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Abstract

The present research explores the interaction between macro-finance fundamentals

and the private currency ecosystem, examining their economic effects through both

theoretical modeling and empirical analysis. First, we investigate the relationship

between crypto-currencies, proxied by Bitcoin and Ether, and key macroeconomic

variables such as the United States term spread, Volatility Index (VIX), and

breakeven inflation. Our findings reveal no significant link between crypto-currency

returns and the term spread, suggesting investors do not consider economic cycles

when trading crypto-currencies. However, extreme low VIX values correlate with high

crypto volatility, with upper tail dependence reaching 3.7% to 7.6%. Second, we

develop a one-period theoretical model where government-backed currencies and

crypto-currencies serve as media of exchange for differentiated goods, showing that

while fiat money is neutral, crypto-currencies are non-neutral due to mining costs

and labor reallocation. In other words, cash being costless and crypto-currencies being

costly lead to different equilibrium implications for policy decisions. In a dynamic

model, cash-in-advance constraints lead to non-neutrality of money, with

crypto-currencies introducing additional distortions through transaction fees and

labor shifts. We recommend further research on how extreme events affect the

relationship between crypto-currencies and macroeconomic variables, and propose

exploring the coexistence of central bank digital currencies alongside fiat and

crypto-currencies to better understand their long-term macroeconomic implications.

iii



Access Condition and Agreement 
 
Each deposit in UEA Digital Repository is protected by copyright and other intellectual property rights, 
and duplication or sale of all or part of any of the Data Collections is not permitted, except that material 
may be duplicated by you for your research use or for educational purposes in electronic or print form. 
You must obtain permission from the copyright holder, usually the author, for any other use. Exceptions 
only apply where a deposit may be explicitly provided under a stated licence, such as a Creative 
Commons licence or Open Government licence. 
 
Electronic or print copies may not be offered, whether for sale or otherwise to anyone, unless explicitly 
stated under a Creative Commons or Open Government license. Unauthorised reproduction, editing or 
reformatting for resale purposes is explicitly prohibited (except where approved by the copyright holder 
themselves) and UEA reserves the right to take immediate ‘take down’ action on behalf of the copyright 
and/or rights holder if this Access condition of the UEA Digital Repository is breached. Any material in 
this database has been supplied on the understanding that it is copyright material and that no quotation 
from the material may be published without proper acknowledgement. 
 



Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Acknowledgements 1

Introduction 2

1 Volatility on the Crypto-currency Market: A Copula-GARCH

Approach 5

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Data and Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Data construction methodology . . . . . . . . . . . . . . . . . . 13

1.3.2 Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Model Specification and Results . . . . . . . . . . . . . . . . . . . . . . 17

1.4.1 Theoretical Motivation . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.2 Overview of the Copula Theory . . . . . . . . . . . . . . . . . . 18

1.4.3 Crypto-currency Market and Investors’ Expectation . . . . . . . 20

1.4.4 Crypto-currency Market and Volatility Anticipation . . . . . . . 24

1.4.5 Crypto-currencies and inflation expectation . . . . . . . . . . . 29

1.4.6 Further Interpretation . . . . . . . . . . . . . . . . . . . . . . . 29

1.4.7 Robustness Checks . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.4.7.1 Sub-sample Analysis . . . . . . . . . . . . . . . . . . . 31

1.4.7.2 The CM and the NASDAQ . . . . . . . . . . . . . . . 33

1.4.7.3 Quantile Regression Analysis . . . . . . . . . . . . . . 33

1.4.7.4 Momentum and Microstructure . . . . . . . . . . . . . 36

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

iv



Contents

1.A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.A.1 Supplementary information . . . . . . . . . . . . . . . . . . . . 41

1.A.2 Supplementary information to the modelling section . . . . . . . 41

2 The Transactive Role of Crypto-currencies: A Theoretical

Perspective 51

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.2 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.3 Static Model with Purely Transactive Currencies . . . . . . . . . . . . . 55

2.3.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.3.2 Consumers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.3.2.1 The crypto-less consumer . . . . . . . . . . . . . . . . 56

2.3.2.2 The crypto-user: preferences . . . . . . . . . . . . . . . 58

2.3.2.3 The crypto-user: expenditure problem . . . . . . . . . 59

2.3.2.4 The threshold good . . . . . . . . . . . . . . . . . . . . 62

2.3.2.5 Goods producers: no-arbitrage pricing . . . . . . . . . 62

2.3.2.6 Critical condition for the threshold good . . . . . . . . 62

2.3.3 Production of goods . . . . . . . . . . . . . . . . . . . . . . . . 64

2.3.4 Aggregate expenditures . . . . . . . . . . . . . . . . . . . . . . . 66

2.3.5 The exchange platform . . . . . . . . . . . . . . . . . . . . . . . 67

2.3.6 Crypto-extractors and potential supply . . . . . . . . . . . . . . 69

2.3.7 Aggregate income . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.4 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.4.1 Money and Crypto-currency . . . . . . . . . . . . . . . . . . . . 73

2.4.2 Input markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.4.3 Goods market equilibrium . . . . . . . . . . . . . . . . . . . . . 75

2.5 Solution procedure and numerical results . . . . . . . . . . . . . . . . . 75

2.5.1 Reduced system . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.5.2 Benchmark equilibrium: a numerical illustration . . . . . . . . . 77

2.5.3 Policy shocks: money growth, crypto-currency supply and tax

hike . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.5.4 Population shocks versus crypto-currency access . . . . . . . . . 79

2.5.5 Technology shocks . . . . . . . . . . . . . . . . . . . . . . . . . 80

Kensley Blaise v UEA - School of Economics



Contents

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3 A Dynamic Model of Crypto-currencies 83

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.2 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.3 Model Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.3.1 Cash-in-advance and dynamic budget constraints . . . . . . . . 86

3.3.2 Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.3.3 Exchange platform . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.3.4 Aggregate constraints and equivalence . . . . . . . . . . . . . . 90

3.4 Intertemporal choices and equilibrium notions . . . . . . . . . . . . . . 91

3.4.1 Utility maximizing conditions . . . . . . . . . . . . . . . . . . . 91

3.4.2 Steady-state and BGP equilibria . . . . . . . . . . . . . . . . . 93

3.5 The Neoclassical case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.5.1 Consumption and money non-neutrality . . . . . . . . . . . . . 94

3.5.2 Non-neutralities: money versus crypto . . . . . . . . . . . . . . 95

3.6 The AK case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.6.1 Goods production with spillovers . . . . . . . . . . . . . . . . . 96

3.6.2 Balanced growth equilibrium: general properties . . . . . . . . . 97

3.7 Substitutability and money-crypto interactions . . . . . . . . . . . . . . 99

3.7.1 Intertemporal choices under CES preferences . . . . . . . . . . . 100

3.7.2 Neoclassical steady state with CES preferences . . . . . . . . . . 101

3.7.3 Balanced growth equilibrium with CES preferences . . . . . . . 102

3.8 Complete derivations and shocks . . . . . . . . . . . . . . . . . . . . . 105

3.8.1 Exchange platform: specifics . . . . . . . . . . . . . . . . . . . . 105

3.8.2 Neoclassical steady state: full derivation . . . . . . . . . . . . . 106

3.8.3 Neoclassical steady state: numerical analysis . . . . . . . . . . . 108

3.8.3.1 Neoclassical shock analysis . . . . . . . . . . . . . . . 109

3.8.4 BGP equilbrium: full derivation . . . . . . . . . . . . . . . . . . 110

3.8.5 BGP equilbrium: numerical analysis . . . . . . . . . . . . . . . 113

3.8.6 BGP shock analysis . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Kensley Blaise vi UEA - School of Economics



Contents

Bibliography 118

Kensley Blaise vii UEA - School of Economics



List of Figures

1.1 Daily log-returns on the CM and the yield slope variation . . . . . . . . . . 9

1.2 Plot of the variables in level and their first difference transformations . . . 17

1.3 Graphical representation of four simulated bivariate copula families . . . . . 20

1.4 Dependence representation between the spread and the CM . . . . . . . . . 25

1.5 Dependence representation between the VIX and CM volatility . . . . . . . 28

1.6 Dependence representation between log-returns on the CM, interest rate

spread, the VIX and the 5-year breakeven inflation . . . . . . . . . . . . . 32

1.7 Dependence between log-returns on the CM and the NASDAQ index returns. 34

1.8 Effect of Macro-financial Variables on log-returns on the CM (single regression) 37

1.9 Effect of Macro-financial Variables on log-returns on the CM (Multivariate

regression) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.10 ACF of the interest rate spread, the VIX and the breakeven inflation . . . . 41

1.11 Autocorrelation function of log-returns and change in the interest rate spread 43

1.12 Partial autocorrelation of log-returns and change in the interest rate spread . 44

1.13 Comparison of different distribution assumption for XERI
t innovations . . . 46

1.14 Comparison of different distribution assumption for XSpread
t innovations . . 47

1.15 Dependence representation between the VIX and the CM . . . . . . . . . . 48

1.16 Residuals of the breakeven GARCH(1,1) model . . . . . . . . . . . . . . . 49

1.17 Pseudo-observation of log-returns on the CM and the first difference of the

inflation expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1 Evolution of the key model variables along the BGP . . . . . . . . . . . . . 116

viii



List of Tables

1.1 Summary statistics of the main variables . . . . . . . . . . . . . . . . . . . 15

1.2 Summary of some of the widely used copula families . . . . . . . . . . . . . 19

1.3 ARMA-GARCH estimates of returns on the CM and the treasury yield spread 23

1.4 Estimates of different copula family parameters . . . . . . . . . . . . . . . 24

1.5 CM and VIX copula estimates . . . . . . . . . . . . . . . . . . . . . . . . 27

1.6 CM and inflation expectation copula estimates . . . . . . . . . . . . . . . 30

1.7 ARMAX Model of BTC Returns with Event Dummy . . . . . . . . . . . . . . . . . . 39

1.8 Model comparison for log-returns on the CM and change in interest rate spread. 45

1.9 CM and VIX copula estimates . . . . . . . . . . . . . . . . . . . . . . . . 48

2.1 Exogenous constants and their values . . . . . . . . . . . . . . . . . . . 78

2.2 Benchmark results and policy shock analysis . . . . . . . . . . . . . . . . . 79

2.3 Benchmark results and population shock analysis . . . . . . . . . . . . . . 80

2.4 Benchmark results and technology shock analysis . . . . . . . . . . . . . . 81

3.1 Parameter values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.2 Benchmark results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.3 Shock analysis (10% increase in the money supply). . . . . . . . . . . . 109

3.4 Shock analysis (10% increase in the fee structure). . . . . . . . . . . . . 110

3.5 Shock analysis: 10% decrease in θ. . . . . . . . . . . . . . . . . . . . . . 110

3.6 Parameter values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.7 Benchmark results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.8 Shock Analysis: 10% Increase in the Money Supply . . . . . . . . . . . 114

3.9 Shock Analysis: 10% increase in the fee structure . . . . . . . . . . . . 115

3.10 Shock analysis: 10% decrease in θ. . . . . . . . . . . . . . . . . . . . . . 115

ix



Acknowledgements

This project would not have been possible without the steadfast support of my

supervisors, Andrea Calef, Peter G. Moffatt, and Simone Valente. Throughout this

journey, I have gained valuable technical skills, but more importantly, I have learned

crucial lessons on time management and staying motivated in the face of challenges.

Thank you all for providing me with the space to learn and grow as an intellectual.

I would also like to extend my gratitude to the School for offering me a full

scholarship to study at UEA. It has been one of the most collegial environments I

have ever experienced. I have gained a great deal from both formal and informal

discussions with the faculty. This project has also benefited from numerous

conversations with my fellow PhD colleagues. Thank you all for your friendship and

support.

A special thanks to my family and friends for their unwavering support. I never

felt alone throughout this process, and this achievement is yours as much as it is mine.

I dedicate this thesis to the many brilliant friends and classmates whose lives were

tragically cut short by the January 12th, 2010 earthquake in Haiti.

1



Introduction

The idea of private currencies has been discussed in the literature for at least five

decades (Hayek, 1976). However, the debate, both from academic and policy-making

perspectives, experienced a pause for a relatively long period. On the academic side,

research has primarily focused on currency substitution between competing

economies through the lens of search-theoretic and cash-in-advance frameworks

(Matsuyama et al., 1993; Lucas Jr, 1982). These approaches have provided robust

predictions on the conditions under which one currency becomes more valued than

another in trade settings.

Interests in privately-issued currencies gained prominence with the introduction of

Bitcoin, the first widely successful private currency. Since then, various initiatives have

emerged with different technological designs. In some models, currency growth follows

a deterministic process with an upper bound (Nakamoto, 2008), while in others, such

constraints are less defined. The optimal design of private currencies is a dynamic

research field closely linked to the literature on monetary policy (Chiu and Koeppl,

2017).

Private currencies are often referred to as electronic or digital currencies in the

literature. This designation can be a source of confusion, as the vast majority of

broad money balances in the modern era are also electronic (Barrdear and Kumhof,

2016). One reason cited in the latter for this terminology is the settlement protocol

in the crypto-currency environment, which requires solving algorithmic puzzles. This

distinction is included for clarification but has limited significance for understanding

the rest of the papers. For instance, Chapter 1 focuses on crypto-currencies as

speculative assets and their connection to macroeconomic fundamentals. In Chapters

2 and 3, we provide a stylized and tractable framework for analyzing

crypto-currencies as a means of payment. Moving forward, we will clarify the use of

digital currencies when there is potential ambiguity between broad money supply

and crypto-currencies.

In this research, we address several key questions regarding the fundamental nature

of private currencies:

• What are the macro-financial fundamentals driving returns and volatility on the

2



Introduction

Crypto-currency Market (CM)?

• Can crypto-currencies be valued as a medium of exchange in a competitive

economy?

• What are the policy implications arising from the coexistence of fiat money (cash)

and crypto-currency?

We address the first question in Chapter 1. Our analysis uses Bitcoin (BTC) and

Ethereum (ETH) as representatives of the CM. As of 30 June 2024, these two crypto-

currencies account for approximately 65% of the CM (Cryptocompare, 2024). We

begin by characterizing the nature of the CM as an unregulated and volatile market.

Next, we employ the copula framework to study the co-movement between CM returns,

the U.S. term spread, the Volatility Index (VIX), and breakeven inflation. The copula

method enables us to break down and illustrate the relationships between variables,

particularly during extreme events, by focusing on upper and lower tail dependence.

Furthermore, we perform multiple robustness checks to verify the reliability of our

results. The main insights from Chapter 1 are:

• There is no clear pattern emerges indicating that returns on the CM tend to

cluster around any specific quantile of the U.S. term spread (see Figure 1.4 and

Table 1.4);

• We find evidence that extreme low VIX values (5% quantile) are correlated with

high predicted volatility (90% quantile) in the CM (see Figure 1.5);

• Our analysis reveals that crypto-currencies respond differently to economic

indicators than traditional assets, with significant effects at extreme return

levels, especially post-COVID, warranting further research on extreme events.

Our static model in Chapter 2 addresses question 2. The theoretical framework

begins with the assumption that cash is required to purchase consumption goods,

while a portion of the population opts for an alternative payment method, in this case

crypto-currency. Consumers use crypto-currency to avoid value-added tax on goods

(pecuniary benefit) and to maintain anonymity (non-pecuniary benefit). An innovative

aspect of this chapter is the inclusion of both pecuniary and non-pecuniary factors in

consumer preferences, allowing us to endogenize the stock of goods purchased with

crypto-currencies. We derive several conclusions, outlining the conditions under which

both currencies are valued as media of exchange:

• Our results show three potential outcomes: all goods purchased with money, all

with crypto-currency, or a mix of both, depending on the relative transaction

costs and fees;

Kensley Blaise 3 UEA - School of Economics
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• While fiat money remains neutral, the costly mining of crypto-currencies

introduces non-neutrality, affecting labor allocation and leading to shifts in real

wages and unemployment in the goods production sector.

Our dynamic model in Chapter 3 addresses question 3. We analyze the

coexistence of fiat money and privately-issued currencies in a dynamic model where

all factors of production are compensated in fiat money. This introduces a

cash-in-advance constraint that impacts both consumption and investment, marking

a significant departure from the static model, which lacked capital investment. Using

both neoclassical and endogenous growth frameworks, we derive several key insights

from the model. The key takeaways are as follows:

• Our main result shows that money is neither neutral nor super-neutral, as a

money supply shock raises inflation, reducing consumption growth and affecting

capital and labor allocation, with the impact magnified by the substitutability

between money and crypto-purchased goods.

Our Chapter 1 analysis shows weak links between crypto-currency returns and

traditional economic indicators, suggesting that crypto markets may function

independently and require tailored regulatory and investment approaches. We

suggest using higher-frequency data to better capture CM responses to policy

changes and investigating bubble formation. For the theoretical part, incorporating

both pecuniary and non-pecuniary features into the dynamic framework and

extending the model to include Central Bank Digital Currencies (CBDCs) would

deepen the analysis of interactions between fiat money, crypto-currencies, and

CBDCs, enhancing the current study.

Overall, this thesis consists of three chapters. Chapter 1 provides an empirical

analysis of the CM. Chapter 2 introduces a static model of private currencies, focusing

on the conditions for the coexistence of fiat money and crypto-currencies. Chapter

3 presents a dynamic model to address certain inconsistencies in the static model,

specifically the non-neutrality of cash. Each chapter presents clear research questions

and offers plausible conclusions with policy and academic implications.

Kensley Blaise 4 UEA - School of Economics



Chapter 1

Volatility on the Crypto-currency

Market: A Copula-GARCH

Approach

Abstract

This study analyzes the relationship between crypto-currencies, proxied by a Bitcoin

(BTC) and Ether (ETH) index, and key macroeconomic variables from April 2013 to

May 2024. We focus on US term spread, Volatility Index (VIX), and 5-year

breakeven inflation as predictors. Our findings reveal no significant dependence

between returns and the term spread, suggesting investors do not consider policy

paths or economic cycles when trading crypto-currencies. In contrast, extreme low

VIX values are linked to high Crypto-currency Market (CM) volatility, with upper tail

dependence estimated at 3.7% and 7.6% using Gumbel-Hougaard and Joe copulas,

respectively. Our copula modeling exercise also shows a weak correlation of

crypto-currency returns with breakeven inflation. Robustness checks, including a

sub-sample analysis and variable transformation, confirm these results. We find that

while crypto-currencies exhibit weak links to certain financial fundamentals, they

respond differently to economic indicators compared to traditional assets, showing

increased returns during restrictive monetary policies. The study highlights a need for

further research integrating extreme events with dynamic time series analysis to

better understand these relationships.
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Chapter 1

1.1 Introduction

The crypto-currency’s secondary market rise is a singular case study in the financial

literature. The market has gone from 0 in valuation in January 2010 to more than

2.4 trillion United States Dollar (USD) as of 31 July 2024. The unconventionally

high returns on crypto-currencies is a possible reason for this expansion. Between 1

April 2014 and 31 May 2024, the price of BTC has multiplied by a factor of 574. In

contrast, the highest performing stock in the S&P500, NVIDIA, has seen an increase

of its equity price by a factor of 22. The exceedingly high returns coupled with low

entry barriers have turned crypto-currencies into an attractive class of assets for retail

investors. More recently, the CM activity has also been amplified with an influx of

institutional investments. As a consequence, this nascent market has been subjected

to important scrutiny work from regulators and academics alike.

A major impediment with crypto-currencies is the unstable fluctuation around the

mean returns. The average annual volatility of the BTC, proxied by the standard

deviation of the returns distribution, oscillated around 82% between April 2014 and

May 2024. We evaluated the average annual volatility of the S&P500 at 20% over

the same time period. So, the BTC price is approximately four times more volatile

than the S&P500 index. By traditional standards, the crypto-currency trading is an

extremely high-risk financial activity.

Are there financial and economic drivers to explain price fluctuations on the CM?

A strand of the emerging literature identifies interest rates on government bonds as a

major candidate to explain crypto-currency prices (Karau, 2021; Aboura, 2022). The

same argument is also prevalent in economically inclined newspapers (The

Economist, 2022; Financial Times, 2022). In fact, the reasoning supposes that higher

interest rates on government bonds crowd capital out of the CM. Similarly, low

interest rates on government securities increase both investors’ risk-taking attitude

and the attractiveness of the CM. The latter reasoning is similar to the risk-shifting

mechanism studied in Rajan (2006) and Borio and Zhu (2012). Put differently, the

explanation posits a trade-off between holding crypto-currencies and government

bonds, which is a variation of the classical trade-off in portfolio construction with

risky and risk-free assets.

Our research addresses two levels of inconsistencies in the current literature. On

the one hand, it is likely the interest rate channel identified in the literature arises

from an inadequate interpretation. For instance, Aboura (2022) argues that the

March 2020 interest rate cut in the US was instrumental to the subsequent

crypto-currency bullish run. However, the same period witnessed the inception of

multiple fiscal transfer packages directed to households and small enterprises across

Kensley Blaise 6 UEA - School of Economics



Chapter 1

the globe. Higher household savings, driven in part by the pandemic-related

restrictions, may have instead dictated retail investors’ preference for

crypto-currencies1. On the other hand, a crypto-currency price response to interest

rate change does not lead to clear-cut conclusions. Publications in this area often

report incoherent crypto-currency price reactions, which depends on various policy

set-ups and the country considered for the object of the analysis (Karau, 2021;

Aboura, 2022). Consequently, these contrasts lessen the relevance of these studies in

practical decision-making related to the CM.

Our study re-examines the relationship between price variation in the CM and the

term spread. We focus on the direction and steepness of the yield curve, specifically

the sign and magnitude of the curve’s slope. The slope reflects both intertemporal

changes in interest rates and expectations about market conditions, which form the

basis of the expectations theory. Implicitly, we test whether the direction of the yield

curve is informative for crypto-currency returns. Our analysis provides mild evidence

supporting this hypothesis, suggesting the potential for a further dependence study

that combines the CM with other risky markets. For the extension to risky markets,

we use the VIX as a measure of expected volatility. Similar to the yield curve, the VIX

incorporates uncertainty information about 500 leading firms in the US economy. Our

final bivariate dependence analysis examines the relationship between price variation

in the CM and the US 5-year breakeven inflation rate. As a measure of expected

inflation, the breakeven rate is crucial for understanding how investors align their

decisions with future market conditions. Identifying synchronization or asymmetry in

fluctuations between CM price movements and the variables discussed in this section

could provide a starting point for rationalizing investment decisions in the CM.

We use the copula framework to model the dependence between returns in the

CM and three other variables: the term spread, the VIX, and breakeven inflation.

The copula is a widely recommended approach for studying the dependence between

continuous random variables when the Pearson correlation and related techniques are

insufficient to capture the true dependence structure. Patton (2006) illustrates the

relevance of the copula technique in analyzing cases of asymmetric relationships, such

as between exchange rates. Other econometric applications of the copula method in

finance and economics are also described in Patton (2006). In this paper, our main

objective is to measure the co-movement between price fluctuations in the CM and the

aforementioned variables. The chosen technique also allows for the decomposition and

visualization of dependence between the variables in terms of extreme events, known

as upper and lower tail dependence in the copula literature. For instance, a tendency

1See Dossche et al. (2021) for an overview on household savings increase in the euro area during
the pandemic and the allocation of a sizable part of them to financial investments.
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for extreme low returns in the CM to cluster with extreme low term spread values

would indicate lower tail dependence between the two variables. This scenario could

arise from a flattened yield curve, signaling recessionary periods or an easing monetary

policy stance.

We illustrate the existence of extreme events between log-returns on the CM and

the term spread in a simulation analysis in Figure 1.1. Initially, the two observed series

are plotted against each other. We then extract the mean vector and the covariance

matrix of the series to simulate bivariate normal and Student’s t distributions based

on these estimates. Figure 1.1 shows a clear departure from normality and highlights

extreme events best captured by the bivariate Student’s t distribution. Using the

copula technique, we provide estimates of the magnitude and statistical significance of

these extreme events.

The dataset used in this research covers the period 01 April 2013 to 31 May 2024.

The returns on the CM are proxied by an index aggregating BTC and Ether (ETH).

The market capitalization of these two crypto-currencies represents more than 65%

of the CM for the first quarter of 2024 (Cryptocompare, 2024). Regarding the term

spread, it is computed for the US government bond market. Not only the latter is the

largest of such markets, but also US treasuries are held by investors across the globe.

The reasoning underlying the choice of the VIX and the 5-year breakeven inflation is

also driven by the preeminence of the US financial system. Therefore, the term spread,

the VIX and the breakeven inflation are the best candidates to gauge investors’ possible

trade-off with the CM.

Our first set of results shows no evidence of dependence between the CM and the

government bond market. In particular, there is no revealed pattern for returns on the

CM to cluster with a particular quantile of the interest rate spread. We illustrate this

result through the plot of the marginal distributions of both variables in Figure 1.4.

The low estimates of both the dependence and the tail parameters in Table 1.4 support

the graphical representation of the two variables. So, investors on the CM seem to

give no weigh to expected policy paths and uncertainty about economic cycles in their

decisions related to the CM as measured by the yield curve slope.

The dependence between volatility on the CM and the VIX exhibits a more complex

picture. Conversely, we find evidence that extreme low VIX values (5% quantile) are

correlated with high predicted volatility (90% quantile) on the CM (see Figure 1.5). We

transform the VIX variable (100 minus the VIX) and express this observation in terms

of an upper tail dependence structure, which has an established mathematical formula

in the copula literature. The likelihood of observing the cluster of these extreme

events is estimated at approximately 3.7% and 7.6% for the Gumbel-Hougaard and

Joe copulas, respectively. Given that the VIX is a 1-month ahead estimate, we generate
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Figure 1.1: Daily log-returns on the CM and the yield slope variation
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Notes: This figure assesses the departure from the normality assumption in the log-returns on the CM
and the first difference of the term spread series. Since bivariate normality implies normality of the
margins, we use univariate tests to establish the underlying statistical distribution of the two series.
Formal univariate tests, including Shapiro-Wilk (p-value=0.000), D’Agostino’s (p-value=0.000), and
Jarque-Bera (p-value=0.000), reject the normality assumption at the 1% significance level. Similar
conclusions apply for comparisons between the log-returns on the CM and the other two variables
(available upon request).

a similar CM volatility measure and re-evaluate the tail dependence probability. The

upper tail dependence estimates sit at around 3.6% and 8%. Based on these results,

market participants should expect overlapping between low VIX and high CM volatility

values for 9 or 19 days in a trading calendar year if the Gumbel-Hougaard and Joe

copulas are considered.

We also find non-statistically significant estimates in the copula modeling exercise

between log-returns on the CM and breakeven inflation. Overall, the copula

technique’s results remain consistent in the presence of possible nominal and real

economic drivers of CM prices, specifically the term spread and breakeven inflation

in this analysis.

To ensure the robustness of our findings, we conduct several additional checks
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detailed in subsection 1.4.6. First, we perform a sub-sample analysis covering the

period from 1 January 2020 to 31 May 2024, coinciding with increased institutional

investor participation and greater regulatory recognition of CM activities.

Surprisingly, even within this focused period, we find no evidence of significant

co-movement between returns on the CM, the interest rate spread, and breakeven

inflation. This consistent result suggests that the entry of institutional investors has

not strengthened the linkage between crypto-currencies and broader macroeconomic

variables. Furthermore, similar conclusions emerge when we transform the variables

into weekly frequency to mitigate the potential issue of non-synchronous closing

times, identified as a significant challenge in crypto-currency analyses (Alexander

and Dakos, 2020). Lastly, we investigate the possibility of a stronger linkage between

the CM and the technology sector using the NASDAQ index. However, our

copula-based figure, presented in Figure 1.7, rejects this hypothesis.

Recent literature highlights an increased interconnectedness between

crypto-currencies and macroeconomic fundamentals in the post-COVID era. To

explore this, we use the sub-sample analysis discussed in the previous paragraph.

Then, we fit a linear rolling quantile regression to examine how predictors affect

log-returns at the 0.05 and 0.95 percentiles. Our findings indicate that a 1% increase

in predictors significantly decreases log-returns at the 0.05 quantile, while the effect

is not significant at the median (0.5). At the 0.95 quantile, the effect becomes

positive and significant. Controlling for the two other variables reduces individual

effects, with only the VIX significantly impacting median returns, particularly until

late 2023. This suggests that crypto-currencies, a form of risky assets, respond

differently to economic indicators compared to traditional assets, potentially showing

increased returns during restrictive monetary policies. The unclear post-COVID

conclusion in this paper calls for further research that integrates extreme events with

dynamic time series analysis.

In terms of economic knowledge, we provide evidence that crypto-currencies are

weakly linked to some financial fundamentals, in particular uncertainty information

contained in the interest rate spread and the VIX. Unlike the copula technique, our

simple quantile model uncovers some significant relationship between the dependent

variables and the log-returns on the CM. The high proportion of ties in the interest

rate spread (84%) and the breakeven inflation (94%) is a potential source of problems

for the copula estimates. This issue may undermine the continuity assumption made

by the Sklar’s theorem on the marginal distribution of the mentioned series and affect

the reliability of the copula estimates (see Hofert et al. (2019)).

As explained above, our study finds that crypto-currency returns exhibit limited

dependence with traditional economic indicators such as the term spread, VIX, and
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breakeven inflation. This suggests that CM may operate independently of the broader

financial system, posing unique challenges for risk assessment. Our additional analysis

further reveals that crypto-currency returns are primarily driven by momentum effects

and internal market dynamics, including responses to major crypto-specific events

such as Bitcoin halvings and Ethereum upgrades. Policymakers and investors should

therefore exercise caution, as traditional economic signals may not reliably predict CM

behavior. These findings underscore the importance of tailored regulatory frameworks

and investment strategies informed by internal market dynamics.

The remainder of this work is organized as follows. Section 2 presents the current

state of the financial econometric literature on crypto-currencies as an asset class.

Section 3 gives an overview of the data used in this paper. Section 4 discusses the

estimation of the copula and various robustness check strategies. Finally, section 5

concludes the paper.

1.2 Related Literature

A starting point of this investigation is the literature on rational expectations and

the term structure of interest rates. In particular, our contribution extends the long

standing debate of the linkages between interest rates and risky assets into the CM

literature. This work’s methodology follows the approach in Estrella and Mishkin

(1996) for the spread choice. In terms of early findings, numerous publications argue

the existence of a significant link between the term structure of interest rates and

economic activity (see e.g., Mishkin, 1990; Estrella and Hardouvelis, 1991; Ang et al.,

2006). Work by Zhou (1996) and Boudoukh et al. (1997) also depict an important

relation between interest rates on US government securities and equity returns.

However, other work in the field cast doubt on the predictive power and the use of

the yield slope in predicting future economic trends (see e.g., Shiller et al., 1983;

Campbell and Shiller, 1991). Our analysis applies the copula framework to both the

entire sample and sub-samples of the dataset to detect possible interlinkages between

the spread (the VIX and the breakeven inflation also) and returns on the CM. As a

statistical tool, the copula technique lays out a straightforward approach to test this

relationship while keeping the core theoretical underpinnings of the expectations

theory intact.

This research adds to the empirical literature researching the linkages between

crypto assets, economic policies and the traditional class of financial securities.

Earlier studies have found significant impacts of monetary policy decisions on

crypto-currency price valuations. Focusing on BTC alone, Karau (2021) uncovers a

strong connection between monetary policy stances and the BTC price. Corbet et al.
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(2020) also observe similar links between monetary decisions and crypto-currencies.

On a different approach, but closely related to our analysis, Akyildirim et al. (2020)

pinpoint the existence of a correlation between crypto-currencies and uncertainty on

the stock markets, proxied by implied volatility measures. Our analysis offers an

integrated investigation of the dependence between the CM, the risky and the

risk-free market. Compared to the findings reported in this paragraph, our copula

analysis finds no substantial relationship between the CM, the interest rate spread,

the VIX and the breakeven inflation. The ADL model presents a nuanced picture

with strong and statistically significant effects of the breakeven inflation on the

log-returns on the CM. In a nutshell, these results make a case for the use of

dynamic models (models with lags) in the analysis of crypto prices.

From a broader perspective, our research offers practical insights into price

movements on the CM. A pioneered thinking on this question is from Böhme et al.

(2015), who see the bitcoin money growth model as an inherent cause for the shallow

market issue. Given the widespread use of crypto-currencies for financial trading

purposes, publications on price fluctuations on the CM have expanded largely over

the recent years. Regarding the stylized facts, Zhang et al. (2018) analyze the

returns of 8 leading crypto-currencies and detect the existence of heavy tails, a

pattern towards long memory, and a powerful feature of volatility clustering.

Similarly, Hu et al. (2019) find a significant dissimilarity in the returns distribution

for a sample of over 200 virtual currencies, which would probably indicate some

restraints in generalizing findings for a class of crypto-currencies to the entire CM.

These well-established statistical facts are supported in numerous volatility modeling

publications (see also Bariviera, 2017; Jiang et al., 2018). Our research finds the

existence of persistent conditional volatility on the CM and shared properties with

traditional financial time series. Unlike Böhme et al. (2015), we have not identified

the monetary structure of BTC and ETH to be a driving factor in their price

variations.

There is indeed considerable research examining the relationship between the CM

and traditional market drivers, offering mixed perspectives on their linkage. For

instance, Bouri et al. (2017) suggest BTC may hedge global uncertainty primarily at

shorter investment horizons and under specific market conditions. Similar to our

conclusions, Trabelsi (2018) and Corbet et al. (2018) emphasize limited volatility

spillovers between crypto-currencies and traditional asset classes, proposing

crypto-assets as diversification instruments due to their relative market isolation.

Conversely, Antonakakis et al. (2019) indicate increasing spillover dynamics,

particularly during periods of heightened financial turbulence such as the COVID-19

pandemic, highlighting potential systemic risks. Similarly, Mroua et al. (2024) find
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that Bitcoin’s causal influence on traditional assets varies across volatility regimes,

exerting stronger impacts during turbulent market periods. Meanwhile, Benigno and

Rosa (2023) underscore a striking macroeconomic disconnect, showing that Bitcoin

prices appear largely insensitive to traditional economic news and monetary policy

announcements, complicating its classification as either a macroeconomic hedge or

speculative asset. On a different note, Foley et al. (2019) view BTC primarily as a

vehicle for criminal activities with minimal fundamental economic value. These

findings reflect divergent viewpoints regarding the CM and its primary connections

to broader macroeconomic factors.

1.3 Data and Summary Statistics

1.3.1 Data construction methodology

We obtain statistics on crypto-currencies, the term spread on US government

instruments, and the VIX from FirstRate Data, a trusted service provider, and the

Federal Reserve Bank of Saint Louis respectively. BTC and ETH prices are observed

daily at 5:00 PM, Eastern Time. The Exchange Rate Index (ERI) for the CM is

made up BTC and ETH. As of 30 June 2024, BTC and ETH account for 65% of the

overall market capitalization of the CM (see Cryptocompare, 2024). So, these two

crypto-currencies are representative of the crypto exchange activities2.

Observations for BTC/USD are available from 01 April 2013 to 31 May 2024, while

data for ETH/USD are accessible from 11 March 2016 to 31 May 2024. To compute an

index of the two rates at a given time t, the Dow Jones methodology is implemented

as follows:
PBTC
t +PETH

t

n
, where PBTC

t , PETH
t , and n represent the exchange rate of

BTC, the exchange rate of ETH, and the number of price series, respectively. From

01 April 2013 to 10 March 2016, the ERI is simply equal to the price of BTC in USD.

We later modify the formula to accommodate the introduction of ETH and ensure

no sudden jumps that can affect the copula analysis in the next section. Although

ETH trading activities started in 2015, FirstRate’s series begin in March 2016. Noise

affecting ETH price in the early trading days might explain this choice3. We introduce

a different divisor in the formula to compute the ERI from 11 March 2016 until the

end of the series. The divisor is calculated as the summation of the prices divided by

the previous day’s index
(

PBTC
t +PETH

t

ERIt−1

)
. Instead of dividing by the number of crypto-

currencies, the sum of the two crypto-currency prices is divided by the divisor in the

2Attempting to include the top 10 and 20 crypto-currencies to the index basket has not changed
the results reported later in this analysis.

3Larger service providers, such as Bloomberg, have even shorter time series for ETH. Their dataset
dates back to 2018.
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modified formula ERIt =
PBTC
t +PETH

t

Divisor
4. We subsequently refer to the variation of the

index as the crypto-currency returns or simply XERI
t in the next section.

The study relies primarily on the term spread to offer a comprehensive analysis

of the CM. The spread used in this work is the difference between the interest rates

on the 10-year treasury note and the 3-month treasury bill. Estrella and Mishkin

(1996) provide a thorough empirical analysis of the strength of the interest rate spread

considered here in predicting macroeconomic cycles. More specifically, the conclusion

of their investigation shows a relatively significant long-term prediction capability of

the interest rate spread between the 10-year note and the 3-month bill. We use a

similar motivation to study how price movements on the CM can be approximated by

information contained in the interest rate spread. Mathematically, the yield on a zero-

coupon government bond with a 1 US dollar face value is defined as yt =
[

1
P0(0,t)

] 1
t −1,

with P0(0, t) describing the price of the bond quoted (and purchased) at time 0 and

expiring in t periods. Formally, our spread variable is defined as Spreadt = y10− y0.25.

The empirical section also encompasses two uncertainty and forward measures.

First, the VIX measures the expected volatility regarding the S&P500. Second, the

5-year breakeven inflation gives the market expectation of the average inflation for a

5-year horizon. The co-movement analysis of these variable with returns on the CM

would give us valuable information regarding market participants on the CM.

Overall, the dataset at hand contains 2915 daily observations. The latter are

sampled on business days only. Regarding missing values (0.57% of the total number of

observations), the identified cases are filled up according to the Kalman filter approach.

As opposed to linear interpolation or related techniques, the latter is preferred due to

its ability to replace missing values while preserving the existing trend or seasonal

pattern observed in the series.

In the following sections, we refer to returns on the CM, the first difference of the

term spread or interest rate spread, the VIX, the first difference of the 5-year breakeven

inflation as XERI
t , XSpread

t , XV IX
t and XBreakeven

t , respectively.

1.3.2 Summary Statistics

Table 1.1 reports descriptive statistics of the main variables used in this research. We

compute daily returns on the CM as XERI
t = log

(
ERIt

ERIt−1

)
. Returns on the CM are

left-skewed and characterized by an excess kurtosis. Average returns for the sample

period oscillate around 0.2% for the CM. Note that the daily log-returns distribution

4Plugging the divisor expression into the ERI formula reveals that the index remains constant
on 10 March 2016 and 11 March 2016. However, as we continue to iterate forward to compute the
index, the values begin to change. The divisor effectively prevents the massive jump that would have
occurred if we had used the basic ERI formula.
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range from -53% to 54%. XERI
t range conveys evidence of extreme fluctuations in

crypto-currency trading activities. In contrast, the first difference of the interest rate

spread, denoted XSpread
t = Spreadt−Spreadt−1, has shown less variation. The average

value is close to 0 with a skewness of -0.059. Overall, the spread distribution reflects

the monetary conditions following the Great Financial Crisis, where interest rates

on government securities were relatively low and stable until the recent rise in price

inflation.

Table 1.1: Summary statistics of the main variables

Variable N Mean Std. Dev. Min Max Kurtosis Skewness

XERI
t 2914 0.002 0.051 −0.529 0.535 19.805 −0.670

XSpread
t 2914 -0.000 0.001 −0.003 0.003 6.511 −0.059

XV IX
t 2914 17.712 7.004 9.140 82.690 16.974 2.728

XBreakeven
t 2914 0.000 0.0004 −0.003 0.002 8.561 −0.299

Notes: This table reports basic statistics for log-returns on the CM, change in the spread series, and
the VIX.

The logarithmic of ERI in Figure 1.2 shows an increasing trend throughout the

entire sample. Compared to 01 April 2013, the index was multiplied by more than

500 on 31 May 2024. As evidenced by the top-right panel of Figure 1.2, volatility

clustering has been persistent for the period covered in this research. The two most

sizable volatility bursts in the log-returns of ERI occurred around April and December

2013. The first one emerged from news of liquidity issues faced by two pioneered

crypto exchanges (BitInstant and Mt. Gox) to meet their obligations towards their

investors. As a result, the price of bitcoin nosedived 60% on 11 April 2013 before

realizing a rebound of 32% seven days later. The second corresponded to the warning

issued by the People’s Bank of China on 05 December 2013 against the use of BTC

in financial transactions. BTC price declined by 58% following the announcement

and regained much of its value on 09 December 2013 (52% ). It is worth mentioning

that the introduction of ETH in the sample (purple vertical line) does not lead to any

abnormal change in the fluctuations observed on the CM. The observation also goes

for the vertical red line, which indicates the true inception date of ETH on 30 July

2015.

In the volatility modelling process, the emphasis is on the change in the term

spread series, meaning XSpread
t . In fact, the spread series, the second row of

Figure 1.2, is non-stationary in level 5. So, the change in the spread, which is

stationary, is important for the conditional copula modelling process. The latter uses

the Generalized Autoreregressive Conditional Heteroskedasticity (GARCH)

5See the Autocorrelation Function (ACF) in Figure 1.10 of the appendix for an analysis of each
series’ departure from the stationarity assumption
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modelling framework as an input to compute dependence parameters, making the

stationarity of the margins a critical element. Furthermore, the stationarity of the

margins are important to ensure the application of the copula diagnostic tests

(Hofert et al., 2019). In terms of economic interpretation, XSpread
t captures similar

information as the level series, meaning investors attitude towards future change in

the economy. However, evidence of volatility clustering seems to be less dominant in

XSpread
t in comparison to XERI

t as reported in Figure 1.2. Aside a few episodes of

peaks and drops, fluctuations in XSpread
t are constrained within -0.003% and 0.003%.

Inspecting the logarithmic of ERI and the spread in level shows a divergent trend

between 2014 and 2020. As the spread between long-term and short-term interest

rates was shrinking, crypto-currencies prices increased significantly in value. Yet, this

makes a compelling case for the use of the first difference of the spread series. Successive

reductions of the spread between the two interest rates turn into negative values in

the first difference transformation. The negative signs in XSpread
t will be useful when

studying co-movement with XERI
t . So, the existence of negative values for both XERI

t

and XSpread
t at comparable time periods would be critical for the tail dependence in

the bivariate copula analysis.

The last two variables of Table 1.1 and Figure 1.2 are the VIX and the breakeven

inflation. The most important observation is the synchronization of volatility

movements with returns on the CM around early 2021.
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Figure 1.2: Plot of the variables in level and their first difference transformations
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Notes: This figure presents the four main variables of the study. The red line illustrates the effective
issuance date of ETH (30 July 2015), whereas the purple one corresponds to the introduction period
of ETH in the present sample (11 March 2016).

1.4 Model Specification and Results

1.4.1 Theoretical Motivation

As explained in the introduction, this study is built on the assumption of a trade-off

between crypto-currencies and traditional financial instruments. We start with the

intuition of a possible negative correlation between crypto-currencies and the latter

class of assets. The reasoning underlying the relationship hinges on the expectations

theory. For instance, a positive spread or an upward sloping curve is interpreted as

a signal of future short-term interest rate hikes or economic expansion. We would

expect investors on the CM to capture these signals of possible higher rewards from

the wider financial market and opt for safer assets (bonds). The resulting outflow of

capital from the CM would induce a negative relationship between the two markets.
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Our second focus is on the VIX and breakeven inflation. These two variables

allow us to broaden our analysis of the CM beyond the traditional trade-off between

risky and risk-free assets. Specifically, we examine the co-movement between the CM,

investors’ fear, and expected inflation.

1.4.2 Overview of the Copula Theory

A bivariate copula modelling implies finding parameter estimates for each variable

and the dependence between them. The methodology starts with classical probability

descriptions for continuous random variables. For instance, a 2-dimension random

vector X = (X1
t , X

2
t ) can be defined by its joint Cumulative Distribution Function

(CDF) noted H(x1, x2) = P (X1
t ≤ x1, X2

t ≤ x2) or in terms of the respective margins

F1(x
1) = P (X1

t ≤ x1) and F2(x
2) = P (X2

t ≤ x2).6 The Sklar’s theorem states that

H(x1, x2) can be transformed into a function C, denoted copula, giving information

on both margins and the dependence between the two variables. Formally, Sklar’s

theorem stipulates that:

H(x1, x2) = C(F1(x
1), F2(x

2)), (x1, x2) ∈ R2. (1.1)

A useful transformation involves applying the integral transform theorem on the

component of each margin to make the arguments of H(.) uniformly distributed over

the interval [0, 1]. So, the copula function can now be written in terms of uniform

components as:

C(u1, u2) = P (F1(X
1
t ) ≤ u1, F2(X

2
t ) ≤ u2). (1.2)

Statistical properties underlying the relevance of copula are subject to a relatively

dense literature. One key element of the copula pertains to its role in detecting

complex dependence structure between random variables. For instance, contrary to a

parametric dependence measure such as the Pearson correlation that is restricted to

two variables (which should be linearly linked), copula can be generalized for any

k-dimension vector of random variables. Hence, a k-dimension copula will simple be

written as

C(x1, x2..., xk) = (F1(x
1), F2(x

2), ..., Fk(x
k)), (1.3)

which is a mapping of [0, 1]k → [0, 1].

So far, the account presented in this segment touches upon a basic definition of

the copula framework. However, numerous variants of copulas have been developed

6The mathematical notation in this section and the following ones are based on Nelsen (2003),
Mikosch (2006) and Hofert et al. (2019).
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in the recent literature. Table 1.2 presents the main copula families encounter in

empirical work in finance.7 The level of the θ parameter controls the dependence

between the random variables at hand. In fact, a crucial difference among families of

copulas lie in the notion of tail dependence. The latter is a conditional probability

that measures the likelihood of both X1 and X2 facing an extreme event (or lie

above/below a certain quantile denote q). After setting up a given quantile, the lower

(τL) and upper tail (τU) are given by

τL = limq→0+ P [(X
1
t<F

−1
1 (q)|X2

t<F
−1
2 (q)] = limq→0+

C(q,q)
q

τU = limq→1− P [(X
1
t>F

−1
1 (q)|X2

t>F
−1
2 (q)] = limq→0+

1−2q+C(q,q)
q

.

Table 1.2: Summary of some of the widely used copula families

Type Parameter (θ) C(u1, u2) τL τU

Normal [-1,1] Nθ(ϕ
−1(u1), ϕ

−1(u2)) 0 0

Student’s t [-1,1] tθ,v (t
−1
v (u1), t

−1
v (u2)) 2tv+1(w) 2tv+1(w)

Clayton (0,∞) (u−θ1 + u−θ2 − 1)
−1
θ 2

−1
θ 0

Frank (0,∞) 1
θ log

[
1 + (e−θu1−1)(e−θu2−1)

e−θ−1

]
0 0

Gumbel-Hougaard [1,∞) exp

[
−
(
(log u1)

θ + (log u2)
θ
)1

θ

]
0 2− 2

1
θ

Joe [1,∞) 1−
[
(1− u1)

θ + (1− u2)
θ − (1− u1)

θ (1− u2)
θ
]1
θ

0 2− 2
1
θ

Notes: In-depth explanation is provided in McNeil et al. (2015) and the references in the theoretical
section. The tail dependence of the Student’s t is obtained as the CDF of a univariate distribution

with v + 1 degrees of freedom, with w = −
√
v+1

√
1−ρ√

1+ρ
. ϕ and N are denoted CDF of a univariate

standard normal distribution and CDF of a bivariate normal distribution, respectively.

Unconditional and conditional estimations of copula parameters are conducted in

section 1.4. The choice of the suitable copula technique is supported by a mix of

graphical and goodness-of-fit tests. For illustration purposes, four copula

representations are generated in Figure 1.3. The Frank, the Clayton and the

Gumbel-Hougaard replicate the graphical pattern in table Table 1.2 in terms of tail

dependence (concentration of observations either near the point (0, 0) or (1, 1), which

are situations of lower and upper tail dependence respectively). Thus, a graphical

analysis contains a paramount role in copula evaluation.

7Elliptical copulas (Normal and Student’s t) and Archimedian copulas (Clayton, Gumbel, Joe
and Frank) are among the most used in financial studies. McNeil et al. (2015) and Hofert et al.
(2019) explore in great detail other techniques, such as copulas related to the extreme value theorem.
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Figure 1.3: Graphical representation of four simulated bivariate copula families
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Notes: Each figure is generated with a sample size of 1200. The θ parameter is arbitrarily set to 5
for Frank, 4 for Clayton and 2 for Gumbel-Hougaard.

1.4.3 Crypto-currency Market and Investors’ Expectation

Similar to any classical estimation framework, working with copulas involves

estimating the parameter θ reported in Table 1.2 and identifying the best copula

class to model the joint distribution of the variables in question. In the context of

financial time series, an important step is to remove characteristics inherent to each

variable to obtain an unbiased dependence measure. The most evident characteristic

is the serial dependence that often exists in financial time series. The preferred

approach in the literature is to assume an ARMA-GARCH process for each variable

and extract the standardized residuals for the analysis of the dependence structure.

This approach aligns with a fundamental aspect of copula theory, which is that the

dependence between random variables is unaffected by their marginal distributions

(invariance property of copula).

Estimates for the bivariate copula in this paper are computed in two steps. The

first step entails formulating a stochastic process driving the conditional returns and

variance of the log-returns on the CM as well as the interest rate spread. In the second

step, the standardized residuals from step 1 are used to estimate the dependence

between the two variables. The conditional copula specification for returns on the
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CM and the change in the spread involves a simple mathematical twist with regard to

the case in the previous section known as unconditional copula. Again, using Hofert

et al. (2019) notations, the conditional joint distribution, HGt−1(.), between X
ERI
t and

XSpread
t is given by:

HGt−1(x
ERI , xSpread) = P (XERI

t ≤ xERI , XSpread
t ≤ xSpread|Gt−1), (x

ERI , xSpread) ∈ R2.

(1.4)

In this set up, Gt−1 is the information available at t−1 regarding XERI
t and XSpread

t

and their underlying dependence structure. xERI and xSpread are an observation of the

log-returns on the CM and the interest rate spread for a given date. Again, Sklar’s

theorem allows to write the joint conditional distribution to be formulated in terms of

conditional copula as (see Equation 1.1)

HGt−1(x
ERI , xSpread) = CGt−1(FGt−1,ERI

, (xERI), FGt−1,Spread
, (xSpread)). (1.5)

We obtain the standardized residuals for each variable from an

ARMA(0,0)-GARCH(1,1) process with no mean. subsection 1.A.2 explains the

autoregressive order followed in the specification below for the two random variables:

XERI
t = ϵERI

t (1.6)

(δERI
t )2 = ω + α1(ϵ

ERI
t−1 )

2 + β1(δ
ERI
t−1 )2

ϵ1t = δERI
t eERI

t

eERI
t

iid∼ tv

XSpread
t = ϵSpreadt (1.7)

(δSpreadt )2 = ω + α1(ϵ
Spread
t−1 )2 + β1(δ

Spread
t−1 )2

ϵSpreadt = δSpreadt eSpreadt

eSpreadt
iid∼ GED(κ),

Where ϵERI
t is the innovation or shock driving XERI

t . (δERI
t )2 defines the

conditional variance at time t. Finally, eERI
t is the standardized residuals that is

student’s t distributed in the case of the first expression. The same description

applies for Equation 1.7, with the exception that eSpreadt follows a Generalized Error

Distribution (GED). subsection 1.A.2 offers an overview on the fitness of the two

equations with alternative modelling choice of eERI
t and eSpreadt .
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Parameters of equations 6 and 7 are estimated from the joint density function of

H(.) using the MLE. The likelihood notation takes the form of a joint density product

of the marginal densities and the copula density as follows:

f(X; Ω, ψ) = f1(X
ERI
t ; Ω1)f2(X

Spread
t ; Ω2)c(u

ERI , uSpread;ψ). (1.8)

We apply the two-stage approach by first estimating all margin parameters in Ω1

and Ω2. The vector of copula parameters (ψ) are again computed via the MLE in the

second stage. These two steps are visible from the log likelihood of the joint density,

where the sum of the marginal log likelihoods and the copula log likelihood form the

first and the second stage respectively. The log-likelihood expression is written as

Lf(Ω, ψ;X) = lnf1(X
ERI
t ; Ω1) + lnf2(X

Spread
t ; Ω2) + lnc(uERI , uSpread;ψ). (1.9)

Note the expressions 2 and 9 write the copula function in terms of the uniform

margins u. This transformation is crucial to the estimation of the copula parameters.

As explained above, the process requires extracting the standardized residuals of the

ARMA-GARCH processes and apply the integral transform theorem in order to obtain

the uniform margins from the empirical distribution of the residuals. In this paper,

we follow the recommendation in Hofert et al. (2019), where the uniform margins in

the copula density are estimated by:

U i
t =

1

n+ 1
(Ri

t), (1.10)

with Ri
t, the rank of a residual observation in the dataset and i a given variable. The

position or the rank is determined by the time index t. The U i
t sample is known as

pseudo-observations in the literature.

Estimates of the marginal series show significant volatility persistence with the sum

of α1 and β1 being close to 1 as reported in Table 1.3. The persistence is, however,

much higher in the case of the CM, which unequivocally subscribes to the description

of volatility clustering. According to the half-life calculation, it takes 693 days for

the conditional variance to revert to 50% of its long term level following a shock on

the CM. The half-life estimate is around 22 days for the interest rate spread. From

an investment perspective, crypto-currencies as an asset class would require active

risk management strategies to hedge against risks spanning over many years. The

estimates for the degrees of freedom (v) and the shape parameter (κ) fall within the

range expected. Both cases highlight that the standard residuals obtained from the

two GARCH equations have heavier tails than the standard normal distribution.

Table 1.4 reports the dependence parameter estimates for a set of copula families
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widely used in empirical finance. None of the estimates is statistically significant at the

conventional significance levels. The relatively large degree of freedom (32) is evidence

that a normal copula would be preferred to the student’s t family in the context of this

study. The low value of the dependence parameter for the different copula families

indicates weak dependence between fluctuations on the CM and the term structure.

The computed tail probabilities are approximately zero for the different copula types.

So, observed extreme events on the two markets are likely to be unrelated.

Table 1.3: ARMA-GARCH estimates of returns on the CM and the treasury yield spread

XERI
t XSpread

t

GARCH(1,1) GARCH(1,1)

ω 6.5×10−6∗∗∗ 0.000
(0.000) 0.000

α1 0.142∗∗∗ 0.067∗∗∗

(0.000) (0.014)

β1 0.857∗∗∗ 0.903∗∗∗

(0.020) (0.015)

v 3.056∗∗∗

(0.159)

κ 1.509∗∗∗

(0.000)

Log. Likelihood 5294.387 18171.69
BIC -3.6228 -12.461
N. obs. 2914 2914

Note: In this table, v and κ are estimates of
the degrees of freedom and the shape parameter
in a GARCH model with student’s t and GED
innovations respectively. In parenthesis are the
standard errors of the estimates.

***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level

We plot the uniform transformed components of the standardized residual series in

Figure 1.4. In accordance with the copula estimates, no clear dependence pattern is

observable between the CM and the US government bond market. The graph rather

illustrates the case of an independence copula. In theory, a clayton parameter estimate

oscillating around zero or a gumbel parameter around 1 is a sign of independence

copula. We formally test the null hypothesis that the relation between the two markets

is no different from an independence copula structure 8. Unsurprisingly, we find no

evidence against the null hypothesis (p-value=0.932). To ensure the result of this

8This test evaluates whether the Kendall’s rank correlation is statistically different from zero or
not. The correlation level is 0.001, which is not different from zero according to the test. As a side
note, this test is possible because rank-based correlation parameter can be written as a function of
the underlying copula between the two variables.
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Table 1.4: Estimates of different copula family parameters

Normal Student’s t Clayton Frank Gumbel-Hougaard Joe

θ 0.004 0.004 0.031 0.038 1.001∗∗∗ 1.003∗∗∗

(0.018) (0.019) (0.019) (0.11) (0.011) (0.016)

τL 2.267×10−6 1.472×10−10∗∗∗

( 5.281×10−6) (2.87×10−12)

τU 2.267×10−6 2.065×10−8∗∗∗ 2.065×10−8

(5.281×10−6) (2.251×10−10) (9.313×10−7)

Deg. of freedom 32∗∗∗

(0.000)

Log. Likelihood 0.01847 1.321 1.33 0.058 -1.626×10−6 -1.631×10−6

AIC -1.963 -5.359 -1.34 -1.884 -4 -4

N. obs. 2914 2914 2914 2914 2914 2914

Notes: In the spirit of Table 1.2, the statistical significance of the Joe and Gumbel-Hungaard is
tested as H0 : θ = 1 and H1 : θ > 1. The standard errors for the tail probabilities, in parenthesis,
are computed with the delta method, since the latter is a transformation of θ.

***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level .

analysis is not a mere consequence of the copula specification, we test for the existence

of a time-varying dependence structure using Bücher et al. (2014)’s method. The

latter accounts for deviations in the dependence parameter due to the changing nature

of the dependence between the two margins or abrupt structural breaks in the two

series. We find strong evidence against a time-varying copula (p-value = 0.847). This

first set of results is indeed a robust illustration of the independence nature of the two

markets modelled through the bivariate copula, which is the antipode of the rational

expectation theory. In the sense that the slope of the yield curve for the selected

maturities is not relevant in explaining fluctuations on the CM. We will later go back

to the dynamic nature of the analysis and robustness considerations.

1.4.4 Crypto-currency Market and Volatility Anticipation

We shift our attention to study the link between expected volatility on traditional risky

markets and price fluctuations on the CM in this section. The GARCH-based estimate

of the crypto price volatility is used for the CM. As explained in the introduction, the

S&P 500 is our proxy for the overall stock market. As such, we use the VIX to

measure expected volatility regarding the global stock market. The VIX is often seen

in the literature as a proxy for investors’ sentiment and uncertainty about the future

state of the equity market (see Bekaert et al., 2013). So, the existence of a significant

dependence between the VIX and the volatility on the CM would help pinpoint possible

fundamentals driving crypto-currency price movements.

Unlike Bekaert et al. (2013) that breaks the VIX down into an uncertainty and a
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Figure 1.4: Dependence representation between the spread and the CM
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Notes: This figure presents the residuals extracted from equations 6 and 7. The residuals are
transformed to be distributed between 0 and 1 (Pseudo-observations). To operate the transformation,
we use the rescaled empirical distribution function approach. Hofert et al. (2019) gives a detailed
explanation of this technique.

risk-aversion component, the estimations below use raw values of the VIX as

downloaded from the Federal reserve Bank of Saint-Louis. Our interest is simply the

VIX component in level. In other terms, we want to appraise how volatility on both

markets relates to each other. A primary investigation shows that high volatility on

the CM tends to synchronize with low volatility expectations on the S&P 500 (See

top-left panel of Figure 1.5). To better capture the latter observation and compute a

tail dependence probability, we reverse the distribution of the VIX by subtracting the

index from 100. The synchronization is now translated into an upper tail dependence

representation, which is computed in the last column of Table 1.5 and visible in the

top-right panel of Figure 1.5.

The observed overlap between high volatility in the CM and low levels of the VIX

reflects a pattern well-documented in the systemic risk literature. For instance, Borio

and Drehmann (2009) argue that periods of low volatility, especially in conventional
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risk measures such as the VIX, can be misleading. These phases of subdued volatility

often coincide with excessive risk-taking behaviours, including increased leverage. In

their analysis, they refer to this phenomenon as the “instability paradox.” In this

context, low volatility does not truly reflect a low-risk environment, but rather a state

of complacency that precedes financial instability (Borio and Drehmann, 2009).

In our analysis, the presence of high volatility on the CM during times of

relatively low VIX levels can be interpreted as a reflection of disintermediation,

where investors, in pursuit of speculative gains, reallocate funds from

crypto-currencies into more traditional equity markets. The outflow of capital to

equities can accelerate the sell-off in crypto-currencies and amplify daily realized

volatility in the CM. In turn, the transferred funds may be used to support leveraged

positions or other risk-enhancing strategies in the equity market. Within the

framework developed by Borio and Drehmann (2009), the VIX fails to capture such

dynamics, as it functions as a contemporaneous indicator of financial distress and

lacks forward-looking capacity. This narrative aligns with the broader argument that

financial instability often builds during periods of apparent calm, when standard risk

measures fail to capture the accumulation of leverage, liquidity mismatches, and tail

risks across the system.

This interpretation supports the view of the CM not as an isolated phenomenon,

but as increasingly interconnected with the broader financial cycle, albeit with

distinct dynamics such as a greater impact of microstructure factors in exchange rate

determination.

We present semiparametric copula estimates for the equity market and the CM

in Table 1.5. In the previous section, we conduct the dependence estimation work

using the residuals of the GARCH processes. We used the residuals to account for the

volatility clustering feature of the returns series in the copula parameter estimation. In

this section, we directly generate the pseudo-observations (with Equation 1.10) using

the values of the VIX in level and the GARCH-based predicted volatility from equation

6. Then, the copula dependence parameters are estimated between the two variables

via the MLE 9. In line with the previous results, the dependence parameter estimates

are relatively low for the different copula families. Nonetheless, unlike results presented

in the previous section, the tail dependence probability is non-negligible (3.7%) for the

9A semiparametric estimate avoids the steps of specifying a GARCH structure for the VIX. In
the present analysis, the semiparametric choice does not alter the conclusion if we were to estimates
the dependence coefficients parametrically (see Figure 1.15). In addition to the simplicity of the
semiparametric approach, the GARCH estimates for a VIX series would be hard to make sense of as
opposed to price series where the mean and variance equations have meaningful financial implications.
In Figure 1.15, we provide proof that a fully parametric set up, similar to the previous section, would
not change the conclusion of mild dependence structure found between the two random variables.
The GARCH process is estimated using the first difference of the VIX variable.
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Gumbel-Hougaard and the Joe copulae (7.6 %). So, if a trader were to combine the

ERI and the S&P 500 index, she should expect the volatility on each market to go in

different directions every 27 days with the Gumbel-Hougaard and every 13 days with

the Joe. However, judging from the AIC, the Gumbel-Hougaard offers a better fit than

the Joe Copula and would therefore be a stronger statistical framework to study the

relationship between the variables (with the student’s t copula being the best model).

Table 1.5: CM and VIX copula estimates

Normal Student’s t Clayton Frank Gumbel-Hougaard Joe

θ 0.024 0.062∗∗∗ 0.016 0.084 1.028∗∗∗ 1.059 ∗∗∗

(0.018) 0.019 ( 0.025) (0.113) (0.013 ) (0.019)

τL 5.325×10−15 8.723×10−19∗∗∗

(1.23×10−9) (1.887×10−20)

τU 5.325×10−15 0.037∗∗∗ 0.076∗∗∗

(1.23×10−9) (0.009) (0.001)

Deg. of freedom 91

( 0.000)

Log. Likelihood 0.827 1.052 -3.886 0.2913 3.708 7.572
AIC -0.345 -5.8951 -11.771 -1.417 3.417 8.013

N. obs. 2914 2914 2914 2914 2914 2914

Notes: This table presents estimates of some of the widely used copulas. In parentheses are standard
errors of the estimates. In the spirit of Table 1.2, the statistical significance of the Joe and Gumbel-
Hungaard is tested as H0 : θ = 1 and H1 : θ > 1. The standard errors for the tail probabilities
are computed with the delta method. The MLE failed to estimate the dependence parameter in
the Clayton case. We instead estimate the parameter via the method-of-moment (Spearman’s rho).
Hofert et al. (2019) gives a detailed explanation of this technique.
***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level

The pseudo-observations of the two variables are plotted in Figure 1.5. As explained

above, the first column gives a representation of the VIX along with the volatility

on the CM. The second column, labelled as transformed series, flips the cluster of

observations near the point (0, 1) to the point (1,1). So, the Gumbel-Hougaard and

the Joe upper tail dependence probabilities output the odds of having this cluster of

points.

We also display a representation of the VIX along with a GARCH-based forward

volatility estimate for the CM in the bottom panels of Figure 1.5. Given the VIX

is a forward-looking variable, investors’ forward volatility expectation for the CM

may show a stronger response to change in the VIX than the instantaneous volatility

analysis conducted in the previous paragraphs. The forward volatility, computed as
1
22

∑22
k=1 σt+k, is a rolling ahead moving average over 22 trading days (or one calendar

month), with k being the one period ahead index. In terms of level, the new dependence

parameter estimate is close to the results of Table 1.5. We find no major difference
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in the likelihood of observing joint extreme movements on both markets. The tail

dependence probabilities are now 3.6% and 8% for the Gumbel-Hougaard and the Joe

techniques respectively (see Table 1.9 in the appendix).

Figure 1.5: Dependence representation between the VIX and CM volatility
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Notes: This figure presents the VIX and the volatility on the CM. The first row gives the VIX
and the predicted volatility at time t. The second row is gives the VIX and the forward predicted
volatility over 22 trading days. The values are transformed to be distributed over the interval 0 and
1. The original series plot the pseudo-observations with no transformation. However, the plots with
the transformed series come from subtracting 100 from the VIX.

The dependence observed in this section, though modest, highlights that the CM

and the global stock market may value expected uncertainty differently, leading to

distinct price reactions. Drawing on the leverage effect, which suggests a negative

correlation between volatility and returns, one explanation could be that anticipated

low volatility in the S&P 500 boosts expected future returns, making the market more

attractive and driving capital inflows. In this scenario, risk-averse investors might

favor the S&P 500 over the riskier CM, reducing transaction activity on the CM and
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increasing its price fluctuations. This outcome exemplifies the risk-shifting mechanism

and its impact on returns distribution in the CM.

1.4.5 Crypto-currencies and inflation expectation

The conclusion reported in subsection 1.4.3 would be similar if interest rates on

Treasury Inflation-Protected Securities (TIPS) were to be used rather than nominal

ones. In fact, it is theoretically sound to assume investors care about real earnings

and this fact should reflect in the dependence between the returns on the CM with

interest rates on TIPS depending on the state of the inflation expectation (high or

low). However, previous studies found no significant evidence for investors to hold

more inflation-protected financial instruments when inflation expectations are high

(Shiller, 2015; Fleckenstein et al., 2014). We observe similar patterns in the

dependence structure between crypto-currency price movements and the 5-year US

breakeven inflation.

In the conditional copula framework, we model the breakeven inflation (first

difference) as an ARMA(0,0)-GARCH(1,1) with GED residuals. Model checking and

justifications for this GARCH order can be found in Figure 1.16. The copula

estimates are reported in Table 1.6 and the scatter plot of the marginal distribution

in Figure 1.17 of the appendix. Estimates of the copula and the tail dependence

parameters are low and statistically not significant. The graph of the

uniform-transformed margins shows no sign of tail dependence or relationship

between the two variables. Bücher et al. (2014)’s test for time-varying copula

provides weak evidence against a constant conditional copula model

(p-value=0.0504). Therefore, the results obtained in this section might be a

consequence of time-varying changes in the underlying dependence structure between

the two variables. Given the weak evidence against the suitability of the bivariate

constant copula, we keep the results and further explore the changing relationship

between the two variables in the context of a simple linear quantile regression in the

next section.

1.4.6 Further Interpretation

Contrary to insights popularized in business and financial magazines, the results of this

research fall short of establishing a significant correlation between the crypto-currency

market and the spread on the US government bonds 10. We also find mild evidence

linking the volatility on the CM with the expected volatility on the S&P500 index,

10This analysis by The Economist (2022) is one of these news articles explaining the April 2022
price drop by the rising interest rate on US government debt instruments.
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Table 1.6: CM and inflation expectation copula estimates

Normal Student’s t Clayton Frank Gumbel-Hougaard Joe

θ 0.044 0.043 0.072 0.226 1.008 1.001
( 0.018) (0.019) (0.02) (0.111) (0.011) ( 0.013)

τL 4.349×10−7 6.831×10−5

( 0.017) (1.384×10−6)

τU 4.349×10−7 0.011 2.746×10−10

( 0.017) (0.000) (2.709×10−10)

Deg. of freedom 39∗

( 16.62)

Log. Likelihood 2.829 3.756 7.244 2.05 0.321 -1.669×10−7

AIC 3.657 1.512 10.488 2.099 -3.358 -4

N. obs. 2914 2914 2914 2914 2914 2914

Notes: This table presents estimates of some of the widely used copulas. In parentheses are standard
errors of the estimates. In the spirit of Table 1.2, the statistical significance of the Joe and Gumbel-
Hungaard is tested as H0 : θ = 1 and H1 : θ > 1. The standard errors for the tail probabilities
are computed with the delta method. The MLE failed to estimate the dependence parameter in the
Frank case. We instead estimate the parameter via the method-of-moment. Hofert et al. (2019) gives
a detailed explanation on the use of this technique.
***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level

which is in a stark contrast with a similar study conducted by Akyildirim et al. (2020).

The same weak evidence is also reported in the context of the breakeven inflation. This

lack of connection would suggest that investors on the CM give little weigh to the slope

of the yield curve, the VIX indicator and the expected inflation in their investment

decisions. However, the first two variables are traditionally seen as strong predictors of

change in financial conditions and business cycles (see e.g., Estrella and Mishkin, 1996).

Therefore, movements in the slope of the yield curve and the VIX contain valuable

economic information for portfolio construction and investment decisions related to

the mainstream markets. So, it is crucial to pinpoint elements that can explain the

results found in the context of the CM analysis.

Sticky updating about future uncertainty may play a role in the weak dependence

between the CM and the stock market (see e.g., Lochstoer and Muir, 2022). This

would be a result of investors taking time to incorporate new information regarding

future uncertainty from the S&P 500 into their crypto-currency investment decisions.

In this setting, models that can account for the lag in the response of the CM to the

volatility forecast of the S&P500 would be more insightful than the copula framework.

Moreover, investors may value idiosyncratic risks more than a broad indicator like the

VIX. This would, for instance, express in CM participants having a stronger reaction to

change in crypto-currency regulations than broader uncertainty information hidden in

the VIX, such as changes in the monetary policy stance or gloomy economic forecasts.
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Significant inter-temporal variation of the interconnectedness between the CM and

the other markets may also explain the weak variation reported in section 1.4. In a

recent paper, Iyer (2022) reports a deeper connexion between crypto-currencies and

the US stock market following the COVID-19 shock. The author finds a pearson

correlation of 0.01 and 0.36 for the sub-periods 2017-2019 and 2020-2021 respectively.

This implies that long time series can hide or offset recent correlational developments

between the CM and other markets. In our analysis, we indirectly control for this

issue by using the test for point detection. The point detection (stationarity) test has

the advantage of identifying structural breaks that affect the margins and the copula

parameter. As reported in section 1.4, we found no clear evidence of non-stationarity

for the four core variables. So, it is unlikely that the weak dependence estimates

computed for the log-returns on the CM and the other variables are sample-dependent.

1.4.7 Robustness Checks

In this subsection, we conduct robustness checks using a sub-sample analysis

(2020–2024). The latter confirms a weak relationship between CM and

macroeconomic indicators despite increased institutional interests. We further

address statistical issues by using weekly observations. The findings with the lower

frequency data go in the same direction. Additionally, we examine the NASDAQ to

test potential CM connections with the technology sector, but find no significant

link. Lastly, a quantile regression analysis shows that CM returns respond uniquely

to macroeconomic variables, highlighting the need for future research into

momentum and internal market dynamics.

1.4.7.1 Sub-sample Analysis

We extend the analysis to address statistical issues that could impact the observed

interconnectedness between the CM and other markets. Challenges with

crypto-currency data, such as non-synchronous closing times and early trading noise,

are considered (Alexander and Dakos, 2020) . To mitigate these issues, we focus on a

sub-sample from 1 January 2020 to 31 May 2024, aligning with the period analyzed

in Iyer (2022) to facilitate comparison. Additionally, we use weekly returns to reduce

the potential impact of non-synchronous closing times, enabling a more accurate

assessment of price variations in the CM.

The pseudo-observations plotted below are generated from the standardized

residuals of a GARCH process. For simplicity, we estimate a GARCH of the same

order as the previous sections and maintain the same distributional assumption on

the standardized residuals. Figure 1.6 shows no deviations from our previous
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conclusions, both for the daily and weekly observations. Summing up, recent periods,

meaning post-covid era, characterized by a growing public oversight over crypto

trading activities does not rule out the weak relationship found in the whole sample

between crypto-currency returns and the slope of the yield curve. It is important to

note that the period in question also corresponds to the advent of smart money into

the crypto-currency investment sphere 11. It would be natural to expect economic

indicators such as the slope of the yield curve to be correlated with crypto-currency

prices over this period. This deduction stems form the fact that institutional

investments ought to follow some technical rules and be aligned with market

conditions. Otherwise, rationalizing crypto-currency investments decisions would be

a difficult task. So, there is an imperative obligation to shed light on why

crypto-currency prices seem to be detached from market indicators derived from the

state of the world’s economy.

Figure 1.6: Dependence representation between log-returns on the CM, interest rate spread,
the VIX and the 5-year breakeven inflation
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Notes:

11See Fidelity (2021) for an overview on institutional investors on the CM.
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The non-dependence relationship for the period 2020-2024 is in stark contrast

with a growing literature linking the CM with macro-financial variables over this

time span. Iyer (2022), cited above, is among the researchers reporting a significant

economic nexus. However, her exercise gives little context on the choice of this

specific window to conduct the analysis. There is also a weak discussion on the

macroeconomic fundamentals driving this uptick in the correlation between the two

variables. In the subsequent paragraphs, we estimate a simple rolling quantile

regression to shed light on a possible time-varying interconnectedness between the

CM and the other variables retained in this analysis.

1.4.7.2 The CM and the NASDAQ

We now turn our attention to the NASDAQ, given its proximity to CM activities

through the technology sector. The empirical strategy mirrors that of the preceding

analyses in this chapter. The rationale for including the NASDAQ in the robustness

check lies in the direct exposure of several NASDAQ-listed companies – such as

Coinbase Global Inc., Marathon Digital Holdings, Riot Platforms, Cipher Mining,

BTCS Inc., and MicroStrategy Incorporated – to the CM. Identifying whether this

specific market segment serves as the primary channel connecting the CM to

traditional asset classes is crucial. For clarity, we plot the marginal distributions of

the standardized residuals from a GARCH(1,1) model with student’s t-distributed

errors in Figure 1.7. The lack of strong correlation evident in both tails of the

distribution suggests that the NASDAQ does not constitute a distinct pathway

through which the CM interacts significantly with the broader macroeconomic

environment.

1.4.7.3 Quantile Regression Analysis

Our final robustness check involves estimating a linear rolling quantile regression

model. The motivation in this exercise is twofold. First, it gives us the possibility to

test the existence of changing relationship between the variables over time in the

sense that there are significant economic and statistical effects of policy variables on

the CM log-returns. Second, it allows a final test regarding the suitability of the

Archimedean and Elliptical copula structures to explain the problem at hand. Since

the copula theory revolves around the idea of extreme events, we take the same

approach to the quantile regression to report results for the 0.05 and 0.95 quantiles.

We also plot the slope coefficient of the predictor variables at the 0.5 quantile

(median) for comparison. For a better appraisal, we report the slope coefficients as a

set of plots.
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Figure 1.7: Dependence between log-returns on the CM and the NASDAQ index returns.
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Notes: The figure is a scatterplot of pseudo-observations derived from the standardized residuals
of GARCH(1,1) models with Student’s t-distributed errors, fitted to the return series of a crypto-
currency index (ERI) and the NASDAQ index, using a sample of 2,798 daily observations spanning
the period from April 2, 2013 to May 10, 2024.

The rolling regression takes the form

QXERI
t

(τ | Xt) = Xtβt(τ)

where QXERI
t

(τ | Xt) is the predicted value of the log-returns of ERI at a specified

quantile conditional on the predictors, t is a window of size 252 observations, τ is a

given quantile and βt(τ) a vector of the slope coefficients of the predictor variables

for each τ . The vector Xt can be thought as having the three predictors, meaning the

interest rate spread, the VIX and the breakeven inflation. In the regression process,

we regress XERI
t on the variable one at a time and plot the slope coefficients in

Figure 1.8. Then, we regress XERI
t on all three covariates at the same time and

reports the coefficients in Figure 1.9.

Figure 1.8 reports evidence of time-varying effect of the predictors on the log-

returns of ERI. The first key observation is an apparent uniform response of the CM

to the three predictors at a given quantile. The first column of Figure 1.8, meaning at

τ = 0.05, shows that a 1% rise in the macro-financial variables (their first difference)

leads to a decrease in the log-returns on the CM. The reported effect is statistically
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significant across the whole sample period. The response of the 0.5 quantile of log-

returns to a 1% increase in the predictors is, however, not statistically significant. The

sign of the response becomes positive and significant at the 0.95 quantile of XERI
t .

When controlling for two of the covariates, the effect of the studied macro-financial

variable vanishes (Figure 1.9). 0 is in the 95% confidence bands for the two extreme

quantiles, meaning τ = 0.05 and τ = 0.95. The response of the median values of XERI
t

to a 1% increase in the VIX would be the only result that stands out. An increase in

uncertainty around 2021 has the effect of reducing the median returns on the CM until

late 2023. The effect prolongs until the end of the sample period with the magnitude

reduces significantly.

One possible economic interpretation is that the policy variables (interest rates)

and the VIX carry information regarding the state of the economy. In this regard,

working with one variable at a time would be enough to render a plausible effect of

policy variables or market sentiments on the lower and upper tail distributions of the

log-returns on the CM. Karau (2021) follows a similar approach, where he includes

the variables one at a time and proceeds to see the effect with all the variables being

considered at once. Now, the question remains to explain the opposite effect of the

covariates on the log-returns of ERI at the lower and upper quantiles.

The first column of Figure 1.8 measures how negative economic outcomes, meaning

a 1% increase in a particular covariate, affect the lower tail of a risky asset. These

outcomes have the effect of tightening monetary and financial conditions. In such a

context, investors opt for a risk-off sentiment, which can exacerbate losses in the lower

tail of the CM. In addition, financial episodes of this nature are often accompanied by

more liquidity constraints. Given the unregulated nature of the CM, increased liquidity

constraints have the power to lead to significant price drops with downward pressures

on returns in the 0.05 quantile of XERI
t . This suggests that crypto-currencies respond

to anticipated inflation, increased interest rates, and negative economic sentiments

similarly to other traditional financial asset classes.

The results for the upper tail are counter-intuitive regarding established views

in the asset pricing literature. Risky assets are expected to move in the opposite

direction to policy rates. However, one can argue that higher spreads, anticipated

inflation, and increased fear towards the S&P500 may increase the appeal of the CM,

as shown in the third column of Figure 1.9. As explained above, a 1% increase in all

the covariates signals possible economic downturn cycles, which can negatively affect

the performance of traditional risky assets. An increase in returns on the CM during

restrictive monetary policy would position this market as a competing asset class to

fixed-income securities. This view requires micro-level data on investors’ transactions

to understand the dynamic between the bond market and the CM.
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Regarding the post-COVID era, no particular trends emerge, as noted in Iyer (2022)

and Karau (2021). The latter adopts a high-frequency identification strategy and is

better suited to isolate the response of the CM to economic shocks. In any case, a

natural extension for this study would be to combine the idea of extreme events with

a dynamic time series framework to study the response of the lower and upper tail

distribution to specified economic shocks. Our approach to include all the 3 variables

is to make our benchmark exercise comparable to Karau (2021). We hold the view

that XSpread
t , XV IX

t and XBreakeven
t are redundant variables. Hence, the results in

Figure 1.8 are indeed more reliable.

From a practical standpoint, this study helps clear up some misconceptions about

potential factors driving crypto-currency prices. However, the crypto-currency network

remains a fast evolving environment with various aspects to understand. The relative

absence of entry restrictions makes crypto-currencies accessible to investors around

the world. As such, the CM would probably be one the most diverse investors pool in

existence. As a potential downside, this diversity might entail a degree of asymmetry

in the financial literacy and the risk attitude of CM market participants. The two

factors are likely to affect price variations on the CM. A strand of the behavioral

financial literature has for long studied how these distortions feed in trading behaviors

(biases) observed from market participants 12. This facet of the analysis is not covered

in this research and would be a promising line of investigation for the CM.

1.4.7.4 Momentum and Microstructure

We analyze momentum and event significance using a two-step approach. First, an

ARMA model is estimated using regularized regression (Least Absolute Shrinkage

and Selection Operator, LASSO) to identify relevant AR and MA lags. This method

ensures a parsimonious specification by highlighting essential temporal dependencies

and reducing the risk of overfitting

In the second step, the AR and MA lags selected via LASSO inform the specification

of an ARMAX model, incorporating an exogenous dummy variable to evaluate the

impact of significant crypto-currency-specific events or internal CM dynamics on price

movements. The ARMAX model is given by:

ERIt = α +
∑
i∈P

ϕiERIt−i +
∑
j∈Q

θjεt−j + δDt + εt,

where ERIt denotes the CM return at time t, P andQ represent the sets of selected

AR and MA lags, Dt is a dummy variable equal to 1 on event dates (Bitcoin halvings:

July 9, 2016; May 11, 2020; Ethereum upgrades: London Hard Fork on August 5,

12See Liu et al. (2022) for a brief summary of this strand of the behavioral finance literature.
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Figure 1.8: Effect of Macro-financial Variables on log-returns on the CM (single regression)
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Notes: This graph reports the slope of a rolling quantile regression of returns on the CM against the
term spread, the VIX, and breakeven inflation. We regress the returns on the CM on each covariate
one at a time. The blue line in this plot is the βt(τ) computed over a window of 252 observation.
The 95% confidence intervals were formed by scaling the full sample covariance.
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Figure 1.9: Effect of Macro-financial Variables on log-returns on the CM (Multivariate
regression)
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Notes: This graph reports the slope of a rolling quantile regression of returns on the CM against
the term spread, the VIX, and breakeven inflation. We regress the returns on the CM on all three
covariates at the same time. The blue line in this plot is the βt(τ) computed over a window of 252
observations. The 95% confidence intervals were formed by scaling the full sample covariance.
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2021; the Merge on September 15, 2022) and 0 otherwise, and εt represents a white

noise error term.13 These events are selected due to their substantial structural or

narrative impacts on the CM, generating significant media attention and influencing

investor behavior.

The empirical results summarized in Table 1.7 suggest crypto-currency returns

are influenced predominantly by internal market dynamics. The inclusion of the

event dummy variable leads some AR and MA coefficients to lose statistical

significance due to absorbed variation. Significant autoregressive terms at lags 4 and

10 indicate momentum effects consistent with trend-following or herd behavior in

speculative markets. Conversely, the negative AR(1) coefficient implies short-term

mean reversion, potentially capturing swift market corrections following abrupt price

changes. Additionally, statistically significant MA terms at lags 2 and 3 highlight the

lasting impact of recent market shocks. Critically, the negative and significant

coefficient of the event dummy variable supports the hypothesis that prices typically

decline following major crypto-specific announcements, aligning with the “buy the

rumor, sell the news” trading strategy commonly practiced in speculative periods.

Overall, these findings emphasize that crypto-currency price dynamics are driven by

some endogenous factors or internal dynamics.

Table 1.7: ARMAX Model of BTC Returns with Event Dummy

Row α ϕ1 ϕ4 ϕ10 ϕ12 ϕ13 ϕ18 ϕ21 ϕ22 ϕ28 ϕ30 θ2 θ3 θ7 θ11 θ29 δ

Estimate 0.002∗∗ −0.069∗∗∗ 0.057∗∗∗ 0.060∗∗∗ 0.032 −0.018 0.025 −0.027 0.028 0.032∗ 0.030∗ 0.033∗ 0.052∗∗∗ 0.023 0.029 0.026 −0.050∗

Std. Error (0.001) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.018) (0.018) (0.020) (0.020) (0.020) (0.019) (0.018) (0.028)

Observations 2,649
R2 0.026

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01

1.5 Conclusion

Our analysis finds no strong dependence between the CM and the term spread in the

copula modelling framework. This result dismisses the importance of the yield curve

in investment decision-making related to the CM. Such an outcome corresponds to

numerically low copula dependence and tail estimates. Our interpretation is supported

for the entire sample and a sub-sample analysis. The latter sample covers the post-2020

period, which has seen an expansion of the crypto activities to institutional investors.

Our results display the same negligible dependence between the two markets for the

sub-sample consideration. Therefore, information about future changes in monetary

policy and economic cycles contained in the slope of the yield curve does not matter

13The permitted lags for each set P and Q range from 1 to 30 to adequately capture momentum
dynamics.
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for returns on the CM. The conclusion is similar for an extension of the analysis for

the breakeven inflation.

We extend the same methodology to the analysis of the dependence between price

fluctuation on the CM and the VIX. The VIX is known in the literature to be a

measure of investors’ fear and uncertainty about future market conditions. Our results

provide weak evidence that low VIX estimates tend to correspond with high volatility

on the CM. This tail dependence relationship becomes stronger when looking at the

VIX with a forward-looking volatility estimate for the CM. We interpret this ”low-

high” volatility result as a shift in resources allocation between the two markets. In

times of low volatility, investors, namely the risk-averse ones, would substitute crypto-

currencies for stocks. In the end, the outflow of money would nourish uncertainty and

cause the volatility on the CM to spike up.

A robustness check with a linear rolling quantile regression analysis reveals that

macroeconomic predictors have a differential impact on crypto-currency returns

across quantiles. Specifically, a 1% increase in predictors leads to a significant

decrease in log-returns at the 0.05 quantile, while the effect at the median quantile

(0.5) is not significant. At the 0.95 quantile, the effect becomes positive and

significant. Additionally, controlling for other variables (the two other covariates)

highlights that only the VIX significantly influences median returns, particularly up

to late 2023. These findings suggest that crypto-currencies respond uniquely to

economic indicators compared to traditional assets, with potential for increased

returns during restrictive monetary policies.

Moreover, our findings emphasize the critical importance of momentum effects and

internal market dynamics in shaping crypto-currency prices. Major crypto-specific

events, such as Bitcoin halvings and Ethereum protocol upgrades can influence market

dynamics, independent of macroeconomic factors. Further research should deepen

exploration into these internal market dynamics and momentum factors. Possible

areas include the use of granular data to enhance the predictive understanding of

crypto-currency price movements.

In conclusion, our findings challenge the literature that suggests a significant direct

link between the CM, monetary policy, and the government bond market (see e.g.,

Karau, 2021). This is evidenced by the weak correlation between the CM log-returns,

the term spread, the VIX and the breakeven inflation. We propose two avenues for

further research: using higher-frequency data to better capture the CM’s response

to policy decisions and utilizing granular data to explore how ”new era thinking” or

bubble formation, as discussed by Shiller (2015), might influence CM price dynamics.
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1.A Appendix

1.A.1 Supplementary information

Figure 1.10: ACF of the interest rate spread, the VIX and the breakeven inflation
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Notes: This figure presents the ACF and the PACF of the interest rate spread, the VIX and the
breakeven inflation. It is clear from the ACF that the original series stem from a non-stationary
process. Note that the horizontal dashed lines (in red) represent the 95% confidence interval.

1.A.2 Supplementary information to the modelling section

In choosing the model choice, we start with plots of the correlation between different

lags of both series. Figure 1.11 reveals weak evidence of correlation between successive

lag values of XERI
t and XSpread

t . On the contrary, the squared of both series exhibit

significant correlation between contemporaneous and past values. We apply the Ljung-

Box test to confirm the existence of serial dependence in the series. There is evidence

against serial dependence for XERI
t and XSpread

t at low lag components. However, the

squared transformation of both variables show existence of strong serial dependence

of up to lag 12 or more.

We use stepwise regression to select the number of lags to enter the conditional

equations 6 and 7. The ”auto.arima” algorithm in R and similar techniques in

Python are straightforward approaches to implement the lag selection process. The
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returns series is fed into the algorithm and the best autoregressive model is selected

based on the Bayesian Information Criteria (BIC). We construct the variance

equation with the squared component of the series, meaning (XERI
t )2 and (XSpread

t )2.

Obviously, the latter has its own shortcomings but it is a more structured process

than deducting lag order form the AFC/PACF reading. The BIC selects

ARMA(1,0)-GARCH(1,4) and ARMA(0,0)-GARCH(1,1) for returns on the CM and

change in the spread, respectively. In both cases, no conditional mean is suggested

by the algorithm.

We use the MLE to compute parameters of the model order suggested by the

stepwise regression framework. Estimates are reported in Table 1.8. In passing, we

provide estimates of alternative models for comparison purposes. In the case of

XERI
t , we run a GARCH(1,1) and a TARCH(1,1,1). A GARCH(1,1) sits between the

suggested GARCH(1,4) and the TARCH(1,1,1). The GARCH(1,1) represents a

simpler framework (less parameters to be estimated), whereas the TARCH (1,1,1)

stands as a more complex formulation. In the case of XSpread
t , we accept the

GARCH(1,1) since it is a standard model used in the literature for this kind of work.

According to the information criterion reported in Table 1.8, the smaller

GARCH(1,1) would be a good starting point to model the conditional variance of

XERI
t .

To conclude this section, we inspect the distribution of the standardized residuals

against some theoretical processes in order to rationalize the choice of et in Equation 1.6

and Equation 1.7.
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Figure 1.11: Autocorrelation function of log-returns and change in the interest rate spread
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Notes: This figure presents the ACF of log-returns on the CM (XERI
t ) and the change in the spread

(XSpread
t ) . The horizontal dashed lines (in red) represent the 95% confidence interval of a white

noise series.
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Figure 1.12: Partial autocorrelation of log-returns and change in the interest rate spread
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t ) and the change in the spread

(XSpread
t ) . The horizontal dashed lines (in red) represent the 95% confidence interval of a white noise

series.
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Table 1.8: Model comparison for log-returns on the CM and change in interest rate spread.

XERI
t

GARCH(1,1) GARCH(1,4) TARCH(1,1,1)

ω 0.00013∗∗∗ 0.0001∗∗∗ 0.004∗∗∗

(0.000) (0.000) (0.000)

α1 0.161∗∗∗ 0.161∗∗∗ 0.182∗∗∗

(0.017) (0.019) (0.015)

α2

α3

β1 0.798∗∗∗ 0.796∗∗∗ 0.803∗∗∗

(0.019) (0.158) (0.017)

β2 0.000
(0.190)

β3 0.000
(0.072)

β4 0.001
(0.092)

γ1 0.094∗∗

(0.040)

AIC -3.379 -3.372 -3.375
BIC -3.371 -3.358 -3.365

Notes: This table presents different model candidates for the conditional variance of XERI
t .

***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level.
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Figure 1.13: Comparison of different distribution assumption for XERI
t innovations
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Notes: This figure plots the residuals of the ARMA(0,0,0)-GARCH(1,1) process against the normal,
the student’s t, the skewed student’s t, and the Generalized Error Distribution (GED). The normal
assumption offers the worst fit out of all the assumptions considered to model the innovation process
in Equation 1.6. The Student’s t and the Skewed student’s t distributions offer similar results.
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Figure 1.14: Comparison of different distribution assumption for XSpread
t innovations

−3 −1 0 1 2 3

−4
−2

0
2

4

norm − QQ Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

G
A

R
C

H
 m

od
el

 : 
 s

G
A

R
C

H

−6 −2 0 2 4 6

−4
−2

0
2

4

std − QQ Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

G
A

R
C

H
 m

od
el

 : 
 s

G
A

R
C

H

−6 −2 0 2 4 6

−4
−2

0
2

4

sstd − QQ Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

G
A

R
C

H
 m

od
el

 : 
 s

G
A

R
C

H

−4 −2 0 2 4

−4
−2

0
2

4
ged − QQ Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

G
A

R
C

H
 m

od
el

 : 
 s

G
A

R
C

H

Notes: This figure plots the residuals of the ARMA(0,0,0)-GARCH(1,1) process against the normal,
the student’s t, the skewed student’s t, and the GED. The GED offers the best result out of all the
assumptions considered to model the innovation process in Equation 1.7.
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Table 1.9: CM and VIX copula estimates

Normal Student’s t Clayton Frank Gumbel-Hougaard Joe

θ 0.035∗∗ 0.034∗∗∗ 0.039∗∗ 0.158 1.028 ∗∗∗ 1.063∗∗∗

(0.02) (0.020) (0.023) (0.118) (0.014) (0.022)

τL 0.000 0.000
(1×10−8) (0.000)

τU 0.000 0.036∗∗∗ 0.08∗∗∗

(1×10−8) ( 0.001) (0.001)

Deg. of freedom 4.8×104∗∗∗

(0.000)

Log. Likelihood 1.674 1.672 -9.623 1.025 3.025 6.558
AIC 1.347 -4.656 -23.247 0.05 2.05 9.116

Notes: This table presents estimates of some of the widely used copulas. In parentheses are standard
errors of the estimates. In the spirit of Table 1.2, the statistical significance of the Joe and Gumbel-
Hungaard is tested as H0 : θ = 1 and H1 : θ > 1. The standard errors for the tail probabilities
are computed with the delta method. The MLE failed to estimate the dependence parameter in
the Clayton case. We instead estimate the parameter via the method-of-moment (Spearman’s rho).
Hofert et al. (2019) gives a detailed explanation of this technique.
***Significant at the 1 percent level.
***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level

Figure 1.15: Dependence representation between the VIX and the CM
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Notes: This figure presents the residuals extracted from GARCH process. The residuals are
transformed to be distributed between 0 and 1 (Pseudo-observations).
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Figure 1.16: Residuals of the breakeven GARCH(1,1) model
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Notes: This set of plots presents the 4 assumptions considered to model the volatility of the breakeven
inflation. The GED shows a better fit with respect to the other distributions. The intercept of the
conditional variance equation is approximately zero (same for the mean equation). The conditional
variance equation can be written as δ24t = 0.058ϵ24t−1 + 0.901δ24t−1. The GED shape parameter is
estimated to be 0.9.
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Figure 1.17: Pseudo-observation of log-returns on the CM and the first difference of the
inflation expectation
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Notes: This figure presents the pseudo-observations of the residuals (uniform transformation) from
the GARCH equations for the log-returns on the CM and the 5-year breakeven inflation (the
differenced series). The spread of the points shows no particular dependence structure.
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The Transactive Role of

Crypto-currencies: A Theoretical

Perspective

Abstract

We build a theoretical model where both fiat money and crypto-currencies are used as

media of exchange for differentiated goods. Crypto-currencies offer pecuniary

benefits, such as avoiding consumption taxes, and non-pecuniary benefits like

transaction privacy, while non-users face utility losses that grow with available goods.

We identify an endogenous threshold good where consumers are indifferent between

government-backed money and privately-issued currency, leading to three equilibrium

scenarios: all goods purchased with fiat money, all with crypto-currency, or a mix of

both. Our model predicts that, while fiat money is neutral, crypto-currencies are

non-neutral due to mining costs, which affect labor allocation.
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2.1 Introduction

Crypto-currencies emerged with the promise of eliminating frictions that lead to high

transaction costs in traditional money-based economies (Nakamoto, 2008). This

alternative medium of payment presents consumers with a decision-making problem

regarding which currency to use for day-to-day transactions—whether to choose fiat

money or crypto-currency. In a two-country model without capital controls, the

choice of currency would depend on the real exchange rate between the two.

However, crypto-currencies offer more than just liquidity services. For instance,

anonymity in transactions is a non-pecuniary benefit linked to crypto-currencies,

adding complexity to this decision. Therefore, the challenge lies in how

crypto-currencies can coexist with fiat money. This raises critical questions: what

factors determine the stock of goods purchased with either form of currency? And

what are the welfare-enhancing attributes associated with higher adoption of

crypto-currencies?

Current theories remain insufficient in explaining the determinants of demand for

crypto-purchased goods and money-purchased goods. For example, Marchiori (2021)

tackles this issue in a cash-in-advance model where both crypto-currencies and fiat

money are used for consumption payments. However, the model imposes a strict

exogenous constraint, assigning one fixed set of goods for crypto-currency purchases

and another for cash purchases. This leaves unresolved the question of what drives

consumers to use crypto-currency for transactions. Similarly, Benigno et al. (2022)

develops a related theoretical model but focuses on the monetary policy implications

of having both currencies in circulation. Consequently, both models and other related

frameworks provide limited insights into the key questions raised earlier.

We propose a one-period cash-in-advance model in which both fiat money and

privately issued currency are accepted as media of exchange for a continuum of

differentiated goods. However, an exogenous rule requires that all production factors

be remunerated in money terms. We assume heterogeneity in access to

crypto-currencies, reflecting differences in information and technology (IT) know-how

between crypto users and non-users. In subsection 2.5.4, we show that an increase in

the crypto-currency accessibility parameter has real economic consequences,

particularly in terms of consumption and labor reallocation across sectors of the

economy

The originality of our analysis lies in modeling crypto-currencies as a tool that

provides both pecuniary and non-pecuniary benefits to consumers. On the pecuniary

side, crypto-currencies allow consumers to bypass value-added taxes on consumption

goods. On the non-pecuniary side, they impose a utility loss on non-users by offering
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privacy in transactions. This approach endogenizes the demand for crypto-currencies

in purchasing goods. As opposed to Marchiori’s analysis, consumers have the discretion

to buy any good with either fiat money or crypto-currencies in our model. Based on

this framework, we argue in subsection 2.3.2 for the existence of a threshold good,

where consumers are indifferent between using fiat money or crypto-currency, giving

the latter a defined role as a medium of exchange in the market.

Our first set of results lead to three possible outcomes based on the relative

transaction costs of purchased goods. In the first scenario, all goods are purchased

with money due to high crypto-fees or low transaction costs for money-purchased

goods. In the second scenario, low crypto-fees or high taxes on money-related

payments lead to the exclusive use of crypto-currencies for transactions. The third

scenario introduces a threshold, where both currencies are used, with the set of goods

purchased with money expanding as crypto-fees rise or consumption taxes on money

payments fall.

In our model, fiat money is costlessly produced and distributed to final goods

consumers. We exclude savings in the form of money holdings or capital investments.

This leads to an equilibrium solution where money is neutral in the economy, which

is a standard result in the real business cycle literature. On the other hand, mining

crypto-currencies is costly in the model. As a result, crypto-currencies exhibit non-

neutrality in the system because the presence of crypto-currency mining activity affects

labor allocation across sectors. This effect is visible in the numerical simulation below,

where we show that a positive investment shock in the mining sector influences real

wages and drives up unemployment in the goods production sector.

To develop a tractable model with interpretable solutions, this chapter and the

next one omit certain aspects of CM dynamics. For instance, we do not assign a

speculative role to Bitcoin or other crypto-currencies in our model. Makarov and

Schoar (2021) argues that until June 2021, 90% of observed BTC transactions were

economically non-meaningful1. Moreover, their analysis highlights a market bias

toward the speculative use of crypto-currencies. The authors also note a steep

concentration of BTC holdings among a few account holders, raising questions about

the price formation mechanism in the CM environment. These elements could serve

as the foundation for an extension incorporating a fully developed general

equilibrium model with a financial sector and various frictions affecting the exchange

rate between crypto-currencies and fiat currencies.

The remainder of the paper progresses as follows. We first present the connection

between our results and the existing literature in section 2.2. We proceed to model

the different components of our general equilibrium framework in section 2.3. Then,

1See Foley et al. (2019) for a discussion on the use of BTC in organized crime activities.
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we explore the equilibrium conditions emerging from the optimization problem in

section 2.4. Finally, we provide a numerical analysis to study the response of the

endogenous variables following a shock to the exogenous constants in the final section.

2.2 Related Literature

The analysis in this paper advances the growing literature on the co-existence of

government-backed and privately-issued currencies. Work on currency competition

and the concept of private currencies is well established in the monetary literature

(see Hayek (1976) and Kareken and Wallace (1981)). Benigno et al. (2022) provide

an extensive discussion of currency competition and its various ramifications with the

crypto-currency framework. For the sake of clarity, we focus on contributions related

to crypto-currencies and highlight the place of our analysis within this body of work.

A closely related analytical setup to ours is the analysis by Schilling and Uhlig

(2019b) on the medium of exchange role of fiat money and crypto-currencies. Their

model predicts the existence of an endogenous good for which consumers are indifferent

between fiat money and crypto-currencies. Other elements, such as the difference in

transaction costs for crypto-using and money-using consumers, are also present in our

paper. A key point of departure between the two frameworks lies in our treatment

of crypto-currencies as an instrument that facilitates privacy in goods transactions,

which is explicitly modeled in our framework. Other contributions in this line of

research abstract from the privacy aspect and present further modeling divergences

from our analysis. For instance, Marchiori (2021) restricts the transactive role of

crypto-currencies to a specific set of goods. In Fernández-Villaverde and Sanches

(2019), the existence of crypto-currencies can lead to an undesirable equilibrium where

the stock of money in circulation fails to meet transaction needs. Additionally, Yu

(2023) and Schilling and Uhlig (2019) derive a role for crypto-currencies when their

rate of return matches that of fiat money in the market. Another currency competition

model is proposed by Zhu and Hendry (2019), which focuses on price stability. Our

paper, however, does not incorporate most of the features discussed in these works.

Instead, we focus on deriving the conditions that make currency substitution possible

in an economy with both private currency and fiat money.
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2.3 Static Model with Purely Transactive

Currencies

2.3.1 Basics

Consider a static economy where consumption transactions can be performed using

two different currencies. One currency, called money, acts as the legal tender and is

issued by the government. The other currency is represented by privately-issued virtual

coins and is called crypto-currency. Households supply labor and physical capital to

firms and receive factor incomes that, as a result of exogenous rules, must be paid with

money. The hypothesis that all production factors must be remunerated using the legal

tender of the economy plays the role of a cash-in-advance (CIA) constraint in a one-

period economy. However, the goods market is open to alternative means of payments,

and the crypto-currency can be used to purchase consumption goods. Households can

use part of their money stock to purchase the crypto-currency on exchange platforms

that charge fees for their services. At the same time, firms receiving payments in

crypto-currency will use the exchange platform to convert crypto-payments into money

that will be used to remunerate labor and capital owners. Like consumers, firms will be

charged a crypto-transaction fee since exchange platforms bear the costs of validating

every transaction that involves crypto-currency.

The static environment has specific characteristics. Since households spend all

their income in one period and the crypto-currency is only used for transaction

purposes, the stock of crypto-currency returns in full to the exchange platform when

all exchanges are completed. The final state of the crypto-market would be radically

different in a dynamic model including multiple periods and saving-investment

opportunities. Nonetheless, this static model offers important insights on how the

introduction of a crypto-currency may affect the equilibrium in CIA-constrained

economies, as we will see in the dynamic model of the next chapter.

2.3.2 Consumers

The economy is populated by L consumers, each consuming (a continuous finite mass

of)N different goods indexed by n ∈ [0, N ]. Each good nmay in principle be purchased

using money or crypto-currency. However, only a fraction ϵ of the L consumers has

access to crypto-currencies and can freely decide which goods to buy with either means

of payment. The remaining (1− ϵ)L consumers purchase all the N goods using money.

We treat ϵ ∈ (0, 1) as an exogenous parameter that we can manipulate to investigate

important properties of the model. Letting ϵ → 0 we can study the equilibrium of

a benchmark economy without crypto-currency and compare its predictions to those
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obtained in the general case, 0 < ϵ < 1, as well as in the opposite polar case where every

household has access to crypto-currency, ϵ→ 1. It is safe to argue that 0 < ϵ < 1 is a

realistic hypothesis – e.g., because crypto-currencies are not used by households with

insufficient IT literacy or equipment. However, the key rationale for our hypothesis

ϵ < 1 is that it provides us with a free parameter whereby we can assess the impact of

market-size shocks – that is, exogenous changes in the potential demand for crypto-

currencies – and more generally the welfare effects of crypto-currencies.

In order to distinguish individual variables that refer to either type of households,

we will use ‘tildas’: for any variable x associated with consumers having access to the

crypto-currency, the same variable for ‘crypto-less consumers’ will be denoted by x̃.

The next two sub-sections specify the expenditure problem for each type of consumer

in turn.

2.3.2.1 The crypto-less consumer

Consider an individual within the set of (1− ϵ)L consumers having no access to the

crypto-currency. Total utility from consumption is an integral of well-behaved sub-

utility functions,

Ũ ≡
∫ N

0

ũn (c̃ (n)) dn (2.1)

where c̃ (n) is the consumed quantity of the n-th good.

The crypto-less consumer purchases all goods using money, which entails different

types of transaction costs. The literature suggests a long list of private costs

associated with money payments that could be circumvented using alternatives like

crypto-currencies. Some costs are non-pecuniary – e.g., lack of anonymity, legal

constraints, personal time costs generated by bureaucracy, red-tape,

transaction-recording and similar administrative duties – and are typically connected

to the nature of the good being purchased regardless of its market value: the

transaction per se creates disutility and can thus be modeled as a non-distortionary

‘tax’ in terms of utility. Other costs are pecuniary – e.g., credit-card and

money-transfer fees, intermediation costs, consumption taxes imposed by

governments on traceable money transactions – and can be either lump-sum or

distortionary. To cover all bases, our model includes both pecuniary and

non-pecuniary costs.

We capture non-pecuniary costs by introducing a simple disutility term: if good n

is purchased with money, the associated net satisfaction is

ũn (c̃ (n)) = ln [c̃ (n) · (1− δ (n))] with 0 ⩽ δ (n) < 1. (2.2)
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The disutility parameter δ (n) is good-specific because non-pecuniary transaction costs

may vary substantially across types of goods. The logarithmic form (2.2) rules out

distortions in the sense that, under utility-maximizing conditions, goods characterized

by different disutility parameters δ (·) will capture identical expenditure shares. In

other words, non-pecuniary transaction costs are a non-distortionary tax in terms of

utility.

The pecuniary costs of money-purchased goods, instead, are represented by a

proportional fee: consumers buying good n using money will spend

p (n) · c̃ (n) · (1 + τ) ,

where p (n) is the market price of the good in terms of money, and τ > 0 is the fee rate.

The money-transaction fee τ may be interpreted in several ways – e.g., as a credit-card

fee charged by private intermediaries, a consumption tax set by the government, a sunk

monetary cost not collected by other agents. For our purposes, the key characteristic

is that the money-transaction fee will not apply if the same good is purchased using

the crypto-currency. In this model, τ is a consumption tax rate that the government

is able to impose exclusively on recorded money payments for consumption. This

will imply a tax-avoidance benefit from using crypto-currency2. Alternative models

in which τ is a transaction fee paid to banks will likely yield similar results as long

as the same fee does not apply to crypto-payments. The expenditure problem of the

crypto-less consumer is

max
{c̃(n)}

Ũ =

∫ N

0

ln [c̃ (n) · (1− δ (n))] dn

subject to

x̃ =

∫ N

0

p (n) c̃ (n) · (1 + τ) dn (2.3)

where x̃ is individual spending on consumption goods. The first order conditions imply

identical expenditure shares for each good,

p (n) c̃ (n) · (1 + τ) = x̃/N for each n ∈ [0, N ] . (2.4)

2This property of the model is empirically plausible: there is widespread consensus that the use of
crypto-currencies can facilitate tax-avoidance as well as similar shadow-economy activities. The latter
point is explained and documented in a recent publication of the Bank for International Settlements
(BIS) – see the BIS (2023) report for details. Other narratives on the use of crypto-currencies include
a greater penetration in places with tight capital control (see Makarov and Schoar (2019)).
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As previously noted, non-pecuniary costs do not distort expenditure shares: crypto-

less consumers simply suffer a deadweight utility loss by purchasing goods using money

since they do not have access to the crypto-currency. The individual income constraint

of crypto-less consumers reads

x̃ = w + rki + g̃ (2.5)

were w is the prevailing wage rate, r is the rental rate of individually-owned capital

ki, and g̃ represents lump-sum transfers from the government. The implicit

hypotheses of (2.5) are that each individual supplies one unit of homogeneous labor

that is remunerated at the same rate w by all firms and sectors, and rents ki units of

capital to goods-producing firms obtaining the same rental rate r. The goverment

uses transfers g̃ to rebate the proceeds from the consumption tax to households.

2.3.2.2 The crypto-user: preferences

Consider an individual within the set of ϵL consumers having access to the crypto-

currency. In the present environment, the justification for the existence of the crypto-

currency is that using money to purchase at least some types of goods entails private

transaction costs that exceed those implied by using the crypto-currency. In general,

the utility of crypto-using consumers can be written as

U ≡
∫ n̄

0

uj (c (j)) dj +

∫ N

n̄

ui (c (i)) di (2.6)

where c (n) is the physical quantity of the n-th good consumed, for any n ∈ [0, N ].

The right hand side of (2.6) distinguishes between subsets of goods purchased using

different means of payment: the subset indexed by j ∈ [0, n̄) is purchased using money

and the associated utility uj includes non-pecuniary costs just like expression (2.2)

above,

uj (c (j)) = ln [c (j) · (1− δ (j))] for j ∈ [0, n̄) , (2.7)

whereas the subset of goods indexed by i ∈ [n̄, N ] is purchased using the crypto-

currency and the associated utility does not include the disutility term:

ui (c (i)) = ln c (i) for i ∈ [n̄, N ] . (2.8)

Expressions (2.6)-(2.8) implicitly define a threshold good, indexed by n = n̄, which

splits the set [0, N ] by payment characteristics. In related literature, different means

of payments are associated to different goods in a pre-determined way. For example,

in the Marchiori (2021) model there exists one ‘cash good’ that can only be
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purchased with money and one ‘virtual good’ that can only be purchased with

crypto-currency by assumption. In our analysis, instead, all the N goods can in

principle be purchased using either type of currency, but consumers choose which

goods to pay with either method according to utility maximization, so that the

threshold good n̄ is endogenously determined by preferences and market conditions.

Therefore, our model justifies the existence of the crypto-currency for transactive

purposes, and will predict that changing market conditions, or exogenous shocks on

relevant parameters, will affect the transactive demand for crypto-currency even

along the extensive margin via changes in the endogenous threshold n̄.

The existence of a threshold good depends on the distribution of disutility terms

across goods. We model such distribution in the simplest way by specifying δ (n) as a

function that, under very mild assumptions, determines an interior cut-off point n̄ ∈
(0, N) whereby both the resulting subsets, [0, n̄) and [n̄, N ], are non-empty. This result

(i.e., the existence of subsets of goods purchased with different means of payments)

hinges on the existence of good-specific costs associated with money payments.3 In

the next two subsections, we solve the expenditure problem of the crypto-user and

then determine the threshold good by specifying a suitable function δ (n).

2.3.2.3 The crypto-user: expenditure problem

We solve the consumer problem in two steps. We firstly derive the utility-maximizing

conditions taking n̄ as given. Secondly, we derive the no-arbitrage condition for the

threshold good n̄ taking expenditure shares as given. The key elements are the

opportunity costs of alternative means of payments. Purchasing c (n) units of good n

using money requires, as we know, spending

p (n) · c (n) · (1 + τ) . (2.9)

Purchasing the same good using crypto-currency requires the consumer to convert

the necessary amount of money holdings into crypto-currency and purchase the good

from the producer by transferring the crypto-currency to the latter. The exchange

platform will charge a fee for the currency exchange service. Crypto-transaction fees

are proportional to the amount of crypto-currency involved: exchange platforms apply

the rate φC to consumers selling money against crypto. The total cost to the consumer,

3Besides all the possible interpretations of δ and τ , what matters for our analysis is that at least
one type of money transaction costs – pecuniary or non-pecuniary – is good-specific. Our results are
essentially the same if we exclude pecuniary transaction costs (τ = 0) while keeping δ (n) good-specific,
or vice versa, if we exclude disutility costs (δ = 0) and assume, instead, good-specific pecuniary costs,
τ (n). Modelling the general case where both δ (n) and τ (n) are good-specific creates unnecessary
algebraic complications without yielding further economic insight.
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expressed in terms of money, is

Q · p∗ (n) · c (n) ·
(
1 + φC

)
, (2.10)

where p∗ (n) is the price of the n-th good expressed in crypto-currency units, Q is

the nominal exchange rate – i.e., the units of money needed to purchase one unit

of crypto-currency besides the fee rate φC that the exchange platform charges on

consumers selling money against crypto 4.

Expenditure problem for given n̄. Given the existence of a unique interior cut-off

point n̄ ∈ (0, N), the expenditure problem solved by the consumer is

max
{c(j),c(i)}

∫ n̄

0

ln [c (j) (1− δ (j))] dj +

∫ N

n̄

ln c (i) di

subject to

x =

∫ n̄

0

p (j) c (j) (1 + τ) dj +

∫ N

n̄

Qp∗ (i) c (i)
(
1 + φC

)
di, (2.11)

where x is consumption expenditure per capita in monetary terms. Denoting by λ the

multiplier for constraint (2.11), the first order conditions read

1 = λp (j) c (j) (1 + τ) for each j ∈ [0, n̄) , (2.12)

1 = λQp∗ (i) c (i)
(
1 + φC

)
for each i ∈ [n̄, N ] . (2.13)

Combining these expressions to eliminate λ, we obtain identical expenditure levels for

each good,

Qp∗ (i) c (i)
(
1 + φC

)
=

x

N
and p (j) c (j) (1 + τ) =

x

N
. (2.14)

Aggregation of goods by type of payment yields∫ n̄

0

p (j) c (j) (1 + τ) .dj = n̄ · p (j) c (j) (1 + τ) =
n̄

N
· x, (2.15)∫ N

n̄

Qp∗ (i) c (i)
(
1 + φC

)
di = (N − n̄) ·Qp∗ (i) c (i)

(
1 + φC

)
=
N − n̄

N
· x.(2.16)

4For simplicity, we assume a single exchange rate at which conversions take place. As documented
in Makarov and Schoar (2021), crypto-currency activities can lead to persistent price differences across
exchanges. The modeling approach in this chapter and the next aligns more closely with the subset
of crypto-currencies known as stablecoins. Except in special cases, stablecoins have evolved with a
fixed exchange rate relative to the fiat currency on which their value is based.
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The individual income constraint of crypto-using consumers reads

x = w + rki + g (2.17)

and has the same interpretation as (2.5). For future reference, note that result (2.14)

implies
c (j)

c (i)
=
Qp∗ (i)

p (j)
· 1 + φC

1 + τ
. (2.18)

Expression (2.18) is the relative demand of crypto-purchased versus money-purchased

goods.

Conditions for using money versus crypto-currency. In order to choose the best

payment option for a given good n ∈ [0, N ], the consumer compares opportunity costs

in terms of utility. We can think of this choice as a sub-problem in which the consumer

compares the utility levels enjoyed by spending a fixed amount of income x̂ on good n

using alternative payment methods, and then chooses the method yielding the highest

utility. From (2.9) and (2.10), the hypothetical consumption levels attained under

money- and crypto-payments are

c̃′ =
x̂

p (n) · (1 + τ)
and c̃′′ =

x̂

Qp∗ (n) c (n) (1 + φC)
, (2.19)

where c̃′ is purchased using money and c̃′′ is purchased using the crypto-currency.

Calculating the associated utility levels un (c̃
′) and un (c̃

′′) from (2.7)-(2.7), the welfare

gap reads

un (c̃
′)− un (c̃

′′) = ln

[
Qp∗ (n)

p (n)
·
(
1 + φC

)
(1− δ (n))

(1 + τ)

]
. (2.20)

Therefore, the condition for using the crypto-currency, un (c̃
′) ⩽ un (c̃

′′), is

Qp∗ (n) ·
(
1 + φC

)
⩽ p (n) · 1 + τ

1− δ (n)
. (2.21)

Inequality (2.21) describes the situation in which crypto-payments are superior to

money-payments : the utility cost of purchasing good n with money exceeds the

utility cost of using the crypto-currency for the same purpose. When this inequality

holds, consumers will use crypto-currency to purchase the n-th good.5 When (2.21)

is violated, they will use money.

5We are arbitrarily assuming that, in case of strict equality in (2.21), the indifferent consumer
will opt for crypto-currency payment.
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2.3.2.4 The threshold good

Under mild assumptions, there exists a unique good n = n̄ acting as a threshold good

– that is, n̄ is interior and splits the mass of N goods in two non-empty subsets of

goods purchased via different payment methods. On the demand side, the threshold

condition is set by the consumers’ indifference between money and crypto-currency

payments: the threshold good n = n̄ is characterized by (2.21) holding as a strict

equality,

Qp∗ (n̄) ·
(
1 + φC

)
= p (n̄) · 1 + τ

1− δ (n̄)
. (2.22)

2.3.2.5 Goods producers: no-arbitrage pricing

On the supply side, the prices p (n) and p∗ (n) must obey a no-arbitrage condition that

makes firms producing goods indifferent between receiving money or crypto-currency

payments. Assume perfect competition among producers in each sector n ∈ [0, N ]

and full access of firms to both means of payment. Price-taking firms will adopt a

combination of prices, p (n) and p∗ (n), that yields zero profits irrespective of which

currency is used in the transaction. Each unit of good sold yields either p (n) units of

money or p∗ (n) units of crypto-currency that the firm needs to re-convert into money

in order to remunerate the factors of production. Hence, selling the good versus crypto-

currency yields a net marginal revenue of Qp∗
(
1− φF

)
units of money – where the

last term includes the re-conversion fee rate φF that the firm pays to the exchange

platform for seeling crypto versus money. The no-arbitrage condition for firms thus

reads

Qp∗ (n) ·
(
1− φF

)
= p (n) for each n ∈ [0, N ] . (2.23)

2.3.2.6 Critical condition for the threshold good

Combining the supply-side condition (2.23) with the demand-side condition (2.22),

we obtain the equilibrium condition for overall no-arbitrage between money-payments

and crypto-payments for goods,

1 + φC

1− φF
=

1 + τ

1− δ (n̄)
. (2.24)

Expression (2.24) defines a unique fixed point n̄ under a number of circumstances. In

our model we posit the following linear relationship

δ (n) = β · (n/N) with 0 < β < 1. (2.25)
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Assumption (2.25) introduces a ranking within the mass of goods: n ∈ [0, N ] becomes

an index that sorts consumption goods by increasing levels of private disutility from

money use. Purchasing good n = 0 with money does not generate any direct disutility

(besides the utility loss induced by pecuniary transaction costs, τ). Purchasing with

money other goods bears increasing disutility as n increases. The last good in the

list, n = N , carries the highest direct disutility from money payments, δ (N) = β.

The restriction β < 1 ensures 1 − δ (N) > 0, so that the associated utility level

uN = ln [c (N) · (1− δ (N))] is well defined. From (2.24) and (2.25), we obtain the

results summarized in the following

Proposition. The optimal payment method for any good n ∈ [0, N ] is determined

by

δ (n) < 1−
(1 + τ)

(
1− φF

)
1 + φC

=⇒ Money (2.26)

δ (n) ⩾ 1−
(1 + τ)

(
1− φF

)
1 + φC

=⇒ Crypto-currency (2.27)

Given δ (n) = β · (n/N), there are three possible scenarios. Scenario I: if 0 < β < 1−
(1+τ)(1−φF )

1+φC , all theN goods are purchased using money. Scenario II: if 1− (1+τ)(1−φF )
1+φC <

0 < β, all the N goods are purchased using the crypto-currency. Scenario III: if

0 < 1−
(1 + τ)

(
1− φF

)
1 + φC

< β (2.28)

there exists a unique threshold good n̄ ∈ (0, N) such that all goods n ∈ [0, n̄) are

purchased using money, whereas all goods n ∈ [n̄, N ] are purchased using the crypto-

currency. The threshold is determined by

n̄ =
1 + φC − (1 + τ)

(
1− φF

)
1 + φC

· N
β

(2.29)

Proof. Inequalities (2.26)-(2.27) follow directly by substituting (2.23) into (2.21)

and solving for δ (n). Using (2.25) to substitute δ (n) in (2.24) yields result (2.29).

Scenarios I-III follow from the parameter restrictions that would respectively imply

n̄ > N , n̄ < 0 and 0 < n̄ < N in (2.29).

Scenario I arises when even good N , the one with the highest disutility from

money payments, yields higher utility when purchased with money due to relatively

high crypto-fees and/or relatively low transaction costs for money. Scenario II is the

opposite case in which φC and φF are relatively low and/or τ is relatively high: it

can only arise if pecuniary costs for money are strictly positive, τ > 0, and strong
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enough to more than compensate for the effects of crypto-fees. Scenario III refers to

equilibria with an interior threshold good, where both currencies (money and crypto)

are used to purchase different subsets of goods. Expression (2.29) confirms the most

intuitive properties of the threshold index, namely,

∂n̄

∂φC
> 0,

∂n̄

∂φF
> 0, and

∂n̄

∂τ
< 0,

that is, the mass of goods exclusively purchased using money n̄ is higher the higher

the crypto-fee rates and the lower the consumption tax on money payments, τ .

2.3.3 Production of goods

Each good n ∈ [0, N ] is produced by an indefinitely large set of competitive firms –

henceforth called ‘sector n’ – that take prices on input and output markets as given.

Despite diminishing marginal returns at the firm level, learning-by-doing spillovers at

the sectoral level induce constant marginal returns to capital – that is, a constant

real interest rate – in the spirit of Romer (1986) and Romer (1989). Assuming

identical technologies across producers of each good n ∈ [0, N ] guarantees a

symmetric equilibrium where the economy’s overall bundle of consumption goods is

produced according to an AK technology.

Each firm exploits the production function y (·) = k (·)α (āℓ (·))1−α where y is

output, k is physical capital, ℓ is labor, ā is workers’ productivity, α ∈ (0, 1) is an

elasticity parameter, and (·) stands for firms and/or sectoral indices to simplify the

notation.6 At the firm level, labor productivity is ā is taken as given and profit

maximization yields the usual first-order conditions

r = α
p (n) y (n)

k (n)
, (2.30)

w = (1− α)
p (n) y (n)

ℓ (n)
, (2.31)

where y (n) is total output of the n-th good, k (n) and ℓ (n) are capital and labor used

in the n-th sector, r is the market rental rate of capital and w is the prevailing wage

rate.7 At the sectoral level – i.e., across all producers of the n-th good – there are

learning-by-doing spillovers whereby the use of capital increases workers’ productivity.

6A complete notation would require to specify the number of firms producing good n and indexing
inputs at the firm and at the sectoral levels accordingly. We avoid using the complete notation by
discussing exclusively the functional forms that arise from Romer’s (1986) model at the sectoral level
– see Romer (1986) and Romer (1989) for details.

7We are assuming competitive input markets and fully mobile homogeneous inputs so that r and
w are equalized across sectors producing different goods and are taken as given by each firm.
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We postulate the spillover function ā = A
1

1−α (k (n) /ℓ (n)) whereby the productivity of

each worker increases with the capital-labor ratio in the relevant sector. The intuition

is that capital use induces complementary efficiency gains: each worker uses machines

and a more intense use of machines in the sector makes each unit of labor more efficient.

The spillover function implies that sectoral output becomes linear in sectoral capital,

y (n) = Ak (n) for each n ∈ [0, N ] , (2.32)

like in standard growth models á la Romer (1989). Consequently, the equilibrium

interest and wage rates are

r = p (n) · αA, (2.33)

w = p (n) · (1− α)A · k (n) /ℓ (n) (2.34)

Expressions (2.33)-(2.34) imply the standard functional distribution of income whereby

capital rents capture a fraction α of output value while labor incomes capture the

residual fraction,

p (n) y (n) = rk (n)︸ ︷︷ ︸
αp(n)y(n)

+ wℓ (n)︸ ︷︷ ︸
(1−α)p(n)y(n)

for each n ∈ [0, N ] . (2.35)

Importantly, the symmetric equilibrium produces price equalization and input-ratio

equalization across sectors. As each firm satisfies (2.33) in each sector n, each good

will be sold at the same price,

p (n) = p for each n ∈ [0, N ] . (2.36)

Since the exchange rate Q is not good-specific, result (2.36) implies p∗ (n) = p∗ for

each n ∈ [0, N ] as well, which by firms’ no-arbitrage pricing (2.23) implies

p∗ (n) = p∗, p∗ =
p

Q · (1− φF )
for each n ∈ [0, N ] . (2.37)

Similarly, wage equalization across firms implies the same capital-labor ratio

k (n) /ℓ (n) in each sector in view of (2.34). For future reference, we define

LY ≡
∫ n̄

0

ℓ(n)dn+

∫ N

n̄

ℓ(n)dn, (2.38)

where LY is total employment in the production of consumption goods.
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2.3.4 Aggregate expenditures

Since p and p∗ are identical across goods – see (2.36) and (2.37) – we can write real

consumption indices by consumer type and payment type as follows:{
c̃ (j) = 1

p(1+τ)
x̃
N

and c (j) = 1
p(1+τ)

x
N

for each j ∈ [0, n̄) ,

c̃ (i) = 1
p(1+τ)

x̃
N

and c (i) = 1
Qp∗(1+φC)

x
N

for each i ∈ [n̄, N ] ,
(2.39)

where the expressions in the top row refer to non-binary goods (purchased by crypto-

less and crypto-using consumers, respectively) and those in the bottom row refers to

binary goods: the only crypto-purchased quantity is c (i) with i ∈ [n̄, N ].

Expressions (2.39) imply that all crypto-less consumers purchase the same

amount of each good. Crypto-using consumers, instead, purchase different quantities

depending on the means of payment. Under the assumed preferences, in particular,

crypto-using individuals purchase less units of crypto-paid goods relative to the units

of goods they purchase with money. The reason is a substitution effect:

crypto-payments allow the consumer to avoid the non-pecuniary costs of

money-purchases and thus yield more utility for each unit of good purchased. Under

the assumed preferences, the ability to extract higher utility via non-pecuniary

benefits prompts agents to reduce the purchased quantity c (i) holding the goods’

expenditure share unchanged, x/N , unchanged. In fact, the relative demand (2.18)

and the indifference condition (2.22) with p∗ (n̄) = p∗ and p (n̄) = p imply

c (i)

c (j)
=

p (1 + τ)

Qp∗ (1 + φC)
= (1− δ (n̄)) < 1 (2.40)

for each j ∈ [0, n̄) and each i ∈ [n̄, N ]. By aggregating real indices over consumption

goods, we obtain individually-purchased units of non-binary and binary goods,{ ∫ n̄

0
c̃ (j) dj = n̄

p(1+τ)
x̃
N

and
∫ n̄

0
c (j) dj = n̄

p(1+τ)
x
N∫ N

n̄
c̃ (i) di = N−n̄

p(1+τ)
x̃
N

and
∫ N

n̄
c (i) di = N−n̄

Qp∗(1+φC)
x
N

. (2.41)

Individual expenditures for each type of agent read

x̃ = p (1 + τ)

∫ n̄

0

c̃ (j) dj + p (1 + τ)

∫ N

n̄

c̃ (i) di, (2.42)

x = p (1 + τ)

∫ n̄

0

c (j) dj +Qp∗
(
1 + φC

) ∫ N

n̄

c (i) di. (2.43)

Multiplying by the relevant population size of each consumer category, (1− ϵ)L and
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ϵL, we have that total spending in the economy is

X = (1− ϵ)Lx̃+ ϵLx = Lp (1 + τ)

[
(1− ϵ)

∫ N

0

c̃ (n) dn+ ϵ

∫ n̄

0

c (j) dj

]
︸ ︷︷ ︸+

gross spending on money-purchased goods = Xm

(2.44)

+ ϵLQp∗
(
1 + φC

) ∫ N

n̄

c (i) di︸ ︷︷ ︸
gross spending on crypto-purchased goods = Xb

= Xm +Xb

which distinguishes between money-paid and crypto-paid goods and specifies that these

are gross expenditures, that is, they include consumption taxes and fees paid to the

exchange platform. For future reference, we cab rewrite aggregate gross spending on

crypto-paid goods as

Xb = ϵLQp∗
(
1 + φC

) ∫ N

n̄

c (i) di = Lp (1 + τ)
ϵ

1− δ (n̄)

∫ N

n̄

c (i) di (2.45)

where the last term follows by substituting Qp∗
(
1 + φC

)
= p (1 + τ) / (1− δ (n̄)) from

(2.22). Hence, we can alternatively rewrite (2.44) as

X = Lp (1 + τ)

[
(1− ϵ)

∫ N

0

c̃ (n) dn+ ϵ

∫ n̄

0

c (j) dj +
ϵ

1− δ (n̄)

∫ N

n̄

c (i) di

]
, (2.46)

which is, again, total spending in terms of money.

2.3.5 The exchange platform

We model the exchange platform as a competitive sector where an indefinite number

of ‘crypto-exchange firms’ provide services to consumers and firms and bear the cost

of validating these currency transactions. In this model, validation is the activity

that crypto-exchange firms must perform in every exchange operation between crypto-

currency and money – which includes both selling the crypto-currency to consumers

and repurchasing it from final producers. The exchange platform as a whole purchases

BH units of the crypto-currency from crypto-extractors – which represents another

sector employing labor: see next subsection – and employs LH workers to perform

validation activities. Since labor is homogeneous and fully mobile between the final

goods’ production sector and the exchange platform, the wage rate w will be equalized

between these sectors.

At the aggregate level, the monetary inflows of the exchange platform are

represented by fees charged on consumers selling money against crypto – that is,

money inflows for the platform – and by fees charged on producing firms that sell
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crypto against money – that is, money retained from the outflows reaching final

goods’ producers:

Platform money inflows = ϵL ·
[
Qp∗

(
1 + φC

)
−Qp∗

(
1− φF

)]
·
∫ N

n̄

c (i) di =

=
(
φC + φF

)
·Q · ϵLp∗ ·

∫ N

n̄

c (i) di = (2.47)

=
(
φC + φF

)
·Q ·BH ,

where the last term comes from the fact that the stock of crypto-currency in

circulation must match the consumers’ total demand, BH = ϵLp∗ ·
∫ N

n̄
c (i) di. The

monetary outflows of the exchange platform comprise the sectoral wage bill, wLH ,

and the monetary expenses QBH associated with the purchases of crypto-currency

from crypto-extractors at the wholesale exchange rate Q. This structure has two

implicit assumptions. First, consumers cannot purchase the crypto-currency directly

from the crypto-extractors, they need to go through crypto-exchange firms that

invest the necessary amount of labor in validation activities. Second, the

crypto-exchange firms’ commitment to repurchase the crypto-currency in circulation

from manufacturing firms versus money is honoured without any uncertainty – e.g.,

because such commitment is perfectly enforceable by rule of law. Zero profits in the

crypto-sector thus require

(
φC + φF

)
QBH = wLH +QBH .

There are many ways to model the behavior of crypto-exchange firms consistently

with the above zero-profit condition. The simplest structure hinges on linear returns

to labor in validation activities. Suppose that the exchange platform comprises H

competitive firms indexed by h ∈ [0, H]. Crypto-firm h purchases bh units of crypto-

currency from crypto-extractors at the wholesale rate Q, and hires ℓCh + ℓFh workers

to perform validation activities, where ℓCh is the number of workers validating crypto-

purchases by consumers and ℓFh is the number of workers validating crypto-sales by

manufacturing firms. The profits of the crypto-exchange firm thus read

πh = Qbh ·
(
φC + φF − 1

)
− wℓCh − wℓFh .

The validation of crypto-transactions requires an amount of work time that depends

on the number of crypto-currency units to be verified. Since both types of exchange

transactions involve the same number of crypto-currency units, we can set without

loss of generality ℓCh = ℓFh = ℓ·h and, accordingly, φC = φF = φ·. Formally, suppose

that the transfer of one unit of crypto-currency in either direction requires ξ > 0 units
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of labor, so that ℓ·h = ξbh. We can rewrite the profits of the crypto-exchange firm as

πh = Qbh · (2φ· − 1)− w2ℓ·h = Qbh · (2φ· − 1)− w · 2ξbh. (2.48)

All firms take prices Q and w as given, and compete a la Bertrand in setting the fees φ·

which will result in the equality between marginal revenues and marginal costs. Given

linear returns, each firm will charge the equilibrium fee rate associated with the zero

profit condition Q (2φ· − 1) = w2ξ, that is,

φ· =
1

2
+ ξ · w

Q
. (2.49)

Note that in order to satisfy the restriction φF < 1, parameter ξ needs to satisfy ex-

post the restriction ξ < (1/2) · (Q/w) in equilibrium. At the aggregate level, the zero

profit condition reads

(2φ· − 1) ·QBH = wLH . (2.50)

Substituting φ· from (2.49) into (2.50) yields total labor employed in the exchange

platform as a function of the total crypto-currency in circulation

LH = 2ξ ·BH , (2.51)

where BH is determined by crypto-extractors as discussed below.

2.3.6 Crypto-extractors and potential supply

The model incorporates an important distinction between crypto-currency in

circulation, BH , and potential crypto-currency supply. On the one hand, the total

crypto-currency in circulation is the relevant notion of supply in the market-clearing

condition for goods’ transactions: BH matches the total amount of crypto-currency

units used by consumers in crypto-payments for goods,

BH︸︷︷︸
Crypto-currency in circulation

= ϵLp∗ ·
∫ N

n̄

c (i) di︸ ︷︷ ︸
Transactive demand

. (2.52)

On the other hand, the potential supply of crypto-currency, denoted by BS, is a fixed

number of crypto-currency units representing the stock from which the BH units in

circulation are extracted. In our model, BS is an exogenous constant: the potential

supply of crypto-currency can be thought of as a mass of virtual coins with no inherent

value, costlessy created by an external entity – which bears similarities to money

supply, MS. However, differently from money supply, the potential supply of crypto-
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currency is not put into circulation for free and its the end-users of crypto-currency

do not have direct access to BS. Access is restricted to firms – henceforth called

‘crypto-extracting firms’ – that pay a fixed startup cost as well as variable “mining

costs” to extract units that can be sold to crypto-exchange firms against money at the

wholesale exchange rate Q. The number of crypto-extracting firms, S, is endogenously

determined by free entry leading to a symmetric equilibrium with zero profits – i.e., a

situation in which operative profits cover exactly the fixed startup cost.

Consider a single crypto-extracting firm indexed by s ∈ [0, S]. Setting up the firm

incurs a fixed labor cost, ℓfs , which can be thought of as real resources to be invested

in obtaining access to extraction activities. The firm then hires ℓms workers to extract

bs (ℓ
m
s ) units of crypto-currency from the stock BS according to the technology

bs (ℓ
m
s ) =

(
b̄ · ℓms

)ς
, 0 < ς < 1, (2.53)

where b̄ is a labor efficiency parameter that firm s takes as given. The firm’s profits

read

πs = Q · bs (ℓms )− wℓms − wℓfs = Q ·
(
b̄ · ℓms

)ς − wℓms − wℓfs (2.54)

and the first order condition with respect to ℓms implies

ς ·Q ·
(
b̄ · ℓms

)ς
= wℓms . (2.55)

Substituting (2.55) back into the profit equation yields

πs = (1− ς) ·Q ·
(
b̄ · ℓms

)ς − wℓfs . (2.56)

The combination of price-taking behavior and decreasing marginal returns to mining,

ς < 1, generates potentially positive profits that more than compensate for the fixed

cost wℓfs . However, in this case, the entry of more firms in the extraction sector can

squeeze profits by increasing the difficulty each firm faces in extraction until each firm

makes zero profits. A simple way to model this outcome is to assume that the efficiency

of each worker employed in extraction, b̄, increases with the stock of potential supply

BS and decreases with the total number of workers competing for it,

b̄ ≡ ϑ
BS∫ S

0
ℓms ds

, ϑ > 0. (2.57)

In a symmetric equilibrium where ℓms is the same for each firm, substitution of (2.57)
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into (2.53) yields the extraction level

bs (ℓ
m
s ) =

(
ϑ
BS

Sℓms
· ℓms

)ς

=

(
ϑ
BS

S

)ς

. (2.58)

Since per-firm extraction declines with the total number of firms, profits per firm

decline with S. A symmetric zero-profit equilibrium will hold under free entry when

the number of firm reaches the critcal level S = S̄ given by

(1− ς)Q

(
ϑ
BS

S̄

)ς

= wℓfs → S̄ = ϑBS ·
(
1− ς

ℓfs
· Q
w

) 1
ς

. (2.59)

Importantly, the amount of labour hired in extraction activities at the firm level is

determined by the fixed cost: solving the first order condition (2.55) for ℓms yields

ℓms = ς · Q
w

·
(
ϑ
BS

S̄

)ς

=
ς

1− ς
· ℓfs . (2.60)

Aggregating across firms, total employment is

LS = S̄ ·
(
ℓms + ℓfs

)
= S̄ · ℓfs

1− ς
= ϑ

(
1− ς

ℓfs

) 1−ς
ς

BS ·
(
Q

w

) 1
ς

, (2.61)

and the zero profit condition reads

w =
BHQ

LS
. (2.62)

Total production can be written as

BH = S̄ ·
(
ϑ
BS

S̄

)ς

=
(
ϑBS

)ς (
S̄
)1−ς

= ϑBS ·
(
1− ς

ℓfs
· Q
w

) 1−ς
ς

which can be useful for future reference.

2.3.7 Aggregate income

Since there are no savings in this static economy, total expenditures must match total

incomes. Distinguishing among sources of income by sector, we can rewrite aggregate

incomes Y i as

Y i = w
[
LH + Ls

]
+
[
wLY + rK

]
+ Lg. (2.63)

where the right hand side specifies the incomes received by workers employed in

exchange and extracting activities, w
[
LH + Ls

]
, and by owners of the inputs in
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goods’ production, wLY + rK. The three components of total expenditures satisfy

the following equations. First, the wage bill of the crypto-currency sector is

determined by (3.12) together with the market-clearing and the zero profit

conditions, respectively (2.52) and (2.62)

w
[
LH + Ls

]
=

(
φC + φF

)
·Q · ϵLp∗ ·

∫ N

n̄

c (i) di. (2.64)

Second, total factor payments to the inputs producing consumption goods equal the

market value of the resulting output sold by firms,

wLY + rK = p (1− ϵ)L

∫ N

0

c̃ (n) dn+ pϵL

∫ n̄

0

c (j) dj +
(
1− φF

)
QϵLp∗

∫ N

n̄

c (i) di.

(2.65)

Third, total net transfers to households consist of lump-sum tax rebates, i.e., the

government revenues from the consumption tax applied to all money-purchased goods,

Lg = Lτp (1− ϵ)

∫ N

0

c̃ (n) dn+ Lτpϵ

∫ n̄

0

c (j) dj. (2.66)

It can be easily verified that Y i coincides with X in expression (2.46), that is, the

aggregate constraint requiring total expenditures to match total incomes is satisfied.

By substituting (2.64), (2.65) and (2.66) in (2.63), we have

Y i = Qp∗
(
1 + φC

)
ϵL

∫ N

n̄

c (i) di+

+p (1− ϵ)L

∫ N

0

c̃ (n) dn+ pϵL

∫ n̄

0

c (j) dj +

+τ · p (1− ϵ)L

∫ N

0

c̃ (n) dn+ τ · pϵL
∫ n̄

0

c (j) dj,

where we can substitute Qp∗
(
1 + φC

)
= p (1 + τ) / (1− δ (n̄)) from (2.22) to obtain

Y i = p (1 + τ) · ϵ

1− δ (n̄)
L

∫ N

n̄

c (i) di+

+p (1 + τ) (1− ϵ)L

∫ N

0

c̃ (n) dn+ p (1 + τ) ϵL

∫ n̄

0

c (j) dj,

that is,

Y i = p (1 + τ)

[
(1− ϵ)L

∫ N

0

c̃ (n) dn+ ϵL

∫ n̄

0

c (j) dj +
ϵ

1− δ (n̄)
L

∫ N

n̄

c (i) di

]
,

(2.67)
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where the right hand side of (2.67) coincides with the right hand side of (2.46), implying

Y i = X.

Henceforth, we assume that the government rebates the revenues of the

consumption tax to all consumers without distinction, i.e., in transfers of equal

amounts for both crypto-less and crypto-using consumers. Equal transfers per

capita, g = g̃, imply equal income and expenditure levels across the two categories of

consumers: from (2.5) and (2.17), we obtain x = x̃. This implies that all individuals

consume the same units of money-purchased goods regardless of the consumer type:

going back to (2.41), we have

c̃ (i) = c̃ (j) = c (j) = cm for each j ∈ [0, n̄) , (2.68)

where c̃ (j) and c̃ (i) are purchased by crypto-less individuals, while c (j) are purchased

by individuals that have access to the crypto-currency but prefer to use money for such

goods. Considering c (i) with i ∈ [n̄, N ], instead, the units of crypto-purchased goods

are strictly less than cm in view of (2.40), which then implies

c (i) = (1− δ (n̄)) · cm = cb for each i ∈ [n̄, N ] . (2.69)

Results (2.68)-(2.69) imply that total income/expenditure can be written in more

compact form as

X = Y i = Lp (1 + τ)N · cm, (2.70)

which will be useful later.

2.4 Equilibrium

2.4.1 Money and Crypto-currency

Total money in circulation results from an exogenous rule whereby all factor incomes

and net taxes must be paid in terms of money issued by the government. The rule

says that the nominal money stock equals the value of total incomes, M s = Y i. As a

consequence, real money supply (in terms of consumption goods) equals real income,

M s

p
=
Y i

p
= L (1 + τ)N · cm (2.71)

Kensley Blaise 73 UEA - School of Economics



Chapter 2

where the last term comes from (2.70). As for the crypto-currency, the market clearing

condition is (2.52) and can be rewritten using (2.68)-(2.69) in real terms as

BH

p∗
= ϵL (N − n̄) (1− δ (n̄)) · cm (2.72)

which says that the supply of crypto-currency must match the (transactive) demand

for crypto-currency.

The relevant equations for the real exchange rate between money and

crypto-currency are the no-arbitrage equation for producers (2.23) and for consumers

(2.22), which we report here for the sake of exposition,

Qp∗

p
=

1

1− φF
(2.73)

Qp∗

p
=

1 + τ

(1− δ (n̄)) · (1 + φC)
. (2.74)

2.4.2 Input markets

In equilibrium, the labour market clears so as to ensure that total labor supply matches

total employment,

L = LY + LH + LS. (2.75)

Similarly, the capital market requires

K =

∫ n̄

0

k(j)dj +

∫ N

n̄

k(i)di (2.76)

From the profit-maximizing conditions of goods’ producers, result (2.36) shows that

goods’ prices are symmetric, p (n) = p for each n, so that every firm producing goods

employs the same capital-labor ratio: from (2.34), we have

k (n) =
1

(1− α)A
· w
p
· ℓ (n) for each n ∈ [0, N ] . (2.77)

Integrating both sides over the N goods, and substituting the aggregate labor and

capital constraints (2.75) and (2.76), yields K (1− α)A = (w/p) · LY , which we can

solve for the equilibrium real wage as

w

p
= (1− α)AK · 1

LY
. (2.78)

The relationship between the real wage and employment in the other sector where

labor is employed, the exchange platform, follow from the zero profit condition for
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crypto-exchange firms in aggregate terms,

w

p
= (2φ· − 1) · QB

H

p
· 1

LH
. (2.79)

It is useful to remember that (2.79) combined with the equilbrium fee (2.49) yields

LH = 2ξ · BH independently of labor demand of crypto-extracting firms. The latter,

in the present variant of the model, reads

w

p
=
QBH

p
· 1

LS
. (2.80)

2.4.3 Goods market equilibrium

The goods’ market equilibrium is characterized by the aggregate budget constraint of

goods-producing firms, ∫ N

0

py (n) dn = wLY + rK, (2.81)

and by the expenditure-income equality (2.70). Since y (n) = Ak (n) for each n ∈ [0, N ]

from result (2.32), total production of goods equals
∫ N

0
py (n) dn = pAK. Using this

result to substitute the left hand side of (2.81), and using (2.70) to substitute the left

hand side of (2.81), we obtain

pAK = Lp · [N − ϵ (N − n̄) δ (n̄)] · cm,

from which the real consumption index cm can be expressed as

cm =
AK

L · [N − ϵ (N − n̄) δ (n̄)]
. (2.82)

We show now have all the necessary elements to solve for the key equilbrium variables:

see below.

2.5 Solution procedure and numerical results

2.5.1 Reduced system

In order to solve for the equilibrium values of the endogenous variables, we can follow

a two-step procedure. First, we build a reduced system that collects a subset of the

equilibrium relationships to deliver solutions for a subset of endogenous variables.

Second, we use the remaining equilibrium relationships – which are implicit in the

reduced system – to determine all other endogenous variables. The reduced system
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reads

n̄ =
1 + φ− (1 + τ) (1− φ)

1 + φ
· N
β
, (2.83)

δ (n̄) =
β

N
· n̄ (2.84)

cm =
AK

L · [N − ϵ (N − n̄) δ (n̄)]
(2.85)

p =
M s

L (1 + τ)N · cm
(2.86)

QBH

p
=

ϵL (N − n̄) (1− δ (n̄))

1− φ
· cm (2.87)

w

p
= (1− α)AK · 1

LY
(2.88)

w

p
= (2φ− 1) · QB

H

p
· 1

LH
(2.89)

w

p
=

QBH

p
· 1

LS
(2.90)

L = LY + LH + LS (2.91)

LS = ϑBS ·
(
1− ς

ℓfs
· Q
w

) 1
ς

· ℓfs
1− ς

(2.92)

φ =
1

2
+ ξ · w

Q
(2.93)

Equations (2.83)-(2.84) determine the equilibrium threshold good and the associated

critical level of δ (n) = δ (n̄) according to Proposition 1. Equation (2.85) is the final

goods’ market clearing condition determining consumption of money-purchased

goods. Equation (2.86) is the cash-in-advance constraint determining the money

price of final goods for a given supply of money. Equation (2.87) is the market

clearing condition in the crypto-currency market (2.72) – requiring that the

crypto-currency in circulation matches transactive demand from consumers –

rewritten in terms of money-purchased goods. Equations (2.88)-(2.90) are the labor

demand schedules of, respectively, the final goods’ producers, crypto-exchange firms,

and crypto-extracting firms. Equation (2.91) is the labor market clearing condition.

Equation (2.92) is the zero-profit condition for crypto-extracting firms. Equation

(2.93) is the equilibrium fee charged by crypto-exchange firms, implying zero profits

in the exchange platform. This system of 11 equations determines 11 endogenous

variables, namely,

n̄, δ (n̄) , cm, p,
QBH

p
,
w

p
, LY , LH , LS,

Q

w
, φ. (2.94)
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The equilibrium values of (p, w
p
, Q
w
) imply solutions for the levels of the key nominal

variables (p, w,Q). Combining these results with the equilibrium fee φ, we obtain the

real exchange rate 1
1−φ

= Qp∗

p
and the price of crypto-purchased goods p∗ = 1

1−φ
p
Q
.

From (2.69), the consumption of crypto-purchased goods is cb = (1− δ (n̄)) · cm, and
the amount crypto-currency in circulation is BH = ϵL (N − n̄) (1− δ (n̄)) · p∗ · cm.
Aggregate real expenditure is X/p = L (1 + τ)N ·cm. Finally, we can calculate welfare

– and more specifically, the utility levels of crypto-using and crypto-less consumers –

as

U ≡
∫ n̄

0

ln [c (j) (1− δ (j))] dj +

∫ N

n̄

ln c (i) di = (2.95)

= n̄ · ln cm +

∫ n̄

0

ln

(
1− β

N
· n

)
dn+ (N − n̄) ln cb

and

Ũ ≡
∫ N

0

ln [c̃ (n) · (1− δ (n))] dn (2.96)

= N · ln cm +

∫ N

0

ln

(
1− β

N
· n

)
dn,

respectively. A numerical illustration is reported below.

2.5.2 Benchmark equilibrium: a numerical illustration

We use the reduced system (2.83)-(2.93) to numerically evaluate the equilibrium levels

of the endogenous variables. The calibration of the exogenous constants in Table

1 adheres to the mathematical constraints underlying the construction of our one-

period model. The baseline results are then reported in Table 1 and the subsequent

ones. Figure 1 illustrates the variation in utility levels over the goods space for crypto-

using and crypto-less consumers, as formulated in expressions 2.95 and 2.96. Overall,

our baseline results align with the expected signs and magnitudes of the model’s key

variables. For instance, the threshold good n̄ satisfies the restriction implied by the

proposition in subsection 2.3.2.6. The distribution of the stock of goods purchased

with either means of payment is consistent with real-world observations, where crypto-

currencies are marginally used in goods transactions. In terms of utility gains, crypto-

using consumers strictly dominate crypto-less consumers. The latter finding gives us

a strong basis to study how various policy and non-policy decisions affect the welfare

level of the two consumer types in our economy. Below, we assess the resulting effect

of a partial change in some of the key exogenous constants around the benchmark

equilibrium solutions.
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Table 2.1: Exogenous constants and their values

Variable/Parameter τ N β M L ϵ A K α ς lfs BS ξ ϑ
Value 0.05 50 0.75 1000 200 0.5 0.10 10000 0.4 0.25 10 1000 0.02 1

2.5.3 Policy shocks: money growth, crypto-currency supply

and tax hike

Effects of money growth. Given the chosen exogenous constants, a 10% increase in

money growth pushes up the market price of money-purchased goods and the nominal

wage by a comparable proportion. This results in an appreciation of the nominal

exchange rate between money and crypto-currency to maintain identical expenditure

levels between crypto-less and crypto-using consumers. Real expenditures, demand for

consumption goods, and overall consumer welfare remain unchanged under the studied

monetary shock. The model’s prediction aligns with the real business cycle literature,

where an aggregate money supply shock affects only prices in the economy, in this case

p and w.

Effects of crypto-currency growth. In equilibrium, a positive crypto-currency

supply shock affects both the nominal and real variables of the model. Initially, the

increase in crypto-currency circulation drives up the demand for exchange rate

conversion service, leading to a rise in φ. The shock also triggers a rise in the market

price of crypto-purchased goods. In response, consumers substitute crypto-purchased

goods with money-purchased goods. This price inflation reduces real aggregate

consumption in the economy and decreases real expenditures. In the labour sector,

employment rises in the goods production and the crypto-exchange sectors whereas

the extraction sector sees a halt in employment activity. Given that labour

compensation is homogeneous across sectors, the lower employment activity in the

extraction sector forces the labour market to clear at a lower nominal wage compared

to the benchmark simulation. The crypto shock deteriorates welfare for both

crypto-using and crypto-less consumers. The welfare loss for money-using consumers

derives from consuming goods with an increased disutillity penalty. As explained

above, the crypto price inflation enlarges the subset of goods purchased with money.

The downside comes with the fact that each additional good added to the subset of

money-purchased good bears higher disutility for the consumer and reduces the

associated utility. In the case of crypto-using consumers, the welfare loss reflects the

impact of inflation on the real consumption. Overall, the crypto-currency supply

shock has real effects and impacts consumer welfare, as reflected in the changes in

the utility levels in Table 2.

Effects of a consumption tax hike. A 10% consumption tax negatively impacts the

quantity of money-purchased goods, putting downward pressure on the market price
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of supplied goods. The resulting positive income effect boosts the real consumption

in the economy. However, the demand for crypto-purchased goods grow faster than

money-purchased ones under the 10% tax increase. On the labour side, we observe a

contraction in employment in goods production, leading to a decline in the nominal

wage rate. Meanwhile, the increased demand for crypto-purchased goods combined

with a higher demand for crypto-currencies raise employment in exchange and

extraction activities. In aggregate terms, real expenditures rise due to the boost in

real consumption. It is worth noting that the specified shock pushes down crypto

fees. This explains a scale effect in the crypto sector where higher activities attract

new entrants and drives down the market price for service. In conclusion, both

consumer types enjoy higher utility as a result of stronger purchasing power as

reported in Table 2.

Table 2.2: Benchmark results and policy shock analysis

Variable Baseline ∆MS ∆BS ∆τ
φ 0.5084 0.5084 0.5086 0.5083
n̄ 43.8506 43.8506 43.8633 43.7391

δ(n̄) 0.6578 0.6578 0.6579 0.6561
cm 0.1042 0.1042 0.1042 0.1043
cb 0.0357 0.0357 0.0356 0.0359
p 0.9139 1.0052 0.9139 0.9089
p∗ 0.2635 0.2635 0.2701 0.2616
Q 7.0554 7.7610 6.8852 7.0673
w 2.9488 3.2437 2.9487 2.9378
LY 185.9434 185.9434 185.9678 185.6357
LH 0.2311 0.2311 0.2363 0.2349
LS 13.8255 13.8255 13.7959 14.1294
BH 5.7784 5.7784 5.9082 5.8734
S̄ 1.0369 1.0369 1.0347 1.0597
w
Q

0.4180 0.4180 0.4283 0.4157
Qp∗

p
2.0340 2.0340 2.0349 2.0338

w
p

3.2268 3.2268 3.2264 3.2321

QBH

p
44.6120 44.6120 44.5105 45.6680

BH

BS 0.0058 0.0058 0.0054 0.0059
X
P

1094.2611 1094.2611 1094.1793 1100.1924
U -139.0447 -139.0447 -139.0519 -138.9817

Ũ -139.9599 -139.9599 -139.9636 -139.9271

2.5.4 Population shocks versus crypto-currency access

Effects of an increase in L. An increase in population size exerts pressure on the

labour market in the form of excess supply as reported in Table 3. The real wage

shifts downward to reflect the combined effect of a lower nominal wage on the labour

market and inflationary pressures stemming from crypto-purchased goods. The

population shock increases the demand for the mass of goods purchased with

crypto-currencies and lowers the crypto fees, through the same scale effect

mechanism explained in the section above. Following the shock, real expenditures go
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up, reflecting the volume effect generated by a higher population size. On the

crypto-currency side, the population growth leads to higher demand of currency for

transactions. In a nutshell, a population shocks affects all segments of crypto-backed

activities. The shock is welfare-deteriorating for both crypto-using and crypto-less

consumers, which comes from the contraction in real consumption induced by the

reduction in real purchasing power.

Effects of an increase in ϵ. A higher penetration of crypto-currencies as a means

of payment increases the consumption of crypto-purchased goods. The market reacts

by putting downward pressures on the price of money-purchased goods. A direct

consequence of a positive shock to ϵ is a rise in employment in crypto-related

activities, as shown in Table 3. In other words, the shock causes a shift in labour

force from goods production to crypto-related occupations. As in the above analysis,

higher activities in crypto-backed activities lower transaction fees charged by

exchange platforms. The deflationary impact on both types of goods increases the

purchasing power of consumers in the economy. A higher real wage drives up

expenditures and positively affects the utility derived by different types of consumers.

Table 2.3: Benchmark results and population shock analysis

Variable Baseline ∆L ∆ϵ
φ 0.5084 0.5082 0.5082
n̄ 43.8506 43.8382 43.8386

δ(n̄) 0.6578 0.6576 0.6576
cm 0.1042 0.0947 0.1047
cb 0.0357 0.0324 0.0358
p 0.9139 0.9138 0.9099
p∗ 0.2635 0.2827 0.2553
Q 7.0554 6.5725 7.2465
w 2.9488 2.6809 2.9582
LY 185.9434 204.5115 184.5604
LH 0.2311 0.2487 0.2481
LS 13.8255 15.2398 15.1915
BH 5.7784 6.2163 6.2015
S̄ 1.0369 1.1430 1.1394
w
q

0.4180 0.4079 0.4082
Qp∗

p
2.0340 2.0332 2.0332

w
p

3.2268 2.9338 3.2510

QBH

p
44.6120 44.7109 49.3871

BH

BS 0.0058 0.0062 0.0062
X
p

1094.2611 1094.3409 1098.9790

U -139.0447 -143.8032 -138.8264

Ũ -139.9599 -144.7218 -139.7448

2.5.5 Technology shocks

Effects of an increase in A. The 10% productivity shock does not affect the distribution

of goods across the different types of consumers as reported in table 4. The effects

are similar to those observed in related neoclassical models, where technology-driven
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shocks improve production processes and increase aggregate output in the economy.

The higher supply of goods exerts downward pressure on prices and strengthens real

wages. This, in turn, increases real expenditures by a comparable percentage, leading

to a positive impact on the utility enjoyed by different types of consumers.

Effects of an increase in ℓfs . Higher fixed capital investment in the extraction

activity reduces transaction fees on crypto-purchased goods. This can be interpreted

as a network effect, where exchange platforms respond by improving their efficiency in

validating crypto-backed transactions, thereby lowering costs for other economic agents

in the economy. The increased investment triggers a reallocation of the labour force,

leading to higher employment in the extraction industry. Nominal wages readjust to

clear the labour market at a higher rate. As a result of the higher wage bill, some

firms exit the extraction industry, negatively impacting the stock of crypto-currency

in circulation. The combined effect of higher nominal wages and lower prices boosts

aggregate consumption and expenditures. Overall, the investment shock improves the

welfare of both crypto-using and crypto-less consumers.

Table 2.4: Benchmark results and technology shock analysis

Variable Baseline ∆A ∆lfs
φ 0.5084 0.5084 0.5078
n̄ 43.8506 43.8506 43.8143

δ(n̄) 0.6578 0.6578 0.6572
cm 0.1042 0.1146 0.1042
cb 0.0357 0.0392 0.0357
p 0.9139 0.8308 0.9137
p∗ 0.2635 0.2395 0.2445
Q 7.0554 7.0554 7.5910
w 2.9488 2.9488 2.9493
LY 185.9434 185.9434 185.8737
LH 0.2311 0.2311 0.2162
LS 13.8255 13.8255 13.9101
BH 5.7784 5.7784 5.4044
S̄ 1.0369 1.0369 0.9484
w
q

0.4180 0.4180 0.3885
Qp∗

p
2.0340 2.0340 2.0316

w
p

3.2268 3.5495 3.2280

QBH

p
44.6120 49.0731 44.9019

BH

BS 0.0058 0.0058 0.0054
X
p

1,094.2611 1,203.6872 1,094.4946

U -139.0447 -134.2792 -139.0243

Ũ -139.9599 -135.1944 -139.9492

2.6 Conclusion

Our model sheds light on the dynamics of currency competition between fiat money

and crypto-currencies, highlighting the conditions under which each form of currency is

used for transactions. We demonstrate that the coexistence of both currencies hinges
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on the relative transaction costs, tax policies, and privacy benefits associated with

each. The introduction of a threshold good, where consumers are indifferent between

fiat and crypto-currency, reveals the intricate balance between the two currencies in

the market. While fiat money remains neutral in our framework, crypto-currencies

introduce real economic effects due to the costs associated with mining and its impact

on labor distribution. Our findings suggest that the adoption of crypto-currencies has

broader macroeconomic implications, particularly through changes in consumption

patterns, labor reallocation, and sectoral employment. Future research should explore

how these dynamics evolve over time and under different monetary policy regimes,

considering the growing role of digital currencies in the global economy.
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A Dynamic Model of

Crypto-currencies

Abstract

We analyze the coexistence of cash (fiat money) and privately-issued currencies

(crypto-currencies) in a dynamic model where all factors of production are paid in

fiat money. This introduces a cash-in-advance constraint that affects both

consumption and investment, leading to non-neutrality of money. Crypto-currencies

add distortions through labor reallocation and transaction fees. Using flexible utility

specifications, we explore the impact of substitutability between money and

crypto-purchased goods. Our main result is that an increase in the money supply

raises inflation and shifts labor allocation, affecting growth dynamics. While broader

economic variables remain stable, real wages are highly sensitive to changes in

consumer preferences and crypto-fees, underscoring the impact of private digital

currencies on the economy’s long-term trajectory.
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3.1 Introduction

We study the coexistence of fiat money and crypto-currencies in a dynamic model

where all production factors are legally required to be compensated in fiat money,

the legal tender. This legal requirement for all transactions to be conducted in a

government-backed currency is equivalent to a comprehensive cash-in-advance (CIA)

constraint, which mandates that money must cover both consumption expenditures

and investment in physical capital. The introduction of physical capital investment

and dynamic considerations allows us to capture the non-neutrality of both fiat money

and crypto-currencies, which does not occur in models where both media of exchange

serve purely transactional functions.

The CIA constraint also extends to exchanges of fiat money for crypto-currencies,

which are then used to purchase crypto-paid consumption goods. We model the

representative consumer’s preference for either form of payment through different

mathematical specifications of the instantaneous utility function. Initially, the

consumer derives utility by combining money-purchased and crypto-purchased goods

through a Cobb-Douglas function. Later, we generalize our analysis by considering a

Constant Elasticity of Substitution (CES) framework, which offers more flexibility to

study the limiting cases of complementarity and substitutability between fiat money

and crypto-currencies.

Additionally, we abstract from explicitly modeling the pecuniary and

non-pecuniary benefits of crypto-purchased goods, as was done in our static

framework. Instead, we assume that consumers perceive money-purchased and

crypto-purchased goods as yielding different utilities, even though firms view these

goods as identical from a production standpoint.

Our first key result is that money is neither neutral nor super-neutral in our

system. We provide both analytical and numerical derivations of this non-neutrality

in section 3.8, within both the neoclassical and endogenous growth frameworks. A

shock in the money supply growth rate propagates through the economy by raising

inflation, which in turn reduces real consumption growth due to the increased cost of

holding money. This affects capital accumulation and labor allocation as the CIA

constraint forces adjustments in consumption and investment. The impact of this

shock is amplified by the degree of substitutability between money-purchased and

crypto-purchased goods, leading to shifts in real wages and sectoral labor allocation.

The introduction of crypto-currencies alters the dynamics of monetary

non-neutrality in our model. While money is non-neutral due to the cash-in-advance

(CIA) constraint on capital purchases, where inflation raises the cost of holding

money, crypto-currencies add another layer of distortion. Labor is diverted from
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goods production to the operation of crypto-exchange platforms, reducing the

capital-labor ratio and leading to under-accumulation of capital and lower

consumption levels. Furthermore, crypto-currency fees distort the balance between

money-purchased and crypto-purchased goods, creating additional inefficiencies in

the steady state economy.

In subsection 3.8.3, we illustrate how key economic variables respond to changes

in the elasticity of substitution between money-purchased and crypto-purchased

goods over time. Despite steady growth in capital, output, and consumption, the

elasticity of substitution has little effect on these broader growth trends, indicating

that technological progress is the main driver of long-term economic growth.

However, real wages are much more sensitive, rising faster when crypto-purchased

goods are more easily substituted for money-purchased goods, as labor is allocated

more efficiently. In contrast, with stronger complementarity between goods, wage

growth is slower. Price levels remain stable, reflecting the relatively small impact of

substitution on overall cost structures. These results highlight that while broader

growth is driven by technology, labor markets and wages are more responsive to

changes in consumer preferences.

This framework enables us to examine the interaction between fiat money and

crypto-currencies within an economy and how legal and economic constraints shape the

dynamic allocation of resources across sectors. Our analysis offers valuable insights into

the effects of monetary policy and exchange platform fees on an economy’s long-term

growth trajectory, providing new perspectives on the role of private digital currencies

in modern monetary systems.

As stated in the introduction, we use digital currencies to refer specifically to

privately issued currencies or crypto-currencies, as opposed to fiat or state-backed

currencies. This terminology aligns with the relevant literature, where

crypto-currencies and digital currencies are often used interchangeably (Barrdear and

Kumhof, 2016). Our primary focus is to assign a transactional role to

crypto-currencies and analyze their impact on key economic outcomes in equilibrium.

The remainder of the paper progresses as follows. We first present the connection

between our results and the existing literature in section 3.2. We then present our

dynamic model in section 3.3. Then, we explore the solutions emerging from the

optimization problem in section 3.4. Finally, we provide a numerical analysis to study

the response of the endogenous variables following a shock to the exogenous constants

in the final section.
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3.2 Related Literature

This paper builds on the literature of private currencies, monetary economics, and

currency competition. We start with the monetary model of Marchiori (2021), where

a cash-in-advance constraint requires consumers to exchange part of their money

holdings for crypto-currencies to purchase specific goods. While Marchiori (2021)

focuses on Bitcoin supply growth, our analysis examines how exchange platform fees

and consumer preferences for crypto-purchased goods affect the economy. In this

sense, we offer a partial equilibrium analysis, abstracting from the mining sector,

similar to other models in the literature (see Schilling and Uhlig (2019b), Lotz and

Vasselin (2019), Benigno et al. (2022)).

Another important contribution to the literature is highlighting key policy

implications regarding the crypto-money linkage. For instance, Schilling and Uhlig

(2019) argue that welfare remains unaffected in a monetary model with

crypto-currency price dynamics. However, we provide evidence in Table 3.4 and

Table 3.9 that a shock to exchange platform transaction fees can distort welfare. The

welfare level varies depending on the functional forms of the utility function.

Fernández-Villaverde and Sanches (2019) characterizes the equilibrium welfare level

in the presence of a private currency as wasteful, where the authority fails to provide

the necessary amount of money for transactions. Our model does not include

variables to make such a statement.

3.3 Model Setup

3.3.1 Cash-in-advance and dynamic budget constraints

Time is continuous and indexed by t ∈ [0,∞). The economy is populated by a

constant number of L identical households purchasing consumption goods with a

combination of fiat money issued by the government (henceforth, money) and

crypto-currency purchased on exchange platforms. Each consumer is infinitely-lived

and maximizes intertemporal lifetime utility

U ≡
∫ ∞

0

e−ρt ln [u (cmt , c
x
t )] dt =

∫ ∞

0

e−ρt ln
[
(cmt )

θ (cxt )
1−θ

]
dt, (3.1)

where ρ > 0 is the utility discount rate, and cmt and cxt indicate units of the consumption

good purchased at time t by means of money and crypto-currency, respectively.

Money is printed costlessly by the government and transferred to households via

lump-sum transfers. The single consumer uses money to purchase new capital, to

directly purchase cmt units of output or to purchase units of crypto-currency that
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are then used to purchase cxt units of output. Denoting aggregate real investment in

physical capital by K̇t, aggregate nominal money by Mt and the aggregate units of

purchased crypto-currency by St, the CIA constraint that applies to money holdings

at the individual level reads

Mt

L
= Pt

K̇t

L
+ Ptc

m
t +Qt (1 + δt)

St

L
, (3.2)

where Qt is the nominal exchange rate between money and crypto-currency and δt are

fees paid by the household to acquire the crypto-currency from exchange platforms –

i.e., the units of money needed by households to purchase one unit of crypto on the

market are Qt (1 + δt)
1. The budget for crypto-paid consumption goods is subject to

the parallel crypto-CIA constraint

St

L
= P ∗

t c
x
t . (3.3)

From (3.2) and (3.3), the combined CIA constraint reads

Mt

L
= Pt

K̇t

L
+ Ptc

m
t +Qt (1 + δt)P

∗
t c

x
t . (3.4)

Each household supplies labor (inelastically) to firms and owns a fraction 1/L of

the existing capital stock Kt that firms use as an input in goods’ production. The

household dynamic budget constraint in money terms reads

Pt
K̇t

L
+
Ṁt

L
= wt + rt

Kt

L
+
Vt
L

− Ptc
m
t −Qt (1 + φt)P

∗
t c

x
t (3.5)

where wt is the monetary wage rate, rt is the rate of return to capital in terms of money,

Vt equals aggregate lump-sum transfers from the government to all households. We

henceforth normalize total population (workforce) to unity, L = 1, and transform

(3.5) in real terms by defining real money as mt = Mt/Pt, real money transfers as

vt = Vt/Pt, and the real exchange rate qt =
QtP ∗

t

Pt
, from which we obtain

K̇t + ṁt =
1

Pt

(wt + rtKt) + vt − cmt − qt (1 + δt) c
x
t −mtπt. (3.6)

Similarly, the combined CIA constraint (3.4) can be rewritten as

mt = K̇t + cmt + qt (1 + δt) c
x
t . (3.7)

1Our model assumes a uniform exchange rate across crypto-currency exchanges, thereby excluding
potential frictions that affect price discovery in the CM. This assumption aligns more closely with a
special class of crypto-currencies known as stablecoins.
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The household problem consists of maximizing present-value utility (3.1) subject to

the constraints (3.6) and (3.7). As usual in the literature, we postulate that CIA

constraints hold as strict equalities – i.e., both the CIA constraint on money (3.2) and

the CIA constraint on the crypto-currency (3.3) are binding because both currencies

are strictly dominated by physical capital in terms of rate of returns. We are thus

focusing on environments where the rate of money deflation (−πt = −Ṗt/Pt) is smaller

than the market rental rate of capital – which is the case in any economy with positive

inflation – and where agents do not accumulate crypto-currency as an asset – which is

guaranteed by a similar return-dominance condition that we will formulate and impose

ex post via parameter restrictions.

3.3.2 Production

All consumption goods are produced with the same constant returns to technology by

a competitive sector: total final output equals Yt = F (Kt, atL
y
t ), where L

y is labor

employed in goods production and at is labor productivity. Real output is sold to

households either as consumption or as new physical capital:

F (Kt, atL
y
t ) = cmt + cxt + K̇t = Ct + K̇t (3.8)

where we have defined Ct ≡ Lcmt + Lcxt as aggregate real consumption and L is

normalized to unity. From the producers point of view, there is perfect

substitutability among the three uses of the final good, which implies price

equalization: by no-arbitrage logic, each unit of output must yield Pt units of money.

New capital and money-paid consumption goods indeed have the same money price

Pt. For crypto-paid consumption goods, the production sector will charge a

crypto-price P ∗
t that generates the same unit revenue after conversion.

After selling cxt units against crypto-currency, producers will convert the associated

crypto-payments into money so as to compensate production factors. Converting the

P ∗
t c

x
t units of crypto received from customers into money involves paying a proportional

fee to exchange platforms. We set the fee rate for firms equal to δt, the same fee rate

paid by households acquiring the crypto-currency. The net money revenue from selling

crypto-paid goods thus equalsQt (1− δt)P
∗
t c

x
t in terms of money. By no-arbitrage with

the revenue that firms would obtain by selling the same units against money, Ptc
x
t , it

follows that the crypto-price of crypto-purchased goods equals

P ∗
t =

Pt

Qt (1− δt)
. (3.9)

The total profits of the final sector in terms of money can thus be written as
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PtF (Kt, atL
y
t ) − rtKt − wtL

y
t , and constant returns to scale imply the zero-profit

condition

PtF (Kt, atL
y
t ) = rtKt + wtL

y
t = PtCt + PtK̇t. (3.10)

Note that the no-arbitrage condition (3.9) implies that the real exchange rate equals

qt =
QtP

∗
t

Pt

=
1

1− δt
, (3.11)

so that positive growth in exchange fees implies a real appreciation of the crypto-

currency.

3.3.3 Exchange platform

We model the exchange platform as a competitive sector where an indefinite number

of ‘crypto-exchange firms’ provide services to consumers and firms and bear the cost

of validating these currency transactions. In this model, validation is the activity

that crypto-exchange firms must perform in every exchange operation between

crypto-currency and money – which includes both selling the crypto-currency to

consumers and repurchasing it from final producers. The exchange platform as a

whole trades St = P ∗
t c

x
t units of the crypto-currency and employs 1 − Ly

t workers to

perform validation activities. Since labor is homogeneous and fully mobile between

the final goods’ production sector and the exchange platform, the wage rate wt will

be equalized between these sectors.

At the aggregate level, the monetary inflows of the exchange platform are

represented by fees charged on consumers selling money against crypto – that is,

money inflows for the platform – and by fees charged on producing firms that sell

crypto against money – that is, money retained from the outflows reaching final

goods’ producers:

Platform money inflows = QP ∗
t (1 + δt) c

x
t −QP ∗

t (1 + δt) c
x
t =

= 2δt ·Qt · P ∗
t c

x
t︸︷︷︸

St

. (3.12)

The monetary outflows of the exchange platform equal the wage bill, wt (1− Ly
t ). Zero

profits in the crypto-sector thus require

2δtQt · P ∗
t c

x
t︸︷︷︸

St

= wt (1− Ly
t ) . (3.13)
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There are many ways to model the behavior of crypto-exchange firms consistently

with the above zero-profit condition. We leave this part of the model unspecified for

the sake of generality: as we show in sections 3.5 and 3.6, many relevant results can

be established, for different variants of the model, by simply imposing the zero-profit

condition (3.13) without assuming a specific technology for the exchange platform.

Further results for the main variants of the model – the ‘neoclassical case’ and the

‘AK case’ – will be obtained later under specific technology assumptions for both

goods production and exchange platform.

3.3.4 Aggregate constraints and equivalence

This subsection briefly (i) derives the aggregate constraint of the economy in money

terms and (ii) verifies the equivalence between the CIA constraint imposed on

expenditures (3.7) and the legal requirement that all factor incomes must be paid

using the legal tender.

(i) Aggregate constraint of the economy in money terms. By combining the zero

profit condition of the production sector (3.10) with the household budget constraint

(3.6), we obtain

K̇t = F (Kt, atL
y
t ) +

wt (1− Ly
t )

Pt

− cmt − qt (1 + δt) c
x
t + (vt −mtπt − ṁt) (3.14)

Using the definition of real exchange rate qt =
QtP ∗

t

Pt
, we can rewrite the zero profit

condition for the exchange platform (3.13) as

2δtqtPtc
x
t = wt (1− Ly

t ) . (3.15)

Substituting (3.15) in (3.14) and rearranging terms yields

K̇t = F (Kt, atL
y
t )− cmt − qt (1− δt) c

x
t + (vt −mtπt − ṁt)

which, after substituting qt (1− δt) = 1 from (3.11), becomes

PtK̇t + Ptc
m
t + Ptc

x
t = PtF (Kt, atL

y
t ) + Pt [vt −mtπt − ṁt] . (3.16)

Expression (3.16) is the aggregate resource constraint of the economy in money terms.

In real terms, it reduces to the goods market clearing condition because, under a

binding CIA constraint, real money transfers vt represent the increase in real money
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holdings,

vt =
Ṁt

Pt

=
Ṁt

Mt

·mt =

(
ṁt

mt

+ πt

)
·mt = ṁt +mtπt, (3.17)

so that the last term in square brackets in (3.16) cancels out, and dividing boths sides

by Pt yields the market clearing condition (3.8).

(ii) Equivalence between CIA constraint and legal requirement on factor payments.

Recalling the CIA constraint in real terms, use (3.11) to rewrite (3.7) as

mt = K̇t + cmt +
1 + δt
1− δt

cxt , (3.18)

which, after some manipulation, yields

mt = K̇t + cmt + cxt +
2δt

1− δt
· cxt . (3.19)

Multiplying both sides of (3.19) by Pt and using again (3.11) yields

Mt = PtK̇t + Ptc
m
t + Ptc

x
t︸ ︷︷ ︸

rtKt+wtL
y
t

+ 2δt · qtPtc
x
t︸ ︷︷ ︸

wt(1−Ly
t )

(3.20)

where the last term coincides with the exchange plarform’s total wage bill by the

zero profit condition (3.15). Result (3.20) confirms that the CIA constraint imposed

on expenditures (3.7) is equivalent to the assumed legal requirement that all factor

incomes must be paid using money, the legal tender.

3.4 Intertemporal choices and equilibrium notions

3.4.1 Utility maximizing conditions

The household problem consists of maximizing present-value utility (3.1) subject to the

constraints (3.6) and (3.7). The current-value Hamiltonian for the household problem

can be written as

= ln
[
(cmt )

θ (cxt )
1−θ

]
+ λKt K̇t + λMt ṁt + λSt

[
mt − K̇t − cmt − qt (1 + δt) c

x
t

]
=

= ln
[
(cmt )

θ (cxt )
1−θ

]
+ λKt It + λMt ṁt + λSt [mt − It − cmt − qt (1 + δt) c

x
t ] , (3.21)

where we have defined capital investment as K̇ = I. This allows us to treat real

money m and capital K as state variables while cmt , c
x
t and It act as control variables;

all prices are taken as given under perfect foresight, λKt is the shadow price of capital
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accumulation, λMt is the shadow price of money accumulation, and λSt is the Khun-

Tucker multiplier attached to the CIA constraint. Replacing ṁt by means of expression

(3.6), and collecting terms for K̇ = I, the Hamiltonian (3.21) can be rewritten as

= ln
[
(cmt )

θ (cxt )
1−θ

]
+
(
λKt − λSt − λMt

)
· It + (3.22)

+λMt

[
1

Pt

(wt + rtKt) + vt − cmt − qt (1 + δt) c
x
t −mtπt

]
+

+λSt · [mt − cmt − qt (1 + δt) c
x
t ] .

The necessary conditions for utility maximization are therefore

cmt
= 0 → θ

cmt
− λMt − λSt = 0

cxt
= 0 → 1− θ

cxt
−
(
λMt − λSt

)
qt (1 + δt) = 0

It = 0 → λKt − λSt = λMt

Kt = ρλKt − λ̇Kt → ρλKt − λ̇Kt = λMt
rt
Pt

Mt = ρλMt − λ̇Mt → ρλMt − λ̇Mt = λSt − λMt πt

along with the transversality conditions

lim
t→∞

λKt Kte
−ρt = 0, (3.23)

lim
t→∞

λMt mte
−ρt = 0. (3.24)

For future reference, we can rewrite the utility-maximizing conditions as

θ

cmt
= λKt (3.25)

1− θ

cxt
= λKt · qt (1 + δt) (3.26)

λKt = λMt + λSt (3.27)

λ̇Kt
λKt

= ρ− λMt
λKt

· rt
Pt

(3.28)

λ̇Mt
λMt

= ρ+ πt −
λKt − λMt
λMt

(3.29)

Equations (3.25) and (3.26) imply that the ratio between money-paid and crypto-paid

consumption goods is determined by tastes and by the gross real exchange rate between
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money and crypto-currency:

cmt
cxt

=
θ

1− θ
· qt (1 + δt) =

θ

1− θ
· 1 + δt
1− δt

(3.30)

where the last term follows from (3.11). As intuitive, the share of consumption in

money-purchased goods increases with higher crypto-fees.

The co-state equations (3.28)-(3.29) can be reduced to a single differential equation

by defining the composite multiplier λRt ≡ λMt /λ
K
t , which evolves over time according

to
λ̇Rt
λRt

=
λ̇Mt
λMt

− λ̇Kt
λKt

= πt −
λKt − λMt
λMt

+
λMt
λKt

· rt
Pt

that is,
λ̇Rt
λRt

= πt −
1− λRt
λRt

+ λRt · rt
Pt

. (3.31)

Equation (3.31) determines the joint dynamics of the shadow values of money and

capital and will be used later to determine the properties of long-run equilibria.

3.4.2 Steady-state and BGP equilibria

The work-horses of dynamic macroeconomics suggest considering two reference

notions of long-run equilibria. The first characterizes models of exogenous growth,

i.e., Ramsey-like economies where diminishing returns to capital drive down the

interest rate over time and imply that, in the absence of productivity growth,

consumption and output per capita are stationary in the long run. In the present

context, if we assume that the production function of the final sector exhibits

diminishing returns to capital (at the firm and at the aggregate level) alongside a

constant exogenous level of labor productivity, we obtain a Ramsey-like economy

that should, at least in principle, admit a steady-state equilibrium in the long run

characterized by constant consumption levels. We investigate this point in the first

variant of our model, which we label as the ‘neoclassical case’.

The second variant of the model is suggested by the endogenous growth literature.

In this class of models, the economy’s rate of return is sustained in the long run by

endogenous forces that eliminate strictly diminishing returns to accumulable factors,

implying persistent consumption growth in the long run. In the present context, if we

assume that the production function of the final sector incorporates learning-by-doing

spillovers through labor productivity – whereby capital exhibits diminishing returns at

the firm level but non-diminishing returns at the aggregate level – we obtain a Romer-

like economy (Romer (1989)) that should, at least in principle, admit a balanced growth

path equilibrium delivering sustained growth in consumption and output in the long
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run. We will refer to this variant of the model as to the ‘AK case’.

3.5 The Neoclassical case

This section describes the general properties of the steady state equilibrium. These

properties hold regardless of the specific technology used by the exchange platform and

are generally valid for any static CRS production function in goods production (i.e.,

a linearly homogeneous technology with constant labor productivity: at = a > 0). In

section 3.8 we will specify technologies for both the exchange platform and the goods

sector to derive further results on the impact of technology shocks.

3.5.1 Consumption and money non-neutrality

Consider an equilibrium with constant consumption. From (3.25) and (3.26),

stationarity in cmt and cxt requires a constant multiplier λKt as well as constant

crypto-fees,
d

dt
qt (1 + δt) =

d

dt

1 + δt
1− δt

= 0,

which will be the case for suitable specifications of the technology of the exchange

platform. From (3.28), the steady state λ̇Kt = 0 requires that the real rental rate

for capital equals the utility dicount rate weighted by the composite multiplier λRt ≡
λMt /λ

K
t previously defined,

rt
Pt

=
1

λRt
· ρ. (3.32)

Since ρ is constant and rt/Pt equals the physical marginal product of capital, a constant

real interest rate requires λ̇Rt = 0 in (3.31), which yields

λRt =
1

1 + ρ+ πt
. (3.33)

By combining (3.32) with (3.33), a steady-state equilibrium in the neoclassical case is

characterized by the real rate of return

rt
Pt

= ρ · (1 + ρ+ πt) . (3.34)

Expression (3.34) shows three important results. First, money is not neutral: a

nominal variable – the money inflation rate, πt – affects real variables in equilibrium

– the physical marginal product of capital, rt/Pt. Second, a neoclassical steady state

with constant real interest requires the inflation rate to be constant over time, which

in turn imposes a restriction on monetary growth (i.e., a constant money growth rate
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set by the authority). Third, inflation tends to reduce capital accumulation. In the

standard Ramsey model without a CIA constraint on capital purchases, the

steady-state condition rt/Pt = ρ implies a lower interest rate and a higher

capital-labor ratio than condition (3.34) – provided that the money inflation rate is

πt > −ρ. In other words, unless we observe substantial deflation, the cash-in-advance

constraint implies under-accumulation of capital and inefficiently low consumption.

The economic intuition for non-neutrality of money is that the CIA constraint

on new capital purchases forces agents to keep money to make real investment but

positive inflation increases the real cost of holding money, which affects the real return

to investment from the household point of view. This source of non-neutrality does not

apply to the crypto-currency – in fact, we have not postulated that cyrpto-currency is

necessary to purchase real investment. The crypto-currency is non-neutral for other

reasons, namely, the fact that its circulation absorbs real resources (in the form of

labor employed in exchange platforms). This point is clarified below.

3.5.2 Non-neutralities: money versus crypto

In order to assess the role of the crypto-currency, impose the conditions for a

neoclassical steady state in the CIA constraint: setting K̇t = 0 in (3.7), we obtain

mt = cmt +
1 + δt
1− δt

cxt =
1

θ
cmt (3.35)

where the last term follows from substituting the utility-maximizing consumption ratio

(3.30). From (3.35), a steady state in consumption implies a steady state in real money

supply, ṁt = 0, which means that the money inflation rate equals the growth rate

of money supply. Assuming that the monetary authority lets nominal grow at the

constant rate gM , the inflation rate is constant as well,

πt = Ṁt/Mt ≡ gM . (3.36)

Since πt only depends on money growth, the dynamics of the supply of

crypto-currency do not affect the steady-state condition (3.34) through this channel:

money inflation is independent of crypto inflation. However, the existence of the

crypto-market does affect the real interest rate in (3.34) through a labor reallocation

effect. In a neoclassical world, the physical marginal product of capital depends on

the capital-labor ratio in goods’ production, Kt/L
y
t , and L

y
t is in turn affected by the

fact that part of the workforce, L − Ly
t , is at the same time employed in exchange

platforms. Since the crypto-market subtracts resources – in this case, labor inputs –

that would have been otherwise used in goods production, the existence of the
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crypto-currency exherts an additional pressure towards under-accumulation and

inefficiently low consumption levels in the steady state. In fact, if all the workforce L

could be employed in goods production, condition (3.34) would be met with an

identical capital-labor ratio – say, K ′
t/L = Kt/L

y
t – but such ratio would be

associated to higher levels of capital and output (L > Ly
t would imply K ′

t > Kt).

Another effect of the crypto-market is that the fee rate δt distorts the relative

expenditure shares of money-purchased and crypto-purchased goods, which is

immediately evident from (3.30). In this respect, the extent of the distortion depends

on the technology of the exchange platform and on the resulting level of fees. We will

present a complete analytical derivation of the balanced growth equilibrium under a

specific technology for the exchange platform in section 3.8.

3.6 The AK case

Assume that the final good sector comprises an indefinite number of firms exploiting

the same technology displaying constant returns to scale at the firm level. Despite

diminishing marginal returns to both labor and capital at the firm level, learning-

by-doing spillovers at the sectoral level induce constant marginal returns to capital –

that is, a constant real interest rate – in the spirit of Romer (1986) and Romer (1989).

Assuming identical technologies across firms guarantees a symmetric equilibrium where

the economy’s final consumption good is produced according to an AK technology.

3.6.1 Goods production with spillovers

Assume that the final good sector comprises an indefinite number of firms indexed

by n. Each firm exploits the production function yn,t = kn,t
α
(
ātℓ

y
n,t

)1−α
where yn,t is

output, kn,t is physical capital, ℓyn,t is labor, āt is workers’ productivity, α ∈ (0, 1) is

an elasticity parameter. At the firm level, labor productivity āt is taken as given, and

profit maximization yields the usual first-order conditions

rt
Pt

= α
yn,t
kn,t

, (3.37)

wt

Pt

= (1− α)
yn,t
ℓyn,t

, (3.38)

Since firms use identical technologies, the capital-labor ratio is the same in each firm

and coincides with the capital-labor ratio at the sectoral level, kn,t/ℓ
y
n,t = Kt/L

y
t .

Assume learning-by-doing spillovers at the sectoral level whereby the use of capital

increases workers’ productivity. We postulate the spillover function ā = A
1

1−α (Kt/L
y
t ),

which implies that the productivity of each worker increases with the capital intensity
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of the sector. The intuition is that capital use induces complementary efficiency gains:

each worker uses machines and a more intense use of machines in the sector makes each

unit of labor more efficient. Substituting the spillover function in firms’ technologies,

sectoral output becomes linear in sectoral capital,

Yt = AKt, (3.39)

like in standard growth models á la Romer (1989). Consequently, the equilibrium

interest and wage rates are

rt
Pt

= αA, (3.40)

wt

Pt

= (1− α) · A · (Kt/L
y
t ) . (3.41)

The fact that the real return to capital αA is constant creates the possibility of balanced

growth paths (BGPs), that is, scenarios in which the economy exhibits sustained

endogenous growth in the long run. Given the non-neutrality of money and crypto-

currency, the natural question is whether nominal variables will affect not only income

levels but also income growth in the long run. The next subsection tackles this issue

in general terms without assuming a specific technology for the exchange platform.

3.6.2 Balanced growth equilibrium: general properties

Consider a balanced growth equilibrium where consumption levels of both goods grow

at the constant rate

gC =
ċmt
cmt

=
ċxt
cxt

and there is a constant rate of crypto-fees, δ̇t = 0, which will be the case for suitable

specifications of the technology of the exchange platform. From (3.28), a constant

growth rate −λ̇Kt /λKt = gC > 0 requires

gC =
λMt
λKt

· αA− ρ > 0 (3.42)

where we have substituted the interest rate rt/Pt = αA from (3.40). From (3.42),

balanced growth requires λRt ≡ λMt /λ
K
t to be constant as well: imposing λ̇Rt = 0 in

(3.31) yields the second-order equation

αA ·
(
λRt

)2
+ λRt (1 + πt)− 1 = 0
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with positive root given by

λRt =

√
(1 + πt)

2 + 4αA− (1 + πt)

2αA
. (3.43)

Substituting this result into (3.42), the balanced growth rate equals

gC ≡ ċmt
cmt

=
ċxt
cxt

=

√
(1 + πt)

2 + 4αA− (1 + πt)

2
− ρ (3.44)

Result (3.44) shows that money is neither neutral nor superneutral: the inflation rate

affects real growth in a BGP equilibrium. In particular, the derivative of the balanced

growth rate with respect to πt equals

∂gC

∂πt
= − 4αA+ 2πt + π2

t

2 (1 + πt)
2 + 8αA

(3.45)

and is strictly negative for any positive (or even negative, but relatively small) rate of

money inflation. That is, positive inflation slows down real growth in this model. The

reason is, conceptually, the same as that in the neoclassical case: the CIA constraint

on new capital purchases forces agents to keep money to make real investment but

positive inflation increases the real cost of holding money, which affects the real return

to investment from the household point of view. Differently from the neoclassical case,

where the interest rate determines the stationary level of consumption in the steady

state, in the AK variant of the model the interest rate determines the growth rate of

consumption along the balanced growth path. Therefore, in the AK case, the negative

effect money inflation on the real return to investment translates into a negative effect

on the economy’s growth rate.

The transmission from monetary policy to inflation can be addressed by imposing

the conditions for a BGP equilibrium in the CIA constraint. Setting K̇t = gCKt in

(3.7), we obtain

mt = gCKt + cmt +
1 + δt
1− δt

cxt = gCKt +
1

θ
cmt (3.46)

where the last term follows from substituting the utility-maximizing consumption ratio

(3.30). Since a BGP requires capital and consumption to grow at rate gC , the ratio

cmt /Kt must be constant: denoting this (endogenous) variable as χm
CD ≡ cmt /Kt we can

rewrite (3.46) as2

mt =

(
gC +

χm
CD

θ

)
·Kt. (3.47)

2Subsection 3.8.4 includes a complete derivation of the equilibrium value of χm
CD.
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Equation (3.47) implies that a constant growth rate gC requires that real money supply

grows over time at the same constant rate, ṁt/mt = K̇t/Kt = gC . This in turn means

that a constant growth rule for nominal money supply, Ṁt/Mt = gM , will imply a

constant inflation rate π and a constant real growth rate for the economy gC that

satisfies the BGP relation

gM = π + gC . (3.48)

Using (3.44) to substitute gC in (3.48) and rearranging terms yields√
(1 + πt)

2 + 4αA− (1− πt) = 2
(
gM + ρ

)
(3.49)

The above results obey a precise causality: given the exogenous monetary rule set

by authorities, the growth rate of money supply gM determines inflation π according

to (3.49). The inflation rate π then determines the economy’s real growth rate gC

according to equation (3.44).

Since money inflation only depends on nominal money growth, the dynamics of

the supply of crypto-currency do not affect real growth through this channel: money

inflation, πt = Ṗt/Pt, is independent of crypto inflation, π∗
t = Ṗ ∗

t /P
∗
t . The main

consequence of the crypto-currency is a permanent change in the level of the real

wage induced by a labor reallocation effect. Expression (3.41) implies that in a BGP

equilibrium – where capital grows at rate ḡt while employment levels Ly
t and L −

Ly
t are stationary – the real wage will grow at the balanced rate ḡt while sectoral

employment determines a permanent level effect: the higher the employment in the

exchange platform L − Ly
t , the lower the levels of the equilibrium real wage wt/Pt =

(1/Ly
t )·(1− α)AKt along the BGP. We will present a complete analytical derivation of

the balanced growth equilibrium under a specific technology for the exchange platform

in section 3.8.

3.7 Substitutability and money-crypto interactions

In this section, we extend the model to replace Cobb-Douglas perferences with a

CES utility function. The next section shows how the relevant dynamic system

changes when money-purchased and crypto-purchased goods are allowed to be strict

complements or strict substitutes. The subsequent sections derive general results for

neoclassical steady-state equilibria and for BGP equilibria with endogenous growth

in the same vein as the previous sections.
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3.7.1 Intertemporal choices under CES preferences

Suppose that the instantaneous utility function u (cmt , c
x
t ) in (3.1) is replaced by the

CES form

u (cmt , c
x
t ) =

[
θ · (cmt )

σ−1
σ + (1− θ) · (cxt )

σ−1
σ

] σ
σ−1

, (3.50)

where σ > 0 is the elasticity of substitution between money-purchased and crypto-

purchased goods. When σ < 1, the consumer perceives the two types of consumption as

strict complements. When σ > 1, the consumer perceives the two types of consumption

as strict substitutes. Letting σ → 1, the utility function reduces to the Cobb-Douglas

form u (cmt , c
x
t ) = (cmt )

θ (cxt )
1−θ assumed before. In this modified model, the household

maximizes intertemporal utility

U ≡
∫ ∞

0

e−ρt ln [u (cmt , c
x
t )] dt

subject to the same dynamic constraints considered before. Proceeding with the same

steps shown in section 3.4, we obtain a system of utility-maximizing conditions in

which the marginal utilities are not separable: both ∂u/∂cmt and ∂u/∂cxt depend on

money-purchased and on crypto-purchased quantities, cmt and cxt . More precisely,

system (3.25)-(3.29) is replaced by

1

u (cmt , c
x
t )

· ∂u
∂cmt

= λKt (3.51)

1

u (cmt , c
x
t )

· ∂u
∂cxt

= λKt · qt (1 + δt) (3.52)

λKt = λMt + λSt (3.53)

λ̇Kt
λKt

= ρ− λMt
λKt

· rt
Pt

(3.54)

λ̇Mt
λMt

= ρ+ πt −
λKt − λMt
λMt

(3.55)

The key difference with respect to the model with Cobb-Douglas utility is that relative

expenditure shares now depend on relative prices. By combining (3.51) with (3.52),

we obtain the utility-maximizing condition

∂u

∂cmt
· qt (1 + δt) =

∂u

∂cxt
,

where we can substitute the marginal utilities calculated from (3.50),

∂u

∂cmt
= θ ·

(
u (cmt , c

x
t )

cmt

) 1
σ

and
∂u

∂cxt
= (1− θ) ·

(
u (cmt , c

x
t )

cxt

) 1
σ

, (3.56)
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obtaining the consumption ratio

cmt
cxt

=

[
θ

1− θ
· qt (1 + δt)

]σ
. (3.57)

Dividing both sides by qt (1 + δt) yields the real expenditure ratio, i.e., the expenditure

on money-purchased goods relative to that on crypto-purchased goods,

cmt
qt (1 + δt) cxt

=

(
θ

1− θ

)σ

·
(
1− δt
1 + δt

)1−σ

, (3.58)

where we have used (3.11) to eliminate the real exchange rate on the right hand side.

Expression (3.58) shows that a change in the crypto-fee has generally ambiguous effects

on relative expenditures. If the consumer perceives money-purchased and crypto-

purchased goods as complements, σ < 1, an increase in the fee rate δt prompts them

to reduce the left hand side of (3.58) – that is, to reduce relative spending on money-

purchased goods to spend a higher fraction of consumption expenditure on crypto-

purchased goods. Viceversa, if the household perceives money-purchased and crypto-

purchased goods as substitutes, σ > 1, an increase in the fee rate δt prompts them to

reduce the expenditure share on crypto-purchased goods. Armed with this result, we

can now investigate the general properties of neoclassical steady-state equilibria and

of BGP equilibria under CES preferences.

3.7.2 Neoclassical steady state with CES preferences

In this subsection, we consider a neoclassical steady state equilibrium with constant

consumption. The first part of the analysis is very similar to that in section 3.5, with

small differences that we emphasize below. The distortions induced by the

crypto-market become more evident in the complete analytical solution, which

clarifies reallocation effects and their consequences for the steady-state capital stock.

From (3.51) and (3.52), stationarity in cmt and cxt requires a constant multiplier λKt

as well as constant crypto-fees,

d

dt
qt (1 + δt) =

d

dt

1 + δt
1− δt

= 0,

which will be the case for suitable specifications of the technology of the exchange

platform. From (3.54), the steady state λ̇Kt = 0 requires that the real rental rate

for capital equals the utility dicount rate weighted by the composite multiplier λRt ≡
λMt /λ

K
t previously defined: rt/Pt = ρ/λRt . Since ρ is constant and rt/Pt equals the

physical marginal product of capital, a constant real interest rate requires λ̇Rt = 0 in
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(3.31), which yields λRt = 1/ (1 + ρ+ πt) and, hence, a steady-state real rate of return

rt
Pt

= ρ · (1 + ρ+ πt) .

As noted before, (i) money is not neutral and (ii) inflation tends to reduce capital

accumulation. In order to assess the role of the crypto-currency, impose the conditions

for a neoclassical steady state in the CIA constraint: setting K̇t = 0 in (3.18), we obtain

mt = cmt ·

[
1 +

(
1− θ

θ

)σ

·
(
1 + δt
1− δt

)1−σ
]

(3.59)

where the last term follows from substituting the consumption expenditures ratio

(3.58). Since δ̇t = 0 by construction of the steady state, result (3.59) implies that

stationary consumption is associated with ṁt = 0, that is, the money inflation rate

equals the growth rate of money supply set by the authority, πt = Ṁt/Mt. Since πt

only depends on money growth, the dynamics of the supply of crypto-currency do

not affect the steady-state condition (3.34) through this channel: money inflation

equals πt = Ṁt/Mt and is therefore independent of crypto-currency supply. This

conclusion also holds with Cobb-Douglas preferences, as shown in subsection 3.5.

However, differently from the model with Cobb-Douglas preferences, the degree of

substitutability between money-purchased and crypto-purchased goods affects the

price level. The right hand side of (3.59) shows that when consumers perceive

money-purchased and crypto-purchased goods as strict complements (substitutes), a

higher fee tends to increase (reduce) the equilibrium real money supply at given

consumption levels. The reason is that under complementarity (substitutability),

higher fees prompt consumers to spend relatively more on crypto-purchased goods,

exherting a downward pressure on the relative price of money-purchased goods and,

hence, an upward pressure on the equilibrium real money supply at given

consumption levels.

Besides the effect on price levels, it should be remembered that the crypto-currency

is not neutral because, as shown in subsection 3.5, it affects the real interest rate in

(3.34) through a labor reallocation effect : the physical marginal product of capital

depends on the capital-labor ratio in goods’ production, Kt/L
y
t , and Ly

t is in turn

affected by employment in exchange platforms via the labor market.

3.7.3 Balanced growth equilibrium with CES preferences

In this subsection, we consider a BGP equilibrium with sustained growth generated by

the technology described in subsection 3.6.1: sectoral spillovers induce linear returns to
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capital at the aggregate level, Yt = AKt, with real factor rewards given by rt/Pt = αA

and wt/Pt = (1− α) · A · (Kt/L
y
t ).

The general properties of the BGP are as follows. Consider a balanced growth

equilibrium where consumption levels of both goods grow at the constant rate gC =

ċmt /c
m
t = ċxt /c

x
t , and there is a constant rate of crypto-fees, δ̇t = 0, which will be

the case for suitable specifications of the technology of the exchange platform. Time-

differentiating (3.51) and (3.52) with δ̇t = 0 we obtain

λ̇Kt
λKt

=
1
∂u
∂cmt

d

dt

∂u

∂cmt
− u̇ (cmt , c

x
t )

u (cmt , c
x
t )
, (3.60)

λ̇Kt
λKt

=
1
∂u
∂cxt

d

dt

∂u

∂cxt
− u̇ (cmt , c

x
t )

u (cmt , c
x
t )
. (3.61)

From (3.50), the growth rate of utility equals

u̇ (cmt , c
x
t )

u (cmt , c
x
t )

=
θ · (cmt )

σ−1
σ gC + (1− θ) · (cxt )

σ−1
σ gC

θ · (cmt )
σ−1
σ + (1− θ) · (cxt )

σ−1
σ

= gC . (3.62)

From (3.56), the growth rate of marginal utility for either good reads

1
∂u
∂c·t

d

dt

∂u

∂c·t
=

1

σ

[
u̇ (cmt , c

x
t )

u (cmt , c
x
t )

− gC
]
= 0 (3.63)

Substituting results (3.62)-(3.63) in either (3.60) or (3.61) yields λ̇Kt /λ
K
t = −gC .

Hence, from (3.54) and the constant interest rate rt/Pt = αA, we have

gC =
λMt
λKt

· αA− ρ (3.64)

which implies a constant composite multiplier λRt = λMt /λ
K
t . Setting λ̇

R
t = 0 in (3.31)

yields again result (3.43) and thereby the balanced growth rate

gC ≡ ċmt
cmt

=
ċxt
cxt

=

√
(1 + πt)

2 + 4αA− (1 + πt)

2
− ρ. (3.65)

As noted before, any positive (or even negative, but relatively small) rate of money

inflation reduces gC because money inflation increases the cost of holding money –

and holding money is necessary to have the liquidity needed to make real investment.

Result (3.65) shows that the balanced growth rate under CES preferences is the same

as in the Cobb-Douglas case with σ = 1. However, the current hypothesis that goods

can be perceived as complements modifies the impact of monetary policy on the
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general price level. To see this formally, use result (3.58) to write real consumption

expenditures as

cmt + qt (1 + δt) c
x
t = cmt ·

[
1 +

(
1− θ

θ

)σ

·
(
1 + δt
1− δt

)1−σ
]

(3.66)

and impose the conditions for a BGP equilibrium in the CIA constraint: setting K̇t =

gCKt in (3.7), we obtain

mt = ḡtKt + cmt + qt (1 + δt) c
x
t = ḡtKt + cmt ·

[
1 +

(
1− θ

θ

)σ

·
(
1 + δt
1− δt

)1−σ
]

(3.67)

where the last term follows from (3.66). Since a BGP requires capital and consumption

to grow at rate gC , the ratio cmt /Kt must be constant: denoting this (endogenous)

variable as χm ≡ cmt /Kt we can rewrite (3.67) as3

mt =

{
gC + χm

[
1 +

(
1− θ

θ

)σ

·
(
1 + δt
1− δt

)1−σ
]}

·Kt. (3.68)

Equation (3.68) implies that a constant growth rate gC requires that real money supply

grows over time at the same constant rate, ṁt/mt = K̇t/Kt = gC . This in turn means

that a constant growth rule for nominal money supply, Ṁt/Mt = gM , will imply a

constant inflation rate π and a constant real growth rate for the economy gC that

satisfies the BGP relation gM = π + gC . As shown before (cf. equation (3.49) in the

previous section), the growth rate of money supply gM determines inflation π according

to √
(1 + π)2 + 4αA− (1− π) = 2

(
gM + ρ

)
,

and the inflation rate π then determines the economy’s real growth rate gC according

to equation (3.65). The novel result contained in (3.68) is that the degree of

substitutability between money-purchased and crypto-purchased goods directly

affects the whole time path of the price level. Substituing mt = Mt/Pt in (3.68) and

rearranging terms, we obtain

Pt =
1

gC + χm

[
1 +

(
1−θ
θ

)σ · (1+δt
1−δt

)1−σ
] · Mt

Kt

. (3.69)

Result (3.69) implies that crypto-fees permanently reduce (increase) the money price

level when consumers perceive money-purchased and crypto-purchased goods as

3Subsection 3.8.4 includes a complete derivation of the equilibrium value of χm.
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complements (substitutes). In particular, if the monetary authority sets a constant

money growth rule from time zero onwards and the crypto-fee rate is constant from

time zero onwards, the whole time path of the price level is given by

Pt =
1

gC + χm
[
1 +

(
1−θ
θ

)σ · (1+δ
1−δ

)1−σ
] · M0

K0

· eπt. (3.70)

Expression (3.70) shows that, for a given chosen monetary policy rule gM , which

determines real growth gC and the inflation rate π, the elasticity of substitution σ

and the crypto-fee rate δ determine how high or low the initial price level P0, and

thereby all subsequent price levels, will be. Under complementarity, σ < 1, a higher

δ yields a lower price level because higher crypto-fees prompt consumers to reduce

their relative demand for money-purchased goods. Under substitutability, σ > 1, a

higher δ yields a higher price level because higher crypto-fees prompt consumers to

increase their relative demand for money-purchased goods. Since δ is positively related

to the real exchange rate – see equation (3.11) – it follows that a real appreciation

of the crypto-currency induced by higher crypto-fees affects the price level of money-

purchased goods permanently and in opposite directions depending on the value of the

elasticity of substitution σ.

As we have shown in section 3.6.2, the crypto-market permanently affects real

wage levels via a labor reallocation effect : the higher the employment in the exchange

platform L − Ly
t , the lower the levels of the equilibrium real wage wt/Pt = (1/Ly

t ) ·
(1− α)AKt along the BGP. This result is obviously confirmed in the model with CES

preferences.

3.8 Complete derivations and shocks

This section presents full analytical derivations of (i) the Neoclassical steady state and

(ii) the BGP equilibrium for the extended model with CES preferences, which allows

us to derive more general results (the predictions for the model with Cobb-Douglas

preferences can be obtained as a special case by setting σ = 1). For each variant of

the model, we obtain a reduced system of equilibrium relationships that determines

all endogenous variables and allows us to investigate the effect of exogenous shocks.

3.8.1 Exchange platform: specifics

Assume that the exchange platform is a competitive sector with free entry of

‘exchange firms’. Each firm n hires ℓxn,t workers to perform currency exchange

operations according to a linear technology: each worker’s cost to the firm is
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proportional to the monetary value of the transaction, with proportionality factor

ξ > 0,

wt = ξ · ηj,t, (3.71)

where wt is the wage rate prevailing in the labor market and ηj,t is the money value

of the transaction performed by agent j. Total employment in the currency exchange

sector, Lx
t =

∑
n ℓ

x
n,t = 1−Ly

t , satisfies the demand for currency conversion. Therefore,

the sectoral wage bill reads

wt · (1− Ly
t ) = ξ ·

∫ Lx
t

0

ηj,tdj = ξ · (Ptc
x
t + Ptc

x
t ) , (3.72)

where the last term on the right hand side is the market clearing condition for

exchange services whereby the money value of total transactions includes those (i)

requested by consumers purchasing cxt and those (ii) requested by firms selling cxt .

Exchange firms take the exchange rate as given and set the crypto-fee rate in

Bertrand competition. The resulting zero-profit condition, as shown in subsection

3.3.3, is 2δtQtP
∗
t c

x
t = wt (1− Ly

t ) and can be rewritten in real terms as

2δtqtc
x
t =

wt

Pt

· (1− Ly
t ) . (3.73)

From (3.72) and (3.73), it follows that δtqt = ξ. Combining this result with the real

exchange rate in (3.11), the crypto-fee rate associated with zero profits in the exchange

platform reads

δt =
ξ

1 + ξ
≡ δ (3.74)

which is constant over time. We now have all the elements to derive anlytically the

neoclassical steady state equilibrium and the BGP equilibrium in the AK model.

3.8.2 Neoclassical steady state: full derivation

In the neoclassical case, we normalize labor productivity at = 1 and assume a

Cobb-Douglas production function Yt = (Kt)
α (Ly

t )
1−α for the final setor. The

profit-maximizing conditions yield the demand schedules for capital and labor,

rt
Pt

= α ·
(
Ly
t

Kt

)1−α

, (3.75)

wt

Pt

= (1− α) ·
(
Kt

Ly
t

)α

. (3.76)

Combining (3.75) with the steady-state condition for the interest rate (3.34) and

steady-state inflation rate πt = gM from (3.36) yields the capital-labor ratio for the
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final sector in the neoclassical steady state,

Kt

Ly
t

=

[
α

ρ · (1 + ρ+ gM)

] 1
1−α

. (3.77)

From the zero-profit condition in the exchange platform (3.73) and the equilibrium fee

rate (3.74), labor demand by currency-exchange firms is

wt

Pt

= 2
δtqt

1− Ly
t

cxt =
2ξ

1− Ly
t

cxt . (3.78)

The equilibrium in the labor market is characterized by real wage equalization which,

from (3.76) and (3.78), implies

Kt

Ly
t

=

[
2ξ

1− α
· cxt
1− Ly

t

] 1
α

. (3.79)

Using (3.11) and (3.74), the ratio between money-purchased and crypto-purchased

goods (3.57) equals
cmt
cxt

=

[
θ (1 + 2ξ)

1− θ

]σ
. (3.80)

Using (3.74), the steady-state level of real money supply (3.35) equals

mt = cmt ·
[
1 +

(
1− θ

θ

)σ

· (1 + 2ξ)1−σ

]
. (3.81)

The goods’ market clearing condition (3.8) in the steady state implies

cxt = (Kt)
α (Ly

t )
1−α − cmt . (3.82)

Reduced system (neoclassical steady state). Equations (3.77), (3.79), (3.80),

(3.81) and (3.82) form a reduced equilibrium system that allows us to determine the

steady state values of inputs and consumption levels – and thereby all the related
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endogenous variables of interest – in the neoclassical steady state:

Kss

Ly
ss

=

[
α

ρ · (1 + ρ+ gM)

] 1
1−α

(3.83)

Kss

Ly
ss

=

[
2ξ

1− α
· cxss
1− Ly

ss

] 1
α

(3.84)

cmss
cxss

=

[
θ (1 + 2ξ)

1− θ

]σ
(3.85)

mss =

[
1 +

(
1− θ

θ

)σ

· (1 + 2ξ)1−σ

]
· cmss (3.86)

cxss = (Kss)
α (Ly

ss)
1−α − cmss (3.87)

The reduced system (3.83)-(3.87) comprises five equations determining five

unknowns: capital Kss, labor employed in the final sector Ly
ss, consumption of

money-purchased goods cmss, consumption of crypto-purchased goods cxss, and real

money holdings mss. The exogenous parameters reflect technologies (α, ξ),

preferences (θ, σ, ρ) and the monetary policy rule set by the authority, Ṁt/Mt = gM .

The equilibrium values (Kss, L
y
ss, c

m
ss, c

x
ss,mss) allow us to calculate real factor prices

rt/Pt and wt/Pt from (3.75)-(3.76), the crypto-fee rate from (3.74), the real exchange

rate from (3.11), and steady-state utility u (cmt , c
x
t ) from (3.50). The next subsection

presents some numerical results describing the effects of exogenous shocks.

3.8.3 Neoclassical steady state: numerical analysis

In this subsection, we introduce a numerical illustration of the neoclassical steady state

and study cases of strict complementarity, strict substitutability, and Cobb-Douglas

preferences. We then proceed to assess the effects of exogenous changes in the growth

rate of nominal money, in the crypto-fee rate (due to an exogenous rise in ξ), and

in the taste parameter θ on the endogenous variables in the reduced system above.

Parameter values are reported in Table 3.1 along with the equilibrium level of the

endogenous variables in Table 3.2.

Table 3.1: Parameter values.

Preferences Technology Monetary policy rule
θ = 0.3 α = 0.3 gM = 0.045
ρ = 0.02 ξ = 0.05
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Table 3.2: Benchmark results.

Kss Ly
ss cmss cxss

r
p

w
p

ϕ q u (cmt , c
x
t )

σ = 0.5 40.3413 0.9219 1.1660 1.6982 0.0213 2.1748 0.0476 1.050 1.4937
σ = 1 39.8858 0.9115 0.9073 1.9246 0.0213 2.1748 0.0476 1.050 -
σ = 1.5 39.4957 0.9026 0.6857 2.1185 0.0213 2.1748 0.0476 1.050 1.5754

3.8.3.1 Neoclassical shock analysis

An increase in gM (faster monetary growth). A 10% increase in the money supply

leads to monetary non-neutrality, reflected in a decline in capital stock (Kss), overall

consumption (cmss and cxss), and real wages (w
p
) across all substitution levels (σ) in

Table 3.3. The reduction in capital investment is driven by inflation eroding real

savings, while consumption decreases due to reduced purchasing power. Utility

declines more sharply when money and crypto-currencies are substitutes (σ = 1.5)

because consumers shift more heavily toward crypto-currencies, amplifying the

negative impact of rising transaction costs. The rental rate of capital ( r
p
) increases

due to reduced capital availability, while crypto-fees (ϕ) and the real exchange rate

(q) remain unchanged. This monetary non-neutrality arises from inflationary

pressure, negatively impacting the economy’s key variables and altering the

allocation of resources between sectors.

Table 3.3: Shock analysis (10% increase in the money supply).

Kss Ly
ss cmss cxss

r
p

w
p

ϕ q u (cmt , c
x
t )

σ = 0.5 40.0990↓ 0.9219 1.1639↓ 1.6952↓ 0.0214↑ 2.1709↓ 0.0476 1.050 1.4910↓
σ = 1 39.6463↓ 0.9115 0.9057↓ 1.9211↓ 0.0214↑ 2.1709↓ 0.0476 1.050 -
σ = 1.5 39.2585↓ 0.9026 0.6845↓ 2.1146↓ 0.0214↑ 2.1709↓ 0.0476 1.050 1.5725↓

Note: The upward (downward) arrow indicates an increase (decrease) relative to the
benchmark values reported in Table 3.2. The absence of an arrow signifies no change
compared to the benchmark.

An increase in ξ (which raises fees, δ). As shown in Table 3.4, a 10% increase in ξ raises

crypto-currency transaction costs, leading to a decline in capital stock (Kss), labor in

the goods sector (Ly
ss), and consumption of both money (cmss) and crypto-purchased

goods (cxss) across all σ levels, except for a small increase in cmss when σ = 1.5 as

consumers shift away from crypto-purchased goods. Real wages remain unchanged,

but the crypto-fee (ϕ) and real exchange rate (q) rise, reflecting higher transaction

costs. Utility falls due to reduced consumption, with the largest impact seen when fiat

money and crypto-currency are substitutes (σ = 1.5).

A reduction in θ (higher taste for crypto-purchased goods). A 10% decrease in θ leads

to an increase in consumption of crypto goods (cxss) across all σ levels in Table 3.5.

This shift reduces the consumption of money-purchased goods (cmss) and decreases both
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Table 3.4: Shock analysis (10% increase in the fee structure).

Kss Ly
ss cmss cxss

r
p

w
p

ϕ q u (cmt , c
x
t )

σ = 0.5 40.0350↓ 0.9149↓ 1.1603↓ 1.6822↓ 0.0213 2.1748 0.0521↑ 1.055↑ 1.4822↓
σ = 1 39.5470↓ 0.9038↓ 0.9051↓ 1.9027↓ 0.0213 2.1748 0.0521↑ 1.055↑ -
σ = 1.5 39.1285↓ 0.8942↓ 0.6863↑ 2.0918↓ 0.0213 2.1748 0.0521↑ 1.055↑ 1.5603↓

Note: The upward (downward) arrow indicates an increase (decrease) relative to the
benchmark values reported in Table 3.2. The absence of an arrow signifies no change
compared to the benchmark.

capital stock (Kss) and labor allocated to the goods sector (Ly
ss). Utility (u(cmt , c

x
t ))

increases due to the higher consumption of crypto goods, with the most pronounced

increase seen when money and crypto are substitutes (σ = 1.5). Real wages (w
p
) and

the crypto fee (ϕ) remain unchanged, while the rate of return on capital ( r
p
) experiences

a slight decrease when σ = 1.5. This suggests that a stronger preference for crypto-

purchased goods and a reallocation of resources towards crypto-based consumption,

affecting production and investment patterns in the economy.

Table 3.5: Shock analysis: 10% decrease in θ.

Kss Ly
ss cmss cxss

r
p

w
p

ϕ q u (cmt , c
x
t )

σ = 0.5 40.2477↓ 0.9198↓ 1.1129↓ 1.7447↑ 0.0213 2.1748 0.0476 1.050 1.5128↑
σ = 1 39.7244↓ 0.9078↓ 0.8156↓ 2.0048↑ 0.0213 2.1748 0.0476 1.050 -
σ = 1.5 39.3006↓ 0.8981↓ 0.5749↓ 2.2154↑ 0.0213 2.1748 0.0476 1.050 1.6270↑

Note: The upward (downward) arrow indicates an increase (decrease) relative to the
benchmark values reported in Table 3.2. The absence of an arrow signifies no change
compared to the benchmark.

3.8.4 BGP equilbrium: full derivation

As shown in subsection 3.6.1, final output in the AK model equals Yt = AKt and

the real rental rate for capital is rt/Pt = αA. From (3.41), labor demand in the final

sector implies a real wage wt/Pt = (1− α) · A · (Kt/L
y
t ), whereas, irrespective of the

final sector’s technology, labor demand in the exchange platform is given by (3.78).

Therefore, wage equalization in the labor market implies

Ly
t

1− Ly
t

=
A (1− α)

2ξ
· Kt

cxt
. (3.88)

Since the crypto-fee rate δt = ξ/ (1 + ξ) is constant over time and the monetary

authority is assumed to follow a constant money growth rule Ṁt/Mt = gM , the AK

model admits a permanent BGP equilibrium such that the economy exhibits a

constant growth rate from time zero onwards. This implies that, differently from the
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neoclassical case where we focus on steady-state results – the AK model allows us to

build a reduced equilibrium system determining the entire time path of the economy.

The key relationship to derive is the equilibrium ratio of consumption to capital

which, in this class of models, is a jump variable that settles in its only permanent

feasible steady state from time zero onwards. From Yt = AKt and (3.8), the growth

rate of capital obeys
K̇t

Kt

= A− cmt + cxt
Kt

= A− Ct

Kt

. (3.89)

From (3.65), the growth rate of consumption equals

Ċt

Ct

=

√
(1 + πt)

2 + 4αA− (1 + πt)

2
− ρ ≡ gC . (3.90)

The above expressions imply that, defining χt ≡ Ct/Kt, the growth rate of the

consumption-capital ratio obeys

χ̇t

χt

= gC − A+ χt, (3.91)

which is a dynamically unstable equation whose uniques steady state is

χ∗ = A− gC = A+ ρ−

√
(1 + πt)

2 + 4αA− (1 + πt)

2
. (3.92)

It can be shown by standard arguments that setting χt = χ∗ in each t ∈ [0,∞) is

the only solution that is compatible with (i) the conditions for intertemporal utility

maximization and with (ii) satisfying the capital accumulation constraint along the

entire time path.4 Therefore, the BGP equilibrium is characterized by a constant

consumption-capital ratio from time zero onwards, χt = χ∗ in each t ∈ [0,∞).

Using (3.11) and (3.74), the ratio between money-purchased and crypto-purchased

goods (3.57) equals
cmt
cxt

=

[
θ (1 + 2ξ)

1− θ

]σ
. (3.93)

Equation (3.92) allows us to the determine the ratio between money-purchased

consumption and capital. Since aggregate consumption equals

Ct = cmt + cxt = cmt ·
{
1 +

[
1− θ

θ (1 + 2ξ)

]σ}
, (3.94)

4The intuition is that choosing a different consumption-capital ratio at time zero, χ0 ≷ χ∗, would
generate – from equation (3.91) – explosive dynamics in χt which would violate either the consumers’
transversality conditions in the long run (due to overaccumulation of capital) or the aggregate resource
constraint (3.89) in finite time (due to overconsumption).
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the ratio χm
t ≡ cmt /Kt will be constant over time and equal to

χm
t =

cmt
Kt

=
1

1 +
[

1−θ
θ(1+2ξ)

]σ · Ct

Kt

=
1

1 +
[

1−θ
θ(1+2ξ)

]σ · χ∗,

that is,

χm =
A− gC

1 +
[

1−θ
θ(1+2ξ)

]σ . (3.95)

Expression (3.95) determines the variable χm that we have previously introduced in

equation (3.68) and confirms that it is constant over time. Similarly, letting σ = 1,

expression (3.95) determines the variable χm
CD that we have previously introduced in

equation (3.47). We have now all the elements to build a reduced system for the BGP

equilibrium in the AK model.

Reduced system (BGP equilibrium). The following reduced equilibrium system

allows us to determine four key endogenous variables – namely, the inflation rate, the

balanced growth rate (of real consumption, output and capital), the consumption-

capital ratio, and employment in the final sector (and, residually, in the exchange

platform) – along the balanced growth path of the AK model:

gM =

√
(1 + π)2 + 4αA− (1− π)

2
− ρ (3.96)

gC = gM − π (3.97)

χm =
A− gC

1 +
[

1−θ
θ(1+2ξ)

]σ (3.98)

Ly

1− Ly
=

A (1− α)

2ξ
· 1

χm
·
[
θ (1 + 2ξ)

1− θ

]σ
(3.99)

Equation (3.96) follows immediately from (3.49) and determines the inflation rate π

given the monetary growth rate gM set by the authority. Equation (3.97) follows

immediately from (3.48) and determines the BGP growth rate gC . Equation (3.98)

follows from the above analysis – eq.(3.95) – and determines the ratio of consumption in

money-purchased goods to physical capital. Equation (3.99) follows from substituting

(3.92) and (3.95) into the condition for wage equalization in the labor market (3.88),

and determines employment in the final sector, Ly, as well as employment in the

exchange platform, 1− Ly.

Since the economy exhibits a BGP equilibrium from time zero onwards, the

determination of
(
π, gC , χm, Ly

)
in the reduced system allows us to calculate the

whole time paths of the main variables of interest according to the following
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equations: capital, output and consumption are given by

Kt = K0 · egC ·t, (3.100)

Yt = AKt = K0 · egC ·t, (3.101)

Ct = (Ct/Kt) ·Kt = χ∗ ·Kt =
(
A− gC

)
·K0 · egC ·t, (3.102)

whereas the real wage and price level are given by5

wt

Pt

= (1− α) · A · (1/Ly) ·K0 · egC ·t (3.103)

Pt =
1

gC + χm
[
1 +

(
1−θ
θ

)σ · (1 + 2ξ)1−σ] · M0

K0

· eπt (3.104)

where K0 is exogenously given and M0 is exogenously set by the authority.

3.8.5 BGP equilbrium: numerical analysis

The following subsection presents a numerical illustration of the balanced growth

path for different values of the elasticity of substitution – covering the cases of strict

complementarity, strict substitutability, and Cobb-Douglas preferences – and

evaluates, for each of these three basline scenarios, the effects of exogenous changes

in the growth rate of nominal money, in the crypto-fee rate (due to an exogenous rise

in ξ), and in the taste parameter θ. First, we report the fixed parameter values and

the results for the baseline scenrio in Table 3.6 and Table 3.7.

Table 3.6: Parameter values.

Preferences Technology Monetary policy rule
θ = 0.3 α = 0.3 gM = 0.045
ρ = 0.02 ξ = 0.05

A = 0.16

Table 3.7: Benchmark results.

π gC χm Ly cmt
cxt

σ = 0.5 0.0199 0.0251 0.0549 0.9333 0.6866
σ = 1 0.0199 0.0251 0.0432 0.9243 0.4714
σ = 1.5 0.0199 0.0251 0.0330 0.9166 0.3237

5The time path of the real wage in (3.103) follows straightforwardly from equation (3.41). The
time path of the money price in (3.104) follows from equation (3.70) after substituting the equilibrium
fee rate (3.74).
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3.8.6 BGP shock analysis

An increase in gM (faster monetary growth). A 10% increase in the money supply

(gM), as reported in Table 3.8, leads to a rise in inflation (π) across all cases,

regardless of the elasticity of substitution (σ). As expected, the real consumption

growth rate (gC) decreases, indicating the negative effect of higher inflation on real

consumption. The ratio of money-purchased goods to capital (χm) increases,

suggesting a shift towards more money-purchased goods as inflation rises. However,

this increase is more pronounced when money and crypto are complements (σ = 0.5)

and less so when they are substitutes (σ = 1.5). Labor allocation to the goods

production sector (Ly) declines slightly as money becomes more abundant, reflecting

a reallocation of labor resources. Lastly, the ratio of money-purchased to

crypto-purchased goods (cmt /c
x
t ) falls as σ increases, implying that when money and

crypto-currency are substitutes, consumers favor crypto-purchased goods more

heavily after the shock.

Table 3.8: Shock Analysis: 10% Increase in the Money Supply

π gC χm Ly cmt
cxt

σ = 0.5 0.0246↑ 0.0249↓ 0.0550↑ 0.9332↓ 0.6866
σ = 1 0.0246↑ 0.0249↓ 0.0433↑ 0.9242↓ 0.4714
σ = 1.5 0.0246↑ 0.0249↓ 0.0330↑ 0.9165↓ 0.3237

Note: The upward (downward) arrow indicates
an increase (decrease) relative to the benchmark
values reported in Table 3.7. The absence of
an arrow signifies no change compared to the
benchmark.

An increase in ξ (which raises fees, δ). In Table 3.9, a 10% increase in the fee structure

(ξ) leads to no change in inflation (π) and the consumption growth rate (gC) across

all cases, regardless of the elasticity of substitution (σ). However, the ratio of money-

purchased goods to capital (χm) increases, indicating a shift towards money-purchased

goods as the cost of crypto-related transactions rises. This increase in χm is larger when

money and crypto are complements (σ = 0.5) and less so when they are substitutes

(σ = 1.5). Labor allocation to the goods production sector (Ly) declines, reflecting a

reduction in the productive sector as crypto becomes more costly to use. The ratio

of money-purchased to crypto-purchased goods (cmt /c
x
t ) rises, suggesting that higher

fees for crypto transactions push consumers to favor money-purchased goods, with

this effect being strongest when the two goods are more substitutable. This analysis

highlights the role of transaction costs in shifting consumer preferences between money

and crypto, and its impact on real variables in the BGP framework.
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Table 3.9: Shock Analysis: 10% increase in the fee structure

π gC χm Ly cmt
cxt

σ = 0.5 0.0199 0.0251 0.0551↑ 0.9273↓ 0.6897↑
σ = 1 0.0199 0.0251 0.0435↑ 0.9176↓ 0.4757↑
σ = 1.5 0.0199 0.0251 0.0333↑ 0.9093↓ 0.3281↑

Note: The upward (downward) arrow indicates
an increase (decrease) relative to the benchmark
values reported in Table 3.7. The absence of
an arrow signifies no change compared to the
benchmark.

A reduction in θ (higher taste for crypto-purchased goods). As reported in Table 3.10,

a 10% reduction in θ results in no change in inflation (π) and consumption growth

(gC) across all values of the elasticity of substitution (σ). However, the ratio of

money-purchased goods to capital (χm) decreases, indicating a shift toward

crypto-purchased goods. This reduction in χm is more pronounced when the two

goods are complements (σ = 0.5) and less significant when they are substitutes

(σ = 1.5). Labor allocation to the goods production sector (Ly) also decreases,

reflecting a reduced need for money-purchased goods as the economy adapts to the

higher preference for crypto-currency transactions. The ratio of money-purchased to

crypto-purchased goods (cmt /c
x
t ) decreases sharply, showing that consumers are

opting more for crypto-purchased goods, with the largest decline occurring when the

goods are more substitutable (σ = 1.5). This shift highlights the influence of

consumer preferences on the allocation of resources in the economy.

Table 3.10: Shock analysis: 10% decrease in θ.

π gC χm Ly cmt
cxt

σ = 0.5 0.0199 0.0251 0.0525↓ 0.9315↓ 0.6378↓
σ = 1 0.0199 0.0251 0.0390↓ 0.9211↓ 0.4068↓
σ = 1.5 0.0199 0.0251 0.0278↓ 0.9127↓ 0.2595↓

Note: The upward (downward) arrow indicates
an increase (decrease) relative to the benchmark
values reported in Table 3.7. The absence of
an arrow signifies no change compared to the
benchmark.

Figure 3.1 demonstrates that capital, output, and consumption grow steadily over

time but remain largely unaffected by variations in the elasticity of substitution

(σ = 0.5, σ = 1, and σ = 1.5). This suggests that the broader growth trajectory of

the economy is driven by technology rather than consumer preferences between

money-purchased and crypto-purchased goods. However, real wages are highly

sensitive to changes in σ, with greater substitutability (σ = 1.5) leading to faster
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wage growth due to more efficient labor allocation. In contrast, when goods are more

complementary (σ = 0.5), wage growth is slower. The price level shows only slight

variation, rising more slowly with greater substitutability, reflecting the lower cost

pressures from crypto-purchased goods. Overall, the impact of elasticity is most

visible in real wages, while price levels and aggregate economic variables remain

relatively stable.

Figure 3.1: Evolution of the key model variables along the BGP

3.9 Conclusion

This paper explores how the coexistence of fiat money and crypto-currencies shapes

economic outcomes in a dynamic setting. We highlight that crypto-currencies disrupt

resource allocation, particularly by diverting labor from traditional sectors and
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adding transaction costs, amplifying the non-neutrality of money. While key growth

indicators like capital and output remain relatively stable, shifts in labor allocation

and real wages are more responsive to changes in crypto fees and consumer

preferences. A promising direction to improve on this work would be to incorporate

the idea of pecuniary and non-pecuniary features in the dynamic framework. Up

until now, we have assumed that crypto goods are needed. Although the

consumption ratio is determined endogenously, future research could take a similar

approach to the static model to determine a threshold good where consumers are

indifferent between payment methods. Moreover, extending the model to include

Central Bank Digital Currencies (CBDCs) would provide a valuable avenue for

studying interactions among fiat money, crypto-currencies, and CBDCs, along with

their influence on consumer preferences. This extension would greatly enhance the

current analysis.
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