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A B S T R A C T

Facial expressions are crucial in human communication. Recent decades have seen growing interest in under
standing the role of spatial frequencies (SFs) in emotion perception in others. While some studies have suggested 
a preferential treatment of low versus high SFs, the optimal SFs for recognizing basic facial expressions remain 
elusive. This study, conducted on Western participants, addresses this gap using two complementary methods: a 
data-driven method (Exp. 1) without arbitrary SF cut-offs, and a more naturalistic method (Exp. 2) simulating 
variations in viewing distance. Results generally showed a preponderant role of low over high SFs, but partic
ularly stress that facial expression categorization mostly relies on mid-range SF content (i.e. ~6–13 cycles per 
face), often overlooked in previous studies. Optimal performance was observed at short to medium viewing 
distances (1.2–2.4 m), declining sharply with increased distance, precisely when mid-range SFs were no longer 
available. Additionally, our data suggest variations in SF tuning profiles across basic facial expressions and 
nuanced contributions from low and mid SFs in facial expression processing. Most importantly, it suggests that 
any method that removes mid-SF content has the downfall of offering an incomplete account of SFs diagnosticity 
for facial expression recognition.

1. Introduction

It is widely recognized that facial expressions of emotions play a 
crucial role in social communication by transmitting signals about in
ternal emotional states and intentions. They can also indicate potential 
environmental threats, triggering an adaptive response (e.g., to escape) 
in both the expresser and observer (e.g., Schmidt & Cohn, 2001).

There has been a growing interest in the role played by low-level 
properties, such as spatial frequency (SF) and orientation (SO), in vi
sual categorization. This highlights how early visual cortices decompose 
visual stimuli into their constituent elements, similar to Fourier analysis 
(De Valois et al., 1979; Maffei & Fiorentini, 1973), with different spatial 
frequencies conveying varying levels of contrast details.

The relationship between SFs and emotion perception has often been 
explained by the dual-route model, which proposes a distinction be
tween a fast subcortical pathway and a slower cortical pathway. Ac
cording to this model, the subcortical pathway facilitates the rapid 

processing and appraisal of threat-relevant stimuli through LSF visual 
input (e.g., Tamietto & De Gelder, 2010; Vuilleumier et al., 2003), while 
the cortical pathway processes SF content along a coarse-to-fine 
gradient, allowing for a more detailed analysis at a slower speed (e.g., 
Bar, 2003; LeDoux, 2000; Öhman, 2005). Converging evidence from 
neuroimaging and computational studies supports a LSF advantage in 
emotion processing, especially for threat-related stimuli like fearful 
faces (e.g., Mermillod et al., 2009, 2010; Vuilleumier et al., 2003). Due 
to properties of the human visual system and face stimuli, LSFs are 
overrepresented in peripheral or distal viewing conditions (e.g., Sowden 
& Schyns, 2006), which support the LSF advantage over HSF content 
from this perspective. However, a growing body of evidence has chal
lenged this dual-route model, suggesting that some cortical regions may 
process information as rapidly as the subcortical route (e.g., Pessoa & 
Adolphs, 2010), that the supposedly fast subcortical pathway lacks 
selectivity for spatial frequency or the emotional content of faces (e.g., 
McFadyen et al., 2017), and that the distinction between low and high 
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spatial frequencies remains ambiguous, even within the parallel par
vocellular and magnocellular pathways from the retina to the visual 
cortex (e.g., Skottun & Skoyles, 2008). Instead, alternative models, such 
as the “multiple-waves model”, propose that emotional stimuli are 
processed through the dynamic coordination of multiple cortical net
works, rather than a strict division between subcortical and cortical 
pathways (Pessoa & Adolphs, 2010).

Moreover, peak contrast sensitivity of the human visual system oc
curs at mid-range spatial frequencies (MSF) of approximately 2–5 cycles 
per degree (cpd), rather than at lower frequencies. (e.g., Campbell & 
Robson, 1968). This corresponds to about 12 cycles per face (cpf) when 
viewed from a distance of about 1.5 m (6 deg) to 2 m (4 deg) (Oruc & 
Barton, 2010). Importantly, this MSF content is known to play a critical 
role for face identification (~8–20 cpf; e.g., Collin et al., 2014; Gaspar 
et al., 2008), potentially reflecting the visual system’s adaptation to 
facial stimuli (Keil et al., 2008). Thus, we might also expect recognition 
of facial expressions to rely on similar mid-range SF content.

The precise role of LSFs in emotion perception remains debated. 
While some contrasted the role of LSFs for happiness and HSFs for 
sadness recognition, using low-pass and high-pass filters (Kumar & 
Srinivasan, 2011), others have shown the importance of mid-to-high SF 
information in the detection and recognition of expressions by using SF 
noise masking (Gao & Maurer, 2011), or band-pass filtering (Goren & 
Wilson, 2006) both accounting for mid-range SFs. Bubbles methodology 
was also used to simultaneously explore the reliance on spatial (i.e. re
gions of the face) and SF information. Results suggest some processing 
patterns varying across facial expressions with fear relying on the wide- 
opened eye region (mid-to-high SFs), happiness and surprise on the 
mouth region (mid-to-low SFs), anger on the frown of the eyebrows 
(mid-to-low SFs), disgust on the nasolabial folds (mid-to-low SFs), and 
sadness on the crease of the forehead and corner of the mouth (mid-to- 
high SFs; e.g., Smith et al., 2005; Smith & Merlusca, 2014). Others have 
indirectly investigated the role of SFs by manipulating the distance 
(Smith & Schyns, 2009) or the location in the visual field where facial 
expressions are perceived (Smith & Rossit, 2018). These studies recreate 
naturalistic situations where signal degradation occurs on a fine-to- 
coarse gradient (i.e., increasing distance/periphery first alters HSF 
content, then MSF, and so on). Similarly to other results, happiness and 
surprise were the best-recognized facial expressions in peripheral vision 
or at a further distance. Interestingly, performance significantly dropped 
at distance where mid-range spatial frequencies (MSF) were no longer 
accessible, highlighting their crucial role in expression recognition.

Although studies mentioned above have undoubtedly contributed to 
advancing our understanding of the relationship between SFs and facial 
expression recognition, none has yet provided a definitive understand
ing of which SFs are most diagnostic for this process. Previous reviews 
on the role of SF in identity and facial expression recognition (De Cesarei 
& Codispoti, 2013; Jeantet et al., 2018) highlighted methodological 
variability in SF manipulation methods and task demands, potentially 
leading to conflicting results. Most of these studies have used arbitrary 
cut-offs to define low and high SFs (e.g., LSF defined below 8 cpf in 
Kumar & Srinivasan, 2011; between 2 and 8 cpf in Goffaux & Rossion, 
2006; below 6 cycles per image in Vuilleumier et al., 2003; and HSF 
defined above 32 cpf in Kumar & Srinivasan, 2011 or above 24 cycles 
per image Vuilleumier et al., 2003) which overlooks the potentially 
crucial contribution of MSFs in facial expression processing.

Our primary objective was to parametrically investigate SF pro
cessing and establish precise tuning profiles for the recognition of all six 
basic facial expressions of emotions, along with neutrality and pain. 
Note that this study primarily focuses on the recognition component of 
facial expressions, specifically examining expressions presented at their 
apex. According to vision perception models, recognition is understood 
as the process of identifying an object based on its visual representation 
stored in memory. For example, the RAP framework (Gosselin & Schyns, 
2002) proposes that the visual information which can be efficiently used 
by observers to categorize objects, referred to as potent information, 

results from an interaction between the visual information available in 
the stimuli and the visual representation stored in the observer’s 
memory from prior encounters with similar objects. In this context, our 
present work aimed to identify the SF information that is most rele
vant—i.e., potent information—for categorizing basic facial expres
sions. As findings pertaining to pain are reported elsewhere 
(Charbonneau et al., 2021) they will not be further addressed unless 
otherwise pertinent. To establish SF tuning profiles, we used in Experi
ment 1 a variant of bubbles that treats SFs as a continuous variable, 
randomly sampling SFs on a trial basis, thereby allowing a much more 
precise assessment of their respective contributions (Willenbockel et al., 
2010). Importantly, SF bubbles make no a priori decisions regarding SF 
cutoffs.

In Experiment 2 we manipulated the perceived distance at which 
expressions were recognized to generalize SF tuning profiles (Exp. 1) to a 
more naturalistic context. For instance, in everyday situations, one 
might perceive a face from a distance, such as at the end of a hallway, or 
up close, when standing face-to-face with someone as an elevator door 
opens. We predict that when manipulating the distance at which an 
expressive face is viewed, the most consequential drops in recognition 
accuracy should occur at distances that prevent processing of the most 
diagnostic SF information for this facial expression. For example, when 
distances are greatest (i.e., only LSF content can be processed), expres
sions with a relatively higher contribution of LSFs, should be better 
recognized relative to other expressions. This study will test these pre
dictions using two complementary methods, thus providing a better 
understanding of the impact of SFs on facial expression recognition.

2. General methods

2.1. Participants

Twenty White healthy adult Canadian participants aged between 18 
and 40 years old took part in each experiment for a total of 40 partici
pants (Experiment 1: 10F, M = 26 yo, SD = 3.4; Experiment 2: 14F, M =
21.45 yo, SD = 3.52). Data was collected between 2016 and 2019. The 
sample size for each experiment was informed by similar studies on 
emotion recognition and SFs and was determined a priori to achieve a 
statistical power of 0.80, assuming an effect size comparable to those 
reported by Smith and Schyns (2009) and Kumar and Srinivasan (2011), 
with Cohen’s d values of 0.92 and 2.5, respectively (G*Power; Faul et al., 
2007). Participants provided their written consent to take part in the 
experiments and all had normal or corrected-to-normal vision. Proced
ures received approval from the research ethics committee at Université 
du Québec en Outaouais.

2.2. Material and stimuli

Stimuli came from the validated STOIC database (Roy et al., 2007; 
Simon et al., 2008), and consisted of 80 images depicting the faces of 10 
different White individuals. Each individual was pictured displaying a 
neutral or emotional (i.e. anger, disgust, fear, happiness, sadness, sur
prise, and pain) facial expression. All images were gray-scaled before 
mean luminance, contrast, and SF spectra were equated across images 
using the SHINE toolbox (Willenbockel et al., 2010). A gray mask with 
an elliptic aperture was applied to each face to hide external features. 
Stimuli were displayed on a 1080p calibrated LCD monitor with a 100 
Hz refresh rate. Experimental programs were written in Matlab (Natick, 
MA), using custom code and functions from the Psychophysics Toolbox 
(Pelli, 1997; Brainard, 1997; Kleiner et al., 2007). The viewing distance 
was maintained at 46.5 cm using a chinrest.

2.3. Procedure

Prior to the experiments, participants were instructed to look at the 
emotional and neutral faces displayed on a computer screen until they 
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felt confident that they could accurately recognize all facial expressions. 
At this point, a practice session began. Each practice trial began with a 
centered fixation cross displayed 500 ms. Then, one of the 80 face 
stimuli was randomly selected and presented for 300 ms. Face width was 
5.72 degrees of visual angle. Participants were tasked with choosing the 
appropriate emotion label using the assigned keyboard key. No time 
limit was imposed, and no direct accuracy feedback was provided. After 
a response was entered, the next trial began. The practice phase ensured 
participants could accurately label facial expressions. The practice was 
repeated as many times as necessary and completed when performance 
reached at least 90 % correct over two consecutives 160 trials blocks. 
After practice, participants then began their assigned experimental task 
(i.e., Experiment 1 or 2). Experiments were conducted across multiple 
sessions, with each session beginning with a practice phase. Participants 
were encouraged to take breaks as needed during the sessions.

3. Experiment 1: SF tuning profiles

Participants completed 26 blocks of 160 trials each for a total of 
4,160 trials per participant. This is consistent with other studies using SF 
bubbles (Tadros et al., 2013; Willenbockel et al., 2010) since they 
typically favor large numbers of trials (e.g., ~2000–4000 trials/subject). 
Each trial began with a centered fixation cross displayed 500 ms. Then, 
one of the 80 face stimuli was randomly selected, “SF-bubblized”, and 
presented for 300 ms. Face width was the same as in the practice session. 
Participants were tasked with choosing the appropriate emotion label 
using the assigned keyboard key. Again, there was no time limit or ac
curacy feedback. Immediately after a response was entered, the next 
trial began. To reveal visual information useful for the recognition of 
basic facial expressions, faces were sampled in Fourier space using 
spatial frequency (SF) bubbles (Willenbockel et al., 2010). SF bubbles 
randomly sample image SF content on a trial basis, and its effect on 
accuracy is revealed with classification image techniques, which are 
analogous to regression analysis (Gosselin & Schyns, 2001). Across 
many trials, this method allows to independently assess the contribution 
of every SF to visual categorization (see Fig. 4 in Willenbockel et al., 
2010).

Fig. 1 illustrates the creation process of “SF-bubblized” stimuli. First, 
the base stimulus was padded with a uniform gray background (Fig. 1a) 
to minimize edge artifacts. Second, the padded stimulus was converted 
to Fourier space using Fast Fourier Transform (FFT; Fig. 1b). A random 
SF filter was then created starting with a monotonous vector of size 2wk 
elements, where w is the original stimulus width (i.e., 256 pixels) and k 
(i.e., 20) is a constant that determines sampling smoothness. On each 
trial, 10 SF samples (i.e., ones) were randomly dispersed across the 
10,240 elements, creating a binary SF sampling vector (Fig. 1c). The 
binary sampling vector was then convolved with a Gaussian kernel, or 
bubble (Fig. 1d) with FWHM equal to 1.8 cycles per image, resulting in a 
smooth sampling vector (Fig. 1e). This smooth sampling vector was then 
log-scaled (Fig. 1f) to adjust for human contrast sensitivity (De Valois & 
De Valois, 1980). The resulting w-elements filter was then rotated on its 
DC origin to create an isotropic two-dimensional smooth sampling ma
trix (i.e., SF bubbles) of size w x w (Fig. 1g). Finally, the padded stimulus 
Fourier spectrum was sampled with SF bubbles by dot-multiplication 
(Fig. 1h), and the product was converted back to the image domain by 
applying inverse FFT (Fig. 1i). Finally, the padded region was cropped, 
preserving only the initial w x w central region. To adjust task difficulty 
and maintain 56.25 % correct responses (i.e., halfway between floor and 
ceiling), a proportion of Gaussian white noise was added to the SF- 
filtered stimulus. This proportion was manipulated on a trial basis 
using QUEST (Watson & Pelli, 1983).

3.1. Analysis and results

Data were analyzed using Matlab version: 8.6 (R2015b) and IBM 
SPSS Statistics (Version 29.0.0.0.). SFs for accurate facial expression 

categorization were analyzed by computing classification images which 
represent the strength and direction of association between SF and 
performance. Classification image analysis amounts to a multiple 
regression analysis of SF sampling vectors on accuracies across trials. 
Specifically, classification vectors (i.e., weighted sums of SF sampling 
vectors) were calculated individually and for each emotional expression 
by allocating positive weights to filters that led to correct responses and 
negative weights to incorrect responses. Weights were calculated by 
standardizing (converting into z-scores) raw accuracy scores (ones and 
zeros) on a subject basis; thus, equal weight was given to correct and 
incorrect responses. In so doing, it is assumed that filters presented on 
correct trials contained at least some useful SF content, and inversely, 
filters presented on incorrect trials contained useless or even detrimental 
SF content. Classification vectors were then smoothed using a Gaussian 
kernel with a standard deviation equal to 2.5 cycles per image. Resulting 
individual classification vectors were standardized using the mean and 
standard deviation of the null hypothesis, which were calculated using 
the Stat4Ci toolbox (Chauvin et al., 2005). To assess statistical signifi
cance, t-scores were first computed, for each SF and each expression. To 
carry this, we divided averaged individual z-scores by their corre
sponding standard error. This allows for the consideration of between- 
subjects variance, effectively applying a correction that is proportional 

Fig. 1. Creation of a “SF-bubblized” stimulus.
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to this variance. Statistical significance of the resulting classification 
vectors (in t-scores) was assessed by applying a pixel test from the 
Stat4Ci toolbox, tCrit = 3.98, p < 0.05 (see the dashed line in Fig. 2). The 
pixel test corrects for multiple comparisons across SFs but also takes into 
account the spatial correlation inherent to smoothed classification im
ages. SF tuning peaks for individual expressions were estimated on t- 
score vectors using a “50 % area frequency measure” (50 % AFM), which 
is less sensitive to the shape of tuning curves (see, for similar applica
tions across spatial frequency bubbles and spatial orientation bubbles, 
Duncan et al., 2017). In essence, this 50 % AFM corresponds to the SF 
that splits the total area under the curve (AUC) of statistically significant 
SFs (i.e., t > tcrit) in two 50 % sub-AUCs. It can therefore be seen as the 
median statistically significant SF.

Fig. 2 shows SF tuning for each facial expression. Precisely, 50 % 
AFM measures reflected a predominant contribution of MSF facial con
tent across most expressions: anger (13.01 cpf), disgust (12.2 cpf), fear 
(13.35 cpf), neutrality (12.31 cpf), and sadness (10.37 cpf). Only happy 
(5.92 cpf) and surprised (6.42 cpf) expressions reflected a predominant 
contribution of LSF facial content. To better compare our results with 
previous studies that used arbitrary cut-offs, we quantified usefulness of 
LSFs, MSFs, and HSFs by applying similar cut-offs to the data. Specif
ically, we conducted, for each expression, a bootstrap analysis of clas
sification vectors (t-scores) that consisted of 10,000 Monte Carlo 
simulations, i.e., resamples of size n = 20 with replacement. For each 
simulation and expression, we calculated the trapezoidal numerical 
integration of significant t-scores cumulated between 2 and 8 cpf (LSF), 
between 8 and 32 cpf (MSF), and at or above 32 cpf (HSF). Note that 
classification vectors were log-scaled, such that LSFs and MSFs, which 
spanned exactly 2 octaves, were equally represented in this analysis. 
Finally, we divided each outcome by the sum of all significant t-scores to 
obtain a proportion of total diagnostic information. The use of these SF 
ranges ensures that the comparison is constant over the entire SF range, 
so that each range represents two octaves of SF information. Table 1

presents these proportions (expressed in percentages). First, we note 
that the contribution of LSFs was statistically greater than the contri
bution of HSFs for all expressions (all ps < 0.034), except for fear (p =
0.119). Second, for every expression except happiness and surprise, the 
contribution of MSFs was statistically greater than the contribution of 
LSFs, all ps < 0.042 (the effect was marginally significant for sadness, p 
= 0.079). Note that for happiness and surprise, the contribution of LSFs 
and MSFs was statistically similar, ps > 0.856. Finally, the contribution 
of MSFs was statistically greater than the contribution of HSFs for all 
expressions (all ps < 0.002).

Fig. 2. SF tuning for basic facial expression categorization as revealed by the SF bubble’s method.

Table 1 
Proportion (in %) of useful information across different spatial frequency cut- 
offs.

Facial 
expression

LSF MSF HSF p value 
LSF >
HSF

p value 
MSF >
LSF

p value 
MSF >
HSF

Anger 19.00 
(6.18)

77.78 
(5.99)

3.22 
(2.37)

0.014 <0.001 <0.001

Disgust 16.59 
(4.48)

82.69 
(4.64)

1.2 
(2.72)

0.013 <0.001 <0.001

Fear 29.71 
(9.39)

61.19 
(9.35)

8.70 
(8.07)

0.119 0.042 0.002

Happiness 68.84 
(8.10)

30.70 
(8.32)

0 (0.02) <0.001 0.984 <0.001

Neutral 8.59 
(3.24)

91.41 
(3.63)

0 (2.18) 0.034 <0.001 <0.001

Sadness 30.63 
(10.76)

69.37 
(10.15)

0 (2.33) <0.004 0.079 <0.001

Surprise 66.28 
(14.07)

33.72 
(14.45)

0 (0.04) <0.001 0.856 <0.001

Note. The proportion values presented in this table are expressed as percentages 
(with one standard deviation in parentheses) for each facial expression. Cut-off 
represents information between 2 and 8 cpf (LSFs), between 8 and 32 cpf (MSFs), 
and above 32 cpf (HSFs).
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4. Experiment 2: Perceived distance

In Experiment 2, participants completed 15 blocks of 160 trials for a 
total of 2,400 trials per participant. Each trial began with a centered 
fixation cross displayed 500 ms. Then, one of the 80 face stimuli was 
randomly selected and presented for 300 ms. A random noise mask was 
subsequently presented for 150 ms. Participants were tasked with 
choosing the appropriate emotion label (out of eight) using the assigned 
keyboard key. No time limit was imposed. Feedback was not provided. 
Immediately after a response was registered, the next trial began. Note 
that the face stimuli and image sizes were presented randomly, rather 
than continuously simulating a face approaching or moving away. 
Stimuli were created using the Laplacian Pyramid toolbox (Burt & 
Adelson, 1983), a method that recursively applies low-pass filters to 
images, each time removing their highest SF octave, and down-sampling 
the outcome by a factor of two. This resulted, for each face and 
expression combination, in a series of six images that progressively 
decreased in size (face widths corresponded to 3.26, 1.63, 0.82, 0.41, 
0.2, 0.1 degrees of visual angle), thereby simulating a doubling of 
viewing distance with each size reduction (i.e., 1.2, 2.4, 4.8, 9.6, 19.2, 
and 38.4 m, respectively; see Fig. 3). Available SF content thus corre
sponded to applying low-pass filters of 128, 64, 32, 16, 8, and 4 cycles 
per face, respectively. The original image size was 384 x 384 pixels 
(~6.9 cm), which corresponds to 3.26 degrees of visual angle at a 
viewing distance of 122 cm from the screen.

4.1. Analysis and results

Data were analyzed using Matlab version: 8.6 (R2015b), Natick 
Massachusetts: The MathWorks Inc., and IBM SPSS Statistics (Version 
29.0.0.0.). Performance on the categorization task was calculated using 
unbiased hit rates (Fig. 4). This modified measure of sensitivity, from 
signal detection theory, is advised for facial expression recognition tasks 
since it is independent from response biases (Armistead, 2013), which 
are pervasive with facial expressions of emotions (e.g., systematically 
confusing surprise with fear; Elfenbein et al., 2002). Statistical analyses 
were carried out on relative UHRs (though absolute UHRs are also re
ported in the supplementary materials), which consisted of expressing 
performance at each simulated distance as a proportion of maximum 
performance, achieved at the shortest distance (1.2 m). This provided a 
clearer picture of the extent of performance degradation as a function of 
increases in perceived distance, and facilitated direct comparison of this 
effect across emotions.

A 6 (Distance) x 7 (Emotion) repeated measures ANOVA was per
formed. A Greenhouse-Geisser correction was applied whenever the 
sphericity assumption was violated. Note that we did not consider the 
main effect of Emotion on relative UHR as it is confounded with distance. 
The effect of Distance was significant, F(1.81, 34.41) = 868.28, p <
0.001 (η2p = 0.98), which globally showed better proximal vs. distal 

performances. However, this effect was not uniform across distances. 
Most notably, increasing distance from 9.6 to 19.2 m (equivalent to 
removing MSF content between 8 cpf and 16 cpf) had the largest 
negative impact on expression recognition performance (see Table S1 in 
Supplemental materials for full results). The Distance by Emotion inter
action was also significant, F(8.62, 163.78) = 11.73, p < 0.001 (η2p =
0.38).

The interaction was decomposed by computing separate one-way 
repeated measures ANOVAs (i.e., one per facial expression), each time 
testing the effect of Distance. Every expression showed a significant ef
fect of distance, with better proximal vs. distal performance (anger: F 
(1.91, 36.22) = 684.62, p < 0.001 (η2p = 0.97); disgust: F(2.28, 43.39) 
= 396.60, p < 0.001 (η2p = 0.95); fear: F(2.67, 50,82) = 326.03, p <
0.001 (η2p = 0.95); happiness: F(2.28, 43.22) = 570.62, p < 0.001 (η2p 
= 0.97); neutral: F(3.04, 57.69) = 446.04, p < 0.001 (η2p = 0.96); 
sadness: F(2.93, 55.62 = 364.83, p < 0.001 (η2p = 0.95); surprise: F 
(2.66, 50.53) = 254.77, p < 0.001 (η2p = 0.93).

Follow-up paired samples t-tests were performed for five pairs of 
adjacent distances (i.e. 1.2 m with 2.4 m, 2.4 m with 4.8 m, and so forth; 
p = 0.05/5). Fig. 5 charts every contrast (see also Tables S2–S6 in 
Supplemental materials for full follow-up t-tests results). First, we note 
that sadness was the only expression for which relative UHRs statisti
cally differed between the two most proximal distances (1.2 m and 2.4 
m). However, several facial expressions saw a considerable performance 
decline as distance further increased. Despite differences in distance 
effects across facial expressions, the most substantial drop in perfor
mance for all facial expressions occurred between 9.6 m and 19.2 m (see 
also Fig. 4). Finally, Fig. 6 shows the full confusion matrices underlying 
absolute UHR as a function of distance.

To better quantify distance thresholds across expressions, we applied 
curve-fitting using the Palamedes toolbox (Prins & Kingdom, 2018). The 
distance threshold for a given expression corresponds to the distance at 
which relative UHR reaches 50 % (i.e., halfway between floor and 
ceiling performance) for that expression, such that a higher distance 
threshold implies this expression can be recognized from further away. 
It is inversely proportional to cpf threshold, such that a high distance 
threshold amounts to a lower cpf threshold. Results are reported in 
Table 2 and details on curve-fitting analysis are reported in Supple
mental materials. Results were largely consistent with predictions 
drawn from Experiment 1. For instance, every distance threshold fell 
within 9.63 m–16.82 m; these correspond to MSFs, with cpf thresholds 
ranging between 9.13cpf and 15.67cpf. Furthermore, thresholds for 
happiness and surprise were at a farther distance (14.81–16.82 m) and 
lower SF (9.13–10.37cpf), compared to expressions of anger, disgust, 
neutrality, and sadness (9.63–10.61 m; 14.47–15.94cpf). This indicates 
happy and surprised expressions were better recognized from farther 
away, using relatively lower SF face content, and is again consistent with 
results of Experiment 1.

Seeing as every SF threshold measured in Exp. 2 fell within the range 
of MSFs, we wondered whether proximity to the MSF mid-point (i.e., 16 
cpf) would concord with usefulness of MSFs in Exp. 1, such that for 
instance sadness (threshold at 15.94 cpf) would manifest greater MSF 
usefulness than surprise (threshold at 9.13cpf). Seeing as every 
threshold fell below 16 cpf, we simply performed an exploratory cor
relation analysis between group-averaged SF thresholds (Exp. 2) and 
percent contributions of MSFs (Exp. 1) across expressions. Results 
showed this was indeed the case, r = 0.963, p = 0.0023: Expressions for 
which the threshold was higher and thus closer to the MSF mid-point in 
Exp. 2 were more likely to show greater reliance on MSF information in 
Exp. 1. Furthermore, a bootstrap analysis that consisted of 10,000 Monte 
Carlo resamples showed this result was reliable, 95 % CI = [0.343, 
0.999]. As for slopes, there was a general steepness indicative of an 
inflection point (i.e., non-linearity). In other words, sensitivity to in
formation increased as it got closer to the threshold and decreased as it 
got farther from it. However, some slopes (e.g., anger, disgust, and 
happiness) did appear steeper than others (e.g., sadness, neutrality and Fig. 3. Examples of stimuli created with the distance manipulation method.
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Fig. 4. Relative unbiased hit rates for emotion categorization as a function of viewing distance.

Fig. 5. Relative Unbiased Hit Rates Contrasts.
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fear). Seeing as peak SF tuning (t-score) is also a measure of sensitivity to 
information–in that it represents the inflection point in the cumulative 
SF tuning profile–we wondered whether expressions with steeper slope 
parameters (Exp. 2) would concord with higher peak t-scores (Exp. 1). A 
second exploratory correlation analysis between slopes and peak t- 
scores showed this was indeed the case, r = 0.85, p = 0.015 (CI 95 % =
[0.328, 0.992], estimated with 10,000 Monte Carlo simulations.

5. Discussion

Experiment 1 reveals that the key SF content for facial expression 
recognition predominantly falls within a narrow band, spanning from 
5.92 cpf to 13.35 cpf. In Experiment 2, performance is affected at both 
short and long distances, but as expected from results of Exp. 1, the most 
significant impact occurs when perceived distance leads to the loss of 
MSF content (between 8 and 32 cpf). Several parallels are identified 

between both experiments. Notably, facial expressions that rely more on 
LSFs (i.e. happy and surprise in Exp. 1) are generally more resilient to 
increases in perceived viewing distance. Moreover, greater reliance on 
MSF content (Exp. 1) is associated with distance thresholds that are 
more centered on MSFs (i.e., closer to 16 cpf).

5.1. Importance of mid-range spatial frequencies

Our results show that expression recognition heavily rests on the 
processing of MSFs. They contribute more than LSFs to most expression 
recognition (i.e. except happiness and surprise) and more than HSFs 
across all expression categories. They are also consistent with the human 
contrast sensitivity function (CSF) typically peaking at about 2–5 cpd 
(Campbell & Robson, 1968). Although faces can be viewed at varying 
distances, our face diet is predominantly shaped by interpersonal in
teractions, which usually occur at distances of about 2 m (Oruc & Bar
ton, 2010; Oruc et al., 2019). At this distance, facial mid-spatial 
frequency (MSF) content roughly matches the peak sensitivity of the 
human CSF. Consequently, these facial MSFs are the most relied-upon 
content at interpersonal distances (Owsley & Sloane, 1987), and per
formance plummets when this information becomes inaccessible (e.g., 
Schyns & Oliva, 1999).

5.2. Methodological considerations

Our results replicate many findings, highlighting the role of LSFs 
when compared to HSFs in the recognition of facial expressions. The 
contribution of LSFs is significantly larger than that of HSFs for almost 
all facial expressions, except for fear, where the difference is marginal. 
Fear recognition differs from other expressions due to a dependence on 
higher SFs, consistent with previous work suggesting a reliance on the 
eye region (Smith et al., 2005) and mid-to-high SFs (e.g., Morawetz 
et al., 2011). This pattern also explains the lack of advantage of LSFs 
over MSFs, as fear recognition primarily relies on MSFs (over 60 % of 
diagnostic information). These results might appear inconsistent with 
the commonly reported importance of LSFs in processing specific facial 
expressions (e.g., fear; (Mendez-Bértolo et al., 2016); Pourtois et al., 
2005). However, these findings can be reconciled by considering 

Fig. 6. Full confusion matrices underlying performance at each distance.

Table 2 
Curve fitting parameters characterizing the relationship between facial expres
sion categorization and distances.

Facial expression α (meters/cpf) β Deviation 
(pDev)

R2

Anger 2.86 (10.61/14.47) 1.21 0.01(0.65) 1
Disgust 2.92 (10.14/15.15) 1.15 0.05(0.12) 0.99
Fear 2.69 (11.88/12.93) 0.88 0.06(0.25) 0.99
Happiness 2.38 (14.81/10.37) 1.29 0.02(0.10) 0.99
Neutral 2.97 (9.81/15.67) 0.92 0.02(0.22) 0.99
Sadness 2.99 (9.63/15.94) 0.89 0.11(0.24) 0.98
Surprise 2.19 (16.82/9.13) 1.03 0.01(0.99) 1

Note. Threshold (α) corresponds to the distance at which relative UHR for a 
given expression reaches 50% (i.e., halfway between floor and ceiling). Equiv
alents for that parameter, in both meters and cpf, are also displayed. Slope (β) 
represents the function’s steepness, indicating sensitivity and selective use of 
information near this threshold. Goodness of fit was evaluated with the esti
mation of the deviance (1,000 bootstrap iterations). pDev represents the pro
portion of simulation deviance that was greater than in the actual data; higher 
equals better fit). The coefficient of determination (R2) for each facial expression 
is reported in the last row.
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methodological details that influence our understanding of visual stra
tegies used in facial expression categorization.

In light of the findings of De Cesarei and Codispoti (2013), who 
emphasize methodological differences in studies investigating FS in 
emotion perception, we suggest that at least two methodological details 
are important to consider. First, many studies use arbitrary cut-offs that 
often exclude MSFs, comparing solely the contribution of LSFs (often < 8 
cpf) and HSFs (often > 32 cpf). Our experimental framework, on the 
other hand, allows the exploration of the complete spatial frequency 
spectrum instead of merely focusing on its extremes. Our results are, 
therefore, consistent with other investigations that considered SFs in a 
more continuous way (e.g., Gao & Maurer, 2011). Secondly, the task 
parameters, such as the number and types of expression alternatives (e. 
g., 2 vs. 7 choices; neutrality and fear vs. anger and fear), can signifi
cantly influence the utilization of SF information in facial expression 
perception (Schyns & Oliva, 1999). While there is no optimal decision 
regarding the number of expressions to include, our selection was made 
with the aim of aligning with certain real-life scenarios. For instance, 
while we might have expectations about facial expressions in specific 
contexts (e.g., at a funeral home), it is uncommon in our day-to-day 
experiences to know in advance what facial expressions others will 
display. In experimental settings, such as in a fear detection task (fear vs 
neutral), the absence of neutrality necessarily implies the presence of 
fear, and vice versa. However, real-life observers cannot rely on such 
shortcuts. These methodological factors can also have a compounding 
effect inflating the contribution of LSFs. Thus, overlooking these 
important factors can limit or even warp our understanding of percep
tual mechanisms involved in facial expression processing.

5.3. Reappraising the role of low spatial frequencies

The disproportionate reliance on MSFs invites reconsideration of the 
prominent role often attributed to LSF, especially given the poor per
formance observed when only LSF content was accessible to observers. 
However, this does not imply that LSF content plays no role in facial 
expression perception; on the contrary, intriguing patterns emerge when 
only LSF information is available. First, confusion matrices show that 
surprise is perceived almost twice as often when presented at a very 
great distance despite the UHRs compensating for response biases 
(Fig. 6; see Smith & Rossit, 2018 for analogous results in visual pe
riphery). Second, neutrality was the second most likely response, 
perceived about one and a half times more often than presented. In other 
words, when only very low SF content was available, stimuli perceived 
as emotional were mostly classified as surprise, and stimuli perceived as 
non-emotional as neutrality. These findings suggest that LSF facilitates 
the detection rather than the recognition of facial expressions. One hy
pothesis is that surprise, often ambiguous and turning into expressions 
like “fearfully surprised” (Du et al., 2014), primarily capture observer 
attention, particularly in the periphery, prompting rapid refocusing and 
detailed discrimination. This might explain why emotional content 
detection was feasible at distances where detailed discrimination was 
limited, often resulting in the emotion being labeled as surprise. One 
interesting avenue to explore is whether LSF supports the detection of 
emotionally expressive faces in the visual periphery and brings them 
into focus for fine-grained processing, while MSF content supports 
recognition itself.

5.4. Differences across facial expressions

Comparing SF tuning curves highlighted distinct perceptual strate
gies across facial expressions, likely due to heterogeneity in their facial 
movements and features. Extension movements, for instance, tend to 
produce broadening of facial features, which are typical of expressions 
tuned toward lower SFs, such as surprise (mouth opening) and happi
ness (mouth widening). Contraction movements, on the other hand, 
tend to produce narrowing of facial features, which are often found in 

expressions tuned toward relatively higher SFs, such as disgust (nose 
wrinkling), anger (frowning), and sadness (squinting).

The fear expression however is somewhat paradoxical: it is easily 
detected, compared to expressions such as anger, disgust and sadness 
(Smith & Rossit, 2018), but often confused with surprise, making 
recognition challenging (see Fig. 6). It is generally better detected than 
recognized, which is unusual among emotions (Smith & Rossit, 2018). 
Fear is associated with a bimodal SF tuning profile, peaking in both LSF 
(3.67 cpf) and MSF (17.33 cpf) ranges, reflecting its extension and 
contraction movements of both upper and lower facial features (e.g., 
mouth and eyes widening, eyebrows being pulled together). Studies 
suggest that the eye region and its higher SF content are crucial for 
recognizing fear (Adolphs et al., 2005; Fiset et al., 2017), while LSF 
content in the mouth aids detection but may increase confusion if not 
complemented by more in-depth information processing (e.g., Sweeny 
et al., 2013). Research on facial expression dynamics also indicates that 
fear and surprise might initially be perceived as similar expressions of 
“fast-approaching danger,” relying on lower SF content (Jack, Garrod, & 
Schyns, 2014; Smith & Schyns, 2009), which might improve detection in 
peripheral or brief views but increases confusion if higher SF content is 
not processed (Smith & Rossit, 2018; Sweeny et al., 2013).

5.5. Limitations, constraints on generality, and future directions

One limitation on generalization is that the study used static and 
posed expressions, which may lack ecological validity. Evidence sug
gests that perceptual strategies might differ for dynamic expressions, 
which often show a shift toward lower SF information (Plouffe-Demers 
et al., 2019). Posed expressions usually lead to similar strategies as 
spontaneous ones (Saumure et al., 2018); therefore, these limitations are 
unlikely to affect the generalizability of our results. However, studying 
how perceived distance affects spontaneous and dynamic expressions 
could improve ecological validity. Furthermore, to more accurately 
reflect a naturalistic context, experimental paradigms could incorporate 
dynamic facial expressions, in which the distance between the observer 
and an expressive face is continuously manipulated as the face ap
proaches or recedes. Given that diagnostic spatial frequencies are known 
to vary depending on whether the image is approaching or receding 
(Brady & Oliva, 2012), this could suggest that changes in certain facial 
expressions may be more easily perceptible depending on the direction 
of movement.

A second potential limit to generalization is our reliance on a uni
formly Western sample. Cross-cultural studies have shown differences in 
visual and emotional perception, including SF processing (e.g. Blais 
et al., 2008; Jack et al., 2009, 2012), with Easterners generally relying 
more on lower SF content than Westerners (Estéphan et al., 2018; Tardif 
et al., 2017). This suggests that Easterners might be less affected by 
distance changes compared to Westerners, though this is speculative as 
no study has systematically explored cultural effects on SF tuning in 
emotion recognition. Despite possible cultural differences in perceptual 
strategies, we believe these would not significantly alter the relation
ships we observed between SF tuning profiles and distance manipula
tions. Therefore, the sample homogeneity is unlikely to greatly impact 
the generalizability of our results.

6. Conclusion

Our results supported the advantage of LSF over HSF information 
during emotion perception. Importantly, however, our results show this 
portrait often pictured in the literature is reductive in that it entirely 
overlooks how recognition of most expressions relies on mid-range SF 
content to an even greater extent. Importantly, investigations into facial 
expression perception should ideally consider the whole SF spectrum 
and results should carefully be interpreted in regard to task demands. 
This would avoid the possible pitfalls of distorted understanding of how 
these processes operate, and lead to more generalizable results.
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