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Abstract
Background During the COVID-19 pandemic in England, increases and falls in COVID-19 cases were monitored 
using many surveillance systems (SS). However, surveillance sensitivity may have changed as different variants were 
introduced to the population, due to greater disease-resistance after comprehensive vaccination programmes and 
widespread natural infection or for other reasons.

Methods Time series data from ten epidemic trackers in England that were available Sept 2021-June 2022 were 
compared to each other using Spearman correlation statistics. Least biased and most timely SS in England were 
identified as ‘best’ standard epidemic trackers, while other COVID-19 tracking datasets we denote as complementary 
trackers. We compared the best standard trackers with each other and with the complementary trackers. Correlation 
calculations with 95% confidence intervals were made between complementary and best standard epidemic trackers. 
We tested the hypothesis that correlation with the best trackers was especially poor during transition periods when 
Delta, Omicron BA.1 and Omicron BA.2 sublineages were each dominant. Daily ascertainment percentages of incident 
cases that each SS detected during each variant’s dominance were calculated. We tested for statistically significant (at 
p < 0.05) differences in the distribution of the ascertainment values during each COVID-19 variant’s dominance, using 
Welch’s oneway ANOVA.

Results Spearman rho correlation was significantly positive between most complementary and the best trackers 
over the whole period. There was no apparent visual indication that correlations were especially poor during 
transition period from Delta to BA.1. There were falls in correlation in the transition period from BA.1 to BA.2 but these 
falls were relatively small compared to correlation fluctuations over the full period. Ascertainment was highest in the 
Delta period for complementary systems against the least biased tracker of incidence. Ascertainment was statistically 
different between the three variant-dominant periods.

Conclusions From September 2021 to June 2022, complementary SS generally reflected case rises and falls. 
Ascertainment was highest in the Delta-dominant period but no complementary tracker was highly stable. Factors 
other than which variant was dominant seem likely to have affected how well each tracker reflected true case rises 
and falls.

Did COVID-19 surveillance system sensitivity 
change after Omicron? a retrospective 
observational study in England
Julii Brainard1,2*, Iain R. Lake2,3, Roger A. Morbey2,4, Alex J. Elliot2,4 and Paul R. Hunter1,2

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1186/s12879-025-11120-0
http://crossmark.crossref.org/dialog/?doi=10.1186/s12879-025-11120-0&domain=pdf&date_stamp=2025-5-29


Page 2 of 13Brainard et al. BMC Infectious Diseases          (2025) 25:770 

Introduction
Surveillance systems (SS) were critical during the 
COVID-19 pandemic to manage, monitor and forecast 
health care demand, disease burden and the optimal 
timing of social distancing measures [1, 2]. COVID-19 
SS facilitated identification of high-risk groups [3–6], 
informed modelling studies [7–10] and helped identifi-
cation of distinct syndromic features of COVID-19 com-
pared to other influenza-like illnesses [1, 11, 12]. To 
foster surveillance resilience and meet diverse informa-
tion needs, multiple SS operated simultaneously in many 
jurisdictions, including in England UK [13].

As the UK COVID-19 activity progressed during 
the pandemic, it seems likely that the sensitivity of SS 
changed driven by multiple and complex pressures/fac-
tors. Universal vaccination programmes [14, 15] and 
widespread COVID-19 infections [16] are likely to have 
resulted in higher population resistance to developing 
symptomatic COVID-19 infection as well as reduced 
severity when symptoms were present. One key change 
in the pandemic occurred with the arrival of the Omicron 
(B.1.1.529) variant in England in November 2021. Omi-
cron was associated with increased transmission rates 
[17] which were likely to affect surveillance sensitivity 
and specificity. Epidemiological evidence demonstrated 
that although Omicron sublineages were more trans-
missible than earlier COVID-19 variants [18], infection 
with Omicron variants were also associated with much 
milder illness [19]. Omicron sublineages becoming domi-
nant coincided with reduced incubation periods [20] but 
higher risk of reinfection [18]. Laboratory evidence [21] 
indicated that Omicron had superior replication compe-
tence in the upper respiratory tract but poorer replica-
tion capacity in the lungs compared to earlier COVID-19 
variants, potentially leading generally to more transmis-
sible but milder illness and thus altered case presentation 
in infected persons.

Using SS effectively and efficiently means understand-
ing the strengths and limitations of each individual sys-
tem [22, 23]. How the sensitivity of SS may change as 
pandemics develop is a key aspect of understanding 
these limitations. In addition to estimates of total cases, 
SS are relied upon to provide timely information about 
when case counts are rising or falling. If an SS is depen-
dent on disease severity, then when typical case presen-
tation changes, system sensitivity is likely to change also. 
Understanding of what proportion of cases an SS has 
identified could be faulty if sensitivity abruptly changes. 
In this retrospective observational study of COVID-
19 SS in England, UK, we identified three best stan-
dard epidemic trackers that yielded daily estimates of 

COVID-19 case incidence and prevalence and compared 
these sources with case count estimates with each other 
and with other, complementary surveillance systems 
(CompSS). We apply simple and replicable methods to 
document how sensitive many SS were to estimating case 
counts in England when the dominant COVID-19 variant 
changed from Delta to Omicron BA.1 and then to Omi-
cron BA.2.

Methods
In this study we use nine SS datasets that were previ-
ously described at length [13] as well as one additional 
surveillance dataset newly described here: case counts of 
persons hospitalised primarily for COVID-19. Below we 
provide a brief recap of each surveillance dataset used in 
this study, which are also summarised in Table 1.

Best standard epidemic trackers
We identified three potential ‘best standard’ epidemic 
trackers (BestET) for tracking cases in the English 
COVID-19 epidemic. The two least-biased case count 
estimators were daily case count estimates published by 
the Office for National Statistics (ONS) following random 
and stratified household sampling (Coronavirus Infec-
tion Survey for England, CISE). ONSCISE modelling 
allowed for demographic variations between the sam-
pled and general population [24] to generate estimates 
of both incidence (ONSincid; new case count estimates) 
and prevalence (ONSprev: estimates of total concur-
rently infectious cases). The ONSCISE had high detec-
tion rates for asymptomatic cases because participants 
were swabbed at random, and high stability because data 
collection methods did not change and the modelling 
approach changed relatively little over time. However, 
the ONSCISE was not timely because of a typical > 10 day 
delay between swab collection and reporting date. ONS 
incidence estimates were not generated between 20 June 
and 19 November 2022 inclusive.

The most timely COVID-19 epidemic tracker was a 
combined count of laboratory-confirmed cases from 
two testing frameworks deployed during the COVID-
19 epidemic in England. During our monitoring period, 
COVID-19 tests were available to health care workers 
and persons presenting with medical needs as part of 
what was designated a Pillar 1 testing framework. Tests 
to confirm COVID-19 infection were also available to 
wider members of the public with or without symptoms 
under a testing framework denoted as Pillar 2 tests. Com-
bined case counts from Pillar 1 and 2 (P12) testing were 
widely used as most up-to-date estimates of daily total 
confirmed case counts during the English COVID-19 
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epidemic. P12 swab results [25, 26] were typically pub-
lished < 24  h after sample collection [27], and thus were 
very timely and had potentially high stability. P12 data 
strictly reflect incidence not prevalence. P12 data were 
likely to under-detect asymptomatic cases, because peo-
ple who lacked symptoms had less reason to take a test. 
We therefore regard P12 data as a third ‘best standard’ 
epidemic tracker, and the most timely epidemic monitor-
ing tracker, especially of symptomatic infection.

Complementary surveillance systems/datasets
This study compares the three BestET with seven other 
potential COVID-19 against CompSS concurrently 
available in England. We describe whether each data-
set predominantly reflected incidence or prevalence or 
potentially both. The government website coronavirus.
data.gov.uk provided counts of persons newly admitted 
to National Health Service (NHS) hospitals with SARS-
CoV-2 positivity (HospAdm). Another epidemic tracker 
based on health service usage is counts of hospital inpa-
tients in England who had COVID-19 as the primary 
reason for their hospitalisation (C19PRinH), which infor-
mation was available from 18 June 2021 onwards. Cases 
in the HospAdm dataset were only counted once per 
infectious episode so align with COVID-19 incidence. 
However, hospitalisations while infected with Covid 
could be multiple for the same infectious episode in a sin-
gle patient, and as a result the C19PRinH dataset could 
reflect incidence or prevalence.

We used four CompSS which were based on national 
syndromic SS maintained by the UK Health Security 
Agency (UKHSA) real-time syndromic surveillance ser-
vice. These syndromic CompSS describe patients access-
ing the NHS 111 telephone health advice (111calls) and 

NHS 111 online health assessments (111web) services; 
emergency department attendances (EDSS) and general 
practitioner in-hours (GPIH) consultations [2]. COVID-
19-specific syndromic indicators for each of these syn-
dromic CompSS were developed in 2020 [1]. All of these 
health service-record based indicators and counts of 
SARS-CoV-2 positive persons in hospital were typically 
reported within 24  h so were timely. They were consis-
tently defined during this monitoring period and thus 
had high stability. However, these CompSS were unlikely 
to capture asymptomatic or minimally symptomatic 
cases. These UKHSA datasets could reflect incidence or 
prevalence.

The final CompSS what we used in our analysis was 
not based on actual health care demand but rather vol-
untary symptom-reporting. In a private sector project, 
the Zoe project (ZOE) produced COVID-19 incidence 
estimates [28]. ZOE was a nutritional and wellbeing digi-
tal application in development before 2020 which was 
adapted to support daily COVID-19 symptom tracking. 
ZOE produced estimates of community incidence that 
were derived from their own models that incorporated 
counts of their App users who reported new case status, 
with adjustments for demographic imbalances compared 
to the general population and the most recent ONSCISE 
estimates [29]. The precise algorithm(s) for how ZOE 
generated its incidence estimates and the completeness 
of the data collected are not published which means 
that stability of ZOE and its ascertainment biases are 
unknown. There were many ZOE model changes in their 
incidence estimates during the UK COVID-19 epidemic 
[29]. Previous research [13] found that in 2020–2021 
the ZOE data correlated highly with the least biased and 
most timely epidemic trackers used in this article.

Table 1 Best and complementary epidemic trackers
Source Short name Description Primary purpose of 

dataset(s)
Government testing framework Epidemic control and 

monitoringP12 Pillar 1 & 2 case counts
Randomly chosen households for 
sampling

ONSincid ONSCISE incidence estimates Estimate new infec-
tions, and prevalence 
; epidemic monitoring

ONSprev ONSCISE prevalence estimates

NHS hospitalisation records HospAdm New admissions to hospital of patients who tested positive
for COVID-19

Hospital services 
demand

C19PRinH Count of persons who were in hospital primarily because of COVID-
19 infection

Syndromic datasets held by UKHSA, 
derived from actual health care 
usage records

EDSS Emergency Department attendances Syndromic 
surveillanceGPIH Consultations with GPs in usual opening hours

111calls NHS 111 telephone calls
111web NHS 111 website assessments

The ZOE
App

ZOE Symptom tracker application Identify symptoms as-
sociated with COVID-
19 infection status

Notes: GP = General practice surgeries; NHS = National Health Service; ONSCISE = Office for National Statistics Coronavirus infection Survey for England; 
UKHSA = United Kingdom Health Security Agency
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Where available, we used uncorrected data (as first 
published) from each CompSS, because minimally veri-
fied data is what real-world decision makers usually have 
access to while an epidemic is active. We calculated cor-
relation statistics between the BestET and the CompSS 
for both the full monitoring period and sub-periods. All 
SS and datasets apply to England only. More information 
about the data used in this study, cleaning, additional 
processing and sources is in [13].

Monitoring period
We compared the datasets from 1 September 2021, until 
19 June 2022. This period encompasses > 90 days before 
Omicron became dominant in England, the rapid tran-
sition from Delta to Omicron dominance in sequenced 
swab samples in late 2021, and transitions between 
several different Omicron waves before reporting of 
ONSCISE incidence estimates was paused on 20 June 
2022.

COVID-19 variants
We consider SS sensitivity to track infections with regard 
to three main COVID-19 variants and their sublineages: 
Delta, Omicron BA.1 and Omicron BA.2. In the UK 
COVID-19 epidemic, the Delta variant was dominant 
among genetically sequenced test samples from 24 May 
to 14 December 2021. Omicron variant group BA.1 and 
sublineages dominated samples from 14 December 2021 
through 20 February 2022, after which Omicron BA.2 
sublineages were most sequenced samples until 7 June 
2022. From 7 to 19 June 2022 no single SARS-Cov-2 vari-
ant dominated sequenced samples in England.

Analysis: quantitative comparisons
To compare BestET and CompSS, we undertook visual 
and statistical comparisons that were simple and replica-
ble. We separate some of the analysis between incidence 
and prevalence comparisons. The case counts suggested 
by BestET least biased and most timely best standard epi-
demic trackers were plotted in time series with CompSS, 
to visually discern if there was close correspondence. 
The two BestET that indicated incidence were compared 
to each other to see if the correlation between the most 
timely BestET (P12) and the least biased BestET (ONSin-
cid) changed over time or when dominant variants 
changed. Spearman rho correlation statistics were calcu-
lated with 95% confidence intervals for the full monitor-
ing periods. Spearman rho was appropriate because the 
time series had strongly nonparametric distributions.

We wanted to test whether correlations between 
CompSS and BestET were especially low around the 
period when the dominant variant changed, from Delta 
to BA.1 or from BA.1 to BA.2 dominance. For this test, 
we calculated Spearman rho on day 16 in 31 day duration 

moving time windows, for six CompSS and P12 with 
ONSincid over the full period. The same was done for 7 
CompSS against ONSprev. The Spearman rho value for 
day 16 in the moving window was plotted against calen-
dar dates and with reference to which variant was domi-
nant. These plots were visually assessed for apparent dips 
in correlation in transition periods.

Daily ascertainment percentages for incidence were 
also calculated and reported as median values with IQR, 
to see how many cases each system seemingly detected 
daily, compared to the best standard SS. The resulting 
datasets (ascertainment percentages) were mostly non-
parametric and lacked homoscedasticity between groups 
separated by variant dominance. We therefore tested 
for statistically significant (at p < 0.05) differences in the 
distribution of the ascertainnment values during each 
COVID-19 variant’s dominance, using Welch’s oneway 
ANOVA tests. Rstudio 2022.02.0 (R version 4.1.1) was 
used to generate plots and statistics.

Results
Overview
Plots of each CompSS (rows) are shown against the 
BestET (columns) in Supplementary File S1. Two exem-
plar time series are reproduced as Fig.  1a and b in this 
article. Each individual figure has the complementary 
series plotted against left axis, and BestET against right 
axis, with approximate alignment for their peak values. 
These time series were smoothed (7 day moving average 
on central date) in these visualisations except the ONSin-
cid and ONSprev. Raw (not smoothed) values were used 
for statistical comparisons and analysis. The period when 
each variant was dominant is indicated by multi-coloured 
lines at the bottom of each chart (green for Delta, cyan 
for BA.1 and purple for BA.2). Duration of dominance by 
each variant was : Delta for 104 days, BA.1 for 69 days 
and BA.2 for 107 days. There is strong visual similarity 
between many time series: many rises and falls happened 
about the same time. Comparisons between time series 
in all the figures are quantified statistically in Table 2.

Table  2 shows whole period correlation (Spearman 
rho with 95% confidence intervals) between BestET and 
CompSS. Most correlations were significant at p < 0.05, 
meaning there was evidence of correlation, mostly posi-
tive. HospAdm and ZOE had the highest positive corre-
lation (95% confidence intervals > 0.70) with the BestET 
ONSincid and ONSprev, but were both much less cor-
related with P12 (95%CI < 0.70). EDSS was the CompSS 
most correlated with the most timely tracker (P12; rho 
0.83, 95%CI 0.78–0.87). P12, EDSS and C19PRinH were 
each positively correlated with all other SS data. Given 
many patients tested under the Pillar 1 framework were 
attenders to ED, it is not surprising that P12 correlated 
highly with EDSS. GPIH and 111web had the weakest 
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relationships with ONSincid or ONSprev or other track-
ers, except that the 111web data strongly correlated with 
111calls counts (rho 0.79, 95%CI 0.73–0.83).

Best epidemic trackers compared to each other
Figure1a and 1b in this article show the P12 time series 
with ONSincid and ONSprev. Figure 1a and b are useful 
to focus on because they suggest that ascertainment by 
P12 compared to ONSincid declined over time. Ascer-
tainment was higher during Delta or BA.1, but lower dur-
ing BA.2 time periods. When the ascertainment ratio was 
calculated for P12 compared to ONS incidence the values 
were 42.5 (95%CI 37.0-49.1) during Delta, 30.39 (95%CI 
23.9–38.1) in BA.1 and 8.93 (95%CI 7.0-11.3) in the 

BA.2 time period. This varying ascertainment relation-
ship seems like an important reason why the Spearman 
rho correlation statistic over the full monitoring period 
between P12 and the ONSincid time series is positive 
but not high (rho 0.53, 95%CI 0.45–0.59). In our previ-
ous research for the same trackers in the period Septem-
ber 2020 to December 2021, this correlation was much 
higher (rho 0.94, 95%CI 0.92–0.95) [13].

Ascertainment of complementary compared to bestet
Table  3 gives subperiod ascertainment percentages of 
cases detected for CompSS incidence and prevalence 
trackers, compared to case counts reported by BestET, 
and separated by which variant was concurrently 

Fig. 1 Pillar 1 and 2 case count time series overlain with ONS estimates of incidence and prevalence. Notes: P12 is scaled to left side axis, ONS dataset 
counts are scaled to each right vertical axis. Dates are 1 September 2021 to 19 June 2022
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dominant. Data are reported as median ascertainment 
ratio (IQR). GPIH is not included because GPIH data 
were available as rates per 100,000 registered patients, 
and as such aren’t directly suitable for calculating ascer-
tainment ratios.

Ascertainment of prevalence or incidence suggested 
by P12 or CompSS compared to the ONS estimates 
was lower in BA.1 period compared to Delta dominant 
period. However, using ONSCISE outputs as Best ET, dif-
ferences in ascertainment between the BA.1 period and 
the BA.2 period were mostly small. A noticeable excep-
tion is that P12 had very much lower ascertainment of 
the least biased incidence estimates in the BA.2 period 
(median 8.93%, IQR 7.0-11.3%) than in BA.1 or Delta 
dominant periods (medians respectively 30.4% and 42.5% 
and IQR respectively 23.9-38.1% and 37.0-49.1%). Ascer-
tainment of total cases for each CompSS compared to 
P12 was highest during BA.2 and lowest during the BA.1 
period.

Because the ascertainment data were calculated daily, 
it was possible to statistically compare the distribution of 
daily ascertainment ratios during the dominance of each 
variant using Welch’s one-way ANOVA. This test yields 
an F-statistic with p-values; all between group differences 
(for ascertainment ratios across rows/variants in Table 3) 
were significant at p < 0.001 for the underlying data 

summarised in Table 3. This statistical finding documents 
that no complementary SS was highly stable (consistent) 
in case detection rate across all three variant periods.

Moving 31 day period correlation between best and 
complementary SS
The panels in Figs.  2a and 3g plot the individual Spear-
man rho correlation statistics for complementary SS, 
compared to the two least biased epidemic trackers 
(ONSincid and ONSprev) in moving time windows. The 
same time series are plotted together in Supplementary 
File S1, Figures S2 and S3. The supplementary plots evi-
dence that new hospital admissions for patients with 
Covid strongly related to ED attendances syndromically 
assigned as Covid-19, as indicated by high visual corre-
spondence between these two time series on Figure S2. 
Otherwise, for most time series, they do not very obvi-
ously follow similar trajectories as each other on Figures 
S3 and S4. The plotted correlation values are for day 16 
within each moving 31  day duration window. Concur-
rent dominant COVID-19 variant is also indicated by a 
colour-coded line that intersects the vertical axis at 0.5.

Visually, on all the graphs the Spearman rho varies 
considerably over the study period with multiple cycles 
of low correlation followed by periods of higher correla-
tion. This variability appears greater for complementary 

Table 2 Spearman Rho correlations between SS with 95% confidence intervals
SS
ONSincid rho 1

ci 1 to 1
ONSprev rho 0.93 1

ci 0.91 to 0.94 1 to 1
P12 rho 0.53 0.57 1

ci 0.45 to 0.59 0.49 to 0.64 1 to 1
HospAdm rho 0.79 0.91 0.65 1

ci 0.73 to 0.83 0.87 to 0.93 0.56 to 0.72 1 to 1
C19PRinH rho 0.35 0.56 0.65 0.74 1

ci 0.24 to 0.45 0.46 to 0.63 0.55 to 0.72 0.67 to 0.79 1 to 1
ZOE rho 0.91 0.94 0.36 0.80 0.39 1

ci 0.89 to 0.93 0.92 to 0.96 0.27 to 0.44 0.74 to 0.84 0.29 to 0.47 1 to 1
EDSS rho 0.42 0.49 0.83 0.65 0.74 0.28 1

ci 0.30 to 0.52 0.40 to 0.58 0.78 to 0.87 0.56 to 0.71 0.68 to 0.79 0.16 to 0.38 1 to 1
GPIH rho 0.03 0.06 0.48 0.22 0.33 -0.06 0.48 1

ci -0.10 to 0.15 -0.06 to 0.17 0.40 to 0.57 0.11 to 0.33 0.22 to 0.43 -0.18 to 
0.053

0.38 to 
0.56

1 to 1

111calls rho 0.26 0.27 0.44 0.23 0.34 0.12 0.54 -0.11 1
ci 0.15 to 0.35 0.17 to 0.37 0.32 to 0.53 0.11 to 0.34 0.24 to 0.44 0.00 to 0.23 0.44 to 

0.63
-0.22 to 
0.02

1 to 1

111web rho -0.18 -0.17 0.34 -0.07 0.23 -0.34 0.49 0.15 0.79 1
ci -0.27 to -0.07 -0.28 to 

-0.07
0.23 to 0.44 -0.18 to 

0.053
0.12 to 0.34 -0.44 to 

-0.24
0.39 to 
0.57

0.03 to 
0.26

0.73 to 
0.83

1 to 1

ONSincid ONSprev P12 HospAdm C19PRinH ZOE EDSS GPIH 111calls 111web
Notes: See Methods for explanation of surveillance system (SS) names. rho = Spearman rho estimate, possible range is -1 to + 1, ci = 95% confidence interval for rho. 
Font colours with respect to correlation: Green: 95% confidence interval ≥ 0.7; black = 95% confidence interval is entirely > 0 and but lower bound of CI is < 0.70; 
grey = 95% confidence interval crosses zero; orange 95% confidence interval < 0
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SS based upon hospital data (e.g. EDSS, C19PRinH, 
HospAdm) than for other SS. Correlations with ONSprev 
are generally higher than with ONSincid. In many com-
plementary SS, these dips to lower correlation appear to 
happen about the same time and don’t tend to occur at 
the same time as changes in the dominant variant. For 
instance, on multiple systems there appears to be a dip 
in correlations around November-December 2021 and 
another dip around February 2022 and the start of June 
2022. HospAdm and EDSS correlate consistently well 
with ONSprev after February 2022 and apart from two 
short periods, ZOE correlates well with ONSprev over 
the entire study period.

We hypothesised that changes in correlation would 
concur with changes in the dominant variant. However, 
visually, during the transition period from Delta to Omi-
cron BA.1 (December 2021), correlations were rising or 
remained consistently high, there was no apparent dip. 
Around the time of variant transition from BA.1 to BA.2 
(late February 2022), all complementary trackers had 
poor (generally declining) correlation with the ONSincid 
and ONSprev. However, these BA.1 to BA.2 dips were 
mostly small or similar to other fluctuations in correla-
tion over the monitoring period shown in Figs. 2 and 3 
panels.

Discussion
In a previous comparison of SS [2020–2021; 13] we 
found that P12 closely tracked the least biased indicator 
(ONSincid), with a whole-period Spearman rho of 0.95 
(95%CI 0.92–0.95). Here we focus upon the period where 
the dominant COVID-19 variant changed from Delta to 
Omicron BA.1 and then to Omicron BA.2. We found a 
much lower whole-period correlation between P12 and 
ONSincid (0.53 (95%CI 0.45–0.59)) and the ascertain-
ment ratio dropped from 42.9% at the start of the period 
when the Delta variant dominated to 8.9% by the time 
BA.2 became dominant. There are several likely reasons 
for reduction in sensitivity over time. It seems likely 
that fewer people chose to get tested in the late UK epi-
demic period, but each surveillance system also exhibited 
increased variability in January-June 2022. Bajaj et al. [30] 
found that counts of Pillar 2 PCR tests taken/100 persons 
per day noticeably fell between 11 January and 31 March 
2022 when rapid antigen (lateral flow device) tests were 
still available for free but no-cost access to Pillar 2 PCR 
tests was withdrawn. Other reasons for declines in epi-
demic tracker sensitivity possibly include an increasingly 
vaccinated population experiencing mostly re-infections 
with variants (Omicron) which have been associated 
with less severe symptoms than Delta and earlier vari-
ants. Less severe symptoms would result in lower usage 

Table 3 Ascertainment (as %) during variant-dominant periods
Complementary SS Comparison with ONS prevalence

Delta BA.1 BA.2
C19PRinH 0.48 (0.4, 0.6) 0.21 (0.2, 0.2) 0.19 (0.2, 0.2)
EDSS 0.04 (0.0, 0.0) 0.02 (0.0, 0.0) 0.01 (0.0, 0.0)
111calls 0.27 (0.2, 0.3) 0.09 (0.1, 0.1) 0.10 (0.1, 0.2)
111web 0.29 (0.3, 0.3) 0.06 (0.1, 0.1) 0.07 (0.1, 0.1)

Comparison with ONS incidence
Delta BA.1 BA.2

P12 42.5 (37.0, 49.1) 30.4 (23.9, 38.1) 8.93 (7.0, 
11.3)

HospAdm 0.87 (0.8, 1.1) 0.55 (0.4, 0.6) 0.48 (0.4, 0.7)
ZOE 75.6 (67.6, 84.8) 53.1 (43.7, 66.4) 68.6 (54.4, 

110.5)
EDSS 0.42 (0.4, 0.5) 0.16 (0.1, 0.2) 0.11 (0.1, 0.1)
111calls 3.15 (2.8, 3.6) 0.86 (0.7, 1.1) 1.00 (0.6, 1.7)
111web 3.35 (2.8, 3.8) 0.64 (0.5, 0.8) 0.74 (0.4, 1.2)

Comparison with P12 incidence
Delta BA.1 BA.2

HospAdm 2.13 (1.9, 2.5) 1.83 (1.2, 2.3) 7.06 (3.5, 8.8)
ZOE 176.4 (154, 207) 162.9 (121, 277) 949.4 (451, 

1411)
EDSS 1.03 (0.9, 1.3) 0.52 (0.5, 0.6) 1.40 (0.8, 1.8)
111calls 6.90 (6.1, 9.1) 2.80 (2.2, 4.1) 12.02 (5.4, 

22.2)
111web 7.72 (6.1, 9.1) 2.08 (1.6, 2.8) 8.79 (3.9, 

16.8)
Notes: Values are for entire monitoring period, ascertainment percentage median (IQR). Tests for between group differences (in rows) using Welch’s one-way ANOVA 
were all significant at p < < 0.001
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of health services, fewer cases detected through surveil-
lance and reduced sensitivity of Pillar 1 tests [31]. Atti-
tudes about individual duty to contribute to infection 
control probably also changed. On 21 February 2022 
the UK announced a “Living with Covid” plan [32, 33] 
which meant withdrawal of all free COVID-19 antigen 
or PCR tests by 31 March 2022, making it both harder 
to obtain tests and also seemingly less important to know 
one’s own case status. When the BestET were compared 
to CompSS, like in our previous analysis, ZOE was par-
ticularly correlated with ONSincid and ONSprev. ZOE 
also maintained relatively high ascertainment ratios with 
ONSincid and ONSprev. This is to be expected because 

ZOE incorporated recent ONS data to generate their 
estimates.

Some CompSS that we used had ascertainment ratios 
lower than found in our previous study of 2020–2021 
data. Their correlations with BestET also reduced over 
time in our current analysis. This is consistent with an 
infection that is becoming declining importance as a 
public health risk. By 11 February 2022 around 71% of 
the English population had been infected at least once 
with SARS-CoV-2 [34]. COVID-19 vaccine distribu-
tion and uptake were fast and high in England: > 90% of 
English adults age > 65 + received at least one COVID-
19 vaccination by 17 May 2021 [35]. Vulnerable persons 

Fig. 2 Moving 31 day correlations, complementary trackers against least biased incidence tracker (ONSincid). Notes: Y-axis is Spearman rho; month on 
x-axis (1 September 2021 to 19 June 2022). Line to colour code concurrent variant dominance in each point intersects 0.5 on the vertical axis
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were encouraged to be vaccinated again repeatedly from 
autumn 2021 onwards. Hybrid immunity (achieved 
after both vaccination and natural infection) is widely 
believed to lead to milder clinical presentation for sub-
sequent COVID-19 infections [36–40]. As a result, many 
if not most cases detected in our study period could 
have been from reinfections or vaccinated individuals. 
Most of CompSS in our analysis were highly sensitive 
to symptomatic illness and had low sensitivity to mini-
mally symptomatic infections. This is likely to be explain 
the reduced ascertainment of EDSS, HospAdm and 
C19PRinH in comparison to ONSprev and ONSincid in 
contrast to 2020–2021 [13]. It may also help explain the 
additional reduction in ascertainment amongst these SS 
as the study period moves from Delta to BA.1 to BA.2.

Some CompSS had an especially large reduction in 
ascertainment rates (e.g. 111calls). A plausible expla-
nation is that in addition to changing severity, altered 
behaviour played a role. In February 2022 the UK govern-
ment announced a “Living with Covid” plan [32, 33] that 
described lifting COVID-19-linked legal restrictions on 
social contact and testing requirements. The plan meant 

cessation of free laboratory tests to confirm COVID-19 
infection (such as rapid antigen and rtPCR tests) from 
March 2022; as a result, the Pillar 1 & 2 case detec-
tion strategy changed. Our analysis showed that other 
SS lacked stability over the period 1 September 2021 
to 19 June 2022. The transition to “Living with Covid” 
seems likely to have reduced the number of people seek-
ing health care advice for and/or reporting COVID-19 
symptoms. This may help to explain the reductions for 
CompSS of less severe illness (111calls and 111web) sug-
gestive of fewer individuals seeking medical advice for an 
illness perceived as a lower potential health threat. Hence 
it is unsurprising that sensitivity reduced over this time 
period when the dominant variant changes from Delta to 
BA.1 and BA.2.

In spite of lower ascertainment over time, it is nota-
ble that several of these trackers have high correlation 
with ONSincid and ONSprev over the full period (see 
Table  2). Most notable is HospAdm which correlated 
with ONSincid and ONSprev at mean values 0.79 and 
0.91 respectively. EDSS and C19PRinH have what could 
be considered moderate correlation with both ONS 

Fig. 3 Moving 30 day correlations, complementary trackers against least biased prevalence tracker (ONSprev). Notes: Y-axis is Spearman rho; month on 
x-axis (1 September 2021 to 19 June 2022). Line to colour code concurrent variant dominance in each point intersects 0.5 on the vertical axis

 



Page 10 of 13Brainard et al. BMC Infectious Diseases          (2025) 25:770 

indicators (mean correlations ranging from 0.35 to 0.56, 
full confidence intervals always above zero). In Table  2, 
other CompSS, such as 111calls and 111web and GPIH, 
which seem likely to be most sensitive to the least severe 
COVID-19 infections, generally correlated poorly with 
ONS trackers. One reason may be because for many of 
the SS systems, health conditions are assigned proba-
bilistically, based on clinical presentation rather than 
being laboratory-confirmed [41]. Increasing amounts of 
minimally symptomatic COVID-19 may complicate this 
process. Furthermore, for most of 2020–2021, there was 
low circulation of respiratory viruses other than SARS-
CoV-2 which made the COVID-19 syndrome assignment 
especially reliable. However, during our study period 
there were large resurgences in cases of non-COVID-19 
respiratory virus infections in many high income coun-
tries, including England [42–44]. Hence, some patients 
infected with other respiratory viruses may have been 
syndromically assigned as COVID-19 while some 
patients with multiple infections (e.g., influenza and 
COVID-19) may have been assigned only one of these 
conditions. These imprecise assignments may have con-
tributed to lower correlations especially for presentations 
by patients with mild symptoms.

It was notable that lower correlation with ONSincid 
and ONSprev did not associate with transition between 
variants. Across systems there were some periods when 
correlation coefficients appeared particularly poor (e.g. 
November 2021); identifying the reasons for that requires 
separate research.

Strengths and limitations
Our analysis is novel by robustly quantifying that SS sen-
sitivity for COVID-19 changed and varied in England 
in 2021–2022. This happened among multiple epidemic 
trackers. The purpose of surveillance data is to support 
decision-making that can facilitate rapid introduction 
of interventions and thus potentially less mortality and 
morbidity. Optimal use of surveillance data means under-
standing strengths and weaknesses of individual systems 
and indicators, and which trackers are best suited to 
support specific decisions made in real time. The value 
of complementary surveillance systems is both confir-
matory and to reduce risk of over-reliance on individual 
trackers which may have unrecognised instability or 
limitations. Complementary systems have the potential 
to monitor and track disease burden across the breadth 
of the health care service, ensuring that all severities of 
presentation are captured. Identifying declines in sen-
sitivity and instability, including temporal coincidence 
with some specific policy and public health changes, 
can inform better prospective decision-making during a 
future pandemic. We hypothesised why falls in surveil-
lance sensitivity may have happened, and also propose 

that such changes in surveillance sensitivity may be 
expected as a normal development during an epidemic. 
We note that choices about which surveillance systems 
to implement are likely to at least partly depend on spe-
cific epidemic management strategies and priorities with 
corresponding cost-benefit evidence which is outside our 
study’s remit.

Our analysis benefited from large and comprehensive 
datasets that described access to the NHS, which is the 
main health care provider for the English population. 
We also accessed estimates made by the ZOE project for 
COVID-19 incidence. Some CompSS such as HospAdm 
and C19PRinH were priority epidemic trackers because 
they informed resource allocation and as such were sub-
ject to priority verification. These indicators were con-
sistently defined during this monitoring period and thus 
had high stability. However, because these definitions 
were developed before or when Delta was dominant, 
the surveillance systems may have had higher sensitiv-
ity to pre-Omicron variants. We did not assess if corre-
lations improved by adjusting correlation using delays 
(lags) between time series, such as if increased visits to 
the NHS111 website correlated with rises in hospital 
admissions 7–10 days later. Our previous analysis [13] 
found that allowing for 0–14  day offsets did not much 
improve correlation between the same epidemic tracker 
time series that were used in this article. Our compari-
son is limited to only specific datasets. We have not con-
sidered many possible other surveillance datasets that 
could merit consideration as epidemic trackers, such as 
infected-person counts derived from wastewater sam-
pling for SARS-CoV-2 virus. Jones et al. (2025) [45] 
undertook a thorough catchment-by-catchment compar-
ison between ONSCISE infection counts and geographi-
cally coincident prevalence derived from waste water 
samples in England from July 2020 to December 2021. 
Case count estimates derived from wastewater data were 
not available during the full time period that we wanted 
to monitor. Jones et al. concluded that while SARS-
CoV-2 concentrations in wastewater in each catchment 
generally correlated well with ONSCISE prevalence, 
the corelations noticeably declined in the period July to 
December 2021. Jones observed that this deterioration 
in correlation coincided with younger persons becoming 
proportionally dominant among detected cases, the gen-
eral population becoming highly vaccinated and (in the 
last month of their monitoring), sudden emergence of the 
Omicron variant.

Conclusion
From 1 September 2021 to 19 June 2022, CompSS greatly 
reduced in the proportion of COVID-19 cases they were 
detecting. This decrease was greatest in SS and indicators 
particularly focussed on less severe cases (e.g. presenting 
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to the NHS 111 telephone helpline) which may reflect 
lower engagement with healthcare for COVID-19-like 
symptoms. However, despite this fall many indicators 
of more acute (and severe) COVID-19 presentations 
(e.g. HospAdm) continued to correlate well with the 
least biased epidemic trackers indicating that they gen-
erally reflected true trends in COVID-19 activity. For 
all CompSS, correlations tended to cycle over time 
indicating periods when they were all useful measures 
of COVID-19 trends. Factors other than which vari-
ant was dominant seem likely to have affected how well 
each tracker reflected true rises and falls in COVID-19 
infections.
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