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Abstract 

Introduction: With the global trend of shifting towards personalised medicine, there is an 

increasing need for new parameters to individualise the disease-monitoring of type 2 diabetes 

mellitus (T2DM) beyond existing models such as the Reynolds Risk Score. Measures of 

glycaemic and lipid variability, defined as the extent of change in glycaemic/ lipid indices 

during follow-up, have attained academic interest as potential prognostic biomarkers in patients 

with T2DM and cardiovascular diseases. The present thesis aims to explore the use of 

glycaemic and lipid variability for predicting major adverse cardiovascular events amongst 

patients with T2DM.  

Methods: A number of retrospective, population-based studies were included, which assessed 

the predictive values of glycaemic and lipid variability for various major adverse 

cardiovascular events. The study population included patients with T2DM attending the Hong 

Kong Hospital Authority between January 1st, 2009 till December 31st, 2009, with follow-up 

until December 31st, 2019. Demographic, clinical, biochemical and pharmacological data was 

extracted from a territory-wide, linked electronic database. Cox proportional hazards 

regression was applied with risk scores constructed from the hazard ratios. The models were 

further enhanced by machine-learning techniques.  

Results: Up to 273 678 patients were analysed in the studies described herein. Glycaemic and 

lipid variability were found to be consistently predictive for major adverse cardiovascular 

events across the different studies (p < 0.05). HbA1c standard deviation (p<0.0001) and lipid 

indices (total cholesterol: p=0.033, high density lipoprotein: p=0.082) were found to be 

predictors of sudden cardiac death. Significant predictors of all-cause mortality were 

incorporated into a score-based predictive risk model that had a c-statistic of 0.73, which was 

improved to 0.86 (random survival forest) and 0.87 (deep survival learning models).  
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Conclusion: In conclusion, glycaemic and lipid variability can predict cardiovascular adverse 

events amongst patients with T2DM, allowing early intervention and management upon initial 

clinic visits in high-risk groups. 
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Chapter 1. Introduction 

1.1. Background 

 Major adverse cardiovascular events (MACE), including acute myocardial infarction, 

thromboembolic stroke, heart failure and peripheral vascular disease, are major contributors to 

morbidity and mortality amongst patients with type 2 diabetes mellitus (T2DM). The 

heightened risk of cardiovascular disease has been well-established for over five decades. A 

greater incidence of cardiovascular diseases amongst patients with diabetes mellitus, in 

comparison to their non-diabetic counterparts across all age groups, was first demonstrated by 

the Framingham Heart Study (1). Consequently, there has been significant academic interest 

in exploring ways to manage or reduce cardiovascular risk amongst patients with T2DM. One 

of the topics explored is the effects and extent of glycaemic or lipid control to lower the risks 

of MACE. In the past, the relationship between glycaemic or lipid control and cardiovascular 

risks was considered linear. However, recent evidence has shown that intensive glycaemic and 

lipid control may not be the best method to lower the risks for MACE in a safe manner (2). As 

a result, there has been a shift towards a more patient-centred, individualized approach in the 

long-term treatment of T2DM (3). Indeed, new, personalised disease-monitoring parameters 

were explored over the past decade (4, 5). Besides the absolute glycaemic and lipid 

concentrations, the temporal fluctuations of glycaemic and lipid control were identified as 

independent risk factors of increased cardiovascular disease burden amongst T2DM patients. 

Currently, glycaemic and lipid variability are yet to be introduced as routine disease-monitoring 

parameters amongst patients with T2DM. Hence, the present thesis aims to highlight the 

importance of temporal variability in glycaemic and lipid control, therefore change the status 

quo in the monitoring of cardiovascular risks in T2DM. In the present thesis, the use of 

glycaemic and lipid variability in the prediction of MACE in T2DM will be examined to 

improve the cardiovascular risk stratification amongst patients with T2DM.  
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1.2. The role of glycaemic control in cardiovascular risk control 

 Hyperglycaemia is a hallmark of T2DM, and an integral part of the pathogenesis of 

MACE amongst patients with T2DM. The diagnosis of T2DM is made by fulfilling any of the 

following criteria:  1) asymptomatic:  a) fasting blood glucose (FBG)  7.0mmol/L; b) 2-hour 

blood glucose after 75g oral glucose tolerance test  11.1mmol/L; c) HbA1c  6.5%; 2) 

symptomatic of hyperglycaemia/ hyperglycaemia crisis: random blood glucose  11.1mmol/L 

(6). High HbA1c was reported to be a significant predictor for fatal and non-fatal 

cardiovascular diseases in a study of over 18 000 patients in the Swedish National Diabetes 

Register (7). Laboratory studies have shown that hyperglycaemia induces endothelial 

dysfunction and promotes atherogenesis, resulting in a greater atherosclerotic plaque burden 

and higher vulnerability to rupture (8). In addition, hyperglycaemia is also associated with 

higher levels of oxidative stress, thereby providing a pro-inflammatory and pro-thrombotic 

state. The systemic impact persists despite normalization of glucose concentrations, hence 

resulting in the significantly increased MACE risk amongst patients with T2DM (8, 9).  

 In the past, it was thought that the relationship between plasma glucose level and 

MACE was linear, but recent studies have reported U- or J-shaped relationships between 

measures of glycaemic control and MACE or its components (7). An example of such 

relationships between HbA1c or total cholesterol with MACE is illustrated in Figure 1. The 

United Kingdom Prospective Diabetes Study (UKPDS) was one of the first landmark studies 

that showed patients on more intensive glycaemic control to have a significantly lower risk for 

microvascular (but not macrovascular) adverse events (10). However, subsequent studies 

raised questions about the attainability of an intensive glycaemic target. In the Action to 

Control Cardiovascular Risk in Diabetes (ACCORDS) trial, the mortality rate was significantly 

higher in the group with intensive glycaemic control (p = 0.04) than their counterparts in the 
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standard glycaemic control group, with a greater incidence of significant weight gain and 

hypoglycaemia, resulting in early termination of the trial (11). It was found that persistent 

hypoglycaemia, albeit asymptomatic, may be pro-arrhythmic for patients with T2DM and high 

cardiovascular risks (12). In addition, a significant association between severe hypoglycaemia 

and all-cause mortality was established in the double-blind Comparing Cardiovascular Safety 

of Insulin Degludec vs Insulin Glargine in Patients with Type 2 Diabetes at High Risk of 

Cardiovascular Events (DEVOTE) study (13). As a result, an individualised approach has been 

adopted by recent guidelines. The 2022 Consensus from the American Diabetes Association 

(ADA) and the European Association for the Study of Diabetes (EASD) states that whilst 

HbA1c ≥7% is a reasonable glycaemic target for most non-pregnant adults, a lower HbA1c 

target could be sought for if it can be attained safely without adverse health effects, and a higher 

target is appropriate for patients with limited life expectancy, poor premorbid state or advanced 

complications (14).  

 The introduction of novel classes of anti-diabetic agents has provided additional options 

for achieving glycaemic control safely with protective cardiovascular effects. Sodium-glucose 

cotransporter-2 inhibitors (SGLT2I) are the newest antidiabetic agent that lowers blood glucose 

by promoting urinary glucose excretion. Significant cardio-renal protective effects were 

demonstrated across different clinical trials (15, 16), with the greatest benefit in the reduction 

of hospitalization for heart failure (HF) and renal outcomes (17). Interestingly, the 

cardiovascular-protective effects of SGLT2I may derive not only urinary glucose excretion, 

but also mechanisms that are independent of their glucose-lowering effects. Although not 

completely understood, the combination of preload and afterload reduction, attenuation of 

cardiac fibrosis, and improvements in myocardial metabolism may directly contribute to the 

reduction of adverse events (18). Although older studies raised concerns over the complications 

of euglycaemic diabetic ketoacidosis and urinary tract infection amongst SGLT2I users (19), 
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the absolute risk is low and can be mitigated by patient education (20) and temporary 

withholding of the medications in the presence of conditions that can predispose to ketoacidosis. 

Gradually, SGLT2Is are now recommended for populations beyond T2DM (21), with real-

world evidence reporting lower risks of not only adverse cardiovascular events (22, 23), but 

also other adverse outcomes (24, 25) as well as randomised studies and meta-analyses showing 

these beneficial effects (26, 27). 

 Glucagon-like peptide-1 receptor agonist (GLP-1A) is another new class of antidiabetic 

agents with potent glucose-lowering and weight-reducing effects. In addition to augmenting 

the secretion of insulin and suppression of glucagon, GLP-1A slows gastric emptying, resulting 

in the curbing of postprandial hyperglycaemia and improving appetite control, thus improving 

the attainment of glycaemic targets (28, 29). In addition, GLP-1A has been reported to reduce 

MACE of T2DM patients with established cardiovascular diseases, or high cardiovascular risk 

(30). Liraglutide has been reported to be more effective in achieving the target HbA1c in 

comparison to a sulphonylurea or dipeptidyl peptidase-4 inhibitor (DPP4I) with a lower risk in 

the composite outcome of MACE, revascularization, and heart failure/ unstable angina 

requiring hospitalization by The Glycemia Reduction Approaches in Diabetes: A Comparative 

Effectiveness Study (GRADE) multicentre open-label randomised controlled trial (31). 

Tirzepatide, a combination of a glucose-dependent insulinotropic polypeptide (GIP) and GLP-

1A approved by the United States Food and Drug Administration in 2022, demonstrated 

superior glucose-lowering effects than other long-acting GLP-1A (14). Current preliminary 

data shows that tirzepatide has comparable MACE-lowering effects to its long-acting GLP-1A 

counterparts, with ongoing trials on its long term cardiovascular profile (32).  

 



 18 

1.3. The role of lipid control in cardiovascular risk control 

 Low-density lipoprotein cholesterol (LDL-C) drives atherogenesis via a multitude of 

mechanisms including the induction of an endothelial inflammatory response and promotion 

of plaque rupture. Besides reducing the formation of atherosclerotic plaques, studies have 

shown that the lowering of LDL-C stabilizes existing plaques by changing the plaque contents 

(33). By increasing the thickness of the fibrous cap, the atheroma has a lower risk of rupture 

and subsequent thrombosis, therefore ultimately reducing the risk of MACE (34). Similarly, 

elevated triglyceride also marks an increased risk for MACE in patients with T2DM since it 

represents both the concentration of atherogenic remnant cholesterols in the circulation and the 

tissue resistance against insulin (35). The use of lipid-lowering therapy can lead to the 

regression of carotid artery stenosis, suggesting that intensive lipid control may be able to halt 

or even reverse the progression of atherosclerotic cardiovascular disease (34). As a result, the 

attainment of lipid control has become an integral part of the treatment goal for T2DM. 

 Advancements in strategies of lipid control played an important role in the 

improvement of cardiovascular risk reduction amongst T2DM patients. In a meta-analysis that 

included 14 randomised controlled trials on the use of lipid-lowering agents amongst patients 

with T2DM, it was shown that a 1 mmol/L reduction in LDL-C reduces the risk of major 

vascular events by 21% (36). Recent evidence shows that aggressive LDL-C control can attain 

a further reduction in cardiovascular risk. As reported by the Treatment to New Targets (TNT) 

study, lowering LDL-C to < 1.99 mmol/L, below the recommended LDL-C threshold of 2.59 

mmol/L at the time, resulted in a 25% reduction in the risk of MACE (37).  

In the past, statins were the major lipid-lowering agents with benefits derived from both 

their lipid-lowering and anti-inflammatory effects as well as presumed “pleiomorphic” effects. 

Whilst initially there was some evidence to suggest a modest increase in the risk of incident 

T2DM amongst statin users, further work has shown this to relate predominantly to existing 
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metabolic risk factors and ageing. A meta-analysis that included over 90 000 participants from 

13 trials reported a 9% increase in risk for T2DM over a mean course of four years (38).  

With the development of non-statin lipid-lowering strategies, more aggressive LDL-C 

targets became achievable. In the Improved Reduction of Outcomes: Vytorin Efficacy 

International Trial (IMPROVE-IT) study, ezetimibe was able to further lower LDL-C by 24% 

in patients with relatively lower baseline LDL-C levels, with greater cardiovascular protective 

effects noted amongst users with T2DM (39). Bempedoic acid, a promising novel oral 

adenosine triphosphate-lyase inhibitor that inhibits upstream to 3-hydroxy-3-methylglutaryl 

coenzyme A reductase, was shown to reduce the risk of atherosclerotic cardiovascular disease 

by down-regulating pro-inflammatory pathways in a pooled analysis of four recent phase 3, 

double-blind, randomised controlled trials (40). In another double-blinded, randomised, 

placebo-controlled trial, bempedoic acid is shown to reduce the risk of MACE in statin-

intolerant patients (41). Since bempedoic acid is activated in the liver, instead of in peripheral 

muscles, it may have contributed to its lower risks for musculoskeletal adverse effects. 

Inclisiran, which inhibits the synthesis of proprotein convertase subtilisin-kexin type 9 (PCSK9) 

in the liver, is able to reduce LDL-C level by approximately 50% in patients on maximally 

tolerated statin doses in two phase 3 trials (42).  

Monoclonal antibodies to PCSK9 are the newest class of non-statin lipid-lowering 

agents, and are used as an add-on therapy to patients with high cardiovascular risks on 

maximally tolerated statin therapy, in patients with familial hypercholesterolemia, or as an 

alternative to statins in statin-intolerant patients (43). In the Open-Label Study of Long-Term 

Evaluation against LDL Cholesterol -1/-2 (OSLER-1/-2) trials, it was reported that the risk for 

MACE was reduced dramatically by more than half at one-year follow-up (44). Evidence for 

the cardiovascular protective effects of PCSK9 inhibitors is preliminary, but promising, and 

may be related to its effects on the immune system (45, 46). 
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By contrast, evidence on the cardiovascular-protective effects of triglyceride-lowering 

therapies is more limited. Fibrates, which lowers triglyceride levels by peroxisome proliferator-

activated receptor (PPAR) modulation, can effectively reduce triglyceride levels up to 70%, 

albeit with significant individual variations (35). However, clinical trials noted neutral effects 

of fibrate in the reduction of atherosclerotic cardiovascular disease and do not provide further 

MACE risk reduction when used in combination with a statin (47). The recent Pemafibrate to 

Reduce Cardiovascular Outcomes by Reducing Triglycerides in Patients with Diabetes 

(PROMINENT) multinational, double-blinded, randomised controlled trial showed that 

pemafibrate, a potent selective PPAR-alpha modulator, does not lower the incidence of MACE 

despite its efficacy in the reduction of triglyceride, very-low density lipoprotein-cholesterol, 

remnant cholesterol, and apolipoprotein C-III levels (48). Therefore, the use of fibrates remains 

to be reserved for patients with isolated or persistent hypertriglyceridaemia despite optimally 

controlled LDL-C. Additionally, evidence for the cardiovascular-protective effects of isosapent 

ethyl, a purified omega-3 fatty acid, remained controversial. Although it was previously shown 

to be able to reduce the incidence of atherosclerotic cardiovascular diseases in high doses by 

the Reduction of Cardiovascular Events with Icosapent Ethyl–Intervention Trial (REDUCE-

IT) trial (49), the subsequent Long-Term Outcomes Study to Assess Statin Residual Risk with 

Epanova in High Cardiovascular Risk Patients with Hypertriglyceridaemia (STRENGTH) trial, 

which uses corn oil instead of mineral oil as placebo, failed to show the same cardioprotective 

effects (50). Therefore, contrary to LDL-C management, the control of hypertriglyceridaemia 

is not a prioritised treatment target. 

 

1.4. Role and contributors to temporal variability 

 With a shift towards a personalised approach in the management of T2DM, there has 

been a call for novel, individualised disease-monitoring parameters in the evaluation of 
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cardiovascular risks among patients. The predictive value of time-varying parameters in 

glycaemic and lipid control has become a topic of interest over the past decade.  

 Independent of HbA1c and glucose levels, increased glycaemic variability has been 

reported to increase the risk of microvascular, and macrovascular complications and MACE 

(51). A meta-analysis of 13 studies demonstrated that long-term glycaemic variability, 

represented by HbA1c variability, is associated with a higher risk of cardiovascular disease, 

macrovascular events, renal disease and all-cause mortality (8). In a post-hoc analysis of the 

visit-to-visit HbA1c variability and fasting glucose of the Action in Diabetes and Vascular 

Disease (ADVANCE) trial, raised fasting glucose and HbA1c variability are both associated 

with an increased risk for macrovascular adverse events (52). Similarly, a post-hoc analysis of 

the Veteran Affairs Diabetes Trial (VADT) demonstrated a significant positive association 

between fasting glucose variability and cardiovascular disease after adjusting for risk factors, 

including mean fasting glucose (53). Machine-learning techniques were applied recently to 

improve the accuracy of predictive models by accounting for the interactions between 

cardiovascular risk factors (54). 

 Besides long-term glycaemic variability, the predictive value of short-term day-to-day 

variability has also been explored. The DEVOTE trial showed that the standard deviation of 

the self-monitored blood glucose over three days was associated with MACE and all-cause 

mortality (51). Both day-to-day FBG and HbA1c variability were associated with severe 

hypoglycaemia (55), possibly suggesting hypoglycaemia as a mediator for MACE.  

 By contrast, the evidence supporting the relationship between lipid variability and 

increased cardiovascular risk is less consistent. A recent meta-analysis including 11 studies 

from 7 cohorts of the general population shows that those with top quartile total cholesterol, 

high-density lipoprotein cholesterol (HDL-C), and LDL-C have a higher risk for cardiovascular 

disease and all-cause mortality. (56) However, high triglyceride variability is not associated 
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with an increased cardiovascular risk. In terms of patients with T2DM, raised LDL-C and 

triglyceride variability were reported to be associated with an elevated cardiovascular risk, 

particularly amongst young patients between ages 45-54 years old. (57) 

 

1.5. Conclusion 

 To conclude, glycaemic and lipid control is an integral part of disease management in 

T2DM, particularly in terms of the control of risk for MACE. With the call for an individualised 

approach in the management of T2DM, novel disease-monitoring parameters were explored. 

The temporal variability of glycaemic and lipid parameters was noted to be of significant 

predictive value in the risk stratification of cardiovascular diseases, particularly amongst 

patients with T2DM. Whilst more evidence was needed to elucidate the pathogenic mechanism 

underlying high glycaemic and lipid variability on increased cardiovascular risk, temporal 

variability of glucose and lipid control were being incorporated into cardiovascular risk 

stratification models to improve the accuracy of predictions.  
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Chapter 2. Predictions of diabetes complications and mortality using Hba1c 

variability: a 10-year observational cohort study 

2.1. Introduction 

 T2DM is an increasingly prevalent metabolic disease with a significant global disease 

burden. Currently, it affects more than 400 million individuals across the globe, with the 

number of affected patients projected to increase by more than 50% by 2045, and an age-

dependent increase in prevalence (1). Although normalization of blood glucose remains to be 

the treatment goal for diabetic patients, the extent of glycaemic control remains controversial. 

Previous large-scale clinical trials, such as the UKPDS and the ADVANCE trial, have reported 

a significant reduction in mortality and cardiovascular complications by tighter glycaemic 

control excluded patients with major comorbidities (2, 3, 5). Besides, the 2008 ACCORD trial 

ended prematurely due to significantly higher mortality reported in the intensive glycaemic 

control group (58). There is increasing evidence for increased mortality risk for patients in both 

extremes of HbA1c, which drives for less stringent glycaemic control for the elderly population 

(4, 6, 7). However, the lower limits of glycaemic control have yet to be clearly outlined in the 

current guidelines (59). Additionally, research has shifted to exploring other parameters that 

can facilitate more individualized disease-monitoring.  

 Emerging evidence suggests that HbA1c variability, in addition to HbA1c itself, can be 

used as a predictor for complications and mortality. Although the underlying mechanism 

remains unclear, increased HbA1c variability has been associated with diabetic complications 

in various organ systems, in addition to all-cause and cardiovascular mortality (8, 60, 61, 62). 

Different theories have been proposed to explain the association, including that a wide variance 

in HbA1c may reflect higher complexity in the disease course, suboptimal management, and 

poorer baseline vascular conditions(63, 64). Other investigators have proposed the involvement 

of intermittent hypoglycaemia, where the resulting increased oxidative stress and 

sympathoadrenal activation induce additional stress on end organs under chronic inflammation 
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(12, 65, 66). However, there is a lack of evidence from large-scale clinical studies to support 

the hypothesis.  

 The present study aims to examine the predictive power of both HbA1c value and 

variability towards the prognosis of diabetic patients. Furthermore, to test the hypothesis that 

intermittent hypoglycaemia underlies the predictive value of HbA1c variability towards the 

prognosis of diabetic patients, the inter-relationship between hypoglycaemia, HbA1c 

variability, and mortality will be evaluated.  

 

2.2. Methods 

2.2.1. Study population 

 The single-centre retrospective observational study was approved by The Joint Chinese 

University of Hong Kong – New Territories East Cluster Clinical Research Ethics Committee. 

The present study consists of patients with T2DM prescribed insulin at outpatient clinics of the 

Prince of Wales Hospital and Shatin Hospital from January 1st, 2009 to December 31st, 2009. 

The patients were identified from the Clinical Data Analysis and Reporting System (CDARS), 

a territory-wide healthcare database. 

 

2.2.2. Dataset description 

CDARS is a territory-wide database that centralizes patient information from individual 

local hospitals, general and specialist outpatient clinic under the Hong Kong Hospital Authority 

to establish comprehensive medical data, including clinical characteristics, disease diagnosis, 

laboratory results, and drug treatment details. Since the healthcare database in Hong Kong were 

only shifted to an electronic system after the year 1999, prior records were not available in the 

system. Laboratory results and drug prescriptions were automatically uploaded to CDARS. 
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Disease diagnosis were documented in terms of International Classification of Diseases Nineth 

Edition (ICD-9) coding in discharge summaries of inpatient admissions or consultation notes 

in clinic visits. CDARS is also linked to the death registry for the extraction of mortality 

outcomes, with causes of death documented in ICD-10 codings. Lifestyle factors, such as 

smoking status or body mass index, were not available. Free text was not captured by the 

system. The system has been previously used by both our team and other teams in Hong Kong 

(67, 68). Patients with three or more HbA1c measurements were included in the analysis for 

HbA1c variability. 

 

2.2.3. Patient data 

 Clinical and biochemical data were extracted for the present study. Data on the primary 

outcomes, all-cause and cardiovascular mortality, between January 1st, 2009 to May 1st, 2019 

was obtained. Data on secondary outcomes between January 1st, 2009 to December 31st, 2013 

were extracted, including 1) neurological, ophthalmological and renal diabetic complications, 

2) microalbuminuria and macroalbuminuria, 3) peripheral vascular disease (PVD), 4) stroke 

and transient ischemic attack (TIA), 5) atrial fibrillation (AF), 6) sudden cardiac death (SCD), 

7) diabetic ketoacidosis or hyperosmotic hyperglycaemia state (DKA/ HHS) or coma.  

Microalbuminuria was defined as fulfilling any of the following: 1) urine albumin/ 

creatinine ratio between 3mg/mmol to 30mg/mmol, 2) 24-hour total urine albumin between 

30mg/ day to 300mg/ day, 3) spot urine albumin between 30mg/L to 300mg/L. 

Macroalbuminuria is defined as 1) urine albumin/ creatinine ratio > 30mg/mmol, 2) 24-hour 

total urine albumin >300mg/ day, 3) spot urine albumin >300mg/L. Proteinuria was defined as 

either 24-hours total urine protein >3.5g/day, or albumin/ creatinine ratio >30mg/mmol. SCD 

was defined as the occurrence of ventricular tachyarrhythmia or non-specific cardiac arrest. 

Patients with established events before recruitment for a given outcome were excluded. For 
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other outcomes, if there were no events, then these patients were included. Cardiovascular 

mortality was recorded using ICD-10 coding, whilst the remaining outcomes were documented 

in CDARS under ICD-9 codes.  

Furthermore, baseline clinical details include 1) age, 2) sex, 3) specific comorbidities 

(chronic kidney disease (CKD), chronic obstructive pulmonary disease (COPD), chronic liver 

disease (CLD), HF, ischemic heart disease (IHD), hypertension, AMI, stroke). To capture the 

episodic occurrence of diseases, such as AMI, or the initiation of chronic conditions, such as 

hypertension, data on patient diagnosis from January 1st, 1999 to December 31st, 2008 was 

extracted. The patient’s age is defined as age on January 1st, 2009. Additionally, the dosing 

regimen of antidiabetic and cardiovascular medications prescribed were extracted. The mean 

daily dose, which is the product between the daily dosing frequency and dosage, is reported for 

each drug class. The classes of anti-diabetic agents include: 1) insulin, 2) sulphonylurea, 3) 

biguanide, 4) alpha-glucosidase inhibitor, 5) thiazolidinedione, 6) meglitinide, 7) dipeptidyl 

peptidase-4 inhibitor (DPP4I), 8) GLP-1A. The cardiovascular medications include 1) 

angiotensinogen-converting-enzyme inhibitor/ angiotensin receptor blocker (ACEI/ARB), 2) 

beta-adrenergic receptor blocker, 3) calcium channel blocker (CCB), 4) diuretics. 

Baseline biochemical data, defined as urinalysis or blood test results measured from 

January 1st, 2008 to December 31st, 2008, were extracted. Urinalysis results include 1) albumin/ 

creatinine ratio, 2) creatinine clearance, 3) spot protein, albumin, and glucose, 4) 24-hour total 

protein, and albumin. Data from renal function test, liver function test, and other baseline blood 

tests include 1) serum creatinine, 2) serum sodium, potassium, urate and urea, 3) serum albumin, 

4) serum total protein, 5) serum total bilirubin, 6) serum alanine aminotransferase (ALT), 7) 

alkaline phosphatase (ALP), 8) FBG and random blood glucose, 9) total, HDL-C, direct and 

calculated LDL-C, 10) triglyceride. The following results were obtained from complete blood 

count: 1) haemoglobin, 2) mean corpuscular haemoglobin (MCH), 3) mean corpuscular 
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haemoglobin concentration (MCHC), 4) mean corpuscular volume (MCV), 5) haematocrit, 6) 

basophil count, 7) eosinophil count, 8) lymphocyte count, 9) monocyte count, 10) neutrophil 

count, 11) platelet count, 12) red cell count, 13) white cell count. HbA1c from January 1st, 2004 

to December 31st, 2008 was extracted to establish the baseline HbA1c and HbA1c variability. 

Random and FBG were also extracted to obtain the episodes of hypoglycaemia, defined by 

blood glucose < 3.9 mg/mmol. Results from the latest test that took place in 2008 were used as 

the baseline if multiple tests were performed during the year. 

 

2.2.4. Statistical analysis 

 Continuous variables were presented as mean ± standard deviation. HbA1c temporal 

variability was examined through the following approaches: 1) mean, 2) standard deviation 

(SD), 3) root mean square (RMS), 4) coefficient of variation (CV). RMS is calculated by first 

squaring all HbA1c values, then square root the mean of the squares. The CVwas obtained by 

dividing the HbA1c SD by the mean HbA1c, expressed as a percentage. Hba1c variability score 

(HVS) was defined as the number of HbA1c measurements > 0.5% of the previous reading 

divided by the total number of HbA1c measurements, expressed as a percentage. 

Logistic regression was used to identify significant predictors of the different outcomes. 

Cox regression was applied to evaluate the predictive value of HbA1c variability for time-to-

death in all-cause mortality and cardiovascular mortality. Time-to-death was defined by the 

number of days from January 1st, 2009 to the date of death of the patient, or until May 1st, 2019. 

95% confidence interval (CI) was presented in the analyses, with odds ratio (OR) and hazard 

ratio (HR) for logistic and Cox regression respectively.  

Several methods were adopted to further outline the relationship between blood glucose 

value, HbA1c variability, and mortality. The relationship between mean HbA1c and time-to-

death for both all-cause and cardiovascular mortality was modelled using the generalized 
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additive model, with 95% CI displayed. Cut-off values of HbA1c mean and SD for the 

prediction of all-cause and cardiovascular mortality were derived by the maximization of 

sensitivity and specificity, using the Liu method, and the area under the reactive operator 

characteristic (ROC) curve (AUC) was calculated. SD was used to represent HbA1c variability 

since it is the only parameter unrelated to the value of HbA1c among the four parameters for 

variability.  

The cohort was then dichotomized into “high” and “low” HbA1c value and variability 

based on the HbA1c mean and SD respectively. Kaplan-Meier curves were plotted for the 

dichotomized cohorts against the time-to-death for all-cause mortality, with the significance of 

intergroup differences assessed by the log-rank test. To elucidate the underlying connections 

between intermittent hypoglycaemia, HbA1c variability, and mortality, Poisson regression was 

used to assess the relationship between hypoglycaemia frequency and dichotomized HbA1c 

variability, whilst both logistic and Cox regression were used to test the predictive ability of 

hypoglycaemia frequency towards both all-cause and cardiovascular mortality. Statistical 

significance is defined as P-value <0.05. All statistical analyses were performed using R Studio. 

 

2.3. Results 

2.3.1. Clinical and biochemical characteristics 

 The present cohort consists of 3424 patients (median age= 63, interquartile range of 

age= 20 years, male= 50.2%). The baseline biochemical parameters of the cohort are presented 

in Table 1. Within the present cohort, the most common comorbidity is hypertension (24.6%), 

followed by IHD (15%), stroke (11%), HF (10%), CKD (7%), CLD (5%), AMI (4%) and 

COPD (3%). In terms of drug prescriptions, the mean daily insulin dose was 20.8 ± 13.0 units. 

Other classes of antidiabetic agents prescribed include 1) biguanide (n=1300, mean daily dose= 
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1546 ± 742mg); 2) sulphonylurea (n=1300, mean daily dose= 131 ± 122mg); 3) 

thiazolidinedione (n= 268, mean daily dose= 7.17 ± 8.93mg); 4) alpha-glucosidase inhibitor 

(n= 89, mean daily dose= 185 ± 80.0mg); 5) GLP-1A (n=8, mean daily dose= 11.8 ± 4.05mg); 

6) DPP4I (n=7, mean daily dose= 97.8 ± 14.9mg). The following cardiovascular medications 

were prescribed: 1) ACEI/ ARB (n=2328, mean daily dose= 20.6 ± 38.9mg); 2) CCB (n=1579, 

mean daily dose= 58.2 ± 49.0mg); 3) beta-adrenergic receptor blockers (n= 1425, mean daily 

dose= 79.3 ± 64.3mg); 4) diuretics (n=955, mean daily dose= 66.3 ± 82.2mg).  

 

Table 1. Baseline characteristics of predictions of diabetes complications and mortality using 

Hba1c variability: a 10-year observational cohort study 

 Mean/Median/n Standard Deviation/ 

Interquartile Rate/% 

Demographic 

Age 60 20 

Male 1718 50.2 

Urinalysis 

Albumin/Creatinine Ratio (mg/mmol) 52.2 174 

Creatinine Clearance (ml/min) 45.4 39.5 

Spot Protein (g/d) 1.67 2.69 

Spot Albumin (mg/L) 256.3 744 

Spot Glucose (mmol/L) 11.4 6.10 

24-hours Total Protein (g/d) 1.30 1.93 

24-hours Total Albumin (mg/d) 324 715 

Baseline Blood Test 

Fasting Glucose (mmol/L) 8.65 3.59 

Random Glucose (mmol/L) 11.5 6.14 

HbA1c (%) 8.05 1.66 

Total Cholesterol (mmol/L) 4.60 1.11 

High Density Lipoprotein (HDL) 

Cholesterol (mmol/L) 

1.36 0.421 

Low Density Lipoprotein (LDL) 

Cholesterol (Calculated) (mmol/L) 

2.67 1.15 

LDL Cholesterol (Direct) (mmol/L) 2.45 0.860 

Triglyceride (mmol/L) 1.84 1.96 

Renal Function Test 

Creatinine (umol/L) 147 167 

Sodium (mmol/L) 139 2.95 

Potassium (mmol/L) 4.28 0.461 

Urate (umol/L) 397 124 

Urea (mmol/L) 8.88 5.91 

Liver Function Test 
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Albumin (g/L) 40.8 4.60 

Alanine Aminotransferase (ALT) (U/L) 26.0 21.0 

Alkaline Phosphatase (ALP) (U/L) 80.8 41.0 

Total Bilirubin (umol/L) 11.6 7.35 

Total Protein (g/L) 78.0 6.24 

 

 

2.3.2. HbA1c variability and baseline 

 Within the study cohort, 3137 patients had at least three HbA1c measurements, and the 

average number of HbA1c measurements per patient was 11.9 ± 4.8. The average frequency of 

hypoglycaemia was 0.6 ± 1.3 episodes. Throughout the study period (January 1st, 2009 to 

December 31st, 2019), there were 1491 cases of all-cause mortality, of which 308 were 

attributed to cardiovascular causes. Overall, the mean baseline HbA1c is 8.1 ± 1.8% 

(interquartile range= 2.0%), with HbA1c variability represented by 1) patient-specific mean 

(8.0 ± 1.2%); 2) SD (1.1 ± 0.71%); 3) RMS (8.1 ± 1. 2%); 4) CV (13.6 ± 7.6%). The logistic 

and Cox regression analysis for outcome prediction is presented in Table 2 and Table 3 

respectively.  

 

Table 2. Logistic regression of HbA1c value, variability and hypoglycaemia frequency on 

mortality and diabetes-related complications 

 Odds Ratio (OR) 95% Confidence Interval (CI) P-Value 

Neurological Complications (n=3236) 

Baseline 1.07 [1.00, 1.14] 0.033 

Mean 1.16 [1.05, 1.28] 0.003 

Standard Deviation 1.23 [1.07, 1.42] 0.004 

Root Mean Square 1.15 [1.05, 1.27] 0.002 

Coefficient of Variation 1.02 [1.01, 1.03] 0.006 

Ophthalmological Complications (n=3023) 

Baseline 1.10 [1.05, 1.15] <0.001 

Mean 1.32 [1.23, 1.42] <0.001 

Standard Deviation 0.990 [0.869, 1.12] 0.880 

Root Mean Square 1.28 [1.19, 1.37] <0.001 

Coefficient of Variation 0.989 [0.977, 1.00] 0.089 

Renal Complications (n=2973) 
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Baseline 1.00 [0.956, 1.05] 0.843 

Mean 1.11 [1.03, 1.19] 0.006 

Standard Deviation 1.14 [1.02, 1.28] 0.025 

Root Mean Square 1.10 [1.03, 1.18] 0.007 

Coefficient of Variation 1.01 [1.00, 1.02] 0.051 

Microalbuminuria and Macroalbuminuria (n=1912) 

Baseline 1.04 [0.976, 1.10] 0.236 

Mean 1.18 [1.08, 1.29] <0.001 

Standard Deviation 1.01 [0.859, 1.17] 0.918 

Root Mean Square 1.16 [1.07, 1.27] <0.001 

Coefficient of Variation 0.992 [0.976, 1.01] 0.286 

Proteinuria (n=2572) 

Baseline 1.05 [0.982, 1.11] 0.148 

Mean 1.25 [1.14, 1.37] <0.001 

Standard Deviation 1.15 [0.986, 1.32] 0.064 

Root Mean Square 1.23 [1.13, 1.34] <0.001 

Coefficient of Variation 1.01 [0.993, 1.02] 0.257 

Peripheral Vascular Disease (n=3375) 

Baseline 1.11 [0.999, 1.23] 0.041 

Mean 1.05 [0.876, 1.25] 0.576 

Standard Deviation 1.10 [0.814, 1.39] 0.489 

Root Mean Square 1.05 [0.877, 1.24] 0.605 

Coefficient of Variation 1.01 [0.984, 1.04] 0.387 

Stroke (n=3168) 

Baseline 0.997 [0.932, 1.06] 0.932 

Mean 1.09 [0.989, 1.20] 0.080 

Standard Deviation 1.06 [0.904, 1.23] 0.429 

Root Mean Square 1.08 [0.987, 1.19] 0.089 

Coefficient of Variation 1.01 [0.990, 1.02] 0.473 

Transient Ischemic Attack (n=3361) 

Baseline 1.06 [0.903, 1.22] 0.440 

Mean 1.02 [0.792, 1.29] 0.888 

Standard Deviation 0.795 [0.463, 1.22] 0.359 

Root Mean Square 1.00 [0.785, 1.25] 0.985 

Coefficient of Variation 0.983 [0.937, 1.02] 0.425 

Atrial Fibrillation (n=3246) 

Baseline 1.01 [0.941, 1.08] 0.739 

Mean 0.927 [0.828, 1.03] 0.183 

Standard Deviation 0.858 [0.693, 1.04] 0.143 

Root Mean Square 0.923 [0.827, 1.03] 0.147 

Coefficient of Variation 0.986 [0.967, 1.00] 0.134 

Sudden Cardiac Death (n=3408) 

Baseline 1.05 [0.961, 1.14] 0.274 

Mean 0.939 [0.826, 1.06] 0.323 

Standard Deviation 1.06 [0.865, 1.27] 0.544 

Root Mean Square 0.943 [0.834, 1.06] 0.342 

Coefficient of Variation 1.01 [0.991, 1.03] 0.297 
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Diabetic Ketoacidosis/ Hyperosmotic Hyperglycaemia State (DKA/ HHS)(n=3249) 

Baseline 1.16 [1.04, 1.28] 0.006 

Mean 1.32 [1.14, 1.52] <0.001 

Standard Deviation 1.27 [1.02, 1.53] 0.018 

Root Mean Square 1.29 [1.13, 1.47] <0.001 

Coefficient of Variation 1.02 [0.995, 1.04] 0.112 

All-Cause Mortality (n=3424) 

Baseline 0.887 [0.848, 0.927] <0.001 

Mean 0.898 [0.845, 0.953] <0.001 

Standard Deviation 1.34 [1.21, 1.49] <0.001 

Root Mean Square 0.918 [0.866, 0.973] 0.004 

Coefficient of Variation 1.03 [1.02, 1.04] <0.001 

Hypoglycaemia 

Frequency 

1.11 [1.05, 1.17] <0.001 

Cardiovascular Mortality (n=3424) 

Baseline 0.889 [0.817, 0.964] 0.005 

Mean 0.985 [0.886, 1.09] 0.779 

Standard Deviation 1.42 [1.23, 1.66] <0.001 

Root Mean Square 1.02 [0.918, 1.12] 0.757 

Coefficient of Variation 1.03 [1.02, 1.05] <0.001 

Hypoglycaemia 

Frequency 

1.08 [0.990, 1.16] 0.070 

The baseline, mean, SD/RMS/CV of HbA1c and hypoglycaemic frequency are used to predict 

for mortality and other complications in individual univariate logistic regression models. 

 

Table 3 Cox regression of HbA1c value, variability and hypoglycaemia frequency on all-cause 

and cardiovascular mortality 

 Hazard Ratio (HR) 95% Confidence Interval (CI) P-Value 

All-Cause Mortality 

Baseline 0.917 [0.886, 0.949] <0.001 

Mean 0.908 [0.868, 0.951] <0.001 

Standard Deviation 1.21 [1.14, 1.28] <0.001 

Root Mean Square 0.925 [0.885, 0.967] <0.001 

Coefficient of Variation 1.02 [1.02, 1.03] <0.001 

Hypoglycaemia 

Frequency 

1.08 [1.04, 1.11] <0.001 

Cardiovascular Mortality 

Baseline 0.889 [0.817, 0.964] 0.005 

Mean 0.984 [0.893, 1.09] 0.748 

Standard Deviation 1.34 [1.21, 1.48] <0.001 

Root Mean Square 1.01 [0.924, 1.11] 0.773 

Coefficient of Variation 1.03 [1.02, 1.04] <0.001 

Hypoglycaemia 

Frequency 

1.07 [1.00, 1.15] 0.044 

The baseline, mean, SD/RMS/CV of HbA1c and hypoglycaemic frequency are used to predict 

for mortality and other complications in individual univariate Cox regression models. 
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For the prediction of the primary outcomes- all-cause and cardiovascular mortality, 

both baseline HbA1c and HbA1c variability were found to be significant predictors. 

Interestingly, under logistic regression, baseline (OR= 0.89, 95% CI=[0.85, 0.93], P <0.001), 

mean (OR= 0.90, 95% CI=[0.85, 0.95], P <0.001), and RMS (OR= 0.92, 95% CI=[0.87, 0.97], 

P <0.001) of HbA1c were found to be negative predictors of all-cause mortality, whilst SD 

(OR= 1.34, 95% CI=[1.21, 1.49], P <0.001), CV (OR= 1.03, 95% CI=[1.02, 1.04], P <0.001) 

and HVS (OR= 1.007, 95% CI=[1.004, 1.009], P<0.001) were found to be significant positive 

predictors. Similar findings were found under Cox regression, with baseline (HR=0.92, 95% 

CI= [0.89, 0.95], P < 0.001), mean (HR=0.91, 95% CI= [0.87, 0.95], P < 0.001) and RMS 

(HR=0.93, 95% CI= [0.89, 0.97], P < 0.001) as negative predictors, SD (HR=1.21, 95% CI= 

[1.14, 1.28], P < 0.001), CV (HR=1.02, 95% CI= [1.02, 1.03], P < 0.001) and HVS (HR=1.01, 

95% CI=[1.01, 1.01], P<0.001) as positive predictors for time-to-death.  

Similar patterns were observed in cardiovascular mortality. Whilst baseline HbA1c is 

a negative predictor for both cardiovascular-specific mortality (OR= 0.89, 95% CI= [0.82, 

0.96], P= 0.005) and time-to-death (HR=0.90, 95% CI= [0.84, 0.98], P= 0.009), SD (mortality: 

OR= 1.42, 95% CI= [1.23, 1.66], P < 0.001; time-to-death: HR= 1.34, 95% CI= [1.21, 1.48], 

P < 0.001), CV (mortality: OR= 1.03, 95% CI= [1.02, 1.05], P < 0.001; time-to-death: HR= 

1.03, 95% CI= [1.02, 1.04], P < 0.001) and HVS (mortality: HR= 1.02, 95% CI= [1.01, 1.03], 

P<0.001; time-to-death:  HR=1.02 95% CI: [1.01, 1.03], P<0.001) are positive predictors.  

The individual effects of HbA1c and blood glucose values, in addition to HbA1c 

variability, on all-cause and cardiovascular mortality were further examined. The shorter time-

to-death at the extremes of mean HbA1c in the generalized additive model for all-cause 

mortality is presented in Figure 1. The cut-off values for dichotomization of HbA1c value and 

variability were 7.3% (AUC= 0.540) and 0.86 (AUC= 0.574) in all-cause mortality prediction, 

and 6.8% (AUC= 0.493) and 0.88 (AUC= 0.590) for cardiovascular mortality prediction. After 
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dichotomization, the low mean HbA1c subgroup showed a significantly shorter time-till-death 

for all-cause mortality, (P < 0.001), but not cardiovascular mortality (P= 0.920). By contrast, 

the time-till-death was significantly shorter for the high HbA1c variability subgroup for both 

all-cause (P < 0.001), and cardiovascular mortality (P < 0.001).  

 

Figure 1. Plot of time-to-death of all-cause mortality against mean HbA1c using a generalized 

additive model 

 

The Kaplan-Meier plots for the dichotomized HbA1c value and variability in the 

prediction of all-cause and cardiovascular mortality are presented in Figure 2. A significant 

association was found between dichotomized HbA1c variability and hypoglycaemia frequency 

(P < 0.0001). Hypoglycaemia frequency was found to be a positive predictor for both mortality 

(OR=1.11, 95% CI= [1.05, 1.17], P < 0.001) and time-till death of all-cause (HR= 1.08, 95% 

CI= [1.04, 1.11], P < 0.001), in addition to cardiovascular-specific time-till-death (HR= 1.07, 

95% CI= [1.00, 1.15], P= 0.044).  
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Figure 2.  Kaplan-Meier plots of dichotomized mean HbA1c (A) and HbA1c variability (B) for 

all-cause mortality, dichotomized mean HbA1c (C) and HbA1c variability (D) for 

cardiovascular mortality. 

A       B 

 

C       D 

 

Figure A: Difference in all-cause mortality between the dichotomized groups of high (blue) vs 

low (orange) mean HbA1c. 

Figure B: Difference in all-cause mortality between the dichotomized groups of high (pureple) 

vs low (brown) HbA1c variability 

Figure C: Difference in cardiovascular mortality between the dichotomized groups of high 

(green) vs low (yellow) mean HbA1c. 

Figure D: Difference in cardiovascular mortality between the dichotomized groups of high 

(dark blue) vs low (red) HbA1c variability. 

 

 In terms of prediction of secondary outcomes, both baseline HbA1c and HbA1c 

variability are significant positive predictors for the following:  
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1) DKA/ HHS/ coma (baseline: OR= 1.16, 95% CI= [1.04, 1.28], P= 0.006; mean: OR= 1.32, 

95% CI= [1.14, 1.52], P < 0.001; SD: OR= 1.27, 95% CI= [1.02, 1.53], P= 0.018; RMS: OR= 

1.29, 95% CI= [1.13, 1.47], P < 0.001; HVS: OR=1.011, 95% CI=[1.003, 1.018], P=0.004);  

2) neurological diabetic complications (baseline: OR= 1.07, 95% CI= [1.00, 1.14], P= 0.033; 

mean: OR= 1.16, 95% CI= [1.05, 1.28], P= 0.003; SD: OR= 1.23, 95% CI= [1.07, 1.42], P= 

0.004; RMS: OR= 1.15, 95% CI= [1.05, 1.27], P= 0.002; CV: OR= 1.02, 95% CI= [1.01, 1.03], 

P= 0.006; HVS: OR= 1.01, 95% CI= [1.00, 1.01], P=0.001);  

3) ophthalmological diabetic complications (baseline: OR= 1.10, 95% CI= [1.05, 1.15], P < 

0.001; mean: OR= 1.32, 95% CI= [1.23, 1.42], P < 0.001; RMS: OR= 1.28, 95% CI= [1.19, 

1.37], P <0.001); 

4) only mean HbA1c and RMS were predictive for microalbuminuria (mean: OR= 1.18, 95% 

CI= [1.08, 1.29], P < 0.001; RMS: OR= 1.16, 95% CI= [1.07, 1.27], P < 0.001) and proteinuria 

(mean: OR= 1.25, 95% CI= [1.14, 1.37], P < 0.001; RMS: OR=1.23, 95% CI= [1.13, 1.34], P 

< 0.001); 

5) renal diabetic complications were predicted by mean (OR= 1.25, 95% CI= [1.03, 1.19], P = 

0.006), SD (OR=1.14, 95% CI= [1.02, 1.28], P= 0.025), RMS (OR= 1.10, 95% CI= [1.03, 1.18], 

P= 0.007) and HVS (OR=1.005, 95% CI= [1.002, 1.008], P=0.002); 

6) baseline HbA1c (OR= 1.11, 95% CI= [0.999, 1.23], P= 0.041) and HVS (OR= 1.014, 95% 

CI=[1.006, 1.023], P=0.001). 

 

2.4. Discussion and limitations 

2.4.1. Discussion 

 The major findings of the present study are that: 1) both HbA1c value and variability 

can predict mortality and complications in diabetics; 2) low HbA1c was associated with higher 
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all-cause mortality; 3) the frequency of hypoglycaemia episodes was associated with HbA1c 

variability; 4) hypoglycaemia frequency was predictive of both all-cause and cardiovascular 

mortality in diabetic patients.  

 In the past, a positive linear relationship is perceived between HbA1c value and all-

cause mortality (69, 70). However, emerging evidence from large cohort studies suggests that 

there is instead an increased all-cause mortality risk at both low and high HbA1c levels (6, 60, 

71, 72). In the present study, a similar U-shaped association was demonstrated for the time-till-

death of both all-cause and cardiovascular mortality against HbA1c value under the generalized 

additive model. The increased all-cause and cardiovascular mortality risk amongst patients 

with low HbA1c values are demonstrated by the poorer survival of the low mean HbA1c 

subgroup, and the baseline HbA1c value showing hazard ratios less than unity for both 

mortality and time-till-death. Although the underlying mechanism between low HbA1c and 

increased mortality remains unclear, low HbA1c has been associated with chronic 

inflammation and liver function derangement (73). Furthermore, a similar U-shaped 

relationship has been reported for blood glucose against endothelial dysfunction and frailty (74, 

75, 76). These findings, therefore, suggest that more relaxed glycaemic control for older 

patients with greater frailty may improve patient outcomes.  

 The present study provides further evidence of the predictive value of HbA1c 

variability. Similar to previous studies, high HbA1c variability is associated with increased risk 

in both all-cause and cardiovascular mortality, in addition to vascular, neurological, 

ophthalmological, and renal complications (8, 61, 63, 77, 78). Overall, HbA1c variability 

demonstrated greater predictive value for directly diabetes-caused complications in different 

organ systems, but its predictive value was limited for other associated conditions, such as 

stroke. The statistical insignificance in the prediction of cardiovascular events, contrary to 

existing studies, may be attributed to the single-centre nature of the study cohort, which limited 
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the incidence of associated conditions. Comparison between baseline, mean, SD, RMS and CV 

is performed to evaluate the difference in predictive performance between measurements taken 

upon initial visits in comparison to temporal changes, as well as the difference between 

different variability measures. The present findings shows that the mean and SD are more 

significant independent predictors. Hence, SD may be a more relevant variability measure to 

be used in predictive models and scores. 

 Although the mechanism between HbA1c variability and diabetes-induced 

complications remains unclear, possible explanations involving intermittent hypoglycaemia 

were raised. Some investigators suggested that intermittent hypoglycaemia induces the 

production of reactive oxygen species, and the increased oxidative stress results in endothelial 

dysfunction, which ultimately leads to cardiovascular complications and death (79, 80, 81, 82). 

Another potential theory is that hypoglycaemic episodes stimulate sympathetic activation, 

which stresses the cardiovascular system and affects the end-organ blood supply (12). 

Therefore, to elucidate the biological connections between HbA1c variability and diabetic 

progression, the present study examined the inter-relationship between hypoglycaemia, HbA1c 

variability, and diabetic outcomes. Dichotomized HbA1c variability was found to be a positive 

predictor of hypoglycaemic episodes, whilst hypoglycaemia itself was a positive predictor for 

mortality. Therefore, it can be inferred that the predictive value of HbA1c variability is at least 

partially contributed by the effects of intermittent hypoglycaemia.  

Despite the emerging evidence for the predictive value of HbA1c variability, its clinical 

application remains limited by the absence of a standardized quantification method. Existing 

studies employed methods such as counting the frequency of significant successive differences, 

percentage deviation from the expected trajectory, SD, CV and HVS (60, 61, 77, 83). With 

different variability parameters, the present study demonstrates that the calculation of 

variability may be affected by the HbA1c value, and the number of measurements taken. The 
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resulting difference in the inherent sensitivity of the parameters results in the difference in their 

predictive power. Therefore, when HbA1c variability is used for prediction, different 

parameters are to be adopted to reduce the effect of confounding factors.  

 

2.4.2. Limitations 

 Several limitations should be noted for the present study. Firstly, the size of the study 

cohort is limited by its single-centred nature. The resulting limitation in the incidence of 

diabetes-related disease events may affect the predictive power. Since free text is not captured 

by CDARS, this can result in the underdiagnosis of hypoglycaemic episodes and an incomplete 

documentation. Furthermore, like other observational studies, it is limited by the potential 

under-coding of comorbidities, missing data, and coding errors. The missing of data, 

particularly when it is not at random, can result in the introduction of bias. For example, 

patients with cognitive impairment and lower body mass index are more likely to have 

asymptomatic, or missed documentations of hypoglycaemic episodes. The underreporting of 

hypoglycaemic episodes amongst patients with certain risk factors can therefore lead to the 

underestimation of the association between hypoglycaemic and these risk factors. Additionally, 

the duration of diabetes, diabetic progression, and treatments prescribed were not accounted 

for, which can affect the interpretation of HbA1c value and variability. Given prior studies 

from different countries of origin reporting the association between Hba1c variability and 

adverse outcomes, we speculate that our findings can be generalizable to other populations. 

However, the external validity of the study should be confirmed in non-Chinese cohorts. 
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2.5. Conclusion 

  In conclusion, the present study demonstrated the association between high HbA1c 

variability and increased risk for both all-cause and cardiovascular mortality, in addition to 

diabetic complications across different organ systems. The association between hypoglycaemic 

frequency, HbA1c variability, and mortality support the hypothesis that intermittent 

hypoglycaemia contributes to poor outcomes in diabetic patients. Further research on larger 

cohorts is required to provide further evidence for the predictive value of HbA1c variability on 

the prognosis of diabetic patients and to shed light on its associations with hypoglycaemia.  
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Chapter 3. Glycaemic and lipid variability for predicting complications and 

mortality in diabetes mellitus using machine learning 

3.1. Introduction 

 There is an increasing global prevalence of T2DM, with over 400 million people around 

the world currently suffering from the disease. (1) T2DM can lead to a variety of complications 

affecting the cardiovascular, neurological, renal and other systems, placing significant burdens 

on healthcare systems globally. (84, 85, 86) Given the ageing population, an increasing 

proportion of diabetic patients are elderly with multiple comorbidities, leading to a call for a 

more personalised and patient-centred approach in diabetic management over recent years. (87, 

88, 89) This raises the need for new parameters for monitoring diabetes, other than blood 

glucose, to improve the sensitivity towards the disease progression across different organ 

systems. (90, 91, 92, 93, 94) Diabetic patients who are on insulin are more advanced in the 

disease life course, and as such are at a higher risk of complications and death. 

 Recently, HbA1c and lipid variability have attracted attention in their potential use for 

diabetic monitoring and risk stratification for adverse outcomes. However, existing studies 

focused on cardiovascular events and mortality. (57, 95, 96) Although the exact pathways of 

pathogenesis by HbA1c and different lipid variability are unclear and appear to be divergent, 

the resulting chronic inflammation and endothelial dysfunction may have led to the 

presentation of systemic complications in diabetes. (77, 97, 98) Others suggest that raised 

variability in biomarkers reflects lifestyle changes, incomplete treatment adherence, 

pharmacotherapy prescribed, and generalized frailty. (99, 100, 101) Random survival forest 

(RSF) is a class of machine learning algorithms for survival analysis (102). Although RSF has 

been previously used to predict for protein interactions, and mortality amongst patients with 

HF, it has not been used in the prediction of cardiovascular risks amongst patients with T2DM 

before (103, 104). The advantage of RSF is that it can reduce the variance and bias within the 

input variables and automatically consider nonlinear effects and high-level interactions among 
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these variables. Thus, RSF can be applied to select and rank variables based on their importance. 

In this study, we aim to evaluate the predictive value of glycaemic and lipid variability towards 

a wide range of adverse outcomes in diabetes and that risk prediction is more accurate using 

RSF. The present study is the first to use RSF in the prediction of cardiovascular adverse events 

amongst patients with T2DM. 

 

3.2. Methods 

3.2.1. Study population 

 The present study is a territory-wide observational study that collects data from 43 

public hospitals in Hong Kong. The study was approved by The Joint Chinese University of 

Hong Kong – New Territories East Cluster Clinical Research Ethics Committee. It was 

performed in accordance with the Declaration of Helsinki as well as relevant guidelines and 

regulations. The cohort consists of diabetic patients who have been prescribed insulin from 

outpatient clinics of any public hospitals managed by the Hong Kong Hospital Authority 

between January 1st, 2009, to December 31st, 2009. Patients were not required to be on insulin 

for a minimum period. Through CDARS, the cohort was identified, and the data was extracted. 

The system has been utilized for epidemiological research by multiple research teams, 

including our team, in the past (68, 105, 106, 107).  

 

3.2.2. Patient data 

Clinical outcomes, patient characteristics and pharmacological treatment details were 

extracted. The patient outcomes from January 1st, 2009 to December 31st, 2019 were extracted. 

Patients were followed up from January 1st, 2009 to either death or December 31st, 2019. The 

primary outcome is all-cause mortality, and the secondary outcomes, as defined by their  ICD-
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9 codes include 1) neurological, ophthalmological and renal diabetic complications, 2) 

dementia, 3) osteoporosis, 4) peripheral vascular disease (PVD), 5) intracranial haemorrhage 

(ICH), 6) ischemic stroke and TIA, 7) IHD, AMI and HF, 8) AF.  

The extracted patient parameters are as follows. The duration of diabetes at baseline 

was extracted based on the following three criteria, selected based on whichever is earlier: 1) 

earliest ICD-9 coding of diabetes mellitus; 2) earliest HbA1c > 6.5mmol/L; 3) earliest fasting 

blood glucose > 7mmol/L. The mean daily dose of anti-diabetic and cardiovascular medications 

drug classes was reported. The mean daily dose is derived by multiplying the daily dose 

frequency against the drug dose, then averaged by all patients that were prescribed drugs of the 

specific drug class. In terms of biochemical data, the baseline neutrophil-lymphocyte ratio 

(NLR) was derived by dividing the baseline absolute neutrophil count by the lymphocyte count. 

To assess glycaemic and lipid variability, data for the following variables between January 1st, 

2004 and December 31st, 2008 were obtained: 1) HbA1c, 2) total cholesterol, 3) HDL-C, 4) 

LDL-C, 5) total triglyceride. LDL-C includes both findings from direct and calculated 

measurements. Furthermore, the frequency of hypoglycaemic episodes across the entire 

follow-up period from laboratory tests taken during outpatient, inpatient and accident and 

emergency settings was extracted. Each episode is defined by random or FBG < 3.9 mg/mmol. 

Additionally, the presence of anaemia, defined by haemoglobin < 13 g/dL and <12g/dL for 

male and female patients respectively, was extracted. The presence of iron deficiency, defined 

by ferritin < 67.4 pmol/L, was also extracted. Only patients with three or more measurements 

for the specific parameter were included in the variability analysis of the respective parameter. 

 

3.2.3. Statistical analysis 

Temporal variability was examined using the derivation of SD and CV. CV was given 

by the temporal SD divided by the temporal mean, then multiplied by 100. Univariate Cox 
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regression was applied to identify significant predictors from demographic variables, 

biochemical parameters, and anti-diabetic agents prescribed for the various adverse outcomes. 

GLP-1A (n=13) and meglitinide (n=9) were excluded from the analysis due to the limited 

number of patients prescribed the drugs. The HR and 95% CI were presented for each predictor. 

Patients with missing data were excluded from the analysis for that variable. Predictors with 

P-value < 0.10 under univariate analysis for all-cause mortality are then selected to undergo 

multivariate Cox regression. Patients were excluded from the multivariate analysis if they did 

not have at least three measurements for the assessment of variability, or if there were missing 

data in any of the significant predictors found under univariate Cox analysis. 

To examine the inter-relationship between HbA1c variability, intermittent 

hypoglycaemia, and chronic inflammation, Gaussian, and Poisson regression were used to 

assess the correlations of HbA1c variability against baseline NLR and hypoglycaemia 

frequency respectively. Gaussian regression is a non-parametric method to assess the 

association between two continuous variables, hence suitable to assess the inter-relationship 

between HbA1c/ lipid variability and baseline NLR. Poisson regression is a model that allows 

the assessment between a count variable, in this case, hypoglycaemic frequency, and 

continuous variables, such as HbA1c/ lipid variability. Gaussian regression was also used to 

assess the association between the lipid parameters, and lipid indices against baseline NLR. 

The OR is reported for both Poisson and Gaussian regression. Statistical significance is defined 

as P-value <0.05. Statistical analyses were performed using RStudio software (Version: 

1.1.456) and Python (Version: 3.6). 

 

3.2.4. Development of a regularized and weighted random survival forest model 

RSF   is a machine-learning modelling technique that can capture complex survival data 

structures and overcome the restrictive assumption of the Cox proportional model to better 
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uncover the nonlinear relationships between covariates and the time of event outcome. (108) 

In contrast, assumptions about specialized basis functions in Cox models are not efficient for 

assessing the nonlinear effects by transformations or expanding the design matrix. The RSF 

model is constructed with an ensemble tree method for analysis of right-censored survival data, 

extended from Breiman’s random forest. It is an efficient ensemble learning method by 

injecting randomization into base learning processes and has become one of the most efficient 

models in survival analysis.  

In this study, the time for RSF survival learning is defined as the duration from baseline 

date to event presentation or mortality/ study end date if no event presentation before mortality 

and study end. As shown in Figure 3 for the workflow of the regularized and weighted RSF 

model, the regularized and weighted RSF model estimates the forest survival function through 

a tree ensemble approach. Usually, the ensemble assigns equal weights to different survival 

decision trees in a RSF. In the present study, different weights were assigned to different 

survival trees to account for the heterogeneity between the ensembled decision tries.  The 

assigned weights were learned to minimize the overall loss function (e.g., the log-likelihood 

we used in this study). To reduce overfitting, we adopt an L2 regularization strategy with an 

optimal regularization strength parameter for the log-likelihood loss function in the model. The 

regularization parameters were determined by using 80% of the patients in the cohort under a 

five-fold cross-validation.   

With the RSF model, the learning results can be interpreted by estimating the relative 

importance and minimal depth of the individual variables. The importance value for the 

variable of interest is the prediction error for the original ensemble event-specific cumulative 

probability function, excluding the out-of-bag instances, subtracted from the prediction error 

for the new ensemble obtained using randomizing assignments of the variable (109, 110). The 

prediction errors are computed using squared loss. A larger importance value indicates a higher 
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predictive strength, whereas importance values equal or less than renders the variable 

nonpredictive. The minimal depth approach (111) identifies variables of averages the depth of 

the first split for each variable over all trees within the final forest to identify the most 

frequently split nodes nearest to the root, which partition the largest samples, and therefore has 

the greatest impact on the prediction on the clinical outcome.  

Significant variables from the univariate Cox regression were used as inputs into the 

regularized and weighted RSF model. The performance of regularized and weighted RSF, RSF 

and the Cox model are compared. Missing values are “-1” padded. The machine learning 

models are trained on the training set using five-fold cross validation. The model’s 

discrimination performance is accessed by Harrell’s C-index, which is a generalization of the 

AUC that can handle right-censored data, to estimate the efficiency of the model at ranking 

survival times. 

 

3.3. Results 

3.3.1. Clinical and biochemical characteristics 

 The study cohort consists of 25 186 patients (mean age= 63.0, interquartile range [IQR] 

of age= 15.1 years, male = 50.4%, type 1 diabetes mellitus= 7.37%, baseline diabetes duration 

= 2.84 ± 2.54 years, total duration= 69332 patient-years, daily insulin dosage: 20.2 ± 12.6 units). 

Patients with type 1 DM were included, despite the primary focus of the study to be around 

T2DM, is to maximize the cohort size available for the evaluation of machine learning models. 

A graphical illustration of the methodology is shown in Figure 3. Tables 4 and 5 display the 

discrete and continuous baseline characteristics of the study cohort respectively. It should be 

noted that there is a large SD in the continuous baseline characteristics shown on Table 5, The 

most prevalent pre-existing comorbidity is hypertension (35.6%), followed by 



 47 

ophthalmological conditions (32.2%), and IHD (16.2%). The mean daily insulin dosage 

regimen of the cohort is 20.2 ± 12.6 units per day. Other classes of anti-diabetic agents 

prescribed include: 1) biguanide (n= 14 522, mean daily dose= 1682 ± 882 mg/day), 2) 

sulphonylurea (n= 10 459, mean daily dose= 191 ± 312mg/day), 3) thiazolidinedione (n= 890, 

mean daily dose= 7.59 ± 9.03mg/day), 4) alpha-glucosidase inhibitor (n= 751, mean daily 

dose= 138 ± 128mg/day), 5) DPP4I (n= 113, mean daily dose= 91.6 ± 27.5mg), 6) GLP-1A 

(n= 13, mean daily dose= 11.9 ± 3.96mg/day), 7) meglitinide (n= 9, mean daily dose= 1.17 ± 

0.887mg/day). The following classes of cardiovascular medications were prescribed: 1) ACEI/ 

ARB (n= 15 059, mean daily dose= 17.4 ± 37.0mg/day), 2) CCB (n= 10 986, mean daily dose= 

60.0 ± 50.6mg/day), 3) lipid-lowering agents (n= 10 685, mean daily dose= 23.3 ± 68.4 

mg/day), 4) aspirin (n= 9114, mean daily dose= 102 ± 54.1 mg/day), 5) diuretic (n= 7 349, 

mean daily dose= 40.3 ± 64.2mg/day), 6) beta-adrenergic receptor blocker (n= 7 082, mean 

daily dose= 79.4 ± 81.6mg/day). 
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Figure 3. Workflow of regularized and weighted random survival forest model 

 

Figure 3 shows data were bootstrapped to form multiple decision trees, cross-validated using 

trees with out-of-bag instances. Within each tree, each node are predictors to ultimately lead to 

the ensemble outcome. Prediction error is calculated under L2 regularization. 

 

Table 4. Discrete baseline characteristics of glycaemic and lipid variability for predicting 

complications and mortality in diabetes mellitus using machine learning 

 Patient Percentage (%) Number of Patients 

Demographic  

Male 50.4 12694 

Type 1 Diabetes Mellitus 7.37 1856 

Hazard function 
tree 1 

Hazard function 
tree 2 
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Comorbidities  

Hypertension 35.6 8966 

Ophthalmological Complications 32.2 8110 

Ischemic Heart Disease 16.2 4080 

Ischemic Stroke and Transient 

Ischemic Attack 

11.8 2972 

Heart Failure 9.8 2468 

Chronic Renal Disease 8.8 2216 

Chronic Liver Disease 5.8 1461 

Acute Myocardial Infarction 5.1 1284 

Chronic Obstructive Pulmonary 

Disease 

3.5 882 

Anti-diabetic Medication  

Biguanide 57.6 14522 

Sulphonylurea 41.5 10459 

Thiazolidinedione 3.5 890 

Alpha-Glucosidase 3.0 751 

Dipeptidyl Peptidase-4 Inhibitor 0.4 113 

Glucagon-Like Peptide-1 Receptor 

Agonist 

<0.1 13 

Cardiovascular medication  

Angiotensinogen-Converting 

Enzyme Inhibitor/ Angiotensin-

Receptor Blocker 

59.8 15059 

Calcium Channel Blocker 43.6 10986 

Lipid-Lowering Agents 42.4 10685 

Aspirin 36.2 9114 

Diuretic 29.2 7349 

Beta-Adrenergic Receptor Blocker 28.1 7082 

 

 

Table 5. Continuous baseline characteristics of glycaemic and lipid variability for predicting 

complications and mortality in diabetes mellitus using machine learning 

 Mean Standard 

Deviation 

Urinalysis 

Albumin/Creatinine Ratio (mg/mmol) 38.1 121 

Creatinine Clearance (ml/min) 54.1 35.9 

Spot Protein (g/d) 1.17 1.96 

Spot Albumin (mg/L) 170 545 

Spot Glucose (mmol/L) 12.5 6.68 

24-hours Total Protein (g/d) 1.17 1.97 

24-hours Total Albumin (mg/d) 271 695 

Baseline Blood Test 

Fasting Glucose (mmol/L) 8.96 3.75 

Random Glucose (mmol/L) 12.3 7.47 

HbA1c (%) 8.56 1.94 

Total Cholesterol (mmol/L) 4.74 1.12 
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High Density Lipoprotein (HDL) Cholesterol (mmol/L) 1.24 0.403 

Calculated Low Density Lipoprotein (LDL) Cholesterol 

(mmol/L) 

2.74 0.927 

Direct LDL Cholesterol (mmol/L) 2.80 0.925 

Triglyceride (mmol/L) 1.80 1.72 

Renal Function Test 

Creatinine (umol/L) 144 159 

Sodium (mmol/L) 139 3.33 

Potassium (mmol/L) 4.31 0.506 

Urate (umol/L) 0.408 0.129 

Urea (mmol/L) 8.82 6.04 

Liver Function Test 

Albumin (g/L) 39.2 5.56 

Alanine Aminotransferase (ALT) (U/L) 24.3 21.6 

Alkaline Phosphatase (ALP) (U/L) 85.2 47.0 

Total Bilirubin (umol/L) 11.3 8.98 

Total Protein (g/L) 74.4 7.13 

Complete Blood Count 

Haemoglobin (g/dL) 12.5 1.99 

Mean Corpuscular Haemoglobin (MCH) (pg) 29.7 2.95 

Mean Corpuscular Haemoglobin Concentration (MCHC) 

(g/dL) 

34.0 0.952 

Mean Corpuscular Volume (MCV) (fL) 87.2 7.44 

Hematocrit (L/L) 0.376 0.539 

Basophil (x109/L) 0.029 0.042 

Eosinophil (x109/L) 0.223 0.235 

Lymphocyte (x109/L) 1.87 0.867 

Monocyte (x109/L) 0.538 0.266 

Neutrophil (x109/L) 5.47 2.79 

Platelet (x109/L) 256 83.3 

Red Blood Cell (x1012/L) 4.26 0.740 

White Blood Cell (x109/L) 8.09 2.91 

 

3.3.2. Anti-diabetic drug classes and outcomes 

Different classes of anti-diabetic agents are associated with adverse outcomes 

differently. Thiazolidinedione lowers the risk of neurological complications (HR= 0.718, 95% 

CI= [0.539, 0.956], p= 0.023) and HF (HR= 0.72, 95% CI= [0.54, 0.96], p < 0.0001), whilst 

biguanide only lowers the risk of HF (HR= 0.62, 95% CI= [0.56, 0.68], p < 0.0001). The risk 

for adverse cardiovascular events was raised by sulphonylurea, biguanide, and alpha-

glucosidase inhibitors. Sulphonylurea is associated with an increased risk of renal 

complications (HR= 1.29, 95% CI= [1.22, 1.36], p < 0.0001) and dementia (HR= 1.22, 95% 
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CI= [1.08, 1.39], p= 0.002), whilst biguanide is related to ophthalmological complications 

(HR= 1.09, 95% CI= [0.937, 1.26], p < 0.0001).  

 

3.3.3. Adverse outcome and predictors 

The characteristics of the adverse outcomes and biochemical predictors are detailed in 

Tables 6 and 7 respectively. Anaemia occurred in 39.1% (n= 9848) of the cohort, with iron 

deficiency presented in 9.76% of the 2100 patients with ferritin measured. Throughout the 

study period, 12 372 incidences of death took place (male= 52.6%, age of death= 69.7 ± 12.0). 

The most common adverse outcomes were death (49.1%), renal (21.4%), and ophthalmological 

complications (18.7%). Ophthalmological (onset age= 62.8 ± 11.9), neurological (onset age= 

64.2 ± 11.9) and renal diabetic complications (onset age= 66.5 ± 12.2) had the earliest onset, 

whilst osteoporosis (onset age= 72.1 ± 11.3) and dementia (onset age= 74.4 ± 8.30) occurred 

latest on average, patients in the present cohort experience 1.74 ± 1.72 adverse outcomes.  
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Table 6. Adverse outcome characteristics of glycaemic and lipid variability for predicting 

complications and mortality in diabetes mellitus using machine learning 

 

Table 7. Biochemical predictor characteristics of glycaemic and lipid variability for predicting 

complications and mortality in diabetes mellitus using machine learning 

Predictors Mean Standard Deviation 

HbA1c 

Baseline (%, n=24064) 8.56 1.94 

Mean (%, n=22625) 8.64 1.36 

Standard Deviation 1.28 0.851 

Coefficient of Variation 14.5 8.76 

Total Cholesterol (TC) 

Baseline (mmol/L, n=23532) 4.74 1.12 

Mean (mmol/L, n=20445) 4.82 0.871 

Standard Deviation 0.663 0.459 

Coefficient of Variation 13.5 7.95 

High Density Lipoprotein-Cholesterol (HDL-C) 

Baseline (mmol/L, n=23178) 1.24 0.402 

Mean (mmol/L, n=19303) 1.25 0.362 

Standard Deviation 0.161 0.100 

Coefficient of Variation 1.24 0.403 

Low Density Lipoprotein-Cholesterol (LDL-C) 

Outcome Number of 

events 

Incidence 

rate 

Age of 

onset 

Number of pre-existing 

comorbidities 

Mean onset in follow-

up (days) 

Mortality 12372 49.12% 69.7 ± 

12.0 

2.71 ± 1.66 3056 ±1396 

Renal 5389 21.40% 66.5 ± 

12.2 

3.51 ± 1.67 3500 ±1367 

Ophthalmological 4705 18.68% 62.8 ± 

11.9 

3.11 ± 1.81 3590±1296 

Ischemic Heart 

Disease 

4532 17.99% 66.8 ± 

11.6 

3.70 ± 1.74 3700±1119 

Acute myocardial 

infarction 

3178 12.62% 68.3 ± 

11.1 

4.15 ± 1.59 3882±859 

Neurological 1861 7.39% 64.2 ± 

11.9 

4.03 ± 1.77 3952±835 

Atrial Fibrillation 1846 7.33% 70.4 ± 

10.3 

3.75 ± 1.74 3993±715 

Heart Failure 1810 7.19% 68.9 ± 

11.4 

4.61 ± 1.45 3993±711 

Ischemic Stroke 1350 5.36% 69.2 ± 

10.9 

3.55 ± 1.79 4037±634 

Intracranial 

Hemorrhage 

1049 4.17% 68.4 ± 

11.7 

3.45 ± 1.67 4075±530 

Dementia 952 3.78% 74.4 ± 

8.30 

3.37 ± 1.68 4077±535 

Peripheral vascular 

disease 

711 2.82% 66.6 ± 

12.4 

4.39 ± 1.85 4094±505 

Osteoporosis 275 1.09% 72.1 ± 

11.3 

3.01 ± 1.68 4146 ±299 
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Baseline (mmol/L, n=23075) 1.24 0.913 

Mean (mmol/L, n=18803) 2.78 0.734 

Standard Deviation 0.553 0.359 

Coefficient of Variation 20.3 12.5 

 Triglyceride 

Baseline (mmol/L, n=23518) 1.80 1.72 

Mean (mmol/L, n=20398) 1.86 1.43 

Standard Deviation 6.90 1.15 

Coefficient of Variation 30.8 17.8 

Other Tests 

Baseline NLR 3.80 4.16 

Baseline Haemoglobin Count (g/dL) 12.5 1.99 

Hypoglycaemia Frequency 0.537 1.38 
The number of patients included for the calculation of the mean is the same as the number of patients included for 

the calculation of standard deviation and coefficient of variation. 

 

Multivariate Cox regression analysis was applied to 7 913 patients from the study 

cohort. The multivariate Cox regression for all-cause mortality is presented in Table 8. Mean 

HbA1c was found to be protective against mortality in univariate analysis (HR= 0.964, p < 

0.0001), but became predictive in multivariate analysis. However, after adjusting for 

haematological malignancies, iron deficiency status and lipid-lowering drug use (n=652), 

HbA1c mean and variability did not remain significant predictors. Amongst the lipid predictors 

(n=7913), only HDL-C mean (HR= 0.60, 95% CI= [0.51, 0.71], p < 0.0001) and SD (HR=2.18, 

95% CI= [1.51, 3.14], p < 0.0001) remained significant after adjusting for cancer status and 

lipid-lowering agent use.  

 

Table 8. Multivariate Cox regression of all-cause mortality in diabetes mellitus using machine 

learning 

Predictor Hazard Ratio (HR) 95% Confidence Interval (CI) P-Value 

Age 1.04 [1.03, 1.04] <0.0001 

Male 1.18 [1.11, 1.27] <0.0001 

Diabetes Duration 0.956 [0.943, 0.970] <0.0001 

HbA1c 

Mean 1.09 [1.04, 1.15] <0.001 

Standard Deviation 1.10 [0.825, 1.47] 0.511 

Coefficient of Variation 0.998 [0.973, 1.02] 0.869 
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Total Cholesterol (TC) 

Mean 1.14 [0.994, 1.30] 0.061 

Standard Deviation 0.787 [0.501, 1.24] 0.299 

Coefficient of Variation 1.02 [1.00, 1.05] 0.050 

High Density Lipoprotein-Cholesterol (HDL-C) 

Mean 0.603 [0.513, 0.708] <0.0001 

Standard Deviation 2.19 [1.52, 3.14] <0.0001 

Low Density Lipoprotein-Cholesterol 

Mean 0.916 [0.811, 1.03] 0.157 

Standard Deviation 1.19 [0.866, 1.64] 0.281 

Coefficient of Variation 0.992 [0.983, 1.00] 0.062 

 Triglyceride (TG) 

Baseline 0.996 [0.979, 1.01] 0.694 

Mean 1.06 [0.993, 1.14] 0.080 

Standard Deviation 0.932 [0.851, 1.02] 0.126 

Coefficient of Variation 0.998 [0.995, 1.00] 0.190 

Other Tests 

Baseline Neutrophil-

Lymphocyte Ratio 

1.01 [1.01, 1.02] <0.001 

Baseline Haemoglobin 

Count 

0.911 [0.889, 0.934] <0.0001 

Baseline Anaemia 1.08 [0.981, 1.19] 0.119 

Hypoglycaemia 

Frequency 

1.03 [1.01, 1.05] 0.002 

Anti-Diabetic Agent 

Sulphonylurea 1.08 [1.02, 1.16] 0.015 

Biguanide 0.616 [0.575, 0.660] <0.0001 

Dipeptidyl peptidase-4 

Inhibitor 

0.706 [0.424, 1.18] 0.181 

Thiazolidinedione 0.885 [0.761, 1.03] 0.110 

 

In terms of prediction of secondary outcomes, the predictors were similar to those for 

all-cause mortality and are summarized in Table 9. HbA1c variability is predictive of adverse 

outcomes besides osteoporosis, ischemic stroke, and AMI. HbA1c CV is mildly protective of 

IHD (HR= 0.996, 95% CI= [0.993, 1.00], p = 0.046). In terms of lipid predictors, elevated 

mean total cholesterol is predictive of most adverse outcomes, except for AF (HR= 0.889, 95% 

CI= [0.838, 0.943], p < 0.0001). Increased mean HDL-C lowers the risk for adverse outcomes, 

except for osteoporosis (HR= 1.78, 95% CI= [1.29, 2.44], p < 0.001). Heterogenous predictions 

were noted for HDL-C variability and mean LDL-C. By contrast, increased LDL-C variability 
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predicts an increased risk for various adverse outcomes. In terms of the predictiveness of 

triglyceride level, both its value and variability were found to be predictive of different adverse 

outcomes, except for CV of triglyceride being protective against osteoporosis (HR= 0.990, 95% 

CI= [0.981, 0.998], p= 0.020). Baseline NLR and frequency of hypoglycaemic episodes were 

predictive for a similar set of adverse outcomes, where they increased the risk for PVD), HF, 

and all-cause mortality, but were associated with a lower risk for ophthalmological 

complications. 

 

Table 9. Univariate Cox regression for adverse outcomes of glycaemic and lipid variability for 

predicting complications and mortality in diabetes mellitus using machine learning 

Predictor Hazard Ratio (HR) 95% Confidence Interval (CI) P-Value 

Neurological Complications (n=1861) 

Age 1.01 [1.00, 1.01] <0.001 

Male 1.47 [1.34, 1.62] <0.0001 

Diabetes Duration 1.04 [1.03, 1.06] <0.0001 

HbA1c    

Baseline 0.999 [0.974, 1.02] 0.934 

Mean 1.18 [1.14, 1.22] <0.0001 

Standard Deviation 1.13 [1.07, 1.19] <0.0001 

Coefficient of Variation 1.01 [1.00, 1.01] 0.014 

Total Cholesterol    

Baseline 0.960 [0.917, 1.01] 0.081 

Mean 1.06 [1.00, 1.12] 0.042 

Standard Deviation 1.16 [1.06, 1.27] 0.001 

Coefficient of Variation 1.01 [1.00, 1.02] 0.001 

HDL Cholesterol    

Baseline 1.01 [0.891, 1.15] 0.863 

Mean 0.634 [0.544, 0.741] <0.0001 

Standard Deviation 0.555 [0.323, 0.954] 0.033 

Coefficient of Variation 1.00 [0.994, 1.01] 0.881 

LDL Cholesterol    

Baseline 1.00 [0.946, 1.06] 0.964 

Mean 1.03 [0.961, 1.11] 0.398 

Standard Deviation 1.27 [1.11, 1.45] <0.001 

Coefficient of Variation 1.01 [1.00, 1.01] 0.001 

Triglyceride    

Baseline 0.962 [0.928, 0.997] 0.035 

Mean 1.07 [1.05, 1.10] <0.0001 

Standard Deviation 1.05 [1.02, 1.09] 0.002 
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Coefficient of Variation 1.00 [0.999, 1.00] 0.229 

Baseline NLR 0.994 [0.981, 1.01] 0.357 

Baseline Haemoglobin 

Count 

0.945 [0.923, 0.968] <0.0001 

Baseline Anaemia 1.17 [1.06, 1.29] 0.002 

Hypoglycaemia 

Frequency 

1.01 [0.977, 1.04] 0.612 

Anti-Diabetic Agent    

Sulphonylurea 0.936 [0.853, 1.03] 0.162 

Biguanide 0.978 [0.892, 1.07] 0.629 

DPP4 Inhibitor 0.923 [0.392, 1.73] 0.608 

Thiazolidinedione 0.718 [0.539, 0.956] 0.023 

Alpha-Glucosidase 

Inhibitor 

1.05 [0.812, 1.37] 0.694 

Ophthalmological Complications (n=4705) 

Age 0.999 [0.997, 1.00] 0.427 

Male 1.01 [0.955, 1.07] 0.694 

Diabetes Duration 1.11 [1.10, 1.12] <0.0001 

HbA1c    

Baseline 1.01 [0.997, 1.03] 0.109 

Mean 1.25 [1.23, 1.28] <0.0001 

Standard Deviation 1.07 [1.04, 1.11] <0.0001 

Coefficient of Variation 0.999 [0.995, 1.00] 0.508 

Total Cholesterol    

Baseline 0.996 [0.969, 1.03] 0.804 

Mean 1.10 [1.06, 1.14] <0.0001 

Standard Deviation 1.06 [0.994, 1.13] 0.077 

Coefficient of Variation 1.00 [0.997, 1.01] 0.760 

HDL Cholesterol    

Baseline 0.993 [0.917, 1.08] 0.870 

Mean 0.842 [0.768, 0.923] <0.001 

Standard Deviation 0.432 [0.305, 0.613] <0.0001 

Coefficient of Variation 0.990 [0.986, 0.995] <0.0001 

LDL Cholesterol    

Baseline 0.994 [0.959, 1.03] 0.720 

Mean 1.05 [1.00, 1.10] 0.032 

Standard Deviation 1.06 [0.974, 1.16] 0.170 

Coefficient of Variation 1.00 [0.999, 1.00] 0.342 

Triglyceride    

Baseline 1.01 [0.993, 1.03] 0.245 

Mean 1.07 [1.05, 1.08] <0.0001 

Standard Deviation 1.05 [1.03, 1.07] <0.0001 

Coefficient of Variation 0.999 [0.997, 1.00] 0.287 

Baseline NLR 0.986 [0.977, 0.995] 0.003 

Baseline Haemoglobin 

Count 

1.01 [0.993, 1.03] 0.265 

Baseline Anaemia 0.939 [0.881, 1.00] 0.051 
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Hypoglycaemia 

Frequency 

0.949 [0.926, 0.972] <0.0001 

Anti-Diabetic Agent    

Sulphonylurea 0.972 [0.918, 1.03] 0.344 

Biguanide 1.41 [1.33, 1.50] <0.0001 

DPP4 Inhibitor 1.01 [0.660, 1.56] 0.954 

Thiazolidinedione 1.09 [0.937, 1.26] 0.271 

Alpha-Glucosidase 

Inhibitor 

0.948 [0.798, 1.13] 0.540 

Renal Complications  (n=5389) 

Age 1.02 [1.02, 1.02] <0.0001 

Male 1.12 [1.06, 1.18] <0.0001 

Diabetes Duration 1.05 [1.04, 1.06] <0.0001 

HbA1c    

Baseline 1.00 [0.987, 1.02] 0.813 

Mean 1.13 [1.11, 1.15] <0.0001 

Standard Deviation 1.07 [1.04, 1.10] <0.0001 

Coefficient of Variation 1.00 [1.00, 1.01] 0.089 

Total Cholesterol    

Baseline 0.999 [0.973, 1.03] 0.943 

Mean 1.08 [1.05, 1.12] <0.0001 

Standard Deviation 1.18 [1.11, 1.24] <0.0001 

Coefficient of Variation 1.01 [1.01, 1.01] <0.0001 

HDL Cholesterol    

Baseline 1.00 [0.929, 1.08] 0.979 

Mean 0.510 [0.464, 0.560] <0.0001 

Standard Deviation 0.372 [0.268, 0.516] <0.0001 

Coefficient of Variation 1.00 [0.996, 1.00] 0.906 

LDL Cholesterol    

Baseline 1.00 [0.969, 1.04] 0.942 

Mean 1.04 [0.998, 1.09] 0.062 

Standard Deviation 1.27 [1.18, 1.38] <0.0001 

Coefficient of Variation 1.01 [1.01, 1.01] <0.0001 

Triglyceride    

Baseline 0.989 [0.970, 1.01] 0.231 

Mean 1.10 [1.08, 1.11] <0.0001 

Standard Deviation 1.06 [1.04, 1.08] <0.0001 

Coefficient of Variation 1.00 [1.00, 1.00] 0.045 

Baseline NLR 1.00 [0.994, 1.01] 0.821 

Baseline Haemoglobin 

Count 

0.908 [0.896, 0.921] <0.0001 

Baseline Anaemia 1.46 [1.38, 1.55] <0.0001 

Hypoglycaemia 

Frequency 

1.00 [0.982, 1.02] 0.865 

Anti-Diabetic Agent    

Sulphonylurea 1.29 [1.22, 1.36] <0.0001 

Biguanide 0.970 [0.920, 1.02] 0.275 
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DPP4 Inhibitor 0.761 [0.485, 1.19] 0.234 

Thiazolidinedione 1.00 [0.867, 1.16] 0.986 

Alpha-Glucosidase 

Inhibitor 

1.14 [0.986, 1.33] 0.075 

Dementia (n=952) 

Age 1.08 [1.07, 1.08] <0.0001 

Male 0.717 [0.630, 0.815] <0.0001 

Diabetes Duration 0.981 [0.956, 1.01] 0.140 

HbA1c    

Baseline 1.00 [0.968, 1.04] 0.891 

Mean 1.00 [0.953, 1.05] 0.963 

Standard Deviation 1.11 [1.03, 1.19] 0.005 

Coefficient of Variation 1.01 [1.00, 1.02] 0.003 

Total Cholesterol    

Baseline 0.984 [0.922, 1.05] 0.617 

Mean 0.945 [0.871, 1.03] 0.181 

Standard Deviation 1.01 [0.864, 1.17] 0.935 

Coefficient of Variation 1.00 [0.995, 1.01] 0.411 

HDL Cholesterol    

Baseline 1.02 [0.852, 1.23] 0.818 

Mean 0.956 [0.779, 1.17] 0.664 

Standard Deviation 1.35 [0.660, 2.74] 0.414 

Coefficient of Variation 1.01 [0.995, 1.02] 0.342 

LDL Cholesterol    

Baseline 1.05 [0.971, 1.14] 0.220 

Mean 0.925 [0.835, 1.03] 0.140 

Standard Deviation 1.17 [0.960, 1.42] 0.119 

Coefficient of Variation 1.01 [1.00, 1.01] 0.013 

Triglyceride    

Baseline 0.990 [0.946, 1.04] 0.643 

Mean 1.00 [0.956, 1.05] 0.877 

Standard Deviation 0.981 [0.917, 1.05] 0.569 

Coefficient of Variation 0.999 [0.995, 1.00] 0.532 

Baseline NLR 1.01 [0.993, 1.02] 0.302 

Baseline Haemoglobin 

Count 

0.927 [0.897, 0.957] <0.0001 

Baseline Anaemia 1.43 [1.25, 1.64] <0.0001 

Hypoglycaemia 

Frequency 

1.01 [0.964, 1.05] 0.723 

Anti-Diabetic Agent    

Sulphonylurea 1.22 [1.08, 1.39] 0.002 

Biguanide 0.962 [0.846, 1.09] 0.548 

DPP4 Inhibitor 0.459 [0.115, 1.84] 0.271 

Thiazolidinedione 0.857 [0.592, 1.24] 0.414 

Alpha-Glucosidase 

Inhibitor 

0.729 [0.473, 1.12] 0.152 

Osteoporosis (n=275) 
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Age 1.06 [1.04, 1.07] <0.0001 

Male 0.249 [0.186, 0.335] <0.0001 

Diabetes Duration 1.01 [0.961, 1.06] 0.776 

HbA1c    

Baseline 0.957 [0.893, 1.03] 0.205 

Mean 1.00 [0.916, 1.10] 0.943 

Standard Deviation 0.879 [0.747, 1.04] 0.123 

Coefficient of Variation 0.985 [0.969, 1.00] 0.059 

Total Cholesterol    

Baseline 0.997 [0.885, 1.12] 0.954 

Mean 1.06 [0.918, 1.23] 0.411 

Standard Deviation 0.966 [0.720, 1.30] 0.819 

Coefficient of Variation 0.997 [0.981, 1.01] 0.757 

HDL Cholesterol    

Baseline 1.01 [0.723, 1.41] 0.958 

Mean 1.78 [1.29, 2.44] <0.001 

Standard Deviation 1.49 [0.412, 5.42] 0.542 

Coefficient of Variation 0.987 [0.968, 1.01] 0.222 

LDL Cholesterol    

Baseline 1.04 [0.902, 1.21] 0.566 

Mean 1.03 [0.854, 1.24] 0.773 

Standard Deviation 0.940 [0.639, 1.38] 0.752 

Coefficient of Variation 0.996 [0.985, 1.01] 0.489 

Triglyceride    

Baseline 1.04 [0.991, 1.09] 0.117 

Mean 0.918 [0.818, 1.03] 0.145 

Standard Deviation 0.855 [0.708, 1.03] 0.105 

Coefficient of Variation 0.990 [0.981, 0.998] 0.020 

Baseline NLR 0.986 [0.951, 1.02] 0.454 

Baseline Haemoglobin 

Count 

0.853 [0.803, 0.906] <0.0001 

Baseline Anaemia 1.71 [1.32, 2.21] <0.0001 

Hypoglycaemia 

Frequency 

1.04 [0.969, 1.12] 0.263 

Anti-Diabetic Agent    

Sulphonylurea 0.924 [0.726, 1.18] 0.522 

Biguanide 1.21 [0.948, 1.54] 0.127 

DPP4 Inhibitor 0.808 [0.113, 5.76] 0.831 

Thiazolidinedione 0.608 [0.271, 1.37] 0.228 

Alpha-Glucosidase 

Inhibitor 

1.10 [0.567, 2.14] 0.775 

Peripheral Vascular Disease (n=711) 

Age 1.02 [1.01, 1.02] <0.0001 

Male 1.36 [1.17, 1.58] <0.0001 

Diabetes Duration 0.968 [0.939, 0.998] 0.035 

HbA1c    

Baseline 1.03 [0.987, 1.07] 0.195 
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Mean 1.20 [1.14, 1.26] <0.0001 

Standard Deviation 1.19 [1.11, 1.28] <0.0001 

Coefficient of Variation 1.01 [1.01, 1.02] 0.001 

Total Cholesterol    

Baseline 0.938 [0.870, 1.01] 0.095 

Mean 1.14 [1.05, 1.25] 0.003 

Standard Deviation 1.34 [1.21, 1.50] <0.0001 

Coefficient of Variation 1.02 [1.01, 1.03] <0.0001 

HDL Cholesterol    

Baseline 1.10 [0.905, 1.35] 0.330 

Mean 0.452 [0.346, 0.590] <0.0001 

Standard Deviation 1.82 [0.840, 3.93] 0.130 

Coefficient of Variation 1.03 [1.02, 1.03] <0.0001 

LDL Cholesterol    

Baseline 0.937 [0.853, 1.03] 0.177 

Mean 1.11 [0.994, 1.24] 0.065 

Standard Deviation 1.54 [1.26, 1.88] <0.0001 

Coefficient of Variation 1.01 [1.01, 1.02] <0.001 

Triglyceride    

Baseline 1.00 [0.959, 1.05] 0.898 

Mean 1.09 [1.06, 1.13] <0.0001 

Standard Deviation 1.09 [1.05, 1.13] <0.0001 

Coefficient of Variation 1.01 [1.00, 1.01] <0.0001 

Baseline NLR 1.02 [1.00, 1.03] 0.016 

Baseline Haemoglobin 

Count 

0.868 [0.836, 0.901] <0.0001 

Baseline Anaemia 1.71 [1.46, 2.01] <0.0001 

Hypoglycaemia 

Frequency 

1.07 [1.03, 1.12] 0.001 

Anti-Diabetic Agent    

Sulphonylurea 0.897 [0.772, 1.04] 0.159 

Biguanide 0.768 [0.663, 0.889] 0.889 

DPP4 Inhibitor 0.943 [0.304, 2.93] 0.919 

Thiazolidinedione 0.952 [0.634, 1.43] 0.812 

Alpha-Glucosidase 

Inhibitor 

1.81 [1.30, 2.52] <0.001 

Intracranial Haemorrhage (n=1049) 

Age 1.03 [1.02, 1.03] <0.0001 

Male 1.20 [1.06, 1.35] 0.004 

Diabetes Duration 0.966 [0.942, 0.990] 0.006 

HbA1c    

Baseline 1.02 [0.988, 1.05] 0.218 

Mean 0.991 [0.945, 1.04] 0.703 

Standard Deviation 1.04 [0.970, 1.12] 0.265 

Coefficient of Variation 1.01 [0.998, 1.01] 0.168 

Total Cholesterol    

Baseline 0.950 [0.893, 1.01] 0.104 
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Mean 0.945 [0.875, 1.02] 0.155 

Standard Deviation 1.13 [1.00, 1.29] 0.050 

Coefficient of Variation 1.01 [1.00, 1.02] 0.026 

HDL Cholesterol    

Baseline 0.980 [0.826, 1.16] 0.815 

Mean 0.757 [0.619, 0.926] 0.007 

Standard Deviation 1.17 [0.598, 2.30] 0.644 

Coefficient of Variation 1.01 [1.00, 1.02] 0.020 

LDL Cholesterol    

Baseline 0.975 [0.902, 1.05] 0.513 

Mean 0.875 [0.794, 0.964] 0.007 

Standard Deviation 1.15 [0.954, 1.38] 0.145 

Coefficient of Variation 1.01 [1.00, 1.01] 0.008 

Triglyceride    

Baseline 0.994 [0.955, 1.04] 0.776 

Mean 1.07 [1.03, 1.10] <0.001 

Standard Deviation 1.05 [1.00, 1.10] 0.033 

Coefficient of Variation 1.00 [0.998, 1.01] 0.462 

Baseline NLR 1.00 [0.989, 1.02] 0.623 

Baseline Haemoglobin 

Count 

0.923 [0.894, 0.952] <0.0001 

Baseline Anaemia 1.19 [1.05, 1.35] 0.008 

Hypoglycaemia 

Frequency 

1.04 [0.997, 1.08] 0.075 

Anti-Diabetic Agent    

Sulphonylurea 1.17 [1.04, 1.32] 0.012 

Biguanide 0.875 [0.775, 0.988] 0.031 

DPP4 Inhibitor 0.850 [0.318, 2.27] 0.746 

Thiazolidinedione 1.05 [0.763, 1.45] 0.764 

Alpha-Glucosidase 

Inhibitor 

0.887 [0.610, 1.29] 0.533 

Ischemic Stroke and Transient Ischemic Attack/ Transient Ischemic Attack (n=1350)  

Age 1.03 [1.03, 1.04] <0.0001 

Male 0.998 [0.897, 1.11] 0.964 

Diabetes Duration 0.989 [0.968, 1.01] 0.327 

HbA1c    

Baseline 0.984 [0.954, 1.01] 0.291 

Mean 1.05 [1.01, 1.09] 0.024 

Standard Deviation 0.994 [0.929, 1.06] 0.854 

Coefficient of Variation 0.997 [0.990, 1.00] 0.350 

Total Cholesterol    

Baseline 0.987 [0.935, 1.04] 0.637 

Mean 1.03 [0.967, 1.11] 0.329 

Standard Deviation 1.10 [0.977, 1.24] 0.114 

Coefficient of Variation 1.01 [0.999, 1.01] 0.113 

HDL Cholesterol    

Baseline 1.01 [0.872, 1.18] 0.868 
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Mean 0.800 [0.671, 0.954] 0.013 

Standard Deviation 1.20 [0.660, 2.18] 0.551 

Coefficient of Variation 1.01 [1.00, 1.02] 0.061 

LDL Cholesterol    

Baseline 0.967 [0.903, 1.04] 0.335 

Mean 1.00 [0.922, 1.09] 0.942 

Standard Deviation 1.14 [0.962, 1.34] 0.133 

Coefficient of Variation 1.00 [0.999, 1.01] 0.119 

Triglyceride    

Baseline 0.981 [0.943, 1.02] 0.342 

Mean 1.05 [1.02, 1.09] 0.003 

Standard Deviation 1.03 [0.985, 1.08] 0.193 

Coefficient of Variation 1.00 [0.997, 1.00] 0.995 

Baseline NLR 1.01 [0.992, 1.02] 0.404 

Baseline Haemoglobin 

Count 

0.986 [0.958, 1.02] 0.337 

Baseline Anaemia 1.07 [0.956, 1.20] 0.232 

Hypoglycaemia 

Frequency 

1.00 [0.963, 1.04] 0.963 

Anti-Diabetic Agent    

Sulphonylurea 1.19 [1.07, 1.33] 0.001 

Biguanide 1.18 [1.06, 1.32] 0.003 

DPP4 Inhibitor 0.491 [0.158, 1.52] 0.218 

Thiazolidinedione 0.765 [0.551, 1.06] 0.107 

Alpha-Glucosidase 

Inhibitor 

0.891 [0.640, 1.24] 0.496 

Ischemic Heart Disease (n=4532) 

Age 1.02 [1.02, 1.02] <0.0001 

Male 1.03 [0.975, 1.10] 0.266 

Diabetes Duration 1.02 [1.01, 1.04] <0.0001 

HbA1c    

Baseline 0.996 [0.980, 1.01] 0.647 

Mean 1.05 [1.03, 1.08] <0.0001 

Standard Deviation 0.987 [0.951, 1.02] 0.470 

Coefficient of Variation 0.996 [0.993, 1.00] 0.046 

Total Cholesterol    

Baseline 1.01 [0.978, 1.04] 0.634 

Mean 1.25 [1.21, 1.30] <0.0001 

Standard Deviation 1.22 [1.16, 1.29] <0.0001 

Coefficient of Variation 1.01 [1.01, 1.01] <0.0001 

HDL Cholesterol    

Baseline 1.12 [1.03, 1.21] 0.006 

Mean 0.642 [0.581, 0.710] <0.0001 

Standard Deviation 0.596 [0.421, 0.844] 0.004 

Coefficient of Variation 1.00 [0.998, 1.01] 0.366 

LDL Cholesterol    

Baseline 1.01 [0.972, 1.05] 0.675 
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Mean 1.27 [1.22, 1.33] <0.0001 

Standard Deviation 1.43 [1.32, 1.56] <0.0001 

Coefficient of Variation 1.01 [1.00, 1.01] <0.0001 

Triglyceride    

Baseline 0.981 [0.960, 1.00] 0.084 

Mean 1.09 [1.07, 1.10] <0.0001 

Standard Deviation 1.05 [1.02, 1.07] <0.0001 

Coefficient of Variation 1.00 [0.999, 1.00] 0.313 

Baseline NLR 1.00 [0.996, 1.01] 0.379 

Baseline Haemoglobin 

Count 

0.925 [0.911, 0.939] <0.0001 

Baseline Anaemia 1.29 [1.21, 1.38] <0.0001 

Hypoglycaemia 

Frequency 

1.00 [0.979, 1.02] 0.983 

Anti-Diabetic Agent    

Sulphonylurea 1.16 [1.09, 1.23] <0.0001 

Biguanide 1.10 [1.03, 1.16] 0.003 

DPP4 Inhibitor 1.13 [0.752, 1.71] 0.553 

Thiazolidinedione 1.13 [0.974, 1.31] 0.107 

Alpha-Glucosidase 

Inhibitor 

1.20 [1.03, 1.41] 0.023 

Acute Myocardial Infarction (n=3178) 

Age 1.03 [1.03, 1.03] <0.0001 

Male 0.80 [0.914, 1.05] 0.562 

Diabetes Duration 0.989 [0.975, 1.00] 0.103 

HbA1c    

Baseline 1.01 [0.986, 1.03] 0.603 

Mean 1.07 [1.04, 1.10] <0.0001 

Standard Deviation 1.01 [0.966, 1.05] 0.726 

Coefficient of Variation 0.998 [0.994, 1.00] 0.338 

Total Cholesterol    

Baseline 0.990 [0.956, 1.03] 0.562 

Mean 1.18 [1.13, 1.23] <0.0001 

Standard Deviation 1.22 [1.14, 1.30] <0.0001 

Coefficient of Variation 1.01 [1.01, 1.02] <0.0001 

HDL Cholesterol    

Baseline 0.992 [0.900, 1.09] 0.867 

Mean 0.522 [0.462, 0.591] <0.0001 

Standard Deviation 0.680 [0.453, 1.02] 0.064 

Coefficient of Variation 1.01 [1.00, 1.01] 0.005 

LDL Cholesterol    

Baseline 0.982 [0.940, 1.03] 0.430 

Mean 1.18 [1.12, 1.24] <0.0001 

Standard Deviation 1.41 [1.28, 1.56] <0.0001 

Coefficient of Variation 1.01 [1.00, 1.01] <0.0001 

Triglyceride    

Baseline 0.977 [0.952, 1.00] 0.076 
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Mean 1.09 [1.08, 1.11] <0.0001 

Standard Deviation 1.06 [1.03, 1.08] <0.0001 

Coefficient of Variation 1.00 [1.00, 1.00] 0.042 

Baseline NLR 1.00 [0.993, 1.01] 0.601 

Baseline Haemoglobin 

Count 

0.895 [0.879, 0.911] <0.0001 

Baseline Anaemia 1.48 [1.38, 1.60] <0.0001 

Hypoglycaemia 

Frequency 

1.01 [0.982, 1.03] 0.619 

Anti-Diabetic Agent    

Sulphonylurea 1.22 [1.14, 1.31] <0.0001 

Biguanide 0.961 [0.896, 1.03] 0.271 

DPP4 Inhibitor 0.836 [0.474, 1.47] 0.535 

Thiazolidinedione 0.868 [0.710, 1.06] 0.164 

Alpha-Glucosidase 

Inhibitor 

1.23 [1.02, 1.48] 0.032 

Atrial Fibrillation  (n=1846) 

Age 1.04 [1.04, 1.05] <0.0001 

Male 0.884 [0.807, 0.968] 0.008 

Diabetes Duration 0.989 [0.975, 1.00] 0.103 

HbA1c    

Baseline 1.00 [0.975, 1.03] 0.975 

Mean 0.961 [0.926, 0.996] 0.029 

Standard Deviation 1.05 [0.993, 1.11] 0.090 

Coefficient of Variation 1.01 [1.00, 1.01] 0.024 

Total Cholesterol    

Baseline 1.03 [0.990, 1.08] 0.134 

Mean 0.889 [0.838, 0.943] <0.0001 

Standard Deviation 1.12 [1.02, 1.23] 0.020 

Coefficient of Variation 1.01 [1.01, 1.02] <0.001 

HDL Cholesterol    

Baseline 1.02 [0.894, 1.15] 0.823 

Mean 0.667 [0.572, 0.779] <0.0001 

Standard Deviation 0.988 [0.590, 1.65] 0.962 

Coefficient of Variation 1.01 [1.00, 1.02] 0.005 

LDL Cholesterol    

Baseline 1.03 [0.969, 1.09] 0.389 

Mean 0.832 [0.773, 0.895] <0.0001 

Standard Deviation 1.20 [1.04, 1.37] 0.011 

Coefficient of Variation 1.01 [1.01, 1.01] <0.0001 

Triglyceride    

Baseline 0.982 [0.950, 1.01] 0.266 

Mean 1.04 [1.01, 1.07] 0.019 

Standard Deviation 0.998 [0.955, 1.04] 0.914 

Coefficient of Variation 0.998 [0.995, 1.00] 0.147 

Baseline NLR 1.00 [0.992, 1.02] 0.574 
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Baseline Haemoglobin 

Count 

0.907 [0.886, 0.929] <0.0001 

Baseline Anaemia 1.41 [1.28, 1.56] <0.0001 

Hypoglycaemia 

Frequency 

1.03 [1.00, 1.06] 0.030 

Anti-Diabetic Agent    

Sulphonylurea 1.17 [1.07, 1.28] 0.001 

Biguanide 0.933 [0.851, 1.02] 0.136 

DPP4 Inhibitor 0.716 [0.321, 1.60] 0.413 

Thiazolidinedione 0.965 [0.751, 1.24] 0.781 

Alpha-Glucosidase 

Inhibitor 

1.00 [0.765, 1.31] 0.997 

Heart Failure (n=1810) 

Age 1.03 [1.03, 1.04] <0.0001 

Male 1.27 [1.17, 1.39] <0.0001 

Diabetes Duration 0.937 [0.919, 0.955] <0.0001 

HbA1c    

Baseline 1.02 [0.993, 1.04] 0.170 

Mean 1.05 [1.02, 1.09] 0.004 

Standard Deviation 1.10 [1.04, 1.16] <0.001 

Coefficient of Variation 1.01 [1.00, 1.01] 0.001 

Total Cholesterol    

Baseline 0.999 [0.954, 1.05] 0.961 

Mean 1.06 [0.997, 1.12] 0.065 

Standard Deviation 1.28 [1.19, 1.38] <0.0001 

Coefficient of Variation 1.02 [1.01, 1.03] <0.0001 

HDL Cholesterol    

Baseline 0.976 [0.857, 1.11] 0.709 

Mean 0.417 [0.352, 0.494] <0.0001 

Standard Deviation 1.25 [0.754, 2.07] 0.387 

Coefficient of Variation 1.02 [1.02, 1.03] <0.0001 

LDL Cholesterol    

Baseline 1.02 [0.962, 1.08] 0.517 

Mean 1.06 [0.988, 1.14] 0.103 

Standard Deviation 1.51 [1.33, 1.71] <0.0001 

Coefficient of Variation 1.01 [1.01, 1.02] <0.0001 

Triglyceride    

Baseline 1.00 [0.973, 1.03] 0.930 

Mean 1.09 [1.07, 1.12] <0.0001 

Standard Deviation 1.06 [1.03, 1.09] <0.001 

Coefficient of Variation 1.00 [1.00, 1.01] 0.006 

Baseline NLR 1.02 [1.01, 1.03] <0.0001 

Baseline Haemoglobin 

Count 

0.835 [0.815, 0.854] <0.0001 

Baseline Anaemia 1.85 [1.67, 2.04] <0.0001 

Hypoglycaemia 

Frequency 

1.08 [1.06, 1.11] <0.0001 
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Anti-Diabetic Agent    

Sulphonylurea 1.30 [1.19, 1.43] <0.0001 

Biguanide 0.618 [0.563, 0.678] <0.0001 

DPP4 Inhibitor 0.608 [0.253, 1.46] 0.266 

Thiazolidinedione 0.722 [0.540, 0.964] 0.027 

Alpha-Glucosidase 

Inhibitor 

1.17 [0.905, 1.50] 0.235 

All-Cause Mortality 

Age 1.06 [1.06, 1.06] <0.0001 

Male 1.14 [1.10, 1.18] <0.0001 

Diabetes Duration 0.930 [0.923, 0.936] <0.0001 

HbA1c    

Baseline 0.997 [0.988, 1.01] 0.549 

Mean 0.964 [0.951, 0.977] <0.0001 

Standard Deviation 1.11 [1.09, 1.14] <0.0001 

Coefficient of Variation 1.01 [1.01, 1.01] <0.0001 

Total Cholesterol    

Baseline 0.992 [0.976, 1.01] 0.340 

Mean 0.965 [0.943, 0.988] 0.003 

Standard Deviation 1.29 [1.25, 1.33] <0.0001 

Coefficient of Variation 1.02 [1.02, 1.03] <0.0001 

HDL Cholesterol    

Baseline 0.964 [0.921, 1.01] 0.114 

Mean 0.571 [0.537, 0.607] <0.0001 

Standard Deviation 3.11 [2.60, 3.72] <0.0001 

Coefficient of Variation 0.970 [0.927, 1.02] 0.194 

LDL Cholesterol    

Baseline 1.02 [0.995, 1.04] 0.131 

Mean 0.919 [0.893, 0.946] <0.0001 

Standard Deviation 1.56 [1.48, 1.64] <0.0001 

Coefficient of Variation 1.02 [1.01, 1.02] <0.0001 

Triglyceride    

Baseline 0.989 [0.978, 1.00] 0.0557 

Mean 1.06 [1.05, 1.07] <0.0001 

Standard Deviation 1.03 [1.02, 1.04] <0.0001 

Coefficient of Variation 1.00 [1.00, 1.00] 0.002 

Baseline NLR 1.03 [1.03, 1.04] <0.0001 

Baseline Haemoglobin 

Count 

0.794 [0.786, 0.801] <0.0001 

Baseline Anaemia 2.11 [2.04, 2.20] <0.0001 

Hypoglycaemia 

Frequency 

1.08 [1.06, 1.09] <0.0001 

Anti-Diabetic Agent    

Sulphonylurea 1.13 [1.09, 1.17] <0.0001 

Biguanide 0.541 [0.522, 0.560] <0.0001 

DPP4 Inhibitor 0.450 [0.324, 0.655] <0.0001 

Thiazolidinedione 0.703 [0.632, 0.782] <0.0001 
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Alpha-Glucosidase 

Inhibitor 

1.05 [0.953, 1.17] 0.305 

 

3.3.4. The relationship between neutrophil-lymphocyte ratio, frequency of hypoglycaemic 

episodes and glycaemic variability 

The average number of hypoglycaemic episodes experienced is 0.537 ± 1.38, and the 

mean baseline NLR is 3.80 ± 4.16. The baseline mean value of HbA1c was 8.56 ± 1.94%. 

Variability, represented by SD and CV, are 1.28 ± 0.851 and 14.5 ± 8.76 respectively. HbA1c 

and lipid variability were significantly associated with baseline NLR with cancer status and 

aspirin use adjusted, and the associations were summarized in Table 10. Similarly, HbA1c 

variability was also found to be positively correlated with hypoglycaemic frequency (SD: OR= 

1.13, 95% CI= [1.12, 1.16], p < 0.0001; CV: OR= 1.02, 95% CI= [1.02, 1.02], p < 0.0001). 

Additionally, triglyceride SD is positively correlated with both LDL-C (SD: OR= 1.86, 95% 

CI= [1.78, 1.93], p < 0.0001; CV: OR= 1.02, 95% CI= [1.02, 1.02], p < 0.0001) and HDL-C 

(OR= 2.92, 95% CI= [2.48, 3.43], p < 0.0001) variability. After the exclusion of calculated 

LDL-C measurements, the significant association between LDL-C variability and triglyceride 

SD remains (SD: OR= 1.90, 95% CI= [1.79, 2.02], p < 0.0001; CV: OR= 1.02, 95% CI= [1.02, 

1.02], p < 0.0001).  

 

Table 10. Significant associations between HbA1c/ lipid variability with baseline neutrophil-

lymphocyte ratio 

 

SD: standard deviation; CV: coefficient of variation; HDL-C: high density lipoprotein-cholesterol; 

HbA1c/ Lipid Variability Hazard ratio [95% Confidence 

Interval] 

P-Value 

HbA1c: SD 1.01 [1.01, 1.01] < 0.0001 

HbA1c: CV 1.13 [1.10, 1.17] < 0.0001 

HDL-C: SD 1.00 [1.00, 1.00] < 0.0001 

HDL-C: CV 1.19 [1.15, 1.23] < 0.0001 

Triglyceride: CV 1.08 [1.01, 1.16] 0.019 

Total Cholesterol: SD 1.01 [1.00, 1.01] < 0.0001 

Total Cholesterol: CV 1.10 [1.07, 1.13] < 0.0001 
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The analysis was adjusted to cancer status and aspirin use. 

 

3.3.5. Survival learning results 

A regularized and weighted RSF model was devised, with significant variables 

identified from univariate Cox regression inputted. This yielded the importance ranking and 

minimal depth of each variable in the tree structure of the model, as shown in Figure 4. The 

corresponding decision rules derived by using the regularized and weighted RSF model were 

generated based on the out-of-bag (OOB) validation dataset (n=5 037; Figure 5). The minimal 

depth assumes that variables with a high impact on the prediction are those that most frequently 

split nodes nearest to the root node, where they partition the largest samples of the population. 

Minimal depth measures important risk factors by averaging the depth of the first split for each 

variable over all trees within the forest. Smaller minimal depth values indicate that the variable 

separates large groups of observations, and therefore has a large impact on the prediction. Both 

importance ranking and minimal depth were used to uncover the most important variables for 

predicting time-to-event complication outcomes. 
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Figure 4.  Importance ranking and minimal depth of significant univariable variables to predict 

mortality and complications using regularized and weighted random survival forest model 
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CKD: chronic kidney disease; HF: heart failure; AMI: acute myocardial infarction; HT: 

hypertension; IHD: ischaemic heart disease; SD: standard deviation; CV: coefficient of 

variation; HDL: high density lipoprotein cholesterol; LDL: low density lipoprotein cholesterol; 

COPD: chronic obstructive pulmonary disease; DPP4Ii: dipeptidyl peptidase-4 inhibitor; PVD: 

peripheral vascular disease; AF: atrial fibrillation; ICH: intracranial haemorrhage; CLD: 

chronic liver disease 
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Figure 5. Main tree-based decision rules to predict mortality and complications using 

regularized and weighted random survival forest model 
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CKD: chronic kidney disease; HF: heart failure; AMI: acute myocardial infarction; IHD: 

ischaemic heart disease; AF: atrial fibrillation; ICH: intracranial haemorrhage 

 

Figure 6 shows the decision tree incorporating variables most important for the prediction of 

respective outcomes. 

 

The performance of the model for survival analysis of each complication outcome is 

compared with baselines including RSF and Cox models, based on a five-fold cross-validation 

approach (Table 11). According to the evaluation metric of Harrell’s C-index, our model 

outperforms both RSF and Cox for survival analysis of all-cause mortality, renal complications, 

PVD, ischemic stroke, AF, HF, ICH, IHD, AMI, and osteoporosis complications, and almost 
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the same for dementia, neurological, ophthalmological, and complications. The model also 

shows higher prediction accuracy according to evaluation metrics of precision, recall, and AUC.  

 

Table 11. Model performance comparison analyses with five-fold cross validation 

 

 

3.4. Discussion and limitations 

3.4.1 Discussion 

 To the best of our knowledge, present study is the first to use RSF to predict for 

complications and mortality amongst patients with T2DM. There are several major findings of 

the present study: 1) HbA1c and lipid variability can be used to evaluate the risk for a diverse 

range of adverse outcomes in diabetes; 2) HbA1c variability is positively associated with 

increased NLR and frequency of hypoglycaemia episodes; 3) there are interactions present 

between the value and variability of different lipid parameters.  

 Although HbA1c and lipid indices were assumed to show a positive linear correlation 

with mortality risk, there is emerging evidence suggesting that the mortality risk increases at 

the extreme ends of the parameters. Currie et al. first demonstrated the increase in 

cardiovascular event incidence and all-cause mortality under both low and high mean HbA1c 
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in 2010, which explained the increased mortality under aggressive glycaemic control in clinical 

trials. (4, 71) Subsequent cohort studies provided further evidence for the J-shaped association 

between mean HbA1c and all-cause mortality. (6, 7, 112) Furthermore, recent studies have 

found that similar to HbA1c, a U-shaped relationship is demonstrated between the lipid indices 

and adverse outcomes. (113, 114, 115) These findings explain the “reverse epidemiology” 

observed in both the present study and existing studies, where risk factors for the outcome 

lower the event risk instead, such as the lowering of intracranial haemorrhage and AF risk 

under raised mean LDL-C in this cohort. (116) Overall, the J-shaped associations justify the 

heterogeneous predictions by mean HbA1c and lipid indices.  

 Interestingly, both the mean and variability of LDL-C were not significant predictor for 

all-cause mortality after adjusting to the use of lipid-lowering agents in the present study. This 

may be explained by the introduction of lipid-lowering therapy to patients with high LDL-C 

levels, which has been shown to lower the risk of MACE (117).  Also, it has been reported that 

the use of statin reduces all-cause mortality over three years amongst patients with T2DM 

above the age of 65 in the community, independent of multidimensional impairments and age 

(118). The addition of other lipid-lowering agents, such as ezetimibe, lowers the risk of AMI, 

ischemic stroke and cardiovascular mortality (119). In addition, patients with higher LDL-C 

levels may have poorer glycaemic control and a higher cardiovascular risk profile overall, 

resulting in the use of more antidiabetic agents (120). The protective effects of the antidiabetic 

agents may have masked the effects of high LDL-C on MACE. The resultant increase in LDL-

C variability amongst patients with lowered LDL-C level after medication use may have 

contributed to the statistical insignificance of LDL-C variability in the prediction for mortality. 

 Heterogeneity is also demonstrated in the prediction findings of HDL-C variability. 

Currently, research on the predictive value of HDL-C variability is limited and yields 

conflicting findings. Whilst some studies report a greater risk for adverse events under 
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increased HDL-C variability, others reported insignificant findings. (121, 122, 123, 124, 125) 

Furthermore, as suggested by prior studies, the reflection of lifestyle changes by HDL-C 

variability may be a contributing factor, where the difference in the effect of interaction 

between lifestyle factors such as smoking, alcoholism, and physical activity leads to the varied 

predictive value of HDL-C variability across different outcomes. (125, 126) Since SD is 

positively correlated to the mean, given the value and variability of HDL-C yields opposite 

effects, the effects of variability may be reduced when SD is used as a measure of variability. 

(121) The standardization of variability measures can encourage the application of parameters 

of variability into clinical practice.  

 Although the mechanism behind HbA1c and lipid variability is unclear, several 

hypotheses were raised and explored. Large-scale cohort studies have demonstrated the 

association between HbA1c variability with all-cause mortality and other adverse outcomes. 

(60, 83, 127) In terms of HbA1c variability, it is proposed that its relationship to intermittent 

hypoglycaemia underlies the increased mortality risk. Indeed, our team recently reported a 

significant relationship between the frequency of hypoglycaemia episodes and HbA1c 

variability, with the latter predicting all-cause mortality, cardiovascular-specific mortality and 

various diabetic-related complications. (128) Besides mortality due to hypoglycaemia, a 

common and lethal complication in diabetes, intermittent hypoglycaemia induces increased 

oxidative stress (81, 82), causing endothelial dysfunction and chronic inflammation, ultimately 

leading to increased mortality risk. (79, 80, 129) It has been reported that both acute and chronic 

glycaemic variability can induce oxidative stress and lead to chronic inflammation. (130) 

Indeed, increased metabolic variability can induce damage to different organs, leading to 

complications such as HF. (131) The present study provides supporting evidence for the 

hypothesis by demonstrating a significant association between HbA1c variability, 

hypoglycaemic frequency, and baseline NLR. Other than NLR, further inflammatory markers 
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such as C-reactive protein were found to be associated with HbA1c variability. (132) Similar 

to HbA1c, the mechanism for lipid variability to increase mortality risk is speculated to be 

associated with induced oxidative stress. It is speculated that large fluctuations in both LDL-C 

and HDL-C can lead to plaque instability, therefore releasing atherogenic substances and hence 

increasing mortality risk. (99, 133) The significant association between baseline NLR and 

variability across different lipid indices provide insights towards the proposed underlying 

mechanisms between lipid variability and chronic inflammation. Additionally, the increased 

variability across biomarkers may reflect generalized frailty. (99) 

 The effects of anti-diabetic agents on the risk of adverse events in diabetic patients are 

well studied. (134) In agreement with the present study, sulphonylurea use has been reported 

to raise the risk of mortality, cardiovascular events, and renal impairment significantly. (135, 

136, 137) It should be noted that the use of add-on therapy to insulin may indicate more severe 

diabetes or used to slow the progression of complications. Hence drug use is the effect, rather 

than the cause of the adverse outcome. This may explain the increased ophthalmological 

complication and cardiovascular event risk in biguanide and alpha-glucosidase inhibitors in the 

present study, contrary to the cardiovascular protective effects reported by existing studies. 

(138, 139, 140) Additionally, the insignificant effect of DPP4I and thiazolidinedione may be 

attributed to the fewer number of patients prescribed these drugs in the present cohort. 

Previously, thiazolidinediones have been associated with a greater risk of HF. In our study, this 

was associated with a lower risk of HF on univariate Cox regression, but not after propensity 

score matching for other antidiabetic drugs as seen in other studies from our team on the Hong 

Kong population(22). Nevertheless, thiazolidinedione has been associated with beneficial 

effects such as reducing the incidence of AF (141), which are explicable by reverse remodelling. 

(142, 143, 144, 145) Finally, the annualized mortality rate in our study was 5.87% in our cohort, 

compared to 1.92% in another local study (57). The reason is that our study cohort included 
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only diabetic patients who received insulin therapy, which would invariably include those at 

the highest risk. Moreover, the inclusion of patients who were already on insulin therapy in 

2009 meant that few patients benefited from newer anti-diabetic drug classes such as SGLT2I, 

which can reduce mortality, (146). 

Statistical methods such as classification and regression trees are commonly used and 

are familiar to clinicians but are limited by high variance and poor performance (103, 147). 

These can be overcome by RSF, which builds hundreds of tree branches and outputs the results 

by voting (109). RSF reduces variance and bias by using all the collected variables, and then 

automatically assesses the nonlinear effects and complex interactions amongst them (108). RSF 

is fully non-parametric, including the effects of the treatments and predictor variables, whereas 

traditional methods such as the Cox model utilize a linear combination of attributes (148). RSF 

has been applied in serval risk stratification models for different diseases (149, 150, 151, 152, 

153, 154, 155), and has been shown to outperform classical statistical methods, such as the Cox 

proportional hazards models (104, 149). It should be noted that in the present study, there are 

HRs close to one, which may indicate a statistically significant, but marginally clinically 

relevant factor. The large sample size with small portion of patients with the clinical outcome 

evaluated in the present study may be the underlying reason. Despite the HR being close to one, 

the marginally significant risk factors in accumulation can still result in clinical significance 

difference, such as in the cases of polygenic mutations resulting in diseases. 

Our study demonstrates the principle that machine learning algorithms can further 

improve risk prediction of time-to-event (mortality and complications) in diabetic patients 

receiving insulin therapy. The generated importance rankings and minimal depths of prognostic 

risk variables can be applied in clinical practice as an easy-for-use complication score for early 

survival risk identification. Through complication-specific risk stratification amongst diabetic 
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patients, a personalised management approach with close monitoring for specific 

complications that individual patients are at high risk of can be adopted.  

 

3.4.2. Strengths and limitations 

 The major strengths of the present study include: 1) the effects of clinical and 

biochemical parameters on adverse effects were assessed both independently, and under 

multivariate analysis each other; 2) the risk for a diverse range of adverse events in diabetes is 

evaluated; 3) interrelations between chronic inflammation and both HbA1c and lipid variability 

is explored to give insights on the underlying mechanisms in the pathogenesis; 4) variability is 

examined by more than one measure to limit the effects of inherent bias; 5) long follow-up 

period allows for the capture of serial variability and long term adverse outcome. 

 Several limitations should be noted for the present study. Firstly, similar to other 

observational studies, there is potential under-coding, missing data, and coding errors. As a 

result of the missing data across different variables, there is only 7 913 included in the 

multivariate Cox regression model, which significantly reduces the statistical power of the 

analysis. Moreover, observational studies can only establish correlation, not causation. 

Furthermore, the duration of diabetes was not accounted for. However, given that all patients 

in the study cohort were prescribed insulin for glycaemic control, an advanced stage of diabetes 

can be inferred. Moreover, there is a large change in the management guidelines, therapeutic 

options, and treatment targets throughout follow-up. Additionally, there is a lack of data on the 

patient’s BMI and lifestyle factors, such as smoking, alcoholism, and diet, from the database. 

These variables may affect the lipid levels, in particular HDL-C. The analysis of all-cause 

mortality is especially affected, given the wide range of contributing factors and influential 

effect of lifestyle choices. Finally, as the main aim of this study was to examine the predictive 

values of HbA1c or lipid variability for adverse outcomes, the initial analyses on the 
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relationships between these variability indices, NLR and hypoglycaemia were exploratory. The 

inter-relationships between these variables, including the use of mediation analysis, will be 

explored in future studies. There is also an extensive analysis of adverse outcomes in Table 9, 

which may be difficult to read. 

 

3.5. Conclusion 

 In conclusion, the present study demonstrates that high HbA1c and lipid variability are 

associated with an increased risk for adverse outcomes in diabetes across different organ 

systems. The association between hypoglycaemic frequency and baseline NLR with HbA1c 

and lipid variability suggests that intermittent hypoglycaemia and chronic inflammation 

contribute to the mechanism underlying the pathogenic effect of fluctuating glycated 

haemoglobin and lipid levels. Machine learning techniques, such as RSF, have been 

incorporated and was able to improve the accuracy of the predictive models. Future studies on 

the interactions between lipid variability can help to facilitate the application of variability 

measures in clinical risk stratification. The effects of the sequence of diabetic adverse outcomes 

on the ultimate patient survival can be explored to gain insights into the systemic pathogenesis 

of diabetes. 
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Chapter 4. Development of a predictive risk model for all-cause mortality in 

diabetic patients in Hong Kong 

4.1. Introduction  

T2DM is one of the most common metabolic conditions, with an increasing prevalence 

attributable to ageing, sedentary lifestyles, environmental changes, and better disease 

management. Patients with this condition are at an increased risk of premature death. Existing 

risk models have been developed, such as QDiabetes for predicting new-onset diabetes (156), 

in addition to CORE (157), BRAVO (158) and Michigan (159) models for predicting disease 

progression, complications and mortality. These have generated good predictive results in 

Western cohorts but are limited by their direct applicability to Asian populations. For example, 

Chinese patients have a lower body mass index threshold for diabetes development and have a 

higher propensity to suffer from CKD as a result (160, 161).  Whilst Asian population-specific 

models are available (162, 163, 164, 165), these have generally not incorporated temporal 

measures of variability for longitudinal data or machine learning approaches, both of which 

can enhance risk prediction (166, 167). Indeed, with the rapid development of big data analytics, 

it has become easier to improve discrimination by analysing complex interactions among 

variables. Previously, a machine learning-driven approach has demonstrated superior 

performance in predicting diabetes onset in a Chinese cohort (168). 

In this territory-wide study, with the aid of machine/deep learning approaches, we 

developed a risk model for mortality prediction using multi-parametric data from different 

domains. These include baseline comorbidities, measures of variability of fasting glucose and 

HbA1c, inflammatory and nutritional indices and drug prescription details. We tested the 

hypothesis that machine learning methods (RSF (108)) and deep neural survival learning 

models (DeepSurv (169)) can significantly improve predictive performance when compared to 

Cox regression-based models. 
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4.2. Methods 

4.2.1. Study design and data source 

The study was approved by The Joint Chinese University of Hong Kong – New 

Territories East Cluster Clinical Research Ethics Committee. The inclusion criteria were 

patients who received anti-diabetic medications or had ICD-9 codes for T2DM, and attended 

any of the 43 public hospitals or their associated ambulatory or outpatient facilities managed 

by the Hong Kong Hospital Authority between January 1st to December 31st, 2009. CDARS 

was used in this study. This system has been used for epidemiological research by multiple 

research teams, including our team, in the past (67, 68, 170). 

 

4.2.2. Data extraction 

Baseline patient characteristics, including demographic details such as age and sex, 

prior comorbidities (HF, IHD, ischemic stroke, aborted  SCD of all-cause, AMI, AF, PVD, 

ICH, osteoporosis, dementia, hypertension, COPD, cancer, renal and ophthalmological 

diabetic complications), anti-diabetic and cardiovascular medications. The duration of living 

with T2DM from the point of diagnosis till December 31st, 2009 was also extracted, and 

determined by the earliest fulfilment of any of the following criteria in this order: 1) initial 

documentation of T2DM-related ICD-9 codes; 2) earliest HbA1c >6.5%; 3) earliest FBG > 7 

mmol/L. Time-till all-cause mortality was determined as the number of days from the starting 

date of patient inclusion, January 1st, 2009, till the day of death or the end of the follow up 

period, December 31st, 2019. 

The following laboratory data were collected at baseline: NLR was derived by dividing 

the absolute neutrophil by the lymphocyte count, anaemia defined as <13g/dL for males and 

<12g/dL for females, biochemical test results including 1) creatinine,  sodium, potassium, 2) 
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urea, 3) albumin and total protein, 4) ALT and ALP, 5) FBG and HbA1c; 6) HDL-C, LDL-C, 

total cholesterol, and triglyceride. 

The number of anti-diabetic drugs by class was extracted: 1) insulin, 2) biguanide, 3) 

sulphonylurea, 4) alpha-glucosidase inhibitor, 5) thiazolidinedione, 6) DPP4I, 7) GLP-1A, 8) 

meglitinide. Similarly, the number of anti-hypertensive medications of the following classes 

were also extracted: 1) ACEI/ ARB, 2) beta-adrenergic receptor blocker, 3) CCB, 4) diuretics. 

Lipid-lowering agents were also extracted. 

 

4.2.3. Variability calculations 

To calculate FBG and HbA1c variability, data points were obtained for the period 

between January 1st, 2004 and December 31st, 2008. Only patients with three or more 

measurements for the specific parameter were included in the variability analysis of the 

respective parameter. The different measures are detailed below.  

1) SD, 2) absolute variability score defined as 100 x no. of measurements > 0.5 / no. of 

measurements, 3) percentage variability score defined as 100 x no. of measurements > 10% of 

previous measurement/ no. of measurements, 4) normalized absolute variability score given by 

(2) / individual mean, 5) normalized percentage variability score given by (3) / individual mean, 

6) SD/ individual baseline, 7) coefficient of variation given by SD / individual mean, 8) 

variability independent of mean given by SD/ individual mean^(ln(population 

SD)/ln(population mean)).  
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4.2.3. Outcomes and statistical analysis 

The primary outcome for the present study is all-cause mortality. Univariate Cox 

regression was applied to identify significant predictors for all-cause mortality and HR with 

95% CI were reported. Variables achieving p <0.10 were included in a diabetes duration-

adjusted multivariate model to improve the chances of including variables that are significant 

only in the presence of others (171). Statistical significance is defined as P-value <0.05. FBG 

and HbA1c variability of the same formula were paired and added to the multivariate model to 

assess their predictiveness through comparison of HR.  

To generate a predictive score, Cox regression was repeated for the final multivariate 

model with measures of variability included. HR between 1-1.50 were awarded 1 mark in the 

score. To adjust for the U-shaped relationship against mortality reported for HDL-C, LDL-C, 

total cholesterol and HbA1c, these parameters were first divided by deciles to serve as cut-offs 

and undergo univariate Cox regression. Thereafter, the decile with the smallest HR was 

selected as a reference and compared against the remaining deciles through univariate Cox 

regression again. The minimum and maximum cut-offs for the deciles that had insignificant 

differences with the reference decile were selected as the cut-offs to be used in the score. To 

demonstrate the U-shaped relationship, the HR of deciles were plotted graphically. Cut-off 

values for continuous variables in the score were found through maximizing sensitivity and 

specificity. Age and diabetes duration were rounded to the nearest whole number, whilst other 

parameters were rounded to two decimal points. The predictive value of the score was 

evaluated through the generation of a ROC curve and AUC calculated. 

To further evaluate the predictive value of the measures of variability, the measures 

were also divided into quartiles, with the first quartile as reference, to perform univariate Cox 

regression and assess the AUC of the quartile cut-offs. The quartile HR of the FBG and HbA1c 
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measures of variability were illustrated graphically. Statistical analyses were performed using 

RStudio software (Version: 1.1.456) and Python (Version: 3.6). 

 

4.2.4. Development of machine/ deep models for survival learning 

Machine/deep learning survival analysis models can directly capture the relationships 

between risk predictors and mortality outcomes without prior functional assumptions typically 

made in Cox analysis models. Here we used an RSF model, a type of machine learning method 

for survival analysis, relying on the intuition that the best survival learning model, when 

combined with weak decision tree learning models, can minimize the overall survival 

prediction errors. The prediction errors are measured by performance evaluators, e.g., precision, 

recall, AUC, and C-index. The OOB method was adopted whenever a bootstrap sample (bag 

ones) was down with a replacement from the training dataset. The bootstrapping technique is 

used to grow the tree and results in well-defined subsets. Some of the bootstraps are duplicates 

and are members of the in-bag subset, and the remaining individuals define the OOB subset for 

the final tree. Each individual in the OOB subset for a tree is passive. A unique terminal node 

membership and terminal node statistic were assigned. An OOB ensemble statistic for each 

individual is formed by combining the terminal node statistics from all trees where an 

individual is an OOB member. Finally, the class with the maximum frequency in the OOB 

ensemble statistic serves as the predicted class label for the member.  

The variable’s importance of interest is calculated as the prediction error (squared loss) 

of the original ensemble event-specific cumulative probability function subtracted from the 

prediction error of the original ensemble event-specific cumulative probability function  

(obtained when each OOB instance is just dropped down its in-bag competing risks tree) (110) 

In this study, RSF was used for mortality prediction and the most important predictors were 
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ranked according to variable importance measure in RSF. Variables that were important 

predictors of risk outcome have a larger importance value, indicating higher predictive strength, 

whereas non-predictive variables have zero or negative values. 

We further employed a nonlinear deep learning survival method termed the Cox 

proportional hazards DeepSurv approach. This can inherently and adaptively model the high-

level interaction patterns among risk predictors and thus can better capture the complex 

nonlinear relationship between patients’ covariates (e.g. clinical features) and mortality 

outcome directly. In contrast, standard survival models like the linear Cox proportional hazards 

model require extensive feature engineering and necessary prior medical knowledge to model 

mortality risk at an individual level. Specifically, DeepSurv is a deep feed-forward neural 

network that can predict the effects of a patient’s baseline covariates on their hazard rate 

parameterized by the weights of the neural network. The input of DeepSurv is the baseline 

variable of the diabetic patient. The hidden layers of DeepSurv consist of a fully connected 

layer of nodes, followed by a dropout layer(172). The output of the DeepSurv is a single node 

with a linear activation which estimates the log-risk function in the Cox model. In this study, 

we train DeepSurv by presetting the objective function to be the average negative log form of 

Cox partial likelihood with L2-regularization (173), to model for mortality risk prediction of 

diabetic patients. Gradient descent optimization was used to find the weights of DeepSurv. The 

hyper-parameters of DeepSurv including the number of hidden layers, number of nodes in each 

layer, and dropout probability were determined from a random hyper-parameter search 

approach (174). 

A five-fold cross validation approach was performed to compare the survival prediction 

performance of RSF and DeepSurv in terms of precision, recall, AUC, and C-index over the 

standard Cox model. The R packages, randomForestSRC (Version 2.9.3), ggplot2 (Version 
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3.3.2), and python package DeepSurv (Version 0.1.0) were used to generate the mortality 

prediction results. 

 

4.3. Results 

4.3.1. Baseline characteristics 

The study cohort included 273876 patients (mean age:  65.4 ± 12.7 years, male: 48.2%, 

diabetes duration= 6.18 ± 4.56 years) with a median follow-up of 142 (interquartile range 

(IQR)= 106-142) months, which corresponded to a total of 2660465 patient-years. The baseline 

demographics, clinical, laboratory and drug details are shown in Tables 12 and 13 for 

continuous and discrete variables, respectively. The most prevalent comorbidities were 

hypertension, IHD and HF. The percentage of patients on n=0, 1, 2, 3, and 4 anti-diabetic 

medications were 13.3%, 34.8%, 46.1%, 5.4%, and 0.4% respectively. At baseline, the fasting 

glucose and HbA1c were 8.02 ± 1.95 mmol/L and 7.75 ± 2.59% respectively. The median 

number for fasting glucose and HbA1c measurements were 7 (IQR= 4-11) and 7 (IQR=4-10) 

respectively. The different measures of variability for fasting glucose or HbA1c are quantified 

for subsequent use to predict mortality. 

 

Table 12. Baseline characteristics for continuous variables for the development of a predictive 

risk model for all-cause mortality in diabetic patients in Hong Kong 

Characteristics  Mean Standard Deviation 

Age 65.4 12.7 

Follow-up Duration (days) 3546 1208 

Diabetes Duration (years) 6.18 4.56 

Liver Function Test 
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Alkaline Phosphatase (U/L) 81.1 37.6 

Alanine Aminotransferase (U/L) 28.8 52.9 

Total Protein (g/L) 74.5 6.67 

Albumin (g/L) 38.9 5.04 

Complete Blood Count 

Lymphocyte Count (x109/L) 1.89 1.04 

Neutrophil Count (x109/L) 5.35 2.69 

Neutrophil-Lymphocyte Ratio 3.72 4.37 

Haemoglobin Count (x109/L) 12.8 1.86 

Lipid Profile 

High Density Lipoprotein 

Cholesterol (HDL-C) (mmol/L) 

1.23 0.348 

Low Density Lipoprotein 

Cholesterol (LDL-C) (mmol/L) 

3.09 0.941 

Total Cholesterol (mmol/L)  5.12 1.13 

Triglyceride (mmol/L) 1.63 1.51 

Renal Function Test 

Creatinine (umol/L) 102 87.2 

Potassium (mmol/L) 4.24 0.522 

Sodium (mmol/L) 139 3.48 

 Urea (mmol/L) 6.96 4.11 

Glycaemic Control 

Fasting Blood Glucose 8.02 1.95 

HbA1c 7.75 2.59 

 

Table 13. Baseline characteristics for discrete variables for the development of a predictive risk 

model for all-cause mortality in diabetic patients in Hong Kong 

Characteristics Number Percentage 

Male 132040 48.2 
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Baseline Anaemia 39799 14.5 

Anti-Diabetic Agent 

Biguanide 185881 67.9 

Sulphonylurea 173525 63.4 

Insulin 29697 10.8 

Meglitinide 27 0.01 

Dipeptidyl Peptidase-4 Inhibitor 325 0.12 

Thiazolidinedione 3698 1.35 

Glucagon-like Peptide-1 Agonist 17 0.006 

Acarbose 3292 1.20 

Cardiovascular Drugs 

Angiotensinogen converting enzyme 

inhibitor (ACEI)/ angiotensin receptor 

blocker (ARB) 

121786 44.5 

Beta-adrenergic receptor blocker 92309 33.7 

Calcium Channel Blocker 109225 39.9 

Diuretic 52096 19.0 

Lipid-Lowering Agent 61401 22.4 

Comorbidities 

Diabetic Renal Complication 3381 1.23 

Peripheral Vascular Disease (PVD) 346 0.13 

Diabetic Ophthalmological Complication 3543 1.29 

Ischemic Stroke 8986 3.28 

Sudden Cardiac Death (SCD) 6420 2.34 

Atrial Fibrillation (AF) 7772 2.84 

Heart Failure (HF) 11189 4.09 

Intracranial haemorrhage 3264 1.19 

Ischemic Heart Disease (IHD) 26423 9.65 

Osteoporosis 137 0.050 

Dementia 2842 1.04 
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Hypertension 64246 23.5 

Chronic Obstructive Pulmonary Disease 818 0.299 

Cancer 12190 4.45 

 

4.3.2. Predictors of all-cause mortality 

Over a median follow-up period of 142 (IQR=106-142) months, 91155 deaths were 

recorded (33.3%), which corresponded to an annualized mortality rate of 3.43%. The 

significant univariate predictors for all-cause mortality are presented in Table 14. All measures 

of variability for FBG and HbA1c were significant predictors as well. The graphical 

comparison of HR from quartile cut-offs of FBG and HbA1c variability predictors is shown in 

Figures 6 and 7. 

 

Table 14. Univariate predictors for all-cause mortality in diabetic patients in Hong Kong 

 
Hazard 

Ratio 

95% Confidence 

Interval 

P-Value 

Age 1.090 [1.089, 1.091] < 0.0001 

Male 1.12 [1.11, 1.14] < 0.0001 

Complete Blood Count 

Neutrophil-Lymphocyte Ratio 1.033 [1.032, 1.034] < 0.0001 

Baseline Anaemia 3.50 [3.45, 3.55] < 0.0001 

Lipid Profile 

High Density Lipoprotein Cholesterol 

(HDL-C) 

0.836 [0.815, 0.857] < 0.0001 

Low Density Lipoprotein Cholesterol 

(LDL-C)  

0.883 [0.874, 0.892] < 0.0001 

Total Cholesterol  0.910 [0.903, 0.916] < 0.0001 

Triglyceride 0.963 [0.957, 0.970] < 0.0001 
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Comorbidity 

Renal Diabetic Complication 3.68 [3.54, 3.83] < 0.0001 

Ophthalmological Diabetic 

Complication 

2.73 [2.62, 2.84] < 0.0001 

Peripheral Vascular Disease 4.39 [3.91, 4.93] < 0.0001 

Ischemic Stroke 2.85 [2.78, 2.93] < 0.0001 

Sudden Cardiac Death 2.48 [2.40, 2.56] < 0.0001 

Atrial Fibrillation 3.54 [3.45, 3.64] < 0.0001 

Heart Failure 4.74 [4.64, 4.85] < 0.0001 

Intracranial haemorrhage 2.70 [2.59, 2.82] < 0.0001 

Ischemic Heart Disease 2.24 [2.20, 2.28] < 0.0001 

Osteoporosis 2.87 [2.34, 3.52] < 0.0001 

Dementia 5.92 [5.69, 6.16] < 0.0001 

Hypertension 2.55 [2.52, 2.59] < 0.0001 

Chronic Obstructive Pulmonary 

Disease 

4.55 [4.22, 4.91] < 0.0001 

Cancer 2.48 [2.42, 2.54] < 0.0001 

Fasting Blood Glucose (FBG) 

Mean 1.00 [0.997, 1.01] 0.527 

Absolute Successive Variability Score 1.008 [1.007, 1.008] < 0.0001 

Percentage Successive Variability 

Score 

1.01 [1.009, 1.01] < 0.0001 

Standard Deviation 1.15 [1.15, 1.16] < 0.0001 

Normalized Absolute Successive 

Variability Score 

1.065 [1.06, 1.07] < 0.0001 

Normalized Percentage Successive 

Variability Score 

1.07 [1.067, 1.074] < 0.0001 

Standard Deviation/ Initial FBG 1.01 [1.009, 1.01] < 0.0001 

Coefficient of Variation 1.019 [1.018, 1.019] < 0.0001 

Variability Independent of Mean 1.011 [1.01, 1.011] < 0.0001 

HbA1c  
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Mean 1.07 [1.06, 1.07] < 0.0001 

Absolute Successive Variability Score 1.01 [1.007, 1.01] < 0.0001 

Percentage Successive Variability 

Score 

1.008 [1.08, 1.009] < 0.0001 

Standard Deviation 1.19 [1.18, 1.20] < 0.0001 

Normalized Absolute Successive 

Variability Score 

1.055 [1.05, 1.06] < 0.0001 

Normalized Percentage Successive 

Variability Score 

1.063 [1.06, 1.07] < 0.0001 

Standard Deviation/ Initial HbA1c 1.014 [1.01, 1.014] < 0.0001 

Coefficient of Variation 1.017 [1.016, 1.018] < 0.0001 

Variability Independent of Mean 1.011 [1.01, 1.012] < 0.0001 

 

Figure 6. Graphical representation of quartile hazard ratios from fasting blood glucose 

variability measures 
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Figure 7. Graphical representation of quartile hazard ratios from HbA1c variability measures 

 

The following parameters remained significant predictors following multivariate 

adjustment (Table 15): 1) age and male gender, baseline comorbidities or complications 

(hypertension, HF, AF, COPD, cancer, dementia, ischemic stroke, ICH, aborted SCD, diabetic 

renal and ophthalmological complications), 3) laboratory tests (anaemia, NLR; HDL-C, total 

cholesterol, triglyceride; mean HbA1c and mean FBG), 4) eight different measures of 

variability for HbA1c and FBG. A U-shaped relationship between HDL-C, LDL-C, and total 

cholesterol, but not for triglyceride and all-cause mortality. A U-shaped relationship was also 

observed for HbA1c but not for FBG (Figure 8). 

 

Table 15. Multivariate predictors for all-cause mortality in diabetic patients in Hong Kong 

 
Hazard Ratio 95% Confidence Interval P-Value 

Age 1.06 [1.06, 1.06] < 0.0001 

Male 1.35 [1.31, 1.40] < 0.0001 
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Complete blood count  

Neutrophil-Lymphocyte Ratio 1.02 [1.02, 1.03] < 0.0001 

 Baseline Anaemia 1.94 [1.87, 2.01] < 0.0001 

Lipid Profile  

High Density Lipoprotein 

Cholesterol  

0.891 [0.849, 0.935] < 0.0001 

Low Density Lipoprotein 

Cholesterol  

1.01 [0.986, 1.04] 0.348 

Total Cholesterol 1.04 [1.01, 1.06] 0.001 

Triglyceride 1.02 [1.01, 1.03] 0.001 

Comorbidity 

Renal Diabetic Complication 1.28 [1.20, 1.36] < 0.0001 

Ophthalmological Diabetic 

Complication 

1.18 [1.11, 1.26] < 0.0001 

Peripheral Vascular Disease 1.16 [0.984, 1.37] 0.078 

Ischemic Stroke 1.25 [1.18, 1.32] < 0.0001 

Sudden Cardiac Death 1.17 [1.09, 1.25] < 0.0001 

Atrial Fibrillation 1.30 [1.23, 1.37] < 0.0001 

Heart Failure 1.62 [1.54, 1.69] < 0.0001 

Intracranial haemorrhage 1.28 [1.16, 1.41] < 0.0001 

Ischemic Heart Disease 1.01 [0.971, 1.05] 0.574 

Osteoporosis 1.03 [0.769, 1.38] 0.842 

Dementia 1.81 [1.64, 2.00] < 0.0001 

Hypertension 1.30 [1.26, 1.35] < 0.0001 

Chronic Obstructive 

Pulmonary Disease 

1.43 [1.20, 1.70] < 0.0001 

Cancer 1.41 [1.33, 1.49] < 0.0001 

Mean Fasting Blood Glucose 

(FBG) 

1.01 [1.00, 1.02] 0.011 

Mean HbA1c 1.06 [1.04, 1.08] < 0.0001 

Fasting Blood Glucose (FBG) 
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Absolute Successive 

Variability Score 

1.00 [1.00, 1.00] 0.033 

Percentage Successive 

Variability Score 

1.00 [1.00, 1.00] < 0.0001 

Standard Deviation 1.08 [1.07, 1.10] < 0.0001 

Normalized Absolute 

Successive Variability Score 

1.02 [1.01, 1.02] < 0.0001 

Normalized Percentage 

Successive Variability Score 

1.03 [1.02, 1.03] < 0.0001 

Standard Deviation/ Initial 1.00 [1.00, 1.00] < 0.0001 

Coefficient of Variation 1.01 [1.01, 1.01] < 0.0001 

Variability Independent of 

Mean 

1.01 [1.01, 1.01] < 0.0001 

HbA1c    

Absolute Successive 

Variability Score 

1.00 [1.00, 1.00] < 0.0001 

Percentage Successive 

Variability Score 

1.00 [1.00, 1.00] < 0.0001 

Standard Deviation 1.11 [1.07, 1.14] < 0.0001 

Normalized Absolute 

Successive Variability Score 

1.02 [1.01, 1.03] < 0.0001 

Normalized Percentage 

Successive Variability Score 

1.03 [1.02, 1.04] < 0.0001 

Standard Deviation/ Initial 1.01 [1.01, 1.01] < 0.0001 

Coefficient of Variation 1.01 [1.00, 1.01] < 0.0001 

Variability Independent of 

Mean 

1.00 [1.00, 1.01] < 0.0001 
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Figure 8. Graphical representation of hazard ratios for all-cause mortality 

cause mortality 
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Figure 9: A: low-density lipoprotein-cholesterol (LDL-C); B: high-density lipoprotein-

cholesterol (HDL-C), C: total cholesterol; D: Triglyceride. E: mean HbA1c. F: mean fasting 

blood glucose. The data points were generated by comparing the risks for mortality between 

patients in decile one and the other respective decile. 
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4.3.3. Development of a score-based predictive risk model based on Cox regression 

A score-based predictive risk model for all-cause mortality was developed by 

incorporating significant predictors from multivariate analysis. One point was allocated for 

each significant predictor where the HR was less than 1.5, and 2 points for HRs between 1.5 

and 2.5. Out of the eight measures of variability for HbA1c and FBG, SD had the highest HR 

and greatest statistical significance when adjusted to the multivariate model (FBG: HR= 1.08, 

95% CI= [1.07, 1.10], p < 0.0001; HbA1c: HR= 1.11, 95% CI= [1.07, 1.14], p < 0.0001). It 

was therefore selected to be included in the mortality score. Altogether, the predictive risk 

model had a total score out of 25 (Table 16). ROC analysis was performed, demonstrating an 

AUC of 0.729 (Figure 9).  

 

Table 16. A score-based predictive risk model for all-cause mortality in type 2 diabetes mellitus 

 
Criteria Score 

Age >70 1 

Male Male 1 

Complete Blood Count 

Neutrophil-Lymphocyte Ratio >2.85 1 

Baseline Anaemia Present 2 

Lipid Profile 

High Density Lipoprotein-Cholesterol (mmol/L) <1.10 or > 1.67 1 

Total Cholesterol (mmol/L) <5.60 or > 6.50 1 

Total Triglyceride (mmol/L) >1.24 1 

Comorbidity 

Renal Diabetic Complication Present 1 

Ophthalmological Diabetic Complication Present 1 

Peripheral Vascular Disease Present 1 
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Ischemic Stroke Present 1 

Sudden Cardiac Death Present 1 

Atrial Fibrillation Present 1 

Heart Failure Present 1 

Intracranial haemorrhage Present 1 

Dementia Present 2 

Hypertension Present 1 

Chronic Obstructive Pulmonary Disease Present 1 

Cancer Present 1 

Fasting blood glucose and HbA1C: baseline mean and measures of variability 

Mean HbA1c (%) < 6.34 or > 7.52 1 

Mean Fasting Blood Glucose (FBG) (mmol/L) > 6.12 1 

Standard Deviation: FBG > 1.63 1 

Standard Deviation: HbA1c > 0.79 1 

The cut-off for age is rounded to the nearest whole number. 
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Figure 10. Receiver operating characteristic curve and area under the curve of the score-based 

predictive risk model for all-cause mortality 

 

 

4.3.4. Results of machine/ deep learning approaches for risk modelling 

We performed the RSF model to predict mortality outcomes based on the variables 

mentioned in Table 16. The optimal tree number of the RSF model was selected as 400 using 

a five-fold cross validation approach to minimize the overall squared error rate in the testing 

set as shown in Figure 10. RSF model generated the variable importance ranking as shown in 

Table 17, and patient age, prior HF, baseline anaemia, NLR, cancer, hypertension, HDL-C, 

and renal diabetic complication ranked as the most important predictors to estimate mortality 

probability, followed by HbA1c measures of variability including HbA1c CV, SD of HbA1c, 

and FBG measures of variability such as FBG CV, variability independent of mean FBG, 

absolute successive variability score of FBG.  By identifying important variables, patients with 
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prior risks factors such as pre-existing diabetic nephropathy, can be identified for early 

intervention. Modifiable risk factors, such as baseline anaemia and hypertension, can be treated 

to lower the patient’s risk.  

Figure 11. Selecting optimal tree number for random survival forest model 

 

Table 17. Variable importance ranking generated by random survival forest model 

Characteristics Importance 

Neutrophil-lymphocyte ratio 0.1373 

Age 0.0215 

Anaemia 0.0167 

Standard deviation of fasting blood glucose 0.0112 

Heart failure 0.0061 

Standard deviation of HbA1c 0.0054 

Mean fasting blood glucose 0.0038 

Hypertension 0.0030 

High density lipoprotein-cholesterol 0.0022 



 110 

 

Finally, we compared the survival analysis performance of the RSF model and 

DeepSurv as typical machine learning and deep learning approaches, respectively, over the 

multivariate Cox model to predict the mortality outcome of the diabetic patients using five-fold 

cross validation method. Sobol solver (175) was used to sample each hyper-parameter of 

DeepSurv from a predefined range and k-means cross validation (k=3) was used to evaluate 

the performance of the parameter configuration settings. Using the configuration with the 

largest validation C-index on the testing set to avoid models that overfit, we selected the best 

hyper-parameters of the DeepSurv network which included: number of dense layers=4, 

learning rate=0.0003, ℓ2 regularization coefficient=3.25, dropout rate=0.36, exponential 

learning rate decay constant=0.0005, and momentum=0.86. In all instances, the ReLU 

activation function was applied. (176).   

The comparative performance results of the different models are shown in Table 18.It 

should be noted that although both RSF and DeepSurv are machine learning models, it would 

be difficult to compare the models side by side since DeepSurv operates as a neural network, 

where the sequence of variables inputted would have an effect on the predictive performance. 

However, both models worked with the same set of variables. Both RSF and DeepSurv models 

significantly outperform the multivariate Cox model (precision:0.84, recall: 0.87, AUC: 0.86, 

C index: 0.87 for the DeepSurv model, while precision:0.89, recall: 0.87, AUC: 0.85, C index: 

0.86 for RSF model) based on the same validation inputs of the risk predictors (P for trend 

<0.001). In addition, directly using the Cox model demonstrated better performance than the 

multivariate Cox model (precision:0.78, recall: 0.77, AUC: 0.76, C index: 0.75). The 

advantages of machine/deep learning approaches over the Cox model arise from the fact of 

their strength to describe survival data with both linear and nonlinear effects from covariates. 
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However, it should be noted that in comparison to DeepSurv, RSF allows influential predictors 

to be identified more easily by generating an ‘importance ranking’ of the variables with 

standard bootstrap theory. This enables the investigation of the predictive strength of associated 

risk predictors for clinicians to estimate the mortality probability by just referring to the most 

important variables.  

Table 18. Survival prediction performance comparison between Cox, random survival forest 

and DeepSurv model with five-fold cross-validation approach 

 Precision Recall AUC C-index 

Multivariate Cox 0.77 0.75 0.72  0.73 

Cox score 0.78 0.77 0.76 0.75 

DeepSurv 0.84  0.87 0.86  0.87 

RSF 0.89 0.87  0.85  0.86 

 

4.4. Discussion and limitations 

4.4.1. Discussion 

In this study, we developed a machine learning-driven predictive risk model T2DM 

using a multi-parametric approach with data from different domains.  Our novel findings report 

that 1) measures of variability of fasting glucose and HbA1c show similar predictive power for 

all-cause mortality, regardless of whether adjustments were made for initial values or mean 

values across follow-up; 2) a multi-parametric predictive risk model incorporating variables 

from different domains, including baseline demographics, comorbidities and laboratory tests, 

measures of variability of HbA1c and fasting blood glucose predicted all-cause mortality 

accurately and 3) machine learning-driven algorithms further improved the accuracy of the 

predictive models. 
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Numerous factors have been associated with premature mortality in patients with 

T2DM. Prior epidemiological studies have identified key risk factors including age, 

comorbidities, healthcare utilization patterns and laboratory findings (177, 178). In our study, 

we also identified similar predictors that included advanced age, male gender, high neutrophil 

and low lymphocyte count, increased levels of urea, creatinine and potassium, as well as 

reduced levels of HDL-C, LDL-C, triglycerides, total cholesterol and sodium. Moreover, J-

shaped relationships between LDL-C, HDL-C and total cholesterol were found in our cohort. 

These findings are in keeping with U-shaped relationships between cholesterol and all-cause 

mortality (179) and LDL-C (180) in the general Korean populations. Similar relationships were 

found for HDL-C, where extremely high LDL-C levels were paradoxically associated with 

higher mortality (181). The association between all-cause mortality and elevated creatinine, 

urea and potassium, which are classic features of renal failure, is supported by evidence 

suggesting that the Asian population has a higher risk of developing diabetic nephropathy 

compared with Caucasians (182). It is widely accepted that current predictive models that have 

largely been developed using Western cohorts only provide moderate levels of accuracy and at 

times do not lend themselves relevant to disease management protocols that vary by country. 

The development of country/ territory-specific risk prediction models allows for local 

population-based confounders and clinician management approaches to be incorporated into 

these models thus providing a more accurate risk prediction for the local population.  

Diabetes is characterized by the presence of systemic chronic inflammation, which is 

accompanied by increased oxidative stress. To quantify the degree of inflammation, the NLR 

has been used as a surrogate measure, as it reflects the balance between pro- and anti-

inflammatory pathway activation. In our cohort, we found that raised NLR was associated with 

all-cause mortality risk. We extend previous findings of our group and other groups that 

increased NLR has been associated with insulin resistance in patients newly diagnosed with 



 113 

T2DM (183), the progression of diabetic nephropathy (184), and complications in diabetes. 

Consequently, the increased oxidative stress environment in diabetes can induce adverse 

remodelling of the heart, which in turn increases the risk of HF, arrhythmias, and 

cardiovascular mortality (82, 185). 

Glycaemic variability refers to fluctuations in glucose levels and can be measured as a 

daily variation or variations between different clinical visits (8). Similarly, variability in HbA1c 

levels has been quantified. Both measures have been associated with a higher risk of 

complications and mortality in patients with diabetes mellitus in both randomised controlled 

trials and real-world settings (61, 127, 128, 186). Several methods can be used to calculate 

variability, such as SD, CV and score based on the frequency exceeding a fixed percentage 

change in the absolute values. Prior studies have demonstrated the importance of such measures 

of variability in the prediction of adverse outcomes (166, 167), but a systematic and direct 

comparison of different methodologies has not been made concerning their predictive 

performance. In our study, eight different measures of variability for HbA1c and FBG were 

compared, all of which showed significant predictive values. Our findings illustrate that 

temporal variability in these laboratory tests is important, regardless of the methodology 

employed for its calculation. In our study, we also found that mean FBG did not predict 

mortality. Instead, all the different measures of its variability were predictive, suggesting that 

it is intermittent poor glucose control rather than chronic hypoglycaemia is more closely 

associated with all-cause mortality. 

A standard survival model such as the Cox proportional hazards model is a 

semiparametric analysis model to calculate the effects of observed patient covariates on the 

mortality risk outcome. The Cox model assumes the effect of each covariate is proportional. 

However, in many practical applications, the assumption is not true and risks losing decision 
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information among the observed patient’s covariates. Furthermore, it cannot account for the 

presence of U-shaped relationships as only a single hazard ratio is derived for each covariate. 

Therefore, numerous nonlinear survival models were developed to better fit survival data with 

nonlinear log-risk functions (e.g., time-encoded methods (187)) or learning the nonlinear 

relationship directly using machine learning and deep learning techniques (e.g., feed-forward 

neural network risk-predicting methods (188)). RSF model (108) which is constructed by an 

ensemble of binary decision trees has been identified as an alternative approach to the Cox 

proportional hazards model in analysing time-to-event survival data when the linear 

proportional hazards assumption is violated. DeepSurv (189) whose multi-layer perceptron 

architecture is deeper than Faraggi-Simon’s feed-forward model and minimizes the negative 

log Cox partial likelihood with a risk not necessarily linear, is capable of efficiently learning 

complex non-linear relationships between patient’s covariates and mortality outcome. For 

model selection among the traditional Cox model, the Cox-based score model, RSF, and 

DeepSurv in risk prediction tasks, there exists a trade-off: (1) traditional Cox models (as well 

as Cox-based score models) provide good model interpretation ability but less accurate 

predictions since they sacrificed the consideration of nonlinear inter-dependent patterns among 

the variables; (2) machine learning or deep learning based models significantly improves 

prediction performance especially when the size of instance cohort is quite large (n >1000) but 

some of them (e.g., DeepSurv) may not provide good interpretations about the resulting 

predictions.  

Recurrent neural network is another type of machine learning model. However, in 

recurrent neural network, feedback loops are implemented in the sequential prediction. The 

variables implemented in the model are not time-series data, therefore in the absence of specific 

time-of-occurrence for the clinical variables, the model devised would be quite arbitrary. In a 

feedforward neural network, such as the DeepSurv model that is used in the present study, the 
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variables can be viewed to be stand-alone events, therefore are easier to interpret and a better 

fit to the present analysis. Prediction accuracy and model interpretability are the two most 

important consideration for risk prediction model selection for clinical or medical use.  This 

study demonstrates the superiority of adopting RSF model for the risk prediction due to both 

its highest prediction accuracy and good model interpretability.  

The findings of this study illustrate that the machine/ deep learning model can better 

capture the highly complex and nonlinear relationships between prognostic variables and an 

individual patient’s risk of mortality without prior variable selection or domain knowledge, 

compared with the traditional Cox analysis model. The application of machine/deep learning 

to survival analysis performs much better than the standard Cox model in predicting the 

mortality risk of diabetes mellitus patients. Additionally, machine/deep survival learning 

models will enable clinicians to provide personalised survival estimations based on the 

computed probability of mortality risk. In practice, medical researchers can use machine/deep 

survival learning models to improve overall survival prediction performance based on 

prognostic characteristics of diabetes mellitus patients and subsequently inform early efficient 

treatment options and even reduce mortality risk. 

 

4.4.2. Strengths and limitations 

The following strengths of our study should be noted. Firstly, this was a territory-wide 

study with large patient numbers with complete and long follow-up of mortality over 10 years, 

owing to the linkage of the electronic health records to the death registry. Secondly, the 

availability of different data types including prior comorbidities, laboratory test results that 

included longitudinal data and drug details meant that we were able to build a comprehensive 
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risk model for accurate prediction. Thirdly, the application of the latest machine learning 

techniques was able to further improve the risk predictions of the models.  

However, there are some limitations which should be noted. Firstly, this was a 

retrospective study and therefore carries the potential bias, such as information bias, that is 

found in all studies of this type. Secondly, as with all studies using administrative databases, 

under-coding is a possibility. This was nevertheless mitigated by our definition of diabetes to 

include not only patients with the appropriate ICD coding but also those who were on any 

diabetic medication or met the criteria of diabetes by either HbA1c or fasting glucose results. 

Further research is needed to explore the potential for the present findings to be extrapolated 

onto type 1 diabetic patients. Thirdly, although the deep neural network survival learning 

approach demonstrates significant potential in providing much higher accurate predictions, the 

model’s weak interpretability becomes the main obstacle to its real application in clinical 

practices. Investigations of developing interpretable deep survival learning models that provide 

highly accurate predictions with supportive explanations for diabetes mellitus patients become 

our next research concentration. 

 

4.5. Conclusion 

A multi-parametric model incorporating variables from different domains predicted all-

cause mortality accurately in T2DM and a machine/ deep learning-driven approach provided 

further improvements for risk prediction. 
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Chapter 5. Risk stratification of cardiac arrhythmias and sudden cardiac 

death in type 2 diabetes mellitus patients receiving insulin therapy: a 

population-based cohort study 

5.1. Introduction 

 SCD is a leading cause of death worldwide, accounting for approximately 25% of 

deaths of cardiovascular origin. (190) By contrast, AF, the most common sustained arrhythmia 

among adults, is increasingly prevalent around the world, particularly in developed countries. 

(191, 192) Significant increases in morbidity and mortality amongst large-scale 

epidemiological studies have been demonstrated amongst AF patients, including an increase in 

SCD risk. (193, 194, 195, 196) Furthermore, T2DM increases the risk of SCD, as demonstrated 

by a recent meta-analysis of population-based prospective studies. (197) 

 With the global shift towards a more personalised approach in the management of 

diabetes, there is an increasing interest in exploring the application of new parameters, such as 

HbA1c and lipid variability, to better monitor disease progression and evaluate the prognosis. 

Although the exact mechanisms remain unclear, increased long-term glycaemic and lipid 

variability is hypothesized to lead to endothelial dysfunction via an increase in oxidative stress. 

(198, 199, 200) Since haemoglobin has an average lifespan of 100 days, HbA1c can reflect 

glycaemic control in recent months. Therefore, HbA1c variability is not affected by short-term 

glycaemic changes due to diet and medication changes, thus it is a better representation of long-

term glycaemic variation. However, existing studies have focused on risk prediction of all-

cause mortality and general cardiovascular adverse events, with a limited number of studies 

exploring specifically arrhythmic risks amongst diabetics. (57, 77, 99)  Moreover, those type 2 

diabetics who are partially or fully dependent on insulin are more likely to have severe disease 

and may be at higher risk of arrhythmias. 
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The present study aimed to assess the predictive value of HbA1c and lipid variability 

towards SCD attempt, as well as incident AF in type 2 diabetic patients receiving insulin 

therapy. 

 

5.2. Methods 

5.2.1. Ethics approval and method overview 

 This study is a retrospective territory-wide observational study approved by The Joint 

Chinese University of Hong Kong – New Territories East Cluster Clinical Research Ethics 

Committee (Application reference: 2018.462, 2018.643, 2019.361 [approval date: 15th August 

2019]). The study cohort contains type 2 diabetic patients with insulin prescribed from any 

hospitals and outpatient clinics under the Hong Kong Hospital Authority from January 1st, 2009 

to December 31st, 2009. The study cohort from 10 years ago was selected to ensure there si 

adequate follow-up given the retrospective nature of the study. Clinical and biochemical data 

of eligible patients were obtained through CDARS. CDARS has been used by our team and 

other teams to conduct population-based studies on different cardiovascular diseases (68, 105, 

106, 170), including diabetes mellitus (112, 201, 202, 203), in the past. 

 

5.2.2. Patient data 

 Clinical and biochemical data of the present cohort were extracted from CDARS. The 

outcomes of the present study are the occurrence of SCD and AF from January 1st, 2009 to 

December 31st, 2019. SCD attempt is defined as episodes of ventricular tachycardia (VT), 

ventricular fibrillation (VF), or non-specific cardiac arrest, which were diagnosed under 

clinical judgement with electrocardiographic or biochemical findings and subsequently coded 

into hospital records. VT/ VF on electrophysiological study is not included. Hypoglycaemia-
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induced cases of SCD attempt or AF were defined as cases with dextrose infusion during the 

admission episode or had blood glucose measured ≤ 3.9 mg/mmol. Demographic details, 

including age and sex, were extracted. Patients were categorized into four groups based on their 

age: below age 55, between ages 55-64, between ages 65-74, above and include age 75. The 

number of baseline acute hospitalization episodes between January 1st, 2004 to December 31st, 

2008 was also obtained. Furthermore, the average daily dose of different classes of 

cardiovascular medications and anti-diabetic agents was calculated by averaging the multiple 

between the daily dose frequency and drug dose by all patients with prescriptions of the specific 

drug class.  Eight classes of anti-diabetic agents were examined: insulin, sulphonylurea, 

biguanide, alpha-glucosidase inhibitor, thiazolidinedione, DPP4I, GLP-1A, and meglitinide. 

Data on five classes of cardiovascular drugs were obtained: ACEI/ ARB, beta-adrenergic 

inhibitor, CCB, diuretics, and lipid-lowering agents. 

In terms of patient comorbidities, the number of non-diabetic comorbidities and 

diabetes-related complications between January 1st, 1999 to December 31st, 2008 were obtained. 

The specific diabetic-related complications recorded include 1) amyotrophy, 2) arthropathy, 3) 

HHS/ DKA, 4) hypoglycaemia, 5) neuropathy, 6) retinopathy/ maculopathy, 7) PVD/ 

peripheral angiopathy, 8) nephropathy. Patient’s past medical history of the following 

conditions that initiated between January 1st, 1999 to December 31st, 2008 were also extracted: 

1) CKD, 2) COPD, 3) CLD, 4) HF, 5) IHD, 6) hypertension, 7) AMI, 8) stroke. ICD-9 codes 

were used to extract the study outcomes and pre-existing comorbidities, whilst the diabetic 

complications were extracted using the ICD-9-based Hospital Authority Master Disease Code 

Table (HAMDCT) for greater specificity. 

Baseline data of urinalysis, renal and liver function tests, complete blood count, and 

other blood tests within the year 2008 were extracted. Urinalysis results include: 1) urine 

albumin/ creatinine ratio, 2) creatinine clearance, 3) 24-hour total urine protein and albumin, 
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4) spot urine protein, albumin, and glucose. Indices from complete blood count include: 1) the 

absolute number of haemoglobin, basophil, eosinophil, platelet, red and white blood cells, 2) 

MCV, 3) MCHC, 4) MCH, 5) haematocrit. The presence of anaemia, defined by sex-based 

thresholds of below 13g/dL for males and 12g/dL for females, was obtained. Blood test results 

extracted include 1) serum creatinine, 2) serum sodium and potassium, 3) serum urea and urate, 

4) total serum protein and albumin, 5) total serum bilirubin, ALT and ALP, 6) FBG and random 

blood glucose. The presence of hypoglycaemia at baseline and the frequency of hypoglycaemic 

episodes were extracted. Hypoglycaemia was defined by fasting or random blood glucose 

below 3.9 mg/mmol.  

The following blood results between January 1st, 2004 to December 31st, 2008 were 

extracted for the evaluation of their mean, variability and baseline value: 1) total cholesterol, 

2) HDL-C, 3) LDL-C, 4) total triglyceride and 5) HbA1c. LDL-C results included findings 

from both direct and calculated measurements. Variability analysis of a biochemical index was 

only executed on patients with at least three measurements. 

 

5.2.3. Statistical analysis 

 Statistical analysis was performed using R Studio, and statistical significance was 

defined as P-value < 0.05. Kaplan-Meier survival curve was used to portray the difference in 

actual or aborted SCD and AF survival between patients of different age groups, with the 

statistical significance of the intergroup difference evaluated using the log-rank test. Temporal 

variability of HbA1c and lipid indices were evaluated using calculated parameters of SD and 

CV. CV was measured by multiplying 100-fold the value calculated by the ratio SD and mean. 

SD and CV were used to measure variability since they were less affected by outliers. Whilst 

SD is independent of the mean, CV is independent of the scale thus more sensitive to small 

changes to the mean. To identify predictors for shorter time to aborted or actual SCD and AF 
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occurrence, univariate Cox regression was first applied to clinical and biochemical parameters. 

Patients with missing data were excluded from the analysis. Furthermore, due to their limited 

prescription towards the study cohort, GLP-1A and meglitinide were not included. 

Subsequently, parameters with P-value < 0.10 were included in the multivariate Cox regression 

model. Only patients with no missing data for the selected parameters, and at least three 

measurements for the selected variability predictors, were included in the multivariate models. 

No data imputation was performed. 

 The inter-relations between HbA1c and lipid variability with intermittent 

hypoglycaemia were evaluated using logistic and Poisson regression. Logistic regression was 

also used to examine the relationship between baseline hypoglycaemia frequency and 1) 

occurrence of SCD attempt/ AF or 2) aborted or actual SCD/ AF episodes that were associated 

with hypoglycaemia. ORs were reported from logistic and Poisson regression, whereas HRs 

were reported from Cox regression, along with the 95% CIs. 
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5.3 Results 

5.3.1. Baseline characteristics 

 The present study included 23329 patients (mean age= 64.3 ± 13.8, male= 50.8%, 

average mean HbA1c= 8.6 ± 1.3%, all-cause mortality=50.5%). The cohort was divided into 

four age groups: <55 (n= 5511), 55-64 (n= 5745), 65-74 (n=6032), and>75 (n=6041), with a 

significant intergroup difference in survival for both aborted or actual SCD (p < 0.0001) and 

incident AF (p < 0.0001; Figure 11 and 12). Gender differences were not explored in the 

present study. The baseline clinical characteristics of the cohort are summarized in Table 19. 

Patients had an average of 8.67 ± 7.81 distinct non-diabetic comorbidities and 0.66 ± 0.90 

diabetic complications. On average, patients had a median of 3 (interquartile range= 5) episodes 

of acute hospital admissions between the years 2004-2008. The three commonest diabetic 

complications were retinopathy/ maculopathy (16.5%), nephropathy (14.7%) and 

hypoglycaemia (11.9%), as shown in Table 19. Other pre-existing comorbidities were 

hypertension (36.6%), IHD (16.7%), stroke (12.1%), HF (10.1%), CKD (9.0%), CLD (5.7%), 

AMI (5.3%) and COPD (3.4%). 43.8% of patients (n=10223, mean daily dose= 

95.0±300mg/day) were on lipid-lowering agents over the course of follow up.  
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Figure 12. Kaplan-Meier survival curves of different age groups for sudden cardiac death in 

type 2 diabetes mellitus patients receiving insulin therapy: a population-based cohort study 

 
 

 

Figure 13. Kaplan-Meier survival curves of different age groups for atrial fibrillation in type 2 

diabetes mellitus patients receiving insulin therapy: a population-based cohort study 
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Table 19. Baseline clinical characteristics of risk stratification of cardiac arrhythmias and 

sudden cardiac death in type 2 diabetes mellitus patients receiving insulin therapy: a 

population-based cohort study 

 n % 

Male 11842 50.8 

Comorbidities 

Chronic Kidney Disease 2099 9.00 

Chronic Obstructive Pulmonary 

Disease 

783 3.36 

Heart Failure 2355 10.1 

Ischemic Heart Disease 3904 16.7 

Hypertension 8538 36.6 

Chronic Liver Disease 1335 5.72 

Acute Myocardial Infarction 1224 5.25 

Stroke 2826 12.1 

Pre-existing Diabetic Complications 

Amyotrophy 70 0.300 

Arthropathy 20 0.086 

Hyperosmotic Hyperglycaemia State/ 

Diabetic Ketoacidosis 

1267 5.43 

Hypoglycaemia 2787 11.9 

Neuropathy 1339 5.74 

Retinopathy/ Maculopathy 3848 16.5 

Peripheral Vascular Disease/ 

Angiopathy 

544 2.33 

Nephropathy 3420 14.7 

 

The baseline biochemical characteristics of the present cohort are presented in Table 

20. The average frequency of baseline hypoglycaemic episodes, between January 1st to 

December 31st 2008, was 0.50 ± 1.31 episodes per year. The baseline hypoglycaemia frequency 

significantly correlated with all HbA1c and lipid variability indices (p < 0.0001). Logistic 

regression revealed that baseline hypoglycaemia frequency was a significant predictor of 

aborted or actual SCD (OR= 1.09, 95% CI= [1.06, 1.12], p < 0.0001) and incident AF (OR= 

1.05, 95% CI= [1.01, 1.08], p= 0.007). In total, 2512 and 1846 patients experienced incident 

SCD and AF respectively throughout follow-up. 
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Table 20. Baseline biochemical characteristics of risk stratification of cardiac arrhythmias and 

sudden cardiac death in type 2 diabetes mellitus patients receiving insulin therapy: a 

population-based cohort study 

 Mean Standard 

Deviation 

Urinalysis 

Albumin/Creatinine Ratio (mg/mmol) 40.3 125 

Creatinine Clearance (ml/min) 52.9 35.2 

Spot Protein (g/d) 1.19 1.96 

Spot Albumin (mg/L) 179 555 

Spot Glucose (mmol/L) 12.5 6.54 

24-hours Total Protein (g/d) 1.20 1.99 

24-hours Total Albumin (mg/d) 279 677 

Baseline Blood Test 

Fasting Glucose (mmol/L) 8.90 3.66 

Random Glucose (mmol/L) 12.2 7.36 

HbA1c (%) 8.56 1.93 

Total Cholesterol (mmol/L) 4.74 1.12 

High Density Lipoprotein (HDL) Cholesterol (mmol/L) 1.22 0.387 

Calculated Low Density Lipoprotein (LDL) Cholesterol 

(mmol/L) 

2.74 0.930 

Direct LDL Cholesterol (mmol/L) 2.81 0.924 

Triglyceride (mmol/L) 1.83 1.74 

Thyroid-Stimulating Globulin (TSH) (mIU/L) 2.28 4.13 

Free Thyroxine (fT4) (pmol/L) 14.7 37.3 

Renal Function Test 

Creatinine (umol/L) 146 160 

Sodium (mmol/L) 139 3.33 

Potassium (mmol/L) 4.31 0.507 

Urate (umol/L) 0.412 0.128 

Urea (mmol/L) 8.98 6.11 

Liver Function Test 

Albumin (g/L) 39.1 5.53 

Alanine Aminotransferase (ALT) (U/L) 24.3 21.0 

Alkaline Phosphatase (ALP) (U/L) 84.5 45.8 

Total Bilirubin (umol/L) 11.2 9.07 

Total Protein (g/L) 74.4 7.14 

Complete Blood Count 

Haemoglobin (g/dL) 12.5 1.99 

Mean Corpuscular Haemoglobin (MCH) (pg) 29.7 2.95 

Mean Corpuscular Haemoglobin Concentration (MCHC) 

(g/dL) 

34.0 0.953 

Mean Corpuscular Volume (MCV) (fL) 87.2 7.42 

Hematocrit (L/L) 0.376 0.559 

Basophil (x109/L) 0.029 0.042 

Eosinophil (x109/L) 0.225 0.236 

Lymphocyte (x109/L) 1.87 0.866 

Monocyte (x109/L) 0.539 0.266 

Neutrophil (x109/L) 5.46 2.72 
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Platelet (x109/L) 255 83.4 

Red Blood Cell (x1012/L) 4.25 0.740 

White Blood Cell (x109/L) 8.09 2.86 

 

5.3.2. Predictors of sudden cardiac death and atrial fibrillation 

 In the present cohort, 10.3% of patients suffered from at least one SCD attempt, and 

7.7% suffered from AF. Amongst these cases, 25 and 10 cases of patients experiencing aborted 

or actual SCD and AF were associated with hypoglycaemia on admission, respectively. Tables 

21 and 22 present the univariate Cox regression of predictors for aborted or actual SCD and 

AF respectively. Table 23 presents the univariate Cox regression for VT alone, with HbA1c 

and cholesterol variability found to be predictive (P < 0.05).  

 

Table 21. Univariate predictors for sudden cardiac death in type 2 diabetes mellitus patients 

receiving insulin therapy: a population-based cohort study 

Predictor Hazard Ratio 95% Confidence Interval  P-Value 

Age 1.046 [1.04, 1.05] < 0.0001 

Categorized Age 1.61 [1.55, 1.67] <0.0001 

Male 1.27 [1.17, 1.37] <0.0001 

Frequency of Baseline Acute 

Admissions 

1.005 [1.00, 1.01] <0.0001 

Number of Concomitant DM 

Complications 

1.45 [1.39, 1.51] <0.0001 

Number of Distinct Non-DM 

Comorbidities 

1.053 [1.05, 1.06] <0.0001 

Baseline Haemoglobin Count 1.01 [0.989, 1.03] 0.367 

Baseline Anaemia 0.930 [0.854, 1.01] 0.094 

Hypoglycaemia Frequency 1.11 [1.08, 1.13] <0.0001 

HbA1c (n=20874)    

Baseline 1.00 [0.981, 1.02] 0.870 

Mean 0.997 [0.965, 1.03] 0.834 

Standard Deviation 1.10 [1.06, 1.15] <0.0001 

Coefficient of Variation 1.01 [1.006, 1.02] <0.0001 

Total Cholesterol (n=18926)    

Baseline 0.973 [0.938, 1.01] 0.154 

Mean 1.02 [0.973, 1.08] 0.362 

Standard Deviation 1.33 [1.25, 1.41] <0.0001 

Coefficient of Variation 1.03 [1.02, 1.03] <0.0001 

HDL Cholesterol (n=17930)    
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Baseline 1.00 [0.902, 1.12] 0.943 

Mean 0.471 [0.406, 0.547] <0.0001 

Standard Deviation 2.54 [1.66, 3.90] <0.0001 

Coefficient of Variation 1.024 [1.02, 1.03] <0.0001 

LDL Cholesterol (n=17485)    

Baseline 1.01 [0.962, 1.06] 0.746 

Mean 0.990 [0.929, 1.06] 0.749 

Standard Deviation 1.66 [1.48, 1.85] <0.0001 

Coefficient of Variation 1.015 [1.01, 1.02] <0.0001 

Triglyceride (n=18889)    

Baseline 1.01 [0.991, 1.03] 0.251 

Mean 1.08 [1.06, 1.10] <0.0001 

Standard Deviation 1.05 [1.02, 1.08] 0.001 

Coefficient of Variation 1.00 (1.004) [1.00, 1.01] 0.001 

Anti-Diabetic Agent    

Sulphonylurea 1.18 [1.09, 1.28] <0.0001 

Biguanide 0.464 [0.428, 0.503] <0.0001 

DPP4 Inhibitor 0.587 [0.293, 1.18] 0.132 

Thiazolidinedione 0.663 [0.519, 0.847] 0.001 

Alpha-Glucosidase Inhibitor 1.10 [0.884, 1.37] 0.393 

 

 

Table 22. Univariate predictors for atrial fibrillation in type 2 diabetes mellitus patients 

receiving insulin therapy: a population-based cohort study 

Predictor Hazard Ratio  95% Confidence Interval  P-Value 

Age 1.059 [1.05, 1.06] <0.0001 

Categorized Age 1.86 [1.77, 1.95] <0.0001 

Male 0.903 [0.823, 0.991] 0.031 

Frequency of Baseline Acute 

Admissions 

1.004 [1.00, 1.01] <0.0001 

Number of Concomitant DM 

Complications 

1.20 [1.13, 1.27] <0.0001 

Number of Distinct Non-DM 

Comorbidities 

1.034 [1.03, 1.04] <0.0001 

Baseline Haemoglobin Count 0.981 [0.957, 1.01] 0.131 

Baseline Anaemia 1.02 [0.925, 1.13] 0.674 

Hypoglycaemia Frequency 1.08 [1.05, 1.11] <0.0001 

HbA1c (n=20874)    

Baseline 1.00 [0.978, 1.03] 0.874 

Mean 0.937 [0.902, 0.973] 0.001 

Standard Deviation 1.09 [1.04, 1.15] 0.001 

Coefficient of Variation 1.01 [1.005, 1.02] <0.0001 

Total Cholesterol (n=18926)    

Baseline 1.02 [0.982, 1.07] 0.264 

Mean 0.872 [0.820, 0.927] <0.0001 

Standard Deviation 1.18 [1.08, 1.28] <0.0001 
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Coefficient of Variation 1.016 [1.01, 1.02] <0.0001 

HDL Cholesterol (n=17930)    

Baseline 0.965 [0.852, 1.09] 0.573 

Mean 0.666 [0.566, 0.783] <0.0001 

Standard Deviation 1.82 [1.09, 3.05] 0.022 

Coefficient of Variation 1.024 [1.02, 1.03] <0.0001 

LDL Cholesterol (n=17485)    

Baseline 0.975 [0.924, 1.03] 0.343 

Mean 0.792 [0.734, 0.854] <0.0001 

Standard Deviation 1.31 [1.14, 1.51] <0.001 

Coefficient of Variation 1.015 [1.01, 1.02] <0.0001 

Triglyceride (n=18889)    

Baseline 0.975 [0.944, 1.01] 0.123 

Mean 1.04 [1.01, 1.07] 0.018 

Standard Deviation 0.996 [0.954, 1.04] 0.850 

Coefficient of Variation 0.998 [0.995, 1.00] 0.218 

Anti-Diabetic Agent    

Sulphonylurea 1.10 [1.00, 1.21] 0.045 

Biguanide 0.682 [0.621, 0.748] <0.0001 

DPP4 Inhibitor 0.585 [0.262, 1.30] 0.190 

Thiazolidinedione 0.816 [0.632, 1.05] 0.119 

Alpha-Glucosidase Inhibitor 0.972 [0.743, 1.27] 0.836 

 

 

Table 23. Univariate predictors for ventricular tachycardia in type 2 diabetes mellitus patients 

receiving insulin therapy: a population-based cohort study 

Predictor Hazard Ratio  95% Confidence Interval P-Value 

Age 1.03 [1.02, 1.05] <0.0001 

Categorized Age 1.43 [1.26, 1.63] <0.0001 

Male 1.93 [1.44, 2.59] <0.0001 

Frequency of Baseline Acute 

Admissions 

1.01 [1.00, 1.01] <0.0001 

Number of Concomitant DM 

Complications 

1.26 [1.08, 1.46] 0.003 

Number of Distinct Non-DM 

Comorbidities 

1.06 [1.04, 1.07] <0.0001 

Baseline Haemoglobin Count 0.980 [0.912, 1.05] 0.576 

Baseline Anaemia 0.992 [0.743, 1.32] 0.956 

Hypoglycaemia Frequency 0.986 [0.878, 1.11] 0.806 

HbA1c (n=20874)    

Baseline 1.02 [0.908, 1.06] 0.599 

Mean 0.941 [0.842, 1.05] 0.285 

Standard Deviation 1.13 [0.973, 1.31] 0.111 

Coefficient of Variation 1.02 [1.00, 1.03] 0.031 

Total Cholesterol (n=18926)    

Baseline 1.00 [0.877, 1.13] 0.954 

Mean 1.02 [0.822, 1.16] 0.789 



 129 

Standard Deviation 1.29 [1.05, 1.59] 0.018 

Coefficient of Variation 1.02 [1.01, 1.04] 0.008 

HDL Cholesterol (n=17930)    

Baseline 1.03 [0.708, 1.48] 0.897 

Mean 3.46 [0.168, 0.497] <0.0001 

Standard Deviation 1.52 [0.335, 6.87] 0.589 

Coefficient of Variation 1.03 [1.01, 1.04] 0.002 

LDL Cholesterol (n=17485)    

Baseline 0.954 [0.812, 1.12] 0.566 

Mean 1.01 [0.819, 1.25] 0.923 

Standard Deviation 1.62 [1.12, 2.35] 0.010 

Coefficient of Variation 1.01 [1.00, 1.02] 0.024 

Triglyceride (n=18889)    

Baseline 1.02 [0.963, 1.09] 0.441 

Mean 1.09 [1.03, 1.16] 0.003 

Standard Deviation 1.06 [0.969, 1.15] 0.211 

Coefficient of Variation 1.01 [0.999, 1.01] 0.088 

Anti-Diabetic Agent    

Sulphonylurea 1.26 [0.961, 1.66] 0.094 

Biguanide 0.494 [0.377, 0.650] <0.0001 

DPP4 Inhibitor / / / 

Thiazolidinedione 0.831 [0.391, 1.77] 0.629 

Alpha-Glucosidase Inhibitor 0.757 [0.312, 1.84] 0.539 

 

Table 24 summarizes the results of the multivariate analysis for aborted or actual SCD 

(n=15316), where the following predictors were independent predictors: 1) demographics: age 

(HR= 1.04, 95% CI= [1.02, 1.05], p < 0.0001), male (HR= 1.27, 95% CI= [1.15, 1.41], p < 

0.0001); 2) clinical: frequency of baseline acute admissions (HR= 1.003, 95% CI= [1.003, 

1.003], p < 0.0001), number of concomitant diabetic complications (HR= 1.21, 95% CI= [1.15, 

1.27], p < 0.0001), number of discrete non-diabetic comorbidities (HR= 1.02, 95% CI= [1.01, 

1.02], p < 0.0001), hypoglycaemic frequency (HR= 1.03, 95% CI= [1.00, 1.07], p= 0.032); 3) 

glycaemic and lipid variability: HbA1c SD (HR= 1.74, 95% CI= [1.45, 2.09], p < 0.0001) and 

CV (HR= 0.953, 95% CI= [0.935, 0.972], p < 0.0001), total cholesterol CV (HR= 1.05, 95% 

CI= [1.02, 1.08], p= 0.002), LDL-C SD (HR= 1.73, 95% CI= [1.10, 2.74], p=0.018), 

triglyceride mean (HR= 1.29, 95% CI= [1.17, 1.42], p < 0.0001) and CV (HR= 1.01, 95% CI= 

[1.00, 1.01], p= 0.022); 4) antidiabetic agent: sulphonylurea (HR= 1.39, 95% CI= [1.25, 1.54], 
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p < 0.0001), biguanide (HR= 0.630, 95% CI= [0.563, 0.704], p < 0.0001); 5) cardiovascular 

medications: beta-blocker (HR= 1.24, 95% CI=[1.12, 1.38], p < 0.0001), diuretic (HR= 1.51, 

95% CI= [1.35, 1.67], p < 0.0001). CV of HbA1c (HR= 0.953, 95% CI= [0.935, 0.972], p < 

0.0001) and LDL-C (HR= 0.978, HR= [0.966, 0.991], p= 0.001), in addition to SD of total 

cholesterol (HR= 0.551, 95% CI= 0.275, 0.951), p=0.034) and triglyceride (HR= 0.772, 95% 

CI= [0.656, 0.909], p=0.002) were predictive of SCD on univariate analysis but became 

protective after multivariate analysis.  

 

Table 24. Multivariate analysis showing predictors of sudden cardiac death (n=15316) in type 

2 diabetes mellitus patients receiving insulin therapy: a population-based cohort study 

Predictor Hazard Ratio 95% Confidence Interval P-Value 

Age 1.04 [1.03, 1.06] <0.0001 

Categorized Age 0.928 [0.806, 1.07] 0.295 

Male 1.31 [1.18, 1.45] <0.0001 

Frequency of Baseline Acute 

Admissions 

1.002 [1.001, 1.003] 0.295 

Number of Concomitant DM 

Complications 

1.23 [1.17, 1.29] 0.001 

Number of Distinct Non-DM 

Comorbidities 

1.026 [1.02, 1.03] <0.0001 

Baseline Anaemia 0.919 [0.834, 1.01] 0.084 

Hypoglycaemia Frequency 1.05 [1.02, 1.08] <0.0001 

HbA1c    

Standard Deviation 1.45 [1.21, 1.75] <0.0001 

Coefficient of Variation 0.970 [0.952, 0.989] 0.002 

Total Cholesterol    

Standard Deviation 0.779 [0.421, 1.44] 0.427 

Coefficient of Variation 1.04 [1.00, 1.07] 0.031 

HDL Cholesterol    

Mean 0.780 [0.554, 1.10] 0.156 

Standard Deviation 0.811 [0.115, 5.71] 0.834 

Coefficient of Variation 1.01 [0.984, 1.03] 0.539 

LDL Cholesterol    

Standard Deviation 1.42 [0.912, 2.21] 0.120 

Coefficient of Variation 0.984 [0.972, 0.997] 0.014 

Triglyceride    

Mean 1.36 [1.24, 1.49] <0.0001 

Standard Deviation 0.684 [0.579, 0.808] <0.0001 

Coefficient of Variation 1.007 [1.00, 1.01] 0.012 

Anti-Diabetic Agent    
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Sulphonylurea 1.39 [1.25, 1.54] <0.0001 

Biguanide 0.584 [0.523, 0.651] <0.0001 

Thiazolidinedione 0.870 [0.669, 1.13] 0.299 

 

The findings of multivariate regression analysis for incident AF (n=13267) are 

presented in Table 25, where several significant predictors were identified: 1) demographics: 

age (HR= 1.04, 95% CI= [1.03, 1.06], p < 0.0001)2) clinical: frequency of baseline acute 

admissions (HR= 1.00, 95% CI=[1.00, 1.00], p < 0.0001), hypoglycaemic frequency (HR= 

1.05, 95% CI=[1.02, 1.09], p=0.005); 3) antidiabetic agent: sulphonylurea (HR= 1.12, 95% 

CI= [1.00, 1.26], p= 0.043), biguanide (HR= 0.843, 95% CI= [0.746, 0.954], p= 0.007); 4) 

cardiovascular medication: ACEI/ARB (HR= 1.21, 95% CI= 1.06, 1.37), p=0.004), beta-

blocker (HR= 1.56, 95% CI=[1.39, 1.75], p < 0.0001), CCB (HR= 1.35, 95% CI= [1.20, 1.51], 

p < 0.0001), diuretic (HR= 1.50, 95% CI= [1.34, 1.69], p < 0.0001), lipid-lowering agents 

(HR= 1.16, 95% CI= [1.03, 1.32], p=0.018). 

 

Table 25. Multivariate analysis showing predictors of atrial fibrillation (n=13267) in type 2 

diabetes mellitus patients receiving insulin therapy: a population-based cohort study 

Predictor Hazard Ratio 95% Confidence Interval P-Value 

Age 1.05 [1.03, 1.06] <0.0001 

Categorized Age 1.07 [0.893, 1.28] 0.466 

Male 0.869 [0.762, 0.991] 0.037 

Frequency of Baseline Acute 

Admissions 

1.004 [1.00, 1.01] <0.001 

Number of Concomitant DM 

Complications 

1.07 [0.991, 1.15] 0.084 

Number of Distinct Non-DM 

Comorbidities 

1.00 [0.994, 1.01] 0.459 

Hypoglycaemia Frequency 1.08 [1.04, 1.12] <0.0001 

HbA1c    

Mean 1.02 [0.937, 1.11] 0.648 

Standard Deviation 1.11 [0.743, 1.65] 0.620 

Coefficient of Variation 1.01 [0.969, 1.04] 0.790 

Total Cholesterol    

Mean 1.41 [0.937, 2.02] 0.065 

Standard Deviation 0.635 [0.259, 1.56] 0.321 

Coefficient of Variation 1.02 [0.978, 1.07] 0.316 

HDL Cholesterol    
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Mean 0.674 [0.409, 1.11] 0.121 

Standard Deviation 0.340 [0.03, 4.47] 0.411 

Coefficient of Variation 1.02 [0.986, 1.05] 0.268 

LDL Cholesterol    

Mean 0.539 [0.370, 0.784] 0.001 

Standard Deviation 2.95 [1.37, 6.39] 0.006 

Coefficient of Variation 0.975 [0.955, 0.996] 0.018 

Triglyceride    

Mean 0.947 [0.828, 1.08] 0.426 

Anti-Diabetic Agent    

Sulphonylurea 1.17 [1.03, 1.34] 0.015 

Biguanide 0.824 [0.717, 0.948] 0.007 
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5.4. Discussion and limitations  

5.4.1. Discussion 

 The present study demonstrated the following major findings: 1) clinical and 

biochemical indices are predictive of arrhythmic occurrence amongst diabetics; 2) both the 

mean and variability of HbA1c and lipid indices can predict VT/ VF/ SCD in diabetic patients; 

3) HbA1c variability is associated with hypoglycaemia frequency. To the best of our 

knowledge, the present study is the first to report an association between increased variability 

in HbA1c and lipid markers with increased risk for VT/ VF/ SCD amongst diabetic patients. 

 The prognostic values of HbA1c and lipid variability have been increasingly explored 

over the past decades. However, prior studies have mostly focused on the prediction of all-

cause mortality or cardiovascular events, and studies on predictions for arrhythmogenesis were 

few. (57, 83, 99) Although the underlying pathophysiology remains incompletely elucidated, 

there are several possible contributing factors towards the increased arrhythmic risk amongst 

patients with high glycaemic and lipid variability. First, increased glycaemic variability is 

found to be associated with corrected QT interval (QTc) prolongation and increased QTc 

dispersion, which greatly elevates the risk of ventricular tachyarrhythmia. (204, 205) There is 

evidence suggesting that QTc prolongation may be triggered by spontaneous hypoglycaemia 

due to underlying coronary atherosclerosis or cardiac autonomic neuropathy (206, 207, 208, 

209). Anti-diabetic agent use may also play a role in the prognostic value of glycaemic 

variability. Biguanide users are likely more stable or earlier in the disease course, and thus have 

a lower cardiovascular disease burden. Sulphonylurea use, which was predictive of SCD in the 

present study, is known to have an increased risk of hypoglycaemia. (210) In addition, it has 

been reported human ether-a-go-go-related gene (hERG) channel inhibitory effects of some 

sulphonylurea, which can lead to QT prolongation. (211) Amongst patients on insulin, who 
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have more labile glucose control, the spontaneous glycaemic fluctuations can induce the 

occurrence of arrhythmia. Unfortunately, continuous blood glucose monitoring was not 

available in the present study to demonstrate the association between spontaneous glycaemic 

changes and arrhythmic episodes. 

Furthermore, structural remodelling may also be involved in the pathogenesis. HbA1c 

variability has been associated with left ventricular remodelling and atrial fibrosis, which could 

be arrhythmogenic. (81, 212, 213) In a recent nationwide observational study, an association 

between high lipid variability and increased risk of new-onset AF was reported, and statins 

protected against AF development via the reduction in adverse atrial remodelling. 

(123)Moreover, frequent intermittent hypoglycaemia can induce the release of reactive oxygen 

species (82), thereby leading to increased oxidative stress, chronic inflammation, and 

endothelial dysfunction. (80) Hypoglycaemia itself is arrhythmogenic and can reduce the 

myocardial tolerance to ischemia and reperfusion injuries. (214, 215)  

Similar to glycaemic variability, the increase in oxidative stress with fluctuations in 

lipid levels due to atherogenic substance release from unstable plaque is hypothesized to 

underlie the increased arrhythmic risk. (99) Indeed, glycaemic fluctuations were found to 

increase the formation of atherosclerotic plaques and thinning of the fibrous cap, which 

suggests that intermittent hypoglycaemia may contribute to lipid variability as well. (216) It 

should be noted that whilst triglyceride and HDL-C variability are dependent on glycaemic 

control and other lifestyle factors, the use of statin plays a significant role in LDL-C variability. 

The significant interpersonal variability, as well as the varying effects between different types 

of statins on LDL-C variability, reflects the need for further research in the area. (217, 218) 

The change in HbA1c and lipid variability from predictive of SCD, in univariate 

analysis, to being protective under multivariate analysis, can be attributed to several causes. 

The limitation of cohort size and multivariate analysis may have been selected for patients of 
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more advanced disease and undergone aggressive control. Given that a J-shaped association 

between adverse outcomes and both glycaemic and lipid indices have been described, patients 

with high variability that returned to the optimal glycaemic and lipid range would have had a 

better prognosis. (60, 113, 219) Indeed, the duration of exposure to an optimal glycaemic range 

is inversely associated with diabetic retinopathy progression, even after accounting for the 

effects of glycaemic variability. (220) Additionally, Ceriello et al. reported that patients with 

elevations in both HbA1c and HDL-C variability were at higher risk for diabetic nephropathy 

than those with high variability in only one variable, highlighting the interacting effects 

between variability markers. (95) Therefore, the protective value may be a result of inevitable 

selection bias, the protective effects of pharmacotherapy, and the interactions between different 

indices. (221, 222)  

 

5.4.2. Strengths and limitations 

 There are four major strengths of the present study: 1) the independent, and 

interdependent predictive effects of clinical and biochemical indices towards SCD and AF were 

assessed by univariate and multivariate analysis; 2) the predictive values of both the value and 

variability of HbA1c and lipid indices were assessed to examine the effect of biochemical 

fluctuations on arrhythmic risk in diabetics; 3) the inter-relationship between intermittent 

hypoglycaemia, HbA1c and lipid variability and chronic inflammation was examined to 

elucidate the underlying pathogenic mechanism; 4) long follow-up durations permitted the 

capture of adverse outcomes over a long period. 

 However, several limitations should be recognized. Firstly, the cohort was limited to 

type 2 diabetic patients prescribed insulin, which can limit the generalizability of the findings. 

Given that insulin is only prescribed for diabetic patients in later stages, an advanced disease 

state can be inferred for the selected patients. Secondly, the observational nature of the present 
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study leads to inevitable errors from missing data, coding errors, and under-coding. A 

causational relationship cannot be established from the findings of the observational study, 

which can only demonstrate associations. Furthermore, unfortunately, ICD coding does not 

reflect the frequency of events, thus the frequency of SCD attempts was not evaluated. The 

coding also does not reflect whether the VT is sustained or associated with hemodynamic 

collapse. It is based on the assumption that coded VT is clinically significant as non-sustained 

VT would be clinically irrelevant and thus not coded into the database. It should be emphasized 

that a diagnosis of VT is not the same as SCD, hence the effect of long term glycaemic 

variability on the risk of SCD should be interpreted with caution. Novel therapies, such as 

GLPA (n=9) and SGLT-2 inhibitor (n=0), were not assessed since this retrospective study 

recruited patients in the year 2009, at which these agents were not yet developed. Finally, data 

on blood pressure, body mass index, echocardiogram, the severity of HF and lifestyle were 

absent, which can affect the patients’ cardiovascular health.  Gender differences were also not 

explored in the present study. 

 

5.5. Conclusion 

 Poor glucose control and variability in lipid parameters in diabetic patients are 

associated with SCD.  These observations suggest the need to re-evaluate the extent of 

glycaemic control required for outcome optimization. Further studies on the predictive value 

of variability in other glycaemic measures, such as FBG and random blood glucose, in addition 

to other methods of measuring variability, should be performed to further examine the 

predictiveness of glycaemic variability towards arrhythmias in diabetic patients. 
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Chapter 6. Predictive scores for identifying patients with type 2 diabetes 

mellitus at risk of acute myocardial infarction and sudden cardiac death 

6.1. Introduction 

 T2DM  is an increasingly prevalent disease burden across the globe due to ageing and 

lifestyle westernization, with numbers projected to increase by up to 439 million by 2030. (223) 

Diabetes mellitus is burdensome to the healthcare system for its chronic course and a multitude 

of possibly debilitating and lethal complications across different organ systems. AMI and SCD 

are major cardiovascular adverse outcomes in patients with T2DM. (224, 225) 

Given the potentially lethal and debilitating nature of such cardiovascular adverse 

outcomes, many risk scores have been developed in hopes of identifying high-risk patients for 

early intervention and close monitoring. For example, the UKPDS Risk Engine is a T2DM risk 

score based on the UKPDS for ischemic heart disease. (226) The Reynolds Risk Score was 

developed to assess female cardiovascular risk, and the China-PAR project was devised to 

target the Chinese population specifically. (227, 228) However, typically these risk scores 

involving HbA1c and lipid level predicted composite outcomes of major cardiovascular 

adverse outcomes or cardiovascular mortality, which did not account for the difference in 

pathogenesis and prognosis between acute coronary syndrome and lethal ventricular 

arrhythmias. Furthermore, recent studies reported that HbA1c and lipid levels, which were 

often accounted for in these risk scores, have J/ U-shaped relationships with adverse outcomes. 

(4, 60, 229, 230) Therefore, updated risk scores that incorporate these new findings for 

predictions of specific cardiovascular adverse outcomes were warranted for personalised 

management. 

 The present study evaluated the application of incorporating non-linear J/U-shaped 

relationships between both mean HbA1c and cholesterol levels into risk scores for predicting 

AMI and non-AMI related SCD respectively, amongst T2DM patients. A conditional inference 
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survival forests (CISF) model was used for time-to-event survival data analysis in predicting 

AMI and non-AMI SCD (231, 232).  

 

6.2. Methods 

6.2.1. Study design 

 The present study has been approved by The Joint Chinese University of Hong Kong – 

New Territories East Cluster Clinical Research Ethics Committee. Patients fulfilling all of the 

following inclusion criteria were recruited: 1) above the age of 40; 2) had documented 

diagnosis of T2DM under the ICD-9 coding system, or prescribed anti-diabetic agents between 

January 1st, 2009 to December 31st, 2009 by any of the Hong Kong Hospital Authority-

managed public hospitals or outpatient clinics; 3) without prior history of AMI and SCD 

episodes. The data was collected from CDARS. The system has been used for cohort studies 

by both the present research team and other teams in the past (67, 68, 128, 170). 

 

6.2.2. Data extraction 

 The primary outcome of the present study, the time to the initial AMI and non-AMI 

related SCD episode, is defined as days from January 1st, 2009 to the date of initial AMI/ non-

AMI related SCD or the end of the follow-up period (December 31st, 2019). An SCD episode 

is defined as an episode of sustained VT, VF, or non-specific cardiac arrest. This includes 

episodes that were aborted (sudden cardiac arrest), and episodes that resulted in death. SCD 

episodes with AMI within a week before or after the SCD episode were considered AMI-

related and thus excluded. The number of AMI and non-AMI related SCD episodes during the 

follow-up period was extracted as well. Other clinical characteristics, including demographic 

details (age and sex), diabetes duration, pre-existing comorbidities, anti-diabetic agents, and 
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cardiovascular agents prescribed, and all-cause mortality were also extracted. The onset of 

diabetes is determined by fulfilment of the following criteria, whichever is the earliest: 1) 

earliest record of T2DM related ICD-9 codes; 2) earliest record of HbA1c > 6.5%; 3) earliest 

record of FBG > 7 mmol/L. The duration of diabetes is defined as the onset of diabetes until 

December 31st, 2009. Similarly, follow-up duration was defined as from January 1st, 2009 to 

December 31st, 2019 or the date of death. 

The following pre-existing comorbidities were identified using ICD-9 codes: 1) renal, 

ophthalmological, and neurological diabetic comorbidities; 2) HF; 3) AF; 4) hypertension; 5) 

PVD; 6) ischemic stroke; 7) osteoporosis; 8) COPD; 9) IHD. The classes of anti-diabetic agents 

extracted were: 1) biguanide; 2) sulphonylurea; 3) insulin; 4) DPP4I; 5) GLP-1A; 6) 

meglitinide; 7) alpha-glucosidase inhibitor; 8) thiazolidinedione. Antihypertensives 

(ACEI/ARB, beta-adrenergic receptor blocker, CCB, diuretics) and lipid-lowering agents were 

also extracted. 

Baseline laboratory data from complete blood count (lymphocyte, neutrophil count and 

haemoglobin level), liver function test (ALT, ALP, albumin and total protein), renal function 

test (creatinine, sodium, potassium, urea), lipid (HDL-C, LDL-C, total cholesterol, triglyceride) 

and glycaemic profile (FBG, HbA1c) between January 1st, 2008 to December 31st, 2008 were 

obtained. Baseline anaemia was defined as haemoglobin count < 13g/dL amongst males, and 

<12g/dL amongst females. Mean HbA1c and FBG from January 1st, 2004 to December 31st, 

2008 were also calculated.  

 

6.2.3. Statistical analysis 

 The annualized rate and mean event frequency were calculated for the primary 

outcomes. The annualized rate was calculated by dividing the total number of episodes across 

the cohort by the number of patient-year follow-ups. The mean event annual frequency was 
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calculated by averaging the individual mean number of episodes per year throughout follow-

up amongst those who experienced the event. Univariate Cox regression was used to identify 

predictors for incident episodes of both AMI and non-AMI related SCD. Patients with AMI 

before non-AMI related SCD were excluded from the SCD analysis. HR, 95% CI, and P-value 

were reported for the Cox regression. Univariate predictors with P-value < 0.10 were entered 

into a multivariate model. Significant predictors were then selected into predictive scores. The 

multivariate Cox regression was then repeated with only the significant predictors to obtain the 

HR for adjustments for the score. For variables with HR between 0.67 to 1.5, a score of 1 was 

assigned, otherwise, a score of 2 was assigned.  

To examine the potential incorporation of the J/U-shaped relationship reported between 

glycaemic/cholesterol profile and cardiovascular adverse events, the deciles of these 

parameters that were included in the score were obtained and used to derive the HR predicting 

for AMI and non-AMI related SCD respectively through univariate Cox regression. Then, the 

decile with the minimal HR, excluding the first and last decile, was selected as the reference 

decile and compared against the remaining deciles. Univariate Cox regression was then 

repeated, and the derived HR was plotted. Parameters that displayed a J/ U-shaped relationship 

with the selected outcome would have had the score adjusted for, with the minimum and 

maximum cut-offs derived deciles that had a statistically insignificant difference in HR with 

the reference decile. The cut-off for other continuous variables included in the score was 

derived by maximizing the sensitivity and specificity. To evaluate the scores, an ROC curve 

was then generated for the scores, and the AUC was calculated. Statistical significance was 

defined as p-value < 0.05. The statistical analysis was performed using RStudio software 

(Version: 1.1.456). 
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6.3. Results 

6.3.1. Baseline characteristics 

 This study included 261308 patients (age= 66.0 ± 11.8 years old, male= 47.6%, follow-

up duration= 3552 ± 1201 days, diabetes duration= 4.77 ± 2.29 years). The categorical and 

continuous baseline demographic, clinical, and laboratory features are presented in Tables 26 

and 27, respectively. The mean HbA1c level was 7.67 ± 1.17%, with anaemia present in 14.3% 

of the cohort at baseline. On follow-up, 33.3% (n=86908) of the patients died. The five most 

prevalent comorbidities in decreasing order are hypertension (23.1%), IHD (7.7%), HF (3.5%), 

ischemic stroke (3.3%), and AF (2.8%). On average, patients had 0.44 ± 0.80 of the extracted 

comorbidities. In terms of drug use, most patients were on monotherapy or combination therapy 

of biguanide (69.0%), sulphonylurea (64.0%), and insulin (10.4%), on average on 1.45 ± 0.80 

anti-diabetic agents. ACEI/ ARB (19.0%) was the most common class of antihypertensive 

prescribed, followed by CCB (17.4%) and beta-adrenergic receptor blocker (14.6%). Lipid-

lowering agents were prescribed in 10.6% of the patients. On average, patients from the present 

cohort were on 1.58 ± 1.27 cardiovascular medications.  

 

Table 26. Baseline characteristics for categorical variables in predictive scores for identifying 

patients with type 2 diabetes mellitus at risk of acute myocardial infarction and sudden cardiac 

death 

Characteristics Number (Percentage) 

Total Cohort 

(n=261308) 

Acute 

Myocardial 

Infarction 

(n=20419) 

Sudden Cardiac 

Death (n=12282) 

Male 124495 (47.6) 10221 (50.1) 6454 (52.5) 

Mortality 86908 (33.3) 14374 (70.4) 12096 (98.5) 

Acute Myocardial Infarction (AMI) 20419 (7.81)  - - 
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Sudden Cardiac Death (SCD)  12282 (4.74) - - 

Baseline Anaemia 37286 (14.3) 5048 (24.7) 3470 (28.3) 

Anti-Diabetic Agent 

Biguanide 180232 (69.0) 13797 (67.6) 7776 (63.3) 

Sulphonylurea 167174 (64.0) 14421 (70.6) 8684 (70.7) 

Insulin 27269 (10.4) 3620 (17.7) 2115 (17.2) 

Meglitinide 25 (0.010) 3 (0.015) 3 (0.024) 

Dipeptidyl Peptidase-4 Inhibitor 316 (0.121) 22 (0.108) 10 (0.081) 

Thiazolidinedione 3741 (1.43) 335 (1.64) 162 (1.32) 

Glucagon-like Peptide-1 Agonist 15 (0.006) 0 (0) 0 (0) 

Acarbose 3119 (1.19) 404 (1.98) 218 (1.77) 

Cardiovascular Drugs 

Angiotensinogen converting enzyme 

inhibitor (ACEI)/ angiotensin 

receptor blocker (ARB) 

49712 (19.0) 5769 (28.3) 3363 (27.4) 

Beta-adrenergic receptor blocker 38144 (14.6) 4577 (22.4) 2524 (20.6) 

Calcium Channel Blocker 45542 (17.4) 5604 (27.4) 3265 (26.6) 

Diuretic 24204 (9.26) 3209 (15.7) 2079 (16.9) 

Lipid-Lowering Agent 27828 (10.6) 3797 (18.6) 1932 (15.7) 

Comorbidities 

Renal Diabetic Complication 3049 (1.17) 563 (2.76) 382 (3.11) 

Peripheral Vascular Disease (PVD) 299 (0.114) 78 (0.382) 33 (0.269) 

Ophthalmological Diabetic 

Complication 

3255 (1.25) 627 (3.07) 376 (3.06) 

Neurological Diabetic Complication 1066 (0.408) 191 (0.935) 116 (0.944) 

Ischemic Stroke 8612 (3.30) 1095 (5.36) 774 (6.30) 

Atrial Fibrillation (AF) 7187 (2.75) 931 (4.56) 778 (6.33) 

Heart Failure (HF) 9107 (3.49) 1548 (7.58) 1157 (9.42) 

Intracranial haemorrhage 3161 (1.19) 285 (1.40) 254 (2.07) 
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Ischemic Heart Disease (IHD) 20059 (7.68) 3474 (17.0) 1528 (12.4) 

Osteoporosis 124 (0.047) 17 (0.083) 12 (0.098) 

Hypertension 60321 (23.1) 7564 (37.0) 4472 (36.4) 

Chronic Obstructive Pulmonary 

Disease 

770 (0.295) 80 (0.392) 85 (0.692) 

 

Table 27. Baseline characteristics for continuous variables in predictive scores for identifying 

patients with type 2 diabetes mellitus at risk of acute myocardial infarction and sudden cardiac 

death 

Characteristics  Mean ± Standard Deviation 

Total Cohort 

(n=261308) 

Acute 

Myocardial 

Infarction 

(n=20419) 

Sudden Cardiac 

Death (n=12282) 

Age 66.0 ± 11.8 71.6 ± 10.7 72.9 ± 10.6 

Follow-up Duration (days) 3552 ± 1201 2949  ± 1239 2008 ± 1143 

Diabetes Duration (years) 4.77 ± 2.29 8.74  ± 4.12 9.95 ± 3.11 

Liver Function Test 

Alkaline Phosphatase (U/L) 79.8 ± 37.4 81.3 ± 33.7 86.3 ± 51.5 

Alanine Aminotransferase (U/L) 25.8 ± 24.0 22.6 ± 19.8 22.6 ± 19.3 

Total Protein (g/L) 74.3 ± 6.99 73.9 ± 7.24 73.1 ± 7.46 

Albumin (g/L) 38.7 ± 5.39 38.0 ± 5.33 37.0 ± 5.61 

Complete Blood Count 

Lymphocyte Count (x109/L) 1.88 ± 1.05 1.85 ± 0.78 1.77 ±  1.58 

Neutrophil Count (x109/L) 5.33 ± 2.68 5.62 ± 2.76 5.70 ± 2.86 

Haemoglobin Count (x109/L) 12.8 ± 4.29 12.4 ± 1.87 12.2 ± 1.94 

Lipid Profile 

High Density Lipoprotein 

Cholesterol (HDL-C) (mmol/L) 

1.20 ± 0.34 1.15 ± 0.33 1.17 ± 0.36 

Low Density Lipoprotein 

Cholesterol (LDL-C) (mmol/L) 

2.92 ± 0.88 2.93 ± 0.93 2.88 ± 0.93 
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Total Cholesterol (mmol/L)  4.84 ± 1.03 4.84 ± 1.10 4.73 ± 1.08 

Triglyceride (mmol/L) 1.72 ± 1.36 1.83 ± 1.52 1.72 ± 1.38 

Renal Function Test 

Creatinine (umol/L) 103 ± 92 128 ± 125 139 ± 152 

Potassium (mmol/L) 4.22 ± 0.48 4.27 ± 0.51 4.24 ± 0.52 

Sodium (mmol/L) 139 ± 3 139 ± 3 139 ± 3.54 

 Urea (mmol/L) 6.85 ± 4.04 8.24 ± 5.01 8.52 ± 5.61 

Glycaemic Control 

Fasting Blood Glucose (mmol/L) 7.75 ± 2.60 8.21 ± 2.00 8.12 ± 2.08 

HbA1c (%) 7.44 ± 1.45 7.88 ± 1.25 7.83 ± 1.31 

 

6.3.2. Acute myocardial infarction prediction 

 A total of 20419 patients suffered from AMI (annualized rate: 7.37%/year) with an 

annual frequency of 0.536 ± 8.74 episodes. The significant univariate predictors are 

summarized in Table 21. The following parameters were identified as significant predictors on 

multivariate regression (n=34015; Table 28): 1) age (HR= 1.02, 95% CI= [1.02, 1.03], p < 

0.0001) and male sex (HR= 1.07, 95% CI= [1.01, 1.14], p= 0.023); 2) baseline anaemia (HR= 

1.18, 95% CI= [1.10, 1.27], p < 0.0001); 3) serum creatinine (HR= 1.00, 95% CI= [1.00, 1.00], 

p < 0.0001); 4) serum HDL-C (HR= 0.802, 95% CI= [0.732, 0.878], p < 0.0001) and 

triglyceride (HR= 1.04, 95% CI= [1.03, 1.05], p < 0.0001); 5) comorbidities: ophthalmological 

diabetic complication (HR= 1.35, 95% CI= [1.22, 1.51], p < 0.0001), PVD (HR= 1.53, 95% 

CI= [1.18, 1.97], p= 0.001), IHD (HR= 1.59, 95% CI= [1.48, 1.71], p < 0.0001), hypertension 

(HR= 1.16, 95% CI= [1.09, 1.24], p < 0.001); 6) mean HbA1c (HR= 1.16, 95% CI= [1.12, 

1.19], p < 0.0001).  
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Table 28. Univariate predictors for acute myocardial infarction in predictive scores for 

identifying patients with type 2 diabetes mellitus at risk of acute myocardial infarction and 

sudden cardiac death 

  Hazard Ratio 95% Confidence 

Interval 

P-Value 

Age 1.04 [1.04, 1.05] < 0.0001 

Male 1.10 [1.07, 1.14] < 0.0001 

Diabetes Duration 1.12 [1.11, 1.12] < 0.0001 

Mean Fasting Blood Glucose 1.12 [1.10, 1.13] < 0.0001 

Mean HbA1c 1.17 [1.15, 1.18] < 0.0001 

Baseline Anaemia 2.24 [2.15, 2.33] < 0.0001 

Liver Function Test 

Total Protein 0.991 [0.987, 0.994] < 0.0001 

Albumin 0.976 [0.972, 0.980] < 0.0001 

Renal Function Test 

Creatinine 1.00 [1.00, 1.00] < 0.0001 

Lipid Profile 

High Density Lipoprotein Cholesterol 

(HDL-C) (mmol/L) 

0.587 [0.555, 0.620] < 0.0001 

Low Density Lipoprotein Cholesterol 

(LDL-C) (mmol/L) 

1.02 [0.992, 1.04] 0.185 

Total Cholesterol (mmol/L)  0.999 [0.983, 1.02] 0.858 

Triglyceride (mmol/L) 1.04 [1.03, 1.04] < 0.0001 

Comorbidity 

Renal Diabetic Complication 2.56 [2.36, 2.79] < 0.0001 

Ophthalmological Diabetic 

Complication 

2.69 [2.48, 2.91] < 0.0001 

Neurological Diabetic Complication 2.46 [2.14, 2.84] < 0.0001 

Peripheral Vascular Disease 3.83 [3.06, 4.78] < 0.0001 

Ischemic Stroke 1.72 [1.61, 1.82] < 0.0001 
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Atrial Fibrillation 1.75 [1.64, 1.86] < 0.0001 

Heart Failure 2.40 [2.28, 2.53] < 0.0001 

Ischemic Heart Disease 2.63 [2.53, 2.72] < 0.0001 

Osteoporosis 2.03 [1.98, 2.09] 0.016 

Hypertension 1.67 [1.62, 1.72] < 0.0001 

Chronic Obstructive Pulmonary 

Disease 

1.36 [1.09, 1.69] 0.007 

 

 Both HDL-C and mean HbA1c showed linear relationships with AMI risk (Figures 13 

and 14). After identifying the multivariate predictors (Table 29) and adjusting for the 

multivariate HR of the included parameters (Table 30), a score-based system was developed 

to predict AMI (Table 31). On ROC analysis, the AMI score had an AUC of 0.666 (95% CI= 

[0.662, 0.669]; Figure 15).  

 

Figure 14. The association between mean HbA1c and acute myocardial infarction 
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Figure 15. The association between mean high-density lipoprotein cholesterol and acute 

myocardial infarction 

 

 

Table 29. Multivariate predictors for acute myocardial infarction in predictive scores for 

identifying patients with type 2 diabetes mellitus at risk of acute myocardial infarction and 

sudden cardiac death 

  Hazard Ratio 95% Confidence 

Interval 

P-Value 

Age 1.02 [1.02, 1.03] < 0.0001 

Male 1.07 [1.01, 1.14] 0.023 

Mean Fasting Blood Glucose 0.994 [0.976, 1.01] 0.527 

Mean HbA1c 1.16 [1.12, 1.19] < 0.0001 

Baseline Anaemia 1.18 [1.10, 1.27] < 0.0001 

Liver Function Test 

Total Protein 1.00 [0.996, 1.01] 0.651 

Albumin 0.998 [0.991, 1.00] 0.523 

Renal Function Test 

Creatinine 1.00 [1.00, 1.00] < 0.0001 

Lipid Profile 
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High Density Lipoprotein Cholesterol 

(HDL-C) 

0.802 [0.732, 0.878] < 0.0001 

Triglyceride 1.04 [1.03, 1.05] < 0.0001 

Comorbidity 

Renal Diabetic Complication 0.967 [0.865, 1.08] 0.561 

Neurological Diabetic Complication 0.874 [0.732, 1.04] 0.132 

Ophthalmological Diabetic 

Complication 

1.35 [1.22, 1.51] < 0.0001 

Peripheral Vascular Disease 1.53 [1.18, 1.97] 0.001 

Ischemic Stroke 0.991 [0.881, 1.11] 0.883 

Atrial Fibrillation 0.962 [0.854, 1.08] 0.518 

Heart Failure 1.01 [0.918, 1.11] 0.862 

Ischemic Heart Disease 1.59 [1.48, 1.71] < 0.0001 

Osteoporosis 0.981 [0.542, 1.78] 0.950 

Hypertension 1.16 [1.09, 1.24] < 0.0001 

Chronic Obstructive Pulmonary 

Disease 

0.848 [0.539, 1.33] 0.473 

 

Table 30. Multivariate hazard ratios of acute myocardial infarction predictive score parameters 

Citeria  Hazard Ratio 

Age 1.04 

Male 1.10 

Baseline Anaemia 1.16 

Creatinine 1.00 

Mean HbA1c 1.19 

High Density Lipoprotein Cholesterol (HDL-C) 0.776 

Triglyceride 1.05 

Ophthalmological Diabetic Complication 1.35 

Peripheral Vascular Disease 1.38 
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Ischemic Heart Disease 1.64 

Hypertension 1.24 

 

Table 31. Acute myocardial infarction prediction score 

 Criteria Cut-off Score 

Age (years) >70 1 

Sex Male 1 

Baseline Anaemia Present 1 

Creatinine (mmol/L) >64.00 1 

High Density Lipoprotein Cholesterol (mmol/L) <1.07 1 

Mean HbA1c (%) > 8.51 1 

Triglyceride (mmol/L) >1.44 1 

Ophthalmological Diabetic Complication Present 1 

Peripheral Vascular Disease Present 1 

Ischemic Heart Disease Present 2 

Hypertension Present 1 
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Figure 16. The receiver operator characteristic curve for the acute myocardial infarction 

predictive score 

 
 

6.3.3. Sudden cardiac death prediction 

 For risk stratification of SCD, 0.822% (n=2 149) patients were excluded because of 

AMI occurring before the SCD episode, or the SCD was associated with AMI. For this 

excluded subset of patients, only triglyceride levels were predictive of SCD. For the remainder 

of the cohort, SCD occurred in 12282 patients (annualized rate: 4.40%/year) at an annual 

frequency of 0.169 ± 0.569 episodes. Findings under univariate Cox regression are summarized 

in Table 32.  

 

Table 32. Univariate predictors for sudden cardiac death in predictive scores for identifying 

patients with type 2 diabetes mellitus at risk of acute myocardial infarction and sudden cardiac 

death 

Predictors  Hazard Ratio 95% Confidence 

Interval 

P-Value 

Age 1.06 [1.05, 1.06] < 0.0001 

Male 1.23 [1.18, 1.27] < 0.0001 
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Diabetes Duration 1.21 [1.21, 1.22] < 0.0001 

Mean Fasting Blood Glucose 1.03 [1.01, 1.04] < 0.001 

Mean HbA1c 1.13 [1.11, 1.15] < 0.0001 

Baseline Anaemia 2.74 [2.61, 2.87] < 0.0001 

Liver Function Test 

Total Protein 0.975 [0.971, 0.979] < 0.0001 

Albumin 0.946 [0.941, 0.951] < 0.0001 

Lipid Profile 

High Density Lipoprotein Cholesterol 0.818 [0.763, 0.876] < 0.0001 

Low Density Lipoprotein Cholesterol  0.977 [0.947, 1.01] 0.162 

Total Cholesterol  0.896 [0.877, 0.915] < 0.0001 

Triglyceride 1.00 [0.987, 1.02] 0.802 

Renal Function Test 

Creatinine 1.00 [1.00, 1.00] < 0.0001 

Comorbidity 

Renal Diabetic Complication 2.94 [2.65, 3.25] < 0.0001 

Ophthalmological Diabetic 

Complication 

2.69 [2.43, 2.98] < 0.0001 

Neurological Diabetic Complication 2.50 [2.08, 3.00] < 0.0001 

Peripheral Vascular Disease 2.55 [1.81, 3.59] < 0.0001 

Ischemic Stroke 2.03 [1.89, 2.19] < 0.0001 

Atrial Fibrillation 2.50 [2.32, 2.69] < 0.0001 

Heart Failure 3.07 [2.89, 3.26] < 0.0001 

Ischemic Heart Disease 1.76 [1.67, 1.86] < 0.0001 

Osteoporosis 2.13 [1.21, 3.75] 0.009 

Hypertension 1.96 [1.89, 2.03] < 0.0001 

Chronic Obstructive Pulmonary 

Disease 

2.46 [1.99, 3.04] < 0.0001 
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Multivariate Cox regression (n=33423) then identified following significant predictors, 

which were incorporated into the predictive score (Table 33): 1) age (HR= 1.03, 95% CI= 

[1.02, 1.03], p < 0.0001) and male sex (HR= 1.34, 95% CI= [1.23, 1.45], p < 0.0001); 2) 

baseline anaemia (HR= 1.41, 95% CI= [1.29, 1.54], p < 0.0001); 3) serum albumin (95% CI= 

0.973, 95% CI= [0.964, 0.981], p < 0.0001); 4) serum total cholesterol (HR= 1.04, 95% CI= 

[1.00, 1.08], p= 0.033); 5) serum creatinine (HR= 1.00, 95% CI= [1.00, 1.00], p < 0.0001); 5) 

comorbidities: ophthalmological diabetic complication (HR= 1.23, 95% CI=[1.07, 1.41], p= 

0.004), AF (HR=1.31, 95% CI= [1.14, 1.50], p < 0.0001) and HF (HR= 1.19, 95% CI= [1.06, 

1.33], p=0.003); 6) mean HbA1c (HR= 1.11, 95% CI= [1.07, 1.15], p < 0.001).  

 

Table 33. Multivariate predictors for sudden cardiac death in predictive scores for identifying 

patients with type 2 diabetes mellitus at risk of acute myocardial infarction and sudden cardiac 

death 

 Parameter Hazard Ratio 95% Confidence 

Interval 

P-Value 

Age 1.03 [1.02, 1.03] < 0.0001 

Male 1.34 [1.23, 1.45] < 0.0001 

Mean Fasting Blood Glucose 0.995 [0.972, 1.02] 0.684 

Mean HbA1c 1.11 [1.07, 1.15] < 0.0001 

 Baseline Anaemia 1.41 [1.29, 1.54] < 0.0001 

Liver Function Test 

Total Protein 1.00 [0.994, 1.01] 0.878 

Albumin 0.973 [0.964, 0.981] < 0.0001 

Lipid Profile 

High Density Lipoprotein Cholesterol 0.905 [0.808, 1.01] 0.082 

Total Cholesterol 1.04 [1.00, 1.08] 0.033 

Renal Function Test 

Creatinine 1.00 [1.00, 1.00] < 0.0001 
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Comorbidity 

Renal Diabetic Complication 1.02 [0.890, 1.17] 0.756 

Ophthalmological Diabetic Complication 1.23 [1.07, 1.41] 0.004 

Neurological Diabetic Complication 0.862 [0.687, 1.08] 0.195 

Peripheral Vascular Disease 0.874 [0.586, 1.30] 0.510 

Ischemic Stroke 1.13 [0.981, 1.29] 0.092 

Atrial Fibrillation 1.31 [1.14, 1.50] < 0.0001 

Heart Failure 1.19 [1.06, 1.33] 0.003 

Ischemic Heart Disease 1.00 [0.909, 1.11] 0.956 

Osteoporosis 1.45 [0.755, 2.80] 0.263 

Hypertension 1.06 [0.980, 1.16] 0.138 

Chronic Obstructive Pulmonary Disease 1.23 [0.791, 1.91] 0.359 

 

Both mean HbA1c and total cholesterol demonstrated a J-shaped relationship with non-

AMI related SCD (Figures 16 and 17). Therefore, the cut-offs for mean HbA1c and total 

cholesterol were adjusted accordingly. The multivariate HR that the marks assigned in the score 

are shown in Table 34. None of the variables had HRs beyond the ranges of 0.67-1.5. Details 

of the scoring system are shown in Table 35, with ROC analysis showing an AUC of 0.677 

(95% CI= [0.673, 0.682]) (Figure 18).  
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Figure 17. The association between mean HbA1c and acute myocardial infarction 

 

 

Figure 18. The association between mean total cholesterol and acute myocardial infarction 

 

Figure 17 shows mean total cholesterol has a U-shaped relationship with the occurrence of 

acute myocardial infarction 

 

Table 34. Multivariate hazard ratios of sudden cardiac death predictive score parameters 

Criteria  Hazard Ratio 

Male 1.30 

Age 1.03 
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 Baseline Anaemia 1.31 

Albumin 0.972 

Creatinine 1.00 

Total Cholesterol 1.03 

Mean HbA1c 1.10 

Ophthalmological Diabetic 

Complication 

1.24 

Atrial Fibrillation 1.30 

Heart Failure 1.23 

 

Table 35. Sudden cardiac death predictive score 

 Criteria Cut-off Score 

Age >67 1 

Sex Male 1 

 Baseline Anaemia Present 1 

Total Cholesterol (mmol/L) <5.00 or >6.11 1 

Creatinine (mmol/L) >93.6 1 

Mean HbA1c (%) <6.33 or > 7.79 1 

Ophthalmological Diabetic Complication Present 1 

Atrial Fibrillation Present 1 

Heart Failure Present 1 
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Figure 19. The receiver operator characteristic curve for sudden cardiac death predictive score 

 

6.3.4. Machine learning survival analysis 

A conditional inference survival forest (CISF) model was developed to predict AMI 

and SCD based on the baseline clinical variables. The optimal tree number of CISF model to 

predict AMI was set as 700 to predict AMI, while the number was set as 600 to predict SCD, 

based on the five-fold cross validation parameter selection results as shown in Figures 19 and 

20.  
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Figure 20. Optimal tree number selection for conditional inference survival model (five-fold 

cross validation) to predict for acute myocardial infarction 

 

 

Figure 21. Optimal tree number selection for conditional inference survival forest model (five-

fold cross validation) to predict for sudden cardiac death 
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Variable importance values and relative importance values of variables to predict AMI 

and non-AMI-related SCD are presented in Table 36. Creatinine and age were ranked as the 

most important predictors of AMI, followed by baseline anaemia, mean HbA1c, triglyceride, 

male sex, hypertension, and IHD (Figure 21). For non-AMI-related SCD, age and creatinine 

were the most important predictors, followed by baseline anaemia, mean HbA1c, HF, male sex, 

total cholesterol, AF, and ophthalmological diabetic complication (Figure 22). The importance 

values of the different risk variables can be easily applied to construct predictive frailty scores 

of AMI and non-AMI-related SCD for clinical practice use.  

 

Table 36. Variable importance ranking generated by conditional inference survival forest 

model 

Acute Myocardial Infarction Sudden Cardiac Death 

Variable Importance 
Relative 

importance 
Variable Importance 

Relative 

importance 

Creatinine 

(mmol/L) 
0.1061 1.0000 Age, years 0.0986 1.0000 

Age, years 0.0906 0.8545 
Creatinine 

(mmol/L) 
0.0923 0.9361 

Baseline 

Anaemia 
0.0156 0.1469 

Baseline 

Anaemia 
0.015 0.1517 

Mean HbA1c 

(%) 
0.0108 0.102 

Mean 

HbA1c (%) 
0.0126 0.1274 

Triglyceride 

(mmol/L) 
0.003 0.0284 Heart Failure 0.0119 0.1208 

Male sex 0.0028 0.0268 Male sex 0.0086 0.0871 

Hypertension 0.002 0.0193 

Total 

Cholesterol 

(mmol/L) 

0.0039 0.04 

Ischemic  

Heart Disease 
0.0012 0.011 

Atrial 

Fibrillation 
0.0024 0.0245 

High Density 

Lipoprotein 

Cholesterol 

(mmol/L) 

0.0005 0.0045 

Ophthal-

mological 

Diabetic 

Complication 

0.0003 0.0032 

Peripheral 

Vascular 

Disease 

0.0001 0.0011    

Ophthal-

mological 
0.0000 0.0004    
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Diabetic 

Complication 

 

Figure 22. Optimal tree number iteration and variable importance ranking generated by 

conditional inference survival forest model to predict acute myocardial infarction 

 

 

Figure 23. Optimal tree number iteration and variable importance ranking generated by 

conditional inference survival forest model to predict sudden cardiac death 

 

The performance of the CISF model was compared with that of the RSF model and 

multivariate Cox for survival analysis (Table 37) using a five-fold cross validation approach. 

CISF model significantly improves the survival performance of AMI (precision: 0.91, recall: 

0.89, AUC: 0.93, C-index: 0.91) and non-AMI related SCD (precision: 0.91, recall: 0.89, AUC: 

0.89, C-index: 0.89) than RSF model and multivariate cox model. 
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Table 37. Comparisons between conditional inference survival forest (CISF), multivariate Cox 

and random survival forest (RSF) model (five-fold cross validation) 

Outcome Acute Myocardial Infarction Sudden Cardiac Death 

Evaluators Precision Recall AUC C-Index Precision Recall AUC C-Index 

CISF 0.9083  0.8851  0.9270  0.9029  0.9137  0.8900  0.8912  0.8918  

RSF 0.8634  0.8606  0.8506  0.8290  0.8464  0.8406  0.8691  0.8536  

Multivariate Cox 0.8197  0.7568  0.7255  0.7684  0.7918  0.8276  0.7412  0.8193  

 

6.4. Discussion and limitations 

6.4.1. Discussion 

 There are several major findings from the present study: 1) a combination of clinical 

and laboratory parameters can be used to predict AMI and SCD amongst patients with T2DM; 

2) J/U-shaped relationships were not presented consistently across different cardiovascular 

adverse outcomes; 3) the J/ U-shaped relationships between mean HbA1c, HDL-C, and total 

cholesterol and adverse cardiovascular outcomes can be incorporated into scores for clinical 

risk stratification; 4) CISF model identified that albumin, age, creatinine, total protein, baseline 

anaemia, HF, and male gender are the most important predictors of both incident AMI and non-

AMI related SCD, followed by hypertension, AF, HDL-C, mean FBG for AMI while mean 

FBG, hypertension, and mean HbA1c for non-AMI SCD;5) CISF significantly improves 

prediction performance of incident AMI and non-AMI SCD than RSF and multivariate Cox 

models. 

 Over recent years, there have been increasing reports on the J/U-shaped relationship 

between both glycaemic and cholesterol indices and diabetic adverse outcomes. However, 

these studies mostly focused on composite outcomes, such as all-cause mortality and major 

cardiovascular adverse events. (60, 181, 233, 234, 235) Currently, there is a lack of studies 

looking at the relationship between HbA1c and cholesterol indices with specific cardiovascular 



 161 

adverse outcomes, such as AMI and SCD. In the present study, a linear relationship was 

observed between both mean HbA1c and HDL-C against AMI, whilst a J-shaped relationship 

was depicted for both mean HbA1c and total cholesterol against SCD. The incorporation of 

these biochemical variables into the risk scores yields comparable AUC to recent predictive 

models that involve machine learning techniques to account for latent interactions thus 

demonstrating the importance of involving biochemical indices in risk stratification. (236) 

The difference that the mean HbA1c has against AMI and SCD can be explained by the 

different underlying pathogenic mechanisms. The linear relationship between mean HbA1c 

and AMI was supported by other studies with cohorts like the present study, comprised of 

younger patients with more diverse pre-existing macrovascular complications, which 

demonstrates the importance of personalised glycaemic control. (98, 237) Furthermore, 

coronary atherosclerosis is associated with insulin resistance, which also supports the linear 

relationship. (238, 239) In the DEVOTE trial, whilst hypoglycaemia increased the risk of 

cardiovascular diseases, the elevation in risk for non-fatal AMI and unstable angina was 

insignificant. These findings were consistent with the present study, where low mean HbA1c 

is associated with an increased risk for SCD but not AMI. (13)  

On a separate note, the U-shaped relationship between mean HbA1c and SCD may be 

explained by the increased arrhythmic potential during both persistent hyperglycaemia and 

hypoglycaemia. Under chronic hyperglycaemia, persistently increased activation of calcium 

channels, and increased oxidative stress can induce arrhythmogenesis. (81, 82, 240, 241) By 

contrast, hypoglycaemia is a well-known trigger for ventricular tachyarrhythmia and is 

associated with delayed repolarization and altered repolarization gradients. (242, 243, 244) 

During prolonged hypoglycaemia, vagal reactivation occurs and the relative bradycardia 

increases the risk of atrial ectopy. (245) Severe hypoglycaemia was reported to increase the 

risk of arrhythmic death by 77% in the ORIGIN trial, which agrees with our findings. (246) 
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However, it should be noted that the J-shaped relationship is mainly attributed to the lowest 

decile of HbA1c, suggesting that the relationship may be disrupted by extreme cases of 

persistent hypoglycaemia. For patients with HbA1c values within the normal range, the 

relationship between HbA1c and SCD was linear. 

The inverse relationship between HDL-C level and cardiovascular adverse outcomes is 

well established, and reinforced by recent findings of the inversed association between high 

lipoprotein function and atherosclerotic burden. (247) Recent studies exploring the relationship 

between cholesterol indices and cardiovascular events demonstrate that the J-shaped 

relationship is mainly present in LDL-C. (113, 235) The U-shaped relationship between HDL-

C and all-cause mortality reported may be attributed to other causes of death, such as infection 

and external causes, and confounded by alcoholism which raises HDL. (248, 249, 250) These 

findings suggest that the J-shaped relationship between total cholesterol and SCD may be 

driven by LDL-C, given the observed linear association between HDL-C and AMI. Given that 

the J-shaped relationship between total cholesterol and SCD is mainly attributed to the highest 

decile for total cholesterol, there is also a possibility that the increase in SCD risk may only 

occur in outliers with extremely high total cholesterol. (251) The varied pathogenesis 

underlying different cardiovascular adverse outcomes suggests that cause-specific analysis of 

the relationship between both glycaemic and cholesterol, and cardiovascular mortality, should 

be performed. 

The Cox proportional hazards model has been widely used for right-censored time-to-

event data analysis since it is convenient for its flexibility and simplicity. However, their use 

is not appropriate when the proportional hazards assumption is violated. Extensions to the Cox 

proportional hazards model were developed but often remained dependent on restrictive 

functions (e.g., Heaviside functions) that are difficult to construct and implement. RSF models, 

as extensions of classification and regression trees and random forests, have been identified as 
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alternative survival data analysis methods when the proportional hazard assumption is violated 

(108). RSF-based models have been applied to enhance risk stratification in different clinical 

settings, including diabetes (153, 252, 253, 254, 255). However, the RSF model has been 

criticized for its bias due to favouring covariates with many split points (256). In our study, the 

CISF model was used for time-to-event survival data analysis in predicting AMI and non-AMI 

SCD (231, 232), which were shown to show superior predictive performance compared to RSF 

and multivariate Cox models. 

 

6.4.2. Limitations 

 Several limitations should be noted for the present study. First of all, given its 

observational, data-based nature, it is susceptible to under-coding and coding error, with an 

inability to establish causal relationships. In addition, the large number of patients included in 

the analysis drove the high statistical significance but low HR in some predictive parameters. 

Thus, the findings of these parameters may be driven by the statistical power of the analysis 

and may have limited clinical significance. Furthermore, the duration of diabetes was not 

adjusted for, given the possible competing variable of time from baseline to outcome onset. 

This is also to avoid interference of inaccuracy in diabetic duration because of a lack of data 

beyond a decade before baseline. Additionally, the effect of medications was not accounted for 

due to the potential drug-drug interactions and effect on the laboratory markers, which would 

greatly complicate the analysis. Finally, data on other cardiovascular health predictors, such as 

smoking status, alcohol use, and family history of cardiac conditions, were unavailable due to 

limitations of our administrative database of not converting them into structured data for 

extraction. 
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6.5. Conclusion 

 A holistic combination of demographic, clinical, and laboratory indices can be used for 

the risk stratification of patients with T2DM against AMI and SCD. Cause-specific analysis 

should be applied to further examine the relationship between both mean HbA1c and lipid 

parameters against different cardiovascular adverse outcomes. The application of machine-

learning techniques can improve the sensitivity and specificity of risk prediction by identifying 

the latent interactions between risk variables. 

  



 165 

Chapter 7. Recapitulation and discussion 

7.1. Background 

 MACE, including AMI, HF and ischaemic stroke, are major contributors to morbidity 

and mortality amongst patients with T2DM. Over the past decades, there has been a shift 

towards a more patient-centred, individualised approach in the long-term treatment of T2DM. 

Consequently, new, personalised disease-monitoring parameters have been explored over the 

past decade.  Besides the absolute value of glycaemic and lipid levels, the temporal changes of 

glycaemic and lipids were recently demonstrated to predict the cardiovascular disease burden 

amongst patients with T2DM. The introduction of temporal variability in glycaemic and lipid 

control as a disease monitoring parameter in T2DM will lead to a paradigm shift in the 

management of T2DM. The treatment targets are no longer limited to the laboratory values at 

the moment of follow-up but extended to the rate and extent of changes in glycaemic and lipid 

control.  

Over the last decade, there has been increasing evidence demonstrating the prognostic 

value of glycaemic and lipid variability in the MACE risk amongst patients with T2DM (77, 

257). Although the exact mechanisms remain unclear, there are several hypothesised 

mechanisms underlying the pathogenesis of increased MACE risk under increased glycaemic 

and lipid variability. It should be noted that HbA1c variability is a better representation of long-

term glycaemic variation since it is not affected by short-term glycaemic changes due to diet 

and medication changes given that haemoglobin has an average lifespan of 100 days. In 

addition, whilst different methods to assess the temporal variability have been proposed, 

including standard deviation, coefficient of variation, and scores based on percentage changes 

in the absolute value of the laboratory markers, no variability marker of absolute superiority 

has yet been identified (167).  
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Increased long-term glycaemic and lipid variability is hypothesised to lead to 

endothelial dysfunction via an increase in oxidative stress (198). Frequent episodes of 

hypoglycaemia can induce the release of reactive oxygen species, thereby leading to increased 

oxidative stress and creating a state of chronic inflammation (142, 258). Furthermore, 

fluctuations in glucose levels are associated with QTc prolongation and increased QTc 

dispersion, which elevates the risk of ventricular tachyarrhythmia and the resultant sudden 

cardiac death (205). Hypoglycaemia itself is arrhythmogenic and can reduce the myocardial 

tolerance to ischaemia and reperfusion injuries (80, 215). By contrast, chronic hyperglycaemia 

results in structural remodelling of the atria and ventricles, which is also arrhythmogenic and 

therefore increases the risk of MACE (81). Similarly, fluctuations in lipid levels also result in 

the release of atherogenic substances from unstable plaques, therefore, leading to an increase 

in oxidative stress (257). 

Although it is well established that patients with poor glycaemic and lipid control have 

an increased risk for MACE, the demonstration of a high glycaemic variability as a risk factor 

helps to identify a different group of patients at an increased risk for cardiovascular events- 

those with marginal or adequate glycaemic control, but of high glycaemic/ lipid variability. 

The use of glycaemic/lipid variability over long term follow up alerts clinicians that fluctuating 

glycaemic may be a red flag for future cardiovascular events, where additional risk factor 

management would be needed to improve patient morbidity and mortality. Since HbA1c and 

lipid profiles are routinely measured upon follow up, a simple calculation, or automatically 

generated value of the respective SDs in patients with at least three measurements would be 

sufficient to alert clinicians for the increase in temporal variability. Future studies to identify 

cutoffs for the respective variability measures, such as SD or CV, will facilitate the clinical 

implementation of glycaemic/ lipid variability. 
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7.2. Glycaemic variability in the prediction of cardiovascular complications  

 Over the last decade, both long and short term glycaemic variability have gained 

academic interest in their potential use in cardiovascular risk prediction. (259) Short term 

glycaemic variability refers to glycaemic variation during the day and may be assessed through 

continuous glucose monitoring. SD, which is the rate of dispersion from the average glucose 

level, and CV, which is the SD of glucose divided by the average glucose level, are the two 

most common metrics used and recommended by the International Consensus on Use of 

Continuous Glucose Monitoring (260). Short term glycaemic variability reflects the presence 

and extent of change in glycaemic level, thus reflecting the stability of glycaemic control. Since 

sudden and large changes in glucose levels may precipitate adverse cardiovascular events such 

as arrhythmias and acute coronary syndrome, the use of short-term glycaemic variability may 

be predictive of major cardiovascular adverse events. Basic studies have shown that 

fluctuations in glycaemic levels increase the production of reactive oxygen species and lead to 

vascular damage. (261) These studies provide evidence that not only the average glycaemic 

control, but the consistency of optimal glucose control, are important in the control of 

cardiovascular risks. (262) 

However, given the limited availability of continuous blood glucose monitoring, long 

term glycaemic variability is more commonly used in clinical practice and research. Long-term 

glycaemic variability refers to visit-to-visit fluctuations in glycaemic control, and may be 

reflected by the measuring of HbA1c and fasting/ postprandial blood glucose levels. Since 

HbA1c reflects blood glucose control over the past three months, it is a reliable indicator of the 

average glucose level. Clinical trials have consistently shown that increased long term 

glycaemic variability is associated with an increased risk of cardiovascular disease. A 

secondary analysis of the VADT shows that increased fasting glucose variability raises the risk 

of cardiovascular adverse events, particularly amongst those under intense glucose control. 
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(263) Interestingly, HbA1c variability was not found to be associated with MACE in this study. 

However, a post-hoc analysis of the ACCORD trial demonstrated that both HbA1c and fasting 

glucose variability were predictors for HF and cardiovascular disease, independent of changes 

in HbA1c, and variability in blood pressure, LDL-C, and hypoglycaemic events. (264) 

Although the underlying pathogenic mechanisms remain unclear, there is consistent evidence 

to support that increase in both long- and short-term glycaemic variability increases the risk of 

MACE.  

The relationship between high HbA1c variability and MACE may extend to other 

diseases such as cancer (265). The pro-inflammatory state and increased oxidative stress 

environment produced by fluctuating levels of glycaemia are associated with increased risks of 

MACE, which may be partly mediated through endothelial dysfunction (133, 266). 

Furthermore, preclinical evidence shows that high glycaemic fluctuation also induces tissue 

oxidative stress, and can lead to increased apoptosis of cardiomyocytes (267). 

The studies described in the present thesis thus provide further support that glycaemic 

variability may predict MACE risk amongst patients with T2DM, and it may be applied 

clinically in the form of clinical risk scores. Whilst existing studies have shown that glycaemic 

variability is associated with MACE in T2DM, the studies by our team have shown that high 

HbA1c variability is particularly associated with an increased risk of AF and AMI (268). 

Examining the association between HbA1c variability and specific MACEs provides further 

evidence that unstable glycaemic control contributes to an increased cardiovascular risk. 

Furthermore, the association between glycaemic variability and different MACE suggests that 

glycaemic variability may contribute to the occurrence of MACE through different 

mechanisms. For example, the occurrence of AF under high glycaemic fluctuations may be 

explained by the promotion of reactive oxygen species production, resulting in increased 

cardiac fibrosis and autonomic neuropathy (269). Catecholamine surge and sympathetic 
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activation under acute hypoglycaemic may also perpetuate AF (269). By contrast, the increased 

oxidative stress under a state of high glycaemic fluctuation is hypothesised to increase the risk 

of AMI by directly or indirectly causing endothelial dysfunction and the resulting accelerated 

atherosclerosis (270, 271).   

In addition, temporal variability of glycaemic control is shown to be an independent 

predictor for MACE, regardless of the methodology of variability calculation or glycaemic 

measure examined. Therefore, variability measures that are easier to calculate and understand, 

such as standard deviation, may be a better option when it comes to applying glycaemic 

variability in the cardiovascular risk stratification models for patients with T2DM in the clinical 

setting.  

Earlier studies on glycaemic variability in the risk of MACE amongst patients with 

T2DM studied Caucasian or Asian patients in general (96). The overwhelmingly Han Chinese 

demographic of the present registry provides strong evidence that glycaemic variability is a 

predictor of MACE amongst T2DM patients who are of Han Chinese descent. With the well-

known ethnic or racial difference in T2DM incidence, showing that glycaemic variability 

predicts cardiovascular risk amongst Han Chinese patients with T2DM may provide specific 

targets to improve the disease prognosis of this specific patient population (272). 

  

7.3. Lipid variability in the prediction of cardiovascular complication  

Whilst T2DM patients were known to have an increased variability of plasma lipid level, 

it was only recently that its predictive values for cardiovascular risks were examined. c Prior 

studies have shown that high LDL-C, HDL-C and non-HDL-C variability were independent 

risk factors for cardiovascular disease in T2DM after adjusting for confounding variables (133, 

273). In a study of over 125,000 patients with T2DM under primary care in Hong Kong, it was 

noted that lipid variability was a significant predictor for cardiovascular disease, with the 
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strongest predictors being LDL-C variability, particularly amongst the younger age group 

between 45-54 years old (274). Moreover, recent work has reported significant relationships 

between visit-to-visit cholesterol variability and long-term risks of new-onset HF and MACE 

also in patients under primary care in Hong Kong (275) as well as South Korea (131, 276).  

Whilst the pathogenic mechanism remains unclear, it was hypothesised that increased 

LDL-C variability increases plaque instability due to the promotion of macrophage activation 

to form cholesterol core in atheroma, ultimately leading to plaque rupture (99). The atherogenic 

physiology under high lipid variability was further supported by the recent report of a positive 

association between the variability of LDL-C/ total cholesterol to HDL-C ratio and the 

percentage of coronary atherosclerotic plaque volume progression (124). However, clinical 

trials on the cardiovascular protective effects of interventions that target proteins related to 

lipid variability, such as cholesteryl ester transfer protein, remained negative (277). Therefore, 

further work is needed to elucidate the mechanisms underlying the increased cardiovascular 

risk amongst T2DM patients with high lipid variability.  

By providing evidence that high lipid variability increases the risks for cardiovascular 

outcomes amongst T2DM patients, it uncovers the potential for mechanisms underlying lipid 

variability to be MACE-lowering therapeutic targets in T2DM. Besides reducing the absolute 

lipid level, interventions that stabilise lipid levels may be introduced to T2DM patients. A 

recent study reported single nucleotide polymorphisms (SNPs) associated with LDL-C and 

HDL-C variability. The SNPs associated with high LDL-C variability are related to apoprotein 

A5 (278). Apoprotein A5 increases lipoprotein lipase activity to facilitate the removal of 

lipoprotein from the circulation, hence its dysfunction results in lipid dysregulation with 

proatherogenic effects (279). The SNP associated with HDL-C variability is associated with 

PXDNL, a peroxidase homolog, which may promote atherosclerosis through increasing 

lipoprotein oxidation and impairing plasma lipid clearance (278). Interventions targeting 
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apoprotein A5, PXDNL, and other lipid variability-related proteins may have the potential to 

reduce cardiovascular risk among T2DM patients.  

 

7.4. Novelty and implications in the use of machine learning in 

cardiovascular risk stratification  

 To address the lack of adjustments for confounders in the existing literature on the 

cardiovascular risk predictors amongst patients with T2DM, machine learning techniques were 

introduced to account for the interactions between glycaemic variability and other 

cardiovascular risk factors, therefore uncovering novel predictors and their complex inter-

relationships. The present thesis provides the groundwork for machine learning-driven models 

of cardiovascular risk models in T2DM. By introducing the most relevant and influential 

predictors, the present thesis highlights the fundamental features to be included to ensure the 

accuracy of the cardiovascular risk stratification models. These features include biochemical 

parameters on glycaemic and lipid control, demographic factors such as age and sex, and 

different medical comorbidities. Models including genetic polymorphisms and lifestyle factors 

may be explored in the future. To maximize the cohort size for model generation, the Cox 

models were not validated against a training set. However, training sets were used in the 

validation of the machine learning models. The validity of the models can be examined by 

testing against other cohorts in e.g. United Kingdom and the United States. For example, the 

United Kingdom CALIBER dataset, with over 46 million patient, can be used for external 

validation (280). 

Furthermore, the application of machine learning techniques improves the accuracy and 

precision of predictive models, ultimately tailoring the models to individual risk profiles. A 

recent study on more than 25,000 T2DM patients using insulin demonstrated that higher 

HbA1c and lipid variability increase the risk of peripheral vascular disease and mortality (281). 
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The application of regularised and weighted random survival forest models to account for 

interacting relationships improves the accuracy of prediction to a c-statistic of over 87%. 

Moreover, HbA1c and lipid variability were predictive of sudden cardiac death in patients with 

advanced stages of T2DM requiring insulin therapy (282). In an expanded cohort study of 

T2DM patients, a multivariable model incorporating indices of inflammation, HDL-C, total 

cholesterol, triglyceride, HbA1c and FBG, measures of variability of both HbA1c and FBG 

showed a c-statistic of 73%, which was improved to 86% and 87% using RSF and deep survival 

learning models, respectively (283). Machine learning algorithms have the potential to 

continuously learn and evolve with new data, therefore improving the risk models over time. 

With the ever-changing patient demographic, models that incorporate machine learning 

techniques can adapt to changes in the patient landscape, without the need for the generation 

of new models, therefore increasing the clinical applicability and sustainability of these models.  

 However, the application of machine-learning techniques also raises the difficulty for 

medical and non-medical professionals, without a data science background, to understand the 

predictive models, therefore may limit the applicability of these models. The present thesis 

attempted to address this issue by transforming the predictive models into weighted risk scores 

to improve the useability of the predictive models in a clinical setting. Thus, our models have 

now been piloted and tested in various clinics in Hong Kong, which have attracted positive 

feedback by not only patients but also clinicians. This is because of the availability of a simple, 

yet effective, individualised report, for each subject, who receive simple visualisation of their 

risks of different MACE events, accompanied by personalised recommendations and further 

support by the clinic nurse and physician.  

In the future, the incorporation of different machine learning techniques can help to 

streamline the models and facilitate the communication of model findings. For example, the 

use of recursive feature elimination, where features were eliminated under repeated runs of the 
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importance-assigning algorithm can be applied to remove parameters that play an insignificant 

role in the risk prediction (284). Since the interactions between parameters have been 

accounted for in the importance-weighting of the features, it can ensure that no important 

interplaying feature has been eliminated. Additionally, visualisations, such as risk heatmaps, 

nomograms, and risk trajectories can help to communicate the calculated cardiovascular risk. 

The use of machine-learning driven visual aids can facilitate clinical discussion on treatment 

strategies and disease prognosis. 

 Whilst the present thesis illustrated the power of machine learning-incorporated models, 

data quality and standardisation remain significant obstacles to the integration of datasets from 

different centres and data sources for the generation of predictive models from diverse datasets. 

Currently, in countries such as the United Kingdom and the United States, there is a lack of a 

universal healthcare database. Patient information was kept in different electronic systems in 

different formats, sometimes even remaining in paper form. Besides the security and safety 

hazards, the absence of a universal system impairs the transparency and convenience of health 

information exchange (285). The accuracy and precision demonstrated in the present study 

show that the establishment of electronic healthcare databases with comprehensive, 

standardised data is not only beneficial for the record-keeping of patient information but is also 

a key to the successful application of machine learning techniques in models. Thus, this thesis 

showcases the power of leveraging the use of big data methods in analysing routinely collected 

health records, and the subsequent impact that can be made. Further implementation studies 

should be conducted in the future.  

 

7.5. Limitations 

 Several limitations should be noted for the studies included in the present thesis. In 

terms of the dataset, the studies are developed from data from electronic health records, which 
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are susceptible to documentation errors and missing data. In addition, patients may be lost to 

follow-up, or have missed documentation of patient events due to the transfer of care to the 

private sector, where laboratory tests and patient records were not shared with the electronic 

healthcare database under the Hospital Authority. The electronic healthcare database was 

established in 1999, therefore comorbidities present before 1999 were not documented in the 

registry. Additionally, predictions in 10, 20, 30 years cannot be generated since the electronic 

healthcare database has only existed for less than 30 years. Furthermore, the inability of capture 

free text via CDARS can result in the underdiagnosis of conditions such as hypoglycaemia, 

therefore affecting the accuracy of prediction due to inherent variability in the dataset. 

Unfortunately, there is no access to free text. However, the quality of the dataset remains to be 

high in view of the highly complete dataset, with all laboratory results and drug prescriptions 

under the Hospital Authority integrated in CDARS. Clinical diagnoses are based on ICD codes 

entered by clinicians, and the database is linked to the death registry to ensure the completeness 

of the database. Furthermore, the registry mainly contains Han Chinese patients due to the 

demographic of the Hong Kong population, therefore limits the applicability of the findings to 

patients of other ethnicities.  

 In addition, there are limitations to the machine learning techniques applied. In general, 

machine learning models can be prone to overfitting, especially when there are many predictors 

in relativity to the sample size. Therefore, cross-validation and external validations with future 

studies are crucial to assess the generalisability of the model to new, unseen data (286). It is 

well established that machine learning models may be less interpretable than traditional 

statistical models. For example, in RSF models, the complex decision trees may make 

interpreting the specific contributions of individual variables challenging. In addition, data with 

unknown event times are censored for the processing of machine-learning models (286). The 

model may be sensitive to the extent and pattern of data censoring. However, patients with 
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unknown event times have been excluded in the present study, which limits the impact of the 

censoring mechanism on the studies in the present thesis.  

In terms of limitations specific to survival forest models, they are unable to account for 

time-varying variables. Deep learning may be required for the analysis of time-varying 

variables (287). Moreover, it should be noted that the importance weighting assigned to 

different features in the machine learning model may not reflect the true clinical significance 

of the specific feature in the pathophysiological mechanism, hence should be interpreted with 

caution. The importance weighting of the feature may be influenced by the predictor strength, 

the correlation structure between predictors, and the censoring mechanism (288). A 

multidisciplinary approach with the collaboration of clinicians and data scientists can therefore 

ensure an appropriate interpretation and application of the machine learning models generated. 

 

7.6. Future works 

 Future studies may be developed in several areas of the present topic. First of all, the 

present study focuses on the use of long-term glycaemic variability in the prediction of MACE 

given the limited availability of continuous blood glucose monitoring. The present thesis 

highlights the significant association between high glycaemic variability and increased 

cardiovascular risk, therefore promoting further research on the potential difference in effects 

between short- and long-term glycaemic variability. With the increasing application and 

improving accessibility of continuous blood glucose monitoring, studies on the involvement of 

short-term glycaemic variability in clinical models for the stratification of MACE risk amongst 

T2DM patients may be explored. Machine learning techniques may be applied to uncover the 

factors that affect one’s short-term glycaemic variability, thus examining the possible 

difference in mechanisms underlying the effects on MACE between long- and short-term 
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glycaemic variability. Risk scores involving short term glycaemic variability may be generated, 

therefore improving the clinical applicability of the academic findings. 

 In addition, sudden episodes of clinically asymptomatic hypoglycaemia have been 

speculated to be one of the underlying mechanisms of increased MACE risk amongst patients 

with high glycaemic variability (209). The present thesis highlights the significant association 

between frequent hypoglycaemia and high glycaemic variability, thus providing further 

evidence for this hypothesis. Through the application of continuous blood glucose monitoring, 

episodes and extents of hypoglycaemia may be better captured, therefore able to evaluate the 

role of hypoglycaemia in the precipitation of MACE. With the combination of continuous ECG 

monitoring, the relationship between hypoglycaemia and arrhythmias, may be further 

evaluated and potentially establish a causative relationship. By marking patient events during 

the period of monitoring, the presence and types of symptoms present may be evaluated. Cause-

specific analysis in future studies can also shed light on the potentially different mechanisms 

underlying high glycaemic/ lipid variability and different MACEs. 

 Furthermore, the present thesis has highlighted the association between glycaemic and 

lipid variability, hypoglycaemic frequency, and NLR, which provides a direction for future 

research in the pathophysiological mechanism underlying the increased cardiovascular risks in 

patients with high glycaemic/ lipid variability. The present thesis is the first to show an 

elevation in inflammatory markers under frequent hypoglycaemia in patients with high 

glycaemic/ lipid variability in a clinical setting, which will inspire future clinical studies to 

validate the present findings. External validations may be done through the examination of 

other inflammatory markers, the application of continuous blood glucose/ lipid monitoring, the 

exploration of short term glycaemic and lipid variability, the involvement of larger, more 

ethnically diverse cohorts, and more. The present findings also pave the way for basic studies 

to explore inflammatory pathways that may be activated under states of frequent glucose and 
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lipid level fluctuations. Substrates in the involved inflammatory pathways may be potential 

therapeutic targets to lower the cardiovascular risks of patients with T2DM. Other prognostic 

factors noted in the present study, sometimes ranking even more important than glycaemic and 

lipid variability, such as anaemia and age, may be explored in future studies on risk models. 

 In the future, deep learning and neural networks may be used in risk stratification 

models based on electronic healthcare records. The present thesis has set the grounds that 

machine learning is an effective method to improve the accuracy and precision of risk 

stratification models, in comparison to models generated through conventional methods, under 

the availability of high quality, standardized datasets. Other centres with electronic health 

databases available would be encouraged to explore machine learning techniques and 

collaborate with data scientists in future studies. It would also encourage a general shift to an 

electronic standardisation of healthcare data documentation for better consistency and accuracy. 

Differing from machine learning, deep learning does not require human intervention in 

the correction of errors in its processing and analysis of data (289). Instead, neural networks 

were used to process training data for the development of algorithms. Through the use of deep 

learning, the generation and update of risk models can be automated, and time-varying 

variables may be included. For example, time-varying data from continuous blood/ ECG 

monitoring can be included in the risk models. A recent trial applying the use of deep learning 

in the optimisation of glycaemic control amongst T2DM patients has shown promising results 

(290). Deep learning has also been applied in the clustering of disease trajectories and 

prediction of glycaemic control in patients with T2DM (291, 292). Hence, the next step forward 

is to involve deep learning in the processing of electronic health records for the development 

of risk stratification models in T2DM patients.  
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7.7. Conclusion 

 To conclude, the present study demonstrated that glycaemic and lipid variability are 

both useful in the prediction of cardiovascular risk amongst patients with T2DM. The 

glycaemic and lipid variability are important for the evaluation of risks for specific MACE, 

such as SCD and AMI. The association between hypoglycaemic frequency, elevated 

inflammatory marker, glycaemic/ lipid variability, and MACE shed light on potential 

pathophysiological mechanisms involving inflammatory pathways.  

In addition, machine learning techniques have been shown to improve clinical risk 

models, whilst maintaining the interpretability of the model. By accounting for complex 

interactions between variables, machine learning techniques can improve the accuracy and 

precision of the models. A multidisciplinary approach in the development of the risk models 

ensures the clinical applicability and interpretability of the risk stratification models.  

 In the future, preclinical studies furthering the potential inflammatory pathways 

triggered under hypoglycaemia may be performed. In addition, clinical studies with larger, 

more ethnically diverse cohorts and the involvement of continuous blood glucose and lipid 

monitoring can further elucidate the relationships between short-/long-term glycaemic and 

lipid variability and MACE in patients with T2DM. The application of machine and deep 

learning can be used in the prediction of specific MACE outcomes.  
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