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Abstract
Phylogenetic networks are graphs that are used to represent evolutionary relationships
between different taxa. They generalize phylogenetic trees since for example, unlike
trees, they permit lineages to combine. Recently, there has been rising interest in semi-
directed phylogenetic networks, which are mixed graphs in which certain lineage
combination events are represented by directed edges coming together, whereas the
remaining edges are left undirected. One reason to consider such networks is that it
can be difficult to root a network using real data. In this paper, we consider the problem
of when a semi-directed phylogenetic network is defined or encoded by the smaller
networks that it induces on the 4-leaf subsets of its leaf set. These smaller networks
are called quarnets. We prove that semi-directed binary level-2 phylogenetic networks
are encoded by their quarnets, but that this is not the case for level-3. In addition, we
prove that the so-called blob tree of a semi-directed binary network, a tree that gives
the coarse-grained structure of the network, is always encoded by the quarnets of the
network. These results are relevant for proving the statistical consistency of programs
that are currently being developed for reconstructing phylogenetic networks from
practical data, such as the recently developed Squirrel software tool.

Keywords Quarnet · Semi-directed phylogenetic network · Level-2 network · Blob
tree · Encoding
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1 Introduction

Phylogenetic networks are graphs used to represent evolutionary relationships between
different taxa (e.g. species, languages or other evolving objects). They are a gener-
alization of the well-known phylogenetic trees, which are restricted to representing
tree-like evolution in which lineages split but cannot combine (Bapteste et al. 2013).
Both unrooted, undirected as well as rooted, directed phylogenetic networks have
been and are still being studied intensively (Elworth et al. 2019; Huson et al. 2010).
Recently, there has been rising interest in semi-directed phylogenetic networks, which
are unrooted and have undirected edges as well as directed edges (for an example, see
Figure 1) Allman et al. (2024); Barton et al. (2022); Huebler et al. (2019); Linz and
Wicke (2023); Martin et al. (2023); Solís-Lemus et al. (2017); Wu and Solís-Lemus
(2024). The reason that semi-directed networks have become more popular is that the
location of the root of a network can often not be identified from real data (Kong
et al. 2022). Even so, rather than reverting to completely undirected networks, semi-
directed networks do permit directed edges (called arcs) that can be used to represent
so-called reticulations, in which two lineages combine into one lineage that is at the
end of two arcs. Such reticulations are commonly used to model reticulate evolution-
ary events such as hybridization, introgression, recombination or lateral gene transfer,
and there are approaches that can be used to identify such events from real data (see
e.g. Solís-Lemus et al. (2017)). For example, the taxon M.leucophaeus in Figure 1 is
below two arcs which indicates a reticulation event. Essentially, semi-directed phylo-
genetic networks are defined as those networks that can be obtained from a directed
phylogenetic network by forgetting the direction of all arcs, except for the arcs that
represent reticulations, and suppressing the root.

Fig. 1 An example of a semi-directed phylogenetic network generated by the Squirrel software tool (Holt-
grefe et al. 2025) for an Old World monkey dataset (Vanderpool et al. 2020) of Cercopithecinae. The edges
are black and the arcs are red
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In this paper, we study the fundamental biological question of how much informa-
tion is needed to reconstruct semi-directed phylogenetic networks, a question studied
for rooted, directed phylogenetic networks in Huber et al. (2015); van Iersel et al.
(2022) and for unrooted phylogenetic networks in Erdős et al. (2019). More con-
cretely, we study which semi-directed evolutionary histories can be recovered from
the evolutionary histories of groups of 4 taxa (called quarnets). This is a topical issue
since several methods have been introduced recently to generate quarnets from DNA
sequences or from gene trees (Allman et al. 2025; Cummings and Hollering 2025;
Holtgrefe et al. 2025; Martin et al. 2023). If a semi-directed phylogenetic network is
uniquely determined by its induced subnetworks on sets of 4 taxa, then we say that
the network is encoded by quarnets. Therefore, the question we study here can be
formalized as the question of when a semi-directed phylogenetic network is encoded
by its quarnets.

This question is important for at least two reasons. The first reason is algorith-
mic. Accurate sequence-based phylogenetic network reconstruction methods (such
as maximum likelihood) are often restricted to small numbers of taxa such as quar-
tets. Hence, in order to prove that approaches which puzzle together quarnets into a
larger semi-directed phylogenetic network are correct, we need to knowwhen quarnets
encode such networks. The other reason for studying quarnet encodings is that they
can be used to show identifiability results for certain classes of phylogenetic networks
from sequence data that is assumed to have evolved under some evolutionary model.
In particular, the main idea is to prove identifiability of quarnets using techniques
from algebraic geometry, and subsequently use quarnet encodings to generalize these
results to larger networks (Allman et al. 2022; Ardiyansyah 2021; Cummings et al.
2024; Gross et al. 2021).

1.1 Previous Results

Encoding results for phylogenetic trees have been known for some time. Unrooted
phylogenetic trees can be encoded by their splits, their quartets or by the distances
between taxa (Dress et al. 2012). Similarly, rooted phylogenetic trees can be encoded
by clusters, triplets or ultrametric distances. Distances can still be used to identify
some features of certain networks (Jingcheng and Ané 2023) and some directed phy-
logenetic networks are still encoded by their triplets, which are 3-leaf trees contained
in the network (Gambette and Huber 2012; Gambette et al. 2017). However, most
networks are not encoded by their triplets. This led to research on binet, trinet and
quarnet encodings (Cardona and Pons 2017; Huber and Moulton 2013; van Iersel and
Moulton 2014; van Iersel et al. 2017), which are 2-leaf, 3-leaf and 4-leaf subnetworks
respectively, and can be either directed, undirected or semi-directed. Note that most of
the results mentioned below are restricted to binary networks (whose internal non-root
vertices have total degree 3).

General directed phylogenetic networks are not encoded by their trinets (Huber
et al. 2015). Hence, research has focused on encodings of subclasses of directed phy-
logenetic networks, e.g. by bounding their “level”. A network is level-k if it can be
turned into a tree by deleting at most k edges/arcs from each blob. For example,
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networks Nd and N in Figure 4 are level-2. Directed level-1 phylogenetic networks
are encoded by their trinets (Huber and Moulton 2013), and so are directed level-2
phylogenetic networks and other well-studied classes: so-called directed tree-child
phylogenetic networks (van Iersel and Moulton 2014) and directed orchard phylo-
genetic networks (Semple and Toft 2021). However, directed level-3 phylogenetic
networks are not all encoded by their trinets (van Iersel et al. 2022). On the algorith-
mic side, it has been shown that directed level-2 and orchard phylogenetic networks
can be reconstructed from all their trinets in polynomial time (Semple and Toft 2021;
van Iersel et al. 2022). For directed level-1 phylogenetic networks this is also possible
and, moreover, a heuristic algorithm exists that constructs directed level-1 phyloge-
netic networks from practical data (Oldman et al. 2016). Encoding results have been
used to show that this algorithm returns the correct network if its input data consists of
all trinets of a directed level-1 phylogenetic network. Unfortunately, given any set of
directed trinets (not necessarily one per triple of taxa) it is NP-hard to decide whether
there exists a directed phylogenetic network that contains all given trinets, already for
level-1 (Huber et al. 2017).

Much less is known about encodings for semi-directed phylogenetic networks.
Two algorithms for constructing a semi-directed level-1 phylogenetic network from
quarnets are given in (Huebler et al. 2019) but the paper does not prove explicitly
that the algorithms always reconstruct the correct network, i.e. they do not prove that
semi-directed level-1 phylogenetic networks are encoded by quarnets. Nevertheless,
most features of level-1 phylogenetic networks are already determined by quartets
(4-leaf trees contained in the network) (Baños 2019). Moreover, recently Squir-
rel (Holtgrefe et al. 2025), NANUQ+ (Allman et al. 2025), Phynest (Kong et al.
2025), CUPNS (Warnow et al. 2025) and SNAQ (Solís-Lemus et al. 2017) have been
introduced for generating level-1 semi-directed phylogenetic networks from quarnets,
sequence alignments, SNPs and collections of gene trees.

1.2 Our Contribution

In this paper, we study the quarnets of semi-directed phylogenetic networks. Reflecting
the relative complexity of restricting a semi-directed network to a subset of its taxa,
we show that this process is well-defined (see Section 4). While this is obvious for
directed networks and level-1 semi-directed networks, for higher-level semi-directed
networks it takes some care to prove that the intuitive definition works. Moreover, in
our main result we show that semi-directed binary level-2 phylogenetic networks are
encoded by their quarnets:

Theorem 6.2. The class of semi-directed, level-2, binary phylogenetic networks with
at least 4 leaves is encoded by quarnets.

Interestingly, this is the theoretical limit for which semi-directed networks can be
encoded, when categorizing networks by level. More specifically, we show that semi-
directed level-3 phylogenetic networks are not all encoded by their quarnets, which
shows that there are fundamental limitations for extending methods to level-3 and
higher:
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Fig. 2 Two semi-directed level-3 phylogenetic networks N1 and N2 (top) and their five quarnets (bottom).
Even though N1 and N2 have exactly the same set of quarnets, the networks themselves are not isomorphic

Theorem 1.1 The class of semi-directed, level-3, binary phylogenetic networks with
at least 4 leaves is not encoded by quarnets.

The above theorem can be verified easily by considering the example in Fig-
ure 2, in which an example is presented of two different networks that have the
same set of quarnets. Moreover, we note that the example can be extended to any
number of leaves by inserting leaves between (or next to) a and b in N1 and in N2
(in any order).

In order to prove our main result (Theorem 6.2) we show that the “blob tree” of a
semi-directed phylogenetic network, also called the “tree of blobs”, is uniquely deter-
mined by the quarnets of the network. Basically, a “blob” of a semi-directed network
is a maximal subnetwork that cannot be disconnected by deleting a single edge/arc.
The blob tree of such a network is obtained by contracting each blob to a single vertex
(for more details, see Section 5). Blob trees have gained interest recently, since they
represent the high-level branching structure of a network and may be identifiable even
when the full network is not (Allman et al. 2024, 2023; van Iersel and Moulton 2014;
Rhodes et al. 2025). For all k ≥ 1, we show that the blob tree of a semi-directed binary
level-k phylogenetic network is always encoded by the quarnets of the network:

Corollary 5.6. Suppose that N and N ′ are semi-directed phylogenetic networks on X
with the same set of quarnets. Then N and N ′ have the same blob tree.
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Note that this result was recently used in Holtgrefe et al. (2025) to prove that the
Squirrel program correctly reconstructs level-1 networks from perfect data.

This paper is based in part on preliminary results in the MSc thesis (Nipius 2022).

1.3 Outline of the Paper

In Section 2, we give most of the main definitions used in this paper. In Section 3,
we formally define the restriction of a (semi-)directed network to a subset of leaves
and show it is well-defined. Based on this, we define quarnets and quarnet encodings
in Section 4, where we also show that a semi-directed level-k binary phylogenetic
network with no non-trivial cut edges is encoded by its quarnets for k ≤ 2. In Section
5, we show that the blob tree of any semi-directed level-k binary phylogenetic network
is encoded by its quarnets for all k ≥ 1 or, equivalently, that the partition of the leaf
set induced by a non-trivial cut edge is encoded by the quarnets. Combining the
results from Sections 4 and 5, in Section 6 we show that semi-directed level-2 binary
phylogenetic networks are encoded by their quarnets. In Section 7 we end with a
discussion of possible future directions.

2 Preliminaries

Let X be a finite set with |X | ≥ 2.
We consider mixed graphs which may have undirected edges and/or directed arcs

and which may have parallel arcs. Undirected edges will simply be called edges while
directed edges will be called arcs. When both are possible we will write “edge/arc”.
In this paper, there will be no reason to consider parallel edges or parallel edge-arc
pairs. Formally, amixed graph is an ordered tupleG = (V , E)where V is a nonempty
set of vertices, E is a multiset of undirected edges {u, v} ⊆ V , u �= v, and directed
arcs (u, v) with u, v ∈ V , u �= v, such that each edge {u, v} has multiplicity at most 1
in E and such that for all arcs (u, v) ∈ E we have that {u, v} /∈ E and (v, u) /∈ E . A
mixed graph is connected if its underlying undirected graph contains a path between
any two vertices. The degree of a vertex is the total number of incident edges and
arcs. A leaf is a degree-1 vertex. The indegree of a vertex is the number of incoming
arcs and the outdegree is the number of outgoing arcs. A reticulation is a vertex with
indegree 2. Reticulations that are adjacent to a leaf are called leaf reticulations.

For a set of vertices S ⊆ V in a mixed graph G = (V , E) with vertex set V and
edge/arc set E , an edge/arc e is incident to S if exactly one of its vertices is in S. If
e is an arc (u, v) and S ∩ {u, v} = {v}, we say e is an arc entering S or an incoming
arc of S. If S ∩ {u, v} = {u}, we say e is an arc leaving S or an outgoing arc of S.
We also define G[S] to be the subgraph of G induced by S, i.e. the graph with vertex
set S, an edge {u, v} for each edge {u, v} in G with u, v ∈ S and an arc (u, v) for each
arc (u, v) in G with u, v ∈ S.
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2.1 Directed and Semi-Directed Networks

Directed and semi-directed phylogenetic networks (defined formally below) are usu-
ally considered not to have parallel arcs or vertices of degree-2 (except for the root
in directed phylogenetic networks). The restriction of a (directed or semi-directed)
phylogenetic network to a subset of leaves is itself a (directed or semi-directed) phy-
logenetic network. However, deriving the restriction involves the repeated application
of reduction rules, some of which may result in mixed graphs with parallel arcs or
degree-2 vertices. For this reason, we consider a slight generalization of phyloge-
netic networks, simply called (directed and semi-directed) networks (formally defined
below), and reserve the qualifier phylogenetic for a subclass of these graphs corre-
sponding to the usual definition.

Since we only consider binary networks in this paper, we do not include the word
binary in the names of the network types defined below. We will include the word
binary in the statements of theorems to avoid confusion.

Definition 2.1 A directed network on X is a mixed graph Nd , which may have parallel
arcs, with the following restrictions:

• Nd has no undirected edges;
• Nd has no directed cycles;
• each vertex has degree at most 3, indegree at most 2 and outdegree at most 2;
• there is a unique vertex with indegree 0, which has outdegree 2 and is called the
root; and

• the vertices with outdegree-0 have indegree-1 and are bijectively labelled by the
elements from X .

Definition 2.2 A semi-directed network on X is a mixed graph N that can be obtained
from a directed network Nd on X by replacing all arcs with edges except for arcs
entering reticulations and subsequently suppressing the root ρ if one of the following
operations is applicable:

• if ρ is a degree-2 vertex with incident edges {u, ρ}, {ρ,w}, replace these two edges
by the edge {u, w} and delete ρ; and

• if ρ is a degree-2 vertex with an incident edge {u, ρ} and an incident arc (ρ,w),
replace this arc and edge by the arc (u, w) and delete ρ.

We call Nd a rooting of N . If Nd is a rooting of N , we call N the underlying semi-
directed network of Nd and we write N = Nd .

See Figure 3 for examples of directed and semi-directed networks. We note that
semi-directed networks can have more than one rooting (see for example Figures 3a
and 3b). Observe that Nd is well-defined, and that if Nd1 and Nd2 are rootings of the
same semi-directed network N then Nd1 = Nd2 = N . Also note that it is possible
that neither of the two suppressing operations in Definition 2.2 is applicable (see
Figure 3(d)).

We also note that a semi-directed network N may have parallel arcs. This is the
case if the directed network Nd from which N is obtained has parallel arcs or has its
root in a triangle (i.e., an undirected length-3 cycle), as in Figure 3d and Figure 3e.
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Fig. 3 Some examples of a directed network (left) together with its underlying semi-directed network
(right). Observe that the directed networks in Figure 3a and Figure 3b have the same underlying semi-
directed network, as do the directed networks in Figure 3d and Figure 3e

A network is either a directed or a semi-directed network.
A blob of a mixed graph is a connected subgraph with at least three vertices that

is maximal under the property that deleting any edge/arc from the subgraph does not
disconnect the graph – see Figure 4 for an example. An edge/arc e is incident to a
blob B if e is incident with V (B), the vertex set of B.

Definition 2.3 A network on X is called phylogenetic if

• it has no parallel arcs;
• it has no degree-2 vertices other than the root in case the network is directed; and
• it has no blobs with at most 2 incident edges/arcs, other than possibly a blob with
no incoming and two outgoing arcs in case the network is directed.

See Figure 4 for an example of how a network can fail to be phylogenetic.

A (directed/semi-directed) phylogenetic network with no reticulations is called a
(rooted/unrooted) phylogenetic tree.

We note that semi-directed phylogenetic networks as defined here do not contain
any parallel arcs, even though some previous papers do allow one or more pairs of
parallel arcs to be contained in such networks.

Two networks N , N ′ on X are isomorphic, denoted N ∼= N ′, if there exists a
bijection φ from the vertex set of N to the vertex set of N ′ such that {u, v} is an edge
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Fig. 4 A directed network Nd and its underlying semi-directed network N . Both Nd and N have two
blobs, each having vertex sets {v1, . . . , v4} and {v5, . . . , v8}. Note that neither Nd nor N is phylogenetic
due to the blobs with vertex set {v1, . . . , v4}, which have 2 incident edge/arcs. Examples of ∧-paths
are (a, v4, v3, v1, ρ, v5, v7, d) in Nd and (a, v4, v3, v1, v5, v7, d) and (a, v4, v3, v1, v5, v7, v8, c) in N .
An example of a cycle, in both Nd and in N , is (v1, v2, v4, v3, v1) with sink v4

of N if and only if {φ(u), φ(v)} is an edge of N ′, (u, v) is an arc of N if and only if
(φ(u), φ(v)) is an arc of N ′ and φ(x) = x for all x ∈ X . For sets of networksN ,N ′
on X , we writeN � N ′ if there exists a bijection ψ : N → N ′ such that N ∼= ψ(N )

for all N ∈ N .

2.2 Paths and Cycles

Apath in a network is a sequence of pairwise distinct vertices (v1, . . . , vp), p ≥ 1, such
that for all i ∈ {1, . . . , p−1} either (vi , vi+1) or (vi+1, vi ) is an arc or {vi , vi+1} is an
edge. Such a sequence is a semi-directedpath (fromv1 tovp) if for all i ∈ {1, . . . , p−1}
either (vi , vi+1) is an arc or {vi , vi+1} is an edge. Given two vertices u, v of a network,
we say that v is below u if there exists a semi-directed path from u to v (possibly u = v).
If, in addition, u �= v we say v is strictly below u. If v is (strictly) below u then we
say u is (strictly) above v.

We now introduce∧-paths, which can be pronounced as “wedge paths”.1 A∧-path
(between v1 and vp) in a network is a sequence of distinct vertices (v1, . . . , vi , . . . , vp),
p ≥ 1, such that (vi , . . . , v1) and (vi , . . . , vp) are semi-directed paths, for some i ∈
{1, . . . , p} – see Figure 4 for an example. Such paths will be used when restricting a
network to a subset of taxa.

A cycle in a network N is a sequence (v1, e1, v2, e2 . . . , vp = v1), p ≥ 4, alter-
nating between vertices vi and edges or arcs e j such that vi �= v j for 1 ≤ i < j < p
and for all i ∈ {1, . . . , p − 1} either ei = (vi , vi+1) or ei = (vi+1, vi ) is an arc
of N or ei = {vi , vi+1} is an edge of N . We may also describe a cycle by only its
vertices (v1, v2, . . . , vp = v1). We say that a reticulation r in N is a sink of a cycle C
if C contains both incoming arcs of r . See Figure 4 for an example.

1 Such paths were called “up-down paths” in Jingcheng and Ané (2023), but we use ∧-paths to avoid
confusion with an earlier notion of up-down paths that contain only arcs (Bordewich and Semple 2016;
Murakami et al. 2019).
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A semi-directed cycle in a network is a cycle (v1, e1, v2, e2 . . . , vp = v1) such that
for all i ∈ {1, . . . , p − 1} either ei = (vi , vi+1) or ei = {vi , vi+1}.
Lemma 2.4 In a semi-directednetwork N each cycle has at least one sink. In particular,
N contains no semi-directed cycles.

Proof Suppose N has a cycle C = (v1, v2, . . . , vp = v1) without sinks. Let Nd be
a rooting of N . Then V (Nd) = V (N ) ∪ {ρ}, with ρ the root of Nd , and Nd either
contains a cycle (v1, . . . , vp) or a cycle (v1, . . . , v j−1, ρ, v j , . . . , vp).

First suppose that Nd contains a cycle (v1, . . . , vp). Since Nd is acyclic, Nd contains
some arc (vi−1, vi ). Following C from vi−1, at some point there is an arc (vk−1, vk)

followed by an arc (vk+1, vk), again by the acyclicity of Nd . However, then N also
contains arcs (vk−1, vk), (vk+1, vk) and hence vk is a sink of C .

Nowconsider the secondcase, that Nd contains a cycle (v1, . . . , v j−1, ρ, v j , . . . , vp).
Then we can conclude, similarly to the previous case, that Nd contains arcs
(u, vk), (w, vk) with u ∈ {vk−1, ρ} and w ∈ {vk+1, ρ}. In all cases, N contains
arcs (vk−1, vk), (vk+1, vk) and hence vk is a sink of C .

The second part of the lemma follows directly from the observation that a semi-
directed cycle has no sink. ��

3 Restricting Networks

In this section, we formally define the restriction N |A of a network N on X to a subset
of taxa A ⊆ X and consider some of its properties. In subsequent sections our focus
will be on quarnets coming from a network, which are simply restrictions to subsets
of size 4.

Roughly speaking, for a (phylogenetic) network N on X and a subset A ⊆ X , there
are two main steps to constructing N |A:
1. Delete all vertices that are not contained on any path between two leaves in A,

resulting in a (not necessarily phylogenetic) network on A.
2. Transform this network to a phylogenetic network on A by repeatedly suppressing

degree-2 vertices, parallel arcs, and blobs with at most 2 incident edge/arcs.

In the remainder of this section, wemake the above steps precise, and show that N |A is
well-defined. The main technical task is to prove the intuitively obvious but non-trivial
fact that for the suppression operations described in step 2 the order does not affect
the final network, which implies that the restriction is well-defined.

3.1 Suppression Operations

We now formally define the suppression operations that are used to reduce a network
to a phylogenetic network. See Figure 5 for illustrations focusing on semi-directed
networks.

The blob suppression operation on a network does the following for every blob B
with at most two incident edges/arcs that are not two arcs leaving B:
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Fig. 5 Illustrations of the suppression operations used to turn a semi-directed network into a semi-directed
phylogenetic network

(BLS) collapse B to a single vertex vB and, if vB has degree 1, delete it.

The parallel arc suppression operation on a network N does the following for each
pair of vertices u, v with two arcs (u, v):

(PAS) if u and v both have degree 3 then remove the arcs (u, v), replace any arc
(v,w) by (u, w), any edge {v,w} with {u, w} and delete v.

The vertex suppression operations on a network apply, for each degree-2 vertex v ∈
V , one of the following if applicable

(V1) if v has incident edges {u, v}, {v,w}, replace them by an edge {u, w} and
delete v;

(V2) if v has an incident edge {u, v} and an incident arc (v,w), replace them by an
arc (u, w) and delete v; and

(V3) if v has incident arcs (u, v), (v,w), replace them by an arc (u, w) and delete v.

Note that in a directed network only operation (V3)may be applicable. Also observe
that in the definition of a semi-directed network, (V1) and (V2) are applied to the root
ρ (and only ρ) after replacing arcs not entering reticulations with edges.

Note that parallel edges will never appear. To see this, recall from Lemma 2.4 that
each cycle in a semi-directed network has a sink and observe that this property is
preserved under each of the suppression operations. Furthermore, a degree-2 vertex v
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Fig. 6 An example of restricting a semi-directed phylogenetic network N to a subset of the taxa A =
{c, d, e, h} ⊆ X . First, all vertices are deleted that are not on a∧-path between two vertices of A, giving the
semi-directed network N∧A . Then suppression operations are applied, giving the restriction N |A , which
is a semi-directed phylogenetic network, by Proposition 3.4. Moreover, since |A| = 4, N |A is a quarnet
in Q(N )

with an incident arc (u, v) and edge {v,w} will never appear. To see this, observe that
semi-directed networks have the property that, for each arc (u, v), v has indegree-2
and this property is preserved under each of the suppression operations.

It is easy to verify that if N ′ is derived from N by any of (V1), (V2), (V3), (BLS),
(PAS) and N is a directed network, then N ′ is a directed network. The following lemma
shows that this also holds for semi-directed networks, since (V3) is not applicable in
semi-directed networks.

Lemma 3.1 Let N be a semi-directed network. If N ′ is derived from N by a single
application of (V1), (V2), (BLS) or (PAS), then N ′ is also a semi-directed network.

The proof of Lemma 3.1 is deferred to the appendix.
The suppression operation on a network N performs first the blob suppression

operation (BLS) and then repeatedly applies the parallel arc suppression operation
(PAS) and the vertex suppression operations (V1),(V2),(V3) until none of them is
applicable. The resulting network is denoted Supp(N ).

The proof of the following result is quite technical, and is deferred to the appendix.

Lemma 3.2 Supp(N ) is well-defined for any network N.

3.2 Restrictions

Given a network N on X and a subset A ⊆ X with |A| ≥ 2, we define N∧A as the
network obtained from N by deleting all vertices that are not on a ∧-path between
two vertices in A. The restriction of N to A is defined as N |A = Supp(N∧A). See
Figure 6 for an example. Note that for a directed network N it is not true in general
that N |A ∼= N |A since suppression operations may be applicable in N |A. Consider
for example the directed network N in Figure 3(c). Then N |a,b,c,d is equal to N and
N |a,b,c,d is the indicated semi-directed network. However, N |a,b,c,d is an unrooted
phylogenetic tree since the blob with two incident edges is suppressed.

To prove that N |A is a semi-directed phylogenetic network, if N is a semi-directed
phylogenetic network, we will use the following lemma, whose proof is deferred to
the appendix.
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Lemma 3.3 Consider a network N on X, leaves a, b ∈ X and a reticulation v with
parents u, w. If v is on a ∧-path in N between a and b, then u is on a ∧-path in N
between a and b.

Proposition 3.4 Given a semi-directed phylogenetic network N on X and a subset A ⊆
X with |A| ≥ 2, the restriction N |A of N to A is a semi-directed phylogenetic network.

Proof We first show that N∧A is a semi-directed network. Let D be a rooting of N .
Observe that a non-root vertex v of D is on a ∧-path between vertices in A if and only
if the corresponding vertex v′ of N is on a ∧-path between vertices in A. Hence, D∧A

contains all vertices of N∧A and possibly one additional vertex; its root. We split the
rest of the proof into two cases accordingly.

The first case is that D∧A contains the root of D. In this case, D∧A contains all
vertices of N∧A and exactly one additional vertex; its root ρ. We claim that D∧A

is equal to N∧A. To prove this, it remains to show that each edge/arc has the same
orientation in D∧A as in N∧A.

To this end, suppose that (u, v) is an arc of D∧A. Then D contains either arc (u, v)

or arcs (ρ, u), (ρ, v). In either case, since v is a reticulation in D, N contains an
arc (u, v). Moreover, since v is in N∧A, it follows from Lemma 3.3 that both incoming
arcs of v in N are in N∧A. Hence, (u, v) is an arc of N∧A.

Now, suppose that (u, v) is an arc of N∧A and hence of N . Then D contains either
arc (u, v) or arcs (ρ, u), (ρ, v). In either case, v is a reticulation in D. Moreover,
since v is in D∧A, it follows from Lemma 3.3 that both incoming arcs of v in D are
in D∧A. Hence, D∧A contains either arc (u, v) or arcs (ρ, u), (ρ, v). In either case,
(u, v) is an arc of D∧A.

We have now shown that, in the first case, D∧A is equal to N∧A. Hence, N∧A is a
semi-directed network.

Now consider the second case, i.e., that D∧A does not contain the root of D. In
this case, D∧A contains exactly the same vertices as N∧A. Hence, it follows from
Lemma 3.3 that (u, v) is a reticulation arc of D∧A if and only if (u, v) is a reticulation
arc of N∧A. This does not imply that D∧A is a rooting of N∧A because the root may
be suppressed when taking the underlying semi-directed network of D∧A. Therefore,
consider the directed network D′ obtained from D∧A by subdividing either of the arcs
leaving the root. Then D′ is isomorphic to N∧A, proving that N∧A is a semi-directed
network.

We conclude that N∧A is semi-directed in both cases. By Lemma 3.1, it now follows
that N |A is semi-directed. It is also easy to see that N |A is phylogenetic, since otherwise
a suppression operation would be applicable. ��

4 Simple Level-2 Networks

We aim to understand which networks are uniquely determined by their induced set
of quarnets. In this section, we shall focus on understanding this for some networks
that are structurally very simple. To make this more precise, we start by presenting a
formal definition of a quarnet.
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Fig. 7 A directed, simple, strict level-2 phylogenetic network on X = {x, y, z}, a semi-directed simple,
strict level-2 phylogenetic network N on X , the underlying graph U (N ) of N and the undirected level-2
generator U2

A quarnet is a semi-directed phylogenetic network with exactly four leaves. The
set Q(N ) of quarnets induced by a semi-directed phylogenetic network N is defined
as

Q(N ) = {N |A : A ⊆ X , |A| = 4}.
The leaf set of a quarnet q is denoted L(q).

Note that in case N is an unrooted phylogenetic tree then the quarnets of N are
generally called quartets.

Let C be a subclass of the class of semi-directed phylogenetic networks with at
least four leaves. We say that C is encoded by quarnets if for each N ∈ C and
each semi-directed phylogenetic network N ′ on the same leaf set as N for which
Q(N ) � Q(N ′) holds, we have that N ∼= N ′. We say that C is weakly encoded by
quarnets if for all N , N ′ ∈ C on the same leaf sets and with Q(N ) � Q(N ′) holding,
we have N ∼= N ′. Clearly, if C is encoded by quarnets then C is also weakly encoded
by quarnets and, as is well known, the class of unrooted phylogenetic trees is encoded
by quartets (see e.g. [Dress et al. (2012),Theorem 2.7]). To help keep terminology at
bay, we also say that a member of C is encoded/weakly encoded by quarnets if C is
encoded/weakly encoded by quarnets.

We say that a network N is simple if the mixed graph N ′ obtained from N by
deleting every leaf is a blob. For a non-negative integer k we call a network N level-k
if each blob of N contains at most k reticulations, and we call N strict level-k if,
in addition, it contains a blob with exactly k reticulations. Note that a semi-directed
level-0 phylogenetic network is an unrooted phylogenetic tree in the usual sense (see
e. g.Semple and Steel (2003) for more details concerning such trees) and that, by
definition, a simple network is strict level-k, for some k ≥ 1. For example, the directed
phylogenetic network Nd in Figure 7 is simple and so is the semi-directed phylogenetic
network N in the same figure. Furthermore, both networks are strict level-2.

To be able to prove Lemma 4.1, we require further concepts. Suppose T is an
unrooted phylogenetic tree on X with |X | ≥ 4. A cherry in T is a pair of leaves of T
that are adjacent to the same vertex of T . If T contains precisely two cherries, we call
it a caterpillar tree.
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Lemma 4.1 The class of semi-directed, simple, strict level-1 phylogenetic networks
with at least four leaves is weakly encoded by quarnets.

Proof Suppose that N is a semi-directed, simple, strict level-1 phylogenetic network
with at least four leaves. Let N ′ be a semi-directed, simple, strict level-1 phylogenetic
network on the leaf set X of N with Q(N ) � Q(N ′). We need to show that N ′ is
isomorphic to N . If |X | = 4, this is trivial, so suppose |X | ≥ 5.

We start with a central observation. Suppose M is a semi-directed, simple, strict
level-1 network and x is a leaf of M that is adjacent to the unique reticulation r of M .
Then, by the definition of a quarnet induced by M , every quarnet in Q(M) is either
a semi-directed, simple, strict level-1 network such that x is also adjacent to r , or it
is a phylogenetic tree whose leaf set does not contain x . In view of this observation,
if x ∈ X is the leaf in N that is adjacent to the unique reticulation in N , then since
Q(N ) � Q(N ′) it follows that x is adjacent to the unique reticulation in N ′.

Now, let P = X − {x}. For every leaf y ∈ P let vy denote the vertex in N adjacent
with y. Suppose that a, b, c, d ∈ P are such that when traversing the cycle in N we
have the path va, vb, r = vx , vc, vd . Consider the set

Q = {N |A : A ∈
(
P

4

)
}.

By the above observation, it is straight-forward to see that the caterpillar tree C on P
with cherries {a, b} and {c, d} is encoded by Q. Since Q(N ) � Q(N ′), it follows that
N ′ must induce a caterpillar tree on P that is isomorphic with C . By considering the
two quarnets in Q(N ) on the sets {a, b, x, c} and {b, x, c, d}, it follows that the order
of the leaves a, b, x, c, d in N induced by the path va, vb, r , vc, vd must be the same
as in N ′. Hence, N ′ is isomorphic to N . ��

To be able to study weak encodings of level-2 networks, we refer to the graph
obtained from a phylogenetic network N by removing all directions as the underlying
graph of N and denote it by U (N ), see Figure 7. Note that U (N ) is indeed a graph
(and not a multi-graph) because N is a phylogenetic network and so cannot contain
parallel arcs. Note that so-called undirected phylogenetic networks are precisely the
undirected graphs G for which there exists a semi-directed network N such that G
andU (N ) are isomorphic and the leaf sets ofG and N coincide. Calling a multi-graph
with two vertices and three parallel edges joining these vertices an undirected level-2
generator and canonically extending the notion of a simple, strict level-2 network to
undirected phylogenetic networks then, by [van Iersel and Moulton (2018) ,Fig. 4],
every undirected, simple, strict level-2 phylogenetic network on X can be obtained
from an undirected level-2 generator by subdividing the edges of the generator to
obtain three paths P1, P2, P3 with end vertices u and v that intersect pairwise only
at u and v, such that (i) at least two of these paths have length at least 2, and (ii) for
i = 1, 2, 3, every vertex w ∈ V (Pi ) \ {u, v} is adjacent to a leaf in X .

Motivated by the above, we call for all k ≥ 2 the mixed graph that can be obtained
from a semi-directed, simple, strict level-k phylogenetic network N by deleting all
leaves and applying vertex suppression operations (V1) and (V2) a (semi-directed)
level-k generator for N and denote it by gen(N ). More generally, we call a mixed
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Fig. 8 The semi-directed level-2
generators with sides labelled

graph G a level-k generator if there exists a semi-directed, simple, strict level-k,
phylogenetic network N such that G and gen(N ) are isomorphic. See Figure 8 for
two semi-directed level-2 generators. To see that these are in fact all semi-directed
level-2 generators (Lemma 4.2) we use that every semi-directed level-2 generator can
be obtained from an undirected, simple, strict level-2 phylogenetic network.

Lemma 4.2 The semi-directed level-2 generators are as pictured in Figure 8.

Proof Suppose that G is one of the mixed graphs in Figure 8. We need to show that
there exists a semi-directed, simple, strict level-2, phylogenetic network N such that
gen(N ) and G are isomorphic. We can obtain N as follows. In case (a), subdivide S2
into an edge, a new vertex v, and an arc and then add a leaf adjacent to v. In either
case, add a leaf adjacent to each outdegree-0 reticulation. To see that N is semi-
directed, note that you can obtain a directed network by subdividing S1 by the root
and directing all edges away from the root. Hence, N is a semi-directed, simple, strict
level-2, phylogenetic network N such that gen(N ) and G are isomorphic. It follows
that the mixed graphs in Figure 8 are semi-directed level-2 generators.

To show that these are all semi-directed level-2 generators, consider a semi-directed,
simple, strict level-2 phylogenetic network N . Observe that U (N ) is an undirected,
simple, strict level-2 phylogenetic network. Let u and v denote the vertices of the
undirected level-2 generator. Let P1, P2, P3 denote the three paths inU (N ) from u to
v.

Observe that N has, by definition, precisely two reticulations. Call these reticula-
tions p and q. If {p, q} ∩ {u, v} = ∅, then there must exist distinct i, j ∈ {1, 2, 3}
such that p is a vertex on Pi and q is a vertex on Pj as otherwise it would not be pos-
sible to orient the edges inU (N ) so as to obtain a semi-directed, simple, strict level-2
phylogenetic network with reticulations p and q. Similarly, it is not possible that
{p, q} = {u, v}. Hence, we must either have that {p, q} = {u, w} or {p, q} = {v,w},
with w /∈ {u, v} a vertex on Pi some 1 ≤ i ≤ 3, or that {p, q} = {w,w′} with
{w,w′}∩{u, v} = ∅ andw a vertex on Pi andw′ a vertex on Pj , where i, j ∈ {1, 2, 3}.
In the first case, gen(N ) is the mixed graph in Figure 8(a). In the second case, gen(N )

is the mixed graph in Figure 8(b). ��
As we shall see, the next result (Proposition 4.3) is central for showing that the

class of semi-directed simple, strict level-2 phylogenetic networks with at least four
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Fig. 9 Two semi-directed, simple, strict level-2 phylogenetic networks N and N ′ that are isomorphic up to
sides, together with their level-2 generator gen(N ) ∼= gen(N ′)

leaves is weakly encoded by quarnets (Theorem 4.5). To be able to state and prove it,
we again require further definitions.

The following definitions are illustrated in Figure 9. Suppose that N is a semi-
directed, simple, strict level-2 phylogenetic network. Then we call the arcs, edges and
the degree-2 vertices in gen(N ) (which have indegree 2 outdegree 0) the sides of
gen(N ). For example, the sides of gen(N ) in the example are the arcs a1, a2, a3, a4
and the vertex v6. If a side S of gen(N ) is an arc/edge, then we denote by P(S) the
semi-directed path in N such that when deleting all leaves of N adjacent with a vertex
of P(S) and suppressing all resulting vertices of P(S) with overall degree two, we
obtain S. In the example, we have P(a3) = (v1, v2, v4, v6), P(a1) = (v1, v3, v5)

and P(a2) = (v1, v5) (where a1, a2 could be swapped). Note that P(S) could be an
arc/edge in N (such as P(a4) = (v5, v6) . In case S is a vertex, then we also refer to
S as P(S) (e.g. P(v6) = v6 . We say that a leaf x of N is hanging off S in N if either
S is a vertex of gen(N ) with overall degree two and N contains the edge {S, x} or S
is an arc/edge in gen(N ) and there exists a vertex v on P(S) such that {v, x} is an
edge of N . In the example, z is hanging off a1 and w is hanging off v6. We denote the
set of leaves of N hanging off S by PS . In the example, Pa3 = {x, y} and Pa4 = ∅.
Finally, we say that two semi-directed, simple, strict level-2 phylogenetic networks N ,
N ′ are isomorphic up to sides if there is some (mixed graph) isomorphism φ between
gen(N ) and gen(N ′) so that for any side S in gen(N ), the leaf sets PS and Pφ(S) are
equal. In the example, N and N ′ are isomorphic up to sides.

Proposition 4.3 Suppose that N and N ′ are semi-directed, simple, strict level-2 phy-
logenetic networks with at least four leaves that are isomorphic up to sides. If
Q(N ) � Q(N ′), then N ∼= N ′.

Proof Suppose that Q(N ) � Q(N ′) and that φ is an isomorphism from gen(N ) to
gen(N ′). ByLemma4.2 it follows that gen(N ) and gen(N ′) are either both as depicted
in Figure 8(a) or they are both as depicted in Figure 8(b).

Claim: Suppose S is a side of gen(N ) for which PS �= ∅. If S is an arc then,
irrespective of Case (a) or (b) holding for N in Figure 8, the order in which the
elements in PS hang off φ(S) in N ′ relative to the direction of φ(S) is the same as the
order in which they hang off S in N relative to the direction of S. If S is the unique
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edge in Figure 8(b), then the order in which the elements in PS hang off φ(S) in N ′
is the same as the order in which they hang off S in N , up to reversing the whole
ordering.

Proof of Claim: Suppose S is an arc in gen(N ) such that P := PS �= ∅. If |P| = 1,
then the claim trivially holds. So assume that |P| ≥ 2. We distinguish between the
cases that |P| = 2, that |P| = 3, and that |P| ≥ 4.

If |P| = 2, then we consider a 4-subset A containing P which is defined as follows.
If Figure 8(a) holds, then N has a unique reticulation. Let x ∈ X be the leaf below that
reticulation and let y ∈ X − (P ∪ {x}). If Figure 8(b) then N has two reticulations.
Let x, y ∈ X be the leaves below the two reticulations, respectively. In either case, let
A = P∪{x, y}. Then N |A ∈ Q(N ) � Q(N ′). That the claim holds is straight-forward
to see.

If |P| = 3, then we consider two 4-subsets A, B of X which are defined as follows.
Suppose first that gen(N ) is as in Figure 8(a) and that x is the leaf of N below the
unique reticulation r of N . Then the size of A := P ∪ {x} is four since |P| = 3.
Moreover, if P equals PS3 or PS4 , then we choose a leaf a in PS1 or PS2 which must
exist as N is strict level-2. To obtain B, we choose leaves b, c in P such that the unique
vertex in N adjacent with b is adjacent with r as well as with the unique vertex in N
adjacent with c. Finally, we put B = {a, b, c, x}.

Assume for the remainder of this case that gen(N ) is as in Figure 8(b). Let x, y be
the leaves of N such that x is below one reticulation of N and y is below the other.
Then we put A = P ∪ {x} and B = P ∪ {y} which both clearly have size four since
|P| = 3.

In either of the above two cases, N |A, N |B ∈ Q(N ) � Q(N ′) follows. That the
claim holds is a straight-forward consequence.

If |P| ≥ 4, then consider the set R of quartets obtained by restricting N to all
possible 4-subsets of P . Then Rmust be the set of quartets induced by some caterpillar
tree T with leaf set P . Since Q(N ) � Q(N ′) it follows that the leaves in P are hanging
off S in N in the same ordering as the leaves of P are hanging off φ(S) in N ′, up to
reversal of the two leaves in each of the cherries in T and up to reversing the whole
ordering. The claim now follows by considering, in addition to R, the set of all quarnets
with leaf set {a, b, c, x}, where a and b form a cherry in T , c ∈ P − {a, b} and x is a
leaf below a reticulation in N . This completes the proof of the Claim.

If gen(N ) is as in Figure 8(a), then the lemma follows by applying the Claim to
each side S of gen(N ) for which PS �= ∅ holds. If gen(N ) is as in Figure 8(b), then
the lemma follows again by applying the Claim to each side S of gen(N ) for which
PS �= ∅ holds in case PS1 = ∅, that is, no leaf of N is hanging off S1 in N . Furthermore,
the lemma follows by applying the Claim to side S1 of gen(N ) if PSi = ∅ holds for
all i ∈ {2, 3, 5, 6}, that is, other than the leaves of N hanging off the two reticulations
of N , every leaf of N is hanging off S1 in N .

Assume for the remainder that PS1 �= ∅ and that there exists some i ∈ {2, 3, 5, 6}
such that PSi �= ∅. To see that the order in which the elements in PS1 are hanging off
φ(S1) in N ′ is the same as the order in which they are hanging off S1 in N , we may
assume without loss of generality that i = 2. Choose leaves a ∈ PS1 and b ∈ PS2 such
that there exists a vertex w in N such that the shortest path from a to b in N contains
w. Since N is a semi-directed, simple, strict level-2 network there must exist a leaf
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x of N that is adjacent with one reticulation of N and a leaf y of N that is adjacent
with the other. Then N |{a,b,x,y} is a quarnet in Q(N ) � Q(N ′). Thus, the shortest
path from a to b in N ′ contains φ(w). Since, by the Claim, the order in which the
elements in PS1 are hanging off φ(S1) in N ′ is the same as the order in which they are
hanging off S1 in N , up to reversing the whole ordering, it follows that N ∼= N ′. This
completes the proof of the lemma. ��
Lemma 4.4 The class of semi-directed, simple, strict level-2 phylogenetic networks
with at least four leaves is weakly encoded by quarnets.

Proof Suppose that N is a semi-directed, simple, strict level-2 phylogenetic network
with at least four leaves. Let X be the leaf set of N and let N ′ be a semi-directed,
simple, strict level-2 phylogenetic network on X such that Q(N ) � Q(N ′). We need
to show that N and N ′ are isomorphic. By Lemma 4.3, it suffices to show that N and
N ′ are isomorphic up to sides.

First note that N and N ′ must have isomorphic generators. Indeed, there must be
some 4-subset A of X so that N |A (and thus N ′|A) is a semi-directed, simple, strict
level-2 phylogenetic network. Since Q(N ) � Q(N ′) it follows that gen(N |A) and
gen(N ′|A) are isomorphic. By Lemma 4.2, it follows that gen(N ) and gen(N ′) must
be isomorphic, as required.

We next show that there exists some isomorphism φ from gen(N ) to gen(N ′) so
that if S is any side in gen(N ) with PS �= ∅ then PS = Pφ(S).

To show that such an isomorphism φ exists, we distinguish between the cases that
gen(N ) is as in Figure 8(a) and that gen(N ) is as in Figure 8(b). Put Pi = PSi , for all
i .

Case (a): Note that in this case, there are exactly two isomorphisms from gen(N )

to gen(N ′): the identity and one that swaps the sides S1 and S2 of gen(N ). Now, fix
x ∈ P5 and an arbitrary leaf y ∈ Pi with i ∈ {1, 2}. Then considering any quarnet
containing leaves x and y we see that y hangs off φ(S1) or off φ(S2) in N ′, for
any isomorphism φ. Choose φ such that y hangs off φ(Si ). Now consider any leaf
z ∈ Pi \ {y}, i ∈ {1, 2, 3, 4}. Then considering any quarnet whose leaf set contains
leaves x, y and z, we see that z hangs off φ(Si ) in N ′. This completes the proof in this
case.

Case (b): Note that in this case there are exactly four isomorphisms from gen(N )

to gen(N )′: the identity, (S2S3)(S5S6), (S2S5)(S4S7)(S3S6) and (S2S6)(S4S7)(S3S5)
(given as a combination of swaps, where (Si , S j ) denotes swapping sides Si and S j ).
Now, let x ∈ P4 and y ∈ P7. First suppose P1 = X \ {x, y}. For any leaf z ∈ P1 it
follows, by considering an arbitrary quarnet whose leaf set contains x , y and z that z
hangs off φ(S1) = S1 in N ′. So the lemma holds in this case.

Assume for the remainder that there exists q ∈ X \ (P1 ∪ {x, y}). Then q ∈ Pi
with i ∈ {2, 3, 5, 6}. Hence, by considering any quarnet whose leaf set contains x ,
y and q, we see that q hangs off one of φ(S2), φ(S3), φ(S5), φ(S6) in N ′. Choose
the isomorphism φ such that q hangs off φ(Si ) in N ′. Then, for any leaf z ∈ Pi ,
i ∈ {1, 2, 3, 5, 6}, it follows, by considering the quarnet whose leaf set contains x , y,
z, q, that z hangs off φ(Si ) in N ′. This completes the proof of the lemma in this case
too. ��

The next theorem corresponds to Lemma 4.4 without the “strict” restriction.
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Fig. 10 A semi-directed phylogenetic network N and the blob tree B(N ) of N

Theorem 4.5 The class of semi-directed, simple, level-2, binary phylogenetic networks
with at least four leaves is weakly encoded by quarnets.

Proof Suppose that N and N ′ are semi-directed, simple, level-2 phylogenetic networks
on X with Q(N ) � Q(N ′). We want to show that N is isomorphic to N .

First note that, if N is strict level-2 and N ′ is strict level-1, then we can clearly pick
some A ⊆ X , |A| = 4, so that the quarnet N |A is a strict level-2 network, which is
impossible since N ′|A must be a level-1 network. By symmetry, it follows that both
N and N ′ must be a strict level-1 or a strict level-2 network. The theorem now follows
immediately by applying Lemmas 4.1 and 4.4. ��

5 Blob Trees

Observe that a directed (respectively semi-directed) network is phylogenetic pre-
cisely if it has no parallel arcs and contracting each blob into a single vertex gives a
directed (respectively undirected) phylogenetic tree. The tree obtained in this way is
called the blob tree B(N ) of a network N , see Figure 10. In this section, we show
that the blob tree of a semi-directed phylogenetic network is uniquely determined by
the quarnets of the network. This will be a direct consequence of Theorem 5.1, which
characterizes the splits of a semi-directed phylogenetic network using its quarnets.
Note that this theorem does not put any restriction on the level.

A cut-edge of a semi-directed network is an edge whose removal disconnects the
network. We call a bipartition {A, B} of X into two non-empty subsets A and B a split
of X and denote it by A|B where the order of A and B does not matter. We call a split
A|B trivial if |A| = 1 or |B| = 1.

Given a semi-directed network N on X and a split A|B of X we say that A|B is a
cut-edge split (CE-split) in N if there exists a cut-edge {u, v} of N such that its removal
gives two connected mixed graphs with leaf-sets A and B. We say a CE-split A|B is
trivial if |A| = 1 or |B| = 1. Observe that a semi-directed phylogenetic network is
simple if and only if it has no nontrivial CE-splits.
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Wewill show in this section that we can detect splits in a semi-directed phylogenetic
network by looking at its quarnets, using the following theorem:

Theorem 5.1 Let N be a semi-directed, binary
phylogenetic network on X and A|B a split of X. Then A|B is a CE-split in N if

and only if one of the following holds:

• A|B is a trivial split of X; or
• A|B is non-trivial and for any pairwise distinct elements a1, a2 ∈ A, b1, b2 ∈ B,

{a1, a2}|{b1, b2} is a CE-split in N |{a1,a2,b1,b2}.
The main challenge in proving Theorem 5.1 will be to show that when A|B is

non-trivial and N is simple (and therefore A|B is not a CE-split in N ), there exist
a1, a2 ∈ A, b1, b2 ∈ B for which {a1, a2}|{b1, b2} is not a CE-split in N |{a1,a2,b1,b2}.
To show this, we first prove some results concerning directed networks:

Lemma 5.2 Let N be a simple directed phylogenetic network on X with at least one
reticulation. If v is a vertex of N that is not the root, not a leaf andnot a leaf-reticulation,
then

there exists an arc (u′, v′) with v /∈ {u′, v′} such that v′ is below v and u′ is not
below v. In particular, v′ is a reticulation.

Proof Let Y denote the set of non-leaf vertices in N that are not below v, and let Z
denote the set of non-leaf vertices in N strictly below v. Since v is not the root, Y is
nonempty. In addition, since v is not a leaf and not a leaf-reticulation, Z is nonempty.
Then since N is simple, the underlying undirected graph of N has a path starting at a
vertex Y and ending at a vertex in Z that does not include v. It follows that there exist
adjacent vertices u′ in Y , v′ ∈ Z . Since v′ is below v and u′ is not, N does not contain
the arc (v′, u′). So N must contain the arc (u′, v′), as required. ��
Lemma 5.3 Let N be a simple directed strict level-k phylogenetic network on X for
k ≥ 1. Then for any arc (u, v) in N with v not a leaf, there exist vertices u∗, r and
directed paths P, Q in N such that:

• P and Q are arc-disjoint paths from u∗ to r;
• P contains the arc (u, v); and
• r is a leaf-reticulation.

Proof Suppose first that v is a leaf-reticulation, and let (u′, v) be the other incoming
arc of v. Then let r = v and let u∗ be any lowest common ancestor of u and u′. Let
P be a directed path consisting of a directed path from u∗ to u extended with the arc
(u, v), and let Q be a directed path consisting of a directed path from u∗ to u′ extended
with the arc (u′, v). Then P and Q are arc-disjoint paths from u∗ to r = v (any overlap
would imply that u and u′ have a common ancestor strictly below u∗) and P contains
(u, v).

Now assume that v is either a tree node or reticulation that is not a leaf-reticulation.
We generate a sequence of vertices v1, u1, . . . , vs−1, us−1, vs , as follows. Initially set
v1 := v and i = 1.While vi is not a leaf-reticulation, by Lemma 5.2 there exists at least
one arc (u′, v′) with reticulation v′ strictly below vi and u′ not below vi . Choose such
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an arc (u′, v′) with lowest v′, and let ui := u′, vi+1 = v′. Observe that any directed
path from vi to vi+1 is arc-disjoint from any directed path ending with (ui , vi+1). Now
increase i by 1 and repeat. If vi is a leaf-reticulation, then set s := i and terminate.

Since vi+1 is strictly below vi for each i , this process must terminate because N
only has finitely many vertices. Let x be the leaf adjacent to vs — see Figure 11.

Note that v j is below vi for all 1 ≤ i < j ≤ s. Note also that for each i ∈ {1, . . . , s−
2}, the vertex ui+1 is below vi . Indeed, if this is not the case then (ui+1, vi+2) is an
arc with vi+2 below vi and ui+1 not below vi , which contradicts our choice of vi+1 as
a lowest vertex for which such an arc exists. So there exists a path from vi to ui+1 for
each i ≤ s − 2, and an arc from ui to vi+1 for each i ≤ s − 1.

Now let u∗ be a lowest common ancestor of u and u1.
We can now form P by combining the following directed paths — see Figure 11:

• A directed path from u∗ to u;
• The arc (u, v1);
• For each odd i ∈ {1, . . . , s − 2}, a directed path from vi to ui+1;
• For each even i ∈ {1, . . . , s − 1}, the arc (ui , vi+1);
• If s is even, a directed path from vs−1 to vs .

We now have that P contains vi for all odd i and ui for all even i , and P is a directed
path from u∗ to vs (ending with the arc (us−1, vs) if s is odd, and otherwise ending
with an arbitrary path from vs−1 to vs). By construction, P contains the arc (u, v).

In a similar way, we form Q by combining the following directed paths — see
Figure 11:

• An (arbitrary) directed path from u∗ to u1;
• For each even i ∈ {1, . . . , s − 2}, an (arbitrary) directed path from vi to ui+1;
• For each odd i ∈ {1, . . . , s − 1}, the arc (ui , vi+1);
• If s is odd, an (arbitrary) directed path from vs−1 to vs .

We now have that Q contains vi for all even i and ui for all odd i , and Q is a
directed path from u∗ to vs (ending with the arc (us−1, vs) if s is even, and otherwise
ending with an arbitrary directed path from vs−1 to vs).

Letting r be the leaf-reticulation vs , we have that P and Q are paths from u∗ to
r . It remains to show that P and Q are arc-disjoint. For this, it is sufficient to show
that there is no vertex v′ in both P and Q except for the u∗ and vs . We note that the
degenerate case that P and Q both consist of the single arc (u∗, vs) cannot occur,
since we assumed v1 is not a leaf-reticulation and so s > 1.

So suppose for a contradiction that such a vertex v′ does exist. Then v′ is strictly
below u∗ and strictly above vs .

First suppose that v′ is strictly above v1, and therefore v2. Since v′ is on P , this
implies that v′ is also above u.

Since v′ is on Q, it follows that v′ is above u1. Thus v′ is a common ancestor of u
and u1 that is strictly below u∗, a contradiction by the choice of u∗.

Now suppose that v′ is below v1. Let i ∈ {1, . . . , vs−1} be the unique index such that
v′ is below vi but not below vi+1. Since one of the paths P and Q contains (ui , vi+1),
v′ must be above ui . But then we have that there is a directed path from vi to ui via v′.
Thus ui is below vi , a contradiction by the choice of ui . Thus we may conclude that
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Fig. 11 Illustration of the proof
of Lemma 5.3 for the case that
s = 5. For each i < s, vi+1 is a
lowest vertex below vi such that
vi+1 has a parent ui that is not
below vi . Dashed lines represent
directed paths. The path P is in
bold on the left, starting at u∗,
passing through u, v1, u2, v3, u4
and ending at v5. The path Q is
in bold on the right, starting at
u∗, passing through
u1, v2, u3, v4 and ending at v5.
A dotted line from vi to vi+1
illustrates the fact that vi+1 is
below vi , for i ∈ {1, . . . , s − 2}

P and Q have no vertices in common except for u∗ and vs (and do not both consist
of a single arc), and so P and Q are arc-disjoint. ��

We say that two cycles in N overlap if they have at least one vertex in common.
Since N is binary, two cycles in N overlap if and only if they have at least one edge
or arc in common. Recall that a reticulation r in N is a sink of a cycle C if C contains
both incoming arcs of r . We call a cycle C good if it contains exactly one sink, and
we call a good cycle excellent if its sink is adjacent to a leaf. See Figure 12.

We say a leaf belongs to a cycle C if the unique vertex that is adjacent to it is in
C . Note that if r is the sink of a good cycle C in a semi-directed network N and x is
a leaf below r , then x belongs to C if and only if r and x are adjacent. To see this,
suppose that x is a leaf below r and belongs to C but is not adjacent to r . Then there
exists a semi-directed path from r to the vertex v adjacent to x . Since v is a vertex of
C and r is the unique sink of C , there exists a semi-directed path from v to r . Hence,
there exists a semi-directed cycle in N , which is a contradiction by Lemma 2.4.
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Fig. 12 Two semi-directed phylogenetic networks N and N ′, each containing three pairwise-overlapping
cycles. In N , the cycle (u1, u2, u3, u4, u8, u1) is good as it has a single sink u3, and it is excellent as
u3 is adjacent to a leaf. Similarly, the cycle (u4, u5, u6, u7, u8, u4) is excellent. However, the cycle
(u1, u2, u3, u4, u5, u6, u7, u8, u1) is not good (and therefore not excellent) as it has two sinks u3 and
u5. In N ′, the cycle (v1, v2, v3, v7, v8, v1) is good as it has a single sink v3, but it is not excellent since v3
is not adjacent to a leaf. The cycles (v3, v4, v5, v6, v7, v3), and (v1, v2, v3, v4, v5, v6, v7, v8, v1) are both
excellent. Note in particular that this last cycle is good even though it contains two reticulations v3 and v5,
as v3 is not a sink of this cycle

Lemma 5.4 Let N be a simple, semi-directed phylogenetic network with at least one
reticulation and let e be an arc or edge between two non-leaf vertices. Then e is
contained in at least one excellent cycle.

Proof Let v1, v2 be the vertices of e. Let Nd be a rooting of N with root ρ.
Observe that either v1 and v2 are adjacent in Nd , or Nd contains the arcs

(ρ, v1), (ρ, v2) (and ρ is not adjacent to any other vertices). If v1 and v2 are adja-
cent in Nd , we may assume without loss of generality that the arc between them is
(v1, v2).

Now, let (u, v) = (v1, v2) if v1 and v2 are adjacent in Nd , and let (u, v) = (ρ, v1)

otherwise. By Lemma 5.3 there exist arc-disjoint directed paths P, Q in Nd from some
vertex u∗ to a leaf-reticulation r , and (u, v) is on the path P . Note that either u∗ = ρ

or every vertex in P and Q is a vertex of N .
We now construct a cycle C in N from the union of P and Q. For each arc e′ in

P or Q not incident to ρ, let e′′ be the corresponding edge or arc in N (i.e. with the
same vertices as e′), and add e′′ to C . If u∗ = ρ, then (ρ, v1) and (ρ, v2) are the first
arcs of P and Q and add the arc or edge in N between v1 and v2 to C . Since P and
Q are arc-disjoint paths with the same start and end vertices, the resulting C is indeed
a cycle. Moreover C contains e (either because (v1, v2) is an arc in P , or because
(ρ, v1) and (ρ, v2) are the top arcs of P and Q respectively). It remains to show that
C is an excellent cycle.

To see that C is a good cycle, observe that any sink in C must have two incoming
arcs in the union of P and Q. But as P and Q are edge-disjoint directed paths in Nd

there is only one vertex for which this holds, namely r . Thus C has only one sink.
Finally, as r is a leaf-reticulation, there is a leaf adjacent to r and so C is excellent. ��
Lemma 5.5 Let N be a simple, semi-directed phylogenetic network on X with at least
one reticulation, and let A|B be any bipartition of X. Then there exist excellent cycles
C1,C2 (possibly with C1 = C2) and leaves a ∈ A, b ∈ B such that C1 and C2 overlap
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and a belongs to C1 and b belongs to C2. In addition, either C1 �= C2 and a and b
are both adjacent to a reticulation or C1 = C2 and one of a and b is adjacent to a
reticulation.

Proof Take any a′ ∈ A and b′ ∈ B. Let va be the non-leaf vertex adjacent to a′
and vb the non-leaf vertex adjacent to b′. Since N is connected, there exists a path
(not necessarily semi-directed) between va and vb, and all vertices on this path are
non-leaf vertices. Let v1 = va, v2, . . . , vs = vb be the vertices of this path, and
let ei be the edge or arc between vi and vi+1, for each i ∈ {1, . . . , s − 1}. By
Lemma 5.4, for each i ∈ {1, . . . , s − 1} there exists an excellent cycle C ′

i con-
taining ei . As each C ′

i is an excellent cycle, it has at least one leaf in A or B
belonging to it (namely the leaf adjacent to its sink). Note that in particular a′
belongs to C ′

1 since C ′
1 contains va , and b′ belongs to C ′

s−1 since C ′
s−1 contains

vb. Therefore there exists some i ∈ {1, . . . , s − 2} such that a leaf a in A belongs
to C ′

i , and a leaf b in B belongs to C ′
i+1. Furthermore C ′

i and C ′
i+1 must overlap,

as they both contain the vertex vi+1. Then C ′
i and C ′

i+1 are the desired excellent
cycles.

Finally, note that we can choose a and b to be both adjacent to a retic-
ulation unless the leaves adjacent to the sinks of the C ′

i are all in A or all
in B. If they are all in A, then we can take C1 = C2 = C ′

s−1 and a is
adjacent to a reticulation. If the leaves adjacent to the sinks of the C ′

i are all
in B, then we can take C1 = C2 = C ′

1 and b is adjacent to a reticulation.
��

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1 For the first direction of the proof, assume that A|B is a CE-
split in N and |A|, |B| ≥ 2. Let a1, a2 ∈ A, b1, b2 ∈ B, all pairwise distinct and
let Y = {a1, a2, b1, b2}. Recall that N |Y is obtained by applying the suppression
operation to N∧Y and so the leaf set of N |Y is therefore Y . Moreover, and CE-split in
N is also a CE-split in N∧Y , and all suppression operations preserve CE-splits (but
not the number of corresponding cut-edges). Hence, {a1, a2}|{b1, b2} is a CE-split in
N |{a1,a2,b1,b2}.

To see the reverse direction, we use induction on the number of non-trivial CE-splits
in N . The base case is that N is simple. To see this case, note that if A|B is a trivial
split of X then it is certainly a CE-split in N . So assume that A|B is not a trivial split of
X . We claim that if A|B is not a CE-split in N then there exist a1, a2 ∈ A, b1, b2 ∈ B
such that {a1, a2}|{b1, b2} is not a CE-split in N |{a1,a2,b1,b2}. By contraposition, this
completes the proof of this direction for the base case.

To see the claim, assume that A|B is not a CE-split in N . By Lemma 5.5, there
exist excellent cycles C1,C2 and leaves a1 ∈ A, b1 ∈ B such that C1,C2 overlap,
a1 belongs to C1 and b1 belongs to C2. In addition, either C1 �= C2 and a1 and b1
are both adjacent to a reticulation or C1 = C2 and one of a1 and b1 is adjacent to a
reticulation.

Let a2 be an arbitrary element of A \ {a1} and let b2 be an arbitrary ele-
ment of B \ {b1} which must exist because A|B is not a trivial split of X . Put
Y = {a1, a2, b1, b2}. We claim that {a1, a2}|{b1, b2} is not a CE-split in N |Y . To
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see this, note first that since C1 and C2 are excellent, both of them must have a
unique sink adjacent to a leaf in {a1, b1}. Hence, these sinks and adjacent leaves
are not deleted when constructing N |∧Y from N . Moreover, if C1 �= C2, then the
cycles C1 and C2 are not suppressed by operation (PAS) to obtain N |Y because
each of them has at least three vertices that each is incident with edges/arcs that
do not form part of the cycle (one incident to a1 or b1 and two belonging to the
other cycle). If C1 = C2, this cycle is also not suppressed by operation (PAS) to
obtain N |Y because the cycle contains at least three vertices that each is incident with
edges/arcs that do not form part of the cycle (one incident to a1, one incident to b1
and one incident to or on a path to a2). Finally, the blob containing C1 and C2 is not
suppressed by operation (BLS) by the same argument. Hence, although the length
of the cycles C1 and C2 may be shortened due to applied suppression operations,
they still exist (and still overlap) in N |{a1,a2,b1,b2}. Since a1 belongs to C1 and b1
belongs to C2, it follows that {a1, a2}|{b1, b2} is not a CE-split in N |{a1,a2,b1,b2}, as
claimed.

Assume that the theorem holds for all semi-directed phylogenetic networks N ′ on
X and all bipartitions of X if N ′ has strictly less CE-splits than N and that there exists
a non-trivial CE-split P|Q in N .

We first show that P ⊆ A, or P ⊆ B, or Q ⊆ A or Q ⊆ B must hold. Assume
for contradiction that this is not the case. Then P contains leaves a1 ∈ A and b1 ∈ B
and Q contains leaves a2 ∈ A and b2 ∈ B. Then {a1, b1}|{a2, b2} is a CE-split in
N |{a1,a2,b1,b2}. Hence, {a1, a2}|{b1, b2} is not a CE-split in N |{a1,a2,b1,b2}, a contradic-
tion.

Hence, we have that P ⊆ A, or P ⊆ B, or Q ⊆ A or Q ⊆ B. With-
out loss of generality, assume that P ⊆ A. Let {u, v} be a cut-edge such that
deleting {u, v} creates two connected components: one connected component NP

containing u and all leaves from P and one connected component containing v

and all leaves from Q. Construct a network N ′ from NP by adding a new leaf a∗
and an edge {a∗, u}. Let A′ = (A \ P) ∪ {a∗} and B ′ = B. Note that N ′ has
at least one non-trivial CE-split less than N . To be able to apply induction to N ′,
we need that, for any a1, a2 ∈ A′, b1, b2 ∈ B ′, {a1, a2}|{b1, b2} is a CE-split in
N ′|{a1,a2,b1,b2}. If a∗ /∈ {a1, a2} then this is clear because {a1, a2}|{b1, b2} is a CE-
split in N |{a1,a2,b1,b2} and hence also in N ′|{a1,a2,b1,b2}. If a∗ ∈ {a1, a2} then assume
without loss of generality that a∗ = a1. Let c ∈ P . Then {c, a2}|{b1, b2} is a CE-split
in N |{c,a2,b1,b2} and hence {a1, a2}|{b1, b2} is a CE-split in N ′|{a1,a2,b1,b2}. Hence, by
induction, A′|B ′ is a CE-split in N ′. It follows directly that A|B is a CE-split in N .

��

We conclude this section by noting that, since undirected phylogenetic trees are
encoded by their splits, it follows from Theorem 5.1 that the blob tree of a semi-
directed phylogenetic network is uniquely determined by the quarnets of the network.
Stated more precisely, we have the following corollary.

Corollary 5.6 Suppose that N and N ′ are semi-directed phylogenetic networks on X
with Q(N ) � Q(N ′). Then B(N ) ∼= B(N ′).
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Fig. 13 Illustration used in the proof of Lemma 6.1. The solid edges indicate the network NB . The
dotted edges indicate paths outside NB to leaves of N . Bold edges indicate the final U . The indi-
cated edges e1, . . . , e6 are one possibility for the edges chosen in the proof of Lemma 6.1. In that
case, C1, . . . ,C6 could be the excellent cycles with vertices (u1, u2, u3, u14, u15, u1), (u1, u2, u15, u1),
(u1, u2, u3, u4, u13, u14, u15, u1), (u4, u5, u16, u11, u12, u13, u4), (u9, u10, u11, u16, u17, u9) and
(u7, u8, u9, u17, u7) respectively. This leads to the quarnet q = N |{x ′

1,x
′
4,x

′
5,x

′
6}, which is not level-2

6 Level-2 Networks

In this section, we combine the results from Sections 4 and 5 to prove that semi-
directed level-2 networks with at least four leaves are encoded by their quarnets. For
that, we will need the following lemma.

Lemma 6.1 Let N be a semi-directed, strict level-k phylogenetic network on X, |X | ≥
4, for k ≥ 3. Then there exists a quarnet q ∈ Q(N ) such that q is not level-2.

Consider any blob B of N with exactly k reticulations. Let NB be the semi-directed,
simple, strict level-k network obtained from N by deleting all vertices that are not in B
and do not have an adjacent vertex that is in B.

We construct a set A ⊆ L(NB) and a set C of excellent cycles with |C| ≥ 3 in NB

such that each C ∈ C overlaps with at least one C ′ ∈ C \ {C} as follows. See Figure 13
for an example.

Let e1 be any edge/arc of NB between two non-leaf vertices. Then, by Lemma 5.4,
there exists an excellent cycle C1 in NB containing e1. Let x1 be the leaf of NB below
the sink of C1. Initialize A = {x1}, C = {C1} and U = C1.

Repeat the following while U �= B and |A| < 4. Let i = |C| + 1 and ei any
edge/arc between two non-leaf vertices of NB , such that ei is not in U but is incident
to at least one vertex in U . Note that ei exists since U �= B. By Lemma 5.4, there
exists an excellent cycle Ci in NB containing ei . Note that Ci �= C for all C ∈ C and
that Ci overlaps with at least one C ∈ C. Let xi be the leaf of NB below the sink of Ci .
Add Ci to C, add xi to A (note that xi may already be in A, in which case A remains
unchanged) and update U to be the graph union of the cycles in C.

First suppose |A| = 4. In this case, we have |C| ≥ 4 and henceU is not level-2. (To
see this, note that C1 ∈ C contains a leaf reticulation, C2 ∈ C \ {C1} either contains a
different leaf reticulation or it joinsC1 in a different reticulation andC3 ∈ C \{C1,C2}
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either has a leaf reticulation that is different from the leaf reticulations of C1 and C2
or it joins C1 ∪ C2 in a third reticulation.) Consider the quarnet qB = NB |A. We now
show that qB is not level-2. To see this, first recall that each C ∈ C has a unique sink
with a leaf in A below it and sinks are not deleted by vertex suppression operations.
Moreover, none of the cyclesC ∈ C can be suppressed by operation (PAS). To see this,
recall that C corresponds to an excellent cycle in NB and hence its sink is incident to
a cut-edge in NB . Moreover, since C overlaps with at least one C ′ ∈ C \ {C}, it either
has a chord (i.e., an edge/arc that is not in C but is incident to two vertices of C) or
three incident edge/arcs (one where C ′ leaves C , one where C ′ joins C again, and one
incident to the sink of C). In either case, C is not suppressed by (PAS). Finally, the
blob suppression operation (BLS) is not applicable to U because it has at least four
incident cut-edges (incident to the leaves in A). Hence qB is not level-2. Let A′ ⊆ X
consist of, for each xi ∈ A, one leaf x ′

i of N that is below xi in N . Then q = N |A′ is
equal to qB with each leaf xi replaced by x ′

i . Hence, q is not level-2.
Now consider the case that |A| < 4. In this case we haveU = B because otherwise

the while loop would not have terminated. Let A′ ⊆ X contain, for each xi ∈ A,
one leaf x ′

i of N that is below xi in N . In addition, add arbitrary leaves from X to A′
until |A′| = 4. Then q = N |A′ contains a blob U = B in which no suppression
operations are applicable since B is a blob of N which is phylogenetic. Hence, q is
not level-2 since it contains B which is not level-2. ��

We are now ready to prove the main result of this section.

Theorem 6.2 The class of semi-directed, level-2, binary phylogenetic networks with
at least four leaves is encoded by quarnets.

Proof Let N be a semi-directed level-2 phylogenetic network with at least four leaves.
Let X be the leaf set of N . Let N ′ be a semi-directed network on X with Q(N ) �
Q(N ′). We need to show that N ∼= N ′.

First we prove that N ′ has level-2. Assume for a contradiction that N ′ is strict level-
k with k ≥ 3. By Lemma 6.1, there exists a quarnet q ∈ Q(N ′) that is not level-2.
This leads to a contradiction since q ∈ Q(N ) � Q(N ′) and N has level-2. Thus, N ′
is a level-2 network.

We now prove that N ∼= N ′ by induction on the number s of nontrivial CE-splits
in N .

If s = 0, then N is a semi-directed, simple level-2 phylogenetic network on X . Since
Q(N ) � Q(N ′) it follows that N ′ is also a semi-directed, simple, level-2 phylogenetic
network. By Theorem 4.5, N ∼= N ′ follows.

So assume that s ≥ 1. Observe that, by Theorem 5.1, N ′ has the same CE-splits
as N . Consider a nontrivial CE-split A|B of N and N ′ (which exists since s ≥ 1).
Pick some a ∈ A and b ∈ B and consider the networks N |A∪{b} and N |B∪{a}. Since
Q(N |A∪{b}) � {q ∈ Q(N ) | L(q) ⊆ A∪ {b}}, Q(N ′|A∪{b}) � {q ∈ Q(N ′) | L(q) ⊆
A ∪ {b}}, and Q(N ) � Q(N ′), we have that Q(N |A∪{b}) � Q(N ′|A∪{b}). If we also
have |A ∪ {b}| ≥ 4 then it follows by induction that N |A∪{b} ∼= N ′|A∪{b}. Otherwise,
we have |A| = 2 and there exists b′ ∈ B with b′ �= b. It then follows directly that
N |A∪{b,b′} ∼= N ′|A∪{b,b′} (since both are quarnets) and hence that N |A∪{b} ∼= N ′|A∪{b}
(since both can be obtained from N |A∪{b,b′} by deleting b′ and applying the suppression
operation).
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By symmetry, we also have that N |B∪{a} ∼= N ′|B∪{a}.
Since A|B is a CE-split, there exists a cut-edge {u, v} of N such that the removal

of it results in two connected graphs NA, NB with leaf sets A and B, respectively.
Without loss of generality, u is in NA and v is in NB . Observe that, by definition,
N |A∪{b} can be obtained from NA by adding leaf b with an edge {u, b}. Similarly,
N |B∪{a} can be obtained from NB by adding leaf a with an edge {v, a}. Then, N can
beobtained from N |A∪{b} and N |B∪{a} bydeletingb and its incident edge from N |A∪{b},
deleting a and its incident edge from N |B∪{a} and adding an edge {u, v}. In exactly the
same way, N ′ can be obtained from N ′|A∪{b} and N ′|B∪{a}. Since N |A∪{b} ∼= N ′|A∪{b}
and N |B∪{a} ∼= N ′|B∪{a}, it follows that N ∼= N ′. ��

7 Discussion

In this paper we have shown that the set of quarnets of a semi-directed level-2 phyloge-
netic network encodes the network, but that this is no longer necessarily true for level-3
networks. In addition, we proved that the blob tree of a semi-directed phylogenetic
network is encoded by the quarnets of the network for any level.

There are several directions that could be of interest to be investigated next. First,
it could be useful for practical applications to develop algorithms that compute semi-
directed level-2 networks from collections of quarnets. As a first step in this direction
it would be interesting to develop an algorithm that computes a semi-directed level-2
network from its set of quarnets (see Frohn et al. (2025) for such an algorithm for level-
1). We could then adapt the algorithm to robustly deal with arbitrary collections of
level-2 quarnets, similar to the Squirrel andNANUQ+ algorithms for level-1Allman
et al. (2025); Holtgrefe et al. (2025).

An O(n3)-time algorithm for constructing the blob tree of a semi-directed phylo-
genetic network of any level from quarnets was recently developed (Frohn et al. 2025)
based on the results in this paper. An interesting open problem is whether the blob
tree can be reconstructed from only O(n2) quarnets and whether this is possible in
O(n2) time. From a practical point-of-view it is important to develop robust blob tree
construction methods. If n is not too big, practical algorithms could use information
from all O(n4) quarnets (Allman et al. 2024; Holtgrefe et al. 2025), but when consid-
ering real data such methods currently struggle to decide how resolved to make the
blob tree.

In another direction, it could be interesting to study inference rules for semi-directed
quarnets. For phylogenetic trees, inference rules have been studied for some years,
where they are used to infer new trees from collections of trees (see e.g. [Semple and
Steel (2003), Section 6.7). In Huber et al. (2018), certain inference rules are given for
level-1 undirected networks on four leaves, and it would be interesting to see whether
similar rules can be developed for the semi-directed case. In a related direction, it
could also be worth investigating approaches for deciding whether or not an arbitrary
collection of quarnets (i.e. not necessarily one quarnet for each quartet of leaves) can
be displayed by some semi-directed phylogenetic network. Note, however, that it is
NP-complete to decide whether there is a tree that displays an arbitrary collection of
quartet trees (Steel 1992).
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Although we have shown that semi-directed level-3 networks are, in general,
not encoded by their quarnets, it could be of interest to find a maximal subclass
of level-3 (or higher) networks that is encoded by quarnets. In particular, we con-
jecture that the class of all semi-directed binary simple level-3 networks, except
for the networks N1, N2 in Figure 2 and networks that can be obtained from N1
and N2 by inserting leaves on the side of a and b (in any order), is encoded by
quarnets.

Finally, one major challenge that remains is to develop robust ways to construct
quarnets from real data. This problem has generated considerable interest in the area of
algebraic geometry, where the problem of identifying level-1 quarnets using algebraic
invariants arising frommodels of sequence evolution has yielded some positive results
on network identifiability (see e.g. Gross et al. (2021)). Some recent progress has also
been made in Cummings and Hollering (2025); Martin et al. (2023) for computing
level-1 quarnets for real data using algebraic invariants, but extending these approaches
to level-2 quarnets appears to be a challenging problem (Ardiyansyah 2021).

A Omitted Proofs

In this appendix,we provide the previously omitted proofs for Lemmas 3.1, 3.2 and 3.3.

Lemma 3.1. Let N be a semi-directed network. If N ′ is derived from N by a single
application of (V1), (V2), (BLS) or (PAS), then N ′ is also a semi-directed network.

Proof If the operation is of type (BLS), then let B be an affected blob in N . Note that
there is a corresponding blob in any rooting Nd of N . If this blob has one incoming and
one outgoing arc in Nd , then the same operation is also applicable to Nd and applying
it results in a rooting of N ′. Otherwise, the blob corresponding to B has two outgoing
arcs and no incoming arcs in Nd . Then replacing this blob with a single root vertex
again gives a directed network which is a rooting of N ′. Hence, N ′ is semi-directed.

If the operation is of type (PAS), we claim that there exists a rooting Nd of N such
that the edge/arc that is subdivided by the root is not one of the suppressed parallel arcs
(u, v). To see this, note that by definition of (PAS) vertex u has degree 3 and hence has
an incident edge {u, w}. If there exists a rooting of N with the root subdividing one of
the arcs (u, v), then there also exists a rooting Nd of N with the root subdividing {u, w}.
Then (PAS) is applicable to Sd giving a rooting of N ′. Hence, N ′ is semi-directed.

If the operation is of type (V1) or (V2), we claim that, unless N has only three
vertices, there exists a rooting Nd of N such that the edge/arc that is subdivided by the
root is not incident to the suppressed vertex v. Let {u, v} be an edge incident to v such
that u is not a leaf (which exists unless N has exactly three vertices). Then u has at least
one other incident edge/arc, say to vertex p. If there exists a rooting of N with the root
subdividing one of the edge/arcs incident to v, then there also exists a rooting Nd of N
with the root subdividing the edge/arc between u and p. Then suppression operation
(V3) is applicable to Nd giving a rooting of N ′. Hence, N ′ is semi-directed. Finally,
if S contains exactly three vertices then N ′ consists of two vertices connected by an
edge and it is clear that N ′ is again semi-directed. ��
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We now turn our attention to the proof of Lemma 3.2, i.e. that Supp(N ) is well-
defined on directed and semi-directed networks. For this, we need some additional
definitions and lemmas.

Let N be a network. Call a subgraph Z of N a subgraph from u tow if all arcs/edges
in Z are on some semi-directed path from u to w, and N has no arcs/edges incident to
V (Z)\{u, w} except for those in E(Z). We call I nt(Z) := V (Z)\{u, w} the internal
vertices of Z . Furthermore, if A is a subset of the vertices of N , then N [A] is used to
denote the subnetwork of N induced by A, i.e., the subnetwork obtained by deleting
all vertices not in A.

We nowcharacterizewhich verticeswill be suppressed by the suppression operation
in a directed network. We will show that these are precisely the internal vertices of
subgraphs of the following type. Define the directed SP-graphs (suppressed graphs)
as follows:

• (single arc) the graph (V = {u, w}, E = {(u, w)}) is a directed SP-graph from u
to w.

• (parallel arcs) the graph with V = {u, v} and parallel arcs (u, v) is a directed
SP-graph from u to v.

• (series) If Z1 = (V1, E1) is a directed SP-graph from u to v and Z2 = (V2, E2) is
a SP-graph from v tow with V1 ∩V2 = {v}, then (V1 ∪V2, E1 ∪ E2) is a SP-graph
from u to w.

• (recursion) If Z is a directed SP-graph from u to w and Z ′ an SP-subgraph of Z
from u′ to w′ (i.e. Z ′ is a subgraph of Z that is a directed SP-graph), where u′
appears before w′ in a
directed path from u to w, then the result of replacing Z ′ with another directed
SP-graph from u′ to w′ is also a directed SP-graph from u to w.

We note without proof the following properties of a directed SP-graph Z : Z has a
single vertex u of indegree 0 and a single vertex w of outdegree 0, and all arcs of Z
are on a directed path from u to w. Every directed SP-graph with more than one arc
has either a vertex of degree 2, or a pair of parallel arcs.

Define the semi-directed SP-graphs to be the mixed graphs that can be derived from
a directed SP-graph by unorienting all arcs except for those entering reticulations. We
call amixed graph an SP-graph if it is a directed or semi-directed SP-graph. See Fig. 14
for examples of SP-graphs.

When Z is an SP-subgraph from ρ to w in N for ρ the root of N , and Z contains
both out-arcs of ρ, then we say Z is degenerate.

Lemma A.1 Let N1, N2 be networks such that N2 is derived from N1 by an application
of (V1) or (V2) or (V3) or (PAS), and let {v∗} = V (N1) \ V (N2).

Then for any u, w ∈ V (N2), it holds that N1 has an SP-subgraph from u to w if
and only if N2 has an SP-subgraph from u to w. In particular, if Z is an SP-subgraph
from u to w in Ni for i ∈ {1, 2}, there exists an SP-subgraph Z ′ from u to w in N3−i

with V (Z)�V (Z ′) ⊆ {v∗}, and Z ′ is degenerate if and only if Z is. Furthermore w

has the same number of incoming arcs and incident edges in Z as in Z ′.

Proof If N2 is derived from N1 by an application of (PAS), then for some u∗, w∗ ∈
V (N1) (with u∗ not the root of N ), there exist parallel arcs (u∗, v∗) and a single arc
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Fig. 14 Examples of SP-graphs

(v∗, w∗) or edge {v∗, w∗} (because v∗ has degree 3). Then N1[{u∗, v∗, w∗}] is an
SP-subgraph from u∗ to w∗ in N1, and N2 is derived from N1 by replacing this SP-
subgraph with the arc (u∗, w∗) or edge {u∗, w∗}. On the other hand if N1 is derived
from N1 by an application of (V1), (V2) or (V3), then v∗ has degree 2 and neighbors
u∗, w∗, and N1[{u∗, v∗, w∗}] is again an SP-subgraph from u∗ to w∗ in N1, and N2
is derived from N1 by replacing this SP-subgraph with an arc or edge from u∗ to w∗.
Thus, we may now assume that Y ∗

1 := N1[{u∗, v∗, w∗}] is an SP-subgraph from u∗ to
w∗ in N1, and that N2 is derived from N1 by replacing Y1 with an arc/edge e∗ from u∗
to w∗. (Note that this arc/edge itself also forms an SP-subgraph from u∗ to w∗.) Note
also that e∗ is an arc if and only if w∗ has in incoming arc (as opposed to an incident
edge) in Y ∗

1 .
Now consider any SP-subgraph Z1 from u and w in N1, with v∗ /∈ {u, w}. If

v∗ /∈ V (Z1) then Z2 := Z1 is also an SP-subgraph from u to w in N2. Otherwise,
V (Z1) contains not just v∗ but also u∗ and w∗ (otherwise v∗ is not on a path from u
to w). Thus Y ∗

1 is an SP-subgraph from u∗ to w∗ in Z1. Let Z2 be derived from Z1 by
replacing Y ∗

1 with the arc/edge e∗.
Then Z2 is a subgraph from u to w in N2, and by construction Z2 is an SP-graph

with V (Z1)�V (Z2) ⊆ {v∗}.
Conversely, consider any SP-subgraph Z2 from u and w in N2. If Z2 does not

contain e∗, then Z1 := Z2 is also an SP-subgraph from u to w in N1. Otherwise, let
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Z1 be derived from Z2 by replacing e∗ with Y ∗
1 . Then Z1 is a subgraph from u to w

in N1, and by construction Z1 is an SP-subgraph with V (Z1)�V (Z2) ⊆ {v∗}.
It remains to show that Z1 is degenerate if and only if Z2 is degenerate, for both

constructions described above. Note that w has the same number of incoming arcs
and incident edges in Z1 as in Z2. Indeed these arcs/edges are the same in both SP-
subgraphs unless w = w∗, in which case the claim follows by comparing Y ∗

1 with e∗.
Note also that (for both constructions), u has the same degree in Z2 as in Z1, unless
u = u∗ and rule (PAS) was applied, in which case u is not the root. It follows that Z2
is degenerate if and only if Z1 is degenerate. ��

We can now prove the following lemma, nwhich we will use to show that exhaus-
tively applying (PAS), (V1), (V2), (V3) in any order results in the same network:

Lemma A.2 Let N1 = N , N2, . . . , Nm be a sequence of networks, m ≥ 2, such that
Ni+1 is derived from Ni by an application of (V1) or (V2) or (V3) or (PAS), for each
i ∈ {1, . . . ,m − 1}, and such that (V1),(V2),(V3) and (PAS) do not apply to Nm. Then

1. For each vertex v of N, v ∈ V (N ) \ V (Nm) if and only if v is an internal vertex
of some non-degenerate SP-subgraph in N;

2. For each u, w ∈ V (Nm), there is a single arc (u, w) ∈ E(Nm) if and only if there
is a non-degenerate SP-subgraph from u to w in N which ends in an arc.

3. For each u, w ∈ V (Nm), there is a single edge (u, w) ∈ E(Nm) if and only if
there is a non-degenerate SP-subgraph from u to w in N which ends in an edge.

4. For each u, w ∈ V (Nm), there are parallel arcs (u, w) ∈ E(Nm) if and only if
there is a minimal degenerate SP-subgraph in N that is a degenerate SP-subgraph
from u to w.

Proof Note that, for any vertex v removed by an application of (PAS) or (V3) on some
nnetwork N ′, v is part of an SP-subgraph Z from u to w in N ′, where u and w are
the parent and child of v respectively. Furthermore Z is non-degenerate (as we do not
apply (PAS) when u is the root).

To prove Statement 1, first suppose that v ∈ V (N )\V (Nm), and let i be the unique
integer for which v ∈ V (Ni ) \ V (Ni+1). Then v was removed by an application of
(PAS) or (V3) on Ni , and so v is part of a non-degenerate SP-subgraph Zi from u
to w in Ni . If i > 1, then by Lemma A.1 there exists a non-degenerate SP-subgraph
Zi−1 from u to w in Ni−1, with V (Zi−1) ⊆ V (Zi ). Thus v is also an internal vertex
of Zi . Repeating this argument, we see that v is an internal vertex of a non-degenerate
SP-subgraph from u to w in N1 = N , as required.

Conversely, suppose that v is an internal vertex of a non-degenerate SP-subgraph
from u to w in N1. Note that Nm has no non-degenerate SP-graphs except for those
subgraphs consisting of a single arc, as otherwise one of (PAS) or (V3) would apply
to Nm . So there exists some largest i ∈ {1, . . . ,m − 1} such that v is an internal
vertex of a non-degenerate SP-subgraph in Ni , but not in Ni+1. Let Zi be such a non-
degenerate subgraph, and suppose Zi is from u to w. Let v∗ be the unique vertex in
V (Ni ) \ V (Ni+). Note that if u = v∗ then v is also part of a non-degenerate SP-graph
from u∗ to w for u∗ the parent of u, and if w = v∗ then v is part of a non-degenerate
SP-subgraph from u to w∗ for w∗ the child of w.
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Thus, we may assume neither u nor w is v∗. So Lemma A.1 implies that Ni+1
also has a non-degenerate SP-graph from u to w, with V (Zi+1) ⊇ V (Zi ) \ {v∗}. As
v cannot be in Zi+1 by choice of i , it follows that v = v∗, and so v /∈ V (Nm), as
required.

We now have that v ∈ V (Nm) if and only if v is not part of a non-degenerate SP-
graph in N (Statement 1). It remains to consider the arcs and edges of Nm (Statements
2-4).

By Lemma A.1, for any u, w ∈ V (Ni+1), there is a non-degenerate SP-subgraph Z
from u to w in Ni+1 if and only if there is a non-degenerate SP-subgraph from u to w

in Ni , for all i ∈ {1, . . . ,m−1}. It follows that there is a non-degenerate SP-subgraph
from u to w in Nm if and only if there is a non-degenerate SP-subgraph from u to
w in N1 = N . But the only non-degenerate SP-subgraphs in Nm are arcs and edges.
Moreover, the SP-subgraph from u to w ends in an incoming arc of w if and only if Z
ends in an incoming arc of w. So Nm has an arc from u to w if Z ends in an arc, and
Nm has an edge between u and w if Z ends in an edge. nThis concludes the proof of
Statements 2 and 3.

Finally, again by Lemma A.1, there is a degenerate SP-subgraph from u tow in Nm

if and only if there is a degenerate SP-subgraph from u to w in N1 = N . Statement
4 now follows since, in Nm the only degenerate nSP-subgraphs are pairs of parallel
arcs. ��
Lemma 3.2. Supp(N ) is well-defined nfor any network N.

Proof Let N1 be the network derived from N by applying a n(BLS) operation to every
blob with at most two incident edge/arcs in N . Note that suppressing one blob does

not affect the other blobs in the network, and so N1 nis well-defined.
Considering the definition of Supp(N ), it remains to show that starting with N1 and

exhaustively applying the operations (PAS), (V1), (V2), (V3) will always result in the
same network.

To see this, let N1, N , N2, . . . , Nm and N ′
1 = N1, N , N ′

2, . . . , N
′
m′ be two

sequences of networks, such that Ni+1 (respectively, N ′
i+1) is derived from Ni (N ′

i )

by an application of (V1) or (V2) or (V3) or (PAS), for each i ∈ {1, . . . ,m − 1}
(i ∈ {1, . . . ,m′ − 1}), and such that (V1),(V2),(V3) and (PAS) do not apply to Nm

(N ′
m′ ). By applying Lemma A.2 to Nm and N ′

m′ , we see that Nm and N ′
m′ have exactly

the same vertices (Statement 1 of Lemma A.2), arcs (Statement 2 of Lemma A.2),
edges (Statement 3 of Lemma A.2) and parallel arcs (Statement 4 of Lemma A.2).
Thus, Nm and N ′

m′ are the same network, and so Supp(N ) is well-defined. ��

Lemma 3.3. Consider a network N on X, leaves a, b ∈ X and a reticulation v with
parents u, w. If v is on a ∧-path in N between a and b, then u is on a ∧-path in N
between a and b.

Proof First suppose that N is a directed network.
Consider any ∧-path W between a and b containing v. It contains at least one

of u and w. If W contains u then the lemma holds. Hence, suppose that W does not
contain u and hence traverses the arc (w, v). Assume without loss of generality that
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Fig. 15 Illustrations for the proof of Lemma 3.3 for the case that N is directed

arc (w, v) is traversed on the part of W directed towards b. Consider any directed
path R from the root of N to u (which exists as N is assumed to be directed).

First suppose that R is disjoint from W . Let r be the vertex of W such that W
consists of directed paths from r to a and b. Then consider a directed path S from the
root to r . Let vSR be the last common vertex of S and R. Then a ∧-path between a
and b containing u can be obtained by following W from a to r , then following S
to vSR , following R to u, following the arc (u, v), and finally followingW from v to b.
See Figure 15 (left) for an example.

Now suppose R intersects W . Let vRW be the last vertex of R that is on W . Then a
∧-path between a and b containing u can be obtained by followingW from a to vRW ,
then following R to u, following the arc (u, v), and finally following W from v to b.
See Figure 15 (right) for an example.

It remains to consider the case that N is semi-directed. Consider any rooting D
of N . If D contains arc (u, v), then u is on a ∧-path in D between a and b by the
first part of the proof (for directed networks). Hence, u is on a ∧-path in N between a
and b.

Otherwise, D contains arcs (ρ, u), (ρ, v). Then, ρ is on a ∧-path in D between a
and b by the first part of the proof. Hence, u is on a ∧-path in N between a and b. ��
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