicate 

the source of the inoculum, while the second two letters represent the sediment that makes up 

75% of the total composition. Outlier samples were excluded as described in the methods 

section. All datasets performed with 0.1% ASV pruning. Data processed using LotuS2 in 

conjunction with the KSPG database. Site codes as in Table 2.1. ........................................ 116 

Fig. 4.10 A) Rarefaction curves for bacterial samples for 12 sites, illustrating ASVs richness 

in relation to sample size. B) Box and whisker plot of ASV counts rarefied to a sample size 

equivalent to the lowest sample size (7 989) across different sites, sites were arranged in 

increasing order of porewater copper concentrations with sites above and below 20 µg/L 

indicated in red and green respectively. ANOVA results (F = 39.8, p < 0.001). Spearman's rank 

correlation between ASV richness and porewater copper concentration (rho = -0.23, p ≤ 0.05). 
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Fig. 4.11 A) Rarefaction curves for bacterial samples for 34 sites, illustrating ASVs richness 

in relation to sample size. B) Box and whisker plot of ASV counts rarefied to a sample size 

equivalent to the lowest sample size (46 193) across different sites, sites are arranged in 

increasing order of porewater copper concentrations with sites above and below 20 µg/L 

indicated in red and green respectively. ANOVA results (F = 12.8, p < 0.001). Spearman's rank 
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correlation between ASV richness and porewater copper concentration (rho = - 0.16, p ≤ 0.01). 
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Fig. 4.12 Sample‑based species‑accumulation curve for 16S rRNA ASVs recovered from A) 

the 12‑site and B) 34‑site bacterial surveys. The solid line represents the mean cumulative 

richness and the light‑blue polygon the 95 % confidence envelope. Site codes as in Table 2.1.
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Fig. 4.13 NMDS bubble plots of the 12-site dataset using square root transformed data based 

on Bray-Curtis similarity of bacterial abundances. It compares ASV counts across all sites 

under two conditions: A) without removing rare ASVs and B) with ASVs occurring at less than 

0.1% abundance in all samples removed. Stress values are 0.22 and 0.16, respectively. Bubble 

sizes represent the pore water copper (Cu) concentrations at each site. Site codes as in 
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Fig. 4.14 NMDS bubble plot of the 12-site dataset using square root transformed data based on 

Bray-Curtis similarity of bacterial abundances. It shows ASV counts across all sites with ASVs 

occurring at less than 1% abundance in all samples removed. Stress value is 0.20. Bubble sizes 

represent the pore water copper (Cu) concentrations at each site. Site codes as in Table 2.1.
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Fig. 4.15 NMDS bubble plots of the 34-site dataset using square root transformed data based 

on Bray-Curtis similarity of bacterial abundances. It compares ASV counts across all sites 

under two conditions: A) without removing rare ASVs and B) with ASVs occurring at less than 

0.1% abundance in all samples removed. Stress values are 0.13 and 0.14, respectively. Bubble 
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Fig. 4.16 NMDS bubble plot of the 34-site dataset using square root transformed data based 

on Bray-Curtis similarity of bacterial abundances. It shows ASV counts across all sites with 

ASVs occurring at less than 1% abundance in all samples removed. Stress value is 0.20. Bubble 

sizes represent the pore water copper (Cu) concentrations at each site. Site codes as in 
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Fig. 4.17 ANOSIM R-values for 12-site, 34-site and experimental datasets generated using the 

515F primer under three pruning thresholds (no pruning, 0.1% and 1%). The experimental 

dataset includes inoculum source and sediment source factors. The results illustrate the degree 

of dissimilarity between sites, with R statistics quantifying the strength of clustering. R-values 

> 0.75 indicate very strong differences between groups and all results are statistically 
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Fig. 4.18 Comparison of A) Bray-Curtis and B) UniFrac NMDS similarity matrices of square 

root transformed plots. derived from 12 and 34 site datasets, each two-letter sample label 

represents site, colours represent the different datasets. No ASVs were pruned for both datasets. 

Data processed using LotuS2 in conjunction with the KSPG database. Site codes as in 
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Fig. 4.19 Comparison of A) NMDS (Non-metric Multidimensional Scaling) and B) PCoA 
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Fig. 4.21 Single linkage hierarchical clustering dendrogram of A) 12-Site and B) 34-site 

datasets. Branch heights represent the degree of dissimilarity between site clusters. Bray-Curtis 
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Fig. 4.22 Spearman's rank correlation (Rho) for BIOENV analysis of the relationships between 

environmental variables and microbial community composition for the 12-sites dataset. Bar 

colours indicate statistical significance: blue; most significant correlations (p < 0.05); orange; 

moderate significance (0.05 < p < 0.1); and red; non-significant (p ≥ 0.1). Site codes as in 

Table 2.1. AEMCu (Acid-Extractable Copper), LT63 (<63 µm fines), AVS (Acid Volatile 

Sulphide), PWCu (Porewater Cu), TOC (Total Organic Carbon), DOC (Dissolved Organic 

Carbon), PW_OC_Cu (DOC normalised PWCu), EqPCu (Equilibrium Partitioning Cu), D50 
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Fig. 4.23 NMDS plots of square root transformed data of bacterial abundances illustrating the 

spatial patterns of the 515F bacterial community structure derived from the 12-site dataset in 

relation to key environmental variables: A) PWCu, B) PW_OC_Cu. Bray-Curtis similarity 

matrices were used, with a 0.1% ASV pruning threshold. .................................................... 134 

Fig. 4.24 Spearman's rank correlation (Rho) for BIOENV analysis of the relationships between 

environmental variables and microbial community composition. A) shows the results for the 

34-sites dataset, and B) for the 34-sites dataset excluding highly polluted sites (HA, HB, RA 

and RB). Bar colours indicate statistical significance: blue; most significant correlations (p < 

0.05); orange; moderate significance (0.05 < p < 0.1); and red; non-significant (p ≥ 0.1). PWCu 

(Porewater Cu), AEMCu (Acid-Extractable Cu), D50 (Median Grain Size), LT63 (<63 µm 
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Fig. 4.25 NMDS plots of square root transformed data of bacterial abundances illustrating the 

spatial patterns of the 515F bacterial community structure derived from the 34-site dataset in 

relation to significant environmental variables. A) shows the relationship with PWCu, and B) 

with LT63. Both plots include all sites. Bray-Curtis similarity matrices were used, with a 0.1% 
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Fig. 4.26 NMDS plots of square root transformed data of bacterial abundances illustrating the 

spatial patterns of the 515F bacterial community structure. A) shows the relationship with 

salinity across all sites, while B) shows the relationship with PWCu after excluding highly 

polluted sites (HA, HB, RA, RB). Bray-Curtis similarity matrices were used, with a 0.1% ASV 
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Fig. 4.27 NMDS plots of square root transformed bacterial abundances from the 34-site 

dataset after excluding highly polluted sites. A) shows the relationship with LT63, and B) 

shows the relationship with salinity. Bray-Curtis similarity matrices were used, with a 0.1% 
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Fig. 4.28 NMDS plot of square root transformed bacterial abundances from the 34-site dataset 

showing the relationship with D50 after excluding highly polluted sites (HA, HB, RA, RB). 

Bray-Curtis similarity matrices were used, with a 0.1% ASV pruning threshold. Site codes as 
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Fig. 4.29 Heatmap illustrating the top 10 phyla exhibiting significant differences in abundance 

between polluted and clean sites across A) 12-site and B) 34-site datasets, along with their p-

values and raw fold changes. The phyla were sorted based on their average SIMPER 

contribution to dissimilarity between groups. Statistical significance is indicated by asterisks 

(*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001), with "NS" denoting non-significant results. Darker 

colour intensities represent higher raw fold changes, blue shades indicate negative fold changes 

(more abundant in clean sites) and red shades indicate positive fold changes (more abundant in 

polluted sites). Raw fold changes [log₂(ava²/avb²)] revert the square-root-transformed averages 

to the original abundance scale. Taxonomic assignments were made using the KSPG database. 

‘?’ means unresolved taxonomy by LCA in KSGP. .............................................................. 143 

Fig. 4.30 Heatmap showing the top 10 significant ASVs for A) the 12-site and B) the 34-site 

datasets, each selected based on their average SIMPER contribution to differences between 

polluted and clean sites. Asterisks indicate statistical significance (p≤0.05; *p≤0.01; 

**p≤0.001). Colour intensity corresponds to raw fold changes, with blue indicating ASVs more 

abundant in clean sites and red indicating ASVs more abundant in polluted sites. Raw fold 

changes [log₂(ava²/avb²)] revert the square-root-transformed averages to the original 

abundance scale. For ASVs with zero counts in clean sites (ASV310 and ASV362 in the 12-

site dataset), an upper raw fold change limit of 15 was assigned. Taxonomic assignments were 

determined using the KSPG database. ................................................................................... 145 

Fig. 5.1 Phylogenetic tree constructed using ARF 16S rRNA data across all datasets, showing 

all OTUs featuring Archaea (green), Bacteria (red) and Eukaryota (blue). Taxonomic 
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Fig. 5.2 Phylogenetic tree for Archaeal phyla based on ARF 16S rRNA data, following the 

removal of non‑Archaeal branches. The main phyla represented are Nanoarchaeota (red), 

Thermoproteota (orange), Aenigmatarchaeota (purple), Thermoplasmatota (light blue), and an 

unknown phylum (blue). Taxonomic assignments were performed using the KSPG database.
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Fig. 5.3 Distribution of reads across phyla for all datasets after excluding non-archaeal reads, 

based on the total number of A) reads and B) OTUs, Taxonomic assignments were made using 

the KSPG database.  Phyla making up less than 0.7% and 1.2% of the total respectively are 
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combined into ‘other phyla’.  ‘?’ indicates that taxonomy is not resolved at phylum level by 

LCA classification based on matches in KSGP. .................................................................... 161 

Fig. 5.4 Sample ordination using Non-metric Multi-dimensional Scaling (NMDS) of Bray-

Curtis similarity matrix of Archaeal abundances, based on square root transformed data, 

derived from all datasets; Pilot, 12-sites, 34-sites and experiment. Colours represent the 

different datasets. Each two-letter sample label represents site. All datasets performed without 

the pruning of OTUs. Data processed using LotuS2 in conjunction with the KSPG database. 

Site codes as in Table 2.1. ..................................................................................................... 162 

Fig. 5.5 Sample ordination using NMDS of Bray-Curtis similarity matrix of square root 

transformed Archaeal abundance data, showing the 12 and 34 site datasets. Colours represent 

the different datasets. Each two-letter sample label represents site. All datasets performed 

without the pruning of OTUs. Data processed using LotuS2 in conjunction with the KSPG 
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Fig. 5.6 Sample ordination using NMDS of Bray-Curtis similarity matrix of square root 

transformed Archaeal abundance data from the 12-site dataset. A) includes Breydon Water 

sites (stress value = 0.13), while B) excludes them (stress value = 0.12). All datasets performed 

without the pruning of OTUs. Data processed using LotuS2 in conjunction with the KSPG 
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Fig. 5.7 Sample ordination using NMDS of Bray-Curtis similarity matrix of square root 

transformed Archaeal abundance data from the 34-site dataset (stress value = 0.16). Each two-

letter sample label represents site. All datasets performed without the pruning of OTUs. Data 

processed using LotuS2 in conjunction with the KSPG database. Site codes as in Table 2.1.

................................................................................................................................................ 165 

Fig. 5.8 Sample ordination using NMDS of Bray-Curtis similarity matrix of square root 

transformed Archaeal abundance data from the experiment set samples (stress value = 0.19). 

Colours represent the different test sediments. The first two letters in the sample labels indicate 

the source of the inoculum, while the second two letters represent the sediment that makes up 

75% of the total composition. Each two-letter sample label represents site. All datasets 
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Fig. 5.9 A) Rarefaction curves for archaeal samples for 12 sites, illustrating OTUs richness in 

relation to sample size. B) Box and whisker plot of OTU counts rarefied to a sample size 

equivalent to the lowest sample size (149 595) across different sites, sites are arranged in 

increasing order of porewater copper concentrations with sites above and below 20 µg/L 

indicated in red and green respectively. ANOVA results (F = 13.2, p < 0.001). Spearman's rank 

correlation between OTU richness and porewater copper concentration (rho = -0.64, p < 0.001). 
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Fig. 5.10 A) Rarefaction curves for archaeal samples for 34 sites, illustrating OTUs richness in 

relation to sample size. B) Box and whisker plot of OTU counts rarefied to a sample size 

equivalent to the lowest sample size (35 155) across different sites, sites are arranged in 

increasing order of porewater copper concentrations with sites above and below 20 µg/L 

indicated in red and green respectively. ANOVA results (F = 8.4, p < 0.001). Spearman's rank 

correlation between OTU richness and porewater copper concentration (rho = -0.25, p < 0.001). 
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Fig. 5.11 Sample‑based species‑accumulation curve for archaeal 16S rRNA ASVs recovered 

from A) the 12‑site and B) 34‑site bacterial surveys. The solid line represents the mean 

cumulative richness and the light‑blue polygon the 95 % confidence envelope. .................. 172 

Fig. 5.12 NMDS bubble plots of the 12-site dataset using square root transformed data based 

on Bray-Curtis similarity of Archaeal abundances. It compares OTU counts across all sites 

under two conditions: A) without removing rare OTUs and B) with OTUs occurring at less 

than 0.1% abundance in all samples removed. Stress values are 0.12 and 0.13, respectively. 

Bubble sizes represent the pore water copper (Cu) concentrations at each site. Site codes as in 
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Fig. 5.13 NMDS bubble plot of the 12-site dataset using square root transformed data based 

on Bray-Curtis similarity of Archaeal abundances. It shows OTU counts across all sites with 

OTUs occurring at less than 1% abundance in all samples removed. Stress value is 0.12. Bubble 

sizes represent the pore water copper (Cu) concentrations at each site. Site codes as in 
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Fig. 5.14 NMDS bubble plots of the 34-site dataset using square root transformed data based 

on Bray-Curtis similarity of Archaeal abundances. It compares OTU counts across all sites 
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under two conditions: A) without removing rare OTUs and B) with OTUs occurring at less 

than 0.1% abundance in all samples removed. Stress values are 0.19 and 0.19, respectively. 

Bubble sizes represent the pore water copper (Cu) concentrations at each site. Site codes as in 
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Fig. 5.15 NMDS bubble plot of the 34-site dataset using square root transformed data based on 

Bray-Curtis similarity of Archaeal abundances. It shows OTU counts across all sites with 

OTUs occurring at less than 1% abundance in all samples removed. Stress value is 0.16. Bubble 

sizes represent the pore water copper (Cu) concentrations at each site. Site codes as in 
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Fig. 5.16 ANOSIM R-values for 12-site, 34-site and experimental datasets generated using the 

ARF primer under three pruning thresholds (no pruning, 0.1% and 1%). The experimental 

dataset includes inoculum source and sediment source factors. The results illustrate the degree 

of dissimilarity between sites, with R statistics quantifying the strength of clustering. R-values 

> 0.75 indicate very strong differences between groups and all results are statistically 
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Fig. 5.17 Comparison of A) Bray-Curtis and B) UniFrac NMDS similarity matrices of square 

root transformed plots. derived from 12 and 34 site datasets, each two-letter sample label 

represents site, colours represent the different datasets. No OTUs were pruned. Data processed 

using LotuS2 in conjunction with the KSPG database. Site codes as in Table 2.1. .............. 179 

Fig. 5.18 Comparison of A) NMDS (Non-metric Multidimensional Scaling) and B) PCoA 

(Principal Coordinates Analysis) of square root transformed plots, with bubble sizes 

representing PWCu levels to evaluate clustering patterns among sites, derived from 12-site 

dataset. A 1% OTU pruning threshold was applied in these analyses. Site codes as in Table 2.1.
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Fig. 5.19 Comparison of PCoA ordination of square root transformed plots, with bubble sizes 

representing LT63 levels to evaluate clustering patterns among sites, derived from 34-site 

dataset, A) without sites exception and B) with the exception of Hayle (A and B) and 

Restronguet Creek (A and B).  A 1% OTU pruning threshold was applied in these analyses. 
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Fig. 5.20 Single linkage hierarchical clustering dendrogram of A) 12-Site and B) 34-site 

datasets. Branch heights represent the degree of dissimilarity between site clusters. Bray-Curtis 

similarity matrices were used, without OTU pruning. ........................................................... 184 

Fig. 5.21 Spearman's rank correlation (Rho) values based on the BIOENV analysis between 

environmental variables and archaeal community composition for the 12-sites dataset. Bar 

colours indicate statistical significance: blue; most significant correlations (p < 0.05); orange; 

moderate significance (0.05 < p < 0.1); and red; non-significant (p ≥ 0.1). AEMCu (Acid-

Extractable Copper), LT63 (<63 µm fines), AVS (Acid Volatile Sulphide), PWCu (Porewater 

Cu), TOC (Total Organic Carbon), DOC (Dissolved Organic Carbon), PW_OC_Cu (DOC 

normalised PWCu), EqPCu (Equilibrium Partitioning Cu), D50 (Median Grain Size), Sal 
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Fig. 5.22 NMDS plots of square root transformed data of Archaeal abundances illustrating the 

spatial patterns of the 16S Archaeal community structure derived from the 12-site dataset. A) 

shows the relationship with PWCu and B) with PW_OC_Cu. Bray-Curtis similarity matrices 
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Fig. 5.23 NMDS plots of square root transformed Archaeal abundances from the 12-site 

dataset showing relationships with environmental variables. A) shows the relationship with 

TOC and B) with AVS. Bray-Curtis similarity matrices were used, without OTU pruning. Site 
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Fig. 5.24 NMDS plots of square root transformed Archaeal abundances from the 12-site 

dataset showing relationships with A) LT63 and B) PWZn. Bray-Curtis similarity matrices 
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Fig. 5.25 Spearman's rank correlation (Rho) values based on the BIOENV analysis between 

environmental variables and archaeal community composition. A) shows the results for the 34-

sites dataset, and B) for the 34-sites dataset excluding highly polluted sites (HA, HB, RA and 

RB). Bar colours indicate statistical significance: blue; most significant correlations (p < 0.05); 

orange; moderate significance (0.05 < p < 0.1); and red; non-significant (p ≥ 0.1). PWCu 

(Porewater Cu), AEMCu (Acid-Extractable Cu), D50 (Median Grain Size), LT63 (<63 µm 
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Fig. 5.26 PCoA plots of square root transformed data of Archaeal abundances illustrating the 

spatial patterns of the 16S Archaeal community structure derived from the 34-site dataset in 

relation to key environmental variables. A) shows the relationship with salinity and B) with 

LT63. Bray-Curtis similarity matrices were used, with a 1% OTU pruning threshold. The most 

heavily polluted sites (HA, HB, RA and RB) were excluded from both plots. Site codes as in 
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Fig. 5.27PCoA plots of square root transformed Archaeal abundances from the 34-site dataset 

showing relationships with environmental variables. A) shows the relationship with D50, 

excluding the most heavily polluted sites, while B) shows the relationship with PWCu 

including all sites. Bray-Curtis similarity matrices were used, with a 1% OTU pruning 

threshold. Site codes as in Table 2.1. .................................................................................... 194 

Fig. 5.28 Heatmap illustrating the top 10 phyla exhibiting significant differences in abundance 

between polluted and clean sites across A) 12-site and B) 34-site datasets, along with their p-

values and raw fold changes. The phyla were sorted based on their average SIMPER 

contribution to dissimilarity between groups. Statistical significance is indicated by asterisks 

(*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001), with "NS" denoting non-significant results. Darker 

colour intensities represent higher raw fold changes, blue shades indicate positive fold changes 

(more abundant in clean sites), white represents minimal or no change and red shades indicate 

negative fold changes (more abundant in polluted sites). Raw fold changes [log₂(ava²/avb²)] 

revert the square-root-transformed averages to the original abundance scale. Taxonomic 

assignments were made using the KSPG database.  ‘?’ means unresolved taxonomy by LCA in 
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Fig. 5.29 Heatmap illustrating the top 10 OTUs exhibiting significant differences in the 12-site 

and/or 34-site analyses, along with their p-values and raw fold changes. The OTUs were 

selected and numerically sorted based on their average SIMPER contribution to the 

dissimilarity between groups. Statistical significance is indicated by asterisks (p ≤ 0.05; 

*p ≤ 0.01; **p ≤ 0.001), with "NS" denoting non-significant results. Darker colour intensities 

represent higher raw fold changes, blue shades indicate positive fold changes (more abundant 

in clean sites), white represents minimal or no change and red shades indicate negative fold 

changes (more abundant in polluted sites). Raw fold changes [log₂(ava²/avb²)] revert the 

square-root-transformed averages to the original abundance scale. Taxonomic assignments 
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were made using the KSPG database. All OTUs belong to phylum Thermoproteota, except 
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Fig. 6.1 Proportional distribution of the top 10 eukaryote A) and metazoan B) phyla identified 

in RNAseq data (Karst et al., 2018). Phyla representing less than 1% combined were grouped 

under 'Other'. Percentages were calculated based on relative abundance data to illustrate the 

dominant phyla within the dataset. ........................................................................................ 211 

Fig. 6.2 Proportional distribution of the top 10 kingdoms A) and phyla B) identified by the 

World Register of Marine Species (WoRMS) (www.marinespecies.org). Phyla with a 

combined contribution of less than 1% were grouped under 'Other.' Percentages are based on 

relative abundance data to highlight the dominant kingdoms and phyla within the dataset.. 212 

Fig. 6.3 Relative abundance of the five most abundant A) kingdoms and B) phyla, expressed 

as a percentage of the total reads. Data were processed using the LotuS2/Eukaryome pipeline 

(except for COI JB3 using the MIDORI-Longest database). The G18S, ITS and TAR data are 

derived from all datasets; DM568 from 34-sites and exp; NEM from pilot and 12-sites and JB3 
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Chapter 1:  

General Introduction 

1.1 Overview of Marine Pollution in Coastal Ecosystems 

Anthropogenic inputs in marine environments include a suite of pollutants such as metals, 

hydrocarbons and organic enrichments. Many derive from point sources, such as wastewater 

discharges or industrial plants, while others arrive through diffuse pathways, including 

agricultural runoff and atmospheric deposition (Kennish, 2002). Although some contaminants 

break down over time, metals persist indefinitely because they cannot be biologically or 

chemically degraded to benign forms (Alloway, 2012). Metals like copper, zinc and lead thus 

accumulate in sediments, where they can remain bound to particles or become remobilised into 

the water column depending on redox conditions, grain size and biological activity (Eggleton 

and Thomas, 2004). Mining has historically been among the most significant contributors to 

metal contamination, generating tailings that are sometimes deposited directly into rivers or 

seep slowly from old spoil heaps. Where tidal influence is strong, estuaries can trap these 

contaminants in lower-energy areas, creating hotspots of long-term enrichment (Bryan and 

Gibbs, 1983). Although modern legislation and improved waste management have reduced 

direct inputs in many industrialised regions, past mining often has left a chemical legacy that 

continues to shape sediment composition and benthic ecology long after mining operations 

ceased (Johnson, 1986, Rollinson et al., 2007). 

1.2 The Mining Legacy in Southwestern England 

Southwestern England epitomises this phenomenon. Cornish mining, at its peak between the 

eighteenth and twentieth centuries, generated large volumes of copper, tin and arsenic rich 

wastes that flowed into watercourses (Barton, 1961). Estuaries like Restronguet Creek and the 

Hayle became known for extreme copper and other metal concentrations in their sediments 

(Bryan and Hummerstone, 1971, Bryan and Gibbs, 1983). Although active mining has largely 

ended, the sediments have not reverted to baseline conditions. This stability offers a relatively 



Chapter 1 

2 

 

simple system in the sense that there are fewer industries now depositing metals and 

contamination is dominated by a small number of metals, principally copper, zinc and arsenic 

(Bryan and Gibbs, 1983, Grant, 2010). Nonetheless, the distribution of metals can vary 

markedly across short distances, creating gradations that allow investigators to assess how 

ecological communities shift along these gradients (Millward and Grant, 2000, Ogilvie and 

Grant, 2008). For instance, the Hayle may exhibit lower total sediment copper concentrations 

than Restronguet Creek but higher porewater copper, which can produce greater biological 

effects if metals in porewater are more bioavailable to benthic species (Millward and Grant, 

1995, Chen et al., 2022). The apparently stable and well-defined nature of these pollution 

gradients means that southwestern estuaries have served as a longstanding model for studying 

metal ecotoxicology (Bryan and Hummerstone, 1971, Somerfield et al., 1994a, Rainbow, 

2020).  

1.3 Defining Contamination and Pollution under GESAMP 

One of the conceptual foundations that guide these studies is the distinction between 

contamination and pollution made by the United Nations Joint Group of Experts on the 

Scientific Aspects of Marine Pollution (GESAMP) (www.gesamp.org). According to 

GESAMP, contamination refers to the presence of a substance above natural background 

levels, while pollution implies that such contamination impairs organisms, communities or 

ecosystem processes. This difference is of practical importance because demonstrating that 

concentrations of copper or other metals are elevated above their preindustrial background does 

not, on its own, confirm that communities experience harmful effects. Many southwestern 

England estuaries are demonstrably contaminated, but they are only classified as polluted if 

there is concrete evidence that biological structure or function is altered (Bryan and 

Hummerstone, 1971, Grant, 2010). The GESAMP framework thus compels researchers to look 

beyond chemical measurements and address whether metal exposure leads to shifts in 

community composition, declines in species richness or changes in key functions such as 

feeding rates. Such data are crucial to determining whether management or remediation is 

necessary and to clarifying whether metals rather than other environmental parameters are 

responsible for observed biological changes (Chapman and Wang, 2001). 

http://www.gesamp.org/
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1.4 Impacts of Pollutants on Marine Communities 

A substantial literature has accumulated on the effects of pollutants in marine systems, often 

highlighting both direct toxicity and more subtle alterations in community assembly. Some 

studies focused on macrofauna, examining how species diversity and abundance changed with 

rising metal levels or increasing hydrocarbon inputs (Olsgard and Gray, 1995). Others 

documented community rearrangements, such as the dominance of opportunistic species or the 

loss of sensitive taxa in severely impacted sites (Pearson, 1978). The Ekofisk oilfield in the 

North Sea is frequently cited as an example where discharges associated with drilling 

significantly reduced benthic biodiversity at the most contaminated sites and coased more 

subtle changes in community composition at less contaminated sites (Gray et al., 1990, 

Warwick and Clarke, 1991, Olsgard and Gray, 1995). In southwestern England, changes in 

benthic diversity or the disappearance of certain bivalves and crustacea have been attributed to 

mining-derived metals, though confounding variables occasionally limit straightforward 

interpretations (Bryan and Hummerstone, 1971, Warwick et al., 1991, Warwick and Clarke, 

1991). Some authors reported that moderate contamination could bolster a few tolerant taxa, 

leading to unexpected increases in total abundance if tolerant species flourished without 

competition (Blanck, 2002). Therefore, the notion that pollution always causes uniform 

declines in diversity is not always borne out by empirical data and subtle community shifts can 

be as ecologically significant as outright losses of species (Dauvin, 2007). 

1.5 Environmental Complexity in Southwestern Estuaries 

Investigators studying southwestern England estuaries have faced additional complications 

associated with the interplay of metals, grain size and salinity gradients. Sediment copper is 

often correlated with the proportion of fine particles, since finer grains have a larger surface 

area to which metals can adsorb (Eggleton and Thomas, 2004). Depositional zones with 

extensive mud can accumulate more copper, yet low oxygen penetration into the sediments and 

high organic matter may mitigate or magnify the metal’s bioavailability depending on redox 

states (Kennish, 2002). The Hayle’s high porewater copper but lower total sediment copper 

exemplifies how geochemical processes can elevate the fraction of metal accessible to benthic 

infauna despite smaller total loads (Millward and Grant, 2000). Meanwhile, salinity itself can 

vary along the estuarine gradient, further influencing metal speciation and the tolerance 
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thresholds of local species (Millward and Grant, 1995). Correlating metal concentrations to 

biological effects thus requires site-specific knowledge of sediment characteristics, porewater 

conditions and the feeding or burrowing habits of local taxa (Grant et al., 1989). Several authors 

have recommended combining multiple lines of evidence, such as total metal measurements, 

porewater analyses and advanced models like AVS or equilibrium partitioning, to capture the 

intricate nature of metal binding and release (Di Toro et al., 1991). However, implementing 

these models can be resource-intensive and each site may present distinct geochemical nuances 

that complicate straightforward interpretation. 

1.6 Evidence of Metal-Induced Ecological Change 

Southwestern estuaries have revealed multiple lines of evidence that metals cause ecological 

changes. Bryan (1971) and Bryan and Gibbs (1983) noted that certain species, such as the 

amphipod Corophium volutator and the bivalve Scrobicularia plana, were scarce or missing 

in Restronguet Creek, presumably due to high copper toxicity. They included a wide range of 

taxa, from crustaceans and molluscs to fish, annelids and algae, demonstrating how metal-

enriched conditions reduced the abundance of sensitive organisms. Warwick (2001) directly 

compared the Fal’s intertidal macrobenthos with other southwestern estuaries and noted that 

the Fal’s macrofauna were conspicuously missing metal-sensitive crustaceans such as 

Corophium volutator and Cyathura carinata while exhibiting elevated abundances of 

opportunistic annelids. These patterns contrasted sharply with similarly muddy habitats 

elsewhere in the region, suggesting that long-term metal contamination overshadowed 

confounding variables such as salinity or grain size. Similarly, Bryan et al. (1987) emphasised 

that the Fal’s elevated copper, zinc and organotin concentrations which was originated from 

historical mining, had governed local benthic distributions over extended periods, further 

highlighting the dominant influence of metals on species composition in this estuary. 

Meiofauna, especially nematodes, exhibited clear community shifts at sites such as Restronguet 

Creek and the Hayle, where copper levels were elevated (Somerfield et al., 1994a, Millward 

and Grant, 1995). Millward and Grant (1995) showed that nematode copper tolerance was 

significantly higher in Restronguet, Pill and St Just’s Creeks compared with reference sites, 

paralleling morphological evidence from Warwick (2001) macrofaunal studies in these same 

creeks. Microbial communities likewise displayed enhanced copper tolerance in Restronguet, 

the Hayle and Pill once porewater concentrations exceeded around 15 µg/L (Ogilvie and Grant, 
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2008). Meanwhile, the polychaete Nereis diversicolor demonstrated inherited tolerance 

confined to Restronguet Creek and the Hayle, but this tolerance weakened in the lower parts 

of Restronguet Creek (Grant et al., 1989). Collectively, these findings underscore the 

widespread ecological repercussions of copper contamination across multiple benthic groups. 

Furthermore, Emily Shipp’s feeding rate study highlighted how deposit feeders like Hydrobia 

can exhibit lowered feeding and growth in certain creeks with high copper, although the effect 

was also influenced by sediment organic content (Shipp and Grant, 2006). Pill and St Just’s 

creeks, for instance, displayed both reduced feeding and growth, suggesting the presence of 

genuine pollution effects rather than mere contamination. Percuil, by contrast, had reduced 

feeding rates but no significant impact on growth and the explanation for that difference aligned 

with the sediment’s high organic matter content, illustrating once more the complexity of 

linking measured metals to ecological outcomes. Overall, these studies provided clear evidence 

that copper contamination has repeatedly caused shifts in macrofaunal, meiofaunal and 

microbial assemblages throughout southwestern estuaries, highlighting metals as a primary 

driver of ecological change in these systems. 

1.7 Measures of Metal Contamination 

The question of which sites are most affected by metals and which measures best predict 

impacts has not been fully resolved. Multiple approaches have been employed to characterise 

metal contamination in southwestern estuaries, focusing chiefly on total sediment copper and 

porewater copper. Restronguet Creek often appears more heavily contaminated by total copper, 

whereas the Hayle can appear less contaminated by total sediment metrics yet exhibits higher 

porewater copper that may harm deposit feeders (Grant, 2010, Udochi, 2020). For instance, at 

Restronguet Creek, total copper in sediments can approach 3,000 µg/g but yield a porewater 

value of about 130 µg/L, whereas the Hayle, sediments containing 862 µg/g total copper can 

record a far higher porewater copper concentration of over 220 µg/L (Udochi, 2020). These 

contrasts emphasised that porewater concentrations may reflect bioavailable fractions more 

accurately than total copper analyses alone (Millward and Grant, 2000, Ogilvie and Grant, 

2008). Others found that sediment analyses remain relevant, particularly for deposit feeders 

that consume sediment particles (Bryan and Langston, 1992). More complicated models, such 

as those incorporating AVS or equilibrium partitioning, added nuance but demand robust 

geochemical data (Hall Jr and Anderson, 2022). Certain estuaries may also have site-specific 
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anomalies: the Helford River is often used as a control system because it lacks the same 

intensity of historical mining activity, yet some areas there also show unexpected disturbance. 

In particular, Udochi (2020) analysis of Helford River nematode communities noted that they 

clustered close to a reference site (Breydon Water) in multivariate space, but identified a total 

porewater Cu threshold of about 3.5 µg/L and a sediment Cu threshold of about 215 µg/g for 

shifts in community composition, indicating that even moderate copper levels can elicit 

ecological impacts. This variability underscores the importance of having multiple reference 

or control sites when trying to infer pollution-induced patterns of change. 

1.8 Traditional Monitoring and Its Limitations 

Traditional morphological monitoring has relied heavily on macrofauna retained on a 0.5 mm 

sieve (Kendall and Widdicombe, 1999). Macrofauna provide tangible endpoints and have been 

studied over many decades, but these methods can miss smaller taxa like meiobenthos or 

microbial eukaryotes that may respond differently or more rapidly to pollution (Moore and 

Bett, 1989, Coull, 1992). Nematodes, for instance, have often proven more sensitive than larger 

invertebrates, though morphological identification of nematodes demands exceptional 

expertise and extensive effort (Warwick and Uncles, 1980, Somerfield et al., 1994c). Bacteria 

and archaea, as revealed by classic T-RFLP or culturing work, sometimes display altered 

tolerance in polluted estuaries, but compositional changes are less apparent if the fingerprinting 

methods lack taxonomic resolution (Ogilvie and Grant, 2008). Over the past decade, attention 

has turned to DNA-based metabarcoding, which can capture a broader spectrum of organisms 

in a single analysis (Taberlet et al., 2012, Pawlowski et al., 2018). This approach holds 

substantial promise for detecting subtle shifts in community composition that may signify 

contamination moving toward pollution. Despite this promise, the application of 

metabarcoding to estuarine metal pollution lags behind its usage in other areas, such as invasive 

species detection and general biodiversity monitoring (Bik et al., 2012). Although preliminary 

efforts to correlate metabarcoding outputs with metal exposure are now emerging (Corcoll et 

al., 2019, Yan et al., 2020), large-scale investigations along well-defined pollution gradients 

remain rare. 
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1.9 Primer Selection and Coverage Biases 

One key methodological consideration is the choice of primers and target genes. Bacterial 

surveys traditionally use the 16S rRNA gene, which has both conserved and variable regions 

(Cole et al., 2005). However, the commonly used 97% similarity threshold for species 

delimitation is sometimes criticised for lumping distinct taxa, prompting suggestions of more 

stringent cutoffs (Edgar, 2018). Archaea pose another challenge because neither “universal” 

prokaryote nor many Archaea specific primers successfully capture the full range of archaeal 

phylogenetic diversity(Grant et al., 2023). Bahram et al. (2019) designed primers that amplified 

archaeal lineages missed by older sets and Karst et al. (2018) identified highly divergent 

archaea that might represent entirely new phyla. Eukaryotes lack a single universally accepted 

target for use in metabarcoding. The 18S rRNA gene is widely adopted, but partial fragments 

may not distinguish closely related species (Chittavichai et al., 2025). Gaonkar and Campbell 

(2024) noted that full-length 18S is needed for many groups, yet longer fragments can be less 

practical for high-throughput sequencing. Some eukaryotic surveys relied on the more variable 

ITS or COI sequences, but these markers also present biases or incomplete coverage in public 

databases (Bik et al., 2012, Zhang et al., 2014). These issues become especially relevant in 

pollution studies where researchers hope to detect subtle but ecologically relevant changes. If 

the primers or reference data fail to identify key taxa, important pollution responses could 

remain undetected. 

1.10 Influence of Sample Processing on Metabarcoding 

In addition to primer design, sample processing can influence metabarcoding outcomes. 

Whole-sediment extractions may yield broad community profiles but risk underrepresenting 

certain fragile taxa if the extraction protocol was harsh (Deiner et al., 2015, Hermans et al., 

2018). Sieving or elutriation can isolate meiofauna but could lose microbial eukaryotes or 

archaea. DNA from dead cells or extracellular sources might inflate perceived diversity, though 

its importance depends on local sediment turnover rates (Taberlet et al., 2012). Despite these 

caveats, metabarcoding offers a remarkable opportunity to move beyond single-taxon or 

morphological approaches, potentially capturing a wide range of prokaryotic and eukaryotic 

diversity in one workflow (Pawlowski et al., 2018). By combining these methods with 

morphological data on macrofauna or nematodes, it might be possible to identify how 
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consistently contamination triggers shifts across different size classes and trophic strategies 

(Warwick and Clarke, 1991, Somerfield et al., 1994a). This thesis would harness multi-target 

metabarcoding, including 16S, ITS, 18S, 28S and COI, to examine the distribution of bacteria, 

archaea, fungi, metazoans and protists in southwestern estuaries with well-characterised metal 

gradients. 

1.11 Key Research Questions 

The thesis aimed to address several unresolved questions. First, it would examine which 

metrics of metal contamination correlated best with changes in community structure, 

particularly asking whether porewater copper stood out as a more accurate predictor than 

sediment copper concentrations. Second, it would explore which taxonomic groups exhibited 

the strongest and most consistent shifts under elevated metal concentrations. Some earlier 

evidence suggested that nematodes and microbes may be extremely sensitive, but the role of 

eukaryotic microbes or cryptic archaeal lineages was unclear (Corcoll et al., 2019, Yan et al., 

2020, Zhang et al., 2024a). Third, it would investigate how the choice of primer sets influenced 

the detection of pollution-induced shifts in community composition, assessing whether newly 

designed primers genuinely improved coverage or risk amplifying certain clades at the expense 

of others. These methodological concerns are critical to developing robust protocols for future 

monitoring programs. Fourth, the research would identify whether the patterns in southwestern 

estuaries aligned with or diverged from those reported in more moderately contaminated or 

less complex systems, thereby contributing to broader ecological understanding. 

1.12 Thesis Structure and Methodological Outline 

The material in chapters 2 and 3 of this thesis elaborated on sampling, DNA extraction and 

primer selection, including practical considerations such as single-step PCR with barcoded 

primers to reduce contamination risk. Chapter 4 examined bacterial communities and their 

response to metals, building on earlier T-RFLP findings that showed limited compositional 

change despite strong tolerance gradients (Ogilvie and Grant, 2008). Chapter 5 addressed 

archaea, asking if these frequently overlooked prokaryotes exhibited distinct or more resilient 

responses to metals. Chapter 6 focused on eukaryotic assemblages, employing multi-primer 
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metabarcoding to assess whether some lineages consistently tracked metal gradients. This final 

part of the thesis evaluated whether multi-target metabarcoding genuinely exceeded single-

marker or morphological methods in detecting early ecological changes associated with 

contamination. Additionally, factors such as salinity, sediment texture and organic matter, 

already explored in chapters 4 and 5 for bacterial and archaeal communities, were further 

examined to determine how they might obscure or amplify these pollution effects in eukaryotic 

assemblages. 

1.13 Advancing the Field Through Multi-Target Approaches 

This work thus aimed to exceed the scope of previous studies by combining a wide set of 

molecular markers, a large sample size from different sites and established morphological and 

biochemical metrics of pollution impact. The intention was to determine which combinations 

of metrics and methods best captured the nuanced ways in which metals disturbed benthic 

ecosystems. By doing so, the thesis provided new insights into the ecological consequences of 

historic mining in southwestern England and offered methodological refinements for 

researchers and environmental managers seeking to detect metal pollution elsewhere. A core 

argument was that metals often created subtle shifts in community composition that 

morphological surveys or single-marker approaches might have only partially revealed. 

Demonstrating this convincingly required careful integration of geochemical, morphological 

and molecular data, consistent with the GESAMP view that, contamination only constituted 

pollution if measurable harm was demonstrated. Subsequent chapters detailed how each 

component of this approach had been implemented, beginning with the sampling design and 

culminating in a comparative analysis across multiple molecular markers. 

1.14 Morphological and Molecular Approaches for Community Assessment 

1.14.1 Integrative Identification Methods 

Throughout history, most taxonomic studies of microorganisms used conventional 

morphological identification, which described an organism’s visible form and structure. This 

approach has underpinned numerous investigations of diatom (Moseley and Manoylov, 2012), 

fungal (Shearer and Lane, 1983), bacterial (Hollaway et al., 1980) and nematode (Somerfield 
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et al., 1994c) community composition. However, morphological analysis could be labour-

intensive and depended heavily on taxonomic expertise (Hajibabaei et al., 2011). Tytgat et al. 

(2019) compared morphological and metabarcoding approaches for nematodes sampled from 

diverse land uses, concluding that DNA-based methods sometimes underestimated species 

numbers because certain morphologically distinct species shared identical 18S and COI 

sequences. On the other hand, morphological identification could struggle with cryptic or 

damaged specimens, again highlighting the need for complementary molecular tools. 

Comparative studies indicated that, despite their distinct biases, molecular and morphological 

surveys often revealed consistent ecological patterns. Kim et al. (2025) showed that both 

approaches tracked similar plankton community trends, with metabarcoding offering finer 

resolution for some calanoid copepods. Cahill et al. (2018) reported a close correspondence 

between morphological counts and metabarcoding profiles, which strengthened further when 

taxonomic resolution was harmonised. In benthic sediments, den Bulcke Laure et al. (2024) 

found that bulk-DNA metabarcoding mirrored morphological patterns of alpha- and beta-

diversity following sand-extraction disturbance. A systematic review by Keck et al. (2022) 

likewise concluded that, while each method captured certain taxa the other missed, they 

generally converged on community-level trends. Together, these findings supported an 

integrative strategy in which metabarcoding augmented, rather than replaced, classical 

morphology in biodiversity assessments. 

High throughput sequencing (HTS), also known as next-generation or massively parallel 

sequencing, became pivotal in microbial ecology (Liu et al., 2012). It arose after decades of 

capillary (Sanger et al., 1977) and gel-based sequencing, offering unparalleled throughput and 

enabling the simultaneous decoding of up to one billion DNA molecules (Schuster, 2008). 

High-throughput sequencing (HTS)is especially useful for uncovering the diversity of smaller 

or hard-to-culture organisms such as viruses, bacteria or ancient samples (Krych et al., 2019). 

The capacity to generate large datasets has fostered a wide range of amplicon-based studies in 

humans (Yap et al., 2016), animals (Rausch et al., 2016) and soils (El Khawand et al., 2016). 

Despite its power, HTS can introduce biases in PCR amplification and may under-detect certain 

taxa if they have mismatched primer sites or lower template abundance (Berry et al., 2011, 

O’Donnell et al., 2016). 
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Metabarcoding is a PCR-based approach that used broadly conserved “universal” primers to 

amplify short, high-copy barcode loci from environmental DNA (Emilson et al., 2017), 

producing community profiles that are best interpreted as relative rather than absolute 

abundance estimates  (Pompanon et al., 2012). The method now underpins biodiversity 

assessments across diverse habitats, ranging from benthic meiofaunal communities (Leary et 

al., 2014, Pochon et al., 2015, Zaiko et al., 2016)  to bacterial (Xue et al., 2014, Lawes et al., 

2016) and eukaryotic (Leary et al., 2014, Pochon et al., 2015, Zaiko et al., 2016) communities, 

including biofouling assemblages (von Ammon et al., 2018). Quantitative accuracy was 

hindered by primer mismatches, differential amplification efficiencies and variations of several 

orders of magnitude in rRNA or mitochondrial gene-copy number, especially among 

multicellular taxa (Gotelli and Chao, 2013, Aylagas et al., 2014, Bucklin et al., 2016). 

Polymerase choice and amplicon GC content can skew relative read counts, and ≥ 10 

independent PCR replicates are often needed to detect rare taxa reliably (Fonseca, 2018, 

Nichols et al., 2018). Empirical studies showed that read counts frequently correlated weakly 

with specimen biomass unless taxon-specific correction factors were applied (Elbrecht and 

Leese, 2015, Lamb et al., 2019). Even when internal DNA standards were introduced, PCR 

bias means that read numbers cannot be converted into absolute organismal abundances; at best 

they provide a semi-quantitative indication of between-sample changes (Luo et al., 2023). 

Given these mixed findings, this thesis treated metabarcoding reads as semi-quantitative and 

emphasised conservatively interpreted relative-abundance patterns rather than absolute counts 

(Krehenwinkel et al., 2017, Deagle et al., 2019). Deploying multiple loci or targeting distinct 

regions within a gene helped average out locus-specific biases and broadened taxonomic 

coverage (Pompanon et al., 2012). 

Metagenomics, or shotgun sequencing of total environmental DNA without PCR, eliminated 

primer bias by sequencing all fragment present (Eloe-Fadrosh et al., 2016). This untargeted 

strategy detected a wider spectrum of life, including uncultivable bacteria, archaea and viruses, 

while simultaneously recovering genes that reveal metabolic pathways, biogeochemical 

cycling and antibiotic-resistance determinants (Quince et al., 2017). At sufficient depth it can 

also yield near-complete mitochondrial genomes, thereby enriching reference libraries and 

improving downstream identification (Elbrecht et al., 2017). Read depth, however, scaled with 

genome size while cell-wall architecture affected DNA extraction efficiency, so taxa with small 

genomes or fragile cells tended to be over-represented whereas large-genome or recalcitrant 
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organisms were under-sampled (Beszteri et al., 2010, Shi et al., 2011). Because barcode loci 

form only a small proportion of shotgun libraries and curated references remained sparse, 

taxonomic annotation was often poorer than in targeted metabarcoding (Elbrecht et al., 2017, 

Cribdon et al., 2020), despite the deeper sequencing and more complex bioinformatics required 

(Riesenfeld et al., 2004, Temperton et al., 2009). When coverage is adequate, metagenomics 

excelled at linking community composition to ecological function, but for routine biodiversity 

audits its cost and computational overheads meant that it continued to complement rather than 

replace primer-based approaches (Carew et al., 2018). 

Metatranscriptomics involves sequencing community RNA. It is most commonly used to 

quantify functional gene expression after removing ribosomal RNA. However, if RNASeq is 

carried out on total RNA without ribosomal depletion, information could be obtained on 

community composition without the need for primer amplification, as approximately 90% of 

RNA is ribosomal, split approximately equally between SSU and LSU RNA(Urich et al., 2008, 

Helbling et al., 2012, Turner et al., 2013). Ribosomal read depth scales approximately with 

biomass and metabolic activity (Bailly et al., 2007, Semmouri et al., 2020), partially mitigating 

the genome-size bias of metagenomics. This approach can reduce PCR-based biases and 

capture prokaryotic diversity accurately, yet its coverage of eukaryotic taxa often remained 

shallow or restricted to higher taxonomic levels, in part because the sequenced fragments were 

distributed across the whole length of rRNA molecules, rather than being focussed on 

hypervariable regions targeted by metabarcoding (Turner et al., 2013). It also remains costlier 

and more technically demanding than metabarcoding because it requires extra RNA extraction 

and rRNA-depletion steps (Shakya et al., 2019, Wilson et al., 2019). 

Taken together, these molecular methods offered complementary insights that can exceed those 

of purely morphological approaches, particularly for low-abundance or cryptic taxa. Yet each 

technique introduced distinct biases and practical constraints, meaning that choosing an 

optimal strategy often involves balancing depth of coverage, costs and the level of taxonomic 

resolution required. 
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1.14.2 Genetic Markers for Metabarcoding 

Multiple genetic loci were commonly used in metabarcoding to capture diverse taxonomic 

groups, each offering distinct advantages (Taberlet et al., 2012, Ficetola et al., 2021, Wang et 

al., 2023b): 

• 16S rRNA: Primarily for bacteria and archaea. Hypervariable regions enable broad 

taxonomic resolution and many reference databases exist (Wade, 2002, Webster et al., 

2003, Cole et al., 2005).  

• Internal Transcribed Spacer (ITS): Highly variable spacer region, especially 

informative for fungi and some nematodes (Hugall et al., 1999, Elbadri et al., 2002). 

Reference databases remain incomplete for certain groups, yet ITS can achieve species-

level resolution when data are available (Félix et al., 2014). 

• 18S rRNA: Targets eukaryotes broadly, from protists to nematodes. Although 18S can 

struggle to resolve closely related species, it remains standard for overall eukaryotic 

community analysis (Lallias et al., 2015, Latz et al., 2022, Zimmermann et al., 2024). 

• 28S rRNA: Offers finer discrimination among certain eukaryotes compared with 18S, 

but fewer reference sequences exist (Pereira et al., 2010, Vogt et al., 2014). 

• Cytochrome oxidase subunit I (COI): Often referred to as the “barcode gene” for 

animals (Leray and Knowlton, 2015). It can differentiate congeneric species but lacks 

truly universal primers, complicating large-scale invertebrate surveys (Derycke et al., 

2010, Macheriotou et al., 2019). 

By combining these markers, studies can capture both prokaryotic and eukaryotic diversity 

and cross-check ambiguous assignments. The decision to emphasise particular loci often 

depends on whether the main interest was in abundant bacteria, fungi or large metazoans 

(Bik et al., 2012). 

1.14.3 Using PICT as a Sensitive Indicator of Metal Pollution 

Metal pollution significantly affects marine microbial communities, posing one of the highest 

threats to benthic ecosystems (Di Cesare et al., 2020). Different microorganisms exhibit 

varying tolerance levels, which may increase in response to chronic or acute metal exposures 

(Chen et al., 2019, Fang et al., 2019, Reddy and Dubey, 2019). Pollution-induced community 
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tolerance (PICT) has thus been widely employed to assess how heavy metals, among other 

pollutants, reshape microbial assemblages (Blanck et al., 1988, Ogilvie and Grant, 2008). 

Although several studies have examined links between metal resistance genes (MRGs) and 

sediment metal concentrations, the findings remain inconsistent. Some have observed marked 

shifts in microbial community structure at highly contaminated sites (Gough and Stahl, 2011, 

Zhang et al., 2017, Beale et al., 2018, Chen et al., 2019, Lin et al., 2019), while others report 

only modest changes, possibly due to the influence of nutrients or other confounding 

environmental factors (Ogilvie and Grant, 2008, Gołębiewski et al., 2014, Gubelit et al., 2016, 

Song et al., 2019). Recent work by Di Cesare et al. (2020) found that microbial diversity 

increased with higher sediment metal loads, yet overall community composition remained 

largely unchanged, suggesting that metals may act indirectly through nutrient pathways rather 

than exerting direct toxicity. These contrasting results highlight the importance of site-specific 

assessments, as PICT may capture adaptive responses in some systems but appear muted where 

other ecological drivers prevail. 

1.14.4 Microcosm Experiment 

Microcosm experiments were widely employed in ecological research because they provide 

controlled environments in which complex interactions and processes can be replicated and 

studied at manageable scales (Cao et al., 2021). By simulating natural conditions, these systems 

enable precise tests of hypotheses pertaining to community dynamics, biodiversity and 

ecosystem functions (Srivastava et al., 2004). They have been used to explore microbial 

responses to various contaminants including naturally occurring radioactive materials, thus 

revealing important aspects of microbial resilience and adaptation (Mackay-Roberts et al., 

2024). Following the sediment bioassay approach of Austen and Somerfield (1997), this thesis 

employed microcosms to test whether copper sensitivity observed in situ correlates with shifts 

in community structure under controlled conditions. Sediments from five sites spanning low to 

high porewater copper concentrations were defaunated via freeze-thaw and allocated into 

control and treatment groups. In one treatment, ‘clean’ and ‘contaminated’ sediments were 

cross-inoculated to assess whether populations from less-polluted sites could adapt to elevated 

copper loads; in another, contaminated sediments were partly diluted with unpolluted material 

to gauge the tolerance thresholds of the native fauna. This design facilitates a direct comparison 

of community responses across a known metal gradient, minimising confounding factors such 
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as salinity and grain size. A number of studies have demonstrated that microcosm-based studies 

can uncover early-stage adaptations and shifts in microbial and faunal communities before they 

become evident in large-scale field surveys (Austen and Somerfield, 1997, Mitchell et al., 

2009, Koeppel et al., 2013). 
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Chapter 2:  

Method Development for Assessing Metal Contamination 

and Microbial Diversity in Estuarine Environments 

2.1 Study Design 

To investigate metal contamination gradients across Southwest England estuaries, samples 

were collected from a total of 48 sites during three distinct sampling phases (Fig. 2.1) and 

(Table 2.1). The first set, gathered in March 2020, comprised initial samples from two sites in 

Breydon Water, Norfolk to be used in developing and evaluating methodologies. The second 

set, sampled in September 2017 by Udochi (2020), included 12 sites: eleven sites covering the 

entire metal contamination gradient across the Fal and Hayle estuaries in Cornwall, Southwest 

England, as detailed in (Udochi, 2020) and an uncontaminated reference site at Breydon Water 

in Norfolk, England (Greenwood, 2001). The third set, collected in March 2022, consisted of 

34 sites selected to cover the entire metal contamination gradient across the Southwest England 

estuaries, as documented in previous studies (Bryan and Hummerstone, 1971, Bryan and 

Gibbs, 1983, Millward and Grant, 2000, Rollinson et al., 2007, Grant, 2010) and detailed in 

Table 2.1. Uncontaminated estuaries such as the Avon in South Devon, Tamar and the Helford 

River were sampled as references (Bryan and Hummerstone, 1971, Bryan and Gibbs, 1983). 

The Percuil River, within the Fal System, was selected as a relatively uncontaminated site due 

to its environmental conditions being similar to those of the other sites  (Bryan and Gibbs, 

1983, Millward, 1995).  

Three replicate samples were collected from intertidal areas within estuaries from the 12- and 

34-site sets, while two replicates were obtained from the initial set. All study sites were located 

in the mid shore, where they were inundated during high spring or neap tides but exposed 

during low tides. Replicates were spaced approximately 0.5 m apart to capture small-scale 

sediment variability without oversampling microscale heterogeneity.
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Location abbreviations: A) Breydon Water (BW1, BW2); C) River Hayle Estuary (HA-HC); D) Helford 

River (LA-LF); E) Fal Tributaries: Pill Creek (IA, IB), Mylor Creek (MA, MB), Penryn (PN), Tresillian 

(TR), Percuil (PA-PC), St Just (JA, JB), Truro (TA, TB), Calenick (CK), Cowlands (CA, CB), 

Restronguet (RA-RE); F) Tamar River (TM); G) Avon River (VA-VC). 

 
Fig. 2.1 Mid-shore study sites across A) Breydon Water, Norfolk and B) Southwest England. 
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Table 2.1 Sampling sites with their corresponding rivers and British Grid References used in 

the study. Site acronyms refer to abbreviations used throughout the study, as listed alongside 

their full river names. Each site code corresponds to a specific location within the indicated 

river system. 

River Initial set 12-Sites 34-Sites 
British Grid 

Reference 

Breydon Water BW1 BW  TG516081 

Breydon Water BW2   TG500084 

River Avon A   VA SX690471 

River Avon B   VB SX687470 

River Avon C   VC SX683467 

River Tamar   TM SX434624 

Helford River A   LA SW706266 

Helford River B  HR LB SW707266 

Helford River C   LC SW704264 

Helford River D   LD SW706264 

Helford River E   LE SW716250 

Helford River F   LF SW747262 

Pill Creek A  PC IA SW826386 

Pill Creek B   IB SW828383 

Mylor Creek A  MC MA SW805360 

Mylor Creek B   MB SW812353 

Penryn River   PN SW787345 

Tresillian River   TR SW867462 

Percuil River A  PR PA SW861363 

Percuil River B   PB SW866351 

Percuil River C   PC SW858340 

St Just A   JA SW848360 

St Just B  SJ JB SW847358 

Truro River A   TA SW833437 

Truro River B   TB SW838431 

Calenick Creek   CK SW821431 

Cowlands A  CO CA SW830408 

Cowlands B   CB SW837407 

Restronguet A  RA RA SW784388 

Restronguet B   RB SW792389 

Restronguet C  RB RC SW802388 

Restronguet D  RC RD SW813386 

Restronguet E   RE SW817372 

Hayle A  HA HA SW546363 

Hayle B   HB SW549370 

Hayle C  HB HC SW566379 
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2.1.1 Sediment Sampling And Preservation  

Mud samples were collected from top 2 cm of the mud flat at low tide and stored in Falcon 

tubes and frozen later at -80oC to be used for the molecular work (see Fig. 2.2).  Additionally, 

≥1kg muds were sampled and stored in sealable sampling bags. However, due to the logistics 

of sampling in the SW, time taken between the first sample being collected and laboratory 

storage was at most 104 hrs. Sediments from Breydon Water were transported to the laboratory 

within 1 hr of collection. The remaining portion was refrigerated at 4oC in the dark until 

processed to be used for the porewater extraction, Acid extractable metals (AEM), PH, salinity 

and grain size measurements. 
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Fig. 2.2 Schematic overview of the sampling and molecular workflow. Sediments from 

multiple site sets and experiments were processed through DNA extraction, PCR amplification, 

library preparation, and sequencing to produce raw FASTQ files. 
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2.1.2 Microcosm Experiment 

A microcosm experiment was set up to assess whether species' sensitivity to copper reflected 

their distribution along the pollution gradient. The experiment protocol followed the approach 

outlined by Austen and Somerfield (1997), who demonstrated the utility of sediment bioassays 

in examining microfaunal and meiofaunal responses to metal contamination gradients.  

In March 2022, sediment samples were collected from the top 2 cm of mudflats at five estuarine 

sites among the 34 sites studied, all located in the mid-shore zone. These sites were selected to 

represent a range of porewater copper (PWCu) concentrations measured in (Table 2.7 - Section 

2.2.2); Avon River (VC) with 13.37 µg/L, Percuil River (PA) with 6.54 µg/L, Helford River 

(LB) with 123 µg/L, Mylor Creek (MB) with 363.6 µg/L and Restronguet Creek (RD) with 

887.3 µg/L see Table 2.2 for site characteristics. Defaunated sediments were prepared from 

each of these five samples. The sediments were thoroughly mixed and homogenized, then 

subjected to three freeze-thaw cycles at -20 °C to eliminate existing fauna, providing a 

controlled substrate for the experiment. The experimental design included control samples and 

two treatments to investigate community responses to varying copper concentrations and 

interactions between communities from different pollution backgrounds. An overview of the 

experimental setups is provided in Table 2.2. 
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Table 2.2 A summary of the experimental setups, including the control and treatment groups 

with their respective sediment sources, defaunated sediments, replication and total number of 

samples.  

Experimental 

Setup 
Description 

Sediment 

Source 

Defaunated 

Sediment 
Replicates 

Total 

Samples 

Control 

(Baseline) 

Inoculum sediment 

only 

VC, PA, 

LB, MB, 

RD 

None 1 per site 5 

Treatment 1 

Cross-inoculation of 

inoculum sediments 

into defaunated 

sediments from all 

sites 

VC, PA, 

LB, MB, 

RD 

VC, PA, LB, 

MB, RD 

3 per 

combination 
75 

Treatment 2 

Mixed inoculum (VR) 

added to defaunated 

sediments, including 

mixed sediment 

VR  

(VC + RD 

mixture) 

 VC, PA, MB, 

RD  

+ 

(VC50+RD10) 

3 per 

combination 
15 

VC (Avon River), PA (Percuil River), LB (Helford River), MB (Mylor Creek), RD (Restronguet 

Creek), VR (mixture of 10 g VC and 10 g RD inoculum sediments), VC50+RD10 (mixture of 50 g VC 

and 10 g RD defaunated sediments). 

 

A) Control Samples (Baseline): Five containers were set up, each containing only inoculum 

sediment from one of the five sites (VC, PA, LB, MB, or RD). These controls served as 

baselines representing the initial community state before any experimental manipulation, 

allowing detection of changes due to the experimental setup itself. Each control was replicated 

once, resulting in a total of 5 samples. 

B) Treatment 1; Cross-Inoculation Experiment: Inoculum sediments from each of the five 

sites were added to defaunated sediments from all five sites, resulting in 25 unique 

combinations (5 inoculum sediments × 5 defaunated sediments). Each combination was 

replicated three times, totalling 75 samples. This treatment aimed to investigate how 

communities from different pollution backgrounds respond when introduced into sediments 

with varying copper concentrations (Table 2.3). 

C) Treatment 2; Mixed Community Interactions: A mixed inoculum (VR) was prepared by 

combining 10 g of sediment from the cleanest site (VC) with 10 g from the most polluted site 
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(RD). This mixed inoculum was added to defaunated sediments from four estuaries (VC, PA, 

MB, RD) and to a mixed defaunated sediment prepared by combining 50 g of clean defaunated 

sediment (VC) with 10 g of copper-polluted defaunated sediment (RD), referred to as 

VC50+RD10. This resulted in 5 combinations, each replicated three times, totalling 15 

samples. This treatment was designed to study interactions between clean and polluted 

communities and to assess how communities from cleaner environments respond when 

introduced to partially contaminated sediments, such as the VC50+RD10 mixture (Table 2.3). 

Table 2.3 Application of inoculum sediment additions to defaunated sediments, including 

control (baseline) and various treatment groups. Green-coded entries represent mixtures of two 

sediment sources, while black-coded entries denote control samples. 

Treatment Sample 

Defaunated sediments 

VC  PA  LB MB RD  

1 

In
o
cu

lu
m

 s
ed

im
en

ts
 

VC  VC VC/PA VC/LB VC/MB VC/RD 

PA  PA/VC PA PA/LB PA/MB PA/RD 

LB LB/VC LB/PA LB LB/MB LB/RD 

MB MB/VC MB/PA MB/LB MB MB/RD 

RD  RD/VC RD/PA RD/LB RD/MB RD 

2 VR VR/VC VR/PA VR/MB VR/RD VR/(VC50+RD10) 

VC (Avon River), PA (Percuil River), LB (Helford River), MB (Mylor Creek), RD (Restronguet 

Creek), VR (mixture of 10 g VC and 10 g RD inoculum sediments), VC50+RD10 (mixture of 50 g VC 

and 10 g RD defaunated sediments). 

Each microcosm consisted of a 600 ml plastic container containing 20 g of inoculum mud and 

60 g of defaunated sediment, topped with 500 ml artificial seawater. The seawater was adjusted 

to the salinity of the collection site (20 S) and pH was measured (7.8 - 8). The mud mixtures 

were evenly distributed into 90 ventilated containers. they were gently aerated using a line 

diffuser system to ensured proper oxygen exchange to maintain aerobic conditions throughout 

the experiment. The samples were incubated in a dark environmental chamber, with the 

temperature gradually increased by 1-2°C per day until the experimental temperature of 20°C 

was reached, which was then maintained for the 60-day treatment period. Upon completion of 
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the experimental period, each microcosm was dismantled, and a 10 g aliquot of sediment was 

taken from each replicate for DNA extraction. 

2.1.3 Porewater Extraction  

Porewater was extracted within 48 hrs of arrival in the laboratory. This was done by 

centrifuging homogenised sediments at 3500 rpm for 10 mins (Simpson et al., 2000). Three 

pseudo-replicates were processed per site. Unfiltered composite samples were collected for 

salinity and pH measurements, as required (Section 2.2.3). Extracted porewater samples were 

filtered using 0.45 µm Fisherbrand™ Nylon Syringe filters. Prior to filtration, syringes and 

syringe filters were flushed, in sequence, with 5 - 10 mL of 10% HNO3, 20 mL of ultrapure 

water (UPW; Elga Purelab Ultra, 18.2 MΩ cm) and 2 mL of sample. Porewater was filtered to 

<0.45 µm as in subsequent surveys. Filtered porewater was subsampled for trace metal 

analysis, acidified to 2% HNO3 and refrigerated at 4oC until use. 

2.1.4 Measurement Of Porewater pH And Salinity  

Porewater salinity and pH were determined. The pH was measured in the laboratory from 

porewater samples using a pH meter (Mettler Toledo SevenEasy S20). The instrument was 

calibrated at pH 4 and 7 using certified standards (NIST - National Institute of Standards and 

Technology). Salinity was measured in the laboratory using Fisherbrand™ Traceable™ 

Salinity Meter, which was manufacturer-certified and calibrated. 

2.1.5 Determination Of Acid-Extractable Metal Concentrations 

Acid-extractable metal concentrations were determined using subsamples of the same 

homogenised sediment used for the DNA extraction. Approximately 100 mg (dry weight 

equivalent) of wet sediment was extracted for 30 mins in 10 mL of 1 M HCl. Method blanks 

were processed by extracting only ultra-pure water (UPW) to account for potential 

contamination in the water and reagents. Sediment extracts were analysed for metals by Triple 

Quadrupole Inductively Coupled Plasma - Mass Spectrometry (ICP - MS- QQQ; Thermo Icap-

TQ). Single-element calibration standards (PlasmaCAL) were prepared in a similar acid matrix. 

A multi-element standard solution (CLMS2A, SPEX CertiPrep) was prepared in a similar 
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matrix to assess precision of the analysis. And accuracy was assessed using certified lake water 

references, TM-27.3 and TMDA-64.2, both from Environment Canada. 

2.1.6 Characterization of Sediment Particle Size Distribution  

Median sediment grain size (D50) and the percentage of fines (LT63) were assessed using 5 g 

of homogenised and composite wet samples. A volume 25 mL of deionised water and 1 mL of 

6.2 g/L sodium hexametaphosphate was added to the weighed sediment in a beaker (Kenny 

and Sotheran, 2013). The sediment suspension was vortexed overnight and, afterwards, washed 

through a 2 mm sieve. The fraction that passed through the sieve was stirred at 1000 rpm for 3 

minutes to disperse clay particles and then analysed, in triplicates, by laser diffraction using 

the Malvern Mastersizer 2000. Results from the laser diffraction analyses were used to 

calculate the median grain size (50th percentile) and the percentage of fines (particles smaller 

than 63 µm). Additionally, the Folk and Ward (1957) inclusive graphic standard deviation (σ1) 

was estimated. This measure of dispersion is better suited for addressing deviations from a 

normal grain size distribution. The method categorises the degree of sediment sorting on a 

verbal scale (Folk and Ward, 1957) as follows:  

σ1 < 0.35 Very well sorted (VWS) 

0.35 ≤ σ1 < 0.50 Well sorted (WS) 

0.50 ≤ σ1 < 1.00 Moderately sorted (MS) 

1.00 ≤ σ1 < 2.00 Poorly sorted (PS) 

2.00 ≤ σ1 ≤ 4.00 Very poorly sorted (VPS) 

σ1 > 4.00 Extremely poorly sorted (EPS) 

 

2.1.7 DNA Extraction Methods 

2.1.7.1 Sample Size and Whole-Sediment Extraction Tests 

Nematodes were a dominant component of marine sediments, with densities of 0.5 to 5 million 

individuals per square metre in shallow marine environments (Schratzberger et al., 2019). 

Considering a sediment depth of 1 cm and an average wet bulk density of 1.51 g/cm³ for marine 

mud (Endler, 2009), this equated to approximately 33 to 331 nematodes per gram of sediment.  



Chapter 2 

26 

 

Whole-sediment sub-samples of just 0.25-0.5 g were nevertheless sufficient to yield large 

numbers of prokaryotic reads (Tian et al., 2015), but may underrepresent larger metazoans such 

as nematodes. 

To assess whether amplifying DNA directly from whole sediment effectively captures a 

substantial number of amplicon sequence variants (ASVs), DNA was extracted from 

approximately 10 ml of uncontaminated sediment from Breydon Water, Norfolk (BW), along 

with sieved fractions from the same sample. As shown in Table 3.5 (Chapter 3), average 

nematode ASV recovery was compared across four treatments (sieved worms and whole 

sediment at 0.25 g and 2.7 g). These comparisons helped evaluate which approach best captures 

nematode diversity. 

2.1.7.2 Sieved Samples DNA Extraction 

Mud samples from Breydon Water were collected and immediately preserved on site by adding 

DESS solution to reach a final volume of 50 mL. The DESS solution comprised 20% dimethyl 

sulphoxide (DMSO), 0.25 M disodium EDTA and was saturated with NaCl, following the 

method of  Yoder et al. (2006). These preserved samples were refrigerated until processed. The 

sieving procedure for meiofauna samples adhered to the approach described by Warwick and 

Clarke (1998). Using ultrapure water, samples were thoroughly washed through 500 µm and 

63 µm sieves to remove preservatives, salts, macrofauna and excess silt. Fine‑mesh sieving 

was well suited to nematode studies but could add labour and risked losing delicate or 

fast‑swimming taxa (Lallias et al., 2015; Kim et al., 2017). 

To extract nematodes, the material retained on the 63 µm sieve was transferred into a 50 mL 

centrifuge tube using a 50% solution of Ludox® HS-40 (Sigma-Aldrich). The samples were 

agitated and centrifuged at 1,800 g for 10 minutes, following the protocol of  Heip et al. (1985). 

High‑density Ludox HS40 centrifugation rapidly separated organisms of differing densities 

from bulk sediment, improving retrieval efficiency 

(McIntyre & Warwick, 1984; Burgess, 2001). The supernatant containing the nematodes and 

other organisms was decanted onto a 63 µm sieve and the residue in the centrifuge tube was 

refilled with the 50% Ludox solution. This centrifugation and decantation process was repeated 

three times in total for each replicate sample. 
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After thorough washing with ultrapure water to remove any remaining Ludox, the nematodes 

and other organisms were filtered by pouring them onto glass fiber filters (47 mm GF/F 

Whatman, pore size 0.7 μm) using a vacuum pump. A portion weighing 0.25 g was collected 

and transferred into bead tubes for DNA extraction. These bead tubes were part of the 

DNeasy® PowerSoil® Pro kit (Qiagen, Hilden, Germany). 

2.1.7.3 0.25 g Sediments 

Two replicate samples were collected from two clean sites in Breydon Water, Norfolk. The 

DNA was extracted from 0.25 g of whole sediment and sieved material from each sample using 

the DNeasy® PowerSoil® Pro kit (Qiagen, Hilden, Germany) according to the manufacturer’s 

instructions. Hermans et al. (2018) suggest that the DNeasy kit is a powerful and universal 

DNA extraction method. The extraction process involved mechanical and chemical lysis 

through bead beating, followed by centrifugation. The supernatant was treated to remove 

inhibitors, such as humic acids, which could interfere with downstream applications. The DNA 

was then bound to a silica membrane in a spin column, washed to remove any remaining 

contaminants and eluted into a buffer for subsequent analysis, including PCR or sequencing. 

2.1.7.4 1.4 - 2.7 g Sediments 

Three replicate samples were collected from 12 intertidal locations in estuaries in SW England 

and two in Breydon water, Norfolk (details in Udochi, 2020). Both DNA and RNA were 

extracted from 1.4 - 2.7g of each sample by Charlotte Davies using the RNeasy PowerSoil 

Total RNA kit and DNA elution accessory kit (Qiagen, Hilden, Germany) according to an 

optimised version of the manufacturer’s instructions with an added heat block step (45°C for 

15 minutes) prior to the solution being added to the column. Notably, this extraction approach 

used a different kit than those employed for other sample sizes, which might have introduced 

minor variation in the diversity patterns observed.  

2.1.7.5 10 g Sediments 

The DNA was extracted from approximately 10 g of sediment from each of the three replicate 

samples collected at 34 intertidal locations across estuaries in Southwest England. The 

extraction followed a modified protocol based on the DNeasy® PowerSoil® Pro kit (Qiagen, 
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Hilden, Germany) adapted with permission from an unpublished protocol developed by 

Alastair Grant and Solomon Udochi (2021). 

All reagents for DNA extraction, purification and concentration were prepared according to the 

protocol outlined in Table 2.4, with pH adjusted as required. Solutions were sterilized by 

autoclaving at 120 °C for 15 minutes, except for Buffer C1, which was filtered using sterile 

0.2 µm PES filters to prevent degradation of SDS. Alcohols for Buffers C4 and C5 were added 

after sterilization to maintain their concentrations. Laboratory equipment; including 50 mL 

Falcon tubes, 1.5 - 2 mL Eppendorf tubes, 1.5 mL spin columns, 4 mm glass beads and 

hydrophilic magnetic beads (Sera-Mag Carboxylate-Modified Magnetic Particles, GE 

Healthcare Life Sciences) was sterilized prior to use. Prepared solutions were refrigerated and 

stored covered to prevent contamination. 

Table 2.4 Protocol for the preparation of extraction and elution buffers. 

Name Contents pH 

Bead tube 5 mL of 4 mm Glass Beads in a 50 mL Falcon tube N/A 

Bead solution 181mM NaPO4, 121 mM guanidinium isothiocyanate 8.94 

C1 150mM NaCl, 4% SDS, 0.5 M Tris 10.94 

C2 133 mM Ammonium acetate 7.37 

C3 120 mM Aluminium ammonium sulphate dodecahydrate 3.29 

C4 5 M GuHCl, 30 mM Tris, 9% isopropanol 4.24 

C5 10 mM Tris, 100 mM NaCl, 50% EtOH 7.51 

C6 10 mM Tris 8.71 

 

2.1.7.5.1 10 g Sediments Isolation and Purification  

The DNA extraction from the 10 g sediment samples involved several steps to ensure high 

yield and purity suitable for downstream applications. Each sediment sample was placed into 

a sterile 50 mL Falcon tube containing 5 mL of 4 mm glass beads. To facilitate cell lysis, 15 mL 

of bead solution and 1.2 mL of Buffer C1 were added to the tube. The mixture was then 

vortexed vigorously for 10 to 15 minutes to thoroughly homogenize the suspension and break 

open the cells through bead beating. After bead beating, the tube was centrifuged at 3,500 RPM 
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for 2 minutes to separate the supernatant, which contains the DNA and associated impurities, 

from the sediment particles and glass beads. The clear supernatant was carefully transferred to 

a new sterile tube.  

Purification began by adding 5 mL of Buffer C2 to the supernatant, followed by a brief vortex 

and incubation at 4 °C for 10 minutes to precipitate contaminants. The tube was then 

centrifuged at 3,500 RPM for 4 minutes and the supernatant was transferred to another sterile 

tube. Next, 4 mL of Buffer C3 was added, mixed by vortexing for 10 seconds and incubated 

again at 4 °C for 10 minutes to facilitate the formation of aluminium hydroxide precipitates 

that aid in removing PCR inhibitors like humic substances. After a final centrifugation at 

3,500 RPM for 4 minutes, the supernatant should have appeared clear that indicating the 

effective removal of inhibitors. This purified DNA solution was stored at -20 °C for short-term 

or -80 °C for long-term preservation, with samples kept on ice during handling to ensure 

minimal degradation. 

The next phase involved concentrating and further purifying the DNA using magnetic beads. 

A 1% Tween-20 solution and 80% ethanol were prepared as needed. Magnetic beads were pre-

cleaned by mixing them with the Tween-20 solution and then separated using a magnet to 

remove any residual impurities. For each replicate sample, 25 µL of the cleaned bead 

suspension was added to the DNA solution, followed by the addition of isopropanol (0.7× 

supernatant volume, ~19 mL) and Tween-20 (0.02%) to achieve the desired final 

concentrations. The mixture was incubated on ice or at 4 °C for 10 minutes to allow the DNA 

to precipitate onto the beads. Centrifugation at 1,500 RPM for 9 minutes separated the bead-

DNA complex from the supernatant without damaging the beads. The beads were then washed 

twice with 500 µL of 80% ethanol and air-dried for 5 minutes to remove any remaining ethanol, 

which could inhibit PCR amplification. 

The DNA was eluted from the magnetic beads by adding 300 µL of Buffer C6 and gently 

mixing. The supernatant containing the DNA was then transferred to a new tube. To ensure 

purity, a spin column clean-up was performed by adding 4 to 5x volume of Buffer C4, 

incubating and then passing the mixture through a spin column. The column was washed twice 

with 500 µL of Buffer C5 to remove any residual contaminants before eluting the purified DNA 

with 100 µL of Buffer C6. This final step ensured that the DNA was free from inhibitors and 
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suitable for PCR amplification with the method yielding significantly higher concentrations of 

DNA compared to conventional extraction techniques. 

For the 10 g microcosm samples, an additional modification was introduced to further decrease 

PCR inhibitors, enhance extraction quality and increase the number of samples that could be 

processed simultaneously. Following the bead beating process, only 0.5 mL of the total 

supernatant volume of approximately 17 mL was removed. This adjustment enabled the 

remaining cleanup steps to be carried out in microcentrifuge tubes, simplifying the extraction 

process. The volumes for the inhibitor removal and precipitation steps were adjusted 

accordingly to accommodate the decreased supernatant volume, thereby improving overall 

DNA recovery and inhibitor removal. 

2.1.8 PCR Amplification 

Polymerase chain reaction (PCR was conducted in a volume of 20 μl, including 10 μl of 

PhusionTM Flash master mix (Thermo Scientific, UK), 1 μl of forward primer and 1 μl of 

reverse primer (final concentration of primers: 100 μM), 7 μl of ultrapure sterile water (MilliQ 

water) and 1 μl of DNA (with a concentration between trace amounts and 9.3 ng). The 

amplification of the DNA templates was carried out in either a Veriti™ HID 96-Well Thermal 

Cycler, 0.2mL system (Applied Biosystems, UK) or 0.2 ml PCR tubes, depending upon the 

number of samples be amplified. 

To ensure the accuracy and reliability of the PCR and sequencing processes, microbial 

community standards (ZymoBIOMICS, Zymo Research, Irvine, CA, USA) were employed as 

positive controls and detailed results and analysis of the control DNA amplification and 

sequencing were provided in Chapter 4. Additionally, to identify primer pairs that provide 

reliable identification across a wide range of taxa, PCR amplification was carried out using 

thirteen barcoded primers. In brief, 11 primer pairs which successfully amplified PCR products 

of the correct size were used to target bacterial 16S, Archaeal 16S, fungal ITS, eukaryote ITS, 

eukaryote 18S and 28S, and metazoan COI (Table 2.5). Each includeed 8 base pair barcodes, 

length heterogeneity spacers and adapters for Illumina sequencing appended to their 5’ ends, 

following (Caporaso et al., 2012). PCR conditions had an initial denaturation at 98°C for 10 

minutes, followed by 28 to 35 cycles of denaturation at 98°C for 30 seconds; annealing at a 
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primer specific temperature for 30 seconds and extension at 72°C for 30 seconds. This was 

followed by a final extension at 72°C for 5 minutes, before being held at 4°C. The PCR success 

varied between different sediments and annealing temperatures and cycle numbers were 

adjusted to optimise amplification yield and specificity. The final values used of annealing 

temperature and cycle numbers were given in Chapter 3 (Table 3.1). the COI primer pairs; 

JB3, JB2 and mlCOI followed different PCR protocols which detailed in Chapter 3. 
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Table 2.5 Gene-specific primers, their approximate PCR product sizes, primer pairs, sequences 

and corresponding sources. PCR product sizes are listed without barcodes and Illumina 

adapters. IUPAC codes for ambiguous bases indicate that the primer was synthesised with an 

equimolar mixture of these bases at this position. 

Gene 

specific 

primer 

Approx 

PCR 

product 

size bp 

Primer pair Primer sequence Source 

16S 

410 
515F GTGCCAGCMGCCGCGGTAA Turner et al. (1999) 

926R CCGYCAATTYMTTTRAGTTT Quince et al. (2011) 

520 
SSU1ArF TCCGGTTGATCCYGCBRG Bahram et al. (2019) 

SSU520R GCTACGRRYGYTTTARRC Bahram et al. (2019) 

ITS 

very 

variable 

ITS1f12 GAACCWGCGGARGGATCA Schmidt et al. (2013) 

ITS2 GCTGCGTTCTTCATCGATGC White et al. (1990) 

750 
VRAIN2F CTTTGTACACACCGCCCGTCGCT Vrain et al. (1992) 

VRAIN2R 
TTTCACTCGCCGTTACTAAGGGAAT

C 
Vrain et al. (1992) 

18S 

310 
1391f GTACACACCGCCCGTC (Lane, 1991) 

EukBr TGATCCTTCTGCAGGTTCACCTAC (Medlin et al., 1988) 

460 
D512 ATTCCAGCTCCAATAGCG 

Zimmermann et al. 

(2011) 

D978R GACTACGATGGTATCTAATC 
Zimmermann et al. 

(2011) 

420 
TAReuk454FWD1 CCAGCASCYGCGGTAATTCC Stoeck et al. (2010) 

TAReukREV3 ACTTTCGTTCTTGATYRA 
Stoeck et al. (2010) 

 

400 

 

G18S4 GCTTGTCTCAAAGATTAA GCC Blaxter et al. (1998) 

22R GCCTGCTGCCTTCCTTGGA Blaxter et al. (1998) 

500 
NEM GGGGAAGTATGGTTGCAAA 

Sapkota and Nicolaisen 

(2015) 

18Sr2b TACAAAGGGCAGGGACGTAAT Porazinska et al. (2009) 

28S 500 
DM568F TTGAAACACGGACCAAGGAG Kounosu et al. (2019) 

RM3R CRCCAGTTCTGCTTACCAAAA Kounosu et al. (2019) 

COI 

370 
JB3adjusted TGGGCATCCTGAGGTTTAT Tytgat et al. (2019) 

JB5 
AGCACCTAAACTTAAAACATAATGA

AAATG 
Derycke et al. (2005) 

370 
JB2 

ATGTTTTGATTTTACCWGCWTTYGG

TGT 
Derycke et al. (2007) 

JB8 
CCCCTCTAGTCTWCTATTTCTTAAT

AC 
Derycke et al. (2007) 

310 
mlCOIintF 

GGWACWGGWTGAACWGTWTAYCC
YCC 

Leray et al. (2013) 

jgHCO2198 TAIACYTCIGGRTGICCRAARAAYCA Geller et al. (2013) 
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2.1.9 DNA and PCR Products Visualisation 

The amplified DNA fragments were checked by electrophoresis using a 1 % (W/V) agarose 

TBE gel visualised with SafeWhite (NBS Biological Ltd, UK) and size was assessed using 

Thermo Scientific™ GeneRuler 100 bp DNA Ladder (Fisher Scientific, UK). Additionally, 

this assessment was essential for verifying DNA quality, ensuring that the extracted DNAis 

suitable for downstream applications. Additionally, it enabled the estimation of molecular 

weight by comparing the migration distances of the samples to a DNA ladder, thereby 

confirming that the amplified products corresponded to the expected sizes (Sambrook, 1989, 

Lee et al., 2012).PCR Product Purification 

The PCR products were purified using Aline Biosciences PCRClean DX kit (Aline 

Biosciences, Woburn, USA) following the manufacturer protocol except that the ratio of bead 

suspension to PCR product which was 1.8:1 1st run, 1:1 2nd and 3rd runs and 0.7:1 at 4th run. 

This ratio was altered in the light of experience to improve removal of free primer adaptors and 

adaptor dimers, which were not fully removed when the ratio in the manufacturer’s protocol 

(1.8:1) was used (Quail et al., 2009). The PCR products quantification followed methods 

described in section 2.2.8. 

2.1.10 Quantification 

To quantify the DNA and PCR products, samples were also analysed by using a StepOneTM 

Real-Time PCR system (Applied Biosystems, UK) as a fluorimeter with SYBR Green I nucleic 

acid gel stain supplied by Sigma-Aldrich Company limited according to the manufacturer's 

protocol. The maximum excitation wavelength of SYBR Green was 497 nm. A 10,000x 

solution in dimethyl sulfoxide (DMSO) working solution was prepared by diluting the SYBR 

Green reagent with the manufacturer’s buffer at a ratio of 1:200. A volume of 190uL of working 

solution was added to 10uL of the two DNA standards provided as part of kit, while 199uL of 

working solution was added to 1uL of each DNA sample. The PCR microplate was gently 

vortexed and then left to incubate at room temperature for 2 minutes before fluorescence was 

measured and DNA concentrations calculated using a two-point calibration, with newly 

prepared standards for each set of samples. Additionally, extraction yield and DNA molecular 

weight were assessed using gel electrophoresis as detailed in section 2.5.4. 
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2.1.11 Sequencing 

The PCR products from multiple samples were pooled in equimolar amounts, with slightly 

lower amounts used for samples with weak amplification, to create a single composite sample. 

This initial pool of the pilot samples was sent to the Earlham Institute in Norwich, UK, for 

sequencing on a single lane of the Illumina MiSeq, using a pre-made library for 300 bp paired-

end sequencing, followed by NovaSeq 6000 flow cell with 250 bp paired-end for the 12 and 

34 sets then NextSeq 1000 with 300 bp paired-end for the experiment set of samples. Different 

sequencing platforms were used due to updates in available technology and platform-specific 

optimisation. 

2.1.12 Analysis Of Sequences and Data Visualisation 

Sequencing data from the first run were initially analysed using Mothur software (version 

1.45.3; www.mothur.org) (Schloss et al., 2016) and USEARCH (version 11.0.667; 

www.drive5.com/usearch) (Edgar, 2010) to convert the raw sequencing data into a sites x 

ASVs table and identify the closest matching sequences in the SILVA, UNITE and MIDORI 

databases. Initial decisions on which primers to use to amplify all samples were made on the 

basis of these results. Subsequently all data was re-evaluated with updated taxonomic tools and 

methods via the LotuS2 pipeline (Özkurt et al., 2022) (Fig. 2.3), unless indicated otherwise the 

ASV abundances and taxonomic annotations presented here were obtained using LotuS2. 

 

http://www.mothur.org/
http://www.drive5.com/usearch
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Fig. 2.3 Schematic overview of the LotuS2 bioinformatics workflow. Raw reads were quality 

filtered and processed via either OTU clustering or ASV denoising, followed by taxonomic 

assignment and data structuring for ecological analysis. 

The pipeline LotuS2 integrateed pre-processing, sequence clustering, taxonomic assignment 

and phylogenetic tree construction. Pre-processing involved trimming primer sequences and 

sample-specific barcodes, alongside stringent quality filtering to retain high-quality reads. 

Operational Taxonomic Unit (OTU) construction was performed using UPARSE at 97% 

clustering and ASVs were generated using the UNOISE algorithm, which denoised sequences 

to correct errors and recover all true biological sequences in the dataset. All bacterial 16S and 

metazoan ITS, 18S, 28S and COI reads were denoised to amplicon sequence variants (ASVs) 
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to preserve single-nucleotide resolution, which improves accuracy and ecological sensitivity 

(Callahan et al., 2017). For Archaea, clustering was performed at 97% OTUs, as reference 

coverage for archaeal 16S remained sparse, collapsing near-identical reads reduces spurious 

singletons and aligns with current archaeal practice (Grant et al., 2023, Regueira-Iglesias et al., 

2023). The Lowest Common Ancestor (LCA) method was employed to improve taxonomic 

classification accuracy. These approaches were selected based on their demonstrated accuracy 

and reproducibility in ecological studies (Özkurt et al., 2022). The resulting sites x ASV tables, 

taxonomic annotations and phylogenetic trees were provided as R Phyloseq objects or text files 

by Professor Alastair Grant, School of Environmental Sciences, UEA.Taxonomic assignment 

for bacteria and Archaea was conducted using KSGP version 1.0 (Grant et al., 2023) with the 

GTDB taxonomy hierarchy, while Eukaryote assignments utilised Eukaryome version 1.7 

(www.eukaryome.org) (Tedersoo et al., 2024), which specifically covered the 18S, ITS and 

28S markers. Cytochrome oxidase I (COI) assignments employed MIDORI-Longest 

(www.reference-midori.info) (Leray et al., 2018). Targeted primers, sequences and their PCR 

product sizes for each amplicon were presented in Table 2.5.  

Data handling, graph plotting and statistical analyses were carried out using R (R Core Team, 

2024). The relative abundance of taxonomic groups were calculated and visualised with the 

Phyloseq v1.48.0 (McMurdie and Holmes, 2013) and Vegan v2.6.4 (Oksanen et al., 2022) 

packages, while all univariate and multivariate indices were computed using the Vegan 

package. Rarefaction analysis was performed to standardise sampling effort and compare 

species richness across samples Sanders (1968), using the Phyloseq package. In addition, 

sample‑based accumulation curves first described by (Arrhenius, 1921), were generated with 

the vegan function specaccum to examine how cumulative ASV richness increased as 

additional sites were added (Sanders, 1968, Béguinot, 2016), thereby testing whether the 12‑ 

and 34‑site surveys had approached sampling sufficiency. The K-dominance curves, generated 

using the Vegan package were employed to assess species dominance patterns and community 

structure across samples (Clarke, 1990a). 

To further evaluate the effectiveness of different primers and sample treatments in detecting 

nematode species diversity, a uniform rarefaction depth of 100 reads was selected to 

approximate the number of individuals typically identified in morphological analyses, thereby 

facilitating direct comparisons between molecular and morphological diversity estimates 

http://www.eukaryome.org/
https://www.reference-midori.info/
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(Hurlbert, 1971, Gotelli and Colwell, 2001). Box plots of ASV richness at this depth were 

generated for each primer across diverse sample types, illustrating total species richness 

detected. The K-dominance curves, which depict the cumulative relative abundance of species 

ranked from most to least abundant, were also applied to compare species dominance patterns 

and community structures between samples (Sanders, 1968, Warwick, 1986). These 

approaches are widely applied in marine ecology to assess biodiversity and understand the 

influence of environmental factors on community composition (Warwick, 1986, Clarke, 

1990b). 

Principal Coordinate Analysis (PCoA) by Gower (1966) and Non-metric Multidimensional 

Scaling (NMDS) by Kruskal (1964) are ordination methods used to visualize patterns in 

complex datasets by reducing their dimensions. According to the two authors, PCoA 

transforms dissimilarity matrices into orthogonal axes to preserve distances between data 

points and NMDS focuses on preserving the rank order of distances, making it suitable for 

ecological data that may not meet metric assumptions. They were performed using the ordinate 

function from the Phyloseq package, was used to reduce dimensionality and visualise patterns 

in the dataset, offering an alternative means of exploring variation in community structure. 

Principal Components Analysis (PCA), originally introduced by Pearson (1901) and refined by 

Hotelling (1933) is a dimensionality reduction technique widely used to uncover patterns in 

multivariate datasets. These methods, combined with cluster analysis, have proven valuable for 

distinguishing microbial communities across diverse environments (Ramette, 2007).  

The Bray-Curtis coefficient is a widely used metric for analysing microbial communities, 

quantifying compositional dissimilarity based on relative abundance without considering 

evolutionary relationships (Bray and Curtis, 1957). This measure indicates 0% similarity for 

communities with no shared species and 100% similarity for those with identical compositions 

(Clarke et al., 2014), making it particularly effective for detecting changes in community 

composition due to environmental factors like pollution. Joint absences do not influence 

calculations, ensuring that Bray-Curtis similarity between two samples remains unaffected by 

ASVs absent in both. Its sensitivity to relative abundances and exclusion of joint absences 

make it well-suited for assessing ecological dissimilarities, offering a robust framework for 

analysing compositional shifts driven by environmental gradients or disturbances (Ricotta and 

Podani, 2017). Conversely, UniFrac functions as a phylogenetic measure that evaluates 



Chapter 2 

38 

 

community similarity based on evolutionary relationships (Lozupone and Knight, 2005). For 

this analysis, Weighted UniFrac was employed, which accounts for both the phylogenetic 

distance and the relative abundance of taxa in each community. This approach was particularly 

suitable for comparing microbial communities based on phylogenetic relationships, regardless 

of differences in abundance (Lozupone and Knight, 2005). The distance matrix was calculated 

with the Phyloseq and Vegan packages. Originally proposed by Jaccard (1901), the Jaccard 

coefficient quantifies similarity between two samples on the basis of shared presences while 

ignoring joint absences. It is defined as the size of the intersection divided by the size of the 

union of the sample sets, yielding values from 0 (no shared taxa) to 1 (identical composition). 

Because it relies solely on presence-absence data, Jaccard is often preferred in metabarcoding 

studies where read abundances can be distorted by variable gene-copy number and PCR bias 

(Elbrecht and Leese, 2015). 

To explore the influence of environmental variables on community composition, BIOENV 

analysis was performed using the Vegan package identifying key environmental drivers of 

microbial variation (Clarke and Ainsworth, 1993). Hierarchical clustering dendrograms created 

with the hclust function in R (Murtagh and Legendre, 2014) were used to evaluate clustering 

patterns among sites based on community composition (Sokal and Rohlf, 1962). Dendrograms, 

first described by Sokal and Rohlf (1962), provided a visual representation of site 

dissimilarities. The hierarchical clustering dendrogram illustrated the structure in site 

relationships, demonstrating clear ecological gradients from clean to heavily polluted sites 

(Pang et al., 2023). Bubble plots generated with ggplot2 (Clarke and Ainsworth, 1993) and 

ggtree (Yu et al., 2017) were used to visualise the relationships between ecological patterns 

and environmental variables (Somerfield et al., 1994a). The SIMPER analysis (Similarity 

Percentage) (Clarke and Ainsworth, 1993), conducted with the Vegan package, identified 

which ASV/OTUs contributed most to differences between sample groups, providing insights 

into copper-tolerant and copper-sensitive taxa. This approach helps determine key taxa driving 

ecological variation and understand how environmental factors, such as pollution, affect 

community composition (Terlizzi et al., 2005, Piola and Johnston, 2008). The ANOSIM 

(Analysis of Similarity) (Clarke, 1993) was used to quantify replicate clustering within sites 

and overall site differentiation using Bray-Curtis dissimilarity matrices. The R statistic 

measured group separation, with values near 1 indicating strong differentiation and values near 

0 signifying overlap and statistical significance was assessed through 999 permutations. 
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Analysis of Similarity (ANOSIM) (Clarke, 1993) was used to quantify replicate clustering 

within sites and overall site differentiation using Bray-Curtis dissimilarity matrices. The R 

statistic measures group separation, with values near 1 indicating strong differentiation and 

values near 0 signifying overlap and statistical significance was assessed through 999 

permutations. Additionally, An Analysis of Variance (ANOVA) and Post-hoc comparisons 

using Tukey’s HSD test conducted in R, following Levene’s Test for homogeneity of variances 

using the car package (Fox and Weisberg, 2019)  to compare ASV/OTUs richness across sites 

and identify significant differences in diversity metrics (St and Wold, 1989). Phylogenetic trees 

were visualised using the ggtree package providing insights into the evolutionary relationships 

among ASV/OTUs. Finally, removal of rare ASV/OTUs was implemented using custom 

scripts in R to evaluate the impact of low-abundance taxa on clarifying community structure 

and reducing noise. 

2.2 Results And Discussion 

2.2.1 Environmental Variables Across Study Sites 

Understanding the environmental variables is crucial for interpreting metal bioavailability and 

its potential impact on benthic organisms and microbial communities. Key physicochemical 

parameters measured included porewater pH, salinity, sediment grain size, total organic carbon 

(TOC) and dissolved organic carbon (DOC). These factors influenced metal speciation, 

mobility and bioavailability in estuarine environments (Bryan and Langston, 1992, Chapman 

and Wang, 2001, Luoma and Rainbow, 2008). The ecological relevance of these patterns was 

explored in later chapters in relation to taxonomic composition and diversity. 

All sites and corresponding results discussed in this section were from the 34-site dataset unless 

explicitly stated otherwise. To further investigate how metal contamination and other variables 

shape site differences, PCA was performed on both the 12-site and 34-site datasets. In the 12-

site dataset (Fig. 2.4 A), heavily polluted sites (HA, HB, RA, RB, RC) clustered on the left, 

aligning with elevated copper-related variables (e.g., eqpCu, AEMCu), whereas less impacted 

sites (e.g., BW, HR, MC, PC, PR, CO) grouped on the right, reflecting comparatively lower 

metal loads and underscoring copper’s dominant influence. In the 34-site dataset (Fig. 2.4 B), 

heavily polluted sites (HA, HB, RA, RB) aligned with vectors for porewater copper (PWCu) 
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and AEMCu, while less contaminated sites associated more strongly with sediment grain-size 

variables (D50, LT63), indicated that both metal contamination and sediment characteristics 

drive site separation. Correlations between site clusters and diversity levels were evident at 

heavily polluted sites, although patterns differed among taxonomic groups, as shown in 

Chapters 4, 5, and 6.  
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A 

B 

Fig. 2.4 Principal Components Analysis (PCA) ordination of standardised environmental 

variables averaged across the sampling surveys. A) 12 sites. B) 34 sites. Arrangement from left 

to right along the Comp. 1 axis represents changes in environmental gradients across the study 

sites. Environmental variables are represented by blue arrows and sites are shown as grey-filled 

circles. Site codes as in Table 2.1. PWCu (Porewater Cu), AEMCu (Acid-Extractable Cu), D50 

(Median Grain Size), LT63 (<63 µm Fines). 
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2.2.2 Porewater pH and Salinity 

Salinity measurements across the 34 study sites exhibited variation, highlighting the influence 

of freshwater inputs and tidal mixing in the estuaries were presented in Tables 2.6 and 2.7. 

The River Avon sites (VA, VB and VC) demonstrated lower salinities ranging from 0.9 to 4.9 

S, characteristic of upper estuarine conditions. In contrast, sites in the Helford River and Percuil 

River showed higher salinities, approaching marine conditions with values between 15.2 and 

38 S. 

Porewater pH values varied from 6.3 at RA (Restronguet Creek) to 7.82 at LF (Helford River), 

with lower pH levels generally observed at more contaminated sites. These measurements were 

similar to those previously reported in the Fal Estuary (Bryan and Gibbs, 1983, Perryman, 

1996) and were comparable to expected seawater values. Evidence suggested that the Carnon 

River, which flows into the Fal Estuary, can be as acidic as pH 4.65 influencing metal 

behaviour in estuarine environments.
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Table 2.6 12-site set Key physicochemical characteristics of surface (top 2 cm) sediments sampled in Autumn 2017. Reprinted from (Udochi, 

2020). 

Total Cu, Total Zn, Fe₂O₃, SEMCu/SEMZn (Simultaneously Extracted Metals), AEMCu/AEMZn (Acid-Extractable Metals), LT63 (<63 µm 

fines), AVS (Acid Volatile Sulphide), PWCu/PWZn (Porewater Metals), TOC (Total Organic Carbon), DOC (Dissolved Organic Carbon), 

PW_OC_Cu (Dissolved Organic Carbon normalised PWCu), EqPCu (Equilibrium Partitioning Cu), D50 (Median Grain Size), Sal (Salinity), and 

pH. Site codes as in Table 2.1.

Site 

Total 

Cu 

(µg/g) 

Total 

Zn 

(µg/g) 

Fe2O3 

(%) 

SEM 

Cu 

(µmol/g) 

SEM 

Zn 

(µmol/g) 

AEM 

Cu 

(µg/g) 

AEM 

Zn 

(µg/g) 

<63 

µm 

(%) 

AVS 

(µmol/g) 

PW 

Cu 

(µg/L) 

PW 

Zn 

(µg/L) 

TOC 

(%) 

DOC 

(mg/L) 

EqP 

Cu 

(µmol/g 

OC) 

PW/OC 

Cu 

(µg/mg 

OC) 

Sal 

(S) 

D50 

(µm) 

Salinity 

(S) 
pH  

BW 8 103 4.5 0.14  0.59  8.7 38.4 84.3 < 0.5 1.8 20.0 1.83 10.5 7.60 0.14 36.6 13.1 36.6 7.76  

PR 118 232 5.9 1.01  1.56  64.0 102.1 72.9 < 0.5 3.2 72.0 10.04 11.0 9.82 0.26 19.8 31.4 19.8 7.65  

CO 183 355 5.39 1.24  2.50 78.8 163.8 73.4 1.5 1.9 111.8  5.15  12.2 -5.01 0.14 35 32 35 7.58  

HR 215 491 5.66 1.60  3.05  101.5 199.5 84.8 1.7 3.5  62.1  4.65 4.9 -3.10 0.60 21 21.3 21 7.67  

PC 645 668 5.81 3.81  5.44  242.0 355.9 77.9 1.2 2.6 134.3 4.28  9.2 60.38 0.25 35.9 22.9 35.9 8.11  

SJ 554 621 5.87 3.98  6.13  253.0 400.9 80.8 4.3 1.6 81.4  4.5 8.9 -6.12 0.16 39.5 22.8 39.5 7.76  

MC 792 801 6.13 5.32  6.94  337.9 454.2 74.7 4.2 3.4 57.2 6.46  13.3 16.60 0.24 31.2 27.8 31.2 7.76  

HA 862 1261 7.31 5.18  8.13  328.7 531.6 57.0 < 0.5 223.9 270  1.42 30.9 336.53 6.92 21.3 53.8 21.3 7.69  

RC 2413 2367 9.48 22.70  23.37  1441.4 1528.4 84.9 0.5 23.6 98.9 3.38 8.5 626.56 2.49 32 23.1 32 7.64  

RA 2978 2467 10.06 27.72  21.73  1760.3 1420.9 77.4 < 0.5 130.3  211.2  6.53 7.4 399.34 15.60 6.6 25.5 6.6 7.78  

RB 3183 3015 10.45 26.98  25.87  1713.2 1691.9 82.8 < 0.5 62  191.4  2.99 9.3 910.57 6.00 31.3 24.2 31.3 7.70  

HB 2565 3753 9.98 4.69  11.76  297.6 769.2 69.5 < 0.5 31.5 913.6  1.64 5.9 173.38 4.57 26.8 3194.2 26.8 7.69  
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Table 2.7 34-site set Key physicochemical characteristics of surface (top 2 cm) sediments 

sampled in March 2022 for this study. 

PWCu (Porewater Cu), AEMCu (Acid-Extractable Cu), D50 (Median Grain Size), LT63 

(<63 µm Fines), Sal (Salinity), pH (pH). Site codes as in Table 2.1. 

 

 

Site 
PW Cu 

(µg/L) 

AEM Cu 

(µg/g) 

D50 

(µm) 

LT63 

(%) 

Salinity 

(S) 
PH 

VA 9.06 4.4 37.9 61.1 0.9 7.13 

VB 9.53 7.8 51.4 59.5 4.1 7.12 

VC 13.37 10.8 32.5 70.6 4.9 7.08 

TM 7.82 123.0 17.7 86.8 20 7.05 

LA 9.22 73.3 32.5 70.2 15.3 6.93 

LB 6.01 123.2 20.6 85.2 21.4 6.46 

LC 6.54 123.7 15.2 91.1 15.5 6.87 

LD 5.95 125.5 20.6 82.4 22.2 7.37 

LE 7.33 74.2 11.2 87.4 15.2 6.92 

LF 4.84 37.1 27.9 76.2 35.4 7.82 

IA 73.18 303.3 24 78.2 30.7 7.45 

IB 6.03 311.0 27.9 73.1 26 7.06 

MA 16.28 344.7 15.2 87.1 28.4 6.73 

MB 5.56 363.6 17.7 84.0 36 6.87 

PN 9.01 328.9 17.7 87.4 27.5 6.91 

TR 12.92 68.4 37.9 65.3 11.6 6.88 

PA 6.54 24.1 37.9 62.9 24.9 7.03 

PB 5.89 30.5 32.5 63.8 32.8 6.92 

PC 4.59 167.2 24 77.3 38 7.22 

JA 9.52 162.5 15.2 75.0 35.7 7.33 

JB 8.66 282.9 15.2 89.8 37.4 6.8 

TA 8.38 196.2 17.7 87.6 20.9 7.39 

TB 5.46 195.7 24 78.4 23.6 7.39 

CK 14.4 209.4 44.1 59.3 3.27 7.24 

CA 7.67 126.2 13 87.4 31.7 6.78 

CB 10.74 103.5 17.7 78.7 19 6.95 

RA 55.92 1797.7 20.6 76.5 9.8 6.26 

RB 94.95 1754.3 20.6 88.6 13.6 6.66 

RC 21.78 1426.5 20.6 80.8 28.8 6.91 

RD 25.23 887.3 24 80.0 32.4 6.8 

RE 17.32 806.3 37.9 63.4 32.7 6.69 

HA 430.71 365.4 44.1 65.4 29.5 6.92 

HB 263.64 359.4 51.4 57.1 28.9 6.68 

HC 10.69 196.5 27.9 67.3 23.2 7.47 
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2.7.2 Sediment Grain Size Distribution 

Sediment grain size, characterized by the median particle diameter (D50) and the percentage 

of fine particles <63 µm (LT63), is a critical factor influencing metal adsorption and retention 

in sediments (Simpson et al., 2011). The analysis revealed that fine particles dominated most 

sites, with the percentage of fines ranging from 57.1% at HB (Hayle Estuary) to 91.1% at LC 

(Helford River) (Tables 2.6 and 2.7). Median grain sizes varied between 11.2 µm at LE 

(Helford River) and 51.4 µm at HB (Hayle Estuary), corroborating previous surveys 

(Greenwood, 2001, Shipp and Grant, 2006). The sediments were generally poorly sorted, 

indicating a wide range of particle sizes, which is typical of estuarine environments where 

varying hydrodynamic conditions facilitated the accumulation of both fine and coarse materials 

(Kenny and Sotheran, 2013). 

2.2.3 Acid-Extractable Metal and Porewater Copper Concentrations 

Acid-extractable metal concentrations (AEM), determined using 1 M HCl, served as proxies 

for the bioavailable fraction of metals in sediments (Bryan and Langston, 1992). The findings 

revealed significantly elevated acid-extractable copper (Cu) concentrations at historically 

contaminated sites such as Restronguet Creek and Hayle Estuary (Tables 2.6 and 2.7). For 

instance, Cu levels reached up to 1,797.7 µg/g at RA and 1,754.3 µg/g at RB in Restronguet 

Creek, markedly higher than those observed at reference sites like the River Avon (e.g., 

4.4 µg/g at VA). Notably, some acid-extractable copper concentrations in the supposedly 

“clean” Helford River (e.g., LB, LC) were found to be higher than levels recorded in PA, PB 

and TR within the Fal system. These concentrations were also comparable to those in the 

Tamar, which is generally regarded as moderately contaminated based on total metal 

concentrations. These patterns underscored the complexity of metal distribution and the 

necessity of site-specific assessments to contextualise contamination levels. Such findings 

further supported observed ecological effects linked to metal contamination in these estuaries 

(Greenwood, 2001, Rainbow, 2020). 

Porewater metal concentrations (PWCu) were critical for assessing the immediate exposure of 

benthic organisms to metals (Burton, 2018). The highest porewater Cu concentrations were 

observed at sites with elevated total and acid-extractable metal levels. Porewater Cu 

concentrations exhibited significant spatial variability across sites. The highest concentrations 
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were observed at HA (430.7 µg/L) in the Hayle region and RB (95 µg/L) in Restronguet Creek. 

While sedimentary Cu concentrations were higher in Restronguet Creek (e.g., RB with AEMCu 

= 1754.3 µg/L) compared to the Hayle (AEMCu = 365.4 µg/L), porewater Cu concentrations 

were disproportionately higher in the Hayle Estuary. This disparity was likely due to higher 

metal release rates into the porewater under specific chemical conditions prevalent in the sandy 

sediments of HA, where metals were notably more bioavailable than elsewhere in the Fal and 

Hayle estuaries (Grant, 2010). The increased partitioning of metals into the porewater at this 

site was likely facilitated by factors such as relatively low sediment total organic carbon (TOC) 

content and coarser grain size (Udochi, 2020). These concentrations exceeded environmental 

quality standards set by the European Commission (Nugent and Rhinard, 2015), suggesting 

potential ecological risks to aquatic organisms.  

Multiple studies have assessed porewater Cu concentrations in the Fal and Hayle estuaries, 

revealing consistent trends despite slight variations in reported values. Collectively, these 

studies demonstrated elevated porewater Cu levels in the Hayle Estuary compared to the Fal 

Estuary. Greenwood (2001) reported Cu concentrations up to 495.7 µg/L in the River Hayle 

and 68.2 µg/L in Restronguet Creek. In a subsequent survey using different analytical 

techniques, Greenwood documented even higher concentrations, reaching 3,378.2 µg/L in the 

River Hayle and 769.6 µg/L in Copperhouse Pool, while noting 62.2 µg/L in Restronguet 

Creek. Similarly, Ogilvie and Grant (2008) observed Cu levels up to 783 µg/L in the River 

Hayle, 463 µg/L in Copperhouse Pool and 27.65 µg/L in Restronguet Creek. Earlier work by  

Bryan and Gibbs (1983) reported porewater Cu concentrations up to 83 µg/L in the surface 

sediments of Restronguet Creek. These findings aligned with the current study, confirming 

higher porewater Cu concentrations in the Hayle Estuary relative to the Fal Estuary. 

Discrepancies in absolute concentrations across studies may be attributed to differences in 

analytical methodologies, temporal variations, or environmental factors influencing metal 

mobility (Udochi, 2020). 

In summary, the Fal and Hayle estuaries were heavily contaminated with metals due to 

historical mining activities. Sediment metal concentrations have remained stable over several 

decades, establishing a persistent contamination gradient across the study sites. The sediment 

physicochemical characteristics vary markedly across this gradient, resulting in significant 

differences in metal bioavailability. These varying attributes, coupled with the absence of other 
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interfering pollutants, made the Fal and Hayle estuaries ideal sites for investigating the effects 

of metal contamination on in situ benthic communities. 

2.3 Molecular Data Processing 

2.3.1 DNA Extraction and Quality Control  

Effective molecular analysis relied heavily on the quality and concentration of extracted DNA 

(Hermans et al., 2018). In this study, DNA extraction protocols were meticulously tailored to 

accommodate the diverse nature of sediment samples, ensuring optimal concentrations for 

subsequent PCR amplification. This foundational step is crucial, as the quality of DNA directly 

affected the success of downstream molecular applications. 

2.3.2 Effect of DNA Dilution on PCR Efficiency  

The DNA was successfully extracted from sediment samples of varying sizes (0.25 g, 2.7 g and 

10 g), as well as from sieved meiofauna samples. Several dilution factors were tested during 

protocol optimisation to improve amplification efficiency and reduce potential inhibitor 

effects. The DNA yields varied across samples, with the highest yields obtained from the 

experimental 10 g sediment extractions up to 405 ng/µL. Dilution factors for PCR 

amplification were tested accordingly to optimize amplification efficiency and account for 

potential PCR inhibitors presented in the sediment samples (Table 2.8). 
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Table 2.8 DNA concentration ranges and dilution factors for PCR optimization.  

Group Sample size 

Elution 

volume 

 ul 

DNA 

concentration 

range 

µg/l 

Dilution 

for PCR 

Amplicon 

concentration 

range in PCR 

reactions  

µg/l 

Pilot 
10g  

sieved 
50 0-4 1/10th 0-0.4 

Pilot 0.25 g 50 0-70 1/6th 0-7 

12-sites 2.7 g 50 0-79 1/6th 0-7.9 

34-sites 10 g 100 112-405 1/50th 2.24-8.1 

Microcosm 10 g 100 6-28 * 1/3rd 2-9.3 

*Not all DNA samples from the experiment were measured for concentration; only 18 random 

ones were checked for quality control. 

The tailored dilution approach was instrumental in enhancing PCR efficiency across diverse 

sample types. When low quantities of target DNA fragments were expected, along with high 

concentrations of co-extracted inhibitors or non-target DNA, diluting the DNA extraction can 

reduce inhibitor effects, improving amplification efficiency and the overall quality of 

downstream processes (Deiner et al., 2015, Percze et al., 2024). By adjusting DNA 

concentrations to fall within the optimal range for PCR amplification, the likelihood of 

successful and reproducible genetic analyses was significantly increased. For instance, samples 

with excessively high DNA concentrations, such as those from the 34-sites group, were diluted 

1/50th to prevent PCR inhibition, ensuring accurate amplification of target genetic markers. 

Conversely, samples with lower initial DNA concentrations, including the pilot (Sieved) and 

Microcosm groups, were diluted accordingly to maintain sufficient DNA availability for PCR 

without introducing inhibitors (Table 2.8). 

The variability in DNA yields underscored the importance of optimizing extraction protocols 

for environmental samples. PCR inhibition can be caused by either the presence of chemical 

inhibitors or the ratio of total DNA to that of the targeted DNA (Deiner et al., 2015). 
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Additionally, PCR inhibition can alter the detection of targeted species extracted from samples 

(Jiang et al., 2005). 

Evaluating and optimizing DNA extraction and amplification techniques is crucial to obtain 

consistent and reliable data, facilitating accurate identification across a broad spectrum of 

organisms (Hermans et al., 2018). 

2.3.3 Primer Selection and PCR Amplification 

After optimizing DNA and PCR protocols, thirteen primer pairs targeting different genetic 

markers were initially tested to maximize taxonomic coverage. Primers yielded successful 

amplifications and were selected for further analysis. Some primers showed limited 

amplification or specificity issues, highlighting the importance of primer selection in 

metabarcoding studies (Taberlet et al., 2012). More details about Primer Selection results and 

discussion were provided in Chapter 3. 

2.3.4 Relationship Between DNA Concentration and Sediment Characteristics 

The observed variability in DNA concentrations can be attributed to several factors inhered to 

the sediment samples. Sites with higher contamination levels, particularly those impacted by 

historical mining activities, often exhibited lower DNA yields. This reduction was likely due 

to the toxic effects of heavy metals on microbial communities, thereby decreasing the overall 

biomass, increasing DNA degradation and reducing DNA availability (Johnson, 1986, Gilbert 

et al., 2006, Rainbow, 2020). Sediment physicochemical properties, such as total organic 

carbon (TOC) content and grain size, played a crucial role in influencing DNA extraction 

efficiency. High TOC and fine-grained sediments hinder DNA recovery by binding DNA to 

organic material and small particles. In contrast, sandy sediments, which typically have lower 

TOC, facilitated higher DNA bioavailability, making extraction more efficient. This 

relationship is key to understanding microbial community structures and their response to 

environmental factors like metal contamination (Pearman et al., 2020, Niu et al., 2022). 
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2.3.5 Correlation Between Metal Concentrations and Community Composition  

Environmental and molecular data were further integrated to explore broader ecological 

patterns. Estuarine and coastal environments, particularly in temperate regions, were often 

affected by industrial pollution, including metal contamination. Multivariate analyses such as 

non-metric multidimensional scaling (NMDS) and clustered analysis using Bray-Curtis 

dissimilarity were applied to these ecosystems. These methods demonstrated that microbial 

and meiofaunal communities clustered based on metal contamination levels and sediment 

characteristics, emphasizing the influence of pollution on community composition and 

ecological function in these marine ecosystems (Grant, 2010). These patterns were explored in 

detail in Chapters 4, 5, and 6, where community composition was compared across 

contamination gradients using ordination and clustering methods. 

Statistical tests highlighted metal concentrations, particularly porewater Cu and Zn, as key 

predictors of microbial community composition, with higher concentrations resulting in 

distinct communities compared to less contaminated sites. Grant (2010) discussed these effects 

within estuarine and coastal ecosystems, while (Udochi, 2020) specifically emphasized the 

influence of porewater Cu and Zn on community shifts, further confirming the significant role 

these metals played in shaping microbial diversity across varying contamination levels. 

2.3.6 Conclusion 

The methodological approach applied in DNA extraction and PCR optimization helped 

overcome the challenges posed by the heterogeneous nature of estuarine sediments. By 

implementing tailored dilution strategies, this study improved the consistency of molecular 

analyses and laid the foundation for assessing microbial diversity in relation to environmental 

contamination. Sampling effort was supported by accumulation curves presented in Chapters 

4 and 5, confirming adequate sequence recovery.  In addition, a bacterial positive control was 

used to validate sequencing performance (Chapter 4). These approaches collectively support 

the reliability of the generated data and its relevance to community-level responses in the Fal 

and Hayle estuaries.
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Chapter 3:   

Selection and Optimization of 16S, ITS, 18S, 28S and COI 

Primers for Metabarcoding Studies 

 

3.1 Introduction 

3.1.1 Overview of Metabarcoding and Primer Functionality 

Metabarcoding is an amplicon-based, high-throughput sequencing approach in which universal 

primers amplify short, taxonomically informative gene regions from bulk-organism or 

environmental DNA, the resulting reads are then clustered or denoised and taxonomically 

assigned with reference databases (Taberlet et al., 2012, Fonseca, 2018). By systematically 

assessing how these primers capture a broad range of prokaryotic and eukaryotic taxa, this 

chapter provides insights into which markers most effectively profile marine sediment 

communities while highlighting design trade-offs in sensitivity, coverage and taxonomic 

resolution. Achieving robust metabarcoding results typically requires primers that capture a 

wide taxonomic scope yet amplify DNA regions that are sufficiently variable to distinguish 

different taxa (Zhang et al., 2020). Technical biases may include primer-template mismatches, 

taxon-specific amplification efficiency, copy-number variation, and polymerase or GC-content 

effects, all of which can skew diversity estimates and relative abundances (Fonseca, 2018). To 

minimise these effects, careful optimisation of PCR conditions and primer selection was 

essential. Clean amplicons of the correct size must be generated to ensure accurate downstream 

sequencing (Goldberg et al., 2016, Ruppert et al., 2019).  

Bacterial and archaeal communities are commonly surveyed by targeting the 16S rRNA gene, 

which contains both conserved regions (used for broad-range primer binding) and 

hypervariable segments (V1-V9) that enable differentiation among species (Wade, 2002, Cole 

et al., 2005). For Fungal communities the most frequently used primers were the highly variable 
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ITS region for species-level identification, though incomplete reference data can limit precision 

(Badotti et al., 2017). For eukaryotes, the 18S SSU and 28S LSU genes were often chosen for 

phylogenetic and community-level assessments (Sonnenberg et al., 2007, Nyati et al., 2013, 

Latz et al., 2022, Zimmermann et al., 2024). Metazoan studies typically employed the 

mitochondrial cytochrome-c oxidase subunit I (COI) gene, which offers high resolution for 

animal taxa but may suffer from amplification biases and limited reference coverage for some 

groups (Timm et al., 2022, Antil et al., 2023). The regions targeted by these primers were 

illustrated in Fig. 3.1. Employing multiple loci allowed simultaneous profiling of prokaryotic 

and eukaryotic communities and provided cross‑validation of ambiguous assignments 

(Taberlet et al., 2012). The emphasis placed on individual loci reflects whether the focus is on 

abundant bacteria, fungi or larger metazoans (Bik et al., 2012). 

A 

B 

 

Fig. 3.1 Primer-targeted regions for gene amplification. A) The 16S rRNA gene in prokaryotes, 

highlighting variable and conserved regions modified from Cox et al. (2013). B) The rRNA 

operon in eukaryotes, including the 18S, ITS1, 5.8S, ITS2 and 28S gene regions. 

 

Given the different primer binding requirements across taxonomic groups (e.g., conserved vs. 

variable regions, amplicon length), the choice and optimisation of primers for metabarcoding 

can profoundly shape DNA‐based survey outcomes. By carefully selecting and fine‐tuning 

primers, researchers can maximise diversity detection and thus more confidently interpret how 

microbial or metazoan communities respond to ecological drivers, including pollution. In this 
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study, emphasis was placed on evaluating and optimising primers for coverage and diversity 

and relative abundance rather than absolute abundance, aiming to capture the widest possible 

spectrum of taxa in marine sediments. 

3.1.2 Selection of Primers for Evaluation 

This study targeted multiple taxonomic groups, including Bacteria, Archaea, Fungi, single-

celled eukaryotes and Metazoa, with a particular emphasis on nematodes. This coverage of a 

wide range of taxonomic groups facilitated a more comprehensive assessment of ecosystem 

biodiversity than approaches based on morphological identification (Tytgat et al., 2019, 

Fonseca et al., 2022). Meiofauna, operationally defined as metazoans passing through a 1 mm 

mesh but retained on a 63 µm mesh (Heip et al., 1985), have traditionally been analysed 

separately in existing literature (Somerfield et al., 1994b). This separation complicated direct 

comparisons with the current approach, although the literature making use of meiofauna in 

environmental monitoring has focused on nematodes which, with the exception of juveniles, 

were entirely within the meiofaunal size range (Somerfield et al., 1994a, Millward and Grant, 

2000, Pawlowski et al., 2024), the differing extraction protocols, DNA yields and sequencing 

depths can confound diversity estimates across studies (Bik et al., 2012, Creer et al., 2016). In 

evaluating the primers employed for PCR amplification, each primer pair was examined based 

on its original description and bench-marked for (i) taxonomic coverage, (ii) amplification 

efficiency, (iii) known primer bias and (iv) complementarity with other markers. 

Ideally, PCR primers should be free of taxonomic biases within their target group, however, 

for most eukaryotic taxa, relative read abundance cannot reliably represent actual organismal 

abundance due to multicopy genes, variable biomass, and amplification bias. This assumption 

may hold more closely for unicellular groups like bacteria, but not for metazoans or other 

multicellular taxa. Following amplification, the PCR products were sequenced to determine the 

taxonomic coverage of each primer pair, which was then compared with the intended target 

range and with community profiles obtained from alternative primer sets and RNA-Seq data. 

Applying these criteria provided a transparent framework for selecting primer combinations 

that maximised diversity detection while limiting bias (Pawlowski et al., 2014, Elbrecht and 

Leese, 2015).  
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The 16S rRNA 515F/926R primer pair, originally designed by Turner et al. (1999) to target 

small subunit rRNA sequences for investigating phylogenetic relationships among 

cyanobacteria and plastids, has been extensively utilized in subsequent studies to examine 

wider bacterial diversity (Caporaso et al., 2011). The forward primer (515F) incorporated a 

modification described by Parada et al. (2016) to improve coverage of marine microbiomes. 

Bahram et al. (2019) developed the 16S rRNA SSU1ArF/SSU520R primer pair to provide 

more comprehensive coverage of the major Archaeal lineages. Bahram’s rationale was to 

improve the identification and quantification of Archaea by designing primers that efficiently 

amplified archaeal 16S rRNA genes, thus overcoming the limitations of previously available 

primers which often failed to cover a broad spectrum of archaeal lineages. Subsequently, 

Martin-Pozas et al. (2023) utilized the SSU1ArF/SSU520R primer pair in their study to 

simultaneously analyze bacterial, archaeal and eukaryotic communities within various 

environmental samples. They found that the primer efficiently amplified archaeal 16S rRNA 

genes, providing representation of archaeal taxa across diverse environmental conditions. This 

primer successfully captured major archaeal groups, including both common and rare lineages 

such as Euryarchaeota and Thaumarchaeota, demonstrating its effectiveness for broad-scale 

environmental and ecological studies. Martin-Pozas et al. (2023) concluded that the 

SSU1ArF/SSU520R primer showed better performance than previous universal primers by 

providing more inclusive coverage and improving the detection of archaeal diversity, making 

it a valuable primer set for comprehensive microbial community assessments. 

The ITS region of the rRNA gene was targeted using the ITS1f12/ITS2 primer pair, first 

described by Schmidt et al. (2013) and White et al. (1990), was designed to amplify the fungal 

ITS1 region within the ribosomal RNA operon. This primer is highly specific to fungi, 

especially basidiomycetes and was commonly used in fungal community studies and 

metabarcoding. Multiple studies have confirmed the effectiveness of ITS1 primers for fungal 

identification and diversity studies. Rajkowska et al. (2023) and Szulc et al. (2017) successfully 

employed ITS primers ITS1F12/ITS2 in their study of fungal diversity, facilitating the 

identification of various fungal genera and contributing to the understanding of microbial 

diversity in different environments. These primers were also used by the Earth Microbiome 

Project, demonstrating their reliability and applicability in comprehensive environmental 

studies (Smith et al., 2018, Chrismas et al., 2023) Similarly, Harnelly et al. (2022) demonstrated 
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the utility of ITS1f/ITS2 primers for species-level identification of macroscopic fungi, 

emphasizing the advantages of DNA barcoding over traditional morphological methods. These 

findings underscored the efficacy of ITS primers in fungal community analyses and supported 

their continued use in microbial diversity studies. However, Walters et al. (2015) and Tedersoo 

et al. (2022) demonstrated that modified fungal-specific  versions of the ITS1f/ITS2 primers, 

which extended the sequencing primers into the amplicon region, resulted in approximately 

doubled yields of reads clustering against the UNITE fungal database. These modifications 

enhanced specificity and detection of diverse fungal taxa, especially in low-diversity samples. 

However, they also reduced the detection of Ascomycetes, a major group, potentially leading 

to an underrepresentation of fungal diversity. 

The ITS region was targeted using the VRAIN2F/VRAIN2R primers, introduced by (Vrain et 

al., 1992), were developed to amplify the ITS region of nematodes. This method has been 

employed in phylogenetic studies to distinguish nematode species and has been compared with 

other primers for its accuracy and specificity in nematode taxonomy studies (Derycke et al., 

2010, Nguyen et al., 2021, Hajihassani et al., 2023). 

For eukaryote detection, Wang et al. (2014) emphasized the importance of evaluating and 

optimizing primers to ensure effective coverage of various eukaryotic groups, highlighting that 

proper primer selection is essential for accurately detecting and assessing eukaryotic diversity 

in environmental samples. The 18S rRNA gene (V1–V2 regions) was amplified using the 

G18S4/22R primer pair has been applied in metabarcoding marine nematode communities. 

Originally designed by Blaxter et al. (1998), these primers have been used in DNA barcoding 

to assess nematode diversity. In a study on marine nematode communities, Tytgat et al. (2019) 

they were combined with COI markers amplified using the JB3/JB5 primer pair to enhance 

species-level resolution. This combination allowed for a comprehensive assessment of 

biodiversity and the impact of environmental stressors on nematode populations across various 

ecosystems. Together, they offered strong specificity and coverage for nematode barcoding, 

supporting detailed biodiversity assessments in marine environments (Derycke et al., 2005, 

Tytgat et al., 2019). 

The 18S rRNA gene was targeted using the TAReuk454FWD1/TAReukREV3 primer pair,  

originally described by (Stoeck et al., 2010) and developed for the Tara Oceans project (Delage 
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et al., 2023). It has been widely used to target the V4 region of the 18S rRNA gene for 

metabarcoding studies of eukaryotic microorganisms across a broad range of environments, 

including soil, marine and freshwater ecosystems. Fonseca et al. (2022) employed this primer 

set in parallel with other ribosomal 16S rRNA and mitochondrial COI markers to examine 

microbial and metazoan diversity within the Antarctic benthic environment.  

The 18S rRNA gene (V4 region) was amplified using the D512/D978 primer pair have 

primarily been used for identifying diatoms and other eukaryotic microorganisms in 

environmental samples. Introduced by Zimmermann et al. (2011), these primers have been 

widely adopted for barcoding diatoms, offering a good balance of taxonomic resolution and 

coverage in molecular  studies such as (Luddington et al., 2012) and (Rivera-Garcia et al., 

2018). Another study by Kim et al. (2017) highlighted the strong performance of the 

D512/D978 primers in amplifying diverse eukaryotic groups, including Metazoans, Protists 

and Fungi, though smaller eukaryotes <63 µm were excluded. However, it also revealed a high 

proportion of unclassified eukaryotes, suggesting potential gaps in the available reference 

databases. 

Originally developed by (Lane, 1991) and (Medlin et al., 1988), the 18S rRNA gene (V9 

region) was targeted using the 1391F/EukBr primer pair for examining microbial eukaryotes 

in marine environments (Stoeck et al., 2010). It is highly conserved forward primer (1391f) 

that could yield a broader range of higher-level taxa than exclusively eukaryote-specific sets, 

albeit with some risk of amplifying non-eukaryotic sequences (Amaral-Zettler et al., 2009, 

Stoeck et al., 2010). Comparisons with V4-specific primers suggested that while 1391f/EukBr 

provided broad taxonomic coverage, the V4 region may be more suitable for lineages requiring 

finer resolution (Stoeck et al., 2010, Liu et al., 2019). 

The 18S rRNA gene (V6–V8 regions) was amplified using the Nemf/18Sr2b primer pair, 

focusing specifically on nematodes and other metazoans. It was designed by Sapkota and 

Nicolaisen (2015) to exclude plant and fungal DNA, enabling more focused amplification of 

nematode DNA in environmental samples. According to the same source, this primer set has 

been widely applied in studies involving nematode communities across various habitats, 

including soil and has shown a high efficiency in metabarcoding without requiring nematode 

enrichment before PCR. By reducing biases introduced by enrichment, as noted by the same 
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authors, it allowed for the recovery of sequences from a wide range of nematode taxa, making 

it particularly effective for soil and root-associated nematodes, capturing a broad spectrum of 

species without the need for labour-intensive enrichment processes. The primer has been 

compared to other primer sets, such as JB3/JB5 and demonstrated superior performance in 

nematode detection, generating a higher proportion of nematode-specific reads (Sapkota and 

Nicolaisen, 2015, Sikder et al., 2020). 

The D4-D5 region of the 28S rRNA gene is a variable region that offers notable taxonomic 

advantages. Unlike the more conserved 18S rRNA gene, the 28S rRNA evolves at a faster rate 

than 18S rRNA, enabling better species discrimination and precise phylogenetic assessments, 

making it valuable for biodiversity studies and environmental DNA analysis (Machida and 

Knowlton, 2012). The DM568F/RM3R primer pair targeted this region and was specifically 

designed for eukaryotic microbial analysis, including nematode detection. A 2019 study by 

(Kounosu et al.) demonstrated its effectiveness in amplifying nematode species while avoiding 

bacterial contamination, providing high taxonomic resolution and it is particularly useful for 

distinguishing nematode genera and species in complex environmental samples. 

3.1.3 Optimizing DNA Extraction and Determining Appropriate Sample Size 

Marine benthic micro- and meiofaunal communities within seabed sediments underpin key 

ecosystem processes and are recognised as sensitive bio-indicators of environmental change 

(Giere, 2009). Traditional morphological identification methods for aquatic macroinvertebrates 

can be labour-intensive and subject to inconsistencies, whereas DNA metabarcoding offers a 

more rapid, standardised alternative that often detects a greater number of unique taxa 

(Hajibabaei et al., 2011). However, morphological and molecular approaches frequently 

capture different aspects of biodiversity, indicating that a combination of both methods 

provided complementary insights for a more comprehensive assessment of aquatic ecosystems 

(Emmons et al., 2023, Schuijt et al., 2024).  

Nevertheless, variation in DNA extraction methods and sample size selection can affect the 

accuracy and reproducibility of metabarcoding studies. Gielings et al. (2021) reviewed the 

application of metabarcoding for marine meiofauna and highlighted inconsistencies in sample 

collection, choice of genetic markers (with 18S rRNA often selected over COI), primer 
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selection, sequencing platforms and bioinformatic workflows, all of which impaired cross-

study comparisons. The present study focused on utilising multiple genetic markers to improve 

taxon coverage, optimising DNA extraction methods and determining appropriate sample sizes 

for metabarcoding marine benthic meiofauna. 

3.2 Methods 

3.2.1 Primer Design for Illumina Metabarcoding 

The design strategy adopted from (Fadrosh et al., 2014) involved utilizing forward and reversed 

primers consisting of an Illumina adaptor; a 8-base barcode, 0-7 bases of length heterogeneity 

spacers and a gene-specific primer as in Fig. 3.2. The heterogeneity spacer prevented all the 

gene-specific primers being read in phase during sequencing. This method enabled 

multiplexing of multiple PCR products, allowing for the accurate and reliable amplification of 

targeted genetic markers across numerous samples (Hamady et al., 2008, Kozich et al., 2013). 

For ease of identification, primers will be identified either by the name of the forward primer 

or by an abbreviation of this name, particularly when it is very long. 

 

 

Forward primer        

5’ 
Illumina 

Adapter 
Barcode 

Heterogeneity 

spacer 
Primer        

            

3’ 
 

5’ 

    
DNA target 

region 
    

5’ 
 

3’ 

            

       Primer Heterogeneity 

spacer 
Barcode 

Illumina 

Adapter 5’ 

       Reverse primer 

Fig. 3.2 Schematic diagram of the primer design for DNA metabarcoding, including Illumina 

adapters, barcodes, heterogeneity spacers and primers. The DNA target region is bordered by 

forward and reverse primers, each containing the necessary components for sequencing and 

identification. 
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3.2.2 PCR Amplification and sequencing 

Polymerase chain reactions (PCRs) were conducted using barcoded primers on a total of 1 to 

245 DNA samples, encompassing all possible sets, including Pilot samples, 12-site samples, 

34-site samples and experimental sets, as detailed in Chapter 2. It was conducted in a volume 

of 20 μl, including 10 μl of PhusionTM Flash master mix (Thermo Scientific, UK), 1 μl of 

forward primer and 1 μl of reverse primer (final concentration of primers: 100 μM), 7 μl of 

ultrapure sterile water (MilliQ water) and 1 μl of DNA (with a concentration between trace 

amounts and 9.3 ng). The amplification of the DNA templates was carried out in either a 

Veriti™ HID 96-Well Thermal Cycler, 0.2mL system (Applied Biosystems, UK) or 0.2 ml 

PCR tubes, depending upon the number of samples be amplified. 

The amplification consisted of an initial denaturation at 98°C for 10 minutes, followed by 28 

to 35 cycles of denaturation at 98°C for 30 seconds; annealing at a primer specific temperature 

for 30 seconds and extension at 72°C for 30 seconds. This was followed by a final extension 

at 72°C for 5 minutes, before being held at 4°C. The PCR success varied between different 

sediments and annealing temperatures and cycle numbers were adjusted to optimise 

amplification yield and specificity. The final values used of annealing temperature and cycle 

numbers were given in Table 3.1. 
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Table 3.1 Final PCR conditions for the thirteen primers, listed by their abbreviated names. The 

1st set includes 0.25g and 2.7g whole sediment samples, along with 10g sieved extractions, 

while the 2nd and 3rd sets utilized 10g whole sediment samples. 

 

 

Primer 

Final PCR conditions 

1st set 2nd/3rd sets 

Annealing Temp 

°C 
Cycles 

Annealing Temp 

°C 
Cycles 

515F 67 35x 67 35x 

ARF  50 35x 50 35x 

ITS 52 35x 52 35x 

VRAIN 67 35x - - 

E1391 

68 

Hot Start fusion 

Master Mix 

35x - - 

D512 51 35x - - 

TAR 55 33x 54 35x 

G18S 63 

28x 

Then 

33x for weak 

ones 

63 33x 

NEM 61 

32x 

Then 

35x for weak 

ones 

- - 

DM568 68 35x 65 35x 

JB3 

1st PCR 

Non coded 50 

2nd PCR 
coded 65 

1st PCR 

Non coded-33x 

2nd PCR 
coded 40x 

1st PCR 
Non coded 50 

2nd PCR coded 60 

1st PCR 
Non coded-10x 

2nd PCR coded 30x 

JB2 50-62 
35 and mlCO 

protocol* 
- - 

mlCOI 50-62 
35 and mlCO 

protocol* 
- - 
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The primer pairs 515F and ITS were well established within our laboratory, demonstrating 

consistent success in amplification and subsequent sequencing. Because these were already 

known to work well, the full set of 12-site dataset’s samples were amplified with barcoded 

versions at the initial run. However, the other primer pairs, despite their potential, required 

further testing and optimization to achieve similar levels of efficacy and reliability.  

For the COI JB3 primer pair, it was observed that while the non-barcoded version successfully 

amplified the target COI region, the coded primers failed to produce any amplification despite 

optimization efforts. To address this issue, a two-step PCR protocol was implemented. In the 

first round, non-coded primers were used to amplify the COI region from genomic DNA. The 

resulting PCR products then served as templates for a second round of PCR using the coded 

primers (conditions detailed in Table 3.1). This strategy allowed the coded primers to bind 

more efficiently to the simpler PCR products rather than the complex genomic DNA, 

effectively incorporating the codes into the final amplicons and resolving the initial 

amplification problem. The COI primer pairs JB2 and mlCOI followed a PCR protocol that 

involved an initial phase of 16 cycles with denaturation at 95°C for 10 seconds, annealing at 

62°C for 30 seconds (decreasing by 1°C per cycle) and extension at 72°C for 60 seconds. This 

was followed by 25 additional cycles with a constant annealing temperature of 46°C, as 

described by (Leray et al., 2013). All primers were supplied by SigmaAldrich Company 

limited. The purification, quantification of PCR products and sequence analysis were 

conducted following the protocols outlined in Chapter 2. The PCR products from multiple 

samples were pooled in equimolar amounts to create a single composite sample. This initial 

pool of the pilot samples was sent to the Earlham Institute in Norwich, UK, for sequencing on 

a single lane of the Illumina MiSeq, using a pre-made library for 300 bp paired-end sequencing, 

followed by NovaSeq 6000 flow cell with 250 bp paired-end for the 12 and 34 sets then 

NextSeq 1000 with 300 bp paired-end for the experiment set of samples. The ASV abundance 

was initially assessed using Mothur software (version 1.45.3; www.mothur.org) (Schloss et al., 

2016) and USEARCH (version 11.0.667; www.drive5.com/usearch) (Edgar, 2010). The data 

were subsequently re-evaluated with updated taxonomic tools and methods via the LotuS2 

pipeline (Özkurt et al., 2022). Taxonomic assignment for bacteria and Archaea was conducted 

using KSGP version 1.0 (Grant et al., 2023) with the GTDB taxonomy hierarchy, while 

Eukaryote assignments utilised Eukaryome version 1.7 (www.eukaryome.org) (Tedersoo et al., 

2024), which specifically covered the 18S, ITS and 28S markers. COI assignments employed 

http://www.mothur.org/
http://www.drive5.com/usearch
http://www.eukaryome.org/
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MIDORI-Longest (www.reference-midori.info) (Leray et al., 2018). Detailed methods were 

described in Chapter 2. Numbers of sequencing reads for each amplicon were shown in Table 

2.5. 

3.3 Results: 

3.3.1 PCR Amplification 

Gel electrophoresis was employed to visualise the PCR products, and confirm amplification 

success of the target DNA regions. This technique facilitated the assessment of product size 

and purity, confirming the presence of specific amplicons and identifying any non-specific 

amplification (Arunachalam et al., 2021). The success of PCR amplifications is summarised in 

Table 3.1. Non-specific products that were shorter than the target can be removed by the 

magnetic bead clean-up process which described in Chapter 2. Additionally, larger non-

specific fragments can be eliminated during the bioinformatics step using size filtering, which 

excluded sequences that fall outside the expected length range. 

Amplification success using PCR was verified by gel electrophoresis and was summarised in 

Table 3.2. Most markers amplified cleanly after minor optimisation: the 

ARF, VRAIN, E1391, D512, TAR, G18S and DM568 primers consistently produced single 

products of the expected size, and 515F primer was usable once large non‑specific fragments 

were removed during magnetic‑bead clean‑up. The ITS primer displayed greater size 

heterogeneity, typical of this locus, but a dominant target band became evident once cycling 

conditions were refined. The JB3 primer required a two‑step PCR; this protocol worked well 

for the 12‑ and 34‑site sets but proved unreliable for the experimental set, so those data were 

excluded. Primers JB2 and mlCOI did not amplify under any tested conditions and were 

therefore omitted from downstream sequencing. Overall, the optimised primer panel provided 

robust amplification coverage for bacteria, archaea and the majority of eukaryotic targets while 

transparently flagging loci that remained problematic. 

https://www.reference-midori.info/


Chapter 3 

63 

 

 

Table 3.2 Overview of amplification results for the 13 primer pairs, summarising amplification 

quality and success across all sequencing runs. 

Primer Amplification Summary 

515F 
Non-specific large products observed; successful amplification in most 

samples 

ARF Single clear product consistently observed 

ITS High variability; improved results with main band visible in later runs 

VRAIN Single clear product in initial set; not tested further 

E1391 Clear product observed with hot start mix 

D512 Single clear product consistently observed 

TAR Clear product; few samples showed short non-specific bands 

G18S Effective amplification; distinct bands visible even in weak samples 

NEM Single clear product; no further testing in later sets 

DM568 Consistently produced correct-sized product 

JB3 
Initially poor specificity; improved with 2-step PCR in 12- and 34-site sets; 

inconsistent in experimental set 

JB2 No amplification detected 

mlCOI No amplification detected 

 

3.3.2 Primer Performance and Taxonomic Classification  

The relative abundance of microbial communities amplified by two prokaryotic primers; 515F 

(Fig. 3.3 A) and ARF (Fig. 3.3 B), with bacteria and Archaea being dominant at the domain 

level as targeted, followed by smaller proportions of Archaea and Eukaryota and a minor 

portion unclassified by the LCA approach used. 
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Fig. 3.3 Relative abundance of domains and the most abundant phyla for; A) 515F and B) ARF 

prokaryotic primers. Data derived from for all datasets and processed using LotuS2/KSPG. 

“Uncertain taxonomy” refers to assignments that remain unresolved at the domain or phylum 

level. 
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Prokaryote databases such as SILVA and GTDB classified organisms using a taxonomic 

hierarchy in which the two domains of Bacteria and Archaea were divided into phyla with no 

intermediated layers. In contrast, eukaryote databases used one or more taxonomic levels  

between domain and phylum (Burki et al., 2020, Vaulot et al., 2022, Tedersoo et al., 2024). 

Taxonomic composition of sequences for the eukaryotic 18S, ITS and 28S primers was 

analysed at various taxonomic levels using the standardized Eukaryome database. This  

categorized organisms into distinct groups starting at the "kingdom" level and ensured 

consistency in data interpretation across taxonomic ranks, facilitating reliable and comparable 

analyses (Tedersoo et al., 2024). For a summary of the most abundant “kingdoms”, refered to 

Table 3.3. 

Table 3.3 Top 10 Eukaryotic Kingdoms, as ranked and defined in the Eukaryome database 

(version 1.7, www.eukaryome.org), according to the number of detected Amplicon Sequence 

Variants (ASVs). 

Metazoa Viridiplantae Fungi Stramenopila Alveolata 

Rhodoplantae Rhizaria Amoebozoa Euglenozoa Other kingdoms 

 

The dominant kingdoms detected by each primer were illustrated in Fig. 3.4, showedvariation 

in community composition based on relative abundance. Primers that mainly targeted 

metazoans, such as DM568, G18S, NEM and TAR, recovered Metazoa as the dominant group, 

whereas Stramenopile prevailed in the fungal primers ITS and VRAINStramenopila. Primer 

JB3 predominantly detected Eukaryota, identified as Eukaryota_2759 in the MIDORI-Longest 

database, as the dominant kingdom. For a substantial number of sequences amplified with the 

ITS, NEM and VRAIN primers, taxonomy was not resolved at the kingdom level. The top 

phyla detected for each primer as follows: Bacillariophyta (diatoms) dominated in D512 and 

ITS, Rozellomycota (fungi) in VRAIN, Mollusca in E1391, Annelida in TAR, Arthropoda in 

DM568 and Nematoda in G18S, JB3 and NEM (Fig. 3.5). Nematoda were also present in 

relatively large proportions in DM568, TAR and ITS, though they did not dominate. 

Additionally, for a substantial number of sequences amplified with JB3 and VRAIN primers, 

taxonomy was not resolved at the phylum level, indicating sequences that could not be 

confidently classified (Sapkota and Nicolaisen, 2015, Macheriotou et al., 2019, Barrenechea 

http://www.eukaryome.org/
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Angeles et al., 2024). This could reflect gaps in reference databases, the detection of 

uncharacterised taxa, or the presence of sequencing-PCR artefacts. This variation across 

primers highlighted their distinct taxonomic specificity. Each primer set targets a subset of 

eukaryotes and none served as comprehensive “universal” Eukaryote or metazoan primers, a 

point revisited in Chapter 6 when comparing metabarcoding with metatranscriptomic data. 

The number of reads per sample varied substantially, ranging from a minimum of 1.3K  reads 

for the VRAIN to a maximum of 726.4K reads for the TAR primer (Error! Reference source n

ot found.). 

 

Fig. 3.4 Relative abundance of the five most abundant kingdoms. Data were processed using 

the LotuS2 pipeline using the MIDORI-Longest database for COI JB3 and the Eukaryome 

database for all others. The D512, E1391 and Vrain datasets were obtained from pilot samples, 

while G18S, ITS and TAR data were derived from all datasets. DM568 (34-sites and exp), 

NEM (pilot and 12-sites) and JB3 (pilot, 12 and 34 sites). “Uncertain taxonomy” refers to 

assignments that remain unresolved at the kingdom level. 
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Fig. 3.5 Relative abundance of the five most abundant phyla. Data were processed using the 

LotuS2 pipeline using the MIDORI-Longest database for COI JB3 and the Eukaryome 

database for all others. The D512, E1391 and Vrain datasets were obtained from pilot samples, 

while G18S, ITS and TAR data were derived from all datasets. DM568 (34-sites and exp), 

NEM (pilot and 12-sites) and JB3 (pilot, 12 and 34 sites). “Uncertain taxonomy” refers to 

assignments that remain unresolved at the phylum level. 

Table 3.4 Overview of sequencing performance for each primer pair from pilot samples. All 

data processed using the LotuS2 pipeline. 

Primer pair 
Average 

Reads/sample 

Average 

ASVs/sample 

Sequencing 

platform 

515F 36.1K 3982 MiSeq 

ARF  493.9K 963 NovaSeq 

ITS 40.5K 884 MiSeq 

VRAIN 1.3K 8 MiSeq 

G18S 698.3K 3426 NovaSeq 

TAR 726.4K 1037 NovaSeq 

D512 90.9K 256 MiSeq 

NEM 32.3K 32 MiSeq 

E1391 56.3K 21 MiSeq 

DM568 8.9K 55 MiSeq 

JB3 233.3K 32 MiSeq 
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The 515F primer generated an average of 36.1K reads and 3982 ASVs per sample. Although 

primer 515F was specifically designed to target bacterial 16S rRNA sequences, amplification 

resulted in 96.2% bacterial reads, with 2.4% classified as Archaea and 1.3% as Eukaryotes. 

The Pseudomonadota phylum, also known as Proteobacteria, made up the largest proportion 

of reads, followed by Bacteroidota and Planctomycetota (Fig. 3.6). Further details on the 

additional taxonomic analysis were provided in Chapter 4.  

 

Fig. 3.6 Distribution of reads across phyla for all datasets, obtained using the 515F primer pair 

and based on the total number of reads. Taxonomic assignments were made using the KSPG 

database, so follow the GTDB taxonomy. For clarity, Phyla contributing under 2.2% each are 

grouped as “other phyla,” totalling 17.19% of abundance. ‘?’ indicates unresolved taxonomy 

at this level by LCA classification using KSGP matches. 

The primer pair ARF was originally designed to target 16S sequences from Archaea (Bahram 

et al., 2019) and generated an average of 493.9K reads and 963 OTUs per sample. At the 

domain level, 96.3% of ARF reads were classified as Archaea, 3.1% remained unidentified to 

any taxonomic group and 0.6% were assigned to other domains. The dominant phyla identified 

were Thermoproteota, Nanoarchaeota and Thermoplasmatota, accounting for 41.5%, 39.9% 

and 8.9% of the total taxonomic composition, respectively (Fig. 3.7). This analysis excluded a 

substantial number of reads without matches in the KSPG database, which likely represented 

PCR artefacts. Further details on these exclusions, along with additional taxonomic analysis, 

were provided in Chapter 5. 
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Fig. 3.7 Distribution of reads across phyla for all datasets, based on the total number of reads 

derived from the ARF primer. Taxonomic assignments were made using the KSPG database, 

so follow the GTDB taxonomy. For clarity, Phyla contributing under 0.7% each are grouped 

as “other phyla,” totalling 1.2% of abundance. ‘?’ indicates unresolved taxonomy at this level 

by LCA classification using KSGP matches. 

The Internal Transcribed Spacer (ITS) primer pair generated an average of 40.5K reads and 

884 ASVs per sample.  The primer pair was originally designed to target ITS sequences from 

fungi (Schmidt et al., 2013). However, at the level of kingdom only 4.6% of reads were 

assigned to fungi (Fig. 3.8 A). The other main taxonomic groups identified were Stramenopila 

18.3%, Viridiplantae 13.6% and Metazoa 8.5%. Around half of the reads did not have hits in 

the ITS section of Eukaryome database. When classified at phylum level, 8.2% of the reads 

were attributed to Nematoda (Fig. 3.8 B). 
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Fig. 3.8 Distribution of reads across A) Kingdoms and B) phyla for all datasets, based on the 

total number of reads derived from the ITS primer. Taxonomic assignments were made using 

the Eukaryome database. For clarity, Phyla contributing under 1.4 % each are grouped as “other 

phyla,” totalling 3% of abundance. ‘?’ indicates unresolved taxonomy at this level by LCA 

classification using Eukaryome matches. 

The VRAIN primer pair was originally designed to target ITS sequences from Eukaryotes 

(Vrain et al., 1992). It generated between 683 and 1917 reads for two samples, but these 

represented only 7 and 9 ASVs respectively which were mainly composed of fungi 13.2% and 

Alveolata 5.3%. 81% of the reads were unclassified (Fig. 3.9 A and B). 
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Fig. 3.9 Distribution of reads across A) Kingdoms and B) phyla for the pilot dataset, based on 

the total number of reads derived from the VRAIN primer. Taxonomic assignments were made 

using the Eukaryome database. ‘?’ indicates that taxonomy is not resolved at this level by LCA 

classification based on matches in Eukaryome. 

On average, the G18S primer pair yielded 698.3K reads and 3,426 ASVs per sample. Metazoa 

accounted for 70% of the reads (Fig. 3.10 A). The proportion of ASVs in each kingdom (Fig. 

3.10 B) showed some variation compared to reads, with Metazoa making up 54.7% of ASVs 

and Stramenopila at 9.6%, despite constituting 12.4% of the reads. Fungi exhibited similar 

proportions in both reads and ASVs. Rhizaria contribute 9% of the ASVs, although they 
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represented only 2.4% of the reads, suggesting higher diversity in this group. At the phylum 

level, Nematoda were the most abundant, comprising 31.1% of reads (Fig. 3.11 A). However, 

the proportion of ASVs in each phylum (Fig. 3.11 B) differed, with Nematoda representing 

only 13.6% of ASVs, indicating lower species diversity despite their abundance. Arthropoda, 

conversely, made up 12% of reads but accounted for 22.2% of ASVs, reflecting greater 

taxonomic diversity. Platyhelminthes showed similar proportions in both reads and ASVs, 

while Cercozoa accounted for 8.1% of ASVs but only 2.2% of reads. These comparisons 

highlighted differences in taxonomic diversity that were not solely based on abundance. 
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Fig. 3.10 Distribution of reads and ASVs across kingdoms for the G18S primer pair across all 

datasets. A) shows the proportion of reads, while B) displays the proportion of ASVs. 

Taxonomic assignments were made using the Eukaryome database. The ‘?’ symbol denotes 

unresolved taxonomy at this level, as classified by LCA using Eukaryome matches. 
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Fig. 3.11 Distribution of reads and ASVs across phyla for the G18S primer pair across all 

datasets. A) shows the proportion of reads, while B) displays the proportion of ASVs. 

Taxonomic assignments were made using the Eukaryome database. Phyla contributing less 

than 2% of the total in each chart are grouped as "other phyla." The ‘?’ symbol denotes 

unresolved taxonomy at this level, as classified by LCA using Eukaryome matches. 

The TAR primer pair generated an average of 726.4K reads and 1,037 ASVs per sample, 

amplifying a wide range of taxonomic groups. At the kingdom level, Metazoa accounted for 

64.6% of the reads (Fig. 3.12 A). The proportion of ASVs in each kingdom (Fig. 3.12 B) 

showed notable differences, with Metazoa making up only 10.3% of ASVs. Stramenopila and 

Fungi exhibited roughly similar proportions in both reads and ASVs, with Stramenopila at 
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12.4% of reads and 14.4% of ASVs. Rhizaria contributed 17.1% of ASVs, despite representing 

only 2.4% of the reads, while other kingdoms account for 2.84% of ASVs but only 2.2% of 

reads. Among the top phyla, Annelida dominated with 27.4% of the reads, followed by 

Nematoda at 12.4%, Platyhelminthes at 14.0%, Bacillariophyta at 11.4% and Arthropoda at 

6.1% (Fig. 3.13 A). The proportion of ASVs across phyla (Fig. 3.13 B) showed a different 

distribution, with ‘Other Phyla’ representing the largest share at 27.0%, followed by Cercozoa 

at 11.2%. Bacillariophyta and Labyrinthulidia each comprised 5.1% of ASVs. These 

differences reflected a higher diversity within certain groups despite lower read abundance, 

particularly for Cercozoa and the broad ‘Other Phyla’ category. Unresolved classifications (‘?’) 

accounted for a substantial portion of the ASVs. 
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Fig. 3.12 Distribution of reads and ASVs across kingdoms for the TAR primer pair across all 

datasets. A) shows the proportion of reads, while B) displays the proportion of ASVs. 

Taxonomic assignments were made using the Eukaryome database. Kingdoms contributing 

less than 2% of the total in each chart are grouped under ‘Other kingdoms’. The ‘?’ symbol 

denotes unresolved taxonomy at this level, as classified by LCA using Eukaryome matches. 
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Fig. 3.13 Distribution of reads and ASVs across phyla for the TAR primer pair across all 

datasets. A) shows the proportion of reads, while B) displays the proportion of ASVs. 

Taxonomic assignments were made using the Eukaryome database. Phyla contributing less 

than 2% of the total in each chart are grouped under ‘Other Phyla’. The ‘?’ symbol denotes 

unresolved taxonomy at this level, as classified by LCA using Eukaryome matches. 

The NEM primer data generated an average of 302K reads and 640 ASVs across the four pilot 

samples and showed a distinct pattern in taxonomic coverage at both the kingdom and phylum 

levels. At the kingdom level, Metazoa dominated with 59.6% of the reads (Fig. 3.14 A). 
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Unresolved classifications (‘?’) accounted for 39.7% of the reads, while other kingdoms 

combined represented only 0.7%. The proportion of ASVs in each kingdom (Fig. 3.14 B) 

showed Metazoa comprising the largest share at 80.8% of ASVs. Unclassified taxa (‘?’) make 

up 13.1%, with Stramenopila and Alveolata contributing 2.1% and 1.1% of ASVs, respectively, 

while other kingdoms constituted 2.9% of ASVs.  

At the phylum level, Nematoda accounted for 36.8% of the reads and 24.8% of ASVs, followed 

by Xenacoelomorpha (16.6% of reads; 4.9% of ASVs), Annelida (3.6% of reads; 21.3% of 

ASVs) and Arthropoda (1.2% of reads; 11.0% of ASVs) (Fig. 3.15 A and B). Unresolved 

classifications (‘?’) represented 39.7% of reads and 14.7% of ASVs. These differences 

highlighted higher diversity within certain phyla despite lower read abundance, particularly for 

Nematoda and Annelida, and underscored the broad range of taxa detected by the NEM primer. 
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Fig. 3.14 Distribution of reads and ASVs across kingdoms for the NEM primer pair across all 

datasets. A) shows the proportion of reads, while B) displays the proportion of ASVs. 

Taxonomic assignments were made using the Eukaryome database. Kingdoms below 0.03% in 

reads and below 1% in ASVs are grouped as 'Other Kingdoms'. The ‘?’ symbol denotes 

unresolved taxonomy at this level, as classified by LCA using Eukaryome "Best hit" matches. 
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Fig. 3.15 Distribution of reads and ASVs across phyla for the NEM primer pair across all 

datasets. A) shows the proportion of reads, while B) displays the proportion of ASVs. 

Taxonomic assignments were made using the Eukaryome database. phyla below 1% in reads 

and 3% in ASVs are grouped as 'Other Phyla'. The ‘?’ symbol denotes unresolved taxonomy 

at this level, as classified by LCA using Eukaryome "Best hit" matches 

The E1391 primer was originally designed to target 18S sequences from Eukaryotes (Liu et al., 

2019). It generated 56k reads for a single sample, but these reads corresponded to only 21 

ASVs, predominantly Stramenopila and Metazoans. The main phyla amplified were 

Phaeophyta (brown algae) 62.6%, Bacillariophyta (diatoms) 23.5% and Arthropoda 6.8% (Fig. 

3.16). 
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Fig. 3.16 Distribution of reads across A) Kingdoms and B) phyla for the pilot dataset, based 

on the total number of reads derived from the E1391 primer. Taxonomic assignments were 

made using the Eukaryome database. For clarity, Phyla contributing under 1% each are grouped 

as “other phyla,” totalling 0.6% of abundance. ‘?’ indicates unresolved taxonomy at this level 

by LCA classification using Eukaryome matches. 

The D512F primer generated an average of 90.9K reads across four samples, identified a 

relatively lower number of ASVs (256) than the other 18S primers, which may indicate a 

limited taxonomic range or reduced efficacy in diversity capture. When classified at phylum 
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level, small proportions of the reads were attributed to Labyrinthulida 3.4%, Chlorophyta 1.5%. 

However, the majority of the phyla proportion amplified by D512F were stramenopiles (97%), 

of which diatoms made up 91.3% (Fig. 3.17 A and B). 

A   

 

B  

 

Fig. 3.17 Distribution of reads across A) Kingdoms and B) phyla for the pilot dataset, based 

on the total number of reads derived from the D512F primer. Taxonomic assignments were 

made using the Eukaryome database. For clarity, Phyla contributing under 1% each are grouped 

as ‘other phyla’, totalling 3.6% of abundance. ‘?’ indicates unresolved taxonomy at this level 

by LCA classification using Eukaryome matches. 
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Although the DM568 primer yielded lower sequencing depth and diversity than 18S eukaryotic 

primers, it provided substantial taxonomic insights. Generating an average of 8.9K reads and 

55 ASVs per sample, the DM568 primer captured important data on taxonomic distribution 

across kingdoms and phyla. This lower sequencing yield was largely due to the limited 

availability of eukaryotic 28S sequences in databases like SILVA and Eukaryome compared 

to the more comprehensive 18S datasets. Nonetheless, a substantial proportion of reads were 

assigned to nematodes, demonstrating the primer’s effectiveness in detecting specific taxa. 

At the kingdom-level distribution, Metazoa overwhelmingly dominated both reads and ASV 

proportions, comprising 93.1% of reads (Fig. 3.18 A) with smaller contributions from 

Alveolata, Other Kingdoms, Rhizaria and Viridiplantae, which together represented the 

remaining 6.9%. Looking at the ASV proportions (Fig. 3.18 B), Metazoa maintained the largest 

share at 61.8%, followed by Alveolata at 10.6% and Rhizaria at 9.8%. Fungi, Viridiplantae, 

Other Kingdoms and Stramenopila appeared in smaller proportions, indicating broader 

taxonomic diversity within ASVs than in read abundance (Fig. 3.19 A). 

Focusing on phylum-level data, Nematoda emerged as the dominant group in read distribution, 

making up 33.9% of reads, followed by Annelida at 19.8% and Platyhelminthes at 15.5% (Fig. 

3.19 A). Arthropoda contributed 14.1%, while ‘Other Phyla’ accounted for 6.4%, with 

unresolved classifications (‘?’) adding another 5.2%. This distribution highlighted the 

prominence of a few key phyla, particularly Nematoda, within the detected community 

structure. For ASV proportions among phyla (Fig. 3.19 B), Nematoda again led with 23.6%, 

closely followed by ‘Other Phyla’ at 26.0%, which reflected high diversity within taxa outside 

the major groups. Arthropoda and Platyhelminthes made up 14.6% and 12.2% of ASVs, 

respectively. Additional minor groups, including Cercozoa, Chytridiomycota and Ciliophora, 

each contributed around 3-7% of ASVs, showcasing a diverse taxonomic representation. 

In summary, despite the lower sequencing depth, the DM568 primer effectively captured key 

taxa, especially nematodes, offering valuable insights into community structure and diversity. 

Further taxonomic characterisation of 28S rRNA-based ASVs was provided in Chapter 6. 
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Fig. 3.18 Distribution of reads and ASVs across kingdoms for the DM568 primer pair across 

all datasets. A) shows the proportion of reads, while B) displays the proportion of ASVs. 

Taxonomic assignments were made using the Eukaryome database. For clarity, Kingdoms 

contributing less than 0.8% of total reads and less than 2% of ASVs are grouped as 'Other 

Kingdoms' in each chart. ‘?’ indicates unresolved taxonomy at this level by LCA classification 

using Eukaryome matches. 
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Fig. 3.19 Distribution of reads and ASVs across phyla for the DM568 primer pair across all 

datasets. A) shows the proportion of reads, while B) displays the proportion of ASVs. 

Taxonomic assignments were made using the Eukaryome database. For clarity, phyla 

contributing less than 3% of total reads and less than 3% of ASVs are grouped as 'Other Phyla' 

in each chart. ‘?’ indicates unresolved taxonomy at this level by LCA classification using 

Eukaryome matches. 

Although the JB3 primer generated a substantial volume of sequence data, averaging 233.3K 

reads per sample, only 32 ASVs were identified. Nearly all 99.9% of the reads were assigned 

to the Eukaryota kingdom, indicating a highly targeted amplification in this domain. For read 

distribution, Eukaryota accounted for 99.9% of reads, with only 0.1% remaining unclassified 
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(‘?’). This reflected the JB3 primer’s targeted performance towards eukaryotic sequences. The 

ASV proportions aligned closely, showed that 92.6% of ASVs belong to Eukaryota, with 7.5% 

remaining unresolved (‘?’).  

In terms of read distribution across phyla, the JB3 sequences included some reads from 

nematodes 6.9%, Ascomycota 3.5%, Arthropoda 0.8% and other minor phyla 0.4%, but the 

vast majority 88.4% were unclassified at the phylum level (Fig. 3.20 A). The ASV proportions 

reflected a similar pattern, with 67.0% of ASVs unclassified (‘?’). Among the classified ASVs, 

Nematoda held the largest share at 8.5%, followed by Rhodophyta 7.5%, Ascomycota 6.4% 

and Oomycota 6.4%, with minor contributions from Arthropoda 3.2% and Platyhelminthes 

1.1% (Fig. 3.20 B). Despite the high read yield, the limited diversity within the ASVs 

highlighted the JB3 primer’s specificity and suggested a narrower amplification range 

compared to other primers, which may restrict broader taxonomic representation.  
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Fig. 3.20 Distribution of A) reads and B) ASVs across phyla for the JB3 primer pair across all 

datasets. Taxonomic assignments were made using the Eukaryome database. Taxonomic 

assignments were made using MIDORI-Longest COI database. For clarity, phyla contributing 

less than 0.4% of total reads and with no threshold applied to ASVs are grouped as 'Other 

Kingdoms' or 'Other Phyla' in each chart. ‘?’ indicates unresolved taxonomy at this level by 

LCA classification using MIDORI matches. 

3.3.3 Performance Comparison of Primers and Microscopy for Nematode Detection 

Building on the extraction and amplification procedures detailed in Chapter 2, he effectiveness 

of each primer set in recovering nematode diversity was evaluated by directly comparing 
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metabarcoding outputs with traditional morphology-based counts. A direct comparison of 

molecular and morphological methods was undertaken to evaluate their effectiveness in 

nematode identification (Table 3.5). Morphologically, an average of 21 species was recorded 

per 100 sieved individuals (Udochi, 2020). By contrast, the metabarcoding approaches 

uncovered substantially higher ASV counts, particularly with the G18S and NEM primers. The 

G18S primer retained the highest number of ASVs in both sieved and whole‑sediment 

treatments, yielding 359 ASVs for sieved samples and 317-483 ASVs for 0.25 g and 2.7 g 

sediment extractions, respectively. The NEM primer also returned elevated ASV numbers 

relative to microscopy. The TAR primer detected moderate ASV numbers, whereas JB3 

identified the fewest ASVs across all treatments. The 2.7 g whole‑sediment extraction yielded 

483 ASVs, whereas the 0.25 g extraction yielded 317 ASVs, however, these counts were 

generated using different extraction protocols (Chapter 2). 

Table 3.5 Average nematode ASVs detected using different primers and sample treatments in 

this study, compared with species counts from morphological identification by Udochi (2020). 

All samples were collected from BW, Norfolk in spring 2020, except for the 0.25 g-TAR 

primer data, which were obtained from the moderately polluted site Mylor Creek (MC), 

southwest England in spring 2022. DNA sequencing was performed using NovaSeq. 

Identification Method 
0.25 g Whole 

sediment 

2.7 g Whole 

sediment* 

Sieved 

nematodes 

Microscopic identification (Sp.) - - 21 

G18S (ASV) 317 483 359 

TAR (ASV) 50 37 56 

NEM (ASV) 86 118 108 

JB3 (ASV) 11 16 19 

* The 2.7 g whole sediment samples were extracted using an RNA-specific kit, as detailed in Chapter 2. 

Assessment of Molecular Identification Methods for Metazoan Diversity. 

To test if different primers and sample treatments influence had an effect on diversity detection, 

the average ASV counts was analysed for 0.25 g and 2.7 g whole-sediment extractions, as well 

as nematodes separated by sieving (Fig. 3.21). Overall, the G18S primer consistently recovered 

the highest average ASV counts across all sample types. TAR recovered over 1000 ASVs from 

both 0.25 g and 2.7 g extractions, compared to nearly 4000 ASVs recovered by G18S. NEM 
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yielded 499 ASVs from the 2.7 g sample. JB3 produced the fewest ASVs across all treatments, 

with values below 160. 

 

 

Fig. 3.21 Average metazoan ASVs detected using different primers and sample treatments. 

All samples were collected from BW, Norfolk in spring 2020, except for the 0.25 g-TAR 

primer data, which were obtained from the moderately polluted site Mylor Creek (MC), 

southwest England in spring 2022. DNA extractions and sequencing were performed using 

NovaSeq. The 2.7 g whole sediment samples were extracted using an RNA-specific kit, as 

detailed in Chapter 2. 
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3.3.3.1 Comparison of Species Richness and Community Structure 

Rarefaction of the metabarcoding data to a standardized sample size of 100 reads allowed for 

direct comparison of molecular diversity estimates with those obtained from morphological 

methods. The resulting box plots of ASV richness revealed differences in the total number of 

species detected by each primer across various sample treatments. K-dominance curves 

facilitated comparisons of the relative abundances of dominant taxa between samples 

The analysis of ASV richness and species dominance patterns revealed pronounced influences 

of primer choice and sample treatment on the detection of nematode diversity. Primer selection 

emerged as the most critical factor, with the biggest differences in nematode diversity observed 

between primers. The G18S primer consistently exhibited the highest ASV richness across all 

sample types (Fig. 3.22), detecting a level of diversity comparable to that obtained through 

morphological identification. The TAR primer also performed well, yielding slightly fewer 

species than G18S but still providing a substantial representation of the nematode community. 
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Fig. 3.22 Combined box and whisker plot showing nematode ASV richness detected by 

primers G18S, JB3, NEM and TAR, together with morphological identification, across all 

samples. 

K-dominance plots demonstrated that G18S and TAR primers produced similar, although not 

identical, patterns in species dominance (Fig. 3.23 A and B). Both primers detected 

communities with a balanced distribution of abundant and rare species, indicating their 

effectiveness in capturing overall community structure. In contrast, the JB3 and NEMF primers 

detected appreciably lower diversity, often with a single ASV dominating the abundance data. 

The k-dominance curves for JB3 and NEMF showed steeper slopes, reflecting dominance by 

a few species and reduced detection of rare taxa. JB3 consistently underperformed across all 

sample sizes assessed and NEMF also showed limited effectiveness in capturing the full 

spectrum of nematode diversity. 
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A 

B 

Fig. 3.23 Combined box-and-whisker and K‑dominance plots illustrating nematode ASV 

richness and species-dominance patterns detected by various primers and treatments across 

different sample types. A) and B) present K‑dominance curves for primers G18S, JB3, NEM 

and TAR on 0.25 g and 2.7 g samples, respectively. (continued in Fig. 3.24) 
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Fig. 3.24 (continuation of Fig. 3.23) shows K‑dominance curves for the same primer sets 

applied to sieved‑mud samples.  

To assess how sample volume influences ASV richness, diversity patterns were examined 

across multiple sediment weights. For G18S (Fig. 3.25 A), the 0.25 g, sieved, and 2.7 g 

treatments display overlapping ASV‐richness medians, however, as the 2.7 g samples were 

extracted with a different protocol, these values are presented descriptively rather than as a 

direct test of sample-size effects. In the Percuil River data (Fig. 3.25 B), 10 g extractions gave 

the highest ASV counts. The G18S recovered the greatest richness and DM568 also yielded 

high, consistent values across replicates.  
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Fig. 3.25 Combined boxes and whiskers and K‑dominance plots illustrating the nematode ASV 

richness and species‑dominance patterns detected by various primers and treatments across 

different sample types. A) compares ASV richness among treatments (0.25 g, 2.7 g, sieved) 

using the G18S primer, while B) compares ASV richness among treatments (10 g, 2.7 g and 

sieved) in sediments sampled from the Percuil River, SW‑UK, using G18S and DM568 primers 

alongside morphological analysis. 
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A comparison of k-dominance curves is presented in Fig. 3.26 A for the 0.25 g, 2.7 g, and 

sieved sediment treatments using the G18S primer. The sieved samples trace the flattest, most 

gradual curve, though replicate spread is evident, whereas the 0.25 g and 2.7 g curves are 

steeper and almost overlapping, indicating a stronger influence of a few abundant ASVs at 

these smaller volumes. Fig. 3.26 B extended the analysis to the larger 10 g extractions. The 

G18S 10 g method displayed the flattest curve. The DM568 10 g method also performed 

relatively well, with a moderately flat curve, though it tended to emphasize dominant taxa 

compared to G18S 10 g. The G18S 2.7 g method showed a steeper curve. 
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B 

Fig. 3.26 Combined boxes and whiskers and K‑dominance plots illustrating the nematode ASV 

richness and species‑dominance patterns detected by various primers and treatments across 

different sample types. A) displays the K‑dominance curves corresponding to the 

ASV‑richness, while B) shows the related K‑dominance curves including morphology data. 
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3.4 Discussion  

An important consideration was whether any single primer set could comprehensively capture 

the entire diversity of marine sediment communities or whether multiple markers were required 

to cover both unicellular and metazoan taxa (Tytgat et al., 2019, Fonseca et al., 2022). By 

evaluating 16S, ITS, 18S, 28S and COI, these findings showed that no single marker alone can 

provide complete eukaryotic coverage, reaffirming the necessity of a complementary multi-

primer approach. The 515F primer pair successfully amplified bacterial 16S rRNA, yielding 

high ASV richness and detecting phyla such as Pseudomonadota, Bacteroidota and 

Planctomycetota (Needham et al., 2019, Polinski et al., 2019, Li et al., 2022). Similarly, the 

ARF primer enriched archaeal 16S rRNA genes, capturing Thermoproteota and Nanoarchaeota 

(Hadziavdic et al., 2014, Hugerth et al., 2014) and Subsequent studies (Di Cesare et al., 2020, 

Schenk et al., 2022, Grant et al., 2023, Zhang et al., 2024a) confirm that archaeal diversity was 

often underestimated without specialised primers. Refining clustering thresholds from 97 to 

99-100% similarity notably improves resolution within Nanoarchaeota and Woesearchaeales, 

which dominated the archaeal OTUs in this study (Edgar, 2017, Grant et al., 2023). Meanwhile, 

the ITS primer pair yielded an average of 41K reads per sample, yet only 4.6% were assigned 

to fungi, while 52% remained unclassified at the kingdom level, possibly due to incomplete 

marine-fungal databases (Derycke et al., 2005, Tytgat et al., 2019). Many ITS-based ASVs 

mapped to groups such as Stramenopila and Viridiplantae (Schmidt et al., 2013, Harnelly et 

al., 2022)  highlighting factors such as sample type, DNA yield, preservation methods and 

database limitations can all influence diversity assessment. VRAIN primers generated fewer 

reads than earlier nematode studies (Vrain et al., 1992, Derycke et al., 2010), pointing to primer 

efficiency or database coverage issues. 

Focusing on 18S primers (G18S, TAR, NEM, E1391, D512) revealed differences in read depth 

and breadth. The G18S primer amplifies the V1-V2 loop (~400 bp), The V1–V2 primers are 

widely used in meiofaunal surveys because they capture a high fraction of nematodes and other 

benthic animals but they recover fewer protist lineages than V4 or V9 markers, partly owing 

to primer mismatches in excavates and haptophytes (Sikder et al., 2020, Liu and Zhang, 2021, 

Gattoni et al., 2023). Accordingly, G18S produced high read counts across metazoans, though 

it underrepresented some protists (Amaral-Zettler et al., 2009, Stoeck et al., 2010, Tytgat et al., 

2019). Both TAR and D512 target the V4 loop (350-420 bp). V4 is generally considered the 
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best “all‑round” region for whole‑community work because it balances broad eukaryote 

coverage with high entropy and good taxonomic resolution (Owens et al., 2024). The TAR 

primers amplified diverse suite eukaryotes here but with slightly lower efficiency (Fonseca et 

al., 2022, Maosa et al., 2024). Previous research often used TAR in fractionated water samples 

(Stoeck et al., 2010, Kim et al., 2012, Shi et al., 2022), excluding certain groups with a 63 µm 

sieve, here, TAR was applied to unfractionated benthic sediment, revealing a broader suite of 

taxa including metazoans. Similarly, the D512, also V4‑based, was dominated by 

stramenopiles, consistent with earlier reports (Zimmermann et al., 2011, Luddington et al., 

2012, Kim et al., 2017). Primers targeting the long V6-V8 region (~600 bp), such as NEM, 

have consistently outperformed other 18S markers for nematode detection, with numerous 

mock-community and field trials reporting over 70% nematode reads in soil or benthic samples 

(Waeyenberge et al., 2019, Sikder et al., 2020, Sikder et al., 2021). Here, NEM was robust for 

nematodes (Porazinska et al., 2009, Sapkota and Nicolaisen, 2015) but returned fewer ASVs 

when sample sizes were standardised to 100 reads, suggesting the possibility of 

underestimating rare protists. Targeting the short V9 loop (310 bp), the E1391 primer pair is 

well-suited for detecting pico-eukaryotes and degraded DNA, capturing alveolate and rhizarian 

clades often missed by V4 or V1-V2 (Amaral-Zettler et al., 2009, Choi and Park, 2020). Its 

taxonomic resolution for animals, however, is generally limited to the class level. Its greater 

sensitivity helps recover overlooked taxa (Choi and Park, 2020). In this study, the E1391 primer 

pair primarily amplified diatoms, indicating its potential use for broad phylogenetic patterns 

rather than fine-scale profiling (Amaral-Zettler et al., 2009, Stoeck et al., 2010, Liu et al., 2019),  

DNA extracted from sediment is often challenging to amplify, thus primer mismatches and 

copy‑number differences can distort read counts (Elbrecht and Leese, 2015). Each primer was 

applied successfully in different contexts, but careful attention to sample type and extraction 

protocols was necessary to minimise underrepresentation (Lamb et al., 2019). Employing 

multiple loci is a straightforward way to mitigate bias, with multi-marker surveys typically 

recovering 25-40% more phyla than single primer sets and reducing locus-specific drop-outs 

(Pompanon et al., 2012, Leary et al., 2014). Ideally, PCR‑free approaches such as shotgun 

metagenomics could more accurately capture taxon abundances by bypassing PCR biases 

(Losada et al., 2014, Eloe-Fadrosh et al., 2016), though higher costs and complex workflows 

limit routine adoption (Carew et al., 2018). PCR-based approaches remain useful but can distort 
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abundances through mismatches and incomplete coverage, requiring researchers to refine 

primer designs and combine multiple markers where possible.  

Sample preparation and extraction size can critically affect both the depth of coverage and the 

range of taxa detected (Barnes and Turner, 2016, Klunder et al., 2019). For instance, mall 

prokaryotes and meiofauna are often better detected in unsieved sediment, because a 63 µm 

sieve retains only the larger particles, the finer filtrate that contains nematodes and other 

microscopic taxa is commonly discarded (Klunder et al., 2019). Conversely,  lower-density 

macrofauna may be underrepresented in unsieved protocols, since the probability of 

encountering larger organisms in any given volume of sediment was reduced (Delmont et al., 

2011, Barnes and Turner, 2016). In this study, diversity metrics from the 2.7 g whole‑sediment 

samples are presented descriptively because those extractions used an RNA-kit protocol that 

differed from the 0.25 g and sieved treatments. Metabarcoding also recovered far more 

nematode ASVs than the 21 species recorded morphologically from the same Breydon Water 

sample, including several rare or cryptic taxa. Smaller volumes (0.25 and 2.7 g) tended to be 

dominated by a few abundant ASVs, whereas the 10 g extractions displayed flatter 

k‑dominance curves, indicating improved evenness and better recovery of rare taxa. Among 

primers, G18S yielded the highest richness across all volumes and out‑performed TAR, NEM 

and JB3, especially at 10 g. Studies targeting these rarer, larger taxa may thus require sieving 

or enrichment steps to ensure more comprehensive representation. Extraction volume (e.g., 

0.25 g, 2.7 g, or 10 g) further influences ASV or OTU recovery, with larger samples generally 

yielding higher diversity but also incurring greater costs in reagents and processing time 

(Gielings et al., 2021). Balancing the trade-offs between sample size, laboratory expenses and 

the target organisms of interest is essential for designing robust metabarcoding studies 

(Lafferty, 2024). In some cases, collecting multiple smaller replicates can also improve 

coverage by accounting for spatial heterogeneity in sediments (Brannock and Halanych, 2015). 

Ultimately, the chosen combination of sieving methods, extraction volumes and replication 

should align with the specific research objectives whether prioritising microfauna, macrofauna, 

or an inclusive survey of all size classes.  

Beyond standard approaches, the widely used 18S, 28S and COI genes offer alternative routes 

for improving species-level resolution. For instance, the DM568 primer exploits the relatively 

faster evolutionary rate of 28S, thereby enhancing taxonomic discrimination among closely 



Chapter 3 

100 

 

related eukaryotic lineages (Derycke et al., 2010, Machida and Knowlton, 2012, Chaudhary 

and Singh, 2013, Shylla et al., 2013, Kounosu et al., 2019). In this study, the primer detected 

Platyhelminthes and cercozoan ASVs not recovered by other 18S datasets, contributing to finer 

taxonomic resolution. Nevertheless, databases contain less 28S sequences than 18S, which can 

limit the accuracy of taxonomic assignment (Watanabe et al., 2023). The JB3 primer set 

amplifies a segment of the COI gene that exhibits a higher mutation rate than 18S. The resulting 

rate of sequence divergence was sufficient to serve as a taxonomic barcode for closely related 

species (Derycke et al., 2005, Tytgat et al., 2019) Nonetheless, many reads remained 

unclassified, likely due to the primer’s amplification bias and the limited availability of COI 

references at higher taxonomic ranks (Tytgat et al., 2019). Both 28S and COI can therefore 

complement 18S by providing finer resolution in certain taxa but depend on more complete 

sequence databases.  

Several primers emerged as particularly effective: G18S and TAR offered broad eukaryotic 

coverage, NEM provided moderate resolution for nematodes, yet a standardised sample size of 

100 reads yielded fewer detections than morphological methods, indicating potential 

underestimation. Additionally, the DM568 primer set contributed extra metazoan and 

protozoan lineages not captured by 18S. ITS amplified relatively few fungal sequences and 

ARF substantially enriched archaeal diversity. In contrast, E1391, D512, JB3 and VRAIN 

demonstrated limited utility in these datasets and were therefore excluded from further 

application. Collectively, these observations highlight persistent gaps in marine reference 

libraries (Porazinska et al., 2009, Sapkota and Nicolaisen, 2015) and underscore the value of a 

multi-primer strategy (Tytgat et al., 2019, Fonseca et al., 2022). Continuing to refine primer 

designs, integrate 18S with alternative markers such as 28S or COI and tailor sample 

preparation methods to specific research goals will further improve the accuracy and taxonomic 

breadth of metabarcoding in complex benthic ecosystems. 
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Chapter 4:    

Impacts of Metal Pollution on Bacterial Community 

Composition, Diversity and Tolerance in Estuarine 

Sediments 

4.1 Introduction 

Metal pollution remains a pervasive threat to aquatic ecosystems worldwide, driven by sources 

such as mining, agriculture and industrial discharge (Järup, 2003, Alloway, 2012). Elevated 

concentrations of heavy metals, particularly copper, often reduce bacterial diversity and favour 

metal-tolerant phyla, including Proteobacteria (Pseudomonadota) and Acidobacteriota 

(Sazykin et al., 2023, Yin et al., 2024). By contrast, contamination levels that exceed 

background but remain below recognized toxic thresholds can, in some cases, amplify 

microbial abundance or even increase diversity, hinting at a possible dose-dependent response. 

Detecting these patterns in estuaries is challenging, however, because metal impacts may be 

masked by overlapping factors such as salinity, nutrient gradients and sediment composition 

(Di Cesare et al., 2020). 

In southwestern England, Ogilvie & Grant (2008) examined 11 estuarine sites across the Hayle, 

Fal and Kingsbridge systems, each sampled with double replicates, finding that copper 

tolerance correlated strongly with porewater Cu concentrations. They identified a threshold 

around 15 µg/L porewater Cu above which Cu tolerance of the microbial community clearly 

increased markedly. Although terminal restriction fragment length polymorphism (T‑RFLP) 

revealed limited changes in taxonomic composition, the physiological evidence underscored 

copper’s ecological importance at those sites.  

A number of studies reported relationships between bacterial community structure and metal 

concentrations. In “heavily polluted” marine sediments in Croatia, Di Cesare et al. (2020) 
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studied 14 sites in Pula Bay-Croatia with elevated Hg (up to 11.5 µg/L), Pb (395 µg/L) and Zn 

(931 µg/L) far above average shale levels of 0.18 µg/L, 20 µg/L and 95 µg/L, respectively, yet 

they concluded that depth and nutrients overshadowed direct metal effects, based on a small 

dataset and correlation-based analysis. Chen et al. (2022) found that low metal loads (e.g. 

copper only about twice local background) in nearshore East China Sea sediments coincided 

with certain community shifts, but those conclusions relied on ten sites spanning a strong 

nearshore–offshore gradient where metals correlated closely with water depth and salinity. 

Zhao et al. (2022) found in the Beibu Gulf that only arsenic exceeded average shale 

benchmarks, while other metals remained at or below these reference values. Their data showed 

that metal concentrations increased from nearshore to offshore, likely because of finer-grained 

sediments accumulating at greater depths. This pattern differs from what one would expect 

under a true pollution gradient, where nearshore sites typically have higher contamination. 

Instead, it indicated that the apparent offshore increase in metals mainly reflects natural 

depositional processes rather than genuine pollution. Du et al. (2022) identified arsenic and 

cadmium as key drivers of microbial differences in Bohai Sea sediments but did not address 

whether these concentrations exceeded recognised toxicity thresholds. Their data indicated that 

As varies from 27.2 to 35.4 ppm (about 2-2.5 times average shale) and Cd from 0.221 to 0.346 

ppm (less than twice average shale), a relatively modest range considering the sediments were 

muddy (as suggested by high Fe). This narrow variation implies that average shale offers a 

reasonable benchmark for assessing metal loads, yet the study’s data appears to lack replicate 

microbial community sampling at each site, which further limits the strength of its conclusions. 

These single-event, low-replication surveys often rely on correlation alone, making it difficult 

to disentangle mild metal elevations from broader estuarine gradients. 

However, the metal concentrations reported by these studies were in most cases only slightly 

elevated above background concentrations; numbers of sites sampled was relatively small and 

metal concentrations were often correlated with other environmental variables. A more detailed 

assessment of these publications was given in the discussion. Besaury et al. (2014) investigated 

two coastal sites in Chile, each exposed to long-term, untreated discharges of copper-rich 

mining waste. One site showed extremely high total Cu (1,410-1,600 µg/g), whereas the other 

remained near background (65 µg/g). Although qPCR and RT-qPCR revealed archaeal and 

bacterial resilience at the contaminated site, only a single sampling event and one core per site 

were used, leaving possible confounders (organic matter, salinity) unaddressed. Like other 
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limited-replication studies, this approach could not isolate whether metal-driven changes 

would hold across broader gradients or under multi-factor scenarios. Similarly, Yin et al. 

(2022) noted (19-34 µg/g), Chen et al. (2022) observed (15-46 µg/g), Peng (2024) documented 

(16-37 µg/g) and Yi et al. (2021) recorded (28-81 µg/g). Such levels may not suffice to reveal 

thresholds for deeper community shifts. Thus, while these works hint at metal-driven effects, 

the combination of low metal elevations, correlation-based methods and confounding 

environmental variables makes it difficult to determine how far metals truly dictate microbial 

composition in estuarine ecosystems. 

This study therefore investigates bacterial community responses along an exceptionally wide 

copper gradient (porewater Cu up to 90-fold, sediment extractable Cu up to 400-fold 

differences) in southwest-UK estuaries, using 16S rRNA amplicon sequencing to test whether 

severe copper loading produces clearer compositional thresholds than previously reported 

under milder contamination. 

4.2 Methods 

4.2.1 Sampling and DNA extraction 

Three replicate samples were obtained from intertidal areas within estuaries in Southwest 

England, across 12 locations as detailed in (Udochi, 2020) and 34 locations as outlined in 

Chapter 2, along with two replicates from Breydon Water, Norfolk. The DNA extraction 

methods were described in Chapter 2. 

4.2.2 PCR and sequencing 

Hypervariable regions V3 and V4 of the 16S rRNA gene were amplified using modified 

versions of the primers 515F and 926R (Turner et al., 1999). The forward primer and the 

reverse primer contain an Illumina adaptor, 8 base barcode, 0-7 bases of length heterogeneity 

spacer and primer sequence (Fadrosh et al., 2014). Primer Specifications were given in more 

detail in Chapter 3. Primers were supplied by Sigma Aldrich Company limited.  
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Polymerase chain reaction (PCR) was conducted in a volume of 20 μl, including 10 μl of 

PhusionTM Flash master mix (Thermo Scientific, UK), 1 μl of forward primer and 1 μl of 

reverse primer (final concentration of primers: 100 μM), 7 μl of ultrapure sterile water (MilliQ 

water) and 1 μl of DNA, with concentrations varying from nearly zero to 9.3 ng/μl, was detailed 

further in Chapter 2. any reactions yielding no visible band on the gel or a concentration of 0 

ng/μL were excluded, as outlined in Chapter 3. The amplification of the DNA templates was 

carried out in a Veriti™ HID 96-Well Thermal Cycler, 0.2mL system (Applied Biosystems, 

UK) in either 0.2mL x 96 well plates or 0.2 ml PCR tubes, depending upon the number of 

samples be amplified. The amplification consisted of an initial denaturation at 98°C for 10 

minutes, followed by 35 cycles of denaturation at 98°C for 30 seconds; annealing at 67 °C for 

30 seconds and extension at 72°C for 30 seconds. This was followed by a final extension at 

72°C for 5 minutes, before being held at 4°C. Primers were supplied by SigmaAldrich 

Company limited. 

The PCR products were visualised using gel electrophoresis as detailed in Chapter 2. Primers 

515F and 926R amplified a product that is 411 bp.  The sequencing adapters, barcodes and 

length heterogeneity spaces increased this length to approximately 550 bp. The PCR products 

were purified using Aline Biosciences PCRClean DX kit (Aline Biosciences, Woburn, USA) 

following the manufacturer protocol except that the ratio of bead suspension to PCR product 

which was 1.8:1 1st run, 1:1 2nd and 3rd runs and 0.7:1 at last run. This ratio was altered in the 

light of experience to improve removal of free primer adaptors and adaptor dimers, which were 

not fully removed when the ratio in the manufacturer’s protocol was used (Quail et al., 2009). 

The PCR products quantification followed methods described in Chapter 2. 

Sequencing of the purified 16S rRNA was performed at the Earlham Institute, Norwich, UK, 

using a pre-made library pool on a single lane of Illumina MiSeq with 300 bp paired-end 

sequencing in June 2021. This was followed by sequencing on a NovaSeq 6 000 flow cell with 

250 bp paired-end in February 2022 and February 2023 and on a NextSeq 1 000 with 300 bp 

paired-end in April 2023. Sequencing of 16S rRNA amplicons yielded up to 399 598 reads per 

sample. A small number of samples yielded only very small numbers of reads ranged between 

0 and 858 reads. When these were excluded the mean number of reads per sample was 21 601 

on MiSeq; 226 438 on NovaSeq 6000 and 71 478 on NextSeq 1 000.  This removal of low 

count samples maintained the integrity of the dataset and enhanced the accuracy of subsequent 
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analyses. The excluded samples included (HR2, HR3 and SJ2) from the 12-site dataset; (JB2, 

LF2 and RC1) from the 34-site dataset; and (TRD_LB2 and RD_Bag) from the experimental 

dataset. outlier samples (HA_Bag and BW_1_1) were also removed due to their clear 

separation from all other samples in the NMDS ordination.  

Bioinformatic analysis was carried out initially using Mothur software, version v.1.45.3 

(www.mothur.org) (Schloss et al., 2016) and sequences were aligned against the SILVA 

database (Pruesse et al., 2007). Subsequent analysis was carried out using the LotuS2 pipeline 

(Özkurt et al., 2022), with taxonomic assignment of sequences using KSGP version 1.0 (Grant 

et al., 2023). Bacterial ASVs were identified using furthest neighbour clustering, based on 

sequence similarity thresholds set during the clustering process. 

4.2.3 Positive control 

Microbial community standards (ZymoBIOMICS, Zymo Research, Irvine, CA, USA) were 

employed as positive controls to ensure the accuracy and reliability of the PCR and sequencing 

processes. Each of the expected ASVs was correctly identified and remained as a single ASV, 

all assigned to the species level. However, there was some variation in their relative abundances 

when compared to the standard, indicating minor discrepancies in abundance (Table 4.1). 

Table 4.1 Comparison between the expected theoretical composition of 16S reads for the 

ZymoBIOMICS Microbial Community Standard and the proportion of reads observed in this 

study. The theoretical composition was sourced from the ZymoBIOMICS manual (Zymo 

Research. ZymoBIOMICS™ Microbial Community DNA Standard Manual). 

Bacterial Sp. 
Theoretical Composition 

% 

This study 

Composition % 

standard 

deviation 

Bacillus subtilis 17.4 20.9 2.5 

Enterococcus faecalis 9.9 12.0 1.5 

Escherichia coli 10.1 1.8 5.8 

Lactobacillus fermentum 

(Limosilactobacillus) 
18.4 31.7 9.4 

Listeria monocytogenes 14.1 16.3 1.6 

Pseudomonas aeruginosa 4.2 0.6 2.5 

Salmonella enterica 10.4 2.2 5.8 

Staphylococcus aureus 15.5 14.4 0.8 

http://www.mothur.org/
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4.3 Results 

4.3.1 Phylogenetic Analysis of Bacterial Communities 

A detailed assessment of phylogenetic relationships was conducted to provide essential 

background for examining how bacterial taxa responded to varying levels of metal pollution. 

The phylogenetic tree constructed using the 515F 16S rRNA dataset showed a highly diverse 

bacterial community (Fig. 4.1). Out of a total of 120,668 ASVs, all were successfully annotated 

at the phylum level, with no unclassified branches observed in the phylogenetic tree. Only 20 

ASVs (0.03%) lacked domain-level classification and were excluded from domain-specific 

analyses, highlighting the comprehensive coverage of the reference database used in this 

analysis. Bacterial ASVs dominated of the dataset, accounting for the vast majority of ASVs, 

with Archaea and Eukaryota made up 5.6% and 0.5% of the total respectively. This contrasted 

with the archaeal phylogenetic analysis presented in Chapter 5, where unclassified branches 

were more prevalent. The bacterial ASVs demonstrated higher levels of taxonomic resolution, 

further emphasising the robustness of the bacterial classifications in this study. 

The refined bacterial phylogenetic tree (Fig. 4.2), after removing non-bacterial ASVs, revealed 

extensive branching within the dominant phyla Pseudomonadota and Bacteroidota, which 

together accounted for roughly half of the bacterial ASVs. Pseudomonadota contained the 

highest number of branches, while Bacteroidota showed a slightly less complex topology. The 

phyla Planctomycetota and Acidobacteriota formed comparatively compact clustered with 

markedly fewer branches, consistent with their lower ASV counts. A distinct clade composed 

of ASVs lacking domain‑level classification (medium blue in Fig. 4.2) was also present. 
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Fig. 4.1 Overview of a phylogenetic tree constructed using 515F 16S rRNA data across all 

datasets. The tree includes all ASVs and highlights the presence of Bacteria (red), Archaea 

(green) and Eukaryota (blue). Taxonomic assignments were performed using the KSPG 

database. 
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Fig. 4.2 Phylogenetic representation of bacterial phyla derived from 515F 16S rRNA data, 

following the removal of non‑bacterial branches. The main phyla identified are 

Pseudomonadota (red), Bacteroidota (dark orange), Planctomycetota (green) and 

Acidobacteriota (brown), with unknown phyla shown in medium blue. Taxonomic assignments 

were performed using the KSPG database. 
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4.3.2 Taxonomic Composition 

To address narrower versus broader metal contamination gradients, subsequent analyses drawn 

on both a 12-site dataset focused on the Fal and Hayle estuaries and a 34-site dataset including 

samples from several other clean and moderately contaminated estuaries. This design enabled 

a multi-scale exploration of how pollution influenced bacterial communities, providing a 

comparative framework for later sections. The dominant bacterial phyla, Pseudomonadota and 

Bacteroidota, together accounted for nearly half of the 36 million reads, reflecting their 

consistent abundance across all datasets (Fig.4.3 A and B). Pseudomonadota alone contributed 

over a third of the total reads, while other phyla such as Planctomycetota, Desulfobacterota and 

Acidobacteriota were less prevalent, each representing only about 4 - 8% of the community.  

Assessment of bacterial ASVs revealed a nuanced picture of diversity, as differences between 

read abundance and ASV richness highlighted the complexity of community structure (Fig. 4.3 

A and 4.4 A) and (Fig. 4.3 B and 4.4 B). Pseudomonadota and Bacteroidota exhibited high 

read abundance but lower ASV richness, while Actinomycetota and Verrucomicrobiota had 

more evenly distributed reads across ASVs. 

Comparisons between the KSPG and SILVA databases showed a similar predominance of 

bacterial reads at 96.2% and 97.5%, respectively, with archaeal reads consistently around 2.4%. 

Pseudomonadota and Bacteroidota remained the dominant phyla in both datasets, although 

subtle differences in the relative ordering of Desulfobacterota and Acidobacteriota (Fig. 4.4 A 

and B). Unclassified phyla constituted 8-12% of reads and ASVs, all of which were classified 

as bacteria but remained unresolved at the phylum level.  
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A (KSPG)  

B (SILVA) 

Fig. 4.3 Distribution of reads across phyla for all datasets after excluding non‑bacterial reads. 

Based on the total number of reads, taxonomic assignments were made using the KSPG 

database for (A) and the SILVA database for (B). Phyla making up less than 2.2% of the total 

are combined into “other phyla.” The ‘?’ symbol indicates that taxonomy was not resolved at 

the phylum level by LCA classification based on matches in the assigned databases. 
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A (KSPG)  

B (SILVA) 

Fig. 4.4 Distribution of ASVs across phyla for all datasets after excluding non‑bacterial reads. 

Taxonomic assignments were made using the KSPG database for (A) and the SILVA database 

for (B). Phyla making up less than 1.2% of the total are combined into “other phyla.” The ‘?’ 

symbol indicates that taxonomy was not resolved at the phylum level by LCA classification 

based on matches in the assigned databases. 

4.3.3 NMDS Analysis of Replicate Consistency and Similarities Between Datasets 

Analyses of replicate consistency and cluster patterns illustrated how bacterial communities 

responded to contamination gradients within both the 12‑site and 34‑site datasets. NMDS and 

ANOSIM showed that replicate samples from each site clustered closely. The Fig. 4.5 also 

showed partial overlap among the 12‑site, 34‑site and experimental datasets. The 12‑site 

dataset captured a narrower contamination gradient, whereas the 34‑site dataset covers broader 

spatial and metal variability. By contrast, pilot and experimental samples plotted apart from 

field‑collected data. Polluted sites occupied broadly similar positions within both datasets, 
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although subtle differences emerged among samples from the same location 

(see Section 4.3.7).  

 

Fig. 4.5 Sample ordination using Non-metric Multi-dimensional Scaling (NMDS) of Bray-

Curtis similarity matrix of bacterial abundances, based on square root transformed data, derived 

from all datasets; Pilot, 12-sites, 34-sites and experiment. Each two-letter sample label 

represents site, colours represent the different datasets. Outlier samples were excluded as 

described in the methods section. All datasets performed with 0.1% ASV pruning. Data 

processed using LotuS2 in conjunction with the KSPG database. Site codes as in Table 2.1. 

When considering the 12‑site and 34‑site datasets (Fig. 4.6), replicates from each site clustered 

closely together. Sites with high contamination levels, such as Hayle (HA, HB) 

and Restronguet Creek (RA), plotted towards the upper region of the ordination, while cleaner 

sites, such as Breydon Water (BW) and the Avon River sites (VA, VB, VC) laid towards the 

lower or right areas. Sites in intermediate positions reflected a gradient of contamination levels. 
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Fig. 4.6 Sample ordination using NMDS of Bray-Curtis similarity matrix of square root 

transformed bacterial abundance data, showing the 12 and 34 site datasets. Each two-letter 

sample label represents site, colours represent the different datasets. All datasets performed 

with 0.1% ASV pruning. Data processed using LotuS2 in conjunction with the KSPG database. 

Site codes as in Table 2.1. 

In the 12‑site dataset (Fig. 4.7 A), samples from Breydon Water (BW) clustered at the bottom 

of the plot and were separated from all Southwest sites. Excluding BW samples (Fig. 4.7 B) 

resolved the ordination, with polluted sites (HA, HB, RA) clustering to the left, distinct from 

cleaner sites. Replicates remained closely grouped. The BW samples clustered closely together 

in the plots, showing similar community compositions among themselves. 
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A 

B  

Fig. 4.7 Sample ordination using NMDS of Bray-Curtis similarity matrix of square root 

transformed bacterial abundance data from the 12-site dataset. A) includes Breydon Water sites 

(stress value = 0.18), while B) excludes them (stress value = 0.16). Each two-letter sample label 

represents site, colours represent the different datasets. All datasets performed with 0.1% ASV 

pruning. Data processed using LotuS2 in conjunction with the KSPG database. Site codes as 

in Table 2.1. 
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The NMDS plot for the 34‑site dataset (Fig. 4.8) showed consistent clustering of replicates, 

with minimal within‑site variability in most cases. Sites with the highest pore‑water copper 

concentrations, including Hayle (HA, HB) and Restronguet Creek (RA, RB, RC, RD), were 

positioned towards the upper and left regions of the ordination. Conversely, cleaner sites, 

including River Avon (VA, VB, VC), were positioned towards the far right of the plot, clearly 

separated from the polluted sites. 

 

Fig. 4.8 Sample ordination using NMDS of Bray-Curtis similarity matrix of square root 

transformed bacterial abundance data from the 34-site dataset (stress value = 0.14). Each two-

letter sample label represents site. All datasets performed with 0.1% ASV pruning. Data 

processed using LotuS2 in conjunction with the KSPG database. Site codes as in Table 2.1. 

For the experimental samples, (Fig. 4.9) illustrated the differences in community composition 

between treatments. The first part of the treatment name indicated the inoculum source, with 

“bag” samples reflecting the initial community composition. The second part identified the 

defaunated sediment source in each replicate, as distinguished by colour. Treatments clustered 

more strongly by the sediment’s site of origin rather than by inoculum source. Consistently, 
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NMDS ordination indicated a stronger effect of sediment source on community structure than 

inoculum source, which was supported by ANOSIM results in Section 4.3.5. 

The Sediment Source factor yielded a considerably higher R‑value (0.85) 

than Inoculum Source (0.16), although both were statistically significant (p < 0.001). 

Clustering patterns followed a gradient of decreasing metal concentration from left to right, 

with heavily polluted sediments (red) forming one cluster and the cleanest sediments (green) 

on the opposite side. Helford (LB) and Percuil (PA) samples grouped near Avon sites. 

 

Fig. 4.9 Sample ordination using NMDS of Bray-Curtis similarity matrix of square root 

transformed bacterial abundance data from the experiment set samples (stress value = 0.17). 

Colours represent the different test sediments. The first two letters in the sample labels indicate 

the source of the inoculum, while the second two letters represent the sediment that makes up 

75% of the total composition. Outlier samples were excluded as described in the methods 

section. All datasets performed with 0.1% ASV pruning. Data processed using LotuS2 in 

conjunction with the KSPG database. Site codes as in Table 2.1. 
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4.3.4 Microbial Diversity Across Pollution Gradients 

Rarefaction curves and rarefied ASV counts were generated to standardise sequencing depth 

across samples in both the 12-site (Fig. 4.10 A and B) and 34-site datasets (Fig. 4.11 A and B). 

To evaluate environmental influence, Spearman’s rank correlation was then applied to test the 

association between PWCu concentrations and bacterial ASV richness. The analysis revealed 

a significant yet weak negative association between PWCu and bacterial richness; for the 12 

sites, rho = -0.23 (p ≤ 0.05); for the 34 sites, rho = -0.16 (p ≤ 0.01). 
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A 

B  

Fig. 4.10 A) Rarefaction curves for bacterial samples for 12 sites, illustrating ASVs richness 

in relation to sample size. B) Box and whisker plot of ASV counts rarefied to a sample size 

equivalent to the lowest sample size (7 989) across different sites, sites were arranged in 

increasing order of porewater copper concentrations with sites above and below 20 µg/L 

indicated in red and green respectively. ANOVA results (F = 39.8, p < 0.001). Spearman's rank 

correlation between ASV richness and porewater copper concentration (rho = -0.23, p ≤ 0.05). 

Site codes as in Table 2.1. 



Chapter 4 

119 

 

A 

B  

Fig. 4.11 A) Rarefaction curves for bacterial samples for 34 sites, illustrating ASVs richness 

in relation to sample size. B) Box and whisker plot of ASV counts rarefied to a sample size 

equivalent to the lowest sample size (46 193) across different sites, sites are arranged in 

increasing order of porewater copper concentrations with sites above and below 20 µg/L 

indicated in red and green respectively. ANOVA results (F = 12.8, p < 0.001). Spearman's rank 

correlation between ASV richness and porewater copper concentration (rho = - 0.16, p ≤ 0.01). 

Site codes as in Table 2.1. 
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In the 12-site dataset, the ANOVA yielded the highest F value (39.8). However, (Fig. 4.10 B) 

does not clearly separate heavily contaminated locations from less polluted ones. In the 34-site 

analysis, the ANOVA also pointed to strong inter-site differences (F = 12.8), yet some highly 

contaminated sites displayed richness levels comparable to cleaner areas. 

Sample‑based accumulation curves (Fig. 4.12) were constructed to assess whether ASV 

richness approached an asymptote as additional sites were included in the survey. The bacterial 

richness climbed quickly in the 12‑site set and added few new ASVs after 25 samples (Fig. 4.12 

A), while the 34‑site curve flattened by 80 samples with a narrower confidence band; both 

curves leveled off before a full plateau, indicating most common taxa were captured, with rare 

taxa still under‑represented, especially in the smaller survey (Fig. 4.12 B). 
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A 

B 

Fig. 4.12 Sample‑based species‑accumulation curve for 16S rRNA ASVs recovered from A) 

the 12‑site and B) 34‑site bacterial surveys. The solid line represents the mean cumulative 

richness and the light‑blue polygon the 95 % confidence envelope. Site codes as in Table 2.1. 
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4.3.5 Effect of ASV Rare Removal on Analysis 

Further filtering was applied by retaining only ASVs with a relative abundance of 0.1% or 1% 

or higher, ensuring that rare or insignificant taxa were excluded from the analysis. In the 12‑site 

dataset (Fig. 4.13), the NMDS ordination that included all ASVs (Fig. 4.13 A) showed a wider 

spread of sample points. Applying a 0.1 % threshold (Fig. 4.13 B) reduced the spread and 

brought replicates from the same site closer together. Increasing the threshold to 1 % (Fig. 4.14) 

further reduced the number of ASVs and compressed the ordination.  
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A All ASVs Retained 

B Pruned (<0.1%) 

Fig. 4.13 NMDS bubble plots of the 12-site dataset using square root transformed data based 

on Bray-Curtis similarity of bacterial abundances. It compares ASV counts across all sites 

under two conditions: A) without removing rare ASVs and B) with ASVs occurring at less than 

0.1% abundance in all samples removed. Stress values are 0.22 and 0.16, respectively. Bubble 

sizes represent the pore water copper (Cu) concentrations at each site. Site codes as in 

Table 2.1. 
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Pruned (<1%) 

Fig. 4.14 NMDS bubble plot of the 12-site dataset using square root transformed data based on 

Bray-Curtis similarity of bacterial abundances. It shows ASV counts across all sites with ASVs 

occurring at less than 1% abundance in all samples removed. Stress value is 0.20. Bubble sizes 

represent the pore water copper (Cu) concentrations at each site. Site codes as in Table 2.1. 

In the 34‑site dataset (Fig. 4.15), ordinations produced with no pruning (Fig. 4.15 A) and with 

a 0.1 % threshold (Fig. 4.15 B) were similar, although replicate clusters were slightly tighter 

after pruning. With a 1 % threshold (Fig. 4.16), the ordination displayed less dispersion among 

sites.  
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A All ASVs Retained   

B Pruned (<0.1%) 

Fig. 4.15 NMDS bubble plots of the 34-site dataset using square root transformed data based 

on Bray-Curtis similarity of bacterial abundances. It compares ASV counts across all sites 

under two conditions: A) without removing rare ASVs and B) with ASVs occurring at less than 

0.1% abundance in all samples removed. Stress values are 0.13 and 0.14, respectively. Bubble 

sizes represent the pore water copper (Cu) concentrations at each site. Site codes as in 

Table 2.1. 
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Pruned (<1%) 

Fig. 4.16 NMDS bubble plot of the 34-site dataset using square root transformed data based 

on Bray-Curtis similarity of bacterial abundances. It shows ASV counts across all sites with 

ASVs occurring at less than 1% abundance in all samples removed. Stress value is 0.20. Bubble 

sizes represent the pore water copper (Cu) concentrations at each site. Site codes as in 

Table 2.1. 

Results from ANOSIM (Fig. 4.17) indicated that R-values in the 12‑site dataset peaked at 0.1 % 

and remained comparable across other thresholds. In the 34‑site dataset, R‑values for no 

pruning and 0.1 % were similar, whereas the 1 % threshold gave a lower R‑value. 
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Fig. 4.17 ANOSIM R-values for 12-site, 34-site and experimental datasets generated using the 

515F primer under three pruning thresholds (no pruning, 0.1% and 1%). The experimental 

dataset includes inoculum source and sediment source factors. The results illustrate the degree 

of dissimilarity between sites, with R statistics quantifying the strength of clustering. R-values 

> 0.75 indicate very strong differences between groups and all results are statistically 

significant (p ≤ 0.0001). 

4.3.6 Evaluating Site Grouping Consistency 

To compare community-level and phylogenetic ordinations, Bray-Curtis and UniFrac metrics 

were applied to the bacterial datasets. In the Bray-Curtis ordination (Fig. 4.18 A), samples from 

sites with higher pore‑water copper concentrations were positioned nearer each other, whereas 

samples from lower‑copper sites were placed farther away. The UniFrac ordination 

(Fig. 4.18 B) showed less alignment with copper levels, and sample positions did not separate 

strongly along the contamination gradient. . 
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A Bray-Curtis 

B UniFrac 

Fig. 4.18 Comparison of A) Bray-Curtis and B) UniFrac NMDS similarity matrices of square 

root transformed plots. derived from 12 and 34 site datasets, each two-letter sample label 

represents site, colours represent the different datasets. No ASVs were pruned for both datasets. 

Data processed using LotuS2 in conjunction with the KSPG database. Site codes as in 

Table 2.1. 



Chapter 4 

129 

 

4.3.7 Comparison of Clustering Patterns Between NMDS and PCoA Analyses 

To compare the effectiveness of ordination methods for bacterial community composition 

across pollution gradients, NMDS and Principal Coordinates Analysis (PCoA) were applied. 

In the 12‑site dataset, the NMDS ordination (Fig. 4.19 A) separated sites with higher 

pore‑water copper (PWCu) concentrations (HA, HB, RA) from cleaner sites (PC, SJ, CO) 

along the NMDS1 axis. The corresponding PCoA ordination (Fig. 4.19 B) showed the same 

general pattern, but polluted and clean sites were less distinct. For the 34‑site dataset, 

NMDS (Fig. 4.20 A) separated heavily polluted sites (HA, HB, RA, RB) from less polluted 

ones. The PCoA ordination (Fig. 4.20 B) displayed broader trends but less separation among 

sites with lower PWCu. Hierarchical clustering supported the ordinations. In the 12‑site 

dendrogram (Fig. 4.21 A), sites HA, HB and RA formed one cluster, whereas PC, SJ and CO 

clustered separately. Replicates from each site grouped together. In the 34‑site 

dendrogram (Fig. 4.21 B), HA, HB and RA clustered together, while cleaner sites showed more 

dispersion. Overall, NMDS separated sites along the PWCu gradient more than PCoA. 

Hierarchical clustering showed a similar grouping pattern. 
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A  

B  

Fig. 4.19 Comparison of A) NMDS (Non-metric Multidimensional Scaling) and B) PCoA 

(Principal Coordinates Analysis) on Bray-Curtis distances for square root transformed 12 site 

dataset. Bubble sizes represent PWCu levels. A 0.1% ASV pruning threshold was applied in 

these analyses. Site codes as in Table 2.1. 
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A 

B  

Fig. 4.20 Comparison of A) NMDS and B) PCoA on Bray-Curtis distances for square root 

transformed 34 site dataset. Bubble sizes represent PWCu levels. A 0.1% ASV pruning 

threshold was applied in these analyses. Site codes as in Table 2.1 
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A 

B 

Fig. 4.21 Single linkage hierarchical clustering dendrogram of A) 12-Site and B) 34-site 

datasets. Branch heights represent the degree of dissimilarity between site clusters. Bray-Curtis 

similarity matrices were used, with 0.1% ASV pruning. Site codes as in Table 2.1 
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4.3.8 The Relationships Between Ecological Patterns and Environmental Variables 

The relationships between environmental variables and microbial community composition 

were assessed using the BIOENV method (Clarke and Ainsworth, 1993), based on Spearman’s 

rank correlation. For the bacterial communities at the 12 sites, the highest correlation with 

community composition was achieved by a combination of variables; AVS, PWCu, DOC, 

PW_OC_Cu and Salinity (Fig. 4.22). Among individual variables, PWCu gave the highest 

correlation value. 

 

Fig. 4.22 Spearman's rank correlation (Rho) for BIOENV analysis of the relationships between 

environmental variables and microbial community composition for the 12-sites dataset. Bar 

colours indicate statistical significance: blue; most significant correlations (p < 0.05); orange; 

moderate significance (0.05 < p < 0.1); and red; non-significant (p ≥ 0.1). Site codes as in 

Table 2.1. AEMCu (Acid-Extractable Copper), LT63 (<63 µm fines), AVS (Acid Volatile 

Sulphide), PWCu (Porewater Cu), TOC (Total Organic Carbon), DOC (Dissolved Organic 

Carbon), PW_OC_Cu (DOC normalised PWCu), EqPCu (Equilibrium Partitioning Cu), D50 

(Median Grain Size), Sal (Salinity), and pH. 

However, the multivariable combination provided additional context by incorporating factors 

such as organic-bound copper and sediment characteristics, which collectively enhanced 

explanatory power. The bubble plots for PWCu and PW_OC_Cu (Fig. 4.23 A and B) showed 

a clear alignment with the BIOENV findings. Sites with higher porewater copper and 

organically bound copper form distinct clusters. 
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A PWCu 

B PW_OC_Cu 

Fig. 4.23 NMDS plots of square root transformed data of bacterial abundances illustrating the 

spatial patterns of the 515F bacterial community structure derived from the 12-site dataset in 

relation to key environmental variables: A) PWCu, B) PW_OC_Cu. Bray-Curtis similarity 

matrices were used, with a 0.1% ASV pruning threshold. 
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In contrast, the 34-site dataset displayed a broader range of significant environmental 

parameters. Not only did porewater copper (PWCu), fine sediment fraction (LT63) and Salinity 

collectively yielded the highest correlation (Fig. 4.24 A), but each of these variables, along 

with median grain size (D50), also exhibited individually significant relationships with 

bacterial community composition. D50, in particular, showed the strongest single-variable 

correlation. 
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A 

B  

Fig. 4.24 Spearman's rank correlation (Rho) for BIOENV analysis of the relationships between 

environmental variables and microbial community composition. A) shows the results for the 

34-sites dataset, and B) for the 34-sites dataset excluding highly polluted sites (HA, HB, RA 

and RB). Bar colours indicate statistical significance: blue; most significant correlations (p < 

0.05); orange; moderate significance (0.05 < p < 0.1); and red; non-significant (p ≥ 0.1). PWCu 

(Porewater Cu), AEMCu (Acid-Extractable Cu), D50 (Median Grain Size), LT63 (<63 µm 

Fines), Sal (Salinity). 
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The NMDS plots confirmed the overarching effect of PWCu, LT63 and Salinity on community 

patterns but also revealed that the most heavily polluted sites (HA, HB, RA and RB) dominated 

the overall ordination (Figs. 4.25 A, B and 4.26 A).  

When HA, HB, RA and RB were excluded (Figs. 4.26 B, 4.27 A, B and Fig. 4.28). BIOENV 

pointed to LT63 and Salinity as the most influential variables, with PWCu becoming non-

significant (Fig. 4.24 B). Meanwhile, D50 remained important but displayed a more diffuse 

pattern. In support of these findings, Principal Components Analysis (PCA) further highlighted 

the influence of D50 on the 34-site dataset: the pronounced vector in the PCA biplot signified 

a strong correlation with one of the principal components and a distinct effect on how sites 

clustered. This pattern persisted even in the face of limited variability in PWCu across certain 

sites. Although D50 was statistically significant in BIOENV. 
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A PWCu 

B) LT63 

Fig. 4.25 NMDS plots of square root transformed data of bacterial abundances illustrating the 

spatial patterns of the 515F bacterial community structure derived from the 34-site dataset in 

relation to significant environmental variables. A) shows the relationship with PWCu, and B) 

with LT63. Both plots include all sites. Bray-Curtis similarity matrices were used, with a 0.1% 

ASV pruning threshold. Site codes as in Table 2.1. 
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A Salinity 

B PWCu (high polluted sites excluded)  

Fig. 4.26 NMDS plots of square root transformed data of bacterial abundances illustrating the 

spatial patterns of the 515F bacterial community structure. A) shows the relationship with 

salinity across all sites, while B) shows the relationship with PWCu after excluding highly 

polluted sites (HA, HB, RA, RB). Bray-Curtis similarity matrices were used, with a 0.1% ASV 

pruning threshold. Site codes as in Table 2.1. 
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A LT63 (high polluted sites excluded)  

B Salinity (high polluted sites excluded)  

Fig. 4.27 NMDS plots of square root transformed bacterial abundances from the 34-site 

dataset after excluding highly polluted sites. A) shows the relationship with LT63, and B) 

shows the relationship with salinity. Bray-Curtis similarity matrices were used, with a 0.1% 

ASV pruning threshold. Site codes as in Table 2.1. 
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D50 (high polluted sites excluded) 

Fig. 4.28 NMDS plot of square root transformed bacterial abundances from the 34-site dataset 

showing the relationship with D50 after excluding highly polluted sites (HA, HB, RA, RB). 

Bray-Curtis similarity matrices were used, with a 0.1% ASV pruning threshold. Site codes as 

in Table 2.1. 

4.3.9 Identifying Copper-Tolerant and Sensitive Phyla 

To identify phyla that were tolerant or sensitive to copper pollution, ASV counts were 

aggregated to the phylum level. Average abundances in clean sites (ava) and polluted sites 

(avb) were calculated for each phylum and the fold change between polluted and clean sites 

was determined along with p-values. In the 12-site dataset, two bacterial phyla displayed 

significant differences in abundance between clean and polluted environments (Fig. 4.29 A). 

Cyanobacteriota showed a strong positive fold change and was significantly more abundant in 

clean sites. In contrast, Pseudomonadota exhibited a significant negative fold change. A 

phylum with unresolved taxonomy (‘?’) also showed a significant increase in clean sites. Other 

major phyla, such as Desulfobacterota and Spirochaetota, displayed abundance differences but 

did not reach statistical significance. 

In the 34-site dataset, fewer phyla demonstrated statistically significant relationships with 

copper levels (Fig. 4.29 B). Pseudomonadota, Planctomycetota, Gemmatimonadota and 
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Acidobacteriota were all significantly less abundant in clean sites. Remarkably, 

Pseudomonadota was the only phylum consistently identified as significantly less abundant in 

clean sites across both the 12-site and 34-site analyses. Unlike the 12-site dataset, no phyla in 

the 34-site analysis showed a significant increase in unpolluted environments, with most 

significant findings indicating higher abundance under polluted conditions. 
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A 

B  

Fig. 4.29 Heatmap illustrating the top 10 phyla exhibiting significant differences in abundance 

between polluted and clean sites across A) 12-site and B) 34-site datasets, along with their p-

values and raw fold changes. The phyla were sorted based on their average SIMPER 

contribution to dissimilarity between groups. Statistical significance is indicated by asterisks 

(*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001), with "NS" denoting non-significant results. Darker 

colour intensities represent higher raw fold changes, blue shades indicate negative fold changes 

(more abundant in clean sites) and red shades indicate positive fold changes (more abundant in 

polluted sites). Raw fold changes [log₂(ava²/avb²)] revert the square-root-transformed averages 

to the original abundance scale. Taxonomic assignments were made using the KSPG database. 

‘?’ means unresolved taxonomy by LCA in KSGP. 
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4.3.10 Identifying Copper-Tolerant and Sensitive Taxa at the ASV Level 

In the 12-site dataset (Fig. 4.30 A), all highlighted ASVs displayed statistically significant 

differences in abundance between clean and polluted environments. Cyanobacteriota-affiliated 

ASVs (e.g., ASV13 and ASV310) were reasonably more abundant in clean sediments. In 

contrast, multiple Pseudomonadota-affiliated ASVs (e.g., ASV294 and ASV53) were 

consistently more abundant in polluted sites. Although several Desulfobacterota and 

Bacteroidota ASVs also differed significantly, their patterns were less uniform. In the broader 

34-site dataset (Fig. 4.30 B), all identified ASVs were likewise significant but showed a 

tendency to be more abundant in polluted sediments. Here, Pseudomonadota and 

Desulfobacterota ASVs consistently exhibited negative fold changes in clean environments. 
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A 

B  

Fig. 4.30 Heatmap showing the top 10 significant ASVs for A) the 12-site and B) the 34-site 

datasets, each selected based on their average SIMPER contribution to differences between 

polluted and clean sites. Asterisks indicate statistical significance (p≤0.05; *p≤0.01; 

**p≤0.001). Colour intensity corresponds to raw fold changes, with blue indicating ASVs more 

abundant in clean sites and red indicating ASVs more abundant in polluted sites. Raw fold 

changes [log₂(ava²/avb²)] revert the square-root-transformed averages to the original 

abundance scale. For ASVs with zero counts in clean sites (ASV310 and ASV362 in the 12-

site dataset), an upper raw fold change limit of 15 was assigned. Taxonomic assignments were 

determined using the KSPG database.  
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4.4 Discussion 

The study encompassed 34 estuarine sites in Southwest England, each sampled in triplicate, 

surpassing many earlier T-RFLP-based or single-site investigations in both scope and 

replication and thereby providing robust statistical power. Earlier surveys that used low-

resolution techniques such as PLFA profiling (Agnihotri et al., 2023) or ARISA (Abed et al., 

2015), reported broad variability but could not identify which taxa or functions tracked metal 

loads, illustrating the need for the high-throughput sequencing approach adopted here. 

Variation among replicates was consistently lower than variation among sites, showed that 

differences in environmental variables, including copper (Cu), primarily drive community 

changes. A significant but relatively weak negative correlation emerged between porewater Cu 

and alpha-diversity. Community composition at the most heavily contaminated sites diverged 

sharply from that at cleaner locations, with HA, HB, RA, RB, RC and RD showing particularly 

pronounced responses to elevated Cu levels. However, there were no clear relationships 

between community composition and Cu concentration at sites where contamination was more 

moderate so where effects may be limited or obscured by salinity, sediment texture and organic 

content. Pseudomonadota, especially Pseudomonas spp., are well documented to proliferate 

under heavy‑metal stress because they combine broad substrate versatility with copper‑efflux 

systems and pollutant‑degrading pathways, allowing them to out‑compete less tolerant taxa at 

highly contaminated sites (Zhang et al., 2007, Vojtková and Janulková, 2012, Panov et al., 

2013). 

These findings highlight that bacterial communities in estuarine sediments were influenced by 

copper contamination alongside salinity, sediment texture and other environmental gradients. 

Across up to 34 sites in Southwest England, porewater copper ranged from about 5 to 431 µg/L, 

while extractable copper reached up to 1797 µg/g, enabling a significantly wider contamination 

gradient than many earlier marine or estuarine surveys. Pseudomonadota and Bacteroidota 

together accounted for roughly half of the total sequence reads, mirroring other marine settings 

(Polinski et al., 2019). Yet at the ASV level these two phyla contributed a much smaller fraction 

of the total richness, indicating that their dominance in reads was driven by a relatively small 

number of very abundant ASVs. Smaller phyla such as Actinomycetota and 

Verrucomicrobiota, by contrast, showed more even read-ASV ratios, implying a broader spread 

of taxa and fewer single‑lineage dominants. Considering both read abundance and ASV 
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diversity is therefore essential for capturing the full complexity of community composition. 

Compared with the 12‑site survey, the 34‑site accumulation curve approached its asymptote 

earlier and with a narrower confidence band, indicating that broader spatial coverage rather 

than deeper sequencing was pivotal for capturing the bulk of bacterial diversity. 

Pseudomonadota typically became more abundant at severely polluted sites, whereas 

Cyanobacteriota declined, in line with findings that chronic metal exposure selects for resistant 

taxa (Pennanen et al., 1996, Ranjard et al., 2013, Goswami et al., 2023, Sazykin et al., 2023, 

Yin et al., 2024). Some Desulfobacterota also appeared at heavily polluted locations, though 

not consistently across all replicates. Such taxon-specific patterns underscore how only a subset 

of bacterial groups shifts strongly in response to metal stress, while others remain 

comparatively resilient. A significant but relatively weak negative correlation emerged 

between porewater copper and alpha-diversity, indicating that high copper levels reduce 

richness but that moderate contamination can be masked by factors like salinity, grain size and 

organic content. Notably, only a small subset of abundant amplicon sequence variants (ASVs) 

showed a pronounced shift between clean and polluted sites, suggesting many dominant 

bacterial taxa remain resilient to intermediate copper concentrations. These patterns may reflect 

functional redundancy, where multiple taxa occupy similar ecological niches, or they may arise 

from other environmental drivers overshadowing copper effects in moderately contaminated 

sediments (Millward and Grant, 1995, Olsgard and Gray, 1995). Furthermore, comparisons of 

archaeal and bacterial responses (detailed in Chapter 5) indicate that archaeal diversity was 

often more sensitive to copper, consistent with findings that archaea sometimes exhibit less 

functional redundancy under metal stress (Gupta et al., 2021). Bacterial assemblages at the 

most contaminated sites (HA, HB, RA, RB, RC and RD) clustered separately, reinforcing that 

extreme pollution can outweigh other confounding variables. Filtering rare taxa at a moderate 

threshold (0.1%) helped reduce noise while preserving subtle shifts; excessively stringent 

filters risk losing important but low-abundance ASVs that may respond to copper. 

In comparing these outcomes with other studies, the threshold around 20 µg/L porewater 

copper aligns well with Ogilvie and Grant (2008), who showed via Pollution-Induced 

Community Tolerance (PICT) that bacterial tolerance increases above approximately 15 µg/L 

yet found minimal structural changes using T-RFLP. Because T-RFLP missed many 

compositional details that PICT detected, it appears that functional tolerance measures can be 

more sensitive at lower Cu concentrations, whereas substantial community reorganisation 
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becomes evident only once Cu surpasses 15 µg/L. Similarly, observations in Restronguet Creek 

and Hayle parallel Ogilvie and Grant’s detection of copper-driven effects in Pill Creek, 

suggesting that these southwestern England estuaries share a consistent threshold phenomenon, 

with tolerance shifts arising before large-scale compositional turnover. Here, including sites 

exceeding 100 µg/L PWCu and employing deeper sequencing enabled the detection of 

pronounced compositional shifts that extend Ogilvie and Grant’s earlier findings, confirming 

a threshold-like response while revealing which taxa drive these community reconfigurations. 

A number of authors have reported correlations between metals and microbial community 

composition at concentrations substantially lower than the levels at which clear relationships 

were observed. However, there were some important limitations to a number of these studies, 

including small sample sizes, lack of replication and failure to take into account potential 

correlations between metal concentrations and other environmental factors. For instance, Di 

Cesare et al. (2020) labelled their 14-site area “heavily polluted” because Hg, Pb and Zn 

reached up to 11.5 µg/L, 395 µg/L and 931 µg/L, respectively-well above Turekian and 

Wedepohl (1961) average shale values (0.18, 20 and 95 µg/L). Even the lower end of their 

gradient remained somewhat elevated in Hg and Pb, yet the study relied on a single sampling 

event and correlated metals with depth and nutrients, with no replicate community analyses per 

site. Consequently, their conclusion that depth and nutrient factors overshadowed metal 

impacts rests on correlative evidence, mirroring the present study’s finding that moderate-to-

high pollution effects can easily be concealed by other environmental variables when 

replication was limited. Similarly, Chen et al. (2022) sampled ten nearshore–offshore stations 

in the East China Sea where copper was only about twice local background (15-46 µg/g) and 

heavily confounded by water depth and salinity, an onshore-offshore gradient that further 

complicates attributing changes exclusively to metals. Zhao et al. (2022) showed metal levels 

in the Beibu Gulf were mostly below average shale references, rising from near to far shore 

likely due to finer sediment particle sizes, casting doubt on whether metals were truly driving 

community changes. Du et al. (2022) noted arsenic and cadmium correlated with microbial 

shifts in the Bohai Sea, yet their data suggest only moderate elevations (2-2.5 times average 

shale for As, under twice average shale for Cd and lacked replicate microbial sampling to 

confirm a metal-driven threshold. Meanwhile, Besaury et al. (2014) investigated two coastal 

sites in Chile exposed to long-term, untreated discharges of copper-rich mining waste, with one 

site showed extremely high total Cu (1410-1600 µg/g) and the other near background (65 µg/g). 
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Although their data indicated archaeal and bacterial resilience under heavy contamination, the 

single sampling event and one core per site left confounders like salinity or organic matter 

unaddressed, illustrating again how limited replication and narrow coverage can hinder 

definitive conclusions about metals’ direct effects. Olsgard and Gray (1995) demonstrated how 

local sediment variability around North Sea drilling sites could produce “shotgun” ordination 

patterns that obscure distinct pollution effects, a phenomenon likewise seen in these estuaries 

where salinity and sediment properties complicate copper-specific signals. Taken together, 

these comparisons emphasise the distinct advantage conferred by this study’s extensive copper 

range and multi-replicate design, which together provide the statistical power to confirm 

threshold effects and examine how partial shifts under moderate contamination can be 

concealed by environmental heterogeneity. 

Overall, this work extends previous knowledge by showing that while bacterial communities 

often remain resilient at moderate copper concentrations, they undergo notable restructuring 

once porewater Cu surpasses about 20 µg/L, aligning with the tolerance thresholds reported by 

Ogilvie and Grant (2008). Although both tolerance and compositional changes can emerge 

around this same 15-20 µg/L range, the shift in overall community structure becomes especially 

pronounced once copper concentrations move well beyond that level, with severe 

contamination above 100 µg/L driving a more dramatic shift. This two-tiered response suggests 

that early functional tolerance can appear at lower levels, while pronounced taxonomic changes 

arise under significantly higher copper loads. Nonetheless, even at the highest measured Cu 

concentrations in these estuaries, overall bacterial alpha-diversity showed only a modest 

decline-markedly less severe than the diversity collapses documented for macrofaunal 

assemblages near offshore oil platforms (Olsgard and Gray, 1995). This discrepancy indicated 

that bacterial communities, despite responding compositionally, retain tolerant or functionally 

redundant taxa that buffer extreme pollution stress, contrasting with the sharp biodiversity 

losses often observed among marine macrofauna under heavy contamination. These findings 

contrast with some earlier reports that attributed community shifts to metals at comparatively 

low concentrations without robust replication or without accounting for confounders such as 

salinity and grain size. A broader contamination spectrum and higher replication demonstrate 

that copper-driven changes become unambiguous only when loads were substantially above 

background, helping to resolve the more ambiguous results from single-time or small-scale 

surveys. Confounding gradients can hide intermediate pollution effects, underscoring the need 
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for integrated approaches that combine high-throughput sequencing with detailed 

environmental data to capture both subtle and overt ecological shifts. By encompassing a 

broader contamination spectrum and employing rigorous replication, the study refines T-

RFLP-based results from earlier work in this region and demonstrates how advanced 

metabarcoding can pinpoint threshold-level changes more reliably.



Chapter 5 

151 

 

 

Chapter 5:  

Impacts of Heavy Metal Pollution on Archaeal Diversity 

and Community Structure in Estuarine Sediments 

 

5.1 Introduction  

Archaea often comprise only a small proportion of total prokaryotic cells in moderate estuarine 

settings, typically in the 1-14% range (Webster et al., 2015). Although the salinity ranges 

reported for Tibetan Plateau lakes (0.6-324.8 g/l) (He et al., 2022) and solar saltern sediments 

(13-248 g/l) (Mani et al., 2020) are actually similar at the upper end, archaea account for only 

2.41% of the microbial community in these Tibetan lakes, whereas they can reach 85% in the 

solar saltern sediments and even surpass bacterial abundance. This illustrates how 

environmental pressures such as elevated salinity can confer a significant advantage on 

archaea, aligning with other findings that these organisms, though often rare under benign 

conditions, can dominate when stresses intensify (Huang et al., 2016, Korzhenkov et al., 2019). 

Much of this variability appears linked to their functional breadth, which includes 

methanogenesis and anaerobic ammonia oxidation (Liu et al., 2010, Wang et al., 2020). Several 

studies suggest that archaeal lineages, including Thaumarchaeota and Bathyarchaeota, are 

prevalent in estuarine sediments (Zou et al., 2020), yet they may exhibit lower abundance 

compared to bacteria under moderate salinity or low-pollution conditions giving the impression 

that they are overshadowed by bacterial populations. There is also debate regarding archaea’s 

relative sensitivity: some reports indicate that certain archaeal groups tolerate to heavy metals 

better than co-occurring bacteria (Salgaonkar et al., 2016, Korzhenkov et al., 2019) whereas 

others hint that archaea can exhibit equal or greater vulnerability depending on the specific 

contaminant and environmental conditions (Deng et al., 2018, Wang et al., 2023a). These 

contrasting observations highlight gaps in the current understanding of how archaeal 

abundance, distribution and taxonomic composition respond to estuarine pollution gradients, 

underscoring the need for robust, estuary-focused studies that identify which archaeal clades 
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proliferate, or recede under metal-enriched scenarios and whether their response thresholds 

differ markedly from those of other microbial groups (Wang et al., 2020, Zou et al., 2020). 

Metal pollution is a widespread environmental issue threatening aquatic ecosystems globally 

(Hama Aziz et al., 2023, Singh et al., 2023). Heavy metals such as copper, zinc, cadmium and 

mercury accumulate in estuarine sediments, disrupting microbial community balance (Gillan 

et al., 2005). These metals are toxic to microorganisms, leading to reduced biodiversity and 

altered community structures (Jackson et al., 2015, Pan et al., 2022). Detecting the ecological 

impacts of metal pollution is challenging due to the difficulty in linking specific pollutants to 

community changes in environments that are variable in both time and space (Grant, 2010). 

Heavy metal pollution, particularly with metals like copper, significantly decreases archaeal 

diversity and promotes the proliferation of metal-resistant groups such as Euryarchaeota (Gupta 

et al., 2021). In marine sediments, copper pollution enhances the activity of copper-adapted 

archaea, including unclassified Euryarchaeota and methanogenic archaea, demonstrating their 

resilience in metal-rich environments (Besaury et al., 2014). In contrast, in terrestrial 

ecosystems, heavy metal contamination reduces archaeal populations and alters community 

structures. In particular, Sandaa et al. (1999) reported that Archaea declined from about 1.3% 

of the total cells in uncontaminated soils to below detection limits in metal-contaminated soils, 

even though metal concentrations were below regulatory thresholds and community-level 

DNA profiling revealed distinct structures between treatments. The occurrence of organisms 

with elevated metal tolerance can indicate that ecological stress was favouring these over more 

sensitive species or strains (Grant et al., 1989, Blanck, 2002). However, pollution-tolerant 

populations were typically confined to heavily contaminated sites, limiting their utility as 

widespread monitoring tools (Grant, 2002). 

Despite documented shifts in microbial communities within polluted estuarine sediments, the 

specific responses of archaeal communities to varying levels of metal pollution remain poorly 

understood (Zhang et al., 2024b). Heavy metal contamination markedly alters both archaeal 

and bacterial community structures, with some evidence showing temporal variations in 

benthic microbial communities in polluted areas (Yin et al., 2015, Coppo et al., 2023, Yu et al., 

2024). While heavy metal contamination can have pronounced effects, many recent studies 

report only moderate metal concentrations in marine sediments e.g., (Chen et al., 2022, Zhao 
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et al., 2022), leaving gaps in understanding how archaea respond under more severe pollution 

scenarios. Nutrient inputs further complicate the picture by enhancing microbial activity and 

altering community structures, whereas long-term metal exposure selects for metal-resistant 

species (Voica et al., 2016, Zou et al., 2020). At the same time, some investigations suggest 

that bacteria might be as sensitive or even more affected by these stressors than archaea (Birrer 

et al., 2021), indicating that the relative sensitivity of archaea in heavily impacted estuaries 

remains an open question (Euler et al., 2020, Zou et al., 2020). 

Additionally, archaea play important roles in bioremediation and wastewater treatment, 

providing insights into microbial ecology and serving as potential markers for assessing 

environmental quality and guiding remediation efforts (Krzmarzick et al., 2018). However, the 

lack of comprehensive archaeal reference sequences and outdated classifications in databases 

means much of their diversity remains uncharted (Grant et al., 2023). Identifying archaeal taxa 

tolerant to pollution will help establish reliable indicators, enhancing the ability to accurately 

assess environmental quality and implement effective remediation strategies. 

Archaeal communities are increasingly recognised as key contributors to biogeochemical 

processes in estuarine sediments, yet the extent of their sensitivity to metal pollution remains 

partially unresolved. Existing microbial-focused studies e.g., (Chen et al., 2019) have 

highlighted the impact of copper (Cu) and other metals on overall community shifts, but often 

emphasise bacterial or resistome patterns rather than specific archaeal responses. By contrast, 

Korzhenkov et al. (2019) provide direct evidence of archaeal dominance under metal-rich, 

acidic conditions, underscoring their capacity to thrive where copper and zinc reach toxic 

levels. However, such investigations typically involve either narrow sampling scopes or single-

extreme sites, as demonstrated by Coppo et al. (2023) who assessed Cu-influenced benthic 

shifts but primarily emphasized meiofaunal eukaryotes. Broader-scale reviews from Zou et al. 

(2020) and Voica et al. (2016) revealed that salinity and halophilic adaptations can mask or 

alter archaeal responses to metals, though they did not quantitatively specify which 

contamination thresholds specifically trigger archaeal community restructuring. 

To address these gaps, the present work examines two distinct datasets (12 versus 34 estuarine 

sites) with porewater copper levels ranging from 2 to >400 µg/L and AEMCu (4 to ~1800 

µg/g). This design surpasses previous research by covering both relatively pristine and severely 
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contaminated sediments, employing recently developed archaeal-specific primers that target a 

greater range of Archaea phylogenetic diversity than older primers and deeper sequencing 

approaches to capture potentially subtle or threshold-level community shifts. Such an expanded 

site coverage and refined molecular analysis enable a clearer identification of copper-tolerant 

versus copper-sensitive archaeal taxa, providing new insights into how multiple gradients may 

interact with metal stress in shaping archaeal assemblages. 

This chapter therefore examines how archaeal diversity and community composition respond 

to metal pollution across a wide gradient of contamination in Southwest England estuaries, 

including sites with copper concentrations that exceed those investigated in most recent marine 

studies (17-34) µg/L in (Chen et al., 2019) and (16-37) µg/L in (Peng et al., 2024). Specifically, 

porewater copper levels differ by a factor of 90, while extractable metal concentrations vary 

by a factor of 400, offering a comprehensive assessment of pollution effects on archaeal 

communities. By analysing overall community patterns and the abundance of individual OTUs, 

this work evaluates the extent to which archaeal diversity reflects severe metal contamination 

and determines which contamination measures most strongly correlate with observed 

ecological differences. Building on these considerations, the central question was whether 

archaeal communities show a clear and measurable response to the highest copper 

concentrations and if so, at what contamination level that response emerges and how it 

compares with less polluted sites. 

5.2 Methods 

5.2.1 Sampling and DNA extraction 

Three replicate samples were obtained from intertidal areas within estuaries in Southwest 

England, across 12 locations as detailed in (Udochi, 2020) and 34 locations as outlined in 

Chapter 2, along with two replicates from Breydon Water, Norfolk. The DNA extraction 

methods are described in Chapter 2. 
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5.2.2 PCR and sequencing 

Hypervariable regions V1 and V2 of the 16S rRNA gene were amplified using primers 

SSU1ArF and SSU520R  (Bahram et al., 2019). The forward primer and the reverse primer 

contained an Illumina adaptor, 8 base barcode, 0-7 bases of length heterogeneity spacer and 

primer sequence (Fadrosh et al., 2014). Primer Specifications were given in more detail in 

Chapter 3. Primers were supplied by Sigma Aldrich Company limited.  

The polymerase chain reaction (PCR) was conducted in a volume of 20 μl, including 10 μl of 

PhusionTM Flash master mix (Thermo Scientific, UK), 1 μl of forward primer and 1 μl of 

reverse primer (final concentration of primers: 100 μM), 7 μl of ultrapure sterile water (MilliQ 

water) and 1 μl of DNA, with concentrations varying from nearly zero to 9.3 ng/μl, was detailed 

further in Chapter 2 Samples with zero concentration and no amplified PCR products visible 

on the gel were excluded, as outlined in Chapter 3. 

The amplification of the DNA templates was carried out in a Veriti™ HID 96-Well Thermal 

Cycler, 0.2mL system (Applied Biosystems, UK) in either 0.2mL x 96 well plates or 0.2 ml 

PCR tubes, depending upon the number of samples be amplified. 

The amplification consisted of an initial denaturation at 98°C for 10 minutes, followed by 35 

cycles of denaturation at 98°C for 30 seconds, annealing at 50 °C for 30 seconds and extension 

at 72°C for 30 seconds. This was followed by a final extension at 72°C for 5 minutes, before 

being held at 4°C. Primers were supplied by SigmaAldrich Company limited. 

The PCR products were visualised using gel electrophoresis as detailed in Chapter 2. Primers 

SSU1ArF and SSU520R amplify a product that is 520 bp.  The sequencing adapters, barcodes 

and length heterogeneity spaces increased this length to approximately 660 bp. The PCR 

products were purified using Aline Biosciences PCRClean DX kit (Aline Biosciences, 

Woburn, USA) following the manufacturer protocol except that the ratio of beads to PCR 

product which was 1:1 and then modified to 0.7:1 at latest run. This ratio was altered in the 

light of experience to improve removal of free primer adaptors and adaptor dimers, which were 

not fully removed when the ratio in the manufacturer’s protocol was used (Quail et al., 2009). 

Quantification of the PCR products followed the methods described in Chapter 2. 
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Sequencing of the purified 16S rRNA was performed at the Earlham Institute, Norwich, UK, 

using a pre-made library pool on a single lane of the NovaSeq 6000 flow cell with 250 bp 

paired-end in February 2022 and February 2023 and on a NextSeq 1000 with 300 bp paired-

end in April 2023. Sequencing of 16S rRNA amplicons yielded up to 4 870 265 reads per 

sample. To ensure data quality and reliability. Samples with low sequencing read counts 

(ranging from 56 to 3,400 reads) were excluded from the analysis, resulting in an average 

of 471,095 reads per remaining sample. When these were excluded the mean number of reads 

per sample was 691 759 on NovaSeq and 101 503 on NextSeq. This removal of low count 

samples maintained the integrity of the dataset and enhanced the accuracy of subsequent 

analyses. The excluded samples were BW1_1_a and BW2_2_s from the pilot samples; HB3 

and CO2 from the 12-site set; JA2, MB2, PN3, RC2 and VC2 from the 34-site set; and 

LB_VC3, LB_PA2, MB_VC2 and RD_Bag from the experimental set. 

Bioinformatic analysis was carried out using the LotuS2 pipeline (Özkurt et al., 2022), with 

taxonomic assignment of sequences using KSGP version 1.0 (Grant et al., 2023). Archaeal 

OTUs were clustered at a similarity threshold of 97%.  

5.3 Results 

5.3.1 Phylogenetic Analysis of Archaeal Communities 

A preliminary phylogenetic overview of archaeal assemblages was conducted to establish 

baseline taxonomic diversity and identify potential novel lineages. This phylogenetic tree (Fig. 

5.1), constructed using the 16S ARF rRNA data, revealed a highly diverse Archaeal 

community. Archaea made up approximately two-thirds of the tree, with a few bacterial OTUs 

less than (0.1%) and a slightly larger number of eukaryotes (2%). The great majority of 

unclassified OTUs lied on long branches in the upper section of the tree, with a small number 

lying on long branches within the Archaea section of the tree. Manual BLAST searches against 

the NCBI nt database showed that none of these unclassified OTUs were common. Manual 

BLAST searches against the full NCBI nt database showed that none of these unclassified 

OTUs were common. 
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The refined phylogenetic tree, excluding OTUs not classified as Archaea, was presented in Fig. 

5.2. A total of 61% of ASVs were classified as Archaea, with all archaeal ASVs were resolved 

at the phylum level. Only 20 ASVs remained completely unclassified, lacking any domain-

level assignment. The tree highlighted the remarkable diversity of Nanoarchaeota, with 

extensive branching within this group. However, other main phyla such as Thermoproteota, 

Aenigmatarchaeota and Thermoplasmatota exhibited higher proportions of unclassified OTUs 

(12%, 43% and 30%) respectively compared to Nanoarchaeota's 12%.  
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Fig. 5.1 Phylogenetic tree constructed using ARF 16S rRNA data across all datasets, showing 

all OTUs featuring Archaea (green), Bacteria (red) and Eukaryota (blue). Taxonomic 

assignments were performed using the KSPG database. 
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Fig. 5.2 Phylogenetic tree for Archaeal phyla based on ARF 16S rRNA data, following the 

removal of non‑Archaeal branches. The main phyla represented are Nanoarchaeota (red), 

Thermoproteota (orange), Aenigmatarchaeota (purple), Thermoplasmatota (light blue), and an 

unknown phylum (blue). Taxonomic assignments were performed using the KSPG database. 
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5.3.2 Taxonomic composition 

Two principal datasets (12-site and 34-site) were evaluated to capture archaeal community 

dynamics under narrower and broader pollution gradients, mirroring the strategy applied to 

bacterial analyses. The dominant archaeal phyla were Thermoproteota and Nanoarchaeota, 

which each made up around 40% of reads, with Thermoplasmatota contributing a further 9% 

(Fig. 5.3 A). Nanoarchaeota was the most diverse phylum, made up 80% of OTUs in contrast 

to 40% of reads (Fig. 5.3 B). By contrast, Thermoproteota and Thermoplasmatota made up 

only 5 and 3% of OTUs respectively, indicating that the average abundance of OTUs in these 

phyla was 16 and 6 times higher than it was for Nanoarchaeota. The taxonomy of nearly 5% 

of reads was not resolved at phylum level.  
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A

 

B 

Fig. 5.3 Distribution of reads across phyla for all datasets after excluding non-archaeal reads, 

based on the total number of A) reads and B) OTUs, Taxonomic assignments were made using 

the KSPG database.  Phyla making up less than 0.7% and 1.2% of the total respectively are 

combined into ‘other phyla’.  ‘?’ indicates that taxonomy is not resolved at phylum level by 

LCA classification based on matches in KSGP. 

5.3.3 NMDS analysis of replicate consistency and similarities between datasets 

Analyses of replicate consistency and cluster patterns highlighted how archaeal phyla respond 

to contamination gradients in both the 12-site and 34-site datasets. By examining site-level 

differences, NMDS plots revealed spatial variability, pollution influences and dataset-specific 

distinctions. The Fig. 5.4 A presented the NMDS plot of all four datasets: pilot, 12-site, 34-site 

and experimental samples. The plot revealed partial overlap among these datasets. The 12-site 
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dataset was fully encompassed within the larger 34-site dataset, with several locations shared 

between them. Details and labels for both datasets were provided in Chapter 2.  

 

Fig. 5.4 Sample ordination using Non-metric Multi-dimensional Scaling (NMDS) of Bray-

Curtis similarity matrix of Archaeal abundances, based on square root transformed data, 

derived from all datasets; Pilot, 12-sites, 34-sites and experiment. Colours represent the 

different datasets. Each two-letter sample label represents site. All datasets performed without 

the pruning of OTUs. Data processed using LotuS2 in conjunction with the KSPG database. 

Site codes as in Table 2.1. 

When MDS is carried out including just these two datasets (Fig. 5.5), replicated clustered 

closely together within each dataset. However, in most cases samples from the same site 

collected at different times (2017 and 2022, respectively) did not plot in the same position on 

the NMDS plot. The exception to this was that samples in both datasets from sites in the Hayle 

were plotted towards the top left hand corner of the ordination. These were sites where pore 

water copper concentrations were at their highest. 
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Fig. 5.5 Sample ordination using NMDS of Bray-Curtis similarity matrix of square root 

transformed Archaeal abundance data, showing the 12 and 34 site datasets. Colours represent 

the different datasets. Each two-letter sample label represents site. All datasets performed 

without the pruning of OTUs. Data processed using LotuS2 in conjunction with the KSPG 

database. Site codes as in Table 2.1. 

In the 12-site dataset, samples from Breydon Water (BW) were clustered together, but were 

separated from all the Southwest (SW) samples (Fig. 5.6 A). The NMDS plot of the 12-site 

dataset (Fig. 5.6 B) showed that polluted sites were grouped on the left side of the plot. 

Additionally, the three replicated from each site clustered closely together, indicating that 

within-site variations were minimal compared to differences between sites. In the NMDS plot 

of the 34-site dataset (Fig. 5.7), replicated from the same site clustered closely together in most 

cases. 
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A 

B 

Fig. 5.6 Sample ordination using NMDS of Bray-Curtis similarity matrix of square root 

transformed Archaeal abundance data from the 12-site dataset. A) includes Breydon Water 

sites (stress value = 0.13), while B) excludes them (stress value = 0.12). All datasets performed 

without the pruning of OTUs. Data processed using LotuS2 in conjunction with the KSPG 

database. Site codes as in Table 2.1. 
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Fig. 5.7 Sample ordination using NMDS of Bray-Curtis similarity matrix of square root 

transformed Archaeal abundance data from the 34-site dataset (stress value = 0.16). Each two-

letter sample label represents site. All datasets performed without the pruning of OTUs. Data 

processed using LotuS2 in conjunction with the KSPG database. Site codes as in Table 2.1. 

For the experimental samples, the NMDS plot (Fig. 5.8) illustrated the differences in 

community composition between treatments. The first part of each treatment name indicated 

the source of the inoculum, with “bag” samples representing the initial community 

composition. The second part specifies the origin of the defaunated sediment in each replicate, 

distinguished by colour in Fig. 5.8 Treatments primarily clustered by the site of the defaunated 

sediment rather than by the inoculum. Treatments with sediment from the Avon estuary (VC) 

lied towards the bottom right of the ordination, whereas those with Helford and Percuil 

sediments (LB, PA) appeared on either side of the Avon cluster. ANOSIM analysis (Fig. 5.8) 

confirmed this pattern, with Sediment Source yielding a higher R-value (0.542) than Inoculum 

Source (0.119), both statistically significant (p < 0.001).  
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Fig. 5.8 Sample ordination using NMDS of Bray-Curtis similarity matrix of square root 

transformed Archaeal abundance data from the experiment set samples (stress value = 0.19). 

Colours represent the different test sediments. The first two letters in the sample labels indicate 

the source of the inoculum, while the second two letters represent the sediment that makes up 

75% of the total composition. Each two-letter sample label represents site. All datasets 

performed without the pruning of OTUs. Data processed using LotuS2 in conjunction with the 

KSPG database. Site codes as in Table 2.1. 

5.3.4 Archaeal Diversity Across Pollution Gradients 

Rarefaction curves were used solely to standardise sequencing depth across samples, and the 

resulting rarefied ASV counts were then examined for patterns in archaeal community richness 

relative to porewater copper (PWCu) concentrations in both the 12-site (Fig. 5.9 A and B) and 

34-site (Fig. 5.10 A and B) datasets. In the 12-site set, the standardised rarefaction curves (Fig. 

5.9 A) indicated that sites with lower PWCu (i.e., cleaner environments) generally support 

higher archaeal diversity, whereas sites with elevated PWCu (notably in Hayle and Restronguet 

Creek) occupy the lower portion of the curves. A corresponding box-and-whisker plot (Fig. 

5.9 B), based on rarefaction to 149 595 reads per sample, showed that mean OTU counts differ 

significantly among sites (F = 16). Low-copper sites (green) typically exhibited higher OTU 
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counts with minimal variability, while heavily contaminated sites (red) tended to have fewer 

OTUs and, in some cases (e.g. MC, HR and RA), showed greater variability among replicates. 

Additionally, the relationship between OTU richness and PWCu (excluding BW) was tested 

using Spearman’s rank correlation, which showed a strong negative association (rho = -0.64, p 

< 0.001), confirming that archaeal diversity declined as copper levels increased. 
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A 

B  

Fig. 5.9 A) Rarefaction curves for archaeal samples for 12 sites, illustrating OTUs richness in 

relation to sample size. B) Box and whisker plot of OTU counts rarefied to a sample size 

equivalent to the lowest sample size (149 595) across different sites, sites are arranged in 

increasing order of porewater copper concentrations with sites above and below 20 µg/L 

indicated in red and green respectively. ANOVA results (F = 13.2, p < 0.001). Spearman's rank 

correlation between OTU richness and porewater copper concentration (rho = -0.64, p < 0.001). 

Site codes as in Table 2.1. 
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In the 34-site dataset, rarefaction curves (Fig. 5.10 A) spanned a wide range of archaeal OTU 

richness without neatly separating clean and polluted sites. A box and whisker plot (Fig. 5.10 

B) illustrated OTU counts for each site, based on rarefaction to 35,155 reads in the 34-site 

dataset. Although an ANOVA again confirms significant inter-site differences (F = 8.4), the 

Spearman’s rank correlation between OTU richness and PWCu was remarkably weaker than 

in the 12-site dataset (rho = -0.25, p < 0.001). 
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A 

B  

Fig. 5.10 A) Rarefaction curves for archaeal samples for 34 sites, illustrating OTUs richness in 

relation to sample size. B) Box and whisker plot of OTU counts rarefied to a sample size 

equivalent to the lowest sample size (35 155) across different sites, sites are arranged in 

increasing order of porewater copper concentrations with sites above and below 20 µg/L 

indicated in red and green respectively. ANOVA results (F = 8.4, p < 0.001). Spearman's rank 

correlation between OTU richness and porewater copper concentration (rho = -0.25, p < 0.001). 

Site codes as in Table 2.1. 
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Sample‑based accumulation curves (Fig. 5.11) were generated to evaluate how cumulative 

archaeal ASV richness increased with additional sites. In the 12‑site dataset (Fig. 5.11 A) the 

curve rose steeply through - roughly - the first 15 samples and then bent gradually toward a 

plateau, while the 95 % confidence band remained relatively wide. In the 34‑site dataset 

(Fig. 5.11 B) the curve began at a higher richness, its slope became shallow by around 

80 samples and the confidence band narrowed. 
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A 

B 

Fig. 5.11 Sample‑based species‑accumulation curve for archaeal 16S rRNA ASVs recovered 

from A) the 12‑site and B) 34‑site bacterial surveys. The solid line represents the mean 

cumulative richness and the light‑blue polygon the 95 % confidence envelope. 
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5.3.5 Effect of Rare OTU removal on analysis 

In the 12‑site dataset (Fig. 5.12), removing rare OTUs affected the NMDS ordinations of 

archaeal communities. Including all OTUs (Fig. 5.12 A) produced clustering of samples in 

which heavily contaminated sites (e.g., HA) were not fully separated from less contaminated 

locations. Excluding OTUs below the 0.1 % threshold (Fig. 5.12 B) increased separation 

for HA, and a 1 % threshold (Fig. 5.13) separated HA further. Raising the threshold removed 

additional OTUs and reduced overall community richness. At 1 %, heavily contaminated and 

cleaner sites were separated more than with the lower thresholds. 
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A All ASVs Retained 

B Pruned (<0.1%) 

Fig. 5.12 NMDS bubble plots of the 12-site dataset using square root transformed data based 

on Bray-Curtis similarity of Archaeal abundances. It compares OTU counts across all sites 

under two conditions: A) without removing rare OTUs and B) with OTUs occurring at less 

than 0.1% abundance in all samples removed. Stress values are 0.12 and 0.13, respectively. 

Bubble sizes represent the pore water copper (Cu) concentrations at each site. Site codes as in 

Table 2.1. 
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Pruned (<1%) 

Fig. 5.13 NMDS bubble plot of the 12-site dataset using square root transformed data based 

on Bray-Curtis similarity of Archaeal abundances. It shows OTU counts across all sites with 

OTUs occurring at less than 1% abundance in all samples removed. Stress value is 0.12. Bubble 

sizes represent the pore water copper (Cu) concentrations at each site. Site codes as in 

Table 2.1. 

For the larger dataset (Fig. 5.14), removal of rare OTUs produced modest changes. With no 

filtering (Fig. 5.14 A), samples clustered with limited site-level discrimination. Filtering 

below 0.1 % (Fig. 5.14 B) did not change the ordination appreciably, and the 1 % cut-off 

(Fig. 5.15) gave a small increase in separation for high‑copper sites while the overall structure 

remained similar. 
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A All ASVs Retained 

B Pruned (<0.1%) 

Fig. 5.14 NMDS bubble plots of the 34-site dataset using square root transformed data based 

on Bray-Curtis similarity of Archaeal abundances. It compares OTU counts across all sites 

under two conditions: A) without removing rare OTUs and B) with OTUs occurring at less 

than 0.1% abundance in all samples removed. Stress values are 0.19 and 0.19, respectively. 

Bubble sizes represent the pore water copper (Cu) concentrations at each site. Site codes as in 

Table 2.1. 
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Pruned (<1%) 

Fig. 5.15 NMDS bubble plot of the 34-site dataset using square root transformed data based on 

Bray-Curtis similarity of Archaeal abundances. It shows OTU counts across all sites with 

OTUs occurring at less than 1% abundance in all samples removed. Stress value is 0.16. Bubble 

sizes represent the pore water copper (Cu) concentrations at each site. Site codes as in 

Table 2.1. 

ANOSIM results (Fig. 5.16) showed that, in the 12‑site dataset, R‑values increased when OTUs 

were pruned at 1 % compared with 0.1 % or no pruning. In the 34-site dataset, R‑value 

differences among thresholds were minor, and the 1 % cut‑off maintained site separation. 
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Fig. 5.16 ANOSIM R-values for 12-site, 34-site and experimental datasets generated using the 

ARF primer under three pruning thresholds (no pruning, 0.1% and 1%). The experimental 

dataset includes inoculum source and sediment source factors. The results illustrate the degree 

of dissimilarity between sites, with R statistics quantifying the strength of clustering. R-values 

> 0.75 indicate very strong differences between groups and all results are statistically 

significant (p ≤ 0.0001). 

5.3.6 Evaluating Site Grouping Consistency  

One rationale for comparing Bray-Curtis with UniFrac was to explore whether phylogenetic 

relationships might intensify or mask pollution effects among archaeal lineages. In this dataset, 

the Bray-Curtis MDS plot (Fig. 5.17 A) distinguished heavily polluted sites (e.g., HA, RA, 

HB) on the left, with cleaner sites grouped more to the right. By contrast, the UniFrac MDS 

plot (Fig. 5.17 B) showed a slightly less pronounced separation. 
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A 

B  

Fig. 5.17 Comparison of A) Bray-Curtis and B) UniFrac NMDS similarity matrices of square 

root transformed plots. derived from 12 and 34 site datasets, each two-letter sample label 

represents site, colours represent the different datasets. No OTUs were pruned. Data processed 

using LotuS2 in conjunction with the KSPG database. Site codes as in Table 2.1. 
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5.3.7 Comparison of Clustering Patterns Between NMDS and PCoA Analyses 

To compare the effectiveness of different ordination methods in illustrating archaeal 

community composition across pollution gradients, both Non-metric Multidimensional Scaling 

(NMDS) and Principal Coordinates Analysis (PCoA) were employed. In the NMDS plot 

(Fig. 5.18 A), samples were distributed along both axes, with polluted and cleaner sites 

occupying different areas of the ordination. The PCoA plot (Fig. 5.18 B) grouped samples 

mainly into two clusters corresponding to polluted and clean sites. The hierarchical clustering 

dendrogram (Fig. 5.20 A) showed that replicates from the same site clustered together. Cleaner 

sites (PC, SJ, CO, MC) and HR formed one cluster, RB and RC grouped with PR, and the more 

polluted sites HB and RA formed separate clusters; HA and Breydon Water (BW) each formed 

individual clusters. 
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A 

B 

Fig. 5.18 Comparison of A) NMDS (Non-metric Multidimensional Scaling) and B) PCoA 

(Principal Coordinates Analysis) of square root transformed plots, with bubble sizes 

representing PWCu levels to evaluate clustering patterns among sites, derived from 12-site 

dataset. A 1% OTU pruning threshold was applied in these analyses. Site codes as in Table 2.1. 
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For the 34‑site dataset, PCoA ordinations (Fig. 5.19 A and B) separated the most polluted sites 

from cleaner ones, and those highly polluted sites were omitted from subsequent analyses 

focused on other environmental variables. In hierarchical clustering of the 34‑site dataset 

(Fig. 5.20 B), sites from the same estuary often clustered together, indicating similarity in 

archaeal community composition within estuaries. Replicate samples grouped consistently 

across Bray–Curtis, UniFrac, NMDS and hierarchical clustering, supporting separate analyses 

for the 12‑site and 34‑site datasets. 
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A  

B 

Fig. 5.19 Comparison of PCoA ordination of square root transformed plots, with bubble sizes 

representing LT63 levels to evaluate clustering patterns among sites, derived from 34-site 

dataset, A) without sites exception and B) with the exception of Hayle (A and B) and 

Restronguet Creek (A and B).  A 1% OTU pruning threshold was applied in these analyses. 

Site codes as in Table 2.1. 
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A 

B 

Fig. 5.20 Single linkage hierarchical clustering dendrogram of A) 12-Site and B) 34-site 

datasets. Branch heights represent the degree of dissimilarity between site clusters. Bray-Curtis 

similarity matrices were used, without OTU pruning. 
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5.3.8 The relationships between ecological pattern and environmental variables 

The relationships between environmental variables and microbial communities were assessed 

using the method of Clarke and Ainsworth (1993), known as BIOENV and based on 

Spearman’s rank correlation. The 12-site dataset revealed that porewater copper (PWCu) had 

the strongest association with community composition (Fig. 5.21). Among individual 

variables, PWCu alone approached the explanatory power of the best multivariable 

combination: PWCu, Simultaneously-Extracted Metals (SEMZn), total organic carbon (TOC), 

dissolved organic carbon (DOC) and porewater organic carbon-bound copper (PW_OC_Cu). 

Other factors, including sediment-associated copper (EqpCu), TOC, DOC, salinity, sediment 

grain size (LT63 and D50) and acid-volatile sulphide (AVS), exhibited non-significant 

correlations.  

 

Fig. 5.21 Spearman's rank correlation (Rho) values based on the BIOENV analysis between 

environmental variables and archaeal community composition for the 12-sites dataset. Bar 

colours indicate statistical significance: blue; most significant correlations (p < 0.05); orange; 

moderate significance (0.05 < p < 0.1); and red; non-significant (p ≥ 0.1). AEMCu (Acid-

Extractable Copper), LT63 (<63 µm fines), AVS (Acid Volatile Sulphide), PWCu (Porewater 

Cu), TOC (Total Organic Carbon), DOC (Dissolved Organic Carbon), PW_OC_Cu (DOC 

normalised PWCu), EqPCu (Equilibrium Partitioning Cu), D50 (Median Grain Size), Sal 

(Salinity), and pH. 
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The NMDS bubble plots corroborated these BIOENV findings by illustrating how sites with 

higher PWCu and PW_OC_Cu form distinct clusters (Fig. 5.22 A and B), echoing the strong 

correlations highlighted in the statistical analysis. Conversely, variables such as TOC, AVS 

(Fig. 5.23 A and B), LT63 and PWZn did not show clear patterns in their bubble plots (Fig. 

(Fig. 5.24 A and B), aligning with their non-significant results in the BIOENV analysis.  
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A PWCu 

B PW_OC_Cu 

Fig. 5.22 NMDS plots of square root transformed data of Archaeal abundances illustrating the 

spatial patterns of the 16S Archaeal community structure derived from the 12-site dataset. A) 

shows the relationship with PWCu and B) with PW_OC_Cu. Bray-Curtis similarity matrices 

were used, without OTU pruning. Site codes as in Table 2.1. 
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A TOC 

B AVS 

Fig. 5.23 NMDS plots of square root transformed Archaeal abundances from the 12-site 

dataset showing relationships with environmental variables. A) shows the relationship with 

TOC and B) with AVS. Bray-Curtis similarity matrices were used, without OTU pruning. Site 

codes as in Table 2.1.  
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A LT63 

B PWZn 

Fig. 5.24 NMDS plots of square root transformed Archaeal abundances from the 12-site 

dataset showing relationships with A) LT63 and B) PWZn. Bray-Curtis similarity matrices 

were used, without OTU pruning. Site codes as in Table 2.1. 
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In contrast, the BIOENV analysis for the 34-site dataset (Fig. 5.25 A) indicated that porewater 

copper (PWCu), the proportion of fine particles (LT63), median grain size (D50) and salinity 

collectively offered the strongest explanation for archaeal community composition. Excluding 

the most heavily polluted sites (HA, HB, RA and RB) rendered PWCu non-significant, while 

LT63 and salinity remained strong correlates, (Fig. 5.25 B).  
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A 

B 

Fig. 5.25 Spearman's rank correlation (Rho) values based on the BIOENV analysis between 

environmental variables and archaeal community composition. A) shows the results for the 34-

sites dataset, and B) for the 34-sites dataset excluding highly polluted sites (HA, HB, RA and 

RB). Bar colours indicate statistical significance: blue; most significant correlations (p < 0.05); 

orange; moderate significance (0.05 < p < 0.1); and red; non-significant (p ≥ 0.1). PWCu 

(Porewater Cu), AEMCu (Acid-Extractable Cu), D50 (Median Grain Size), LT63 (<63 µm 

Fines), Sal (Salinity). 
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The (PCoA) analysis (Section 5.3.7) and PWCu in (Fig. 5.27 B) highlighted a clearer 

separation between the most and least contaminated sites.  The bubble plots shown, when 

highly polluted sites (HA, HB, RA and RB) were excluded from the analysis, Salinity (Fig. 

5.26 A) and LT63 (Fig. 5.26 B) displayed the best patterns. D50 (Fig. 5.27 A) remained did 

not exhibit clear patterns. Principal Components Analysis (PCA), detailed in Chapter 2, 

further underscores D50 and fine particles (LT63) importance through its prominent vector. 
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A Salinity 

B LT63 

Fig. 5.26 PCoA plots of square root transformed data of Archaeal abundances illustrating the 

spatial patterns of the 16S Archaeal community structure derived from the 34-site dataset in 

relation to key environmental variables. A) shows the relationship with salinity and B) with 

LT63. Bray-Curtis similarity matrices were used, with a 1% OTU pruning threshold. The most 

heavily polluted sites (HA, HB, RA and RB) were excluded from both plots. Site codes as in 

Table 2.1. 
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A D50 

B PWCu 

Fig. 5.27 PCoA plots of square root transformed Archaeal abundances from the 34-site dataset 

showing relationships with environmental variables. A) shows the relationship with D50, 

excluding the most heavily polluted sites, while B) shows the relationship with PWCu 

including all sites. Bray-Curtis similarity matrices were used, with a 1% OTU pruning 

threshold. Site codes as in Table 2.1. 
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Across both datasets, the clearest pattern  was the distinctiveness of the highly contaminated 

sites in Hayle and Restronguet Creek. This difference was strongly correlated with elevated 

porewater copper levels in the 12-site data set but falls below statistical significance in the site 

dataset when environmental variables were examined individually.  

5.3.9 Identifying Copper-Tolerant and Sensitive taxa 

To identify phyla that were tolerant or sensitive to copper pollution, OTU counts were 

aggregated to the phylum level. Average abundances in clean sites (ava) and polluted sites 

(avb) were calculated for each phylum and the fold change between polluted and clean sites 

was determined along with p-values. Phyla and OTUs that did not show statistically significant 

differences (p > 0.05) were not included in this analysis, as they did not provide evidence of a 

meaningful association with copper levels. The heatmaps in Fig. 5.28 illustrate the top ten 

phyla showing differences across both datasets; 12 sites (A) and 34 sites (B). 
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A 

B 

Fig. 5.28 Heatmap illustrating the top 10 phyla exhibiting significant differences in abundance 

between polluted and clean sites across A) 12-site and B) 34-site datasets, along with their p-

values and raw fold changes. The phyla were sorted based on their average SIMPER 

contribution to dissimilarity between groups. Statistical significance is indicated by asterisks 

(*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001), with "NS" denoting non-significant results. Darker 

colour intensities represent higher raw fold changes, blue shades indicate positive fold changes 

(more abundant in clean sites), white represents minimal or no change and red shades indicate 

negative fold changes (more abundant in polluted sites). Raw fold changes [log₂(ava²/avb²)] 

revert the square-root-transformed averages to the original abundance scale. Taxonomic 

assignments were made using the KSPG database.  ‘?’ means unresolved taxonomy by LCA in 

KSGP. 
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In the 12-site dataset, three phyla showed statistically significant differences in abundance 

between clean and polluted sites. Thermoplasmatota and Asgardarchaeota were more abundant 

in clean sites, whereas Nanoarchaeota showed greater abundance in polluted sites. Phyla such 

as Thermoproteota and Aenigmatarchaeota did not exhibit statistically significant differences. 

In comparison, in the 34-site dataset, only Thermoproteota demonstrated a significant 

difference in abundance between high and low copper sites, showed increase abundance in 

polluted environments (Fig. 5.28 B). 

5.3.10 Identifying Copper-Tolerant and Sensitive Taxa at the OTU Level 

In both the 12-site and 34-site datasets (Fig. 5.29), certain OTUs displayed statistically 

significant differences in abundance between clean and polluted environments. In the 12-site 

dataset, OTU4, OTU6, OTU8, OTU9, OTU12 and OTU17 were consistently more abundant 

in clean sediments. By contrast, the 34-site dataset reinforced the copper sensitivity of OTU3, 

OTU4 and OTU12, which again showed increased abundance in clean sites. All OTUs belong 

to the phylum Thermoproteota, except OTUs 9, 12 and 17, which were Thermoplasmatota. 
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Fig. 5.29 Heatmap illustrating the top 10 OTUs exhibiting significant differences in the 12-site 

and/or 34-site analyses, along with their p-values and raw fold changes. The OTUs were 

selected and numerically sorted based on their average SIMPER contribution to the 

dissimilarity between groups. Statistical significance is indicated by asterisks (p ≤ 0.05; 

*p ≤ 0.01; **p ≤ 0.001), with "NS" denoting non-significant results. Darker colour intensities 

represent higher raw fold changes, blue shades indicate positive fold changes (more abundant 

in clean sites), white represents minimal or no change and red shades indicate negative fold 

changes (more abundant in polluted sites). Raw fold changes [log₂(ava²/avb²)] revert the 

square-root-transformed averages to the original abundance scale. Taxonomic assignments 

were made using the KSPG database. All OTUs belong to phylum Thermoproteota, except 

OTUs 9, 12 and 17 which were Thermoplasmatota. 

5.4 Discussion 

Archaea are fundamental components of microbial communities in estuarine and marine 

sediments (Petro et al., 2017), yet their taxonomic breadth has frequently been underestimated 

due to limited primer coverage. By employing recently published, broad‑coverage primer set, 

this study captured archaeal lineages across multiple phyla, including Nanoarchaeota (formerly 

Woesearchaeota) which previous methods often failed to detect (Liu et al., 2021). Here, 

Nanoarchaeota accounted for about 40% of reads and 80% of OTUs, matching the dominance 

of Nanoarchaeota and Thermoproteota reported by Zhang et al. (2024a) in similar benthic 
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habitats. Although this proportion was higher than the 10.5% Woesearchaeota observed by Sun 

et al. (2023) such discrepancies may stem from differences in primer specificity, local 

environmental conditions, or taxonomic classifications (Salmaso et al., 2022). Their ultrasmall 

genomes and obligate syntrophic partnerships with hydrogen‑consuming methanogens enable 

Nanoarchaeota to thrive in anoxic, metal‑rich sediments, so a rise in their relative abundance 

is considered a useful bioindicator of persistent hypoxia and redox stress (Liu et al., 2018, 

Huang et al., 2021, Liu et al., 2021). A similar depth‑linked enrichment of Woesearchaeota in 

progressively anoxic horizons has been reported from Pacific abyssal sediments (Peoples et al., 

2019), further supporting their diagnostic potential. 

Across 12 and 34 estuarine sites, porewater copper ranged from about 2 to 431 µg/L, while 

sediment extractable copper reached up to 1798 µg/g, creating a wider gradient than many 

previous studies (Voica et al., 2016, Zou et al., 2020, Coppo et al., 2023). The markedly flatter 

tail of the 34‑site archaeal accumulation curve suggests that expanding site coverage is 

especially effective for this domain, whose richness appears to saturate more quickly once 

moderate spatial replication is achieved. Variation among replicates was low relative to 

variation among sites, indicating that local environmental differences primarily drove changes 

in archaeal community composition. Although archaeal communities can be quite diverse in 

moderate or near-pristine conditions (Chen et al., 2022, Zhao et al., 2022), their richness was 

lower than that of bacterial assemblages. While archaeal OTU counts were lower overall, it 

still showed marked shifts in response to copper contamination, suggesting that certain archaeal 

groups may be sensitive indicators of metal stress.  In the 12-site subset, archaeal diversity 

showed a clear decline once PWCu surpassed roughly 20 µg/L, whereas in the larger 34-site 

dataset, copper’s impact appears less pronounced and some moderately contaminated sites 

(e.g., Percuil B and C) exhibit diversity similar to more polluted locations. Highly contaminated 

sites do showed differences in community composition in both analyses, though in the 34-site 

dataset only HA and HB stood out as having distinctly altered archaeal assemblages. These 

patterns suggest that severe copper stress can reshape archaeal communities, though these 

effects may diminish or become confounded when environmental heterogeneity was greater. 

Comparing archaeal and bacterial responses to copper contamination in the 12-site subset 

indicated that both domains show significant negative correlations between diversity and 

PWCu, but archaea exhibit a stronger correlation (rho = -0.64 vs. -0.23 for bacteria). This could 
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imply that archaea were more sensitive to moderate copper loads, possibly due to lower 

functional redundancy or different detoxification pathways (Sandaa et al., 1999, Yu et al., 

2024). However, in the 34-site dataset, the correlation for archaea (rho = -0.25) was weaker 

and it was more comparable to the bacterial pattern (rho = -0.16), suggesting that under broader 

environmental gradients, factors like salinity or sediment texture can obscure copper’s direct 

effects. Consequently, while the 12-site data suggest archaeal diversity can markedly decline 

once PWCu surpasses 20 µg/L levels that only moderately affect bacterial communities, this 

threshold was less apparent in the larger and more heterogeneous 34-site analysis. Still, these 

findings collectively indicate that archaea can serve as an early-warning indicator of metal 

stress in relatively uniform estuaries, but not necessarily across all settings (Chen et al., 2024).  

Detecting the ecological consequences of heavy metal pollution, particularly copper, on 

microbial communities remains a central challenge in environmental monitoring (Bååth, 1989). 

In aquatic environments, the complexity of natural gradients complicates efforts to isolate the 

effects of pollutants, including heavy metals (Grant, 2010). Although earlier moderate-

contamination studies (Chen et al., 2019) and extreme-environment research (Korzhenkov et 

al., 2019) suggest high copper loading can markedly alter archaeal communities at 

concentrations less impactful to bacteria, this pattern arises mainly in the 12-site subset here. 

In the 34-site dataset, both archaea and bacteria responded similarly to copper, shaped by 

multiple factors. This result nevertheless indicated that under certain localized conditions, such 

as those encountered in heavily polluted Hayle or Restronguet Creek sites, archaea may serve 

as sensitive indicators of metal stress. 

Within that smaller subset, heavily contaminated sites exhibit markedly reduced OTU richness 

and a higher relative abundance of certain putative copper-tolerant OTUs belonging to 

Thermoproteota (previously classified as separate lineages of Crenarchaeota, Thaumarchaeota 

and Bathyarchaeota in older NCBI-based schemes; (Rinke et al., 2021)) or Nanoarchaeota 

(encompassing Woesearchaeota in older classification). By contrast, the more heterogeneous 

34-site dataset revealed a weaker copper diversity relationship, with sediment grain size (D50), 

salinity and organic content also influencing archaeal composition. These findings align with 

Zou et al. (2020), who observed that multiple environmental gradients can mask metal impacts, 

illustrating how copper’s effect on archaeal assemblages becomes less pronounced when other 

variables vary extensively. In comparing to other studies, many still use older taxonomy (e.g., 



Chapter 5 

201 

 

Bathyarchaeota, Thaumarchaeota) instead of the updated GTDB designations 

(Thermoproteota). 

Within contaminated sites, particular archaeal taxa showed increased abundance, indicating the 

presence of copper-tolerant lineages that could serve as bioindicators of metal contamination 

(Besaury et al., 2014, Voica et al., 2016, Gupta et al., 2021). Although Thermoproteota’s 

resilience under metal stress (Carlier et al., 2020, Zheng et al., 2022) was supported particularly 

in the 34-site dataset, Nanoarchaeota appears more prevalent at heavily polluted locations 

mainly in the 12-site analysis. This discrepancy likely reflects different sampling seasons 

between the two datasets, rather than a site or context-specific response. Both 

Thermoplasmatota and Asgardarchaeota tend to be more abundant in cleaner environments, 

aligning with observations of Thermoplasmatota declines under heavy pollution (Di Cesare et 

al., 2020, Schenk et al., 2022) and Asgardarchaeota’s preference for less disturbed conditions 

(Cai et al., 2021). However, these lineage-level relationships exhibited modest variation 

between the 12- and 34-site datasets. Notably, in one dataset, the top seven OTUs belonged to 

Thermoproteota, reflecting potential differences in copper sensitivity even within a single 

phylum. Overall, these findings highlight the value of specific taxa as putative indicators of 

severe copper pollution, although the ability to confidently identify these lineages remains 

constrained by incomplete reference databases and evolving classification systems 

(Krzmarzick et al., 2018, Grant et al., 2023). These lineage-specific findings expand upon 

broader mechanistic reviews such as (Voica et al., 2016). by pinpointing specific phyla and 

OTUs that respond to severe copper pollution. 

Analytical scale, whether focusing on a smaller, relatively uniform subset of sites or a broader, 

more varied set, strongly influences how pollution impacts were detected. For instance, the 12-

site dataset (concentrated mainly on Fal and Hayle estuaries) revealed a more pronounced 

copper effect because fewer confounding variables (e.g., salinity or sediment texture) 

overshadowed its influence, whereas the larger 34-site dataset encompasses greater 

environmental heterogeneity, reducing copper’s apparent role. NMDS and PCoA thus 

highlighted copper-driven changes more distinctly in the 12-site analysis, whereas the 34-site 

ordinations emphasize how salinity, D50 and organic matter can also shape archaeal 

distributions. Although filtering rare OTUs can be debatable (Ramette, 2007, Navas et al., 

2021, Nikodemova et al., 2023), removing very low-abundance taxa helps focus on dominant 
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groups such as Thermoproteota and Nanoarchaeota, particularly as rare taxa can inflate 

richness counts but may be transient or minimally adapted to environmental extremes (Yenni 

et al., 2017). Nonetheless, recent Arctic marine sediment analyses indicate that some rare 

archaea remain functionally limited, whereas others actively shape community assembly, 

underscoring that low-abundance populations do not necessarily lack ecological impact (Sun 

et al., 2023). Understanding how these minor lineages persist was therefore crucial, since not 

all rare organisms contribute equally to resilience under stress (Yenni et al., 2017). 

This analysis showed that archaeal communities were notably sensitive to copper pollution, 

especially in relatively uniform environments where confounding variables were fewer. The 

reduction in archaeal diversity, coupled with the presence of putative copper-tolerant groups, 

suggests the potential for archaeal-based bioindicators, although environmental heterogeneity 

and the need for robust taxonomic frameworks advise caution. Overall, these findings confirm 

that archaeal communities exhibit a measurable response to high copper levels, often matching 

or surpassing the thresholds reported for other microbial indicators. They also suggest that 

archaea may respond more sharply than bacterial communities in some instances. 

Consequently, integrating archaeal data into wider monitoring and management strategies 

could enhance the detection and mitigation of metal pollution in estuarine ecosystems.
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Chapter 6:   

Examining Eukaryotic Primer Biases and Taxon-specific 

Responses to Environmental Variables in Contaminated 

Estuaries 

 

6.1 Introduction 

Environmental monitoring in marine ecosystems has traditionally relied on macrofauna, which 

require large sample sizes due to their body dimensions (Kendall and Widdicombe, 1999). The 

processing and identification of macrofaunal samples are labour-intensive, expensive and 

demand specialist taxonomic expertise. In estuarine habitats, the relatively limited number of 

macrofaunal species reduces the sensitivity of these methods in detecting subtle pollution 

impacts (Warwick et al., 1991). To address these drawbacks, meiobenthic groups, especially 

nematodes, have been proposed as valuable alternatives. Morphological analyses of meiofauna 

have long provided critical insights into pollution effects (Coull, 1992, Semprucci et al., 2015) 

and nematodes, in particular, serve as effective bioindicators due to their diverse ecological 

strategies, small body size and rapid turnover rates in response to metal stress (Heip et al., 

1985, Schratzberger et al., 2006). 

Several authors have argued that meiofauna offer a more practical option than macrofauna for 

ecological assessments, requiring smaller sample volumes and often exhibiting higher diversity 

in low-salinity environments (Moore and Bett, 1989, Coull, 1992). However, their processing 

was more complex, involving extra steps such as flotation, elutriation and sieving (Hummon, 

1981, Giere, 2009). While nematodes pose identification challenges comparable to 

macrofauna, other meiofaunal taxa such as harpacticoid copepods and soft-bodied 

Platyhelminthes, demand even greater taxonomic expertise (Balsamo et al., 2020). 

Additionally, hard-shelled groups (e.g., foraminiferans and ostracods) require specialised 

handling because they cannot be separated using standard flotation  (Giere, 2009, Martin et al., 
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2021). Despite these limitations, evidence from traditional morphology-based studies suggests 

that metal pollution can influence various meiofaunal taxa, yet the full extent of these impacts 

remains inconclusive across different estuarine systems. 

Smaller eukaryotes that pass through a 63 µm sieve which covering both diminutive metazoans 

and single-celled microbes, have received comparatively little attention in morphological 

surveys. By contrast, diatoms have been studied extensively using standard surface-sampling 

approaches based on their mobility and tendency to grow on sediment surfaces (Eaton and 

Moss, 1966). This emphasis on specific, easily sampled groups highlights the gaps in current 

scientific understanding of many other unicellular or microscopic lineages that might be 

equally sensitive to heavy metal stress. Current evidence does not clearly distinguish how 

smaller microbial eukaryotes respond to metals, revealing a substantial gap in the literature. 

Metabarcoding has been proposed as an alternative to traditional morphological methods 

because it requires no specialised taxonomic knowledge, potentially reduces the time spent on 

sample processing and enables comprehensive surveys of meiofauna, microfauna and 

eukaryotic microbes (Gielings et al., 2021). By amplifying standardised genetic markers using 

universal primers, metabarcoding can capture a broad range of taxa in a single analysis, thereby 

overcoming many of the biases associated with manual identification. In doing so, 

metabarcoding offers a means to assess both macro- and microeukaryotic communities, 

potentially clarifying whether heavy metals exert a consistent influence across different 

organismal size classes. Numerous metabarcoding studies have explored how environmental 

variables, including pollution, shape eukaryotic community composition across multiple sites 

e.g. (Mazurkiewicz et al., 2024, Múrria et al., 2024). However, many rely on limited site 

coverage (e.g., Dewi et al. (2024) tested only three sites and Kalu et al. (2023) only two), or 

primarily examine salinity and redox gradients instead of explicit metal contamination 

(Brannock et al., 2016, Zhao et al., 2020, Chen et al., 2022, Zeng et al., 2023) and some use 

only one primer set, which complicates efforts to disentangle the full effects of heavy metals 

(Kalu et al., 2023, Dewi et al., 2024). 

Despite its capacity to capture wide-ranging biodiversity, eukaryotic metabarcoding remains 

susceptible to primer-driven biases that can skew amplification among target taxa (Creer et al., 

2016, Reynolds et al., 2022). Unlike prokaryotic primers, which have undergone extensive 
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refinement, eukaryote-targeted primer sets often under- or over-represent particular lineages, 

raising concerns about incomplete or distorted ecological snapshots (Bik et al., 2012). 

Additionally, reference databases were incomplete or inconsistently curated, complicating 

accurate taxonomic assignments and potentially underestimating rare or poorly described taxa. 

Several recent studies, including Schoenle et al. (2021) and Li et al. (2024), have underscored 

how database gaps limit the resolution of metabarcoding data, while Kalu et al. (2023) 

highlighted the constraints of relying on a single primer set for complex eukaryotic 

assemblages. Such technical hurdles have limited the ability to confirm whether observed 

patterns genuinely reflected metal stress or were merely artifacts of primer bias and database 

deficiencies. 

Morphological surveys by (Somerfield et al., 1994a) indicate that nematode communities in 

Restronguet, Mylor, Pill, St Just and Percuil Rivers differ from each other, but it remains 

uncertain whether these differences are driven by pollution or variability of other 

environmental variables. (Millward, 1995) showed that Percuil River nematode communities 

resemble those in Helford River while differing markedly from those in Restronguet Creek, 

suggesting no significant pollution impact in Percuil despite elevated copper concentrations. 
This would be consistent with data on the pollution tolerance of nematode communities, which 

showed increased tolerance to copper in the Hayle Estuary, Restronguet, St. Just and Cowlands 

Creeks, whereas copper tolerance of nematodes from Percuil River was similar to those from 

the uncontaminated Breydon Water (Norfolk) and Kingsbridge estuaries (Millward and Grant, 

1995).  By contrast, harpacticoid crustacea at the same sites revealed no clear pollution effects  

(Somerfield et al., 1994a), reinforcing the complexity of disentangling impacts of 

contamination from other environmental gradients.  

Building on these morphological findings, this chapter employs a broader metabarcoding 

approach covering a wider array of eukaryotic groups with multiple primer sets and a 

substantially larger number of sites than most previous investigations. It utilises whole 

sediment samples without flotation or elutriation, targets a well-established pollution gradient 

and compares metabarcoding outcomes with established morphological and biochemical data. 

By incorporating 12-site and 34-site datasets that together span 2-431 µg/L porewater Cu and 

4-1798 µg/g extractable Cu, this study achieves up to a 90-fold difference in porewater copper 

levels far exceeding the relatively mild gradients common in earlier eukaryotic surveys. 
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Multiple primer sets (ITS, G18S, TAR, NEM, DM568 and JB3) enable detection of diverse 

taxa, from microfauna to small macrofauna, providing a rare opportunity to evaluate whether 

copper effects remain consistent across varied eukaryotic lineages. Furthermore, by directly 

extracting DNA from whole sediment without time consuming flotation or elutriation, this 

approach captures both microbial and metazoan eukaryotes in a single workflow, thereby 

addressing the common limitations of incomplete coverage and smaller sample sizes seen in 

prior investigations. This combination of a large metal gradient, multiple primers and coverage 

of a large number of sites aims to resolve whether heavy metals truly drive consistent shifts in 

eukaryotic communities and the extent to which salinity, sediment composition and other 

natural drivers overshadow pollution effects. 

6.2 Methods 

6.2.1 Sampling and DNA extraction 

Three replicate samples were obtained from intertidal areas within estuaries in Southwest 

England, across 12 locations as detailed in (Udochi, 2020) and 34 locations as outlined in 

Chapter 2, along with two sites from Breydon Water, Norfolk. Further details of sampling 

procedures, the specifics of sample collection and the exact geographical coordinates were also 

provided in Chapter 2. The DNA extraction followed the protocols described in Chapter 2, 

using DNeasy® PowerSoil® Pro kit (Qiagen, Hilden, Germany) extraction kits, with 

methodological adjustments specified therein. 

6.2.2 PCR and sequencing 

The amplicon-based approach targeted various regions of eukaryotic genes using a diverse 

selection of primers, each identified by its forward primer name or an abbreviated version for 

simplicity. The ITS primers (ITS1f12/ITS2) targeted the ITS region, while primers G18S 

(G18S4/22R), TAR (TAReuk454FWD1/TAReukREV3) and NEM (NEM/18Sr2b) were 

designed for the 18S region. The DM568 primers (DM568F/RM3R) focused on the 28S region 

and the JB3 primers (JB3adjusted/JB5) amplified the COI gene. Each primer set included a 

forward and reverse primer, both modified to include an Illumina adaptor, an 8-base barcode, 

a 0-7 base length heterogeneity spacer and the gene-specific primer sequence (Fadrosh et al., 
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2014). These primers were synthesised by Sigma Aldrich Company limited, with more detailed 

specifications of the primer sequences provided in Chapter 3. 

The polymerase chain reaction (PCR) was carried out in a 20 μl reaction volume comprising 

10 μl of Phusion™ Flash master mix (Thermo Scientific, UK), 1 μl of forward primer, 1 μl of 

reverse primer (final primer concentration: 100 μM), 7 μl of ultrapure sterile water (MilliQ 

water) and 1 μl of DNA template. This template DNA was added at concentrations ranging 

from nearly zero up to 9.3 ng/μl, depending on the individual sample, as described in Chapter 

2.  

The amplification of the DNA templates was carried out in a Veriti™ HID 96-Well Thermal 

Cycler, 0.2mL system (Applied Biosystems, UK) in either 0.2mL x 96 well plates or 0.2 ml 

PCR tubes, depending upon the number of samples be amplified. The amplification consisted 

of an initial denaturation at 98°C for 10 minutes, followed by 35 cycles of denaturation at 98°C 

for 30 seconds; annealing temperatures were varied depending on the extraction methods and 

ranged between 53 - 70°C for 30 seconds and extension at 72°C for 30 seconds. A final 

extension step was performed at 72°C for 5 minutes, after which samples were held at 4°C. All 

cycling conditions, including the specific annealing temperatures and cycle numbers, were 

optimised to ensure the best possible amplification yield for each primer set, as further 

explained in Chapter 3. For the COI JB3 primer pair, a two-step PCR protocol was 

implemented (conditions detailed in Chapter 3).  Primers were supplied by SigmaAldrich 

Company limited. 

The PCR products were verified by gel electrophoresis, as described in Chapter 2. After visual 

inspection, bands of the approximately expected size were confirmed for each primer set: ITS 

(variable length), G18S (400 bp), TAR (420 bp), NEM (500 bp), DM568 (500 bp) and JB3 

(370 bp), plus an additional ~145 bp from Illumina adaptors, barcodes and spacers. 

Quantification was performed using the StepOne™ Real-Time PCR system (Chapter 2) and 

any reactions yielding no visible band on the gel or a concentration of 0 ng/μL were excluded. 

The samples that exhibited amplicons were purified using the Aline Biosciences PCRClean 

DX kit (Aline Biosciences, Woburn, USA), in accordance with the manufacturer’s instructions 

except for adjustments in the ratio of bead suspension to PCR product. The ratio employed for 

purification was 1.8:1 in the first run, which included only the initial ITS batch and 1:1 in 
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subsequent runs. The second ITS batch and the first batches of the other five primers were 

included in the second run, while the final batches of all primers were processed in the third 

run, optimizing the removal of primer dimers and adapter contamination. These specific ratio 

modifications were drawn from the experience gained in similar clean-up protocols (Quail et 

al., 2009) and were also described in Chapter 2. Quantification of the purified PCR products 

proceeded as in Chapter 2, allowing precise normalisation and ensuring equivalent 

concentrations of amplicons in the final pooled library. Each primer was processed in two 

separate batches corresponding to two datasets: the first batch represented the 12-site dataset 

and the second batch represented the 34-site dataset. 

Sequencing of the purified eukaryotic amplicons was undertaken at the Earlham Institute in 

Norwich, UK, using a pre-made library pool on a single lane of Illumina MiSeq with 300 bp 

paired-end sequencing in June 2021. Subsequent sequencing runs on the NovaSeq 6000 flow 

cell with 250 bp paired-end reads were conducted in February 2022 and February 2023, as 

detailed earlier, with the ITS primer included in the first run and subsequent primers processed 

in later runs. 

The number of reads recovered for each sample ranged from 2 to 1M reads for the ITS primer 

pair; 121K to 2.8M reads for the G18S primer pair; 998 to 3M reads for the TAR primer pair; 

119K to 543K reads for the NEM primer pair; 7.7K to 481K reads for the DM568 primer pair; 

and 3 to 3M reads for the JB3 primer pair. 

Samples with low sequencing read counts (ranging from 2 to 4981 reads) were excluded from 

the analysis. This removal of low count samples maintained the integrity of the dataset and 

enhanced the accuracy of subsequent analyses. The excluded samples were (12_ITS_PR1) 

from the 12-site set; and (ITS_CK3), (ITS_HA1), (ITS_JB1), (ITS_JB2), (ITS_LB1), 

(ITS_LF1), (ITS_MA1), (ITS_RB1), (ITS_RD1), (ITS_TB1), (ITS_VA1), (TAR_CB2), 

(TAR_VC2), (JB3_LB1), (JB3_LD2), (JB3_VB1), (JB3_VB2) and (JB3_VC2) from the 34-

site set. All thresholds were set below 5000 reads, except for JB3, which was set below 50 due 

to its lower average read count. The JB3 dataset for the 34-site samples included only two 

replicates per site.  
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Bioinformatic analysis was carried out using the LotuS2 pipeline (Özkurt et al., 2022). 

Amplicon Sequence Variants (ASVs) were generated using the UNOISE algorithm, which 

models sequencing errors to correct them and recover true biological sequences. Taxonomic 

assignment for eukaryotes was conducted using Eukaryome version 1.7 (www.eukaryome.org) 

(Tedersoo et al., 2024), which specifically covered the 18S, ITS and 28S markers. COI 

assignments employed MIDORI-Longest (www.reference-midori.info) (Leray et al., 2018). 

Detailed methods were described in Chapter 2. Section 6.3.2 included a summary of 

sequencing reads per amplicon, visualised in Fig. 6.4. The distribution of reads across 

eukaryote phyla differs substantially between primer pairs. Ordination analyses were 

conducted using both Bray-Curtis and Jaccard similarity indices, as described in detail in 

Chapter 2, to evaluate community patterns based on relative abundance and presence-absence 

data, respectively.  

To provide a comparator from similar environmental conditions without PCR bias, the 

eukaryote 18S sequences from the marine and freshwater sediment samples in the Karst 

RNAseq dataset (Karst et al., 2018) were classified using USEARCH local matches to the 

Eukaryome database version 1.8 (www.eukaryome.org) and the Lowest Common Ancestor 

(LCA) approach using the LCA utility from the LotuS2 pipeline with default similarity 

thresholds for each taxonomic level (Yarza et al., 2014, Özkurt et al., 2022). 

6.2.3 Linking Primer-Taxon Combinations to BIOENV Results 

To explore how environmental variables shape the composition of different taxonomic groups, 

the BIOENV procedure (Clarke and Ainsworth, 1993) was used across multiple primer sets. 

Each variable was initially tested individually, followed by the selection of the best overall 

relationship among the measured variables, as described in Chapter 2. Data for nine main 

taxonomic groups, as detailed in Section 6.3.1, were assessed against pore water copper 

(PWCu), acid-extractable metal copper (AEMCu), fine sediment fraction (<63 µm; LT63), 

median grain size (D50), salinity (Sal), zinc (Zn), acid-volatile sulphides (AVS), total organic 

carbon (TOC), dissolved organic carbon (DOC), equilibrium partitioning copper (EqpCu) and 

pore water organic carbon-normalised copper (PW_OC_Cu). While all parameters were 

available for the 12-site dataset, only a dataset was used for the 34-site dataset (PWCu, 

AEMCu, LT63, D50 and Sal). 

http://www.eukaryome.org/
https://www.reference-midori.info/
http://www.eukaryome.org/
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Table 6.1 Main eukaryotic taxonomic groups detected by the six primer pairs, summarising 

the environmental drivers, responding taxonomic groups and associated primers for the 12- and 

34-site datasets. 

Taxonomic Group Primer Pair 

All Eukaryotes ITS, G18S, TAR, DM568, JB3 

Stramenopila ITS, G18S 

Fungi ITS, G18S 

Alveolata TAR 

Annelida TAR 

Arthropoda G18S, DM568 

Nematoda G18S, TAR, DM568, JB3 

Platyhelminthes TAR 

Mollusca G18S 

6.3 Results 

6.3.1 Taxonomic composition 

The taxonomic composition of eukaryotic communities was analysed using multiple primers 

targeting 18S, ITS and 28S rRNA genes. While each primer set provided valuable insights into 

community structure, significant biases were observed. 

To compare the metabarcoding results against broader ecological patterns, RNAseq data from 

Karst et al. (2018) and species distributions from the World Register of Marine Species 

(WoRMS) (www.marinespecies.org) were used to establish expectations for community 

composition. The RNAseq data, derived from sediment samples, indicated that Archaeplastida 

account for 28%, followed by Streptophyta at 18%, Stramenopiles-Gyrista at 12%, Metazoa at 

9% and Fungi at 7% (Fig. 6.1). Within metazoans, the most abundant phyla were Arthropoda 

(45%), Platyhelminthes (19%), Nematoda (14%) and Annelida (13%), with Mollusca 

composing a smaller fraction (3%).   

http://www.marinespecies.org/
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A 

B 

Fig. 6.1 Proportional distribution of the top 10 eukaryote A) and metazoan B) phyla identified 

in RNAseq data (Karst et al., 2018). Phyla representing less than 1% combined were grouped 

under 'Other'. Percentages were calculated based on relative abundance data to illustrate the 

dominant phyla within the dataset. 

In contrast, WoRMS data, which reflect global species richness, showed that Arthropoda (28%) 

and Mollusca (25%) dominated marine metazoan diversity, followed by Chordata, Annelida 

and Platyhelminthes (Fig. 6.2). 
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A 

B 

Fig. 6.2 Proportional distribution of the top 10 kingdoms A) and phyla B) identified by the 

World Register of Marine Species (WoRMS) (www.marinespecies.org). Phyla with a 

combined contribution of less than 1% were grouped under 'Other.' Percentages are based on 

relative abundance data to highlight the dominant kingdoms and phyla within the dataset. 

6.3.2 Primer Performance and Observed Biases 

 

This section evaluated how six primer sets influenced the detection of major eukaryotic groups 

and highlighted the implications of these biases for interpreting community composition. 

Metabarcoding results revealed a dominance of Metazoa in data generated using G18S, TAR, 

http://www.marinespecies.org/
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NEM and DM568 (Fig. 6.3 A). By contrast, the ITS primer set captured a higher proportion of 

Stramenopila (such as diatoms), although a notable fraction of reads remained unassigned. JB3 

(COI-based) yielded broad amplification across eukaryotic lineages but lacked consistent 

higher-level taxonomic resolution. Specialised primers provided narrower coverage of the most 

abundant kingdoms and phyla (Fig. 6.3 A and B), representing about 30% of the reads. DM568 

displayed a predominance of Metazoa, especially arthropods, whereas JB3 consistently showed 

minimal detections across all major groups. 
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A 

B 

Fig. 6.3 Relative abundance of the five most abundant A) kingdoms and B) phyla, expressed 

as a percentage of the total reads. Data were processed using the LotuS2/Eukaryome pipeline 

(except for COI JB3 using the MIDORI-Longest database). The G18S, ITS and TAR data are 

derived from all datasets; DM568 from 34-sites and exp; NEM from pilot and 12-sites and JB3 

from pilot, 12 and 34 sites. Taxon names with a number following them represent 

mitochondrial sequences. ‘Uncertain taxonomy’ refers to assignments that remain unresolved 

at the kingdom or phylum level. 
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The heatmap in Fig. 6.4 illustrated how each primer detected and represented major eukaryotic 

kingdoms and metazoan phyla. Colour intensities represented the percentage of total reads for 

each taxon-primer combination, with G18S showed robust amplification of arthropods and 

fungi, TAR favoured alveolates and ITS captured stramenopiles (e.g., diatoms) but 

underrepresented metazoans. NEM was highly specific to nematodes, while DM568 detected 

various metazoan groups at lower overall levels and JB3 consistently showed minimal signals 

across all groups.  

Notably, Fig. 6.4 showed that G18S and TAR offered broad coverage, detecting diverse taxa 

such as nematodes, annelids and alveolates. In contrast, ITS captured Stramenopila and fungi 

with higher specificity but left a fraction of reads unassigned. Highly focused primers like NEM 

provided finer resolution for nematodes but overlooked other sensitive groups.  

The importance of aligning local ASV results with global references was further illustrated by 

comparing primer-based proportions to data from sources like WoRMS (Fig. 6.2), which 

indicated roughly 25% Arthropoda and 25% Mollusca worldwide.  

For arthropods (28% in WoRMS), G18S was closest at about 22%, whereas DM568 showed 

15% and 11% (NEM) and only 3% with JB3, but neither TAR nor ITS featured arthropods 

among their top five phyla. Molluscs appeared at 3% under NEM but were absent from the 

other top-five lists, compared with the 25% expected globally. Annelids, approximately 7% 

worldwide, G18S was closest at about 6%, whereas NEM showed 21%. Nematodes account 

for only 3.2% in WoRMS, yet they were remarkably more prevalent across different primer 

sets, reaching 8% in ITS, 14% in G18S, 5% in TAR, 25% with NEM, 24% in DM568 and 9% 

with JB3.  
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Fig. 6.4 The red colour scale shows the percentage of total reads for each taxon-primer 

combination, with darker red indicating higher percentages. Numeric labels represent the ASV 

counts across six primers for the top five eukaryotic kingdoms (in bold) and major metazoan 

phyla. Taxonomic assignments were determined using the Eukaryome database. In the JB3 

dataset, "0" indicates kingdoms or phyla not classified within the MIDORI-Longest taxonomy 

system. All data were processed using the LotuS2 pipeline.  

6.3.3 Evaluation of Similarity Metrics in Eukaryotic Ordinations 

High-throughput metabarcoding counts provide, at best, a semi-quantitative picture of 

community structure because amplification efficiency, rRNA copy number and primer bias can 
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decouple read numbers from actual biomass or individual counts (Leray & Knowlton 2017; 

Lamb et al. 2019). To test whether this uncertainty affects the observed patterns, the 18S data 

for the 12-site dataset were ordinated using both an abundance-weighted metric (Bray-Curtis) 

and a presence/absence metric (Jaccard), applying NMDS and PCoA (Figs. 6.5 and 6.6). Both 

ordination methods revealed a similar overall gradient, with sites exhibiting the highest 

porewater Cu concentrations positioned towards one side of the configuration, while lower-Cu 

sites clustered oppositely. Minor differences were noted between the two metrics: in the 

Jaccard PCoA (Fig. 6.6 A), the Percuil River (PR) sites appeared more detached from the other 

clean sites, positioned towards the side of the plot where highly contaminated sites also occur. 

Bray-Curtis ordination (Fig. 6.6 B) produced a slightly more cohesive separation along the 

contamination gradient. Given its capacity to incorporate relative abundance information while 

still reflecting between-site differences consistent with presence/absence data, Bray-Curtis was 

retained for the main analyses.  
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A  

B  

Fig. 6.5 Total Eukaryote NMDS bubble plots from G18S primers across the 12-site dataset, 

based on untransformed data using A) Jaccard and B) Bray-Curtis similarity metrics. Bubble 

sizes indicate pore water copper (Cu) concentrations at each site. Site codes as in Table 2.1. 
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A  

B  

Fig. 6.6 Total Eukaryote PCoA bubble plots from G18S primers across the 12-site dataset, 

based on untransformed data using A) Jaccard and B) Bray-Curtis similarity metrics. Bubble 

sizes indicate pore water copper (Cu) concentrations at each site. Site codes as in Table 2.1. 
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6.3.4 Comparison of Clustering Patterns Between NMDS and PCoA Analyses 

Visual inspection of ordination plots (Fig. 6.7) indicated that PCoA produced more distinct 

clustering patterns than NMDS for both porewater copper (PWCu; Fig. 6.7 A and B) and acid-

extractable copper (AEM; Fig. 6.8 A and B). In the 12-site dataset, PWCu was selected for 

ordination, while AEM was used for the 34-site dataset. NMDS plots showed similar spatial 

arrangements but with reduced separation between sites. Differences in the number of sites 

across datasets contributed to varying degrees of overlap in ordination space. 
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A 

B 

Fig. 6.7 Total Eukaryote bubble plots from G18S primers across 12 and 34 sites, based on 

square root transformed data using the G18S primer and Bray-Curtis similarity. The analysis 

includes A) NMDS and B) PCoA ordinations, with no ASV pruning. Bubble sizes indicate the 

pore water copper (Cu) concentrations at each site. Plots A and B highlight PWCu. Site codes 

as in Table 2.1. 
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A 

B 

Fig. 6.8 Total Eukaryote bubble plots from G18S primers across 12 and 34 sites, based on 

square root transformed data using the G18S primer and Bray-Curtis similarity. A) NMDS and 

B) PCoA ordinations focus on AEM, with no ASV pruning. Bubble sizes indicate the pore 

water copper (Cu) concentrations at each site. Site codes as in Table 2.1. 
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6.3.5 Effect of Rare ASV removal on analysis 

Following NMDS and PCoA outputs that highlighted overall site differences (and suggested 

copper-driven gradients), this section evaluates whether retaining rare ASVs improves site-

level resolution, datasets with and without pruning thresholds (0.1 % and 1 %) were compared. 

Pruning low-abundance ASVs reduced the number of retained variants but did not alter the 

overall grouping patterns observed in NMDS and PCoA ordinations. Subtle compositional 

differences between heavily impacted estuaries and less contaminated sites appeared more 

distinct in unpruned datasets, as shown in PCoA plots (Figs. 6.9, 6.10 and 6.11). 
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A All ASVs Retained 

B Pruned (<0.1%) 

Fig. 6.9 PCoA bubble plots for total eukaryotes based on square root transformed data using 

the G18S primer and Bray-Curtis similarity. Comparisons are shown for 12 sites with pore 

water copper (PWCu). A) shows data with no ASV pruning and B) with 0.1% ASV pruning. 

Bubble sizes indicate the pore water copper (Cu) concentrations at each site. Site codes as in 

Table 2.1. 
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A Pruned (<1%) 

B All ASVs Retained 

Fig. 6.10 PCoA bubble plots for total eukaryotes using the G18S primer and Bray-Curtis 

similarity. A) shows the 12-site dataset with 1% ASV pruning and B) the 34-site dataset with 

no pruning, focusing on acid-extractable metals (AEM). Bubble sizes indicate the pore water 

copper (Cu) concentrations at each site. Site codes as in Table 2.1. 
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A Pruned (<0.1%) 

B Pruned (<1%) 

Fig. 6.11 PCoA bubble plots for total eukaryotes using the G18S primer and Bray-Curtis 

similarity. A) shows the 34-site dataset with 0.1% ASV pruning and B) with 1% ASV pruning, 

both focusing on acid-extractable metals (AEM). Bubble sizes indicate the pore water copper 

(Cu) concentrations at each site. Site codes as in Table 2.1.  
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ANOSIM tests were then performed using site as the grouping factor (Fig. 6.12). Including 

rare ASVs slightly increased within-site variability but preserved more site-level distinctions. 

ANOSIM R-values remained consistent across pruned and unpruned datasets in both the 12-

site and 34-site analyses, indicating that replicate agreement and the ability to detect site 

differences were robust regardless of pruning. 

 

 

 

 

 

 

 

 

6.3.6 Replication and Site Comparisons 

Building on the ANOSIM results presented in Fig. 6.12, this section examined how 

consistently different primers detected community-level variability among sites, while also 

considering whether replicate variability masks or clarifies site-level patterns. To accomplish 

this, a combined approach utilised ordination visualisations.  

Fig. 6.12 ANOSIM R-values for 12-site and 34-site datasets generated using the G18S primer 

under three pruning thresholds (no pruning, 0.1% and 1%). The results illustrate the degree of 

dissimilarity between sites, with R statistics quantifying the strength of clustering by site. R-

values > 0.75 indicate very strong differences between sites and all results are statistically 

significant (p ≤ 0.0001). 
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Site-level patterns in relation to copper concentrations were visualised using PCoA bubble 

plots in Fig. 6.13 and Fig. 6.14 A. These ordinations provided an overview of spatial clustering 

across sites. To quantify clustering consistency, ANOSIM R-values were calculated and 

compared across six primer datasets (ITS, G18S, TAR, NEM, DM568, JB3), as shown in Fig. 

6.15. High R-values were observed for G18S, TAR and DM568 in the 34-site dataset. R-values 

were generally higher in the 12-site dataset. NEM produced a lower R-value and a non-

significant result (p = 0.1) in the 12-site dataset. For ITS, G18S, TAR, DM568 and JB3, R-

values exceeded 0.75 and were statistically significant (p ≤ 0.0001). Replicate clustering 

patterns indicated that small-scale environmental variability did not prevent detection of 

broader site-level patterns. In the 12-site dataset, G18S ordinations including and excluding 

Breydon Water samples (Figs. 6.14 A and B) showed that these samples often clustered closer 

to Southwest sites compared to bacterial or archaeal patterns. 

 

 

Fig. 6.13 Total Eukaryote bubble plot based on square root transformed data and Bray-Curtis 

similarity showing TAR primers across 34 sites in relation to salinity. The analysis employs 

PCoA and NMDS ordinations with no ASV pruning. Bubble sizes represent pore water copper 

(Cu) concentrations at each site. Site codes as in Table 2.1. 
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A 

B 

Fig. 6.14 Total Eukaryote bubble plots based on square root transformed data and Bray-Curtis 

similarity using G18S primers for the 12-site dataset with pore water copper (PWCu). A) shows 

plots including Breydon Water (BW) samples, while B) shows plots excluding BW samples. 

The analysis employs PCoA and NMDS ordinations with no ASV pruning. Bubble sizes 

represent pore water copper (Cu) concentrations at each site. Site codes as in Table 2.1. 
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Fig. 6.15 ANOSIM R-values for six primer datasets (ITS, G18S, TAR, NEM, DM568 and JB3) 

comparing 12-site and 34-site datasets, with R values > 0.75 indicating very strong differences 

between groups and statistical significance confirmed for most primers (p ≤ 0.0001), except 

NEM (p = 0.1008). 

6.3.7 Eukaryotic Responses to Environmental Drivers 

Does copper correlate strongly with community composition, or did other environmental 

factors play a more prominent role? An initial overview of BIOENV results (Table 6.2) 

indicated that pore-water copper (PWCu), the fraction of sediment finer than 63 µm (LT63) 

and salinity (Sal) emerge most frequently in top predictor sets, doing so 16, 11 and 15 times, 

respectively. Median grain size (D50) and equilibrium partitioning copper (EqpCu) showed 

fewer significant appearances and, in the case of EqpCu, no individual significance.  

What does a closer look reveal about copper and other variables for each dataset and taxonomic 

group? For All Eukaryotes, the best environmental combination yields a relatively high 

correlation (r = 0.61) under G18S-12, whereas JB3-34 was weaker at 0.34. In preliminary 

analyses, a wide range of variables was tested; only those achieving significance (p ≤ 0.05) and 

showed consistent associations were selected for final visualisation.
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Table 6.2 Summary of environmental drivers, responding taxonomic groups and associated primers for the 12- and 34-site datasets. The table 

shows Spearman's rank correlation (Rho) values from BIOENV analysis, with individual variables in columns and the best combined r-values in 

the far-right column. Shaded cells highlight significance: Gray for significant and pink for non-significant variables. All significant r-values, 

including combined and individual, are in bold. 
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Does the 12-site or 34-site scale matter? Within the All Eukaryotes group, G18S data for the 

12-site set correlate with both PWCu (0.41) (Fig. 6.16 A) and D50 (0.49). ITS, however, 

highlighted AVS (0.38) and TOC (0.31) (Fig. 6.16 B). In contrast, the 34-site sets exhibited 

recurring importance of Sal, appearing in ITS (Fig. 6.17 A), TAR (Fig. 6.17 B), DM568 (Fig. 

6.18 A) and JB3 (Fig. 6.18 B). AEMCu (G18S4; Fig. 6.19 A) also aligned with 34-site data, 

while LT63 (TAR; Fig. 6.19 B) marked the prevalence of finer sediments. 
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A All eukaryotes- PWCu (G18S4)  

B All eukaryotes - TOC (ITS)  

Fig. 6.16 Bubble plots illustrating the relationships between total eukaryotic communities 

across 12 sites to significant environmental variables identified in the BIOENV analysis: A) 

PWCu and G18S4 data and B) TOC and ITS data. The plots are based on PCoA ordination 

using Bray-Curtis dissimilarity, with no ASV pruning applied. Bubble sizes represent the 

intensity of the respective environmental variable at each site. Site codes as in Table 2.1. 
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A Salinity (ITS)  

B Salinity (TAR)  

Fig. 6.17 Bubble plots illustrating the responses of total eukaryotic communities across 34 sites 

to significant environmental variables identified in the BIOENV analysis. A) shows salinity 

with ITS data, while B) shows salinity with TAR data. The plots are based on PCoA ordination 

using Bray-Curtis dissimilarity, with no ASV pruning applied. Bubble sizes represent the 

intensity of the respective environmental variable at each site. Site codes as in Table 2.1. 
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A Salinity (DM568)  

B Salinity (JB3)  

Fig. 6.18 Bubble plots illustrating the responses of total eukaryotic communities across 34 sites 

to significant environmental variables identified in the BIOENV analysis. A) shows salinity 

with DM568 data, while B) shows salinity with JB3 data. The plots are based on PCoA 

ordination using Bray-Curtis dissimilarity, with no ASV pruning applied. Bubble sizes 

represent the intensity of the respective environmental variable at each site. Site codes as in 

Table 2.1. 
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A AEMCu (G18S)  

B LT63 (TAR) 

Fig. 6.19 Bubble plots illustrating the responses of total eukaryotic communities across 34 sites 

to significant environmental variables identified in the BIOENV analysis. A) shows AEMCu 

with G18S4 data, while B) shows LT63 with TAR data. The plots are based on PCoA 

ordination using Bray-Curtis dissimilarity, with no ASV pruning applied. Bubble sizes 

represent the intensity of the respective environmental variable at each site. Site codes as in 

Table 2.1. 
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What patterns emerged for specific taxonomic groups? Stramenopila showed moderate and 

high correlations under different primers, with ITS-12 aligning with AVS (0.37) and G18S-34 

was associated with LT63, D50 and Sal as in (Fig. 6.21 A). Alveolata and Annelida both 

showed considerable relationships to PWCu in some primers. For instance, TAR-12 produced 

combined correlations of 0.60 (Fig. 6.20 A) and 0.54 (Fig. 6.20 B) for Alveolata and Annelida, 

respectively. Salinity (Fig. 6.21 B) and sediment texture (LT63, D50) may also coincide with 

their distributions, but whether these variables interacted with copper was not confirmed by the 

present data. Platyhelminthes in TAR-34 correlate with LT63, D50 and Sal (Fig. 6.22). In 

TAR-12, no single variable attained significance, but a combined correlation of 0.56 was 

observed. A correlation of 0.46 in TAR-34 likewise was recorded for the same variables. 
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A Alveolata - PWCu (TAR) 

B Annelida - PWCu (TAR) 

Fig. 6.20 Bubble plots illustrating the responses of the main metazoan and protistan phyla 

communities across 12 sites to key environmental variables identified as significant in the 

BIOENV analysis. A) shows Alveolata in relation to PWCu (TAR), while B) shows Annelida 

in relation to PWCu (TAR). The plots are based on PCoA ordination using Bray-Curtis 

dissimilarity, with no ASV pruning applied. Bubble sizes represent the intensity of the 

respective environmental variable at each site. Site codes as in Table 2.1. 
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A Stramenopiles - salinity (G18S4) 

B Alveolata - salinity (TAR) 

Fig. 6.21 Bubble plots illustrating the responses of key metazoan and protistan phyla across 34 

sites to significant environmental variables identified in the BIOENV analysis. A) shows 

Stramenopiles in relation to salinity (G18S4), while B) shows Alveolata in relation to salinity 

(TAR). The plots are based on PCoA ordination using Bray-Curtis dissimilarity, with no ASV 

pruning applied. Bubble sizes represent the intensity of the respective environmental variable 

at each site. Site codes as in Table 2.1. 
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 Platyhelminthes - salinity (TAR)  

Fig. 6.22 Bubble plots illustrating the responses of key metazoan and protistan phyla across 34 

sites to significant environmental variables identified in the BIOENV analysis. It shows 

Platyhelminthes in relation to salinity (TAR). The plots are based on PCoA ordination using 

Bray-Curtis dissimilarity, with no ASV pruning applied. Bubble sizes represent the intensity 

of the respective environmental variable at each site. Site codes as in Table 2.1. 

Nematodes displayed comparatively clearer multi-parameter correlations. G18S-12 can reach 

combined correlations up to 0.69, featuring PWCu (Fig. 6.23 A), AEMCu, DOC and 

PW_OC_Cu (Fig. 6.23 B). In G18S4-34, D50 appeared prominently (Fig. 6.24). Mollusca 

under G18S-12 reached a combined correlation of (0.75) with PWCu and D50. By contrast, 

Fungi and Arthropoda exhibited moderate or inconsistent correlations with copper but were 

more strongly aligned with Sal and LT63 under DM568-34 (Figs. 6.25 A and B). 
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A Nematoda - PWCu (G18S4) 

B Nematoda - PW_OC_Cu (G18S4) 

Fig. 6.23 Bubble plots illustrating the responses of the main metazoan and protistan phyla 

communities across 12 sites to key environmental variables identified as significant in the 

BIOENV analysis. A) shows Nematoda in relation to PWCu (G18S4), while B) shows 

Nematoda in relation to PW_OC_Cu (G18S4). The plots are based on PCoA ordination using 

Bray-Curtis dissimilarity, with no ASV pruning applied. Bubble sizes represent the intensity 

of the respective environmental variable at each site. Site codes as in Table 2.1. 
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 Nematoda - D50 (G18S4)  

Fig. 6.24 Bubble plots illustrating the responses of key metazoan and protistan phyla across 34 

sites to significant environmental variables identified in the BIOENV analysis. It shows 

Nematoda in relation to D50 (G18S4). The plots are based on PCoA ordination using Bray-

Curtis dissimilarity, with no ASV pruning applied. Bubble sizes represent the intensity of the 

respective environmental variable at each site. Site codes as in Table 2.1. 
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A Arthropoda - salinity (DM568) 

B Arthropoda - LT63 (DM568) 

Fig. 6.25 Bubble plots illustrating the responses of key metazoan and protistan phyla across 34 

sites to significant environmental variables identified in the BIOENV analysis. A) shows 

Arthropoda in relation to salinity (DM568), while B) shows Arthropoda in relation to LT63 

(DM568). The plots are based on PCoA ordination using Bray-Curtis dissimilarity, with no 

ASV pruning applied. Bubble sizes represent the intensity of the respective environmental 

variable at each site. Site codes as in Table 2.1. 



Chapter 6 

244 

 

6.4 Discussion 

Across 12 and 34 estuarine sites, porewater copper reached up to 431 µg/L and acid extractable 

sediment copper up to 1798 µg/g, exceeding the ranges covered by many earlier studies. This 

90-fold span in copper levels was substantially larger than most previous surveys (Kalu et al., 

2023, Dewi et al., 2024), and such an extensive gradient is rarely captured within a single 

estuarine study, allowing a clearer statistical separation of metal effects from background 

variability (Grant, 2002). Notably, replicate variation was much lower than site-to-site 

variation, indicating that local conditions strongly influenced eukaryotic assemblages. This 

pattern shows that the three within-site cores reflected fine-level patchiness, while the 12 or 34 

distinct locations captured broader environmental variation. To broaden taxonomic coverage, 

this study used multiple primer sets (ITS, G18S, TAR, NEM, DM568 and JB3) which detected 

a wide range of taxa, including nematodes, annelids, arthropods, diatoms (Stramenopila) and 

alveolates. Because rRNA and mitochondrial barcodes occur in tens to thousands of copies per 

cell, taxa with high gene-copy numbers, particularly Metazoa, can dominate read pools even 

when biomass is similar (Pompanon et al., 2012, Aylagas et al., 2014, Bucklin et al., 2016). In 

line with Chapter 3 findings, each primer demonstrated strengths for certain groups. The ITS 

primer pair yielded moderate read counts, yet fungal reads comprised only 5% of the total, 

aligning with previous observations (Schmidt et al., 2013, Harnelly et al., 2022), whereas G18S 

data were dominated by Metazoa, in line with Stoeck et al. (2010) and Tytgat et al. (2019). 

However, this predominance might partly reflects the high rRNA gene copy numbers in 

metazoan genomes, which can inflate read proportions relative to groups with fewer copies per 

genome (Pompanon et al., 2012, Aylagas et al., 2014, Bucklin et al., 2016)TAR amplified a 

diverse range of eukaryotes as indicated by Fonseca et al. (2022) and Maosa et al. (2024), 

though with slightly lower efficiency. The NEM was particularly effective in amplifying 

nematodes, consistent with the findings of Porazinska et al. (2009), Sapkota and Nicolaisen 

(2015). The DM568 was originally described as particularly adept at amplifying nematode 

species (Kounosu et al., 2019) and the data here confirm effective nematode recovery, yet 

larger read counts were recorded for arthropods and more ASVs emerged for stramenopiles, 

fungi and alveolates, reflecting the primer’s broader 28S-based coverage (Machida and 

Knowlton, 2012, Kounosu et al., 2019). Lastly, the JB3 was anticipated to capture COI 

sequences from certain metazoan lineages, including arthropods, molluscs and platyhelminths, 

as described by Tytgat et al. (2019), but yielded minimal detections across the major groups in 
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this dataset, with a sizeable fraction of reads remaining unassigned and offering less taxonomic 

resolution than the other primers. Additionally, the generally broader coverage and more 

complete reference libraries available for 18S often enable deeper classification at genus or 

species level than 28S-based or COI-based approaches. While DM568 can recover diverse 

taxa, its reference database remains less extensive than that for G18S, which limits fine-scale 

taxonomic assignments. Similarly, JB3’s poor performance in assigning reads at the Kingdom 

level underscores the importance of filling coverage gaps in current COI databases. However, 

taxonomic groupings should be interpreted with caution because the higher‑level classification 

of eukaryotes remains incomplete and sometimes inconsistent; for instance, the SAR 

supergroup (Stramenopila, Alveolata and Rhizaria) is treated separately from Archaeplastida, 

which itself encompasses Rhodophyta, Glaucophyta and Chloroplastida, the latter uniting both 

Streptophyta and green algae (Mackiewicz and Gagat, 2014, Yazaki et al., 2022). 

Consequently, this multi-primer metabarcoding strategy reduced the “blind spots” often seen 

when fewer sites or primer sets were used (Borja and Dauer, 2008, Dewi et al., 2024). 

Nevertheless, no single primer set captured the full spectrum of lineages, underscoring ongoing 

concerns that primer biases and incomplete reference databases may overlook groups such as 

Mollusca or foraminiferans (Bik et al., 2012, Schoenle et al., 2021). Several broad eukaryotic 

metabarcoding studies (Fonseca et al., 2022, Pawlowski et al., 2024) have likewise shown that 

multiple markers were needed to represent diverse lineages, supporting the rationale for using 

multiple primers in this work. Nevertheless, some primer sets (particularly, ITS, NEM and JB3) 

exhibited higher replicate variability, possibly because large-bodied taxa can be patchily 

distributed in a 10 g sample or because certain groups show small-scale habitat heterogeneity, 

leading to occasional absences or presences in replicates (Thornton et al., 2011, Nichols et al., 

2018). Conversely, primers that inflate read numbers for a few taxa may under‑detect groups 

with poor binding or low gene copies, potentially masking richness (Elbrecht and Leese, 2015, 

Lamb et al., 2019). G18S and TAR primer sets showed more stable results among replicates, 

likely because they captured a broad range of smaller metazoans and microeukaryotes that 

occurred consistently across subsamples. Nevertheless, the use of multiple primers covering 

diverse taxa allows consistent detection of community shifts across contamination gradients, 

demonstrating that metabarcoding can robustly capture overall patterns despite each primer’s 

inherent limitations. 
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These results build on the morphological tradition for meiofauna (Coull, 1992, Semprucci et 

al., 2015) by detecting smaller taxa that macrofaunal surveys often miss (Hummon, 1981, 

Giere, 2009). In 10-gram sediment samples like those used here, juvenile macrofauna can 

occupy the same size range as typical meiofaunal organisms, serving as “temporary meiofauna” 

and bridging the boundary between permanent meiobenthos and larger taxa (Warwick, 2018). 

This overlap underscores the need for integrative analyses across multiple size classes, since 

early life stages of macrofauna may pass through the same sieves used to capture smaller, 

permanently meiofaunal species. This strategy aligns with evidence that meiofauna may be 

especially sensitive to pollution (Moore and Bett, 1989, Coull, 1999). In contrast, 

morphological methods require substantial taxonomic expertise and large sample volumes 

(Warwick et al., 1991, Kendall and Widdicombe, 1999). Metabarcoding offers a faster, broader 

alternative (Gielings et al., 2021), although its success depends on expanding reference 

databases and mitigating primer biases (Baetscher et al., 2023). Additionally, morphological 

surveys often overlook soft-bodied platyhelminths or molluscs (Mitsi et al., 2019, Balsamo et 

al., 2020), while broader eukaryotic literature showed that alveolates and stramenopiles can 

also be underrepresented by single-marker methods (Burki et al., 2021, Marinchel et al., 2024). 

The reliance on easily observable taxa like shelled organisms and the shortage of expertise in 

identifying soft-bodied species have led to skewed entries in databases such as (WoRMS), 

further perpetuating incomplete coverage (Rosenberg, 2014, McClain et al., 2025). By 

extracting DNA directly from whole sediment (without sieving, flotation or elutriation), this 

study also reduced sample processing time and bypassed usual biases in separating macrofauna 

from meiofauna (Borja and Dauer, 2008). Although the unsieved approach maximises recovery 

of small metazoans and microbes, it also captures trace DNA from incidental macrofaunal 

fragments (Bik et al., 2012). These “by-catch” reads should therefore be interpreted with 

caution when the study focus is limited to meiofauna or microfauna (Klunder et al., 2019). 

Bray-Curtis ordinations are retained as the primary depiction of eukaryotic community patterns 

because their abundance weighting gives finer resolution of site differences than presence-

absence metrics (Weiss et al., 2017). However, because Bray-Curtis relies on read counts, it 

inherits the semi-quantitative limitations of metabarcoding abundances, including rRNA copy 

number variation, primer bias and PCR stochasticity (Leray and Knowlton, 2017, Lamb et al., 

2019), as detailed in Chapter 1. A complementary Jaccard ordination, based solely on 

presence-absence data, yielded broadly similar site groupings, confirming that the observed 
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gradient is robust while also providing a conservative check against over-interpreting 

abundance magnitudes. This concordance indicates that Bray-Curtis still captures meaningful 

ecological differences when biases are systematic, as noted by Luo Luo et al. (2023). 

Interpreting both metrics together therefore combines the sensitivity of abundance weighting 

with the safeguard of binary data, aligning with recommendations from Deagle et al. (2009) 

Krehenwinkel et al. (2017). 

A key goal was to distinguish copper-driven changes in eukaryotic communities from natural 

gradients such as salinity and sediment texture (LT63, D50). Many metabarcoding studies have 

found it difficult to separate metal impacts from other factors (Chen et al., 2022, Zeng et al., 

2023), especially when only a limited number of sites have been sampled (Kalu et al., 2023, 

Dewi et al., 2024). Heavy metals pose a serious ecological threat in marine sediments due to 

their toxicity, persistence and bio accumulative potential (Chapman et al., 1998, Grant, 2010, 

Ardila et al., 2023). Yet confounding variables such as salinity, sediment texture and nutrient 

enrichment, often mask the direct effects of contamination (Grant, 2002, Gillan et al., 2005). 

In estuarine settings, changing physicochemical conditions can alter metal toxicity and produce 

heterogeneous responses (Ogilvie and Grant, 2008). This study showed that porewater copper 

(PWCu) strongly shaped community composition in the 12-site dataset, which included several 

sites with very high Cu. In the Fal and Hayle estuaries, known for elevated copper (Somerfield 

et al., 1994b), sites clustered distinctly in ordination plots, supporting earlier suggestions that 

copper can be a major ecological driver here (Ogilvie and Grant, 2008). Even so, salinity and 

grain size emerged as important covariates, aligning with studies that note multiple stressors in 

estuaries (Brannock et al., 2016, Li et al., 2024). Earlier morphological work in the same region 

(Somerfield et al., 1994c) attributed nematode differences to salinity and habitat factors, rather 

than metals alone.  They employed multiple sites in each creek but did not replicate within a 

site, meaning they primarily assessed among-creek variation within the Fal system, while the 

present study encompasses more estuaries and additional replicates per site. By spanning a 90-

fold range in porewater copper (2-431 µg/L), this study offers more conclusive evidence that 

copper influences benthic communities while acknowledging the role of other environmental 

variables. Similar to findings in wider marine metabarcoding efforts (Tagliabue et al., 2023, 

Geraldi et al., 2024), overlapping gradients can reduce the visibility of metal-specific effects. 

For instance, alveolates and some annelids correlated more with copper at higher 

concentrations (Marinchel et al., 2024, Mazurkiewicz et al., 2024), whereas certain nematode 
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or arthropod taxa showed stronger links to salinity or sediment factors (Derycke et al., 2010, 

Tytgat et al., 2019). Reliable indicators help avoid confusing metal-driven shifts with general 

environmental “noise” (Grant, 2002, Grant, 2010).  

Nematodes, matching previous morphological studies that highlight their rapid turnover and 

metal sensitivity (Heip et al., 1985, Schratzberger et al., 2006), were abundant under higher 

copper concentrations but exhibited even greater species-level diversity with metabarcoding, 

which was consistent with findings that morphological counts may underestimate cryptic or 

rare taxa (Derycke et al., 2010, Tytgat et al., 2019). Alveolates and certain annelids appear 

strongly associated positively with copper, although these patterns may partly reflect salinity 

and grain-size effects. In contrast, arthropods, stramenopiles, platyhelminths and fungi display 

weaker or inconsistent relationships with copper. Such findings expand on past suggestions 

(Coull, 1992, Semprucci et al., 2015) that various meiofaunal taxa can act as bioindicators. 

They further extend the morphological observations of Somerfield et al. (1994c) and Millward 

and Grant (1995) to include diatoms (Stramenopila) and alveolates, organisms less accessible 

in traditional surveys. These results did not pinpoint a single species. Still, the observed patterns 

in both presence-absence and abundance across multiple taxa suggest that a multi-taxon 

approach may help capture metal-driven community changes, particularly under severe metal 

gradients (Borja and Dauer, 2008). Additionally, Other studies have noted that annelids often 

thrive in habitats shaped by glacial sedimentation, high turbidity, scouring and unstable 

sediments (Mazurkiewicz et al., 2024) while Warwick (2001) observed that opportunistic 

annelids were especially numerous at heavily polluted sites, which aligns with the high annelid 

representation observed here. 

Site coverage played a central role in detecting pollution-related trends. The 12-site dataset 

revealed more pronounced copper relationships, possibly because these sites included 

extremely high Cu values. In contrast, the 34-site dataset featured greater salinity and sediment 

variability, sometimes partially obscuring copper effects. This pattern aligns with earlier 

remarks that moderate pollution or fewer sites can hamper clear interpretations (Dewi et al., 

2024, Múrria et al., 2024). Tagliabue et al. (2023) and Nijland (2020) highlight how broad 

spatial coverage introduces additional environmental gradients, making single-stressor impacts 

more challenging to discern. Bacteria and Archaea data from Chapters 4 and 5 of this thesis 

indicate a similar pattern, with clear separation at heavily contaminated sites (such as Hayle 
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and Restronguet) but reduced discrimination at moderate copper levels. Furhter analyses 

supported these trends indicating that eukaryote communities were the most distinctly 

separated domain in both datasets, with R-values of 0.997 for the 12-site data and 0.871 for the 

34-site data, surpassing Bacteria (0.791, 0.707) and Archaea (0.927, 0.609) in each case. 

Comparisons with earlier morphological findings and whole-community toxicity assessments 

confirm this interpretation; Somerfield et al. (1994c) reported distinct, less diverse nematode 

assemblages in the Fal system’s most metal-enriched areas and Millward and Grant (1995) 

showed that nematodes from chronically polluted Restronguet Creek exhibited higher copper 

tolerance than those from cleaner sites. The metabarcoding patterns observed here, especially 

in the highly contaminated subset, similarly indicate that copper-rich sediments correspond to 

shifts in community composition and elevated tolerance, reflecting the same metal-driven 

changes identified by these morphological and pollution-induced community tolerance studies. 

By using both datasets, the present work therefore extends earlier, narrower efforts into a 

broader spatial context and confirms that site coverage can determine whether strong copper 

signals emerge amid other environmental factors. 

Applying ASVs for sequence analysis and testing different pruning thresholds revealed that 

retaining rare taxa can expose subtle pollution signals, illustrating how modern bioinformatics 

can detect minor lineages potentially overlooked by traditional morphotyping (Hummon, 1981, 

Giere, 2009). The results suggest that some morphological species may actually represent 

multiple ASVs, suggesting cryptic diversity or unresolved taxonomic boundaries (Derycke et 

al., 2010, Tytgat et al., 2019, De Luca et al., 2021). As noted by Bik et al. (2012), incomplete 

or uneven taxonomic references can hamper ASV classification and the many unassigned or 

partially identified reads in this study underscore that local databases remain insufficient for 

several lineages. Although this study relied on DNA metabarcoding, complementary RNA 

approaches are increasingly available. Primer‑free sequencing of environmental rRNA (eRNA) 

can generate full‑length 16S and 18S reads and thus profile the metabolically active community 

(Pochon et al., 2015, Karst et al., 2018). Both eRNA and shotgun metagenomics bypass primer 

bias but remain more costly and bioinformatically demanding than amplicon sequencing (Eloe-

Fadrosh et al., 2016). For routine monitoring, DNA metabarcoding is therefore still the most 

pragmatic option, provided read counts are interpreted as semi‑quantitative indicators 

(Pompanon et al., 2012, Deagle et al., 2019). Multi-primer eukaryotic metabarcoding can 

capture macro- and microfaunal assemblages under severe metal pollution, surpassing earlier 
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work limited by smaller contamination ranges or fewer sites (Borja and Dauer, 2008, Dewi et 

al., 2024). As databases improve and primer sets become more refined, metabarcoding could 

feasibly supplement or even replace morphological techniques for routine monitoring, given 

its efficiency, breadth of taxa and lower manpower requirements (Gielings et al., 2021). By 

extracting DNA directly from whole sediment (without flotation or elutriation), this study also 

bypassed usual biases in separating macrofauna from meiofauna (Borja and Dauer, 2008). 

Nevertheless, diverse lineages like foraminiferans may still go undetected unless specifically 

targeted (Pawlowski et al., 2024), underscoring that enhanced references and primer designs 

did not completely eliminate coverage gaps.  

Future efforts could concentrate on highly contaminated and genuinely clean sites to sharpen 

copper-driven trends, while also measuring additional environmental factors (e.g. redox, 

sulphides) to show how metals interact with other estuarine variables (Brannock et al., 2016, 

Li et al., 2024). Although morphological surveys and multi-primer metabarcoding have each 

been used to track metal-driven shifts in benthic communities (Heip et al., 1985, Semprucci et 

al., 2015, Kalu et al., 2023), the present study offers a novel application in a distinct 

environment, showed that comprehensive coverage and robust sampling design can detect 

metal-related community changes. 

Overall, this study demonstrates that high copper levels can significantly shape eukaryotic 

communities in estuarine sediments, while salinity and sediment factors also play influential 

roles. By spanning a 90-fold range in porewater copper and employing multiple primers, it 

advances current knowledge, which has often been restricted to milder gradients or few sites 

(Kalu et al., 2023, Dewi et al., 2024). Clearly, replicate variation remained lower than site-level 

differences, likely reflecting fine-grained sediment heterogeneity typical of mudflats. The three 

within-site cores captured local-scale patchiness, while the 12- and 34-site designs 

encompassed broader spatial turnover. However, sampling coverage and replication are never 

perfect, and limited cores per site can reduce power to detect subtle effects 

(Tagliabue et al., 2023). Unquantified differences in DNA‑extraction efficiency may also bias 

relative read counts (Emilson et al., 2017), while PCR stochasticity introduces additional 

technical noise that particularly affects rare ASVs (Nichols et al., 2018). The mean richness 

detected here (~ 350-420 eukaryotic ASVs site-1 with G18S) matches values from temperate 

North‑Sea muds but remains below those reported for tropical mangrove sediments, echoing 
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recognised latitude‑linked diversity gradients (Brannock et al., 2016; Múrria et al., 2024). 

Nematodes, diatoms and certain alveolates consistently respond to copper, suggesting a multi-

taxon indicator framework might be valuable for future assessments (Borja and Dauer, 2008). 

Nevertheless, some groups may still evade detection without specialised primers or curated 

databases and confounding gradients can persist even in multi-primer studies (Nijland, 2020, 

Pawlowski et al., 2024). Future work that pairs DNA metabarcoding with eRNA profiling of 

active rRNA and targeted metatranscriptomics could help separate metal impacts from natural 

variation (Pochon et al., 2015; Karst et al., 2018), while improved local references and 

thoughtful sampling strategies will further strengthen coastal pollution assessments using 

molecular tools (Pawlowski et al., 2018; Leese et al., 2018).
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Chapter 7:  

Discussion, Implications and Future Directions 

7.1 Restatement of Aims and Context 

This thesis set out to investigate how historic metal contamination, particularly copper, affects 

benthic microbial (bacterial, archaeal) and eukaryotic communities in southwestern England 

using metabarcoding. Past Cornish mining generated large volumes of copper, tin and arsenic-

rich wastes (Barton, 1961), creating persistent contamination in estuaries such as Restronguet 

Creek and the Hayle (Bryan and Gibbs, 1983, Grant, 2010). Although these systems are now 

subject to minimal new industrial inputs, copper and other metals remain in sediments 

indefinitely (Alloway, 2012). Under GESAMP’s framework, estuaries classed as 

“contaminated” do not automatically qualify as “polluted” unless there is demonstrable harm 

to biological communities (Bryan and Hummerstone, 1971, Grant, 2010). The overarching goal 

was thus to determine whether elevated copper levels correlate with measurable ecological 

impacts, ranging from shifts in bacterial and archaeal composition to changes in eukaryotic 

diversity while also refining methodological approaches for detecting these pollution effects. 

7.2 Methodological Advances and Rationale 

A key challenge was the heterogeneous nature of estuarine sediments, so triplicate 10 g cores 

spaced ~0.5 m apart were taken at each site to capture fine-scale sediment variability. Results 

from ANOSIM and ordinations showed replicates clustered much more tightly than samples 

from different sites, confirming that the design adequately sampled local variability, which can 

hamper DNA extraction and bias PCR-based analyses due to co-extracted humic and fulvic 

acids inhibiting polymerase activity and reducing amplicon yield (Tebbe and Vahjen, 1993). 

Analysis in Chapter 2 outlined how tailored dilution strategies and optimised PCR protocols 

helped surmount these barriers, paving the way for accurate molecular assessments even under 

high metal loads. Building on these optimisations, the thesis employed multi-target 
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metabarcoding (16S, ITS, 18S, 28S and COI) to survey a broad range of organisms (Chapters 

3, 4, 5 and 6). This approach addressed the historical limitation of single-marker methods, 

which can underrepresent subgroups within the intended barcode group and omit entire non-

target groups, thereby underestimating overall benthic diversity (Tytgat et al., 2019, Fonseca 

et al., 2022). One key advantage of extracting DNA from whole sediment was that it captures 

the full microbial eukaryotic community in a single workflow, potentially preventing the loss 

of rare or fragile taxa that might occur during fractionation steps (Sapkota and Nicolaisen, 

2015). In addition, direct sediment approaches can yield a more holistic snapshot of benthic 

biodiversity, as indicated by the high nematode proportions found in large-volume samples 

(Fais et al., 2020). To ensure that ordination patterns were not an artefact of abundance 

weighting, complementary presence-absence ordinations (Jaccard) were generated and found 

to mirror the Bray-Curtis results, reinforcing that the main gradients reported here were 

method-independent. In addition, sampling 12- and 34-site datasets expanded the 

contamination gradient from as low as 2 µg/L porewater Cu up to 431 µg/L, providing a 

spectrum over which we would expect both subtle and extreme effects of metals to occur 

(Bryan and Hummerstone, 1971, Bryan and Gibbs, 1983). Across both domains, accumulation 

analyses showed that increasing the number of estuarine sites yielded a greater return in 

detected diversity than simply sequencing existing sites more deeply; this highlighted spatial 

heterogeneity as the principal constraint on recovering the full microbial complement of 

metal‑impacted sediments. One key advantage of extracting DNA from whole sediment is that 

it captures the full microbial eukaryotic community in a single workflow, potentially 

preventing the loss of rare or fragile taxa that might occur during fractionation steps (Sapkota 

and Nicolaisen, 2015). Moreover, direct sediment approaches can yield a more holistic 

snapshot of benthic biodiversity, as indicated by the high nematode proportions found in large-

volume samples (Fais et al., 2020). 

7.3 Thresholds and Community Shifts in Bacteria 

Analysis in Chapter 4 focused on bacterial assemblages and demonstrated that porewater 

copper exerted a discernible influence on community structure. Bacterial alpha-diversity 

remained relatively stable until roughly 20 µg/L porewater Cu, consistent with earlier 

thresholds reported by Ogilvie and Grant (2008). Beyond this point, compositional changes 

intensified and community composition at heavily polluted sites (HA, HB, RA, RB, RC and 
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RD), some of which had porewater Cu levels above 100 µg/L, was very distinctive. In spite of 

that, bacteria retained sufficient functional redundancy that alpha-diversity declines were 

modest compared with those of macrofauna in severely polluted marine systems (Olsgard and 

Gray, 1995). These patterns reinforced the notion that bacterial communities can tolerate 

moderate copper loads before showed pronounced reorganisation. However, confounding 

factors such as salinity, sediment grain size and organic matter may mask copper-driven shifts 

in community composition at intermediate contamination levels (Grant, 2002). 

7.4 Archaeal Sensitivity and Bioindicator Potential 

The findings in Chapter 5 revealed that archaea often exhibit stronger or earlier responses to 

copper contamination than bacteria in smaller, more uniform subsets of sites. For instance, in 

the 12-site analysis, archaeal richness declined sharply once porewater Cu exceeded 20 µg/L 

and showed a moderate but significant negative association with PWCu (rho = -0.64) whereas 

the corresponding bacterial correlation was weak (rho = -0.23) yet still statistically significant. 

This difference may reflect lower functional redundancy among archaea or their distinct 

detoxification pathways (Sandaa et al., 1999, Yu et al., 2024). The broader 34-site dataset, 

however, introduced additional heterogeneity (e.g., salinity, sediment texture) that diluted the 

copper signal, mirroring the challenges in estuaries with multiple overlapping stressors (Grant, 

2010, Zou et al., 2020). Within heavily contaminated sites, specific OTUs from 

Thermoproteota or Nanoarchaeota appeared more abundant, suggesting these particular 

lineages, rather than entire phyla, may be copper-tolerant indicators in environments where 

confounding factors were less prominent. Furthermore, Thermoproteota’s resilience was 

observed in the 34-site dataset, whereas Nanoarchaeota occurred primarily at heavily polluted 

sites in the 12-site subset, a discrepancy likely arising from different sampling seasons rather 

than site-specific factors. Thermoproteota include thermophilic sulfur reducers equipped with 

copper efflux and sequestration mechanisms, supporting their tolerance to elevated copper 

levels (Jay et al., 2016). In contrast, Nanoarchaeota are obligate epibiotic symbionts that rely 

on host-mediated detoxification to persist in metal-rich biofilms, lacking intrinsic copper 

resistance (Wurch et al., 2016). 
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7.5 Eukaryotic Communities and Copper-Driven Changes 

Turning to eukaryotic assemblages (Chapter 6), multi-primer metabarcoding (ITS, G18S, 

TAR, NEM, DM568, JB3) revealed taxa such as nematodes, annelids, arthropods, diatoms 

(Stramenopila) and alveolates showed clear compositional turnover along the (2-431 µg/L 

porewater Cu). In the 12-site subset featuring extremely high copper, eukaryote communities 

clustered distinctly in ordination plots, indicating strong metal-driven changes reminiscent of 

earlier morphological findings (Somerfield et al., 1994c, Millward and Grant, 1995). By 

contrast, the 34-site analysis encompassed greater salinity and sediment variation, partially 

obscuring moderate copper signals. Replicate variation remained low relative to site-level 

differences, reinforcing that local environmental conditions drive eukaryotic assemblages 

(Moore and Bett, 1989, Coull, 1992). Among the more copper-tolerant lineages, certain 

nematode and alveolate groups correlated significantly with elevated Cu, though confounding 

gradients could still overshadow these relationships in moderately polluted sites. Meanwhile, 

arthropods, stramenopiles, platyhelminthes and fungi displayed weaker or inconsistent copper 

correlations, suggesting that not all eukaryotic taxa exhibit pronounced metal responses. Karst 

et al. (2018) found that arthropod rRNA reads dominated their marine‑sediment dataset 

(~45 %). In the present study no single marker reproduced that proportion, but G18S recovered 

the largest share of arthropod sequences (~20 % of metazoan reads), NEM retrieved the highest 

relative abundance of nematodes (~40 %) and DM568 yielded the greatest proportion of 

platyhelminth reads (~10 %). Percentages drawn from WoRMS (e.g. Arthropoda 28 %, 

Mollusca 25 %) provide a global richness baseline, highlighting that read‑based values are 

primer‑dependent. In addition, variation in ribosomal‑RNA gene‑copy number can inflate read 

counts in fast‑growing microbes (bacteria and protists), so apparent relative abundances should 

be interpreted with caution (Kembel et al., 2012). These differences reiterated that a 

multi‑marker strategy is essential for balanced coverage of metazoan phyla. This domain-wide 

perspective showed that severe contamination can reshape entire eukaryotic communities, yet 

single-primer or smaller-scale studies might overlook important taxa (Borja and Dauer, 2008, 

Dewi et al., 2024). 
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7.6 Comparison of Archaeal, Bacterial and Eukaryotic Responses 

Analysing domain responses across both the 12-site and 34-site datasets underscores how 

environmental heterogeneity affects threshold detection. In the smaller, more uniform Fal and 

Hayle subset: 

• Archaea showed a sharper drop in diversity once copper surpassed 20 µg/L, suggesting 

they may serve as early-warning indicators in less confounded environments (Sandaa et al., 

1999, Grant et al., 2023). 

• Bacteria exhibited moderate declines but only underwent large compositional turnover at 

higher Cu loads. 

• Eukaryotes (especially nematodes and alveolates) displayed clear shifts where copper 

levels were extreme, aligning with historical morphological evidence in southwestern 

estuaries (Somerfield et al., 1994a, Millward and Grant, 1995). 

When considering the 34-site dataset, salinity, sediment texture and other variables blurred 

direct copper effects, indicating that archaea and eukaryotes can be reliable metal indicators 

only if site-level heterogeneity was accounted for (Nijland, 2020, Chen et al., 2022). 

7.7 Significance of Multi-Marker Metabarcoding 

This thesis demonstrates that no single primer set adequately captures the full complexity of 

benthic microbial and eukaryotic communities. Instead, employing multiple primers; 16S for 

bacteria; dedicated archaeal 16S sets and varied eukaryotic markers (18S, ITS, 28S, COI), 

optimises taxonomic coverage (Bik et al., 2012, Tytgat et al., 2019, Fonseca et al., 2022). While 

multi-marker metabarcoding significantly broadens our view, primer biases and incomplete 

databases remain limiting factors, especially for certain archaea (Nanoarchaeota) and 

eukaryotes (molluscs, foraminiferans). Nonetheless, this approach surpasses traditional 

methods by detecting cryptic or rare taxa that morphological surveys might miss, yielding a 

more refined picture of pollution-induced shifts (Coull, 1992, Borja and Dauer, 2008). Multi-

primer data showed minimal replicate variation within each site compared to differences 

among sites, indicating that local conditions strongly shape benthic communities. However, 

despite extensive sequencing, metabarcoding did not always reflect physiological tolerance 
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assays reported for nematodes (Bik et al., 2012), highlighting that compositional data alone 

may overlook sub-lethal stress detected by bioassays. This discrepancy arises from 

insufficiently matched control locations, rather than shortcomings of the method. Expanding 

the number of sampled sites typically introduces further environmental differences that can 

mask contamination impacts. Consequently, finding “clean” sites with physical and chemical 

attributes mirroring those of polluted areas was more critical than simply adding loci or refining 

databases. Although this can be difficult in practice, it underscores the importance of precise 

site selection to isolate metal contamination as the primary driver of observed community 

shifts. 

7.8 Management Implications 

The findings confirm porewater copper as an important predictor of community change, 

especially when concentrations exceed 20 µg/L. While total sediment copper also matters, 

particularly for deposit feeders ingesting particles (Miller et al., 1984, Watling, 1998), 

porewater measurements often reflect bioavailable fractions more directly (Somerfield et al., 

1994c, Ogilvie and Grant, 2008). Where copper loads exceed 100 µg/L, major compositional 

turnover was likely signalling a shift from contamination to ecological harm consistent with 

GESAMP’s definition of pollution (Bryan and Hummerstone, 1971, Grant, 2010). 

Consequently, multi-domain monitoring (bacteria, archaea and eukaryotes) can improve early 

detection of pollution thresholds, informing targeted remediation. Researchers should, 

however, consider local confounding variables such as salinity, organic content and grain size 

that may mask moderate metal impacts or amplify them under certain redox conditions 

(Eggleton and Thomas, 2004, Chen et al., 2022). 

7.9 Limitations and Caveats 

Despite the advantages of multi-locus metabarcoding, a few limitations remain. Reference 

libraries for certain archaeal phyla and marine eukaryotes were still sparse (Bik et al., 2012, 

Krzmarzick et al., 2018), raising the risk of unassigned reads or underestimation of specific 

taxa. DNA-based approaches also conflate active, dormant and dead organisms, potentially 

overstating ecological presence if turnover rates were high (Taberlet et al., 2012). In large-scale 
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datasets spanning multiple estuaries and overlapping gradients can obscure moderate pollution 

signals (Zou et al., 2020, Pawlowski et al., 2024). Moreover, morphological or functional 

endpoints (e.g., feeding rates, growth assays) still play a valuable role in confirming that 

compositional shifts reflect genuine ecological harm rather than mere presence of metals 

(Bryan and Gibbs, 1983, Shipp and Grant, 2006). Finally, the cost and logistical burden of 

multi-marker sequencing may challenge routine regulatory monitoring, although these 

constraints continue to diminish as sequencing technologies evolve. 

7.10 Directions for Future Research 

Further methodological refinements could enhance pollution detection. Primer sets optimised 

for lesser-studied taxa, such as certain nematodes or archaeal sub-clades, would reduce 

coverage gaps (Bahram et al., 2019, Kounosu et al., 2019). Shotgun metagenomics and 

metatranscriptomics can profile the full complement of metal‑resistance genes and their 

transcriptional activity in situ (Quince et al., 2017), while emerging sediment metaproteomics 

is beginning to uncover which detoxification proteins are actually expressed under high‑Cu 

stress (Wilmes and Bond, 2006, Gracioso et al., 2014). Complementary, low‑cost functional 

screens could be achieved with targeted qPCR assays for well‑characterised copper‑efflux 

genes (Navarro et al., 2009). Functional analyses (metatranscriptomics, metagenomics) offer a 

direct window into metabolic pathways under metal stress, clarifying whether tolerant lineages 

truly thrive or merely persist (Turner et al., 2013). Further microcosm and mesocosm 

experiments could isolate copper’s role from confounding variables, illuminating threshold 

responses in controlled environments (Ogilvie and Grant, 2008). Integrating morphological 

data, particularly for nematodes and other meiobenthos would validate how well DNA-based 

approaches capture metal-induced changes, especially for extremely localised or patchily 

distributed taxa (Somerfield et al., 1994c, Warwick, 2001). Finally, bridging advanced 

geochemical models (e.g., AVS, equilibrium partitioning) with multi-domain metabarcoding 

can pinpoint the fraction of metals most responsible for ecological disruptions, offering more 

precise guidelines for remediation and management (Di Toro et al., 1991, Hall Jr and Anderson, 

2022). 
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7.11 Final Remarks 

In southwestern England, the legacy of copper contamination is long-standing and will 

continue to shape benthic communities for decades. This research has shown that multi-target 

metabarcoding is a powerful tool for detecting subtle yet meaningful shifts across bacteria, 

archaea and eukaryotes, revealing both domain-specific sensitivities and shared threshold 

responses. Key findings indicate that while moderate copper loads may remain partially 

masked by environmental heterogeneity, severe contamination (>100 µg/L porewater Cu) 

consistently alters community composition, underscoring a pollution threshold in line with 

GESAMP’s criteria for ecological harm (Bryan and Hummerstone, 1971, Grant, 2010). By 

refining methodologies, expanding reference databases and incorporating morphological or 

functional validation, future studies can deepen our understanding of how metals, salinity and 

other stressors intersect to shape benthic ecology. A fuller understanding will also require 

linking taxonomic shifts to functional roles, including processes such as nutrient cycling or 

metal detoxification, through metagenomic or transcriptomic approaches. Ultimately, the 

insights gained here on threshold detection, domain-specific responses and the utility of multi-

locus metabarcoding advance both scientific insight and practical strategies for coastal 

pollution monitoring, guiding more informed and effective environmental management.
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Table A.1 Primer Version Codes and Total Versions for Forward and Reverse Primers Used 

in the Project. 

 


