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The purpose of this paper is to introduce a new fam-
ily of semigroups—the free projection-generated regular ∗-
semigroups—and initiate their systematic study. Such a semi-
group PG(P ) is constructed from a projection algebra P , 
using the recent groupoid approach to regular ∗-semigroups. 
The assignment P �→ PG(P ) is a left adjoint to the forgetful 
functor that maps a regular ∗-semigroup S to its projection 
algebra P(S). In fact, the category of projection algebras is 
coreflective in the category of regular ∗-semigroups. The al-
gebra P(S) uniquely determines the biordered structure of 
the idempotents E(S), up to isomorphism, and this leads to a 
category equivalence between projection algebras and regular 
∗-biordered sets. As a consequence, PG(P ) can be viewed as a 
quotient of the classical free idempotent-generated (regular) 
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semigroups IG(E) and RIG(E), where E = E(PG(P )); this is 
witnessed by a number of presentations in terms of genera-
tors and defining relations. The semigroup PG(P ) can also be 
interpreted topologically, through a natural link to the funda-
mental groupoid of a simplicial complex explicitly constructed 
from P . The above theory is illustrated on a number of ex-
amples. In one direction, the free construction applied to the 
projection algebras of adjacency semigroups yields a new fam-
ily of graph-based path semigroups. In another, it turns out 
that, remarkably, the Temperley–Lieb monoid T Ln is the free 
regular ∗-semigroup over its own projection algebra P(T Ln).
© 2025 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

Set-based free objects exist for many classes of algebras, such as groups, monoids, 
lattices, rings and modules. These are typically built from a base set, and defined in 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


J. East et al. / Advances in Mathematics 473 (2025) 110288 3

terms of a universal mapping property. Formally, the existence of such free algebras in 
a category C amounts to the forgetful functor C → Set (which maps an algebra to its 
underlying set) having a left adjoint Set → C; full definitions will be recalled later in 
the paper. Such an adjoint exists for example if C forms a variety [6,7,11], but this is not 
the case in general, even for some ‘classical’ algebras such as fields [6, Exercise 2.3]. From 
the early days of semigroup theory, it was recognised that the idempotents form a useful 
‘skeleton’ of a semigroup. As the theory developed, it emerged that this phenomenon was 
governed by the existence of forgetful functors from various classes of semigroups into 
categories of idempotent-like structures such as semilattices, biordered sets and others. 
Adjoints of some of these functors led to important classes of free semigroups, which will 
be discussed more below.

The current paper is concerned with regular ∗-semigroups. These were introduced 
in [55] as an intermediate class between inverse semigroups and regular semigroups. They 
have attained prominence recently, as the so-called diagram monoids come equipped 
with a natural regular ∗-structure [3,4,8,27,28,48]. These monoids are the building 
blocks of diagram algebras, such as the Brauer, Temperley–Lieb and partition alge-
bras, among others, which in turn have important applications in theoretical physics, 
low-dimensional topology, representation theory, and many other parts of mathemat-
ics and science [9,35,42,43,47,57]. Every regular ∗-semigroup S contains a set P(S) of 
distinguished idempotents known as projections, which can be given the structure of 
a projection algebra [39]. The category PA of such algebras played a key role in the 
groupoid representation of regular ∗-semigroups in the recent paper [26]. The assign-
ment S �→ P(S) is a forgetful functor from the category RSS of regular ∗-semigroups 
to PA. It turns out that this functor has a left adjoint PA → RSS, and this leads to 
the notion of a free (projection-generated) regular ∗-semigroup PG(P ) over a projection 
algebra P . The purpose of this paper is to show how to construct these free semigroups, 
and initiate their systematic study.

The link between regular ∗-semigroups and their projection algebras has many paral-
lels with the link between arbitrary semigroups and their biordered sets of idempotents; 
the latter form the cornerstone of Nambooripad’s theory of regular semigroups [51]. In 
that situation we have a forgetful functor E : Sgp → BS, which maps a semigroup S to 
its biordered set

E = E(S) = {e ∈ S : e2 = e}.

The latter has the structure of a partial algebra, where a product ef (for e, f ∈ E) is 
only defined if at least one of ef or fe is equal to e or f . A deep result of Easdown and 
Nambooripad states that E has a left adjoint BS → Sgp. This formulation can be found 
in [52, Theorem 6.10], but has its basis in [24, Theorem 3.3]. The adjoint of E maps an 
(abstract) biordered set E to the free (idempotent-generated) semigroup IG(E), which is 
defined by the presentation
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IG(E) = 〈XE : xexf = xef if ef is defined in E〉,

where here XE = {xe : e ∈ E} is an alphabet in one-one correspondence with E. The key 
point is that the biordered set of the semigroup IG(E) is precisely E, when one identifies 
e ∈ E with the equivalence class of the one-letter word xe.

The biorder approach has additional power in the case of regular semigroups. The 
restriction of the above forgetful functor E : Sgp → BS to regular semigroups maps into 
the category of regular biordered sets, which were axiomatised by Nambooripad [51], but 
the adjoint BS → Sgp maps regular biordered sets to non-regular semigroups in general. 
Instead, the restriction has a different adjoint, mapping E to the free regular (idempotent-
generated) semigroup RIG(E); see [51] for a combinatorial/topological definition, and [56] 
for a presentation.

The free semigroups IG(E) and RIG(E) turn out to have very intricate structure, and 
have therefore become a subject of broad interest in their own right [10,15–19,21–24,32–
34,49,51,53,56]. As one strand of research, it was shown in [10] that maximal subgroups of 
IG(E) and RIG(E) are (isomorphic to) fundamental groups of certain natural complexes 
associated to E. The main motivation for this result was to address a folklore conjecture 
that such maximal subgroups were always free, and the topological viewpoint led to the 
discovery of a biordered set inducing the non-free subgroup Z × Z; see [10, Section 5]. 
Soon after, the conjecture was turned upside down, when it was shown in [33] that every 
group is isomorphic to a maximal subgroup of some IG(E). Since then, many substantial 
studies have emerged exploring the structure of IG(E) and RIG(E) in the case that 
E = E(S) is the biordered set of some important semigroup S [15,19,21,34].

We note in passing that biordered sets are not the only structures that have been used 
to model the idempotent ‘skeleton’ of semigroups. For example, early work focused on 
the so-called warp of a semigroup S [12,13,56,59], which was again a partial algebra with 
underlying set E = E(S), but which retained all products ef for which e, f, ef ∈ E. 
Similarly, the biordered set can sometimes be given additional structure, as is indeed the 
case with regular ∗-semigroups, whose biordered sets have involutions [54].

We now return to our main topic, regular ∗-semigroups and projection algebras, linked 
by the forgetful functor P : RSS → PA. The latter maps a regular ∗-semigroup S to its 
set

P = P(S) = {p ∈ S : p2 = p = p∗}

of projections, which is then given the structure of a projection algebra, as originally 
defined (under a different name) by Imaoka [39]. This algebra has a unary operation θp
for each p ∈ P , which is defined by qθp = pqp for q ∈ P . Such algebras were axiomatised 
in [39], where it was shown that they are the appropriate vehicle for transformation 
representations of fundamental regular ∗-semigroups, building on work of Munn in the 
inverse case [50]; see also [41].

Projection algebras took on a new level of significance in [26], where they became 
the (structured) object sets of so-called chained projection groupoids. The main result 
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[26, Theorem 8.1] is a category isomorphism RSS ∼ = CPG, where the latter is the 
category of all such groupoids. These groupoids are in fact triples (P,G, ε), where P
is an (abstract) projection algebra, G is an ordered groupoid whose structure has tight 
algebraic and order-theoretic links to P , and ε : C → G is a functor from a natural 
chain groupoid C = C (P ) built from P . Seen through the groupoid lens, the forgetful 
functor CPG → PA maps (P,G, ε) �→ P . The key construction in the current paper 
is a left adjoint PA → CPG. This maps P �→ (P,C , ν), where C is an appropriate 
quotient of C , and ν : C → C is the quotient map. Topologically, C is the fundamental 
groupoid of a natural complex built from P . Applying the isomorphism S : CPG → RSS
from [26] yields an adjoint PA → RSS to the forgetful functor P : RSS → PA, and 
hence establishes the existence of the free (projection-generated) regular ∗-semigroups 
PG(P ) = S(P,C , ν). In fact, we show that the adjoint is a right inverse of P, and this 
has the consequence that PA is coreflective in RSS (and in CPG). We also remark 
that the existence of the adjoint answers a question not settled by the isomorphism 
RSS ∼ = CPG from [26], in that it shows that every projection algebra P can be realised 
as P = P(S) for some regular ∗-semigroup S. This fact was first established by Imaoka 
in his above-mentioned work on fundamental semigroups [39]; see also [41].

At this point, the semigroups PG(P ) become the subject of the rest of the paper. 
There are a number of ways to understand these semigroups, starting from their original 
definition as chain semigroups PG(P ) = S(P,C , ν). It is immediate from our construction 
that PG(P ) is generated by P . Building on this, another of our main results establishes 
a presentation

PG(P ) ∼ = 〈XP : x2
p = xp, (xpxq)2 = xpxq, xpxqxp = xqθp for p, q ∈ P 〉,

where XP = {xp : p ∈ P} is an alphabet in one-one correspondence with P . Two further 
presentations allow us to understand the explicit relationship between the new regular 
∗-semigroup PG(P ) and the classical free idempotent-generated semigroups IG(E) and 
RIG(E), where E = E(PG(P )).

As was the case with these classical semigroups, the free regular ∗-semigroups PG(P )
are very interesting in their own right. For example, when P = P(AΓ) is the projection 
algebra of an adjacency semigroup (in the sense of Jackson and Volkov [40]), the free 
semigroup PG(P ) is an apparently-new graph-based path semigroup. As another exam-
ple, it turns out that a finite Temperley–Lieb monoid T Ln is a free regular ∗-semigroup 
over its own projection algebra P(T Ln), giving yet another fundamental way to under-
stand this important diagram monoid. The situation for other diagram monoids is more 
delicate, and is taken up for the partition monoid in the forthcoming paper [29].

We now give a brief overview of the structure of the paper; the introduction to each 
section contains a fuller summary of its contents.

• Sections 2 and 3 contain the preliminary material we need. The former covers the 
basics on regular ∗-semigroups, and provides some key examples, namely adjacency 
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semigroups and diagram monoids. The latter gives an overview of the relevant con-
structions and results from [26], concerning regular ∗-semigroups, projection algebras 
and chained projection groupoids, leading up to the isomorphism RSS ∼ = CPG.

• Sections 4 and 5 are central for this paper: they introduce the semigroups PG(P ), 
and demonstrate their freeness. The former is the content of Definition 4.21 and 
Theorem 4.22. The latter is achieved in Theorem 5.1, which shows that the 
functor PA → RSS : P �→ PG(P ) is indeed a left adjoint to the forgetful functor 
RSS → PA : S �→ P(S), and also establishes the coreflectivity of PA in RSS. A num-
ber of semigroup-theoretic consequences are given in Theorems 5.8 and 5.9.

• Section 6 explores the connection between projection algebras and regular ∗-biordered 
sets, as defined in [54]. The main result here is Theorem 6.19, which establishes an 
equivalence between the categories PA and RSBS of all such structures. As a con-
sequence, Theorem 6.20 shows that the semigroups PG(P ) are also free with respect 
to the forgetful functor RSS → RSBS : S �→ E(S). En route, we show in Proposi-
tion 6.10 that the projection algebra of a regular ∗-semigroup uniquely determines 
its biordered set, up to isomorphism.

• In Section 7 we give three presentations (by generators and defining relations) for 
the semigroups PG(P ). The first, in Theorem 7.2, involves P as a generating set. The 
other two, in Theorems 7.10 and 7.13, utilise the generating set E = E(PG(P )), and 
exhibit PG(P ) as an explicit quotient of IG(E) and of RIG(E), respectively.

• Sections 8 and 9 illustrate our theory on some important examples. In the former, 
we will see that the free construction applied to an adjacency semigroup results in an 
apparently-new graph-based bridging path semigroup, which we believe is worthy of 
further study. In the latter, we return to diagram monoids, showing in Theorem 9.1
that the free regular ∗-semigroup associated to the projection algebra of a finite 
Temperley–Lieb monoid T Ln is, somewhat remarkably, isomorphic to T Ln itself.

• Finally, Section 10 provides a topological interpretation of the free regular ∗-
semigroups, with Theorems 10.6 and 10.7 establishing a link with the fundamental 
group(oid)s of certain natural graphs and complexes associated to projection alge-
bras. We conclude the paper by recasting our earlier examples using this topological 
framework, and exploring some further ones. As an intriguing consequence, the 
semigroup-theoretic structure of the Temperley–Lieb monoid T Ln allows us to imme-
diately deduce that the components of its associated complex are simply connected; 
this is not obvious, a priori, as these complexes are highly intricate.

A feature of the work presented here is that it establishes tight connections between dif-
ferent types of mathematical objects. This has certainly caused some presentational and 
notational challenges for the authors. In the hope of somewhat easing such challenges for 
the reader, we have collected the key notation in Tables 1–4. The information presented 
there might not make much sense at this stage of reading the paper, but we hope that 
the reader can use the tables as a ready reference throughout.
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Table 1
Large categories.

Notation Specification Notes Reference 
BS biordered sets (bosets) Subsection 6.1
CPG chained projection groupoids isomorphic to RSS

via G and S
Subsection 3.4, 
Theorem 3.9

OG ordered groupoids Subsection 3.3
PA projection algebras coreflective in RSS

and in CPG
Subsection 3.2, 
Theorems 5.1 and 5.2

RBS regular bosets Subsection 6.1
RSBS regular ∗-bosets equivalent to PA

via E and P
Subsection 6.1, 
Theorem 6.19

RSS regular ∗-semigroups isomorphic to CPG
via G and S

Subsection 2.1, 
Theorem 3.9

Set sets Section 1, 
Remark 5.10

Sgp semigroups Section 1, 
Remark 5.10

Table 2
Functors.

Notation Meaning Notes Reference 
C : PA → OG C (P ) – chain groupoid associated 

with projection algebra P
Subsection 3.3

E : RSS → RSBS E(S) – boset associated with 
regular ∗-semigroup S

forgetful Subsection 6.1

E : PA → RSBS E(P ) – boset associated with 
projection algebra P

equivalence Subsection 6.2

F : PA → CPG F(P ) – free chained projection groupoid 
associated with projection algebra P

adjoint Subsection 4.2

G : RSS → CPG G(S) – chained projection groupoid 
associated with regular ∗-semigroup S

isomorphism Subsection 3.5

P : RSS → PA P(S) – projection algebra of 
regular ∗-semigroup S

forgetful Subsection 3.2

P : RSBS → PA P(E) – projection algebra of 
regular ∗-boset E

equivalence Subsection 3.2

S : CPG → RSS S(P,G, ε) – regular ∗-semigroup associated 
with chained projection groupoid (P,G, ε)

isomorphism Subsection 3.5

Table 3
Semigroups, small categories and other structures associated with a projection algebra 
P or boset E.

Notation Meaning Reference 
C (P ) chain groupoid of P Subsection 3.3
C (P ) reduced chain groupoid of P Subsection 4.2
GP graph associated with P Subsection 10.2
IG(E) free idempotent-generated semigroup over E Subsection 7.3
KP , K′

P two complexes associated with P Subsection 10.2
PG(P ) free projection-generated regular ∗-semigroup over P Subsection 4.3
P(P ) path category of P Subsection 3.3
RIG(E) free idempotent-generated regular semigroup over E Subsection 7.4
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Table 4
Concrete semigroups.

Notation Name Reference 
AΓ adjacency semigroup of digraph Γ Subsection 2.2
BΓ bridging path semigroup of digraph Γ Section 8
Bn Brauer monoid Subsection 2.3
Mn Motzkin monoid Subsection 2.3
Pn partition monoid Subsection 2.3
PBn partial Brauer monoid Subsection 2.3
T Ln Temperley–Lieb monoid Subsection 2.3

2. Regular ∗-semigroups

2.1. Definitions and basic properties

Here we gather the background on regular ∗-semigroups that we will need in the rest 
of the paper. For proofs of the various assertions, see for example [26,39,55]. For more 
on semigroups in general we refer to [14,37].

A regular ∗-semigroup is a semigroup S with a unary operation ∗ : S → S : a �→ a∗

satisfying

(a∗)∗ = a = aa∗a and (ab)∗ = b∗a∗ for all a, b ∈ S.

From the identity a = aa∗a, it is clear that a regular ∗-semigroup is (von Neumann) 
regular. The identities (a∗)∗ = a and (ab)∗ = b∗a∗ say that ∗ is an involution.

We write RSS for the category of regular ∗-semigroups with ∗-morphisms, i.e. maps 
φ : S → S′ satisfying

(ab)φ = (aφ)(bφ) and (a∗)φ = (aφ)∗ for all a, b ∈ S.

Given a regular ∗-semigroup S, we write

P(S) = {p ∈ S : p2 = p = p∗} and E(S) = {e ∈ S : e2 = e}

for the sets of all projections and idempotents of S, respectively. Important properties of 
these elements include the following:

(RS1) The projections are precisely the elements of the form aa∗, for a ∈ S.
(RS2) The product of two projections is an idempotent, but need not be a projection.
(RS3) Any idempotent e is the product of two projections, namely e = (ee∗)(e∗e).
(RS4) The product of two idempotents need not be an idempotent.
(RS5) For all p, q ∈ P(S) we have pqp ∈ P(S).
(RS6) More generally, we have aqa∗ ∈ P(S) for all a ∈ S and q ∈ P(S).
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Our seventh item is an elaboration on (RS3). For projections p, q ∈ P(S), we write p F q

if p = pqp and q = qpq, and say p and q are friendly. It is easy to check that ee∗ F e∗e

for any idempotent e ∈ E(S). Thus, (RS3) says that every idempotent is a product of a 
pair of F -related projections. As noted on [26, p. 20], such expressions are unique:

(RS7) pq = rs ⇔ [p = r and q = s] for all (p, q), (r, s) ∈ F .

More generally, any product of idempotents in a regular ∗-semigroup is equal to a product 
p1 · · · pk of projections satisfying p1 F · · · F pk, though such expressions need not be 
unique; see [26, Proposition 3.16].

Because of (RS5), each projection p ∈ P = P(S) induces a map

θp : P → P given by qθp = pqp for q ∈ P . (2.1)

Taking these maps as unary operations gives P the structure of a so-called projection 
algebra; we will discuss these more formally in Section 3, and will use them extensively 
in the rest of the paper.

We now describe some examples that we will use to illustrate the ideas developed in 
the paper. For more examples, see [26] or [54], but note that regular ∗-semigroups were 
called ‘special ∗-semigroups’ in the latter.

2.2. Adjacency semigroups

Adjacency semigroups were introduced in [40], and were discussed as a key example 
in [26]. They can be viewed in several ways, including as combinatorial completely 0-
simple regular ∗-semigroups, or as symmetrical square 0-bands. Here we take the graph 
theoretic approach of [40]. General completely 0-simple regular ∗-semigroups were dis-
cussed in detail in [26, Section 3.3].

Let Γ = (P,E) be a symmetric, reflexive digraph, with vertex set P , and edge set 
E ⊆ P × P . The adjacency semigroup AΓ is the regular ∗-semigroup with:

• underlying set AΓ = (P × P ) ∪ {0},
• involution 0∗ = 0 and (p, q)∗ = (q, p), and

• product 02 = 0 = 0(p, q) = (p, q)0 and (p, q)(r, s) =
{

(p, s) if (q, r) ∈ E

0 otherwise.

We identify a vertex p ∈ P with the pair (p, p) ∈ AΓ. In this way, the projections and 
idempotents of AΓ are the sets P0 = P ∪ {0} and E0 = E ∪ {0}, and we have (p, q) = pq

for all (p, q) ∈ E. The projection algebra operations are given, for p, q ∈ P0, by

qθp =
{
p if (p, q) ∈ E

0 otherwise.
(2.2)
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α =

β =

= αβ

α = = α∗

Fig. 1. Diagrammatic representation, multiplication and involution in P6. 

In particular, θ0 is the constant map with image 0. It also follows that F = E ∪{(0, 0)}.

2.3. Diagram monoids

A key class of examples of regular ∗-semigroups comes from the so-called diagram 
monoids. This class includes important families such as partition monoids Pn, Brauer 
monoids Bn, Temperley–Lieb monoids T Ln, partial Brauer monoids PBn and Motzkin 
monoids Mn. The elements of Pn are the set partitions of {1, . . . , n} ∪ {1′, . . . , n′}. 
These partitions are represented and multiplied diagrammatically, as in Fig. 1; for formal 
definitions and an extended discussion see [26]. The involution α �→ α∗ corresponds 
to a vertical reflection, as also shown in Fig. 1. The elements of Bn (resp. PBn) are 
the partitions whose blocks have size 2 (resp. ≤ 2), while T Ln (resp. Mn) consists of 
partitions from Bn (resp. PBn) that can be drawn in planar fashion within the rectangle 
bounded by the vertices. Thus, in Fig. 1 we have β ∈ T L6 and αβ ∈ M6.

The Temperley–Lieb monoid T Ln will be considered in Section 9 as a major example. 
To study it we will require the following well-known presentation by generators and 
relations; see [8,25] for proofs.

Theorem 2.3. The Temperley–Lieb monoid has monoid presentation

T Ln
∼ = 〈XT : RT 〉,

where XT = {t1, . . . , tn−1}, and where RT is the set of relations

t2i = ti for all i, (T1)

titj = tjti if |i− j| > 1, (T2)

titjti = ti if |i− j| = 1. � (T3)
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In the above presentation, the generator ti corresponds to the diagram

τi =

1 i i + 1 n

.
(2.4)

3. Projection algebras and chained projection groupoids

In this section we give an overview of the constructions and results we will need 
from [26], building up to the isomorphism between the categories of regular ∗-semigroups 
and chained projection groupoids; see Theorem 3.9. The presentation here is necessarily 
streamlined; for more details, and for proofs of the various assertions, see [26].

3.1. Preliminaries on small categories

Categories considered in the paper come in two kinds: large categories whose objects 
and morphisms are algebraic structures and structure-preserving mappings; and small 
categories, which are thought of as algebraic objects in their own right. The former are 
treated in the usual way; see for example [5,46]. The current section explains how we 
view the latter, following [26].

A small category C will be identified with its morphism set. The objects of C are 
identified with the identities, the set of which is denoted vC.1 The domain and range 
maps are denoted d, r : C → vC, and we compose morphisms left-to-right, so that a ◦ b
is defined when r(a) = d(b), and then d(a ◦ b) = d(a) and r(a ◦ b) = r(b). For p, q ∈ vC
we write

C(p, q) = {a ∈ C : d(a) = p, r(a) = q}

for the set of all morphisms p → q.
A ∗-category is a small category C with an involution, i.e. a map C → C : a �→ a∗

satisfying the following, for all a, b ∈ C:

• d(a∗) = r(a), r(a∗) = d(a) and (a∗)∗ = a,
• if r(a) = d(b), then (a ◦ b)∗ = b∗ ◦ a∗.

A groupoid is a ∗-category for which we additionally have a ◦ a∗ = d(a) (and hence also 
a∗ ◦ a = r(a)) for all a ∈ C. In a groupoid, we typically write a∗ = a−1 for a ∈ C.

1 The choice of notation alludes to the graph-theoretic interpretation of objects and morphisms as vertices 
and edges in a digraph. This viewpoint will become prominent in the final section of the paper.
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An ordered ∗-category (respectively, ordered groupoid) is a ∗-category (respectively, 
groupoid) C equipped with a partial order ≤ satisfying the following, for all a, b, c, d ∈ C
and p ∈ vC:

• If a ≤ b, then d(a) ≤ d(b), r(a) ≤ r(b) and a∗ ≤ b∗.
• If a ≤ b and c ≤ d, and if r(a) = d(c) and r(b) = d(d), then a ◦ c ≤ b ◦ d.
• For all p ≤ d(a) and q ≤ r(a), there exist unique u, v ≤ a with d(u) = p and r(v) = q. 

These elements are denoted u = p⇃a and v = a⇂q, and are called the left and right 
restrictions of a to p and q, respectively.

A congruence on a small category C is an equivalence relation ≈ on C satisfying the 
following, for all a, b, u, v ∈ C:

• a ≈ b ⇒ [d(a) = d(b) and r(a) = r(b)],
• a ≈ b ⇒ [u ◦ a ≈ u ◦ b and a ◦ v ≈ b ◦ v], whenever the stated compositions are 

defined.

For a subset Ω ⊆ C × C with d(a) = d(b) and r(a) = r(b) for all (a, b) ∈ Ω, we write Ω�

for the congruence on C generated by Ω.
An ordered ∗-congruence on an ordered ∗-category C is a congruence ≈ satisfying the 

following, for all a, b ∈ C and p ∈ vC:

• a ≈ b ⇒ a∗ ≈ b∗,
• [a ≈ b and p ≤ d(a)] ⇒ p⇃a ≈ p⇃b.

When ≈ = Ω�, these two conditions can be verified by showing that they hold for all 
(a, b) ∈ Ω; see [26, Lemma 2.7].

Given an (ordered ∗-) congruence ≈ on an (ordered ∗-) category C, the quotient 
C/≈ is an (ordered ∗-) category. Identifying an object p ∈ vC with its ≈-class, we have 
v(C/≈) = vC.

3.2. Projection algebras

The properties of projections of regular ∗-semigroups are formalised in what are now 
known as projection algebras, going back to Imaoka [39], who called them ‘P -groupoids’. 
Here we recall the definition of these algebras, and list some known results that will be 
used later in the paper.

A projection algebra is a unary algebra P , with set of operations {θp : p ∈ P} in 
one-one correspondence with P , satisfying the following axioms, for all p, q ∈ P :

(P1) pθp = p,

(P2) θpθp = θp,

(P3) pθqθp = qθp,

(P4) θpθqθp = θqθp ,

(P5) θpθqθpθq = θpθq.
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The elements of a projection algebra are called projections. We write PA for the category 
of projection algebras with projection algebra morphisms, defined as maps φ : P → P ′

satisfying

(pθq)φ = (pφ)θqφ for all p, q ∈ P . (3.1)

Projection algebras can also be thought of as binary algebras, with a single operation �
given by q � p = qθp. In this formulation, projection algebra morphisms are simply maps 
φ : P → P ′ satisfying (q � p)φ = (qφ) � (pφ) for p, q ∈ P . The binary approach was used 
in [41], and compared in detail to the unary approach in [26, Remark 4.2].

Given a regular ∗-semigroup S, the set of projections

P = P(S) = {p ∈ S : p2 = p = p∗}

becomes a projection algebra, with unary operations θp as in (2.1). Conversely, any 
projection algebra is the projection algebra of some regular ∗-semigroup. This latter fact 
was proved in [26,39,41], and it also follows from Theorem 4.22 below; see also [54]. The 
assignment S �→ P(S) is the object part of a (forgetful) functor

P : RSS → PA. (3.2)

Given a ∗-morphism φ : S → S′, the projection algebra morphism P(φ) : P(S) → P(S′)
is simply the restriction P(φ) = φ|P(S). It is easy to check that P(φ) is indeed a morphism 
as defined in (3.1).

A projection algebra P has three associated relations, ≤, ≤F and F , defined for 
p, q ∈ P by

p ≤ q ⇔ p = pθq, p ≤F q ⇔ p = qθp and p F q ⇔ [p ≤F q and q ≤F p].
(3.3)

The relation ≤ is a partial order, and we have p ≤ q ⇔ p = rθq for some r ∈ P . 
The relation ≤F is reflexive, and F is reflexive and symmetric; neither ≤F nor F is 
transitive in general.

We now list some important properties of projection algebras proved in [26, Section 4]. 
Specifically, for any projection algebra P , and for any p, q, r ∈ P :

(PA1) pθq F qθp,
(PA2) [p ≤ q ≤F r or p ≤F q ≤ r] ⇒ p ≤F r,
(PA3) p ≤ q ⇒ p ≤F q,
(PA4) p ≤ q ⇒ θp = θpθq = θqθp,
(PA5) p ≤F q ⇒ θp = θpθqθp.

We will also need the following simple result:
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Lemma 3.4. For any p1, . . . , pk, q, r ∈ P we have

θqθp1 ···θpk = θpk
· · · θp1θqθp1 · · · θpk

and rθpk
· · · θp1θqθp1 · · · θpk

θr = qθp1 · · · θpk
θr.

Proof. The first claim follows by iterating (P4). The second follows by applying the first, 
and then (P3):

rθpk
· · · θp1θqθp1 · · · θpk

θr = rθqθp1 ···θpk θr = qθp1 · · · θpk
θr. �

3.3. Path categories and chain groupoids

Let P be a projection algebra. A (P -)path is a path in the graph of the F -relation, 
i.e. a tuple2

p = (p1, p2, . . . , pk) ∈ P k for some k ≥ 1, such that p1 F p2 F · · · F pk.

We write d(p) = p1 and r(p) = pk. We identify each p ∈ P with the path (p) of length 1. 
The path category of P is the ordered ∗-category P = P(P ) of all P -paths, with:

• object set vP = P ,
• composition (p1, . . . , pk) ◦ (pk, . . . , pl) = (p1, . . . , pk, . . . , pl),
• involution (p1, . . . , pk)rev = (pk, . . . , p1),
• restrictions q⇃(p1, . . . , pk) = (q1, . . . , qk) and (p1, . . . , pk)⇂r = (r1, . . . , rk), for q ≤ p1

and r ≤ pk, where

qi = qθp2 · · · θpi
= qθp1 · · · θpi

and ri = rθpk−1 · · · θpi
= rθpk

· · · θpi
for 1 ≤ i ≤ k.

(3.5)

Given a projection algebra P , we write Ω = Ω(P ) for the set of all pairs (s, t) ∈ P×P

of the following two forms:

(Ω1) s = (p, p) and t = (p), for some p ∈ P ,
(Ω2) s = (p, q, p) and t = (p), for some (p, q) ∈ F ,

and we write ≈ = Ω� for the congruence on P generated by Ω. This is an ordered 
∗-congruence, and the quotient is a groupoid, the chain groupoid of P :

C = C (P ) = P/≈.

2 We allow repeated vertices in a path, in alignment with other graph-based algebraic structures such as 
Leavitt path algebras [1] or graph inverse semigroups [2]. Some authors would use the term ‘walk’ for our 
paths.
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The elements of C are called (P -)chains, and we denote by [p] the chain containing the 
path p ∈ P. The order in C is determined by the restrictions, which are canonically 
inherited from P. Specifically, for p ∈ P we have

q⇃[p] = [q⇃p] and [p]⇂r = [p⇂r] for q ≤ d(p) = d[p] and r ≤ r(p) = r[p].

These are well defined because ≈ is an ordered congruence.

Remark 3.6. Any chain c = [p] ∈ C can be uniquely represented in the form [p1, . . . , pk], 
where each pi is distinct from pi+1 (if i ≤ k − 1) and from pi+2 (if i ≤ k − 2). This 
‘reduced form’ can be found by successively reducing p, using the rules

(p, p) → (p) for p ∈ P and (p, q, p) → (p) for (p, q) ∈ F .

One way to establish uniqueness is to show that the rewriting system (P,→) is (locally) 
confluent and Noetherian, in the sense of [38].

For any projection algebra morphism φ : P → P ′, there is a well-defined ordered 
groupoid morphism

C (φ) : C (P ) → C (P ′) given by [p1, . . . , pk]C (φ) = [p1φ, . . . , pkφ]. (3.7)

In this way, C can be viewed as a functor from the category PA of projection algebras 
to the category OG of ordered groupoids.

3.4. Chained projection groupoids

A weak projection groupoid is a pair (P,G), consisting of an ordered groupoid G whose 
object set P has the structure of a projection algebra, and for which the restriction to P
of the order on G coincides with the projection algebra order ≤ from (3.3). For any a ∈ G, 
we have a pair of maps

ϑa : d(a)↓ → r(a)↓ : p �→ r(p⇃a) and Θa = θd(a)ϑa : P → r(a)↓,

where here q↓ = {p ∈ P : p ≤ q} is the down-set of q ∈ P . A projection groupoid is a 
weak projection groupoid (P,G) for which:

(G1) θpΘa
= Θa−1θpΘa for all p ∈ P and a ∈ G.

Let (P,G) be a projection groupoid. An evaluation map is an ordered v-functor 
ε : C (P ) → G, meaning that the following hold:

ε(p) = p for p ∈ P , ε(c ◦ d) = ε(c) ◦ ε(d) if r(c) = d(d)

and ε(p⇃c) = p⇃(ε(c)) for p ≤ d(c).
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We note in passing that evaluation maps are written to the left of their arguments, as 
we feel they are easier to read this way (and never need to be composed). Since C (P )
is generated by chains of length 2, the functor ε is completely determined by the ele-
ments ε[p, q] for (p, q) ∈ F . These elements feature in the remaining assumptions and 
constructions involving evaluation maps.

Given a morphism b ∈ G, a pair of projections (e, f) ∈ P × P is said to be b-linked if

f = eΘbθf and e = fΘb−1θe.

Given such a b-linked pair (e, f), and writing q = d(b) and r = r(b), we define further 
projections

e1 = eθq, e2 = fΘb−1 , f1 = eΘb and f2 = fθr.

The groupoid G then contains two well-defined morphisms:

λ(e, b, f) = ε[e, e1] ◦ e1⇃b ◦ ε[f1, f ] and ρ(e, b, f) = ε[e, e2] ◦ e2⇃b ◦ ε[f2, f ]

= ε[e, e1] ◦ b⇂f1
◦ ε[f1, f ] = ε[e, e2] ◦ b⇂f2

◦ ε[f2, f ].

A chained projection groupoid is a triple (P,G, ε), where (P,G) is a projection groupoid, 
and ε : C (P ) → G is an evaluation map for which:

(G2) λ(e, b, f) = ρ(e, b, f) for every b ∈ G, and every b-linked pair (e, f).

We write CPG for the category of all chained projection groupoids with chained pro-
jection functors as morphisms. A chained projection functor (P,G, ε) → (P ′,G′, ε′) is an 
ordered groupoid functor φ : G → G′ such that

• vφ = φ|P : P → P ′ is a projection algebra morphism, and
• φ respects evaluation maps, in the sense that the following diagram commutes:

C (P ) C (P ′)

G G′,

C (vφ)

ε ε′

φ

where C (vφ) is constructed from vφ as in (3.7). Explicitly, this is to say that

(ε[p1, . . . , pk])φ = ε′[p1φ, . . . , pkφ]

whenever p1, . . . , pk ∈ P and p1 F · · · F pk.
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3.5. A category isomorphism

The main result of [26] is that the categories RSS and CPG, of regular ∗-semigroups 
and chained projection groupoids, are isomorphic. The proof involves two functors, G
and S, between the two categories, which operate as follows.

A regular ∗-semigroup S determines a chained projection groupoid G(S) = (P,G, ε), 
where:

• P is the projection algebra of S.
• G is an ordered groupoid built from S as follows. The morphisms are the elements 

of S, and the objects/identities are the projections, with d(a) = aa∗ and r(a) = a∗a

for a ∈ S. The composition and involution are given by a ◦ b = ab when r(a) = d(b), 
and a−1 = a∗. Restrictions are given by p⇃a = pa and a⇂q = aq for p ≤ d(a) and 
q ≤ r(a).

• ε : C (P ) → G is the evaluation map given by ε[p1, . . . , pk] = p1 · · · pk, where this 
product is taken in S.

Any ∗-morphism S → S′ is also a chained projection functor G(S) → G(S′).
Conversely, any chained projection groupoid (P,G, ε) gives rise to a regular ∗-

semigroup S(P,G, ε), with underlying set G, and:

• involution given by a∗ = a−1,
• product defined, for a, b ∈ G with r(a) = p and d(b) = q, by

a • b = a⇂p′ ◦ ε[p′, q′] ◦ q′⇃b, where p′ = qθp and q′ = pθq. (3.8)

Any chained projection functor (P,G, ε) → (P ′,G′, ε′) is also a ∗-morphism S(P,G, ε) → 
S(P ′,G′, ε′).

Theorem 3.9 (see [26, Theorem 8.1]). G and S are mutually inverse isomorphisms be-
tween the categories RSS and CPG. �

4. Construction of the chain semigroup

We now come to the main focus of our study: the chain semigroup PG(P ) associated 
to a projection algebra P . This semigroup is built in Subsection 4.3 by first constructing 
a chained projection groupoid (P,C , ν), and then applying the functor S : CPG → RSS
from Theorem 3.9. Here C is a homomorphic image of the chain groupoid C (see Sub-
section 4.2), and ν is the quotient map C → C . The definition of C involves the notion 
of linked pairs of projections, which are introduced in Subsection 4.1.
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4.1. Linked pairs of projections

Definition 4.1. Let P be a projection algebra, and let p ∈ P . A pair of projections 
(e, f) ∈ P × P is said to be p-linked if

f = eθpθf and e = fθpθe. (4.2)

Associated to such a p-linked pair (e, f) we define the tuples

λ(e, p, f) = (e, eθp, f) and ρ(e, p, f) = (e, fθp, f).

The next two results gather some important basic properties of p-linked pairs. Recall 
that P = P(P ) denotes the path category of P .

Lemma 4.3. If (e, f) is p-linked, then

(i) (f, e) is also p-linked, and we have

λ(e, p, f)rev = ρ(f, p, e) and ρ(e, p, f)rev = λ(f, p, e),

(ii) e, f ≤F p,
(iii) Each of e and f is F -related to each of eθp and fθp; consequently both λ(e, p, f)

and ρ(e, p, f) belong to P(e, f).

Proof. (i). This follows directly by inspecting Definition 4.1.
(ii). By the symmetry afforded by part (i), it suffices to show that e ≤F p. For this 

we use (4.2), Lemma 3.4 and (P3) to calculate

pθe = pθfθpθe = pθeθpθfθpθe = eθpθfθpθe = fθpθe = e.

(iii). By symmetry, it suffices to show that e F eθp F f . Combining e ≤F p

with (PA1), it follows that e = pθe F eθp. We obtain f ≤F eθp directly from (4.2). 
Using (P4) and (4.2) we calculate fθeθp = fθpθeθp = eθp, so that eθp ≤F f . �
Remark 4.4. Lemma 4.3(iii) says that (e, f) being p-linked implies e, f F eθp, fθp. The 
converse of this holds as well, as (4.2) says that f ≤F eθp and e ≤F fθp. Thus, we could 
take e, f F eθp, fθp as an equivalent definition for (e, f) to be p-linked.

Remark 4.5. Consider a projection p ∈ P , and a p-linked pair (e, f). By Lemma 4.3(ii)
we have e, f ≤F p, and of course we also have eθp, fθp ≤ p. These relationships are all 
shown in Fig. 2. In the diagram, each arrow s → t stands for the P -path (s, t) ∈ P. 
Thus, the upper and lower paths from e to f correspond to λ(e, p, f) and ρ(e, p, f), 
respectively.
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e

p

eθp

fθp

f

Fig. 2. A projection p ∈ P , and a p-linked pair (e, f), as in Definition 4.1. Dotted and dashed lines indi-
cate ≤F and ≤ relationships, respectively. Lines with arrows indicate the paths λ(e, p, f) and ρ(e, p, f). Of 
course, by Lemma 4.3(i), the dual diagram in which all four arrows are reversed is also valid. See Remark 4.5
for more details.

Lemma 4.6. If (e, f) is p-linked, and if e′ ≤ e, then (e′, f ′) is p-linked, where f ′ = e′θpθf , 
and we have

e′⇃λ(e, p, f) = λ(e′, p, f ′) and e′⇃ρ(e, p, f) = ρ(e′, p, f ′).

Proof. To show that (e′, f ′) is p-linked, we must show that f ′ = e′θpθf ′ and e′ = f ′θpθe′ . 
For the first we use the definition of f ′ and Lemma 3.4 several times to calculate 

e′θpθf ′ = e′θpθe′θpθf = e′θpθfθpθe′θpθf = fθpθe′θpθf = e′θpθf = f ′.

For the second we have

f ′θpθe′ = e′θpθfθpθe′ = fθpθe′ by definition, and by Lemma 3.4

= fθpθeθe′ by (PA4), as e′ ≤ e

= eθe′ by (4.2)

= e′ as e′ ≤F e by (PA3).

We now show that e′⇃λ(e, p, f) = λ(e′, p, f ′), the proof that e′⇃ρ(e, p, f) = ρ(e′, p, f ′)
being analogous. Using (3.5) and Definition 4.1, we have

e′⇃λ(e, p, f) = (e′, e′θeθp , e′θeθpθf ) and λ(e′, p, f ′) = (e′, e′θp, f ′).

Both have first component e′. We deduce equality of the second and third components 
from the following calculations:

• e′θeθp = e′θpθeθp = e′θeθpθeθp = e′θeθp = e′θp, using e′ ≤ e, (P4) and (P5),
• (e′θeθp)θf = e′θpθf = f ′, using the previous calculation, and the definition of f ′. �
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4.2. The reduced chain groupoid

We now use linked pairs to define the reduced chain groupoid of a projection algebra.

Definition 4.7. Let P be a projection algebra, and let Ξ = Ξ(P ) be the set of all pairs 
(s, t) ∈ P × P of the forms (Ω1) and (Ω2), as well as:

(Ω3) s = λ(e, p, f) and t = ρ(e, p, f), for some p ∈ P , and some p-linked pair (e, f).

Let ≈≈ = Ξ� be the congruence on P generated by Ξ, and define the quotient

C = C (P ) = P/≈≈.

As Ω ⊆ Ξ, we have ≈ ⊆ ≈≈, and so C is a quotient of the chain groupoid 
C = C (P ) = P/≈. As such C is itself a groupoid, which we call the reduced chain 
groupoid of P . The elements of C are called reduced (P -)chains, and we denote by �p�
the reduced chain containing the path p ∈ P. We denote the quotient map C → C by

ν : C → C , which is given by ν[p] = �p� for p ∈ P.

Remark 4.8. We will see in Subsection 10.1 that there exists a natural (and generally 
smaller) subset of Ξ that also generates the congruence ≈≈. For now it is more convenient 
to use Ξ, as its definition is more symmetrical.

In Proposition 4.13 we show that (P,C , ν) is a chained projection groupoid. We build 
towards this with a number of lemmas.

Lemma 4.9. ≈≈ is an ordered ∗-congruence, and C is an ordered groupoid.

Proof. We have already observed that C is a groupoid. As explained in Section 3.1, we 
can show that ≈≈ = Ξ� is an ordered ∗-congruence by showing that

srev ≈≈ trev and p⇃s ≈≈ p⇃t for all (s, t) ∈ Ξ, and all p ≤ d(s).

When (s, t) ∈ Ξ has type (Ω1) or (Ω2), this was done in [26, Lemma 5.16]. For pairs of 
type (Ω3) we apply Lemmas 4.3 and 4.6. �

The order in C is determined by the restrictions, which are inherited from C (and 
hence ultimately from P). That is, for p ∈ P they are given by

q⇃�p� = �q⇃p� and �p�⇂r = �p⇂r� for q ≤ d(p) = d�p� and r ≤ r(p) = r�p�.

These are well defined by Lemma 4.9
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It is clear that (P,C ) is a weak projection groupoid. To show that it is a projection 
groupoid we need to verify (G1). To do so, we need to understand the maps Θc = θd(c)ϑc.

Lemma 4.10. For c = �p1, . . . , pk� ∈ C , we have Θc = θp1 · · · θpk
.

Proof. Using (3.5), and writing p = (p1, . . . , pk) ∈ P, we first calculate

qϑc = r(q⇃c) = r(q⇃�p�) = r�q⇃p� = r(q⇃p) = qθp2 · · · θpk
for q ≤ p1 = d(c).

It follows from this that tΘc = tθd(c)ϑc = tθp1θp2 · · · θpk
for arbitrary t ∈ P . �

Lemma 4.11. If P is a projection algebra, then (P,C ) is a projection groupoid.

Proof. To verify (G1), consider a reduced chain c = �p1, . . . , pk� ∈ C , and let q ∈ P . 
Then by Lemmas 4.10 and 3.4 we have

θqΘc
= θqθp1 ···θpk = θpk

· · · θp1θqθp1 · · · θpk
= Θc−1θqΘc. �

We now bring in the quotient map ν : C → C from Definition 4.7.

Lemma 4.12. If P is a projection algebra, then ν is an evaluation map.

Proof. Clearly ν is a v-functor. To see that it is ordered, consider a path p =
(p1, . . . , pk) ∈ P, and let q ≤ p1. Then with the qi as in (3.5), we have

ν(q⇃[p]) = ν[q1, . . . , qk] = �q1, . . . , qk� = q⇃�p1, . . . , pk� = q⇃(ν[p]). �
Proposition 4.13. If P is a projection algebra, then (P,C , ν) is a chained projection 
groupoid.

Proof. It remains to verify (G2). To do so, fix a c-linked pair (e, f), where c =
�p1, . . . , pk� ∈ C . So

f = eΘcθf and e = fΘc−1θe, (4.14)

and we must show that λ(e, c, f) = ρ(e, c, f). Keeping ε = ν in mind, these morphisms 
are defined by

λ(e, c, f) = �e, e1� ◦ e1⇃c ◦ �f1, f� and ρ(e, c, f) = �e, e2� ◦ c⇂f2
◦ �f2, f�, (4.15)

in terms of the projections

e1 = eθp1 , e2 = fΘc−1 , f1 = eΘc and f2 = fθpk
.
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For convenience, we will write

e1⇃c = �u1, . . . , uk� and c⇂f2
= �v1, . . . , vk�.

Using (3.5), and e1 = eθp1 and f2 = fθpk
, we have

ui = e1θp2 · · · θpi
= eθp1 · · · θpi

and vi = f2θpk−1 · · · θpi
= fθpk

· · · θpi
,

for each i. Keeping in mind that the compositions in (4.15) exist, we have

λ(e, c, f) = �e, u1, . . . , uk, f� and ρ(e, c, f) = �e, v1, . . . , vk, f�,

and we must show that these are equal. It will also be convenient to additionally write 
u0 = e and vk+1 = f . To assist with understanding the coming arguments, these projec-
tions are shown in Fig. 3 (in the case k = 4). Our task is essentially to show that the 
large ‘rectangle’ at the bottom of the diagram commutes, modulo ≈≈.

We recall the notion of p-linked pairs (Definition 4.1) and claim that:

(ui−1, vi+1) is pi-linked for each 1 ≤ i ≤ k. (4.16)

To prove this, we must show that

vi+1 = ui−1θpi
θvi+1 and ui−1 = vi+1θpi

θui−1 .

First we note that (4.14) and Lemma 4.10 give

f = eθp1 · · · θpk
θf and e = fθpk

· · · θp1θe.

Combining this with Lemma 3.4, we obtain

ui−1θpi
θvi+1 = eθp1 · · · θpi−1 · θpi

· θfθpk ···θpi+1

= eθp1 · · · θpi−1 · θpi
· θpi+1 · · · θpk

θfθpk
· · · θpi+1 = fθpk

· · · θpi+1 = vi+1.

The proof that ui−1 = vi+1θpi
θui−1 is analogous, and (4.16) is proved. Now, the linked 

pairs in (4.16) lead to the paths

λ(ui−1, pi, vi+1) = (ui−1, ui−1θpi
, vi+1) and ρ(ui−1, pi, vi+1) = (ui−1, vi+1θpi

, vi+1)

= (ui−1, ui, vi+1) = (ui−1, vi, vi+1),

as in Definition 4.1. Since (λ(ui−1, pi, vi+1), ρ(ui−1, pi, vi+1)) is a pair of the form (Ω3), 
we have

�ui−1, vi, vi+1� = �ui−1, ui, vi+1� for each 1 ≤ i ≤ k. (4.17)
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e = u0

v5 = f

p1

u1

v1

p2

u2

v2

p3

u3

v3

p4

u4

v4

Fig. 3. The projections e, f, pi, ui, vi from the proof of Proposition 4.13, shown here in the case k = 4. 
Dashed lines indicate ≤ relationships. Each arrow s → t represents the P -path (s, t) ∈ P, so the upper and 
lower paths e → f represent λ(e, c, f) = (e, u1, . . . , uk, f) and ρ(e, c, f) = (e, v1, . . . , vk, f), respectively.

In other words, each of the small rectangles at the bottom of Fig. 3 commutes, and then 
it follows that the large rectangle commutes. Formally, we repeatedly use (4.17) in the 
indicated places, as follows:

ρ(e, c, f) = �e, v1, . . . , vk, f� = �u0, v1, v2, v3, v4, . . . , vk, vk+1�

= �u0, u1, v2, v3, v4, . . . , vk, vk+1�

= �u0, u1, u2, v3, v4, . . . , vk, vk+1�

...

= �u0, u1, u2, u3, u4, . . . , uk, vk+1�

= �e, u1, . . . , uk, f� = λ(e, c, f),

and the proof is complete. �
For a projection algebra P , we write F(P ) = (P,C , ν) for the chained projection 

groupoid from Proposition 4.13. The assignment P �→ F(P ) can be thought of as an ob-
ject map PA → CPG. We can extend this to morphisms as well. Indeed, fix a projection 
algebra morphism φ : P → P ′. In what follows we use the standard abbreviations for the 
constructions associated to P , and use dashes to distinguish those for P ′; e.g. P = P(P )
and C ′ = C (P ′). We first define a mapping

ϕ : P → C
′ by pϕ = ν′([p]C (φ)), i.e. (p1, . . . , pk)ϕ = �p1φ, . . . , pkφ�.

(4.18)
Note that ϕ is the composite of three ordered ∗-functors, namely the quotient map 
P → C , followed by C (φ) : C → C ′, and then the evaluation ν′ : C ′ → C

′. Hence ϕ is 
itself an ordered ∗-functor. It is straightforward to verify that Ξ ⊆ ker(ϕ), meaning that
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sϕ = tϕ for all (s, t) ∈ Ξ. Therefore there is a well-defined ordered groupoid functor

F(φ) : C → C
′ given by �p�F(φ) = pϕ = ν′([p]C (φ)),

i.e. �p1, . . . , pk�F(φ) = �p1φ, . . . , pkφ�.

Proposition 4.19. F is a functor PA → CPG.

Proof. We first verify that F(φ), as above, is a chained projection functor from 
F(P ) = (P,C , ν) to F(P ′) = (P ′,C

′
, ν′). The restriction of F(φ) to P = vC is φ, which 

is a projection algebra morphism by assumption. To show that F(φ) preserves evaluation 
maps we need to check that the following diagram commutes:

C (P ) C (P ′)

C (P ) C (P ′),

C (φ)

ν ν′

F(φ)

and this is routine. It is also routine to check that F(φ◦φ′) = F(φ)◦F(φ′) for composable 
morphisms φ and φ′, and that F(idP ) = idF(P ) for all P . �
4.3. The chain semigroup

As a result of Proposition 4.13 and Theorem 3.9, we have a regular ∗-semigroup 
S(P,C , ν), which we will denote by PG(P ), and call the chain semigroup of P . The 
choice of notation, which harkens back to the free idempotent-generated semigroups 
IG(E), will be justified by the results of Section 5. In line with Subsection 3.5, we denote 
the product in PG(P ) = S(P,C , ν) by •. To give an explicit description of •, consider 
an arbitrary pair of reduced chains c = �p1, . . . , pk� and d = �q1, . . . , ql�, and write 
p = r(c) = pk and q = d(d) = q1. As in (3.8), and remembering that the evaluation map 
is ν, we have

c • d = c⇂p′ ◦ �p′, q′� ◦ q′⇃d where p′ = qθp and q′ = pθq.

Using (3.5), we have c⇂p′ = �p′1, . . . , p
′
k� and q′⇃d = �q′1, . . . , q

′
l�, where

p′i = p′θpk
· · · θpi

and q′j = q′θq1 · · · θqj for 1 ≤ i ≤ k and 1 ≤ j ≤ l,

and where p′ = p′k and q′ = q′1. Again, these restrictions are well defined because of 
Lemma 4.9. It follows that

c • d = c⇂p′ ◦ �p′, q′� ◦ q′⇃d = �p′1, . . . , p
′
k� ◦ �p′k, q

′
1� ◦ �q′1, . . . , q

′
l� = �p′1, . . . , p

′
k, q

′
1, . . . , q

′
l�
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is simply the concatenation of c⇂p′ and q′⇃d, which we denote by c⇂p′ ⊕ q′⇃d. As special 
cases we have

c • d = c⊕ d if r(c) F d(d) and c • d = c ◦ d if r(c) = d(d). (4.20)

Definition 4.21. The chain semigroup PG(P ) of a projection algebra P , is the regular 
∗-semigroup defined as follows.

(CP1) The elements of PG(P ) are the reduced (P -)chains, �p1, . . . , pk�, as in Defini-
tion 4.7.

(CP2) The product • in PG(P ) is defined, for c, d ∈ PG(P ) with p = r(c) and q = d(d), 
by

c • d = c⇂p′ ⊕ q′⇃d, where p′ = qθp and q′ = pθq,

and where ⊕ denotes concatenation, as above.
(CP3) The involution in PG(P ) is given by �p1, . . . , pk�

∗ = �pk, . . . , p1�.
(CP4) The projections of PG(P ) have the form �p� = p, for p ∈ P , and consequently 

P(PG(P )) = P . Moreover, these projection algebras have the same associated 
operations, since

p • q • p = qθp for all p, q ∈ P .

(CP5) The idempotents of PG(P ) have the form p • q = �p, q�, for (p, q) ∈ F .

We have proved the following.

Theorem 4.22. If P is a projection algebra, then its chain semigroup PG(P ) is a 
projection-generated (equivalently, idempotent-generated) regular ∗-semigroup whose pro-
jection algebra is precisely P . �

We have now introduced the main concept of our study, the chain semigroup associ-
ated to a projection algebra, and the remaining sections of the paper investigate these 
semigroups from a number of different angles:

• their incarnation as free objects in the category of regular ∗-semigroups (Section 5),
• their idempotent/biordered structure (Section 6),
• their presentations by generators and defining relations (Section 7),
• their relationship to free (regular) idempotent-generated semigroups (Section 7), and
• their topological structure (Section 10).

In Sections 8 and 9 we present a number of natural examples.



26 J. East et al. / Advances in Mathematics 473 (2025) 110288 

5. Freeness of the chain semigroup

In the previous section we showed how to construct the chain semigroup PG(P ) =
S(P,C , ν) from a projection algebra P . Now we will explain how PG(P ) is rightfully 
thought of as ‘the free regular ∗-semigroup with projection algebra P ’. In categorical 
language, this is to say that the chain semigroups are the objects in the image of a 
left adjoint to the forgetful functor P : RSS → PA from (3.2). (The precise meanings 
of these terms are given below.) The forgetful functor in question maps a regular ∗-
semigroup S to its projection algebra P(S). It follows from Proposition 4.19 (and the 
isomorphism RSS ∼ = CPG) that the assignment P �→ PG(P ) is the object part of a 
functor PA → RSS. Our main goal here is to prove the following result (where again 
definitions are given below).

Theorem 5.1. The functor PA → RSS : P �→ PG(P ) is a left adjoint to the forgetful 
functor RSS → PA : S �→ P(S), and PA is coreflective in RSS.

In fact, it will be more convenient to prove the following groupoid version of Theo-
rem 5.1; the two theorems are equivalent via the isomorphism RSS ∼ = CPG.

Theorem 5.2. The functor PA → CPG : P �→ (P,C , ν) is a left adjoint to the forgetful 
functor CPG → PA : (P,G, ε) �→ P , and PA is coreflective in CPG.

We now give the (standard) definitions of the terms appearing in the above results; 
for more details see [5,46].

Definition 5.3. Consider two categories C and D, and a pair of functors F,G : C → D. 
A natural transformation η : F → G is a family η = (ηC)C∈vC, where each 
ηC : F(C) → G(C) is a morphism in D, and such that the following condition holds:

• For every pair of objects C,C ′ ∈ vC, and for every morphism φ : C → C ′ in C, the 
following diagram commutes:

F(C) F(C ′)

G(C) G(C ′).

F(φ)

ηC ηC′

G(φ)

We call η a natural isomorphism if each ηC is an isomorphism (in D), in which case we 
write F ∼ = G.
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Definition 5.4. Consider two categories C and D. An adjunction C → D is a triple 
(F,U, η), where F : C → D and U : D → C are functors, and η is a natural transfor-
mation idC → UF, such that the following condition holds:

• For every pair of objects C ∈ vC and D ∈ vD, and for every morphism φ : C → U(D)
in C, there exists a unique morphism φ : F(C) → D in D such that the following 
diagram commutes:

C

U(F(C)) U(D).

φ
ηC

U(φ)

In this set-up, F and U are called the left and right adjoints, respectively, and η is 
the unit of the adjunction. The U-free objects in D are the objects in the image of F, 
i.e. those of the form F(C) for C ∈ vC.

We are particularly interested in special adjunctions where we actually have the equal-
ity UF = idC. Note that id = (idC)C∈vC is clearly a natural transformation idC → idC
for any category C. Lemma 5.6 below concerns this situation, and speaks of so-called 
coreflective (sub)categories.

Definition 5.5. A coreflective subcategory of a category D is a full subcategory B whose 
inclusion functor B → D has a right adjoint. We say a category is coreflective in D if it 
is isomorphic to a coreflective subcategory of D. That is, C is coreflective in D if there 
is a full embedding C → D that has a right adjoint.

In the above, a subcategory B of D is full if it contains every morphism of D between 
objects of B. A full embedding is a functor C → D that is injective on objects and 
morphisms, and whose image is full in D.

Lemma 5.6. Suppose C and D are categories, and F : C → D and U : D → C are 
functors with UF = idC, for which the following condition holds:

• For every pair of objects C ∈ vC and D ∈ vD, and for every morphism φ : C → U(D)
in C, there exists a unique morphism φ : F(C) → D in D such that φ = U(φ).

Then

(i) (F,U, id) is an adjunction,
(ii) C ∼ = F(C) is coreflective in D.
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Proof. (i). This is a direct translation of Definition 5.4 in the special case that UF = idC

and η = id.
(ii). This follows from the fact that all components of the unit id = (idC) are isomor-

phisms; see for example [46, Theorem IV.3.1]. �
Proof of Theorem 5.2. We denote the functors in question by

F : PA → CPG : P �→ (P,C , ν) and U : CPG → PA : (P,G, ε) �→ P.

We prove the theorem by applying Lemma 5.6. It is clear that UF = idPA, so we are 
left to verify the following condition:

• For every projection algebra P , every chained projection groupoid (P ′,G, ε), and 
every projection algebra morphism φ : P → U(P ′,G, ε) = P ′, there exists a unique 
chained projection functor φ : F(P ) = (P,C , ν) → (P ′,G, ε) such that φ = U(φ).

To establish the existence of φ, we first define

ϕ : P → G by pϕ = ε([p]C (φ)), i.e. (p1, . . . , pk)ϕ = ε[p1φ, . . . , pkφ],

where here P = P(P ) is the path category of P . As with (4.18), ϕ is the composite of 
three ordered ∗-morphisms, and is hence itself an ordered ∗-morphism. We next show 
that Ξ ⊆ ker(ϕ), i.e. that

sϕ = tϕ for all (s, t) ∈ Ξ. (5.7)

This is clear when (s, t) has the form (Ω1) or (Ω2). Now suppose (s, t) has the form (Ω3), 
so that

s = λ(e, p, f) = (e, eθp, f) and t = ρ(e, p, f) = (e, fθp, f) for some p-linked pair (e, f).

We show that:

(i) (eφ, fφ) is b-linked in G for the morphism b = pφ ∈ G, and
(ii) λ(eφ, b, fφ) = sϕ and ρ(eφ, b, fφ) = tϕ.

Since λ(eφ, b, fφ) = ρ(eφ, b, fφ) in G, this will complete the proof that sϕ = tϕ. For (i)
we need to show that

fφ = (eφ)Θbθfφ and eφ = (fφ)Θb−1θeφ.

Since pφ ∈ P ′ is a projection, we have Θb = Θpφ = θpφ by [26, equation (6.3)]. Combined
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with the fact that φ is a projection algebra morphism, it follows that

(eφ)Θbθfφ = (eφ)θpφθfφ = (eθpθf )φ = fφ.

An analogous calculation (keeping in mind b−1 = (pφ)−1 = pφ) gives eφ = (fφ)Θb−1θeφ, 
and completes the proof of (i). For (ii) we first note that

λ(eφ, pφ, fφ) = ε[eφ, e1] ◦ e1⇃(pφ) ◦ ε[f1, fφ]

= ε[eφ, e1] ◦ e1 ◦ ε[f1, fφ]

= ε[eφ, e1] ◦ ε[f1, fφ],

where e1 = (eφ)θpφ = (eθp)φ and f1 = (eφ)Θpφ = (eφ)θpφ = (eθp)φ (= e1). Thus, 
continuing from above we have

λ(eφ, pφ, fφ) = ε[eφ, e1]◦ε[f1, fφ] = ε[eφ, (eθp)φ]◦ε[(eθp)φ, fφ] = ε[eφ, (eθp)φ, fφ] = sϕ.

Analogously, ρ(eφ, pφ, fφ) = tϕ, completing the proof of (ii).
Now that we have proved (5.7), it follows that there is a well-defined ordered groupoid 

functor

φ : C (= P/≈≈) → G given by �p�φ = pϕ = ε([p]C (φ)) for p ∈ P.

We next check that φ is in fact a chained projection functor (P,C , ν) → (P ′,G, ε), for 
which we need to show that:

(iii) the object map vφ = φ|P is a projection algebra morphism P → P ′, and
(iv) φ respects the evaluation maps, in the sense that the following diagram commutes:

C (P ) C (P ′)

C G.

C (vφ)

ν ε

φ

For (iii), we note that pφ = pϕ = ε[pφ] = pφ for all p ∈ P , so that vφ = φ is a projection 
algebra morphism by assumption. For (iv), if p ∈ P then

ε([p]C (φ)) = pϕ = �p�φ = (ν[p])φ.

So φ is indeed a chained projection functor, and it follows from the proof of (iii) above 
that U(φ) = φ|P = φ.
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We have now established the existence of φ. For uniqueness, suppose the chained 
projection functor ψ : (P,C , ν) → (P ′,G, ε) also satisfies U(ψ) = φ. Then for any p ∈ P

we have

�p�ψ = (ν[p])ψ = ε([p]C (vψ)) since ψ respects evaluation maps

= ε([p]C (φ)) since vψ = U(ψ) = φ

= �p�φ,

and so ψ = φ. �
Now that we have proved Theorem 5.1 (via Theorem 5.2 and the isomorphism 

RSS ∼ = CPG), it follows that the chain semigroups are the P-free objects in RSS. 
Henceforth, we call PG(P ) the free (projection-generated) regular ∗-semigroup over the 
projection algebra P . As noted earlier, the notation is inspired by an analogy with the 
free (idempotent-generated) semigroup over a biordered set E, which is denoted IG(E). 
The relationship between PG(P ) and IG(E) will be a key topic for the remainder of the 
paper, starting in Section 6.

We conclude the current section by drawing out two purely semigroup-theoretical 
results.

Theorem 5.8. If P is a projection algebra, then

(i) PG(P ) is a regular ∗-semigroup with projection algebra P ,
(ii) for any regular ∗-semigroup S, and any projection algebra morphism φ : P → P(S), 

there is a unique ∗-semigroup homomorphism φ : PG(P ) → S such that the fol-
lowing diagram commutes (where both vertical maps are inclusions):

P P(S)

PG(P ) S,

φ

φ

and moreover any ∗-semigroup homomorphism PG(P ) → S has the form φ for 
some projection algebra morphism φ : P → P(S).

Proof. (i). This is contained in Theorem 4.22.
(ii). The existence and uniqueness of φ follows from the proof of Theorem 5.2 and the 

isomorphism RSS ∼ = CPG. Given any ∗-semigroup morphism ψ : PG(P ) → S, we have 
ψ = vψ. �

The previous theorem has the following consequence:
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Theorem 5.9. Let P and P ′ be projection algebras. Then for any projection algebra mor-
phism φ : P → P ′, there is a unique ∗-semigroup homomorphism φ : PG(P ) → PG(P ′)
such that the following diagram commutes (where both vertical maps are inclusions):

P P ′

PG(P ) PG(P ′),

φ

φ

and moreover any ∗-semigroup homomorphism PG(P ) → PG(P ′) has the form φ for 
some projection algebra morphism φ : P → P ′. �
Remark 5.10. Let us pause briefly to illustrate the significance of coreflectivity in Theo-
rems 5.1 and 5.2, by a comparison with the category Sgp of semigroups and the set-based 
free objects within it. The latter are the semigroups X+, consisting of all words over a 
set X under the operation of concatenation. The assignment X �→ X+ can be viewed as 
a functor F′ : Set → Sgp. It is a left adjoint to the forgetful functor U′ : Sgp → Set, 
which maps any semigroup to its underlying set. However, U′F′ is not naturally isomor-
phic, let alone equal, to the identity on Sgp: indeed, U′F′(X) is the underlying set of 
the free semigroup X+. On the level of morphisms this is manifested by the fact that 
not every morphism X+ → Y + arises from a mapping X → Y .

Remark 5.11. Lawson in [45, Theorem 2.2.4] states that groups form a reflective subcat-
egory of inverse semigroups. The left adjoint to the inclusion maps an inverse semigroup 
to its maximum group image (the quotient by the least congruence that identifies all 
idempotents). On the other hand one can check from the definitions that semilattices 
(commutative idempotent semigroups) form a coreflective subcategory of inverse semi-
groups. Similarly, the category of (regular) biordered sets is coreflective in the category 
of (regular) semigroups; see [52, Theorem 3.40] and [51, Theorem 6.10]. Coreflectivity of 
PA in RSS can be viewed as a ‘regular ∗-analogue’ of these last two facts.

Remark 5.12. There is another way to view the semigroups PG(P ) as free objects. 
Namely, for any (fixed) projection algebra P , there is a category RSS(P ) with:

• objects all regular ∗-semigroups with projection algebra P , and
• morphisms all ∗-morphisms that map projections identically.

We see then that PG(P ) is an initial object in this category, meaning that for every 
object S of RSS(P ) there is exactly one morphism PG(P ) → S (in this category). This 
follows by applying Theorem 5.8(ii) to the identity morphism φ = idP : P → P = P(S). 
Note that the image of the morphism PG(P ) → S is the projection-generated subsemi-
group of S, which of course is equal to the idempotent-generated subsemigroup of S.



32 J. East et al. / Advances in Mathematics 473 (2025) 110288 

6. Projection algebras and biordered sets

We have just seen that the chain semigroups are the P-free objects in RSS, where 
P : RSS → PA is the forgetful functor that maps a regular ∗-semigroup S to its under-
lying projection algebra P(S). Another forgetful functor E : RSS → RSBS has been 
considered (implicitly) in the literature [54], where RSBS denotes the category of regular 
∗-biordered sets; this will be defined formally below. It is then natural to ask whether 
this forgetful functor has an adjoint, and if so what the E-free objects are. Perhaps more 
fundamentally, we would like to understand the relationship between the categories PA
and RSBS. It turns out that these categories are in fact equivalent, as we show in The-
orem 6.19 below. This then has the consequence that E-free objects do indeed exist, but 
that they are the same as the P-free objects.

To establish this equivalence, we need functors

E : PA → RSBS and P : RSBS → PA

with natural isomorphisms P ◦ E ∼ = idPA and E ◦ P ∼ = idRSBS. These functors are 
constructed in Subsections 6.2 and 6.3, and the category equivalence is established in 
Subsection 6.4. A salient part of the argument is Proposition 6.10, which shows that 
regular ∗-semigroups with the same projection algebra have isomorphic ∗-biordered sets.

6.1. Preliminaries on biordered sets

We begin with the necessary definitions; for more background, and proofs, see [51, 
Chapter 1] and [54, Section 2].

The set E = E(S) = {e ∈ S : e2 = e} of all idempotents of a semigroup S can 
be given the structure of a partial algebra called a biordered set. This structure can be 
conveniently described using Easdown’s arrow notation [24]. For e, f ∈ E we write

e f ⇔ e = ef (e is a left zero for f)

and e f ⇔ e = fe (e is a right zero for f).

These relations were originally denoted ωl = and ωr = in [51]. Both are pre-
orders (reflexive and transitive relations), and if e f , e f , e f or e f , 
then ef and fe are both idempotents (at least one of which is equal to e or f). It follows 
that we can define a partial operation · on E with domain

BP(E) = ∪ ∪ ∪ = {(e, f) ∈ E : {e, f} ∩ {ef, fe} �= ∅},

and with e · f = ef for (e, f) ∈ BP(E). The pairs in BP(E) are called basic pairs. The 
partial algebra (E, ·) is the biordered set of S, or boset for short. Since the (partial) 
product in E is just a restriction of the (total) product in S, we denote it simply by 
juxtaposition.
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In what follows, we will use various combinations of arrows, specifically

= ∩ , = ∩ and = ∩ ,

so for example e f ⇔ [e f and e f ] ⇔ [e = ef and f = fe]. Note that 
is a partial order.

There is an axiomatic definition of abstract bosets (with no reference to any over-
semigroup), but we will not need to give that here, as it is known that any abstract 
boset is the boset of idempotents of some semigroup [24].

We denote by BS the category of bosets. Morphisms in BS are called bimorphisms,3
and are simply morphisms of partial algebras, i.e. functions φ : E → E′ such that for all 
e, f ∈ E,

(e, f) ∈ BP(E) ⇒ (eφ, fφ) ∈ BP(E′) and (ef)φ = (eφ)(fφ). (6.1)

An isomorphism in BS will be called a bisomorphism; these are the bijections φ : E → E′

for which φ and φ−1 are both bimorphisms. It is easy to see that a bijection φ : E → E′

is a bisomorphism if and only if

φ is a bimorphism and BP(E′) = BP(E)φ = {(eφ, fφ) : (e, f) ∈ BP(E)}.

A boset is called regular if it is the boset of a regular semigroup. Such regular bosets 
can be abstractly characterised as the bosets E whose sandwich sets S(e, f) are non-
empty for all e, f ∈ E. These sandwich sets are defined as follows. We begin by defining 
the set (of ‘mixed’ common lower bounds):

M(e, f) = {g ∈ E : e g f} = {g ∈ E : ge = g = fg} = {g ∈ E : fge = g}.

This set has a pre-order � defined by h � g ⇔ [eh eg and hf gf ]. The sandwich 
set is then

S(e, f) = {g ∈ M(e, f) : h � g for all h ∈ M(e, f)},

the set of all �-maximum elements in M(e, f). It turns out (see [51, Theorem 1.1]) that 
if E is a regular boset, and if S is any regular semigroup with E = E(S), then

S(e, f) = {g ∈ E : egf = ef and fge = g in S} for any e, f ∈ E. (6.2)

Note here that the products egf and ef are taken in S, but need not be defined in E
itself; these products need not even be idempotents.

3 The term ‘bimorphism’ comes from Nambooripad’s original work [51], as a contraction of ‘biordered 
set morphism’, and should not be confused with other uses of the term, for example to mean a bijective 
morphism of graphs.
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We write RBS for the category of regular bosets. Morphisms in RBS are called regular 
bimorphisms, and are the bimorphisms φ : E → E′ (as above) that map sandwich sets 
into sandwich sets, meaning that

S(e, f)φ ⊆ S(eφ, fφ) for all e, f ∈ E.

Regular bosets are isomorphic in RBS if and only if they are isomorphic in BS. This 
is because sandwich sets are defined directly from the (partial) ‘multiplication tables’ of 
bosets, and are hence preserved by bisomorphisms.

Following [54], a ∗-boset is a partial algebra E = (E, ·, ∗), where (E, ·) is a boset, and 
∗ is a unary operation E → E : e �→ e∗ satisfying the following, for all e, f ∈ E:

(SB1) (e∗)∗ = e,
(SB2) (e, f) ∈ BP(E) ⇒ (e∗, f∗) ∈ BP(E) and (ef)∗ = f∗e∗.

We say E = (E, ·, ∗) is a regular ∗-boset if (E, ·) is regular, and we additionally have:

(SB3) For all e ∈ E, there exist elements s = s(e) and t = t(e) of E such that

e s

t e∗,

and such that e∗(gs) = (tg)e∗ for all g e.

(We note that these were called ‘special ∗-biordered sets’ in [54], where regular ∗-
semigroups were also called ‘special ∗-semigroups’. Condition (SB3) is known as τ -
commutativity, as it can be stated in terms of commutative diagrams involving natural 
maps between down-sets of idempotents in the poset (E, ).)

If S is a regular ∗-semigroup, then the boset E = E(S) becomes a regular ∗-boset 
whose unary operation is the restriction of the involution of S. The elements s, t ∈ E

in (SB3) are s = ee∗ and t = e∗e; for any g e, the products e∗(gs) and (tg)e∗ both 
evaluate to e∗ge∗. Conversely, we have the following:

Theorem 6.3 (see [54, Corollary 2.7]). Any regular ∗-boset is the ∗-boset of a regular 
∗-semigroup. �

We denote by RSBS the category of regular ∗-bosets. Morphisms in RSBS are called 
regular ∗-bimorphisms, and are the regular bimorphisms φ : E → E′ (as above) that 
respect the involutions, meaning that

(e∗)φ = (eφ)∗ for all e ∈ E.
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As above, regular ∗-bosets E and E′ are isomorphic in RSBS if and only if there is a 
bisomorphism E → E′ that also respects the involutions.

The assignment S �→ E(S) is the object part of a (forgetful) functor

E : RSS → RSBS. (6.4)

A ∗-morphism φ : S → S′ in RSS is sent to its restriction E(φ) = φ|E(S) : E(S) → E(S′), 
which is a regular ∗-bimorphism in RSBS.

6.2. From projection algebras to ∗-biordered sets

Theorem 6.19 below establishes a category equivalence PA ↔ RSBS. For this we 
need functors in both directions between the two categories. We can immediately obtain 
a functor

E : PA → RSBS (6.5)

by composing the functors

PA → RSS : P �→ PG(P ) and RSS → RSBS : S �→ E(S)

from Theorem 5.1 and (6.4). Note that the functors RSS → RSBS and PA → RSBS
in (6.4) and (6.5) are both denoted by E. As these take different kinds of arguments 
(regular ∗-semigroups or projection algebras, and their morphisms), it will always be 
clear from context which one is meant.

The functor E : PA → RSBS in (6.5) maps a projection algebra P to the regular 
∗-boset of PG(P ). Using (CP5), we have

E(P ) = E(PG(P )) = {�p, q� : (p, q) ∈ F} (6.6)

as a set. We will describe the biordered structure of E(P ) in Proposition 6.9 below; the 
involution is of course given by �p, q�∗ = �q, p�.

The functor E : PA → RSBS maps a projection algebra morphism φ : P → P ′ to 
the regular ∗-bimorphism

E(φ) = E(φ) : E(P ) → E(P ′),

where φ : PG(P ) → PG(P ′) is the ∗-morphism from Theorem 5.9. So E(φ) is the restric-
tion of φ to E(P ) = E(PG(P )); explicitly, we have �p, q�E(φ) = �pφ, qφ� for (p, q) ∈ F .

For the next two proofs, we note that the product of idempotents e = �p, q� and 
f = �r, s� in PG(P ) is given by

e • f = �p′, q′, r′, s′�, where p′ = rθqθp, q′ = rθq, r′ = qθr and s′ = qθrθs.

(6.7)
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In particular, if e • f happens to be an idempotent, then

e • f = �p′, s′� = �rθqθp, qθrθs�. (6.8)

Proposition 6.9. If P is a projection algebra, and if e = �p, q� and f = �r, s�, then

(i) e f (i.e. e = e • f) ⇔ r(e) ≤ r(f) ⇔ q ≤ s, 
in which case f • e = �pθsθr, sθpθq�,

(ii) e f (i.e. e = f • e) ⇔ d(e) ≤ d(f) ⇔ p ≤ r, 
in which case e • f = �rθqθp, qθrθs�.

Proof. For the first part (the second is dual), it is enough to show that e = e•f ⇔ q ≤ s, 
as the expression for f • e will then follow from (6.8). Write e • f = �p′, q′, r′, s′�, as 
in (6.7). If e = e•f , then q = s′ = qθrθs ≤ s. Conversely, suppose q ≤ s, so that q = qθs. 
Combining this with θs = θsθrθs (which holds by (PA5)), we calculate

q = qθs = qθsθrθs = qθrθs = s′.

From q ≤ s F r it follows from (PA2) that q ≤F r, and so q = rθq = q′. But also

p′ = rθqθp = qθp = p,

and so e • f = �p′, q′, r′, s′� = �p, q, r′, q� = �p, q� = e, as required. �
The functor E : PA → RSBS constructs E(P ) from a projection algebra P by first 

passing through PG(P ). Perhaps surprisingly, it turns out that we could have passed 
through any regular ∗-semigroup S with projection algebra P = P(S), and we would 
obtain the same ∗-boset up to isomorphism, E(S) ∼ = E(P ):

Proposition 6.10. If S is a regular ∗-semigroup with projection algebra P = P(S), then 
the map

E(P ) → E(S) : �p, q� �→ pq

is an isomorphism of ∗-bosets.

Proof. As in Remark 5.12, there exists a ∗-morphism Φ(= idP ) : PG(P ) → S with pΦ = p

for all p ∈ P . Applying the functor E from (6.4), we obtain the regular ∗-bimorphism

φ = E(Φ) = Φ|E(P ) : E(P ) → E(S),

which is the map from the statement.
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As explained in Subsection 6.1, and since we already know that φ is a (regular) ∗-
bimorphism, we can complete the proof that this is an isomorphism by checking that:

(i) φ is a bijection, and
(ii) BP(E(P ))φ = BP(E(S)).

(i). This follows by applying (RS7) in both S and PG(P ), and keeping in mind 
p • q = �p, q�.

(ii). Since φ is a bijection, this amounts to showing that

(e, f) ∈ BP(E(P )) ⇔ (eφ, fφ) ∈ BP(E(S)) for all e, f ∈ E(P ).

The forward implication is clear, as φ is a bimorphism. Conversely, fix a basic pair 
(eφ, fφ) ∈ BP(E(S)), where e, f ∈ E(P ), and write e = �p, q� and f = �r, s�. By sym-
metry we may assume that eφ fφ, i.e. eφ = (eφ)(fφ); we complete the proof by 
showing that e f , i.e. e = e • f . To do so, first write e • f = �p′, q′, r′, s′�, as in (6.7). 
By Theorem 3.9, the ∗-morphism Φ : PG(P ) → S is also a chained projection functor 
G(PG(P )) = (P,C , ν) → G(S) = (P,G, ε). Since Φ is the identity on P = vC = vG, it 
follows that Φ is a v-functor C → G, and so

s′ = r(e • f) = r((e • f)Φ) = r((eΦ)(fΦ)) = r((eφ)(fφ)) = r(eφ) = r(e) = q.

Consequently, q = s′ = qθrθs ≤ s, and we then obtain e f from Proposition 6.9. �
Remark 6.11. Combining Theorem 6.3 and Proposition 6.10, it follows that every regular 
∗-boset is isomorphic to E(P ) for some projection algebra P .

Remark 6.12. Another approach to constructing a boset E(P ) from a projection alge-
bra P would be to take the underlying set

E(P ) = F = {(p, q) ∈ P × P : p = qθp and q = pθq},

and define the and pre-orders, and basic products, as in Proposition 6.9. One 
would then need to check that the boset axioms are satisfied. Taking this approach, 
Proposition 6.10 would then state that (p, q) �→ pq is an isomorphism E(P ) → E(S) for 
any regular ∗-semigroup S with projection algebra P = P(S).

6.3. From ∗-biordered sets to projection algebras

Now that we have constructed a functor E : PA → RSBS, we wish to construct a 
functor P : RSBS → PA in the reverse direction. (Again, this functor RSBS → PA
has the same name as the forgetful functor P : RSS → PA considered earlier.) This is 
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somewhat more involved than the functor E, which was simply the composition of two 
previously existing functors.

Consider a regular ∗-boset E = (E, ·, ∗). The underlying set of the projection algebra 
P(E) is simply the set of fixed points under the involution,

P(E) = {p ∈ E : p = p∗},

the elements of which are called the projections of E. To define the operations in P(E)
we need the following special case of [54, Proposition 2.5]. We give a simple adaptation 
of the proof for completeness.

Lemma 6.13. If E is a regular ∗-boset, and if p, q ∈ P(E), then there exists a unique 
element e = e(p, q) of the sandwich set S(p, q) for which pe, eq ∈ P(E). Moreover, we 
have

e = qp and pe = pqp

in any regular ∗-semigroup S with ∗-boset E = E(S).

Proof. Fix an arbitrary regular ∗-semigroup S with E = E(S). We obtain qp ∈ S(p, q)
from (6.2) and (RS2), and p(qp), (qp)q ∈ P(E) from (RS5).

For uniqueness, suppose e ∈ S(p, q) is such that pe, eq ∈ P(E). We first claim that

pqp = pe and qpq = eq. (6.14)

We prove the first, and the second is analogous. Define the projections s = pqp and 
t = pe. Using (RS2) and (6.2) in the indicated places, we calculate

s = pqp = peqp = tqp ⇒ s = ts and t = pe = pqep = pqpqep = sqep ⇒ t = st.

Since s and t are projections it then follows that s = s∗ = (ts)∗ = s∗t∗ = st = t, as 
claimed. Combining (RS2), (6.2) and (6.14), we obtain

e = ee = epe = epqp = eqp = qpqp = qp. �
From now on we fix the notation e(p, q) from Lemma 6.13. It is important to note 

that while the products qp and pqp in this lemma are taken in the semigroup S, the 
products pe and eq exist in the boset E itself.

Lemma 6.15. If φ : E → E′ is a regular ∗-bimorphism, then e(p, q)φ = e(pφ, qφ) for all 
p, q ∈ P(E).

Proof. With e = e(p, q), Lemma 6.13 gives e ∈ S(p, q) and pe, eq ∈ P(E). We deduce 
eφ ∈ S(pφ, qφ) from regularity of φ, and (pφ)(eφ), (eφ)(qφ) ∈ P(E′) because φ is a ∗-
bimorphism. It then follows from uniqueness in Lemma 6.13 that eφ = e(pφ, qφ). �
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Definition 6.16. For a regular ∗-boset E, we define P(E) to be the projection algebra 
with underlying set P(E) = {p ∈ E : p = p∗}, and operations given by

qθp = pe(p, q) for p, q ∈ P(E).

This is well defined by Lemma 6.13, which also tells us that P(E) = P(S) is the projection 
algebra of any regular ∗-semigroup S with ∗-boset E = E(S).

For a regular ∗-bimorphism φ : E → E′, we define P(φ) to be the restriction

P(φ) = φ|P(E) : P(E) → P(E′). (6.17)

(Note that φ maps projections to projections because it is a ∗-bimorphism.)

Proposition 6.18. P is a functor RSBS → PA.

Proof. To show that P(φ) : P(E) → P(E′) as in (6.17) is a projection algebra morphism, 
let p, q ∈ P(E). We then use Lemma 6.15 to calculate

(qθp)φ = (pe(p, q))φ = (pφ)(e(p, q)φ) = (pφ)e(pφ, qφ) = (qφ)θpφ.

It is again clear that the laws P(φ ◦ φ′) = P(φ) ◦ P(φ′) and P(idE) = idP(E) hold. �
6.4. A category equivalence, and more on freeness

We now establish the promised category equivalence.

Theorem 6.19. We have

P ◦ E = idPA and E ◦ P ∼ = idRSBS .

Consequently, the functors P and E furnish an equivalence of the categories PA and 
RSBS.

Proof. To show that P ◦ E = idPA we need to show that

• P(E(P )) = P for any projection algebra P , and
• P(E(φ)) = φ for any projection algebra morphism φ : P → P ′.

Since E(PG(P )) = E(P ), it follows from Definition 6.16 that P(E(P )) = P(PG(P )) = P . 
For the statement concerning φ, we follow the definitions to compute

P(E(φ)) = E(φ)|P(E(P )) = E(φ)|P = φ.



40 J. East et al. / Advances in Mathematics 473 (2025) 110288 

To show that E ◦ P ∼ = idRSBS, we will need to construct a natural isomorphism 
η : E ◦ P → idRSBS. Towards this, we claim that for any regular ∗-boset E, the map

ηE : E(P(E)) → E : �p, q� �→ e(q, p)

is a ∗-bisomorphism. To see this, let S be a regular ∗-semigroup with ∗-boset E = E(S), 
and write P = P(E) = P(S). Since pq = e(q, p) in S by Lemma 6.13, it follows that ηE
is precisely the isomorphism from Proposition 6.10.

We now show that η = (ηE) is a natural isomorphism E ◦ P → idRSBS. Since each ηE
is an isomorphism, it remains to check that for any regular ∗-bimorphism φ : E → E′

the following diagram commutes:

E ◦ P(E) E ◦ P(E′)

E E′.

E◦P(φ)

ηE ηE′

φ

But the elements of E◦P(E) have the form �p, q� for F -related projections p, q ∈ P(E), 
and we use Lemma 6.15 to calculate

�p, q� � ηE  −−−→ e(q, p) � φ  −−→ e(qφ, pφ) and �p, q� � E◦P(φ)  −−−−−−→ �pφ, qφ� � ηE′  −−−→ e(qφ, pφ). �
Combining Theorems 5.1 and 6.19, we obtain the following:

Theorem 6.20. The functor RSBS → RSS : E �→ PG(P(E)) is a left adjoint to the 
forgetful functor RSS → RSBS : S �→ E(S), and RSBS is coreflective in RSS. �

It follows that the chain semigroups are the free objects in RSS with respect to both 
forgetful functors

P : RSS → PA : S �→ P(S) and E : RSS → RSBS : S �→ E(S).

The regular ∗-semigroups PG(P(E)) are defined in terms of the regular ∗-boset E. Anal-
ogously to IG(E) and RIG(E), we denote this by

IG∗(E) = PG(P(E)).

Note that it is possible for regular ∗-bosets E and E′ to have different underlying sets, 
but have identical projection algebras P(E) = P(E′). This would occur if E and E′

were isomorphic, with different underlying sets, but with the same set of projections. In 
this case we would of course have IG∗(E) = IG∗(E′). This means that the assignment 
E �→ IG∗(E) is not injective.
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One could get around this ‘problem’ by instead defining IG∗(E) to be a copy of 
PG(P(E)) in which we identify each e ∈ E with �ee∗, e∗e� ∈ PG(P(E)). This would 
then reflect the situation of projection algebras, where PG(P ) = PG(P ′) ⇔ P = P ′, as 
follows from Theorem 4.22.

7. Presentations

In this section we establish a number of presentations for the free (projection-
generated) regular ∗-semigroup PG(P ) over an arbitrary projection algebra P . The first 
presentation (Theorem 7.2) involves the generating set P . The second and third (Theo-
rems 7.10 and 7.13) are both in terms of the generating set E = E(P ), and these highlight 
the connections between PG(P ) and the free (idempotent-generated) semigroup IG(E)
and the free regular (idempotent-generated) semigroup RIG(E).

7.1. Preliminaries on presentations

We begin by establishing the notation we will use for presentations; for more details, 
see for example [37, Section 1.6]. We also prove a general technical lemma that will be 
used in this section and later in the paper.

A congruence on a semigroup S is an equivalence relation σ on S that is compatible 
with multiplication, in the sense that aσa′ and bσb′ together imply abσa′b′. The quotient 
S/σ is then a semigroup under the induced operation on σ-classes. Given a semigroup 
homomorphism φ : S → T , the kernel ker(φ) = {(a, b) ∈ S × S : aφ = bφ} is a 
congruence on S, and the fundamental homomorphism theorem for semigroups states 
that S/ker(φ) ∼ = im(φ).

For a set X, we denote by X+ the free semigroup over X, which consists of all non-
empty words over X, under concatenation. For a set R ⊆ X+ ×X+ of pairs of words, 
we write R� for the congruence on X+ generated by R, i.e. the least congruence on X+

containing R. We often write [w]R for the R�-class of w ∈ X+. We say a semigroup S has 
presentation 〈X : R〉 if S ∼ = X+/R�, i.e. if there is a surjective semigroup homomorphism 
X+ → S with kernel R�. At times we identify 〈X : R〉 with the semigroup X+/R� itself. 
The elements of X and R are called generators and (defining) relations, respectively. 
A relation (u, v) ∈ R is typically displayed as an equality: u = v.

Lemma 7.1. If S = 〈X : R〉 and T = 〈Y : Q〉 are semigroups such that

(i) X ⊆ Y ,
(ii) R ⊆ Q�,
(iii) every y ∈ Y is Q�-equivalent to a word over X, and
(iv) there is a morphism φ : Y + → S with Q ⊆ ker(φ), and xφ = [x]R for all x ∈ X,

then S ∼ = T .
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Proof. By (i) we have a well defined morphism ψ : X+ → T : x �→ [x]Q. By (ii) and (iv), 
ψ and φ induce morphisms

Ψ : S → T : [x]R �→ [x]Q and Φ : T → S : [y]Q �→ yφ.

By (iii), T is generated by {[x]Q : x ∈ X}, and of course S is generated by {[x]R : x ∈ X}. 
Since

[x]RΨ = [x]Q and [x]QΦ = xφ = [x]R for all x ∈ X, by (iv),

it follows that Ψ and Φ are mutually inverse isomorphisms of S and T . �
7.2. Presentation over P

Here is the main result of this section:

Theorem 7.2. For any projection algebra P , the free regular ∗-semigroup PG(P ) has 
presentation

PG(P ) ∼ = 〈XP : RP 〉,

where XP = {xp : p ∈ P} is an alphabet in one-one correspondence with P , and where RP

is the set of relations

x2
p = xp for all p ∈ P , (R1)

(xpxq)2 = xpxq for all p, q ∈ P , (R2)

xpxqxp = xqθp for all p, q ∈ P . (R3)

Remark 7.3. If P = P(S) is the projection algebra of a regular ∗-semigroup S, then 
recall that qθp = pqp for p, q ∈ P , where the product pqp is taken in S. Thus, relations 
of type (R3) have the form xpxqxp = xpqp in this case.

To prove Theorem 7.2, we require some technical lemmas. But first, it is worth ob-
serving that relations (R1)–(R3) closely resemble projection algebra Axioms (P2), (P4)
and (P5), i.e. those that are stated purely in terms of the θ maps.

For the rest of this subsection, we fix P , XP and RP as in Theorem 7.2. We write 
∼ = R�

P for the congruence on X+
P generated by relations (R1)–(R3), and use ∼1 to 

indicate equivalence by one or more applications of (R1), and similarly for ∼2 and ∼3.

Lemma 7.4. If p, q ∈ P are such that q ≤F p, then xpxq ∼ xp′xq for some p′ ∈ P with 
q F p′ ≤ p.
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Proof. Let p′ = qθp ≤ p. Combining q ≤F p with (PA1), we obtain q = pθq F qθp = p′. 
We also have

xpxq ∼2 xpxqxpxq ∼3 xqθpxq = xp′xq. �
Lemma 7.5. For any p1, . . . , pk ∈ P we have xp1 · · ·xpk

∼ xp′
1
· · ·xp′

k
for some 

p′1, . . . , p
′
k ∈ P with p′1 F · · · F p′k and p′i ≤ pi for all i.

Proof. We prove the lemma by induction on k. The k = 1 case being trivial, we assume 
k ≥ 2. With p′′1 = p2θp1 ≤ p1 and p′′2 = p1θp2 ≤ p2 we have

xp1xp2 ∼2 xp1xp2xp1xp2xp1xp2 ∼3 xp2θp1
xp1θp2

= xp′′
1
xp′′

2
,

and (PA1) gives p′′1 F p′′2 . By induction, we have

xp′′
2
xp3 · · ·xpk

∼ xp′
2
xp′

3
· · ·xp′

k

for some p′2, . . . , p
′
k ∈ P with p′2 F · · · F p′k, p′2 ≤ p′′2 and p′i ≤ pi for i = 3, . . . , k. Note 

that also p′2 ≤ p′′2 ≤ p2. Since p′2 ≤ p′′2 F p′′1 , (PA2) gives p′2 ≤F p′′1 . It then follows from 
Lemma 7.4 that xp′′

1
xp′

2
∼ xp′

1
xp′

2
for some p′1 ∈ P with p′2 F p′1 ≤ p′′1 , and again we 

observe that p′1 ≤ p′′1 ≤ p1. Putting everything together we have

xp1xp2xp3 · · ·xpk
∼ xp′′

1
xp′′

2
xp3 · · ·xpk

∼ xp′′
1
xp′

2
xp′

3
· · ·xp′

k
∼ xp′

1
xp′

2
xp′

3
· · ·xp′

k
,

with all conditions met. �
Given a P -path p = (p1, . . . , pk) ∈ P = P(P ), we define the word

wp = xp1 · · ·xpk
∈ X+

P .

It follows from Lemma 7.5 that every word over XP is ∼-equivalent to some wp. 
Using (R1), it is easy to see that

wpwq ∼ wp◦q for any p, q ∈ P with r(p) = d(q). (7.6)

The next result refers to the congruence ≈≈ = Ξ� on P from Definition 4.7.

Lemma 7.7. For any p, q ∈ P, we have p ≈≈ q ⇒ wp ∼ wq.

Proof. It suffices to assume that p and q differ by a single application of (Ω1)–(Ω3), 
i.e. that

p = p′ ◦ s ◦ p′′ and q = p′ ◦ t ◦ p′′ for some p′, p′′ ∈ P and (s, t) ∈ Ξ ∪ Ξ−1.
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Since wp ∼ wp′wswp′′ and wq ∼ wp′wtwp′′ by (7.6), it is in fact enough to prove that

ws ∼ wt for all (s, t) ∈ Ξ.

We consider the three forms the pair (s, t) ∈ Ξ can take.
(Ω1). This follows immediately from (R1).
(Ω2). If s = (p, q, p) and t = (p) for some (p, q) ∈ F , then

ws = xpxqxp ∼3 xqθp = xp = wt.

(Ω3). Finally, suppose s = λ(e, p, f) = (e, eθp, f) and t = ρ(e, p, f) = (e, fθp, f) for 
some p ∈ P , and some p-linked pair (e, f). Then

ws = xexeθpxf ∼3 xexpxexpxf ∼2 xexpxf ∼2 xexpxfxpxf ∼3 xexfθpxf = wt. �
We can now tie together the loose ends.

Proof of Theorem 7.2. Define the homomorphism

Ψ : X+
P → PG(P ) by xpΨ = p = �p� for p ∈ P .

To see that Ψ is surjective, let c ∈ PG(P ), so that c = �p� for some p = (p1, . . . , pk) ∈ P. 
We claim that

�p1, . . . , pi� = p1 • · · · • pi for all 1 ≤ i ≤ k.

Indeed, the i = 1 case is clear, and if 2 ≤ i ≤ k then

p1 • · · · • pi = �p1, . . . , pi−1� • pi by induction

= �p1, . . . , pi−1�⇂p′
i−1

◦ �p′i−1, p
′
i� ◦ p′

i
⇃pi

where p′i−1 = piθpi−1

and p′i = pi−1θpi

= �p1, . . . , pi−1� ◦ �pi−1, pi� ◦ pi
since p′i−1 = pi−1 and p′i = pi,

as pi−1 F pi

= �p1, . . . , pi−1, pi�,

proving the claim. It then follows that

c = �p1, . . . , pk� = p1 • · · · • pk = (xp1 · · ·xpk
)Ψ = wpΨ, (7.8)

completing the proof that Ψ is surjective.
Next, we note that RP ⊆ ker(Ψ), meaning that uΨ = vΨ (in PG(P )) for all 

(u, v) ∈ RP . Indeed, this is clear when (u, v) has type (R1), and follows from (RS2)
or (CP4) for type (R2) or (R3).
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It remains to show that ker(Ψ) ⊆ R�
P . To do so, fix some (u, v) ∈ ker(Ψ), so that 

u, v ∈ X+
P and uΨ = vΨ; we must show that u ∼ v (recall that we write ∼ for R�

P ). By 
Lemma 7.5, we have u ∼ wp and v ∼ wq for some p, q ∈ P. Using (7.8), and remembering 
that ∼ ⊆ ker(Ψ), we have

�p� = wpΨ = uΨ = vΨ = wqΨ = �q�,

meaning that p ≈≈ q. But then wp ∼ wq by Lemma 7.7, so u ∼ wp ∼ wq ∼ v, as 
required. �
7.3. Presentation as a quotient of IG(E)

Consider a boset E, and recall that a product ef is defined in E precisely when 
(e, f) ∈ BP(E) is a basic pair, i.e. when {ef, fe} ∩ {e, f} �= ∅. The free (idempotent-
generated) semigroup over E has presentation

IG(E) = 〈XE : xexf = xef for all (e, f) ∈ BP(E)〉, (7.9)

where here XE = {xe : e ∈ E} is an alphabet in one-one correspondence with E. 
The boset of IG(E) is isomorphic to E [24], and consists of all equivalence classes of 
letters xe (e ∈ E).

Now consider a projection algebra P , and let E = E(P ) = E(PG(P )) be the (reg-
ular ∗-) boset of PG(P ). Since PG(P ) is a semigroup with biordered set E = E(P ), 
general theory [24, Theorem 3.3] tells us that the mapping xe �→ e (e ∈ E) induces 
a surmorphism IG(E) → PG(P ). Thus, we know in advance that there exists a presen-
tation for PG(P ) extending the above presentation for IG(E) by means of additional 
relations. Theorem 7.10 below gives an explicit such presentation, with additional rela-
tions xpxq = xpq for projections p, q ∈ P (⊆ E). These additional relations can also be 
viewed as a generating set for the kernel of the surmomorphism IG(E) → PG(P ). Note 
that the product pq might not exist in the boset E, but it certainly exists in the semi-
group PG(P ), and is an idempotent, and hence a well-defined element of E; in fact, pq is 
the element e(q, p) from Lemma 6.13. For simplicity, we will denote the product in PG(P )
by juxtaposition instead of • throughout this subsection.
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Theorem 7.10. For any projection algebra P , the free regular ∗-semigroup PG(P ) has 
presentation

PG(P ) ∼ = 〈XE : RE〉,

where XE = {xe : e ∈ E} is an alphabet in one-one correspondence with E = E(P ), and 
where RE is the set of relations

xexf = xef for all (e, f) ∈ BP(E), (R1)′

xpxq = xpq for all p, q ∈ P . (R2)′

Proof. By Theorem 7.2 we have PG(P ) ∼ = 〈XP : RP 〉. Thus, we can prove the current 
theorem by applying Lemma 7.1 with S = 〈XP : RP 〉 and T = 〈XE : RE〉. To do so, we 
must show that:

(i) XP ⊆ XE ,
(ii) RP ⊆ R�

E ,
(iii) every xe (e ∈ E) is ∼′-equivalent to a word over XP , where ∼′ = R�

E , and
(iv) there is a morphism φ : X+

E → 〈XP : RP 〉 such that RE ⊆ ker(φ), and xpφ = [xp]
for all p ∈ P , where we write [w] for the R�

P -class of w ∈ X+
P .

Item (i) is clear. For (ii), we check the relations from RP in turn. We use ∼′
1 and ∼′

2 to 
denote equivalence via (R1)′ or (R2)′.

(R1). This is contained in (R1)′ (and in (R2)′).
(R2). If p, q ∈ P , then xpxq ∼′

2 xpq ∼′
1 x2

pq ∼′
2 (xpxq)2.

(R3). If p, q ∈ P , then pq ∈ E, and (p, pq) is a basic pair in E. It follows that (R1)′
contains the relation xpqxp = xpqp. But then xpxqxp ∼′

2 xpqxp ∼′
1 xpqp = xqθp .

For (iii), fix some e ∈ E. Since e = ee∗e∗e, with ee∗, e∗e ∈ P , we have

xe = xee∗e∗e ∼′
2 xee∗xe∗e ∈ X+

P .

For (iv), we first define a morphism

ψ : X+
E → PG(P ) : xe �→ e.

To see that RE ⊆ ker(ψ), fix some e, f ∈ E. If ef ∈ E, then ψ maps both xexf

and xef to ef , and it follows that relations (R1)′ and (R2)′ are both preserved. Com-
posing ψ : X+

E → PG(P ) with the isomorphism PG(P ) → 〈XP : RP 〉 : p �→ [xp] gives 
φ : X+

E → 〈XP : RP 〉 with the required properties. �
Remark 7.11. Relations (R2)′ reflect the fact that the product of two projections is 
always an idempotent in a regular ∗-semigroup. In fact, any idempotent is the product 
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of two F -related projections by (RS3). Consequently, one might wonder if we could 
replace (R2)′ by the subset consisting of the relations xpxq = xpq for (p, q) ∈ F , and 
still define PG(P ). It turns out that this is not possible in general. For example, consider 
the three element semilattice S = {0, e, f} with ef = 0, and note that P = E = S and 
F = ΔP in this case. As (R2)′ is a copy of the multiplication table of S (which is the case 
for any semilattice), it follows that PG(P ) ∼ = S. Since F = ΔP , the relations in (R2)′
arising from friendly pairs are just x2

p = xp for p ∈ E, which are already contained 
in (R1)′. So if we reduce the presentation in this way, we actually arrive at the free 
idempotent-generated semigroup IG(E). As shown in [10, Example 2], IG(E) is infinite 
(and non-regular), and so certainly not isomorphic to PG(P ). In the next subsection 
we will see that if instead of IG(E) we start with a presentation for RIG(E), then the 
relations from (R2)′ arising from friendly pairs are indeed sufficient to define PG(P ).

Remark 7.12. Consider a projection algebra P , and its associated boset E = E(P ). We 
have now given presentations for PG(P ) in terms of (copies of) the generating sets P
(Theorem 7.2) and E (Theorem 7.10). On the other hand, IG(E) is defined in terms 
of a presentation with generating set E (see (7.9)), and one might wonder if there is a 
presentation utilising the generating set P . This is not the case, however, as P need not 
generate IG(E) in general. We will give a concrete instance of this in Example 8.1.

7.4. Presentation as a quotient of RIG(E)

Consider again a projection algebra P , and its associated boset E = E(P ) = E(PG(P )). 
Since E is regular (i.e. the boset of a regular semigroup, namely PG(P )), we also have the 
free regular (idempotent-generated) semigroup RIG(E). This was defined by Nambooripad 
in [51] using his groupoid machinery, and in [56] by means of the presentation

RIG(E) = 〈XE : xexf = xef for all (e, f) ∈ BP(E),

xexgxf = xexf for all e, f ∈ E and g ∈ S(e, f)〉.

Here S(e, f) is the sandwich set of the idempotents e, f ∈ E, defined in Subsection 6.1. 
Note that the characterisation of S(e, f) in (6.2) applies to S = PG(P ), as PG(P ) is a 
regular semigroup with boset E. The above presentation shows that RIG(E) is a quotient 
of IG(E). In turn, our next result shows that PG(P ) is a quotient of RIG(E), with the ad-
ditional relations generating the kernel of the canonical surmorphism RIG(E) → PG(P ).
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Theorem 7.13. For any projection algebra P , the free regular ∗-semigroup PG(P ) has 
presentation

PG(P ) ∼ = 〈XE : R′
E〉,

where XE = {xe : e ∈ E} is an alphabet in one-one correspondence with E = E(P ), and 
where R′

E is the set of relations

xexf = xef for all (e, f) ∈ BP(E), (R1)′′

xexf = xexgxf for all e, f ∈ E and g ∈ S(e, f), (R2)′′

xpxq = xpq for all (p, q) ∈ F . (R3)′′

Proof. We begin with the presentation 〈XE : RE〉 = 〈XE : (R1)′, (R2)′〉 from Theo-
rem 7.10, via the mapping

ψ : X+
E → PG(P ) : xe �→ e.

Since ψ maps xexgxf and xexf both to egf = ef for g ∈ S(e, f), we can add re-
lations (R2)′′ to the presentation. Noting that (R1)′ and (R1)′′ are the same sets of 
relations, the presentation has now become

〈XE : (R1)′′, (R2)′′, (R2)′〉.

Since (R3)′′ is contained in (R2)′, we can complete the proof by showing that each relation 
in (R2)′ is implied by those in R′

E . To do so, let p, q ∈ P be arbitrary, and let p′ = qθp
and q′ = pθq, so that p′ F q′ and p′q′ = pq. We then calculate (again writing ∼′′

1 for 
equivalence by (R1)′′, and so on)

xpxq ∼′′
2 xpxqpxq as qp ∈ S(p, q)

∼′′
1 xpxqpxqpxq

∼′′
1 xp·qpxqp·q as (qp, p) and (q, qp) are basic pairs

= xp′xq′ ∼′′
3 xp′q′ = xpq. �

8. Adjacency semigroups and bridging path semigroups

We now turn to explicit examples of free projection-generated regular ∗-semigroups, 
starting with those arising from adjacency semigroups, as introduced in Subsection 2.2.

Let Γ = (P,E) be a symmetric, reflexive digraph, and let AΓ be its adjacency 
semigroup. We keep the notation of Subsection 2.2, including the projection algebra 
P0 = P ∪ {0}, whose operations were given in (2.2). We now consider the structure of 
the free regular ∗-semigroup PG(P0).
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The path category P = P(P0) consists of tuples of the form (0, . . . , 0), and 
(p1, . . . , pk) where each (pi, pi+1) ∈ E(⊆ F ); the latter are simply the paths in Γ in 
the usual graph-theoretical sense, with repeated vertices allowed as in Subsection 3.3.

As in Remark 3.6, any non-zero path p ∈ P is ≈-equivalent to a unique reduced path 
p = (p1, . . . , pk), where each pi is distinct from pi+1 (if i ≤ k − 1) and from pi+2 (if 
i ≤ k − 2). By identifying a non-zero chain (≈-class of a path) with the unique reduced 
path it contains, we may identify the chain groupoid C = C (P0) with the set of reduced 
paths in Γ, along with 0 = [0].

Using (2.2), we see that (e, f) is p-linked if and only if e = f = 0 or (e, p) and (p, f)
are both edges of Γ. In these respective cases, we have

λ(e, p, f) = ρ(e, p, f) = (0, 0, 0) or λ(e, p, f) = ρ(e, p, f) = (e, p, f).

It follows that the congruences ≈ and ≈≈ are equal, and so C = C , and �p� = [p] for 
all p ∈ P.

The free regular ∗-semigroup PG(P0) can therefore be viewed as follows:

• The elements are 0 and the reduced paths in Γ.
• The product of reduced paths p = (p1, . . . , pk) and q = (q1, . . . , ql) is given by

p • q =
{
p⊕ q if (pk, q1) ∈ E is an edge of Γ
0 otherwise.

Here ⊕ denotes concatenation, so p⊕ q = (p1, . . . , pk, q1, . . . , ql).
• The involution is given by reversal of paths.
• The non-zero projections are the empty paths p = (p), which are in one-one 

correspondence with the vertices of Γ.
• The remaining non-zero idempotents are the non-loop edges p • q = (p, q) of Γ.

The authors have not seen these specific semigroups in the literature, but we note that 
they are closely related to the graph inverse semigroups introduced in [2], in which p • q
is only non-zero when pk = q1; there are some other differences as well, including the 
fact that the digraphs of [2] are not assumed to be symmetric or reflexive. In our case p
and q can also be composed if there is an edge pk → q1, which ‘bridges’ the end of p and 
the start of q. We therefore call PG(P(AΓ)) the bridging path semigroup of Γ, and denote 
it by BΓ. Note that bridging path semigroups can be defined starting from an arbitrary 
digraph, i.e. without assuming symmetry and reflexivity a priori. The properties of such 
a semigroup would then depend on the properties of the graph Γ, and this may be 
an interesting direction for study. In particular, one can verify that BΓ is a regular ∗-
semigroup with projections P0 and the involution given by reversal of paths if and only 
if Γ is symmetric and reflexive.



50 J. East et al. / Advances in Mathematics 473 (2025) 110288 

In the special case that Γ is the complete digraph, the adjacency semigroup AΓ is 
simply the square band BP = P × P with a zero adjoined. This band BP is itself 
a regular ∗-semigroup, with operations (p, q)(r, s) = (p, s) and (p, q)∗ = (q, p). Every 
element of BP is an idempotent; the projections are p = (p, p); and the projection algebra 
P(BP ) = P has a trivial structure, in the sense that the θp operations are all constant 
maps. The above analysis shows that the semigroup PG(P ) consists of all reduced tuples, 
with product p • q = p⊕ q. In the next two examples we give some more explicit details 
concerning the square bands BP , and the corresponding free regular ∗-semigroups PG(P ), 
in the cases that |P | ≤ 3.

Example 8.1. If |P | ≤ 2 then PG(P ) = BP is finite. By contrast, the corresponding 
free idempotent-generated semigroup IG(E) is infinite when |P | = 2; this is folklore 
and can be deduced from [33, Theorem 5]. Here we write E = BP = E(BP ) ∼ = E(P ). 
More specifically, it follows from [33, Theorem 5] that IG(E) is isomorphic to the 2 × 2
Rees matrix semigroup S over an infinite cyclic group H = 〈a〉, with respect to the 
sandwich matrix 

( 1 1
1 a

)
. In particular, this lets us prove the claim from Remark 7.12, 

namely that IG(E) is not generated by (its canonical copy of) P .
To see this, write P = {p, q}. The above-mentioned isomorphism IG(E) → S maps 

(the equivalence classes of) the letters xp and xq to the idempotents p = (1, 1, 1) and 
q = (2, a−1, 2), respectively. (The other two idempotents of S are (1, 1, 2) and (2, 1, 1).) 
It is easy to see that every element of 〈p, q〉 has the form (i, a−m, j) for some i, j ∈ {1, 2}
and m ≥ 0, so indeed 〈p, q〉 �= S.

Example 8.2. If |P | ≥ 3 then PG(P ) is infinite, and in particular PG(P ) �= BP . It is 
instructive to consider the case where P = {p, q, r} has size 3. For s, t ∈ P , let Hs,t be 
the set of all reduced paths from s to t, so that PG(P ) = �s,t∈P Hs,t. Note for example 
that

Hp,p = {p} ∪ {(p, q, r, p)k, (p, r, q, p)k : k = 1, 2, . . .}.

It is easy to check that Hp,p is isomorphic to the infinite cyclic group H = 〈a〉. The 
identity of Hp,p is p, and (p, q, r, p)k and (p, r, q, p)k are inverses of each other. An anal-
ogous argument shows that each Hs,t

∼ = H. It follows from general structure theory (see 
[37, Chapter 3]) that PG(P ) is a 3 × 3 Rees matrix semigroup over H, with respect to 

the sandwich matrix 
(

1 1 1
1 1 a
1 a−1 1

)
. By way of comparison, IG(E(BP )) = RIG(E(BP )) is a 

3 × 3 Rees matrix semigroup over the free group of rank 4, again following from [33, 
Theorem 5].

The structure of an arbitrary bridging path semigroup BΓ = PG(P(AΓ)) can be sim-
ilarly described in terms of Rees 0-matrix semigroups over free groups. The description 
requires an analysis of the maximal subgroups of free regular ∗-semigroups, which is the 
subject of the forthcoming paper [29].
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Our final example in this section is an extension P ′ of the projection algebra P of the 
3× 3 rectangular band from Example 8.2 by a single extra projection. It was introduced 
in [26] (where it had an identity adjoined), and was originally discovered by Michael 
Kinyon. We note that Kinyon’s projection algebra is not the projection algebra of an 
adjacency semigroup. It illustrates the fact that it is possible for a projection algebra P
with PG(P ) infinite to be contained in a projection algebra P ′ with PG(P ′) finite.

Example 8.3. Let P ′ = {p, q, r, e} be the projection algebra with operations

θp =
( p q r e
p p p p

)
, θq =

( p q r e
q q q q

)
, θr =

( p q r e
r r r r

)
and θe =

( p q r e
p q q e

)
.

Note that p, q, r are all F -related, but e is F -related only to itself. As in Example 8.2, 
it follows that

C = C (P ′) = {e} ∪ �
s,t∈{p,q,r}

Hs,t.

However, C is a proper quotient of C here, as there is a non-trivial linked pair. Specifi-
cally, (p, r) is e-linked, and we have

λ(p, e, r) = (p, pθe, r) = (p, p, r) and ρ(p, e, r) = (p, rθe, r) = (p, q, r).

Consequently, �p, q, r� = �p, p, r� = �p, r� in PG(P ′). It follows from this that �s, t, u� =
�s, u� for distinct s, t, u ∈ {p, q, r}. For example,

�p, r, q� = �p, q, r, q� = �p, q� and �q, p, r� = �q, p, q, r� = �q, r�.

The other three cases are obtained by inverting the three already considered. This all 
shows that PG(P ′) contains exactly ten elements:

• the projections e, p, q, r, and
• the remaining idempotents s • t = �s, t�, for distinct s, t ∈ {p, q, r}.

The entire multiplication table of PG(P ′) can be obtained from the fact that the com-
plement PG(P ′) \ {e} = 〈p, q, r〉 is a 3 × 3 rectangular band, together with the rules

p • e = p, q • e = q and r • e = �r, q�.

9. Temperley–Lieb monoids

In Section 8 we saw examples of naturally occurring (albeit very small) regular ∗-
semigroups S that were isomorphic to their associated free regular ∗-semigroup PG(P(S)). 
In this section, we present a decidedly non-trivial family of semigroups displaying this 
phenomenon, namely the Temperley–Lieb monoids, introduced in Subsection 2.3.
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Theorem 9.1. Let P = P(T Ln) be the projection algebra of a finite Temperley–Lieb 
monoid T Ln. Then PG(P ) ∼ = T Ln.

Proof. We begin with the presentations T Ln
∼ = 〈XT : RT 〉 and PG(P ) ∼ = 〈XP : RP 〉

from Theorems 2.3 and 7.2, and apply Lemma 7.1 to show that they are equivalent. 
For this, we first need to convert the monoid presentation 〈XT : RT 〉 into a semigroup 
presentation 〈X ′

T : R′
T 〉 with X ′

T ⊆ XP , which we do as follows. First, we identify each 
generator ti ∈ XT with xτi ∈ XP , noting that they both represent the element τi of T Ln; 
see (2.4). Then we define X ′

T = {e} ∪XT , where here e = x1 represents the identity 1
of T Ln. Finally we add new relations that ensure e acts as the identity. The resulting 
set R′

T of relations is:

t2i = ti for all i, (T1)

titj = tjti if |i− j| > 1, (T2)

titjti = ti if |i− j| = 1, (T3)

e2 = e, (T4)

eti = tie = ti for all i. (T5)

It is clear that T Ln
∼ = 〈X ′

T : R′
T 〉. We now work towards applying Lemma 7.1, with 

S = 〈X ′
T : R′

T 〉 and T = 〈XP : RP 〉. For this we need to show that:

(i) X ′
T ⊆ XP ,

(ii) R′
T ⊆ R�

P ,
(iii) every xp (p ∈ P ) is ∼-equivalent to a word over X ′

T , where again ∼ = R�
P , and

(iv) there is a morphism φ : X+
P → 〈X ′

T : R′
T 〉 such that RP ⊆ ker(φ), and xφ = [x]R′

T

for all x ∈ X ′
T .

We have already noted that (i) holds. For (ii), we consider the relations from R in turn. 
Again we write ∼1 to denote equivalence via (R1), and so on.

(T1) and (T4). These are contained in (R1).
(T2). Fix i, j with |i − j| > 1, and define the projection p = τiτjτi = τjτiτj(= τiτj). 

Then

titj = xτixτj ∼2 xτixτjxτixτjxτixτj ∼3 xτiτjτixτjτiτj = xpxp ∼1 xp,

and similarly tjti ∼ xp.
(T3). We have titjti = xτixτjxτi ∼3 xτiτjτi = xτi = ti.
(T5). Writing p = τi for simplicity, we have

eti = x1xp ∼2 x1xpx1xp ∼3 x1p1xp = xpxp ∼1 xp = ti, and similarly tie ∼ ti.
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For (iii) we first note that x1 = e ∈ X ′
T . For p �= 1 we have p = τi1 · · · τik (in T Ln) for 

some i1, . . . , ik, and then

p = p∗p = τik · · · τi1τi1 · · · τik = τik · · · τi2τi1τi2 · · · τik = τi1θτi2 · · · θτik .

It follows that xp = xτi1θτi2
···θτik

∼3 xτik
· · ·xτi2

xτi1
xτi2

· · ·xτik
= tik · · · ti2ti1ti2 · · · tik .

Finally, for (iv) we begin by defining a morphism

ψ : X+
P → T Ln : xp �→ p.

We then have RP ⊆ ker(ψ) since P = P(T Ln). We then obtain the desired 
φ : X+

P → 〈X ′
T : R′

T 〉 by composing ψ : X+
P → T Ln with the canonical isomorphism 

T Ln → 〈X ′
T : R′

T 〉. �
It is natural to wonder about the relationships between other diagram monoids and 

their associated free projection-generated regular ∗-semigroups. These relationships tend 
to be more complicated than the case of T Ln, as glimpsed in Example 10.12 below, and 
treated in detail for the partition monoid Pn in the forthcoming paper [29].

10. Topological interpretation

In this section we provide an alternative, topological interpretation of the groupoids 
C = C (P ) and C = C (P ) associated to a projection algebra P . Specifically, we can 
view C as the fundamental groupoid of a natural graph GP built from the F -relation 
of P , and C as the fundamental groupoid of either of two 2-complexes KP and K ′

P . These 
complexes both have GP as their 1-skeleton, and their 2-cells are induced by linked pairs 
of projections. The complex KP is defined in terms of all linked pairs, and K ′

P in terms 
of a special subset that generates the others; in particular K ′

P is simplicial. Maximal 
subgroups of the semigroup PG(P ) coincide up to isomorphism with fundamental groups 
of either of these two complexes.

10.1. Special and degenerate linked pairs

Consider a p-linked pair (e, f) in a projection algebra P . The projections e, f, eθp, fθp
(which are used to define the paths λ(e, p, f) and ρ(e, p, f)) need not all be distinct, and 
an important special case occurs when e = eθp or f = fθp (i.e. when e ≤ p or f ≤ p). In 
this case, we say (e, f) is a special p-linked pair.

Let Ξ′ be the subset of Ξ consisting of all pairs (s, t) ∈ P × P of the form (Ω1)
and (Ω2), as well as:

(Ω3)′ s = λ(e, p, f) and t = ρ(e, p, f), for some p ∈ P , and some special p-linked 
pair (e, f),
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and let ≈≈′ = Ξ′ � be the congruence on P generated by Ξ′.

Proposition 10.1. We have ≈≈′ = ≈≈.

Proof. We just need to show that s ≈≈′ t whenever (s, t) is a pair of type (Ω3). So 
suppose s = λ(e, p, f) and t = ρ(e, p, f) for some p-linked pair (e, f), and let e′ = eθp
and f ′ = fθp. Then one can show that (e, f ′) and (e′, f) are special p-linked pairs (with 
f ′ ≤ p in the first, and e′ ≤ p in the second), and we have

λ(e, p, f ′) = (e, e′, f ′), λ(e′, p, f) = (e′, e′, f) ≈≈′ (e′, f),

ρ(e, p, f ′) = (e, f ′, f ′) ≈≈′ (e, f ′), ρ(e′, p, f) = (e′, f ′, f). (10.2)

Since Ξ′ contains the pairs (λ(e, p, f ′), ρ(e, p, f ′)) and (λ(e′, p, f), ρ(e′, p, f)), it follows 
that (e, e′, f ′) ≈≈′ (e, f ′) and (e′, f) ≈≈′ (e′, f ′, f). But then

s = λ(e, p, f) = (e, e′, f) ≈≈′ (e, e′, f ′, f) ≈≈′ (e, f ′, f) = ρ(e, p, f) = t. �
Another case in which we do not need to include a pair (s, t) of type (Ω3) is when we 

already have s ≈ t.

Definition 10.3. We say a p-linked pair (e, f) is degenerate if λ(e, p, f) ≈ ρ(e, p, f).

The next result characterises such degenerate pairs at the level of the projection 
algebra structure.

Proposition 10.4. A p-linked pair (e, f) is degenerate if and only if eθp = fθp or e, f ≤ p.

Proof. Throughout the proof we write e′ = eθp and f ′ = fθp, and also λ = λ(e, p, f) =
(e, e′, f) and ρ = ρ(e, p, f) = (e, f ′, f).

(⇐). If e′ = f ′, then λ = ρ. If e, f ≤ p, then e = e′ and f = f ′, so that

λ = (e, e, f) ≈ (e, f) ≈ (e, f, f) = ρ.

(⇒). Suppose λ ≈ ρ. If λ and ρ are reduced (in the sense of Remark 3.6), then we must 
have λ = ρ, which implies e′ = f ′. So now suppose λ and ρ are not reduced. If e′ = f ′, 
then we are again done, so we assume this is not the case; it follows that also e �= f . 
Thus, for λ not to be reduced, it must then be the case that e′ ∈ {e, f}, and similarly 
f ′ ∈ {e, f}. Since e′ �= f ′, we must have {e, f} = {e′, f ′} = {eθp, fθp}, and it follows 
that e, f ≤ p. �
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It follows from Propositions 10.1 and 10.4 that the congruence ≈≈ on P is generated 
by the set Ξ′′ of all pairs (s, t) ∈ P × P of the form (Ω1) and (Ω2), as well as:

(Ω3)′′ s = λ(e, p, f) and t = ρ(e, p, f), for some p ∈ P , and some non-degenerate special 
p-linked pair (e, f).

Remark 10.5. Consider a non-degenerate p-linked pair (e, f), and write e′ = eθp and 
f ′ = fθp, and also λ = λ(e, p, f) = (e, e′, f) and ρ = ρ(e, p, f) = (e, f ′, f). By Proposi-
tion 10.4 there are three possibilities:

(i) {e, f, e′, f ′} has size 4,
(ii) {e, f, e′, f ′} has size 3 and e ≤ p (i.e. e = e′),
(iii) {e, f, e′, f ′} has size 3 and f ≤ p (i.e. f = f ′),

with (e, f) being special in the second and third. In Case (i), identification of the paths λ
and ρ (cf. (Ω3)) amounts to commutativity of the diamond in Fig. 4(a), in the groupoid C . 
In Case (ii), we have λ ≈ (e, f), so equating λ and ρ amounts to commutativity of the 
triangle in Fig. 4(b). Case (iii) corresponds to Fig. 4(c). Considering again Case (i), 
the proof of Proposition 10.1 showed that (e, f ′) and (e′, f) are special p-linked pairs; 
since e′, f ′ ≤ p, these are of types (iii) and (ii), respectively. This means that the two 
triangles commute in Fig. 4(d); commutativity of these triangles of course implies com-
mutativity of the outer diamond in the same diagram, as per the final line of the proof 
of Proposition 10.1.

On the other hand, a degenerate p-linked pair (e, f) leads to one of diagrams (e) or (f) 
in Fig. 4, in the cases e′ = f ′ and e, f ≤ p, respectively. These diagrams already commute 
in C , and we note that (e) and (f) picture the generic case in which all projections 
displayed are distinct (it is possible to have even more collapse).

10.2. Graphs and complexes

We are now in a position to give the promised topological interpretation of the chain 
and reduced chain groupoids C = C (P ) and C = C (P ). We begin by defining a graph GP

with:

• vertex set P (a given projection algebra), and
• an (undirected) edge {p, q} for every pair (p, q) ∈ F \ ΔP of distinct F -related pro-

jections.
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Fig. 4. Diamonds, triangles and degeneracy of linked pairs of projections; see Remark 10.5. 

We then define two 2-complexes, KP and K ′
P . These both have GP as their 1-skeleton.

• The complex KP has a 2-cell with boundary (e, e′, f, f ′, e) for every p-linked pair 
(e, f), where as usual we write e′ = eθp and f ′ = fθp.

• The complex K ′
P is a sub-complex of KP , and contains only the 2-cells corresponding 

to non-degenerate special p-linked pairs (e, f). Such a cell has boundary (e, f, f ′, e)
or (e, e′, f, e) when the pair is of type (ii) or (iii), as enumerated in Remark 10.5.

In particular, all cells in K ′
P are triangles.

The following result is essentially the observation that our categories C = P/Ω�

and C = P/Ξ� = P/Ξ′′ � are constructed in precisely the same way as the fundamental 
groupoids of the above graph and complexes. See for example [36, Section 6].

Theorem 10.6. For any projection algebra P we have

C (P ) ∼ = π1(GP ) and C ∼ = π1(KP ) ∼ = π1(K ′
P ),

as (unordered) groupoids. �
This has an immediate important consequence concerning the subgroups of the free 

regular ∗-semigroups PG(P ). It follows from general semigroup theory that in an ar-
bitrary semigroup S, maximal subgroups are precisely the H -classes of idempotents; 
see [14, Exercise 2.3.1]. The relation H is one of the five Green’s equivalences (see [37, 
Section 2.1]), but we do not require its actual definition, only that the H -class of an 
idempotent e has the form

He = {s ∈ S : se = es = s and st = ts = e for some t ∈ S}.



J. East et al. / Advances in Mathematics 473 (2025) 110288 57

If e and f are R-equivalent idempotents, which here can be simply taken to mean e f

using the notation introduced in Subsection 6.1, then He
∼ = Hf [37, Proposition 2.3.6]. 

Specialising to the case where S is a regular ∗-semigroup, in which every idempotent e is 
R-related to the projection ee∗ [55, Theorem 2.2], we see that every maximal subgroup 
of S is isomorphic to one of the form Hp with p ∈ P(S), and that

Hp = {s ∈ S : ss∗ = s∗s = p}.

Finally, in the special case that S = PG(P ) for a projection algebra P , we see from (4.20)
that the multiplication in S restricted to Hp is precisely the same as the composition 
in the reduced chain groupoid C = C (P ) restricted to C (p, p). Combining this with 
Theorem 10.6, we obtain the following as a corollary:

Theorem 10.7. Let P be a projection algebra. Every maximal subgroup of PG(P ) is iso-
morphic to a fundamental group of KP , or (equivalently) of K ′

P . Specifically, the H -class 
of any projection p ∈ P is isomorphic to π1(KP , p) ∼ = π1(K ′

P , p). �
We conclude this section and the paper by recasting the examples from Sections 8

and 9 in the terminology of this section, and adding two new ones. As always, the 
reader should have at the back of their mind the category isomorphism between regular 
∗-semigroups and chained projection groupoids (Subsection 3.5), and that under this 
isomorphism the free regular ∗-semigroup PG(P ) and the reduced chain groupoid C (P )
correspond to each other (Section 4). The exposition will freely move between these two 
structures.

Example 10.8. Let Γ = (P,E) be a symmetric, reflexive digraph, AΓ the adjacency 
semigroup, P0 its projection algebra, and BΓ = PG(P0) the bridging path semigroup, as 
in Subsection 2.2 and Section 8. The graph GP0 is the simple, undirected reduct of Γ
with 0 added as a new, isolated vertex. As we saw in Section 8, all linked pairs in P0
are degenerate, and so KP0 = K ′

P0
= GP0 . In particular, C = C can be realised as the 

fundamental groupoid of the graph GP0, and Theorem 10.7 implies that all maximal 
subgroups of BΓ = PG(P0) are free. This gives another way to see why PG(P ) is finite 
in Example 8.1 and infinite in Example 8.2.

Example 10.9. Let P ′ = {p, q, r, e} be the projection algebra from Example 8.3. The 
graph GP ′ consists of a triangle with vertices p, q, r, and an isolated vertex e. The 
complex KP ′ = K ′

P ′ has a 2-cell attached to the triangle in GP ′ , coming from the 
e-linked pair (p, r).

Example 10.10. In Theorem 9.1, we showed that when P = P(T Ln) is the projection 
algebra of the Temperley–Lieb monoid T Ln, the free regular ∗-semigroup PG(P ) is iso-
morphic to T Ln. This has a topological consequence. The monoid T Ln is known to have 
no non-trivial subgroups; equivalently, it is H -trivial [58]. Hence, all the fundamental 
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Fig. 5. The elements of the Motzkin monoid M3; see Example 10.11. 

groups of the complexes KP and K ′
P are trivial, i.e. their connected components are 

simply connected. It does not seem obvious, a priori, that this ought to be the case.

In the final two examples we use the topological viewpoint to gain some insight into 
the free regular ∗-semigroups PG(P(Mn)) associated to the Motzkin monoids Mn, as 
defined in Subsection 2.3, and the relationship to the idempotent-generated subsemi-
groups 〈E(Mn)〉, which were studied in [20].

Example 10.11. Consider the Motzkin monoid M3, and let P = P(M3) be the projection 
algebra of this monoid. The elements of M3 are shown in Fig. 5 in a so-called egg-box 
diagram (see [14] for more details), in which the idempotents are shaded; the projections 
are indicated by darker shading. The complex K ′

P is shown in Fig. 6. The connected 
component of K ′

P at the bottom of the figure contains three triangular 2-cells, which 
are indicated by shading. (The outer triangle of this component is not the boundary of 
a 2-cell.) To see for example that the ‘upper’ triangle is a 2-cell, denote its vertices by 

e = , f = and g = . Then with p = , one can check that (e, f) is a 
special p-linked pair, with eθp = e and fθp = g.

It follows from this that the connected components of K ′
P are simply connected, 

and hence that PG(P ) is H -trivial. It follows that PG(P ) is isomorphic to its image 
under the natural morphism idP : PG(P ) → M3 from Theorem 5.8. This image is the 
idempotent-generated subsemigroup 〈E(M3)〉.

One may wonder whether the same holds for larger Motzkin monoids, but this is not 
the case, as our final example shows.

Example 10.12. Let P = P(M4) be the projection algebra of the Motzkin monoid M4. 
The complex K ′

P has 35 vertices, and eleven connected components, one of which is shown 
in Fig. 7; its six 2-cells are shaded. It is apparent that the fundamental group(oid) of this 
component is infinite; specifically, a loop around the central square has infinite order. 
Consequently, PG(P ) is infinite, and hence not isomorphic to 〈E(M4)〉.
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Fig. 6. The complex K′
P , where P = P(M3) is the projection algebra of the Motzkin monoid M3; see 

Example 10.11.

Fig. 7. A connected component of the complex K′
P , where P = P(M4) is the projection algebra of the 

Motzkin monoid M4; see Example 10.12.

Maximal subgroups of free projection-generated regular ∗-semigroups will be the main 
topic of our paper [29]. This will include a general theory of presentations for maximal 
subgroups of arbitrary PG(P ), and detailed computations for PG(P(Pn)), the free regu-
lar ∗-semigroups arising from the partition monoids. These results will be compared and 
contrasted with known presentations [33] for maximal subgroups of the free (regular) 
idempotent-generated semigroups IG(E) and RIG(E). This will again include explicit 
results for partition monoids, which will highlight the significant difference between 
IG(E(Pn)) and PG(P(Pn)), and involve unexpected connections with twisted partition 
monoids [30,31,44].
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