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Dynamics of a nonequilibrium
discontinuous quantum phase transition
in a spinor Bose–Einstein condensate
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Symmetry-breaking quantum phase transitions lead to the production of topological defects or
domain walls in a wide range of physical systems. In second-order transitions, these exhibit universal
scaling laws described by the Kibble–Zurek mechanism, but for first-order transitions a similarly
universal approach is still lacking. Here, we propose a spinor Bose–Einstein condensate as a testbed
system where critical scaling behaviour in a first-order quantum phase transition can be understood
from generic properties. We demonstrate the applicability of the Kibble–Zurek mechanism for this
transition to determine the critical exponents for: (1) the onset of the decay of the metastable state on
short times scales, and (2) the number of resulting phase-separated ferromagnetic domains at longer
times, as a one-dimensional spin-1 condensate is ramped across a first-order quantum phase
transition. The predictions are in excellent agreement with mean-field numerical simulations and
provide a paradigm for studying the decay of metastable states in experimentally accessible systems.

Classical and quantum nonequilibrium phase transitions arise in many
areas of physics, ranging from cosmology1,2, to condensed matter3–8, and to
ultracold atomic gases9–12. For a second-order (continuous) phase transition,
a correlation length and time scale can be identified that characterise the
coherence and dynamical response of the system. As the critical point is
approached, both of these exhibit power-law divergences described by cri-
tical exponents13,14. In non-equilibrium phase transitions, this implies that
close to the critical point, the system is no longer able to adiabatically follow
the ground state15,16. Causally disconnected regions then choose the new
broken symmetry state independently, which results in the formation of
topological defects or domain boundaries at a density related to the quench
rate of the control parameter.

The Kibble–Zurek mechanism (KZM) provides a theoretical frame-
work that can predict the density of these defects or domainwalls for a finite
quench rate from universal properties of the continuous phase transition.
First introduced by Kibble in the context of cosmology as a mechanism for
the formation of cosmic strings in the early universe1,17, it was subsequently
extended by Zurek to condensed matter systems18–20. It has since been
successfully verified in many settings, including thermally driven
transitions21–25 and quantum phase transitions (QPTs)26–28, and has been
demonstrated to apply to quantum-annealing implementations of quantum
computation29,30.

Recently, there has been increasing interest in studying first-order
QPTs31–35, where metastability plays a crucial role, including in cold-atom

systems36–38. A classical example of such metastability is the transition of
supercooled water, which remains liquid below the freezing point. For first-
order QPTs, such “supercooling”-like behaviour can lead to a zero-
temperature false vacuum. This state plays an important role in particle
physics and cosmology39–41, but an understanding of how the metastable
state decays is hampered by the lack of a general theoretical approach
dealing with first-order QPTs. The KZM has been partially explored for
discontinuous transitions in, e.g., the transverse-field Ising model31,33,35 and
the Bose–Hubbard model32. The recently predicted modification of scaling
behaviour as first-order characteristics are introduced to a non-equilibrium
classical phase transition42 further raises the question of when the KZM can
be expected to apply in discontinuous QPTs.

Here, we propose an experimentally accessible nonequilibrium first-
order QPTwhere the decay of metastable states can be understood through
the KZM. In particular, we study the persistence of the metastable state
following a finite quench of the quadratic Zeeman shift in a spin-1
Bose–Einstein condensate (BEC)with ferromagnetic (FM) interactions.We
demonstrate that the onset of decay of the metastable state representing the
false vacuumagreeswith the critical scaling lawpredictedby a generalisation
of the KZM to our first-order QPT.

A key feature of this phase transition in a FM spinor BEC is the
formation of phase-separated domains at long times past the transition
point. Therefore, in addition to the short-time behaviour characterising the
decay of the metastable state, we also apply the KZM to determine the

1School of Engineering,Mathematics andPhysics,University of East Anglia, Norwich,NR47TJ,UK. 2Centre for Photonics andQuantumScience,University of East
Anglia, Norwich, NR4 7TJ, UK. e-mail: M.Borgh@uea.ac.uk

Communications Physics |           (2025) 8:153 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-025-02048-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-025-02048-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-025-02048-7&domain=pdf
http://orcid.org/0000-0001-5551-5982
http://orcid.org/0000-0001-5551-5982
http://orcid.org/0000-0001-5551-5982
http://orcid.org/0000-0001-5551-5982
http://orcid.org/0000-0001-5551-5982
http://orcid.org/0000-0003-4243-7051
http://orcid.org/0000-0003-4243-7051
http://orcid.org/0000-0003-4243-7051
http://orcid.org/0000-0003-4243-7051
http://orcid.org/0000-0003-4243-7051
mailto:M.Borgh@uea.ac.uk
www.nature.com/commsphys


scaling of the number of phase-separated domains at later times. We show
that the KZM accurately predicts the scaling of the number of domains for
fast to intermediate quench rates, whereas for slow quenches, deviations
appear similarly to some second-order QPTs27,43.

Results and discussion
Mean-field theory of the spin-1 BEC
Focusing on an ultracold atomic system has the advantage that the QPT is
easier to control for isolated systems. Atomic BECs in particular are pristine
systems and offer a highly controllable platformwhere the strength of inter-
atomic interactions and the confining trapping potentials can be tuned.
Consequently, they are already popular example systems for phase-
transition experiments9,44–46, as well as nonequilibrium physics, even in low
dimensions, ranging from relaxation dynamics47,48 to quantum
quenches49–57.Unlike scalarBECs, the spindegrees of freedomarenot frozen
out in spinor BECs. These additional degrees of freedom give rise to a non-
trivial phase diagram even at zero temperature58–63 and a correspondingly
rich array of topological defects and textures49,58,59,64–68. For these reasons,
studying non-equilibrium dynamics and QPTs with spinor BECs has
attracted much attention49,53,69–80.

As our example system, we consider a spin-1 BEC described by the
mean-field condensate spinor wave function Ψ ¼ ðψ1;ψ0;ψ�1ÞT . The
Hamiltonian density then reads58

H ¼ H0 þ
c0
2
n2 þ c1

2
n2jhF̂ij2 � pnhF̂zi þ qnhF̂2

zi; ð1Þ

whereH0 = (ℏ
2/2M)∣∇Ψ∣2+ nV(z) for atomic massM and external trapping

potential V(z). Here, n ¼Pmψ
�
mψm is the total atomic density. The con-

densate spin operator F̂ � ðF̂x; F̂y; F̂zÞ is the vector of spin-1 Pauli-type

matrices such that hF̂μi ¼ 1
n

P
mm0ψ�

mðF̂μÞmm0ψm0 for μ= x, y, z. Conserva-

tion of angular momentum in s-wave scattering means that the longitudinal
magnetisationMz ¼

R hF̂zi dz is conserved on experimental time scales. The
spin-independent and -dependent interaction strengths arise from the s-
wave scattering lengths aF in the spin-F channels of colliding spin-1 atoms
as c0 = 4πℏ

2(a0+ 2a2)/3M and c1 = 4πℏ
2(a2− a0)/3M, respectively. Linear

and quadratic Zeeman shifts of strengths p and q, respectively, may arise
from an applied magnetic field along the z-direction, or in the latter case be
induced by an AC Stark shift81,82, which gives precise control over both
strength and sign. Due to conservation ofMz , a uniform linear Zeeman shift
only causes precession of the spin, under which the Hamiltonian is invariant.
We therefore only consider effects from the quadratic Zeeman shift.

We consider atoms with c1 < 0, such as
87Rb83 or 7Li80,84, which provide

an interestingphasediagramarising fromthe competitionbetween the third
and last term in Eq. (1). A three-component broken-axisymmetry (BA)
phase with zero longitudinal magnetisation occurs for 0 <Q = q/
(∣c1∣n0) < 258 where n0 is the background density in a uniform system:

ψ ± 1 ¼
ffiffiffiffiffiffiffi
2n0

p
4

ffiffiffiffiffiffiffiffiffiffiffiffi
2� Q

p
; ψ0 ¼

ffiffiffiffiffi
n0

p
2

ffiffiffiffiffiffiffiffiffiffiffiffi
2þ Q

p
: ð2Þ

In addition, an FM state occurs for Q < 0: Ψ ¼ ð ffiffiffiffiffi
n0

p
; 0; 0ÞT or

Ψ ¼ ð0; 0; ffiffiffiffiffi
n0

p ÞT . SinceMz is conserved, a BA initial conditionwithMz = 0
implies that the FM phase results in the formation of phase-separated
domains with opposite spin projection as Q is ramped across the phase
transition. The associated instability that leads to the emergence of phase-
separated domains when c1 < 0 is not captured in the single-mode
approximation62,63.

Theory of Kibble–Zurek scaling
In contrast toprevious studies onQPTs, thefirst-orderQPTbetween theBA
and FM phases in a spin-1 BEC with FM interactions corresponds to a
discontinuous quantum critical point (DQCP)85, the quantum analogue of
the classical discontinuous critical point86,87. As it does not meet the general

criteria of applicability of the standard KZ theory, the KZM has hitherto
been little studied in this context. We consider, in particular, a one-
dimensional (1D) spin-1BECwith FM interactions in a ring-trap geometry.
By quenching the quadratic Zeeman shift, the system can transition from
the BA phase into a phase-separated FM phase where domains of atoms
with opposite condensate-spin projection form58. Unlike the single-mode
scenario in an anti-FM condensate88, where there is no domain formation,
here phase separation is a consequence of the FM interactions under con-
servation of longitudinal magnetisation in a spatially extended BEC. Its 1D
nature, however, has the advantage that once the domains form, they are
frozen in and cannot undergo any coarseningdynamics89,90, which facilitates
the accurate analysis of the scaling behaviour predicted by the KZM for
the DQCP.

Moreover, the transition point between the BA and FM phases at
(qc, pc) = (0, 0) is a DQCP. It satisfies five conditions85, which permit scaling
arguments to be applied. A critical point at q = qc and p = pc , where
p functions as a symmetry-breaking field, is a DQCP of this kind if
(1) the energy density ϵ(q, p) across the transition is continuous,
ϵðqþc ; pcÞ � ϵðq�c ; pcÞ ¼ 0, but (2) its derivative is discontinuous, ∂ϵðqþc ; pcÞ
=∂q� ∂ϵðq�c ; pcÞ=∂q≠0 (establishing its first-order nature). Here, qþc and
q�c correspond toapproachingqc fromaboveor below, respectively. Further,
(3) the order parameter m =− ∂ϵ(q, p)/∂p must exhibit a discontinuous
jump with respect to q as the critical point is crossed, jmðq�c ; pcÞ
j>jmðqþc ; pcÞj ¼ 0, and additionally, (4) the order parameter is also dis-
continuous with respect to p: jmðqc; p±

c Þj>0, ensuring that the DQCP is not
a triple point in the (p, q) parameter space87. Finally, we require (5) that the
derivative of the energy be bounded as the critical point is approached:
j∂ϵðq±

c ; pcÞ=∂qj<1. Criteria (1)–(5) permit us to investigate the KZM for
our DQCP.

The energy densities per particle for the BA and FM states are,
respectively58,

ϵBA ¼ ð�p2 þ q2 þ 2qc1n0Þ2
8c1n0q2

þ 1
2
c0n0; ð3Þ

ϵFM±
¼ ∓pþ qþ 1

2
n0ðc0 þ c1Þ; ð4Þ

where the subscript +(−) denotes the FM phase with spin pointing up
(down). These energies are continuous at the critical point (qc , pc) = (0, 0).
The derivatives, however, are discontinuous, but remain bounded. Mean-
while, the relevant order parameter for the BA and FM states is
mBA = p(p2− q2− 2qc1n0)/8c1n0q and mFM±

¼ ± 1, respectively, which is
precisely the local magnetisation Fz = ∣ψ1∣2− ∣ψ−1∣2 in both phases58. For
pc = 0 this order parameter is zero in the BAphase and becomes non-zero in
the FMphase.Anon-zero p, however, causes the orderparameter tobenon-
zero in both phases. Thismeans that the BA to FM transition satisfies all the
conditions for a DQCP.

We now recall the key arguments of the KZM as applied to QPTs15. A
continuous second-order phase transition can be characterised by the
divergence of a single instantaneous correlation length ξ ~ ∣q(t)− qc∣−ν and a
single instantaneous relaxation time τ ~ [ξ(t)]z, where ν and z are the
correlation-length and dynamical critical exponents, respectively. In the
standardQPT scenario15,27, the relaxation time is usually set by the inverse of
the energy gap Δ between the ground state and the first excited state of a
gapped mode43,69: τ≃Δ−1. A system initially prepared in the ground state
follows this state adiabatically as long as the relaxation time remains small.
However, as the critical point is approached, the energy gap vanishes and the
relaxation time diverges, which leads to the breakdown of the adiabatic
regime. This divides the dynamics into three stages: adiabatic, frozen and
adiabatic again as the system crosses the critical point. Assuming a quench
of the form ∣q(t)− qc∣ ~ ∣t/τQ∣, where τ�1

Q is the quench rate, the freezing
time is estimated to be j~t j ¼ τð~tÞ. This leads to a scaling for the freezing
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time given by

j~t j � τzν=ðzνþ1Þ
Q : ð5Þ

It follows from Eq. (5) and the scaling of the correlation length that at the

freezing time, ~ξ � ξð~tÞ � τν=ðzνþ1Þ
Q . This provides an estimate for the

number of defects or domains: Ndom � ~ξ
�d � τ�dν=ðzνþ1Þ

Q .

Note that once scaling behaviour is assumed, Eq. (5) can be derived by
assuming the existence of single length and time scales, which can typically
be justified for second-order transitions. It does not always hold for dis-
continuous phase transitions but can be extended for aDQCP satisfying the
five criteria. These key aspects of the KZM are therefore generic and also do
not depend on the existence of a gappedmode (indeed, Zurek considered a
thermal superfluid phase transition characterised by a gapless dispersion18).
However, the specific values of the critical exponents are determined by the
form of the dispersion relation near the critical point.

For a first-order transition, one must consider the Bogoliubov modes
corresponding to the phase from which the transition is approached85, here
the BAphase. The three spin-1 Bogoliubovmodes91 then correspond to spin
waves Ek;f z

, density waves Ek,+, and the so-called theta modes Ek,−, (see
“Methods”). Only Ek,+ is gapped in the long-wavelength limit and deter-
mines the KZM scaling for the second-order transition from the polar to the
BA phase70 (where modes on either side of the transition may be used). By
contrast, the relevant mode for the BA to FM transition is

Ek;f z
ðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵkðϵk þ qÞ

p
; ð6Þ

where ϵk = ℏ2k2/2M is the kinetic energy. This spectrum is gapless in the
long-wavelength limit. The imaginary part ofEk;f z

togetherwith that ofEk,+
is shown in Fig. 1 and clearly illustrates that an instability can occur atQ = 0
only for modes with k ≠ 0. These unstable modes are responsible for the
formation of phase-separated domains in the FM phase. In contrast, the
most unstable mode for the phase transition at Q = 2 corresponds to k = 0
within the range 1 <Q < 2.

To derive KZ scaling for a QPT with a gapless mode85 we consider the
more general spectrum, E2

k � jqðtÞ � qcjαϵηk þ ϵ2zk , of which Eq. (6) is a
special case. The correlation length associated with the transition can then
be inferred by equating the two terms. Therefore, to find scaling solutions
consistent with the KZM where Ek ~ ∣q(t)− qc∣z, we assume that the two
terms are of equal magnitude and scale similarly by making the ansatz
k ~ ∣q(t)− qc∣ν (corresponding to k ~ ξ−1) to derive the condition α =
ν(2z− η). Subsequently, the adiabatic-impulse approximation states that
the impulse regime begins when E2

k ¼ _Ek. This yields

j~t j � τα=ð2þαÞ
Q

~k
�η=ð2þαÞ � τνz=ð1þνzÞ

Q
ð7Þ

for the freezing time upon using the above scaling assumed for k. This
immediately implies the characteristic momentum scale ~k � τ�ν=ðzνþ1Þ

Q
fromwhichwe extract the defect densityNdom � ~k

d � τ�dν=ðzνþ1Þ
Q , where d

is the dimensionality of the system.
Wehave thus recovered the same general expression for theKZ scaling

as for a continuous phase transition. This should not be surprising since the
order of the transition does not enter into the derivations of Eqs. (5) and (7)
once the single length and time scales are established. In addition to these
universally valid expressions, deriving the scaling law from the form of the
dispersion relation also allows us to determine the critical exponents.

Specifically for our 1D system (d = 1 and qc = 0), Eq. (6) implies α = 1,
η = 2 and z = 2. This is equivalent to setting z = 2 and ν = 1/2 corresponding
to a defect-density scaling

Ndom � τ�1=4
Q : ð8Þ

Therefore, despite originating in the samemodelHamiltonian, this scaling is
clearly different from that found for the KZM in continuous phase

transitions through a QCP in spinor BECs70,72,73,75,92. Our results thus indi-
cate a new scaling regime, compared with the polar-to-BAQPT in the same
system. The difference can be attributed to the fact that the most unstable
mode in the latter case corresponds to k = 0, while in our case it acquires a
k-dependence.

Numerical results
To check our prediction, we numerically evolve the time-dependent spin-
1 Gross-Pitaevskii equations (GPEs) obtained from Eq. (1) using a
symplectic algorithm93 (see “Methods”) and interaction strengths
c0/c1 =−20. This choice reduces the disparity in system timescales and
hence the computational overheads. All results have also been verified for
87Rb (c0/c1 =−216) 7Li (c0/c1 =−2.17) parameters to confirm that the
KZM should be observable in existing experiments. Typical results for
τQ = 1000 are shown in Fig. 2. We see the clear formation of FM domains
after crossing the critical point at t = 0. Figure 3 shows the normalised
atom number for the ψ0 component as the system is quenched for var-
ious τQ. Initially, the system tracks the BA-phase ground state88, Eq. (2).
After passing the critical point, the system is no longer able to adiaba-
tically track the true ground state. Rather, it evolves in a metastable BA
state, even for t/τQ > 0, until it emerges from the impulse regime at a time
clearly dependent on the quench rate. At this point, the metastable state
decays with an associated abrupt drop in the density of the ψ0 compo-
nent, signalling a discontinuous phase transition to the FM phase. This
coincides with an increase in the ψ±1 components, where the FM
domains start to form (Fig. 3 inset).

To determine the freezing time as well as the short time scaling
behaviour, we introduce âk;± 1, defined as the Fourier transforms of the
ψ±1 components, respectively. Since the transition to the FM phase
results in phase-separated domains, driven by an instability associated
with a Bogoliubov mode related to âk;f z ¼ ðâk;1 � âk;�1Þ=

ffiffiffi
2

p
(see

“Methods”), we extract the critical time ~t such that
jâk;f z ð~tÞj ¼ 0:01× maxfjâk;f z ðtÞj : tg. The critical Zeeman value is
defined as Qa ¼ jQð~tÞj. The inset in Fig. 4 shows the typical growth of
jâk;f z j, which demonstrates that it remains zero until the system passes
the critical point. Thereafter, it undergoes growth with strong oscilla-
tions. The choice of 0.01 when extracting ~t is arbitrary, but we find
qualitatively similar results in tests with values up to 0.1.

Figure 4 reveals a clear Qa � τ�1=2
Q power law for a large range of τQ.

Despite the discontinuous nature of the phase transition, scaling behaviour
is still observed94–96. However, this scaling is different from that observed in
numerical and experimental results concerning the continuous phase
transitions in spin-1 BECs70,77. As illustrated in Fig. 4(b), the temporal
scaling extends to other quantities, recovering the sameQa (see “Methods”).
The observed scaling is consistent with the Kibble–Zurek scaling presented
above for our system. Taking ν = 1/2 and z = 2, and using Eq. (5), we obtain

Fig. 1 | Stability of Bogoliubovmodes. Imaginary parts ofEk;f z
andEk,+ are shownas

functions of the wavenumber k and quadratic level shift Q (colour scale). Ek;f z
is

unstable (positive imaginary part) forQ < 0, corresponding to the broken axisymmetry
to ferromagnetic discontinuous quantum critical point, while Ek,+ instead becomes
unstable at the broken axisymmetry to polar second-order transition at Q = 2.
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~t � τ1=2Q . Combining with the relation Qa ¼ j~t=τQj, we also recover the
Qa � τ�1=2

Q scaling seen in our simulations.
To reinforce our conclusions, we also recover the scaling laws by

directly linearising the GP equations around the critical point. In this case,
the temporal dependence of the quadratic Zeeman terms is treated directly.
Following ref. 70, we begin with a wave function close to the BA ground
state, ΨT ¼ ðψ1 þ δψ1ðtÞ;ψ0 þ δψ0ðtÞ;ψ�1 þ δψ�1ðtÞÞ expð�iμtÞ where
ψ±1,ψ0 are defined in Eq. (2) withQ =Q0. Here, μ = c0+ c1(2−Q0)/2 is the
chemical potential, 0≤Q0≤2 is a constant, and ∣δψm(t)∣≪1. The noise terms
have to satisfy

R P
mδψm þ δψ�

m dz ¼ 0 to ensure the proper normal-
isation of the wave function and

R ðδψ1 þ δψ�
1 þ δψ�1 þ δψ�

�1Þdz ¼ 0 to
enforce conservation of magnetisation.

Linearising the spin-1 GPEs about the state corresponding to Q = Q0

(see “Methods”), we obtain

i_
d
dt

Gy ¼ � _2

2M
d2

dz2
� c1n0 Q� Q0

2

� �� �
Gy �

c1n0Q
2

G�
y ; ð9Þ

where Gy = δψ1− δψ−1. Next, we transform to momentum space and split
Gy into real and imaginary parts, where ay ¼

R
ReðGyÞe�ikzdz and

by ¼
R
ImðGyÞe�ikzdz. We then solve for Q =−t/τQ, by deriving the

equation for d2ay/dt
2 across a DQCP. Rescaling time as t→ tλ with

λ ¼ ffiffiffiffiffiffiffiffiffi
τsτQ

p , we arrive at

d2ay
dt2

¼ �1
2κ2 � tð Þ

day
dt

� 1
4

κ4 � 2κ2t þ 3t2

4

� �
ay; ð10Þ

where κ2 ¼ ξ2s k
2
ffiffiffiffiffiffiffiffiffiffiffiffi
τQ=τs

q
. This scaling ensures that the last term is inde-

pendent of τQ. The remaining dependence on τQ is eliminated if we require

thatκ is constant,which impliesk � τ�1=4
Q .Onlyunder these conditions can

we expect scaling solutions, and they are also consistent with the scaling of
the correlation length and the dynamical exponents derived earlier based on
the KZM. break

Scaling of the number of domains
The KZM not only predicts the growth of the correlation length immedi-
ately following the phase transition, but also the number of phase-separated,
FM domains, whose formation in the long-time dynamics involves dis-
continuous changes in the properties of the system. This is a measurable
quantity and has been investigated in works applying the KZM to con-
tinuous transitions75,89. Here, the domain formation occurs following a
sudden change in the occupation-number density of the spinor components
(Fig. 3). It is therefore a central questionwhether theKZMcorrectly predicts
the scaling for thenumberof domains forming at late times.Wenumerically
determine the total number of FM domains (Fig. 2) at the end of the
simulations for a broad range of τQ, as shown in Fig. 5. For sufficiently fast
quenches (τQ < 1000), a clear power-law scaling Ndom � τ�1=4

Q emerges,
which agrees well with Eq. (8) as well as the scaling obtained with Eq. (10).
Aswith~t, the scaling for theDQCP is again different from that in analogous
transitions across a continuous critical point89.

Unlike Qa, the number of domains shows a clear deviation from
the predicted KZ scaling for slow quenches (τQ > 1000). Similar dif-
ferences in the scaling of observables measured at much later times
from the critical point have also been observed in21,75. In general, the
scaling changes from power law to exponential decline in the
limit when Ndom~1, as predicted, e.g., by the Landau–Zener model43.
Here, we find that a deviation occurs already for intermediate values of
τQ and Ndom~100. Based on similar behaviour in spin chains97,98 and
exact results for the Ising model15, this could be attributed to effects of
finite-size scaling or the presence of another, undetermined, length
scale that dominates for intermediate τQ.

Finally, we confirm the robustness of the scaling by considering a
quench that crosses two phase transitions, starting from the polar state
with Q = 2.5, quenching through the second-order transition into the
BA phase and then continuing across the BA-FMDQCP. This scenario
is of particular importance, since it may be experimentally simpler to
realise. We find that the crossing of the polar-to-BA phase transition
can excite modes associated with the transverse magnetisation (F⊥), as
found for sudden quenches55,99. These excitations can be seen in Fig. 6,
which depicts the angle (direction) of F⊥ following the phase transition
to the BA phase for two quench rates. Note that these excitations can
give rise to phase jumps in the angle of F⊥ that can persist beyond the
transition region. To determine the impact on the KZ scaling beha-
viour, we show the number of domains also for the two-QPT scenario
in the inset of Fig. 5. The results remain qualitatively similar with the
same τ�1=4

Q scaling and deviation for slow quenches. We have also
verified that after the polar-to-BA transition, the system emerges from
the impulse regime and tracks the BA phase with the aforementioned
excitations present before entering a second impulse regime associated
with the DQCP. Therefore, our results correspond to two well-
separated impulse regimes and demonstrate the reproducibility of our
scaling law for a range of initial conditions.

Conclusion
In conclusion, we have shown that the KZM can be generalised to this
discontinuous phase transition, leading to scaling laws that differ from
those observed for phase transitions across continuous quantum critical
points for the same spin-1 BEC model. We find excellent agreement with
numerical simulation for both the short-time growth of the unstable
excitations and the subsequent number of domains formed on longer

Fig. 3 | Decay of the metastable state. Normalised atom number N0/L for the ψ0

component using the analytical prediction (black line) in Eq. (2). Also plotted are
numerically calculated values for quench times τQ = 500, 1000, 5000 (blue, red and
yellow lines, respectively). Inset: Normalised atom number for the ψ1 component
using the same analytical and numerical data as the main figure. We note that N1/L
approaches 0.5 since the longitudinalmagnetisationMz = 0 is conserved. The critical
point is marked with a black dashed line.

Fig. 2 | Formation of ferromagnetic domains. Component densities (colour scale)
in a 128ξs subregion of the ψ1 (top), ψ0 (middle) and ψ−1 (bottom) components for a
typical simulation with the quench time τQ = 1000.
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time scales. Our results hold for experimentally accessible parameter
regimes allowing these extensions of the KZM to be realised in current
experiments on spinor BECs, which therefore emerge as prime candi-
dates for testbed systems for investigating critical scaling in first-order
QPTs, including as laboratory emulators for understanding false-vacuum
decay36–38,100.

Methods
Numerical simulation
We measure length and time in units of the spin healing length
ξs ¼ _=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mjc1jn0

p
and the spin time τs = ℏ/2∣c1∣n0, respectively. Our

simulations are performed on a 1D grid of Nx = 16,384 points with a
spacing of Δx = 0.125ξs, considering a ring-shaped geometry by
assuming periodic boundary conditions and V(z) = 0. We start from Eq.
(2), adding small noise terms, δψm, to each component, where ∣δψm∣≪1.
The real and imaginary parts of δψm are drawn from the probability
distribution pðzÞ ¼ expð�z2=2σ2Þ=ð ffiffiffiffiffi

2π
p

σÞ, with σ = 10−4 to remain
close to the BA ground state. We vary the quadratic Zeeman shift as
Q(t) =− t/τQ for a range of quench times τQ, starting at Q = 1 and
ending the simulation at Q =−2.5.

Bogoliubov modes for the BA phase
The BA phase of a spin-1 BEC exhibits three Bogoliubovmodes91. Here, we
rederive eachmode explicitly from the relevant Bogoliubov transformations
and explain why Ek;f z

is the relevant mode for the BA-to-FM transition.
The BA phase can be parameterised as

ΨBA ¼ ffiffiffiffiffi
n0

p sin θffiffiffi
2

p ; cos θ;
sin θffiffiffi

2
p

� �
; ð11Þ

where sin θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2þ q=ð4nc1Þ

p
. The fluctuation operators for this state

are then defined as91:

âk;d ¼
sin θffiffiffi

2
p ðâk;1 þ âk;�1Þ þ cos θâk;0; ð12Þ

âk;f z ¼
1ffiffiffi
2

p ðâk;1 � âk;�1Þ; ð13Þ

âk;θ ¼
cos θffiffiffi

2
p ðâk;1 þ âk;�1Þ � sin θâk;0; ð14Þ

where on the right-hand side âk;m is the annihilation operator for a spin-1
boson inmagnetic levelm (form =−1, 0,+1), determinedby expanding the
wave-function field operator as

ψ̂mðxÞ ¼
1ffiffiffiffi
V

p
X
k

âk;me
ik�x; ð15Þ

where V is the volume of the system.
The sub-Hamiltonian for the spin fluctuation mode âk;f z can be

diagonalized using the transformation

b̂k;f z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵk þ q=2þ Ek;f z

2Ek;f z

s
âk;f z þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵk þ q=2� Ek;f z

2Ek;f z

s
ây�k;f z

; ð16Þ

where ϵk = ℏ2∣k∣2/2M is the kinetic energy and the Bogoliubov spectrum is
given by

Ek;f z
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵkðϵk þ qÞ

p
: ð17Þ

The sub-Hamiltonians for the densityfluctuationmode âk;d and the θmode
âk;θ can be similarly diagonalized using operators b̂k;þ and b̂k;þ, which
yields the remaining two Bogoliubov modes91:

Ek;± ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2k þ nðc0 � c1Þϵk þ 2ðnc1Þ2ð1� ~q2Þ± E1ðkÞ

q
; ð18Þ

where ~q ¼ �q=2c1n and

E1ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðc0 þ 3c1Þϵk þ 2ðc1nÞ2ð1� ~q2Þ� �2 � 4c1ðc0 þ 2c1Þðn~qϵkÞ2

q
:

ð19Þ

The final, diagonalized Hamiltonian then reads

Ĥ
BA ¼EBA0 þ

X
k≠0

Ek;f z
b̂
y
k;f z

b̂k;f z

h

þEk;�b̂
y
k;�b̂k;� þ Ek;þb̂

y
k;þb̂k;þ

i
;

ð20Þ

Fig. 5 | Kibble–Zurek scaling of the number of domains. The number of ferro-
magnetic domains (black dots) as a function of the quench time, τQ. Overlaid is the
power-law scaling τ�1=4

Q (dashed line). The results are verified for both 7Li (blue
circles) and 87Rb (red crosses) interaction parameters. Each point is averaged over 50
runs, and the error bars give ± 1 standard deviation. Inset: number of ferromagnetic
domains in a quench that spans two phase transitions for the same quench times as
the main figure.

Fig. 4 | Kibble–Zurek scaling of the freezing time.
a Scaling of the critical value Qa ¼ jQð~tÞj, where~t is
the freezing time, versus the quench time τQ.
Overlaid is the power-law scaling τ�1=2

Q (dashed
line). Inset: the quantity jak;f z j for τQ = 5000 and the
n = 1 mode (i.e., k = 2π/L). b Same but with Qa cal-
culated using the deviation from the analytically
predicted value of ψ0 (see “Methods'') reproducing
the same scaling. For both methods, each point is
averaged over 50 runs, and the error bars represent
±1 standard deviation.
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where EBA0 is the ground state energy for the BA phase, which is explicitly
derived in ref. 91.

We now consider our 1D system. In the long-wavelength limit, k→ 0,

the only non-zero (gapped) mode is Ek;þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðc1nÞ2ð1� ~q2Þ

q
which has

the form Ek;þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0c

2 � q2
p

with q0c ¼ 2c1n. The relevant mode of the BA
to FM transition is found from the imaginary parts of the Bogoliubov
energies (Fig 1). For ∣Q∣ > 2, where Q≡ q/(∣c1∣n), Ek,+ has a positive ima-
ginary part, indicating instability. The critical point Q = 2 (q ¼ q0c) corre-
sponds to the second-order transition between the polar and BA phases, for
which Ek,+ therefore is the corresponding Bogoliubov energy.

However, forQ < 0 the imaginarypart ofEk;f z
modebecomesnon-zero

and positive, and thus unstable. This corresponds precisely to the transition
from the BA to the FM phase at Q = 0 that we are interested in here, and
therefore Ek;f z

is the relevant mode to study. Note that the Ek;f z
mode does

not give rise to instability at k = 0. Therefore, studies focusing on this mode
at k = 0only donot capture the phase transition that occurs atQ = 062,63,88. In
contrast, the k = 0 mode corresponds to the most unstable mode for Ek,+,
and thus it suffices to choose this Bogoliubov energy to capture the phase
transition that occurs at Q = 2. In practice, the Q =−2 transition is not
realised since the instability of Ek;f z

at any k ≠ 0 will typically arise at Q = 0
when Q is quenched from positive to negative values.

Extracting the freezing time
In order to extract the freezing time ~t of the system, an appropriate
quantity must be chosen. Since the transition to the FM phase causes
the formation of phase-separated domains, a natural choice is to
measure fluctuations in the difference of the populations ofψ±1

91. To do
this, we first construct the Fourier transforms of the ψ±1 components as
â± 1ðkÞ ¼

R
ψ ± 1e

�ikz dz. After passing through the critical point into
the FM phase, the difference âk;f z ðkÞ ¼ â1ðkÞ � â�1ðkÞ

� �
=
ffiffiffi
2

p
generates

measurable fluctuations as FM domains with opposite spin start to
form [see inset of Fig. 4(a)], while before the transition it remains zero
(due to the absence of domains). To measure the freezing time, we
extract the time at which jâk;f z ðkÞj exceeds some appropriately chosen
value. In our numerical simulations, we take this value to be 1% of the
maximum value of jâk;f z ðkÞj over the entire simulation.

An alternative choice is the population of the ψ0 component. Here,
instead of measuring the growth of a quantity, we now extract the freezing
time as the time required for the ψ0 component to deviate from its analy-
tically calculated value in the (metastable) BA phase ψ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2þ Q

p
=2

(Fig. 3). In particular, we choose the freezing time to be the time atwhich the
deviation reaches 1% of the analytically predicted value, yielding Fig. 4(b).
We see that, despite using an entirely different quantity to measure the

freezing time, the resulting scaling of Qa is the same as when calculated
from jâk;f z ðkÞj.

Deriving scaling near the critical point
The spin-1 GPEs are given as58:

i_
∂Ψ

∂t
¼ � _2∇2

2M
� pF̂z þ qF̂

2
z þ c0nþ c1nhF̂i � F̂

� �
Ψ: ð21Þ

Recall that we start from a BA phase of the formΨT ¼ ðψ1 þ δψ1ðtÞ;ψ0þ
δψ0ðtÞ;ψ�1 þ δψ�1ðtÞÞ expð�iμtÞ. Substituting this expression into the
GPEs and keeping leading order terms in δψm yields the following equations
for δψ±1 (p = 0)

i_
∂δψ1

∂t
¼ � _2

2M
d2

dz2
þ q� μþ n0ð10c0 þ 6c1 � ðc0 � c2ÞQÞ

8

� �
δψ1

þ n0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð4� Q2Þ

p
8

ðc0 þ 3c1Þδψ0 þ ðc0 þ c1Þδψ�
0

� �
þ n0ð2� QÞ

8
ðc0 � c1Þδψ�1 þ ðc0 þ c1Þδψ�

1

� �
þ n0

8
ð2� QÞc0 þ ð2þ 3QÞc1
� �

δψ�
�1;

ð22Þ

i_
∂δψ�1

∂t
¼ � _2

2M
d2

dz2
þ q� μþ n0ð10c0 þ 6c1 � ðc0 � c2ÞQÞ

8

� �
δψ�1

þ n0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð4� Q2Þ

p
8

ðc0 þ 3c1Þδψ0 þ ðc0 þ c1Þδψ�
0

� �
þ n0ð2� QÞ

8
ðc0 � c1Þδψ1 þ ðc0 þ c1Þδψ�

�1

� �
þ n0

8
ð2� QÞc0 þ ð2þ 3QÞc1
� �

δψ�
1 :

ð23Þ
Subtracting Eq. (23) from Eq. (22) results in the differential equation for
Gy = δψ1− δψ−1:

i_
dGy

dt
¼ � _2

2M
d2

dz2
þ q� μþ n0ðc0 þ c1Þ

� �
Gy �

c1n0Q
2

G�
y : ð24Þ

Additionally, to calculate the chemical potential, we take the ψ0 component
of Eq. (21) keeping lead order terms and assuming a stationary state, which
leads to μ = c0n0+ c1n0(2−Q0)/2 where Q0 is a constant. Substituting this

Fig. 6 | Phase jumps induced by quenching across
two quantum phase transitions. Angle of trans-
verse magnetisation (colour scale) following cross-
ing of the polar-to-BA phase transition for a a fast,
and b a slow quench. In the former case, two dis-
cernible phase jumps appear and persist after the
transition (but are absent in the latter).
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expression and q(t) =− c1n0Q(t) into Eq. (24) yields

i_
dGy

dt
¼ � _2

2M
d2

dz2
� c1n0 Q� Q0

2

� �� �
Gy �

c1n0Q
2

G�
y : ð25Þ

To progress, we split Gy into real and imaginary parts and take the
Fourier transform: ay ¼

R
ReðGyÞe�ikzdz and by ¼

R
ImðGyÞe�ikzdz.

Substituting into Eq. (25) yields the matrix equation

d
dt

ay
by

" #
¼ 0 _k2

2M � c1n0
2_ ðQ� Q0Þ

c1n0
2_ 3Q� Q0

	 
� _k2

2M 0

 !
ay
by

" #
:

ð26Þ

To solve the above equation, we construct the equation for
d2ay
dt2 and take

Q0 = 0, which yields

d2ay
dt2

¼ c1n0
2_τQ

by þ
_2k2

2M
� c1n0Q

2_

� �
dby
dt

: ð27Þ

Expressions for by and dby/dt are found from Eq. (26). Substituting these in
yields the following equation for d2ay/dt

2:

d2ay
dt2

¼ 1

τQ
_2k2

Mc1n0
� Q

� � day
dt

� _2k4

4M2 �
k2c1n0Q

M
þ 3c21n

2
0Q

2

4_2

� �
ay: ð28Þ

To simplify the above expression, we use the spin healing length ξs ¼
_=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jc1jn0

p
and the spin time τs = ℏ/∣c1∣n0:

d2ay
dt2

¼ �1

2ξ2s k
2τQ � t

	 
 day
dt

� ξ4s k
4

4τ2s
� ξ2s k

2t
2τ2s τQ

þ 3t2

16τ2s τ
2
Q

 !
ay: ð29Þ

Rescaling time as t→ tλwith λ ¼ ffiffiffiffiffiffiffiffiffi
τsτQ

p , leads to the differential equation

d2ay
dt2

¼ �1
2κ2 � tð Þ

day
dt

� 1
4

κ4 � 2κ2t þ 3t2

4

� �
ay; ð30Þ

where κ2 ¼ ξ2s k
2
ffiffiffiffiffiffiffiffiffiffiffiffi
τQ=τs

q
.
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14996614.

Code availability
The code is available from the authors upon reasonable request.

Received: 27 December 2023; Accepted: 18 March 2025;

References
1. Kibble, T. W. Some implications of a cosmological phase transition.

Phys. Rep. 67, 183–199 (1980).
2. Mazumdar, A. & White, G. Review of cosmic phase transitions: their

significance and experimental signatures. Rep. Prog. Phys. 82,
076901 (2019).

3. Chuang, I.,Durrer,R., Turok,N.&Yurke,B.Cosmology in the laboratory:
defect dynamics in liquid crystals. Science 251, 1336 (1991).

4. Hendry, P.C., Lawson,N.S., Lee,R. A.,McClintock, P. V. &Williams,
C. D. Generation of defects in superfluid 4He as an analogue of the
formation of cosmic strings. Nature 368, 315 (1994).

5. Bäuerle, C., Bunkov, Y. M., Fisher, S. N., Godfrin, H. & Pickett, G. R.
Laboratory simulation of cosmic string formation in the early
universe using superfluid 3He. Nature 382, 332 (1996).

6. Ruutu, V. M. H. et al. Vortex formation in neutron-irradiated
superfluid 3He as an analogue of cosmological defect formation.
Nature 382, 334 (1996).

7. Sondhi, S. L., Girvin, S. M., Carini, J. P. & Shahar, D. Continuous
quantum phase transitions. Rev. Mod. Phys. 69, 315 (1997).

8. Polkovnikov, A., Sengupta, K., Silva, A. & Vengalattore, M.
Colloquium: nonequilibrium dynamics of closed interacting
quantum systems. Rev. Mod. Phys. 83, 863 (2011).

9. Hadzibabic, Z., Krüger, P., Cheneau, M., Battelier, B. & Dalibard, J.
Berezinskii–Kosterlitz–Thouless crossover in a trapped atomic gas.
Nature 441, 1118 (2006).

10. Langen, T., Geiger, R. & Schmiedmayer, J. Ultracold atoms out of
equilibrium. Annu. Rev. Condens. Matter Phys. 6, 201 (2015).

11. Fletcher, R. J. et al. ConnectingBerezinskii–Kosterlitz–Thouless and
BEC phase transitions by tuning interactions in a trapped gas. Phys.
Rev. Lett. 114, 255302 (2015).

12. Liu, I.-K. et al. Dynamical equilibration across a quenched
phase transition in a trapped quantum gas. Commun. Phys. 1, 24
(2018).

13. Hohenberg, P. C. & Halperin, B. I. Theory of dynamic critical
phenomena. Rev. Mod. Phys. 49, 435 (1977).

14. Goldenfeld, N. Lectures on Phase Transitions and the
Renormalization Group (CRC Press, 1992).

15. Dziarmaga, J. Dynamics of a quantum phase transition and
relaxation to a steady state. Adv. Phys. 59, 1063 (2010).

16. Del Campo, A. & Zurek, W. H. Universality of phase transition
dynamics: topological defects from symmetry breaking. Int. J. Mod.
Phys. A 29, 1430018 (2014).

17. Kibble, T. W. Topology of cosmic domains and strings. J. Phys.
Math. Gen. 9, 1387 (1976).

18. Zurek,W.H.Cosmological experiments in superfluid helium?Nature
317, 505 (1985).

19. Zurek, W. Cosmic strings in laboratory superfluids and the
topological remnants of other phase transitions. Acta Phys. Pol. B
24, 1301 (1993).

20. Zurek, W. H. Cosmological experiments in condensed matter
systems. Phys. Rep. 276, 177 (1996).

21. Su, S.-W., Gou, S.-C., Bradley, A., Fialko, O. & Brand, J. Kibble-
Zurek scaling and its breakdown for spontaneous generation of
Josephson vortices in Bose–Einstein condensates. Phys. Rev. Lett.
110, 215302 (2013).

22. Lamporesi, G., Donadello, S., Serafini, S., Dalfovo, F. & Ferrari, G.
Spontaneous creation of Kibble–Zurek solitons in a Bose–Einstein
condensate. Nat. Phys. 9, 656 (2013).

23. Liu, C.-W., Polkovnikov, A. & Sandvik, A. W. Dynamic scaling at
classical phase transitions approached through nonequilibrium
quenching. Phys. Rev. B 89, 054307 (2014).

24. Donadello, S. et al. Creation and counting of defects in a
temperature-quenchedBose–Einstein condensate.Phys.Rev. A 94,
023628 (2016).

25. Beugnon, J. & Navon, N. Exploring the Kibble–Zurek mechanism
with homogeneous Bose gases. J. Phys. B At. Mol. Opt. Phys. 50,
022002 (2017).

26. Dziarmaga, J. Dynamics of a quantum phase transition: exact
solution of the quantum Ising model. Phys. Rev. Lett. 95, 245701
(2005).

27. Damski, B. The simplest quantum model supporting the Kibble-
Zurek mechanism of topological defect production: Landau-Zener
transitions from a new perspective. Phys. Rev. Lett. 95, 035701
(2005).

28. Yi, C.-R. et al. Exploring inhomogeneous Kibble–Zurek mechanism
in a spin-orbit coupled Bose–Einstein condensate. Phys. Rev. Lett.
125, 260603 (2020).

29. King, A. D. et al. Coherent quantum annealing in a programmable
2000 qubit ising chain. Nat. Phys. 18, 1324 (2022).

https://doi.org/10.1038/s42005-025-02048-7 Article

Communications Physics |           (2025) 8:153 7

https://doi.org/10.5281/zenodo.14996614
https://doi.org/10.5281/zenodo.14996614
www.nature.com/commsphys


30. King, A. D. et al. Quantum critical dynamics in a 5000-qubit
programmable spin glass. Nature 617, 61 (2023).

31. Coulamy, I. B., Saguia, A. &Sarandy,M.S. Dynamicsof thequantum
searchandquench-induced first-order phase transitions.Phys.Rev.
E 95, 022127 (2017).

32. Shimizu, K., Hirano, T., Park, J., Kuno, Y. & Ichinose, I. Dynamics of
first-order quantum phase transitions in extended Bose-Hubbard
model: from density wave to superfluid and vice versa.New J. Phys.
20, 083006 (2018).

33. Pelissetto, A., Rossini, D. &Vicari, E. Dynamic finite-size scaling after
a quench at quantum transitions. Phys. Rev. E 97, 052148 (2018).

34. Pelissetto, A., Rossini, D. & Vicari, E. Scaling properties of the
dynamics at first-order quantum transitions when boundary
conditions favor one of the two phases. Phys. Rev. E 102, 012143
(2020).

35. Sinha, A., Chanda, T. & Dziarmaga, J. Nonadiabatic dynamics
across a first-order quantum phase transition: quantized bubble
nucleation. Phys. Rev. B 103, L220302 (2021).

36. Billam, T. P., Brown, K. & Moss, I. G. False-vacuum decay in an
ultracold spin-1 Bose gas. Phys. Rev. A 105, L041301 (2022).

37. Song, B. et al. Realizing discontinuous quantumphase transitions in
a strongly correlated driven optical lattice.Nat. Phys. 18, 259 (2022).

38. Zenesini, A. et al. False vacuum decay via bubble formation in
ferromagnetic superfluids. Nat. Phys. 20, 558 (2024).

39. Coleman, S. Fate of the false vacuum: semiclassical theory. Phys.
Rev. D 15, 2929 (1977).

40. Fialko, O., Opanchuk, B., Sidorov, A. I., Drummond, P. D. & Brand, J.
Fate of the false vacuum: towards realization with ultra-cold atoms.
Europhys. Lett. 110, 56001 (2015).

41. Devoto, F., Devoto, S., Luzio, L. D. & Ridolfi, G. False vacuumdecay:
an introductory review. J. Phys. G: Nucl. Part. Phys. 49 103001
(2022).

42. Suzuki, F. & Zurek, W. H. Topological defect formation in a phase
transition with tunable order. Phys. Rev. Lett. 132, 241601 (2024).

43. Zurek, W. H., Dorner, U. & Zoller, P. Dynamics of a quantum phase
transition. Phys. Rev. Lett. 95, 105701 (2005).

44. Krüger, P., Hadzibabic, Z. & Dalibard, J. Critical point of an
interacting two-dimensional atomic Bose gas. Phys. Rev. Lett. 99,
040402 (2007).

45. Weiler, C. N. et al. Spontaneous vortices in the formation of
Bose–Einstein condensates. Nature 455, 948 (2008).

46. Chomaz, L. et al. Emergence of coherence via transverse
condensation in a uniform quasi-two-dimensional Bose gas. Nat.
Commun. 6, 6162 (2015).

47. Gring, M. et al. Relaxation and prethermalization in an isolated
quantum system. Science 337, 1318 (2012).

48. Reeves, M. T. et al. Turbulent relaxation to equilibrium in a two-
dimensional quantum vortex gas. Phys. Rev. X 12, 011031 (2022).

49. Sadler, L. E., Higbie, J. M., Leslie, S. R., Vengalattore, M. & Stamper-
Kurn, D. M. Spontaneous symmetry breaking in a quenched
ferromagnetic spinor Bose–Einstein condensate.Nature 443, 312 (2006).

50. Barnett, R., Polkovnikov, A. & Vengalattore, M. Prethermalization in
quenched spinor condensates. Phys. Rev. A 84, 023606 (2011).

51. Navon, N., Gaunt, A. L., Smith, R. P. & Hadzibabic, Z. Critical
dynamics of spontaneous symmetry breaking in a homogeneous
Bose gas. Science 347, 167 (2015).

52. Symes, L. M. & Blakie, P. B. Solving the spin-2 Gross-Pitaevskii
equation using exact nonlinear dynamics and symplectic
composition. Phys. Rev. E 95, 013311 (2017).

53. Kang, S., Seo, S. W., Kim, J. H. & Shin, Y. Emergence and scaling of
spin turbulence in quenched antiferromagnetic spinor
Bose–Einstein condensates. Phys. Rev. A 95, 053638 (2017).

54. Prüfer, M. et al. Observation of universal dynamics in a spinor Bose
gas far from equilibrium. Nature 563, 217 (2018).

55. Schmied, C.-M., Prüfer, M., Oberthaler, M. K. & Gasenzer, T.
Bidirectional universal dynamics in a spinor Bose gas close to a
nonthermal fixed point. Phys. Rev. A 99, 033611 (2019).

56. Liu, I.-K., Dziarmaga, J., Gou, S.-C., Dalfovo, F. & Proukakis, N. P.
Kibble–Zurek dynamics in a trapped ultracold Bose gas. Phys. Rev.
Res. 2, 033183 (2020).

57. Kirkby, W., Salman, H., Gasenzer, T. & Chomaz, L. Kibble–Zurek
scalingof thesuperfluid-supersolid transition in anelongateddipolar
gas. arXiv:2411.18395

58. Kawaguchi, Y. &Ueda,M.SpinorBose–Einstein condensates.Phys.
Rep. 520, 253 (2012).

59. Stamper-Kurn, D. M. & Ueda, M. Spinor Bose gases: symmetries,
magnetism, and quantum dynamics. Rev. Mod. Phys. 85, 1191
(2013).

60. Murata, K., Saito, H. & Ueda, M. Broken-axisymmetry phase of a
spin-1 ferromagnetic Bose–Einstein condensate. Phys. Rev. A 75,
013607 (2007).

61. Borgh, M. O., Lovegrove, J. & Ruostekoski, J. Imprinting a
topological interface using Zeeman shifts in an atomic spinor Bose-
Einstein condensate. New. J. Phys. 16, 053046 (2014).

62. Matuszewski,M., Alexander, T. J. &Kivshar,Y. S. Excitedspin states
and phase separation in spinor Bose–Einstein condensates. Phys.
Rev. A 80, 023602 (2009).

63. Mirkhalaf, S. S., Benedicto Orenes, D., Mitchell, M.W. &Witkowska,
E. Criticality-enhanced quantum sensing in ferromagnetic
Bose–Einstein condensates: role of readout measurement and
detection noise. Phys. Rev. A 103, 023317 (2021).

64. Leanhardt, A. E., Shin, Y., Kielpinski, D., Pritchard, D. E. & Ketterle,
W. Coreless vortex formation in a spinor Bose–Einstein condensate.
Phys. Rev. Lett. 90, 140403 (2003).

65. Seo, S.W., Kang, S., Kwon,W. J. & Shin, Y. I. Half-quantum vortices
in an antiferromagnetic spinor Bose–Einstein condensate. Phys.
Rev. Lett. 115, 015301 (2015).

66. Kang, S., Seo, S. W., Takeuchi, H. & Shin, Y. Observation of wall-
vortex composite defects in a spinor Bose–Einstein condensate.
Phys. Rev. Lett. 122, 095301 (2019).

67. Weiss, L. S. et al. Controlled creation of a singular spinor vortex by
circumventing the Dirac belt trick. Nat. Commun. 10, 4772 (2019).

68. Xiao, Y. et al. Topological superfluid defects with discrete point
group symmetries. Nat. Commun. 13, 4635 (2022).

69. Damski, B. & Zurek, W. H. Adiabatic-impulse approximation for
avoided level crossings: from phase-transition dynamics to
Landau–Zener evolutions and back again. Phys. Rev. A 73, 063405
(2006).

70. Damski, B. &Zurek,W.H.Dynamicsof a quantumphase transition in
a ferromagnetic Bose–Einstein condensate. Phys. Rev. Lett. 99,
130402 (2007).

71. Lamacraft, A.Quantumquenches in a spinor condensate.Phys.Rev.
Lett. 98, 160404 (2007).

72. Saito, H., Kawaguchi, Y. & Ueda, M. Topological defect formation in
a quenched ferromagnetic Bose–Einstein condensates. Phys. Rev.
A 75, 013621 (2007).

73. Saito, H., Kawaguchi, Y. & Ueda, M. Kibble–Zurek mechanism in a
quenched ferromagnetic Bose–Einstein condensate. Phys. Rev. A
76, 043613 (2007).

74. Vengalattore, M., Leslie, S. R., Guzman, J. & Stamper-Kurn, D. M.
Spontaneously modulated spin textures in a dipolar spinor
Bose–Einstein condensate. Phys. Rev. Lett. 100, 170403 (2008).

75. Świsłocki, T., Witkowska, E., Dziarmaga, J. & Matuszewski, M.
Double universality of a quantum phase transition in spinor
condensates: modification of the Kibble–Żurek mechanism by a
conservation law. Phys. Rev. Lett. 110, 045303 (2013).

76. Witkowska, E., Dziarmaga, J., Świsłocki, T. & Matuszewski, M.
Dynamics of the modified Kibble–-Żurek mechanism in

https://doi.org/10.1038/s42005-025-02048-7 Article

Communications Physics |           (2025) 8:153 8

www.nature.com/commsphys


antiferromagnetic spin-1 condensates. Phys. Rev. B 88, 054508
(2013).

77. Anquez, M. et al. Quantum Kibble–Zurek mechanism in a spin-1
Bose-Einstein condensate. Phys. Rev. Lett. 116, 155301 (2016).

78. Williamson, L. A. &Blakie, P. B. Dynamics of polar-core spin vortices
in a ferromagnetic spin-1 Bose–Einstein condensate. Phys. Rev. A
94, 063615 (2016).

79. Prüfer, M. Symmetry matters. Nat. Phys. 20, 348 (2024).
80. Huh, S. et al. Universality class of a spinor Bose–Einstein

condensate far from equilibrium. Nat. Phys. 20, 402 (2024).
81. Gerbier, F., Widera, A., Fölling, S., Mandel, O. & Bloch, I. Resonant

control of spin dynamics in ultracold quantum gases by microwave
dressing. Phys. Rev. A 73, 041602(R) (2006).

82. Santos, L., Fattori,M., Stuhler, J. & Pfau, T. Spinor condensateswith
a laser-induced quadratic Zeeman effect. Phys. Rev. A 75, 053606
(2007).

83. Klausen, N. N., Bohn, J. L. & Greene, C. H. Nature of spinor
Bose–Einstein condensates in rubidium. Phys. Rev. A 64, 053602
(2001).

84. Huh, S., Kim, K., Kwon, K. & Choi, J.-y Observation of a strongly
ferromagnetic spinor Bose–Einstein condensate. Phys. Rev. Res. 2,
033471 (2020).

85. Suzuki, S. & Dutta, A. Universal scaling for a quantum discontinuity
critical point and quantum quenches. Phys. Rev. B 92, 064419
(2015).

86. Nauenberg, M. Scaling representation for critical phenomena. J.
Phys. A: Math. Gen. 8, 925 (1975).

87. Fisher, M. E. & Berker, A. N. Scaling for first-order phase
transitions in thermodynamic and finite systems. Phys. Rev. B 26,
2507 (1982).

88. Qiu, L.-Y. et al. Observation of generalizedKibble–Zurekmechanism
across a first-order quantum phase transition in a spinor
condensate. Sci. Adv. 6, eaba7292 (2020).

89. Sabbatini, J., Zurek, W. H. & Davis, M. J. Phase separation and
pattern formation in a binary Bose–Einstein condensate. Phys. Rev.
Lett. 107, 230402 (2011).

90. Sabbatini, J., Zurek, W. H. & Davis, M. J. Causality and defect
formation in the dynamics of an engineered quantum phase
transition in a coupled binary Bose–Einstein condensate. New J.
Phys. 14, 095030 (2012).

91. Uchino, S., Kobayashi, M. & Ueda, M. Bogoliubov theory and Lee-
Huang-Yang corrections in spin-1 and spin-2 Bose–Einstein
condensates in the presence of the quadratic Zeeman effect. Phys.
Rev. A 81, 063632 (2010).

92. Saito, H., Kawaguchi, Y. & Ueda, M. Kibble–Zurek mechanism in a
trapped ferromagnetic Bose–Einstein condensate. J. Phys.
Condens. Matter 25, 404212 (2013).

93. Symes, L. M., McLachlan, R. I. & Blakie, P. B. Efficient and accurate
methods for solving the time-dependent spin-1 Gross-Pitaevskii
equation. Phys. Rev. E 93, 053309 (2016).

94. Turban, L. & Iglói, F. Surface-induced disorder and aperiodic
perturbations at first-order transitions. Phys. Rev. B 66, 014440
(2002).

95. Continentino, M. A. & Ferreira, A. S. Quantum first-order phase
transitions. Phys. Stat. Mech. Its Appl. 339, 461 (2004).

96. Continentino, M. Quantum Scaling in Many-Body Systems: An
Approach to QuantumPhase Transitions 2nd edn. (Cambridge Univ.
Press, Cambridge, 2017).

97. Pellegrini, F., Montangero, S., Santoro, G. E. & Fazio, R. Adiabatic
quenches throughanextendedquantumcritical region.Phys.Rev.B
77, 140404(R) (2008).

98. Divakaran, U., Dutta, A. & Sen, D. Quenching along a gapless line: a
different exponent for defect density. Phys. Rev. B 78, 144301
(2008).

99. Siovitz, I. et al. Universal dynamics of rogue waves in a quenched
spinor Bose condensate. Phys. Rev. Lett. 131, 183402 (2023).

100. Lagnese, G., Surace, F. M., Morampudi, S. &Wilczek, F. Detecting a
long-lived false vacuum with quantum quenches. Phys. Rev. Lett.
133, 240402 (2024).

Acknowledgements
The numerical simulations were carried out on the High Performance
Computing Cluster supported by the Research and Specialist Computing
Support service at the University of East Anglia. MOB acknowledges
support from Engineering and Physical Sciences Research Council under
Grant no. EP/V03832X/1.

Author contributions
M.O.B. suggested and developed the project with contributions from H.S.
M.T.W. wrote the code and performed the numerical simulations. M.T.W.
and H.S. developed the analytical derivations with input from M.O.B. All
authors contributed to the discussion and analysis of numerical data,
analytical theory, and interpretation. The manuscript was written jointly.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to
Magnus O. Borgh.

Peer review informationCommunications Physics thanks Yuki Kawaguchi,
Blair Blakie and the other, anonymous, reviewer(s) for their contribution to the
peer review of this work.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’snoteSpringerNature remainsneutralwith regard to jurisdictional
claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025

https://doi.org/10.1038/s42005-025-02048-7 Article

Communications Physics |           (2025) 8:153 9

http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsphys

	Dynamics of a nonequilibrium discontinuous quantum phase transition in a spinor Bose–Einstein condensate
	Results and discussion
	Mean-field theory of the spin-1 BEC
	Theory of Kibble–Zurek scaling
	Numerical results
	Scaling of the number of domains

	Conclusion
	Methods
	Numerical simulation
	Bogoliubov modes for the BA phase
	Extracting the freezing time
	Deriving scaling near the critical point

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




