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SUMMARY

Diatoms are among the most diverse and ecologically significant groups of photosynthetic microalgae, con-

tributing over 20% of global primary productivity. Their ecological significance, unique biology, and genetic

tractability make them ideal targets for genetic and genomic engineering and metabolic reprogramming.

Over the past few decades, numerous genetic methods have been developed and applied to these organ-

isms to better understand the function of individual genes and how they underpin diatom metabolism.

Additionally, the ability of diatoms to synthesize diverse high-value metabolites and elaborate mineral

structures offers significant potential for applications in biotechnology, including the synthesis of novel

pharmaceuticals, nutraceuticals, and biomaterials. This review discusses the latest developments in diatom

genetic engineering and provides prospects not only to promote the use of diatoms in diverse fields of bio-

technology but also to deepen our understanding of their role in natural ecosystems.
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INTRODUCTION

Diatoms are a diverse class of photosynthetic microalgae

widely distributed across oceans, lakes, rivers, and even

soils (Pinseel et al., 2020). Representing the most diverse

phytoplankton class in today’s oceans, diatoms are esti-

mated to include approximately 100 000 species worldwide

(Mann & Vanormelingen, 2013). With only about 0.1% of

the total global plant biomass, diatoms contribute over

20% of the world’s primary productivity (Bar-On et al.,

2018; Leblanc et al., 2012; Malviya et al., 2016). This dispro-

portionate impact underscores their critical role, especially

in aquatic ecosystems, driving global biogeochemical

cycles.

Given their ecological significance and diversity, there

is an impetus to sequence and develop molecular tools for

a variety of diatom species. The current availability of over

50 diatom genomes with >100 still to be sequenced as part

of the 100 Diatom Genomes Project (100DGP) in addition

to more than 500 diatom transcriptomes, provides a signif-

icant resource for studying diatom biology from genes to

applications (Brodie et al., 2017). Based on these resources,

researchers have gained important insights into diatom

physiology, evolution, and their ecological functions. Since

the first successful genetic transformation in Cyclotella

cryptica and Navicula saprophila using biolistics, this

method has rapidly become a standard and, therefore, is

the most popular technique for the genetic modification of

diatoms (Dunahay et al., 1995). Advances in transformation

technologies, such as electroporation (Hu & Pan, 2020;

Okada et al., 2023; Yin & Hu, 2021; Zhang & Hu, 2014) and

conjugation (Karas et al., 2015), combined with the advent

of Clustered Regularly Interspaced Short Palindromic

Repeats (CRISPR/Cas9) (Hopes et al., 2016; Nymark et al.,

2016), have enabled precise and efficient editing of diatom

genomes. These advancements have positioned diatoms

as an attractive target for genetic engineering and meta-

bolic reprogramming, facilitating applications in biotech-

nology, such as alternative fuels, pharmaceuticals,

nutraceuticals, and the synthesis of novel biomaterials

(Brodie et al., 2017). This review aims at providing an over-

view of the methods and applications involved in the

genetic manipulation of diatoms, including the current pro-

gress in terms of further developing genomics resources

as the foundation of genome engineering. Our review will

also provide prospects for this fast-developing field of fun-

damental and applied research with diatoms.
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DIATOM GENOMIC RESOURCES

Thalassiosira pseudonana and Phaeodactylum tricornutum

were the first diatoms to have their genome completely

sequenced (Armbrust et al., 2004; Bowler et al., 2008).

Characterized by small genome size (<35 Mb) and rapid

growth (>one cell division per day under optimal condi-

tions), both species quickly became models, providing key

insights into diatom evolution, adaptation and ecological

roles in their natural environments (Bowler et al., 2010;

Mock et al., 2022). However, the availability of only two

diatom genomes is insufficient to understand the diversity

of diatoms (Nakov et al., 2018). To gain more comprehen-

sive insights on diatom adaptation and evolution, addi-

tional diatom species have been subsequently sequenced.

For example, the genome of Fragilariopsis cylindrus

revealed how diatoms adapt to polar oceans (Mock

et al., 2017) and the genome of Nitzschia putrida illumi-

nated how diatoms evolve from a phototropic to a hetero-

trophic lifestyle (Kamikawa et al., 2022). Furthermore, the

genome of oleaginous diatoms Fistulifera solaris and C.

cryptica provide a foundation for improving lipid synthesis

through genetic modifications (Tanaka et al., 2015; Traller

et al., 2016), which is relevant for diverse biotechnological

applications. However, a step-change in our understanding

of diatom functional and evolutionary genomics will be

provided by the ‘100 Diatom Genomes Project’ (https://jgi.

doe.gov/csp-2021-100-diatom-genomes/), which was initi-

ated a few years ago by an international consortium of dia-

tom researchers from different fields. The project is funded

by the Joint Genome Institute (JGI), Department of Energy

(USA).

Consequently, these fast-expanding diatom genomic

resources will provide a wealth of novel biological infor-

mation which can be accessed through public data banks

such as the National Center for Biotechnology Information

(NCBI), the Joint Genome Institute (JGI), the European

Nucleotide Archive (ENA), the Ensembl Genome Browser,

DiatOmicBase, and PLAZA (Table S1). However, to harness

this wealth of information, it will be necessary to develop

synthetic biology tools that allow for large-scale genome

engineering, analogous to the methods that have been pio-

neered for prokaryotes (Fredens et al., 2019; Hutchison

et al., 2016) and yeast (Schindler et al., 2024). In combina-

tion with multi-omics tools, the integration of these diverse

resources and methods will provide holistic insights into

the function of genes, genetic networks, and their role in

diverse biological processes.

GENETIC ENGINEERING

There are two complementary approaches used so far for

diatom genetic engineering: Forward and reverse genetics.

The former is a phenotype-first approach, which starts with

an observable phenotype as the outcome of random

mutagenesis. The latter aims to purposefully modify a

genetic locus of interest, resulting in novel phenotypes to

be characterized to reveal the in vivo function of the

genetic locus. Reverse genetics is an important component

of synthetic biology to create new diatom biology, which

in its most developed stage would generate a synthetic

diatom based on artificially synthesized chromosomes that

carry a novel combination of genes and genetic networks.

Although there is no synthetic diatom yet, significant

advancements in terms of large-scale chromosome-like

assemblies and novel transformation protocols pave the

way for achieving that goal.

Forward genetics

Forward genetics generates random mutations by either

chemical and/or radiation mutagenesis. DNA mutations

can also be caused by random integrations of exogenous

DNA, including selective markers (Goold et al., 2024;

Moosburner et al., 2022). High-throughput approaches are

subsequently used to screen many of the treated cell lines

to identify phenotypes that are significantly different from

the wild-type (WT) controls. For instance, chemically medi-

ated mutagenesis in diatoms using N-ethyl-N-nitrosourea

(ENU) has identified a new type of uridine-5-

monophosphate synthase (UMPS) (Sakaguchi et al., 2011)

in P. tricornutum. UV-mediated mutagenesis has been

used to introduce dominant genetic mutations in diatoms.

For example, it has been successfully applied to increase

the eicosapentaenoic acid (EPA) content in P. tricornutum

by up to 44% (Alonso et al., 1996). Additionally, UV muta-

genesis was applied to identify novel selectable markers,

such as the genetic locus conferring resistance against the

herbicide norflurazon, which was caused by a specific

amino acid substitution in the phytoene desaturase (PDS)

gene (Taparia et al., 2019). Thus, forward genetics is a

valuable tool for introducing dominant mutations. How-

ever, the diploid nature of diatom genomes during most of

the life cycle imposes challenges to obtaining biallelic

(homozygous) gene inactivation by untargeted

mutagenesis, especially if the mutagen primarily causes

single-strand breaks in the DNA (Huang & Daboussi, 2017;

Moosburner et al., 2022). Similar challenges exist for the

application of reverse genetics approaches.

Reverse genetics

Before any genetic loci can be modified using targeted

approaches, there need to be methods for delivering and

establishing genetic material in the diatom cell. Usually,

these transformation protocols are developed using the

expression of marker genes such as green fluorescent pro-

tein (GFP) and yellow fluorescent protein (YFP), which,

based on their fluorescence, help to assess the stability of

the genetic modification. The latter is an important crite-

rion for many applications in reverse genetics with
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diatoms (Faktorova et al., 2020; Falciatore et al., 1999;

Sabatino et al., 2015; Yin & Hu, 2021). Once a transforma-

tion protocol has been developed, many endogenous

genetic loci can be manipulated. The most used genetic

modifications in diatoms include gene overexpression,

knockdown, and knockout. Furthermore, some diatoms

such as T. pseudonana can be used for efficient gene

replacement facilitated by homology-directed repair (HDR).

Until now, the genetic transformation systems have been

established in 20 diatom species (Figure 1).

Gene overexpression, defined as an unnaturally high

level of gene expression usually caused by the knock-in of

an additional copy of the target gene driven by a strong

constitutive promoter such as fucoxanthin chlorophyll-a/c-

binding protein (FCP ), may give cells new phenotypic char-

acteristics, allowing researchers to draw conclusions about

the potential function of the overexpressed gene. This

method was successfully employed for the first time in dia-

toms in 1995 (Dunahay et al., 1995).

Gene knockdown is the process by which gene expres-

sion is at least reduced and sometimes completely abol-

ished. It is reversible as the method targets mRNA instead

of DNA, thereby resulting in the decrease of the encoded

protein. The first report of gene knockdown was based on

inhibiting the expression of the GUS reporter and the

endogenous cryptochrome gene in P. tricornutum using

antisense RNA technology (De Riso et al., 2009). Since then,

gene silencing has been widely applied in diatoms

(Sabatino et al., 2022; Shrestha & Hildebrand, 2017; Trenta-

coste et al., 2013; Wang et al., 2023). However, the molecu-

lar mechanism underlying gene silencing remains to be

completely resolved because it does not appear to be fol-

lowing the canonical mechanism of RNA interference

(RNAi) mediated by small non-coding RNAs (sRNAs) and

the activity of the endoribonuclease Dicer (DCR) because

the mRNA of the silenced genes is still present, as observed

in T. pseudonana, for instance, (Kirkham et al., 2017). How-

ever, new data based on comparative genome and tran-

scriptome analyses and reverse genetics with P.

tricornutum have in fact revealed that key RNAi effectors

have diversified in diatoms. Nevertheless, this new study

suggests the presence of distinct RNAi pathways in dia-

toms. For instance, the P. tricornutum DCR was found to

process 26–31-nt-long double-stranded sRNAs originating

mostly from transposons covered by repression-associated

epigenetic marks (Grypioti et al., 2024).

In addition to gene overexpression and silencing in

diatoms, the last decade has revolutionized our ability to

modify the diatom genome by enabling targeted modifica-

tions using sequence-specific nucleases. Modifications are

achieved through the application of meganucleases (MNs),

transcriptional activator-like effector nucleases (TALEN)

and especially CRISPR/Cas-assisted genome editing. These

genetic tools introduce double-strand DNA breaks (DSB) at

specific loci, with subsequent repair either via homology-

directed repair (HDR) or non-homologous end joining

Figure 1. Maximum-likelihood phylogenetic tree and transformation status of sequenced diatom genomes based on the 18S sequences.

The phylogenetic tree depicts the evolutionary relationships among diatom species with complete genome sequences. Species with established genetic transfor-

mation protocols are highlighted with dots at the leaves. Representative morphologies of key species are illustrated alongside their respective phylogenetic posi-

tions. The tree is divided into three major groups based on the phylogeny: multi-polar centrics (green), araphid pennates (blue), and raphid pennates (brown).
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(NHEJ). The latter is the most frequent repair mechanism

in diatoms acting on single-nucleotide mutations and small

insertion–deletions (INDELS). MNs, TALENs, and

CRISPR/Cas have been used successfully to induce tar-

geted mutations in diatom genomes (Daboussi et al., 2014;

Fortunato et al., 2016; Hopes et al., 2016). Among these

three gene modification methods, meganucleases are the

oldest method which recognizes and cleaves long DNA tar-

get sites (14–40 bp) and tolerates minor sequence changes

in these sites (Chevalier & Stoddard, 2001). TALENs consist

of a sequence-specific DNA-binding domain and a FokI

cleavage domain (Christian et al., 2010). The customized

TALE DNA-binding domain guides the nuclease to the tar-

get gene, while the FokI nuclease domain dimerizes to

induce DNA cleavage (Bogdanove & Voytas, 2011; Voy-

tas, 2013). The first proof of concept for using MNs and

TALENs to edit diatom genomes was published by

Daboussi et al. (2014). TALEN technology was applied to

both P. tricornutum and T. pseudonana (Fortunato

et al., 2016; Weyman et al., 2015). TALENs have the advan-

tage of low off-target activity, ensuring high specificity in

genome editing (Nemudryi et al., 2014). However, a typical

TALEN system requires pairing two TALENs to target DNA

sequences of 30–36 base pairs, with each side consisting

of 18 repeats (Malzahn et al., 2017). Thus, the design is

complex and not as versatile as the CRISPR/Cas technol-

ogy. Therefore, MNs and TALENs were gradually replaced

in diatom research by the effective CRISPR/Cas technology

(e.g., Hopes et al., 2016). The native CRISPR-Cas9 system

functions as part of the bacterial immune system by

detecting and cutting foreign DNA using sequence-specific

guide RNAs (gRNAs). In genome editing, the CRISPR RNA

(crRNA) fused to the trans-activating CRISPR

RNA (tracrRNA) generates single-guide RNAs (sgRNAs),

which replace native gRNAs. The sgRNAs guide the Cas9

protein to cleave the DNA at the desired loci (Bortesi &

Fischer, 2015). The first reports for successful

CRISPR/Cas-based genome editing leading to stable gene

knockouts were based on work with P. tricornutum

(Nymark et al., 2016) and T. pseudonana (Hopes

et al., 2016). Both papers came out in the same year, sepa-

rated only by some weeks. Following these landmark

papers, CRISPR/Cas-mediated homologous recombination

(HR) was developed in P. tricornutum, T. pseudonana, and

Chaetoceros muelleri, providing targeted genome editing

at endogenous loci (Belshaw et al., 2022; Moosburner

et al., 2020; Yin & Hu, 2023). In 2018, the first paper on

DNA-free gene knockout by direct delivery of CRISPR-Cas9

ribonucleoproteins (RNPs) was published. This DNA-free

method is still successfully used in the diatom community

(Serif et al., 2018). Furthermore, a Cas9 nickase (nCas9) has

recently been developed for diatom research. The native

Cas9 nuclease has two active domains, that is, RuvC

(D10A) and HNH (H840A). The RuvC domain is inactive in

the Cas9 nickase (nCas9). Thus, nCas9 only introduces

single-strand DNA breaks (nicks). The nCas9 system has

recently been used in diatoms to suppress the off-target

effects of the native Cas9 nuclease (Matsui et al., 2024;

Nawaly et al., 2020; Nigishi et al., 2024).

Very recently, a dead (d)Cas9 has been used in dia-

tom research for the first time (Guo et al., 2024). The

dCas9 is characterized by its inability to cut DNA. How-

ever, it still retains the ability to bind to DNA

(Pickar-Oliver & Gersbach, 2019). dCas9 in diatoms has

been used for CRISPR interference (CRISPRi) to perform

CRISPR-mediated knockdown in P. tricornutum (Guo

et al., 2024). dCas9 can also be used for CRISPR activa-

tion, in which the dCas9 is fused with transcriptional acti-

vators, allowing the upregulation of target genes.

However, this method (CRISPRa) has yet to be estab-

lished for diatom research. Base editors (e.g., cytosine,

adenosine) have not yet found their way into diatom

research either (Lee et al., 2023). Base editors enable pre-

cise editing of single bases, which can be used to intro-

duce single amino acid changes to confer, for instance,

resistance to compounds such as cycloheximide and nor-

flurazon (Stevens et al., 2001; Taparia et al., 2019).

MOLECULAR GENETIC TOOLKITS

Promoters

Promoters can be endogenous or heterologous in origin

and can drive constitutive or inducible expression of the

respective downstream open reading frame. Commonly

used promoters for diatom research are listed in Table 1.

Constitutive promoters facilitate stable gene expression

and are not influenced by growth stage or environmental

conditions. Examples of endogenous constitutive pro-

moters commonly used in diatoms include those from

genes encoding fucoxanthin chlorophyll-a/c-binding

protein (Fcp, now called Lhcf ), histone 4 (H4), elongation

factor II (ef2), acetyl-CoA carboxylase (ACCase) and U6

small nuclear RNA (U6) (Apt et al., 1996; De Riso

et al., 2009; Dunahay et al., 1995; Falciatore et al., 1999;

Hopes et al., 2016; Nymark et al., 2016; Sabatino

et al., 2015; Seo et al., 2015; Siaut et al., 2007). Recently, in

vivo transcriptional activity of four new endogenous pro-

moters from the NADH:ubiquinone oxidoreductase (Nub),

Synaptobrevin/VAMP-like protein (SVP ), predicted protein

45,582, nd Prohobitin (Pbt) was characterized in P. tricornu-

tum along with additional alternative promoters (e.g.,

calmodulin-dependent protein kinase II, oxygen-evolving

enhancer protein 3, glucose-6-phosphate isomerase, fruc-

tose bisphosphate aldolase), providing comparative data

for advancing genetic engineering strategies (Garza

et al., 2023; Windhagauer et al., 2021). However, it should

be mentioned that not all endogenous constitutive pro-

moters are equally strong. For example, H4 appears to be
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a strong promoter, whereas FCP is considered weaker in P.

tricornutum (Garza et al., 2023).

Inducible promoters can switch gene expression on

and off in response to specific environmental or experi-

mental conditions. This allows for the controlled expres-

sion of a target gene and minimizes the potential negative

effects from the overproduction of recombinant proteins

that could otherwise occur during constitutive expression.

The availability of nutrients can lead to significant changes

in the expression of certain diatom genes. Thus, promoters

that respond to nutrients, such as those involved in nitro-

gen, iron, silicon, and phosphate acquisition and metabo-

lism have been used as inducible promoters. For instance,

the nitrate reductase (NR) promoter is commonly used for

inducible expression in diatoms, whereby NR is activated

by the presence of nitrate as the sole nitrogen source and

repressed if replaced by ammonium (Ifuku et al., 2015;

Poulsen et al., 2006; Poulsen & Kroger, 2005; Schellenber-

ger Costa et al., 2013). However, even when NR is induced,

the overall transgene expression levels remain relatively

low (Chu et al., 2016; Poulsen & Kroger, 2005). Three

iron-responsive promoters were functionally characterized

in P. tricornutum, including promoters of the iron-

starvation-induced protein1 (Isi1), ferrichrome-binding pro-

tein1 (FBP1) and flavodoxin (Fld ) genes (Yoshinaga

et al., 2014). Promoters of a putative silicon-related protein

(Thaps3_9619) and silicon transporters (SIT) in T. pseudo-

nana (TpSIT1, TpSIT2) and C. cryptica (CcSIT1) are poten-

tial alternatives because they likely have less detrimental

effects on core metabolic functions compared with the NR

promoter (Davis et al., 2017; Shrestha & Hildebrand, 2017).

Likewise, the alkaline phosphatase (AP) gene is strongly

induced in response to inorganic phosphate depletion (Lin

et al., 2013). Testing its promoter in P. tricornutum

(pPhAP1) revealed a much higher expression of transgenes

compared with using either the Fcp or any tested NR pro-

moters (Lin et al., 2017). The promoter regulating the

expression of the secreted protein 1 (HASP1) gene is also

responsive to phosphate depletion but repressed if phos-

phate is available (Slattery et al., 2022). Furthermore, there

are CO2-sensitive promoters available for diatom research,

such as the promoter regulating the expression of the b-
carbonic anhydrase 1 gene (ptca1) in P. tricornutum, which

is significantly decreased when cells are grown in a high

CO2 environment (i.e., 5% CO2, as opposed to air-levels of

0.04%) (Harada et al., 2005). However, it is worth mention-

ing that the induction and/or inactivation of certain pro-

moters, such as the pPhAP1, relies on the availability of

essential nutrients, which might cause transcriptional

reprogramming as a response (Garza et al., 2023). Hence,

the altered transcriptome might interfere with subsequent

phenotyping studies to characterize the in vivo function of

the modified target gene. To reveal if and how those asso-

ciated effects imposed by the regulation of these

promoters impact the physiology of the genetically modi-

fied cell lines, we suggest performing multi-omics studies

to capture potential reprogramming on diverse levels of

organization from transcriptomes to metabolomes.

Heterologous promoters include non-endogenous

promoters obtained from other diatom species,

non-diatom species, viruses, and even synthetic chemical

promoters. For example, the Lhcf2 promoter from Cylin-

drotheca fusiformis was used to drive transgene expres-

sion in P. tricornutum and Fistulifera sp. (Miyagawa

et al., 2009; Muto et al., 2013). With the molecular charac-

terization of diatom-infecting viruses (DIVs), their pro-

moters have been studied in diverse diatoms, and some of

them have shown high transgene expression (Kadono

et al., 2015; Kadono et al., 2020; Kadono et al., 2022). Fur-

thermore, promoters from the mammalian cytomegalovi-

rus (CMV), the avian rous sarcoma virus (RSV-LTR) and the

plant cauliflower mosaic virus 35S (CaMV 35S) have been

successfully used for transgene expression in P. tricornu-

tum (Sakaue et al., 2008). The CaMV 35S and RSV-LTR pro-

moters can drive high levels of gene expression

comparable to the endogenous FcpA promoter in the log

phase of P. tricornutum (Kadono et al., 2020).

Furthermore, chemically inducible gene expression

systems have been developed to achieve dynamic gene

expression as a consequence of applying exogenous che-

micals to diatom cultures. Six of these systems were tested

in P. tricornutum (Kassaw et al., 2022). Among them, b-
estradiol and digoxin demonstrated high levels of revers-

ibility and tunability, making them effective for the chemi-

cal induction of transgene expression. The b-estradiol
system is highly sensitive, with b-estradiol concentrations
as low as 1 nM sufficient to trigger gene expression. The

digoxin-inducible promoter enables tight control of gene

expression, with activation levels directly correlating with

digoxin concentrations ranging from 0 to 100 lM. Chemi-

cally inducible promoters have been used in several model

organisms (e.g., Escherichia coli and yeast). In some cases,

the use of endogenous inducible promoters carries the risk

of causing unintended effects on metabolism, while consti-

tutive promoters drive continuous expression of the target

genes even when their activity is not required anymore,

which can be toxic to the cell (e.g., overexpression of the

Cas9 enzyme). Chemically inducible promoters overcome

these limitations; however, the impact of the chemicals on

the metabolism of diatoms largely is unknown and there-

fore needs to be empirically tested.

Selective markers

Selective markers confer resistance to specific antibiotics/

chemicals or restore auxotrophies and are often used

when genetically engineering diatoms. A transgenic vector

typically contains the gene(s) of interest and a selective or

auxotrophic marker, the latter enabling the identification of

� 2025 The Author(s).
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2025), 121, e70102
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transformants when cells are exposed to the selective

agent. The selective marker genes most commonly used in

diatoms confer resistance to various antibiotics, including

Shble (phleomycin/zeocin resistance), Nat (nourseothricin

resistance), Bsr (blasticidin-S resistance), Cat (chloram-

phenicol resistance), Sat (streptothricin resistance) and

nptII (G418/geneticin resistance) (Apt et al., 1996; Buck

et al., 2018; Dunahay et al., 1995; Falciatore et al., 1999;

Karas et al., 2015; Muto et al., 2013; Poulsen et al., 2006;

Xie et al., 2014; Zaslavskaia et al., 2000). In addition, the

mutation of endogenous genes can confer resistance to

specific chemical compounds, which have been developed

as selectable markers in diatoms. For instance, the inacti-

vation of uridine-50-monophosphate synthase (PtUMPS)

and adenine phosphoribosyl transferase (PtAPT) genes in

P. tricornutum, leading to the resistance to 5-fluoroorotic

acid (5-FOA) and 2-fluoroadenine (2-FA), respectively, pro-

vides a selection strategy without relying on exogenous

antibiotic resistance markers (Serif et al., 2018). Similarly,

the point mutation of the endogenous phytoene desatur-

ase gene (PDS, PHATRDRAFT_45735) conferred resistance

to the herbicide norflurazon in P. tricornutum (Taparia

et al., 2019). However, the potential effects on metabolism,

following the removal of selecting agents due to the loss

of endogenous genes, should be taken into consideration.

Moreover, auxotrophic complementation markers provide

an alternative approach. Cas9-directed genome engineer-

ing has also been used to generate strains of P. tricornu-

tum that are auxotrophic for histidine, uracil, or

tryptophan; these auxotrophies can be restored by provid-

ing the respective biosynthetic gene in the transgenic vec-

tor (Slattery et al., 2020).

When considering microbial interactions involving

diatoms, applying reverse genetics tools to study them is

still in its infancy. Most work is still focused on managing

the contamination of diatom cultures – often, the selective

markers introduced during genetic engineering efforts can

also be used to mitigate contamination, so long as the con-

taminant is susceptible to the respective antibiotic or

chemical selective agent. For instance, resistance to anti-

fungal drugs such as amphotericin, echinocandins, and

azoles has been widely studied to identify key resistance

genes (Jensen et al., 2015; Moirangthem et al., 2021; Morio

et al., 2017; Rybak et al., 2022; Spettel et al., 2019). This

work, if done with diatoms, will provide basic information

for selecting antifungal markers, for instance. Furthermore,

studying interactions between diatoms, bacteria, and

viruses involves the depletion and rescue of bacteria

and their associated viruses (Zhang et al., 2024). Thus,

introducing resistance genes to diatom genomes repre-

sents an approach for controlling these interactions and

therefore provides an opportunity to selectively modulate

microbial communities for advancing our understanding of

microbial interactions with diatoms as the host organisms.

Reporter systems

Reporters are widely used to monitor and track engineered

diatom cells by visualizing the expression of transgenes or

the regulation of promoters. The integration of reporter

genes allows researchers to quickly identify transformed

cells and employ techniques such as fluorescence-

activated cell sorting (FACS) to isolate cells emitting fluo-

rescence. Enzyme-based reporters offer high sensitivity but

require the addition of a substrate to generate a detectable

signal (e.g., bioluminescence). For instance, luciferase

(LUC) and b-glucuronidase (GUS) genes have been

expressed in several diatom species (Falciatore et al., 1999;

Ifuku et al., 2015; Sabatino et al., 2015; Zaslavskaia

et al., 2000). However, some reporter systems require the

application of complex assays for visualization, which

makes these systems more technically challenging to work

with (Huttly, 2009).

For real-time studies and live-cell imaging, fluorescent

reporters may be better alternatives. For instance, the

breakthrough of tagging fluorescent proteins revolution-

ized the study of protein–protein interactions in living cells,

leading to the discovery of interaction networks and previ-

ously unknown protein functions (Nam et al., 2024; Turn-

sek et al., 2021). These proteins emit stable fluorescence

upon excitation by the corresponding wavelengths of light.

Because of their broad applicability (e.g., operational in dif-

ferent cell types, easy detectability), fluorescent proteins

are perhaps the most frequently used reporter systems in

diatoms (Figure 2). Examples are the green fluorescent

protein (GFP), enhanced green fluorescent protein (eGFP),

yellow fluorescent protein (YFP), optimized YFP (VENUS),

the red fluorescent protein mCherry, and the cyan fluores-

cent protein gene (CFP) (Table 1). New fluorophores,

including mNeonGreen, mScarlet-i, and mTurquoise2,

have been tested and validated in T. pseudonana, expand-

ing the toolkit for protein localization studies in diatoms

(Nam et al., 2022). Additionally, fluorescent proteins that

have been established in other microalgae and diverse pro-

tists include the brightest blue fluorescent protein

mTagBFP. It is believed that these fluorescent proteins

should also work in diatoms (Faktorova et al., 2020). When

selecting reporter genes, it is critical to consider the back-

ground conditions of the cells (e.g., presence of chloro-

phyll autofluorescence) to ensure the accurate detection of

the reporters and to minimize interference with back-

ground fluorescence.

Various reporters offer a wide spectrum of colors,

enabling researchers to select the most suitable reporter

based on their objectives, including multicolor imaging to

study multiple reporters simultaneously. If reporters are

fused to target proteins or promoter sequences, it allows

for the identification of the subcellular localization of the

target genes and the regulation of the promoters under

� 2025 The Author(s).
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native conditions, respectively (Hao et al., 2022; Liu

et al., 2016; Nojima et al., 2013; Pan et al., 2024; Shao

et al., 2019). It should be noted that the folding and matu-

ration of fluorescent reporter proteins can be a slow pro-

cess that is influenced by the cellular environment (e.g.,

redox state). The delay between gene expression and pro-

tein maturation might introduce a bias between the detec-

tion of the fluorescence signals and the actual expression

levels of the gene (Jullien & Gautier, 2015). Consequently,

under such circumstances, it might be advantageous to

combine the measurement of fluorescent signals with

expression analyses of the target gene(s).

Cloning and assembly strategies

Restriction enzyme cloning likely is the most common

cloning method in diatom research. Both the DNA frag-

ment of interest and the vector are cut with the same

restriction enzymes at specific recognition sites. The result-

ing complementary sticky or blunt ends allow the DNA

fragment to be ligated into the vector using a DNA ligase,

creating a recombinant DNA molecule. The first application

for diatoms involved inserting the nptII gene into a plas-

mid, which conferred G418 resistance to the transformed

Cyclotella cryptica (Dunahay et al., 1995). Type II restriction

enzymes have long been the workhorses in diatom reverse

genetics (Poulsen et al., 2006; Sabatino et al., 2022; Wang

et al., 2023).

The Gibson assembly method is based on a seamless

cloning strategy that joins multiple DNA fragments

together in a specific order at a constant temperature using

a T5 exonuclease, a DNA polymerase, and a DNA ligase

(Gibson et al., 2009). This method is based on the assem-

bly of overlapping fragments and is not constrained by

restriction enzyme sites; hence, it offers flexibility in the

design of vectors. Several studies in diatom research have

successfully used this assembly method (Daboussi

et al., 2014; Nigishi et al., 2024; Stukenberg et al., 2018).

However, it should be noted that the efficiency decreases

when the number of fragments increases beyond five due

to challenges with ensuring correct annealing and main-

taining overlap homology between fragments (Gibson

et al., 2009). Thus, nicks or any kinds of base mutations in

the overhangs will significantly impact the assembly

success.

The golden gate assembly uses Type IIS restriction

enzymes to enable precise and scar-free DNA assembly

(Engler et al., 2008). The specified sticky ends on cuts are

made at a defined distance from the recognition sites in

plasmids and DNA fragments, achieving a hierarchical

assembly of DNA parts (Bird et al., 2022). DNA parts are

stored stably within plasmid vectors, allowing them to be

efficiently reused in subsequent assembly steps. In diatoms,

only P. tricornutum and T. pseudonana have been subjected

to golden gate cloning (Belshaw et al., 2022; Hopes

Figure 2. Expression of green fluorescent protein (GFP) or enhanced green fluorescent protein (eGFP) in four diatom species. Bright-field and corresponding

GFP/eGFP fluorescence images are shown for each species.

(a, b) Fragilariopsis cylindrus, (c, d) Thalassiosira pseudonana, (e, f) Phaeodactylum tricornutum, and (g, h) Nitzschia putrida. Scale bars are 20 lm in (a, b),

10 lm in (g, h), and 5 lm in (c–f). Images have been taken by Jan Strauss, Amanda Hopes, and Longji Deng.

� 2025 The Author(s).
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et al., 2016; Llavero-Pasquina et al., 2022; Mooshammer

et al., 2020). Some of the golden gate components for both

species are available from Addgene (Watertown, MA, USA)

(https://www.addgene.org/). Furthermore, the modular

cloning (MoClo) system is a hierarchical and modular

assembly method based on golden gate cloning, combining

standardized parts, such as promoters, coding sequences,

and terminators in a predefined order (https://www.

addgene.org/kits/marillonnet-moclo/). Several MoClo toolk-

its have been developed, providing reusable parts and vec-

tors for mammalian (Weber et al., 2011), yeast (Lee

et al., 2015), plants (Engler et al., 2014), bacteria (Iverson

et al., 2016; Moore et al., 2016; Stukenberg et al., 2021),

Chlamydomonas reinhardtii (Crozet et al., 2018), and cyano-

bacteria (Vasudevan et al., 2019). The use of a standardized

syntax facilitates the sharing of non-species-specific mod-

ules (Patron et al., 2015). The MoClo toolkits have been used

for diatoms (Nam et al., 2022; Russo et al., 2023) but not as

commonly as other cloning methods.

The Loop assembly is another emerging and versatile

DNA assembly system based on recursive DNA cloning.

This method achieves high precision and reliability for

assembling complex and larger constructs, with >80%
average assembly efficiencies on over 200 different DNA

constructs (Pollak et al., 2019). The universal Loop (uLoop)

assembly, which is derived from the traditional Loop, has

been successfully adapted for use in diatoms (Pollak

et al., 2020). The diatom uLoop assembly kit is available

from Addgene (https://www.addgene.org/kits/dupont-

diatom-uloop/) and the uLoop library is still expanding to

include new parts, such as newly characterized promoters

and terminators (e.g. calm, oee3 and flav) in P. tricornutum

(Garza et al., 2023). This open-access diatom uLoop library

provides a modular and standardized approach for con-

structing diverse genetic components. Thus, it fosters col-

laboration between research groups and ensures data

reproducibility through standardization.

There is an increasing use of in vivo assembly, partic-

ularly for constructing larger plasmids or those requiring

the integration of multiple fragments. This approach lever-

ages Saccharomyces cerevisiae (i.e., yeast) protoplast

transformation methods (Kouprina & Larionov, 2008). A

yeast artificial chromosome (YAC), often containing a CEN-

ARS-HIS backbone, is included on a fragment that also

incorporates essential elements for replication and selec-

tion in E. coli. The DNA fragments used for assembly can

be chemically synthesized, PCR-amplified, or even directly

obtained from isolated DNA, provided they are excised at

desired positions using unique restriction enzymes. A min-

imum overlap of 40 base pairs (bp) between fragments is

required for efficient recombination between complemen-

tary sequences; however, for assemblies involving a larger

number of fragments, longer overlaps of 50–200 bp are

recommended to enhance efficiency. The main advantage

of this method is its capacity to assemble large plasmids,

though it is more time-consuming and demands technical

expertise. Notable applications of this technique

include the assembly of entire mitochondrial genomes

from P. tricornutum and T. pseudonana (Cochrane, Brum-

well, Shrestha, et al., 2020; Cochrane, Brumwell, Soltysiak,

et al., 2020) as well as the chloroplast genome of P. tricor-

nutum (Walker et al., 2023). Furthermore, recent findings

have demonstrated that plasmids can be directly assem-

bled in P. tricornutum through non-homologous end join-

ing, potentially simplifying the process of constructing

genetic constructs, at least for this species (Walker

et al., 2024).

DELIVERY SYSTEMS

Microparticle bombardment has been most widely used to

deliver DNA, RNA, and proteins. It has been successfully

employed for both nuclear and chloroplast transformation

in many microalgal species (Hopes et al., 2016; Li &

Bock, 2018; Schiedlmeier et al., 1994; Sodeinde & Kin-

dle, 1993). The DNA vectors, RNAs, or proteins are coated

onto the surface of nanoparticles either made of tungsten

or gold. A particle delivery system is used to deliver them

into the cells under high pressure. To minimize cell dam-

age, particles between 0.7 and 1.1 lm are usually used for

diatoms (Dunahay et al., 1995). However, considering that

T. pseudonana cells are only about three times the size of

these particles, it remains to be seen what the true impact

is on the integrity of the diatom cells. At least they appear

to have a high regenerative potential, evidenced by restor-

ing the original phenotypes including the elaborate silica

cell walls within 2–4 weeks after bombardment (Belshaw

et al., 2022; Harada et al., 2005; Moosburner et al., 2020).

Despite these shortcomings (e.g., low efficiency, destruc-

tive impact on cellular integrity), microparticle bombard-

ment has been shown to be suitable for many diatom

species. DNA plasmids in the size range of 5–10 kilobases

(kb) are considered suitable for biolistic manipulation

(Stewart et al., 2018). Biolistics can also be used to directly

deliver RNA and proteins into diatom cells (Serif

et al., 2018). This approach has been effectively applied to

introduce Cas9/single-guide RNA ribonucleoprotein com-

plexes (RNPs) for DNA-free genome editing (Serif et al.,

2018). Meanwhile, triple gene knockouts were achieved in

one step by delivering six RNP complexes simultaneously,

although with relatively low efficiency (15%) compared

with double gene knockout (23–52%).

Electroporation introduces foreign DNA into cells by

temporarily creating pores in the cell membrane through

the application of a brief electric pulse (Somiari

et al., 2000; Tsong, 1991). This method transfers exoge-

nous DNA independently of the cell’s abilities to take it up

and has been successfully used in several diatom species

(Qin et al., 2012). It shows more than 10 times higher

� 2025 The Author(s).
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transformation efficiency compared with conventional bio-

listics using small amounts of DNA (4–7 lg) (Naser

et al., 2022; Yin & Hu, 2021; Zhang & Hu, 2014). Electropo-

ration can also be used for co-transformation using more

than a single vector (Zhang & Hu, 2014). Linear plasmids

can be electroporated more efficiently compared with cir-

cular plasmids, achieving up to three times greater effi-

ciency in diatom transformation (Yin & Hu, 2021). The

spheroplasting electroporation method was recently devel-

oped for P. tricornutum (Walker et al., 2024). This method

is characterized by high efficiency in delivering episomes,

with amounts of as little as 1 ng and for plasmids as large

as 55.6 kb. Additionally, this method has the advantage of

high survival rates of the transformed diatom cells, with

growth resuming within only 2 weeks (Ifuku et al., 2015;

Yin & Hu, 2021; Zhang & Hu, 2014). Electroporation is a

promising strategy, but the challenge lies in optimizing

electroporation conditions, including the electric field

strength and pulse duration to suit different diatom spe-

cies. It is assumed that the cell wall significantly impedes

DNA delivery during electroporation (Azencott et al., 2007).

Therefore, it is at least necessary to adjust the protocol for

different diatom species, and it is likely that this method,

therefore, is not as widely applicable as biolistics.

The polyethylene glycol (PEG)-mediated transforma-

tion method is thought to facilitate the introduction of DNA

into cells by promoting its passage across the cell mem-

brane, though the precise mechanisms remain poorly

understood. This method was evaluated in P. tricornutum

during the development of the p0251s replicating plasmid

(Karas et al., 2015); however, the results were highly incon-

sistent, yielding only a few colonies across several experi-

ments. A recent breakthrough has occurred with the use of

alcalase to protoplast P. tricornutum cells (Walker et al., in

preparation), which dramatically increases the efficiency of

PEG transformation (hundreds to thousands of transfor-

mants per reaction). This method shows great promise as

it is highly efficient and does not require any specialized

equipment, and it may become the preferred method for P.

tricornutum and potentially other diatom species.

Using E. coli to directly introduce DNA vectors into

diatom cells via bacteria-mediated conjugation is another

delivery system that was developed in the recent past

(Karas et al., 2015). The donor E. coli strain harbors a con-

jugative plasmid, which encodes for the DNA transfer

machinery, and an episome containing the gene(s) of inter-

est. The episome must also contain an origin of transfer

(oriT) to be mobilized during conjugation and a selective

marker. Furthermore, to be stably maintained extrachro-

mosomally, the episome must contain a suitable autono-

mously replicating sequence (ARS). This sequence can

vary between different diatom species; without an ARS,

the episome must integrate into the diatom genome for

continued propagation across successive generations. This

method was first developed in P. tricornutum and T. pseu-

donana (Karas et al., 2015) and has since been explored in

other diatom species.

High-copy number replication of the episome can be

detrimental to the E. coli donor strain, particularly when

CRISPR/Cas9 systems or other deleterious genes are

expressed. To address the unstable characteristics of high-

copy number plasmids, low-copy number and medium-

copy number episomes have been developed. The

pCC1BAC backbone (present in p0251s, Karas et al., 2015)

contains two origins of replication: one that is constitu-

tively expressed and facilitates single-copy number replica-

tion, and another that can be induced to high-copy number

replication in the presence of L-arabinose when maintained

in the EPI300 E. coli strain. Inducing high-copy number

expression may be deleterious to the cell, but it can be

useful when isolating large quantities of the episome for

sequencing or other downstream applications. Another

diatom episome, pPtPBR1, allows for constitutive medium-

copy number expression in E. coli (Diner et al., 2016).

When using bacterial conjugation to deliver

CRISPR/Cas9-containing episomes, this system achieves a

comparable percentage of biallelic mutations when com-

pared with microparticle bombardment (Moosburner

et al., 2020; Sharma et al., 2018; Slattery et al., 2018). Com-

pared with genome-integrated DNA vectors containing the

Cas9 gene, extrachromosomal episomes carrying

CRISPR/Cas9 systems can be easily removed by growing

the diatom cells under non-selective conditions. This

causes the loss of the episome over time (i.e, episome cur-

ing), which therefore avoids unwanted mutations by the

constitutive expression of Cas9 if this gene has become

part of the diatom genome. Thus, bacterial conjugation

has the advantage of delivering genetic constructs without

altering the host genome. However, the assembly of plas-

mids targeting multiple genes can lead to the instability of

the constructs in E. coli, which needs to be considered

when designing more complex multi-target constructs

(Taparia et al., 2021).

CELL-LINE SCREENING POST-TRANSFORMATION

To isolate and confirm the desired genetic modifications,

steps include subcloning and screening. Both are neces-

sary because the initial cultures are often mosaic (Huang &

Daboussi, 2017; Serif et al., 2018; Weyman et al., 2015),

necessitating the isolation of single-cell lines on solid

plates or in liquid medium. Most transformed diatom colo-

nies can be isolated using antibiotics or chemical com-

pounds on selective plates. However, the growth

conditions on these plates should be tested when working

with a novel diatom species. Clonal cell lines generally

appear after the first round of subcloning. However, mono-

allelic (heterozygous) mutations frequently occur likely due

to incomplete editing. In such cases, a second round of

� 2025 The Author(s).
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subcloning is required to obtain bi-allelic (homozygous)

mutations in the targeted gene. However, this process is

time-consuming, taking more than 1 week to obtain

clones, depending on the growth rates and the delivery

system used (Belshaw et al., 2022; Yin & Hu, 2021). Trans-

formed cells expressing a fluorescence marker can be sep-

arated by fluorescence-activated cell sorting (FACS), which

therefore can achieve high rates of cell recovery under

near axenic conditions (Nunez, 2001; Pereira et al., 2018).

However, it should be noted that some diatom species

may not survive the FACS procedure due to mechanical

pressure, which may cause disruptions of the plasma

membrane and cell wall (Reckermann, 2000).

PCR amplification of the target gene followed by ana-

lyzing the electropherograms is a common method for

analyzing the genetic mutation to be expected (Hopes

et al., 2016; Moosburner et al., 2022; Nymark et al., 2016).

For gene overexpression and knockdown, selective marker

or reporter genes are typically amplified for initial screen-

ing (De Riso et al., 2009; Haslam et al., 2020). Direct ampli-

fication of the target gene confirms its presence if the

overexpressed gene is exogenous (Strauss et al., 2023).

Gene-knockout cells often exhibit a distinct PCR-based

genotyping pattern compared to WT cells (Hopes et al.,

2016). When a small deletion occurs (less than 100 bp or a

few hundred bp), gene-knockout cell lines typically display

a smaller band than WT due to the reduced fragment size.

Conversely, if the deletion spans several kilobases, no

amplification is observed, necessitating additional confir-

mation using primers targeting the 30 and 50 flanking

regions outside the deleted area (Belshaw et al., 2022). To

further validate the modification, the expected sequence is

cloned into a vector for transformation into E. coli, fol-

lowed by Sanger sequencing and alignment with the refer-

ence genome. Additionally, alternative methods such as

high-resolution melt curve analysis (HRM), T7 endonucle-

ase I assay (T7EI), and software-based Tracking of Indels

by Deconvolution (TIDE) provide insight into the nature of

genetic modifications (Moosburner et al., 2020; Moosbur-

ner et al., 2022; Nymark et al., 2016; Slattery et al., 2018). If

PCR reactions fail due to extensive genomic rearrange-

ments, Southern blotting may be useful to detect fragment

size shifts and confirm copy number variations compared

to WT DNA (Kira et al., 2016; Zhang & Hu, 2014). To further

corroborate the genetic modifications of coding genes, rel-

ative protein levels can be assessed by Western blotting,

whereas mRNA levels of the target gene can be analyzed

using real-time quantitative PCR (RT-qPCR) (Gorlich

et al., 2019; Strauss et al., 2023).

PROSPECTS

Genetic engineering in diatoms has come a long way, and

there are significant prospects because of three reasons: (i)

Currently, there is a step change in the development of

diatom genomics and multi-omics resources, which pro-

vide the foundation for discovering novel biology and the

application of genetic tools to new species. (ii) Diatoms are

as genetically tractable as any established model organ-

isms in biology, that is, Arabidopsis thaliana, yeast, Cae-

norhabditis elegans. However, diatoms, unlike those

established biological models, represent globally relevant

organisms underpinning the largest food webs on Earth,

and they drive global biogeochemical cycles responsible

for the habitability of our planet. (iii) Their fast growth,

high content of lipids, essential fatty acids, and their elabo-

rate nanopatterned silica cell walls make them a target of

the biotechnology sector, from nutraceuticals to material

science. Consequently, for human societies to benefit from

diatoms, we will need to continue to develop their genetic

tractability. One current frontier is to design the first

Box 1. Summary

• Diatoms are important primary producers, and they

are being used for diverse biotechnological

applications.

• Multiomics resources available for many diatom

species facilitate genetic engineering.

• Molecular tool kits include diverse promoters,

selectable markers, and reporter systems.

• Cloning and assembling strategies have been devel-

oped even for large plasmids.

• The latest reverse genetics tools aim at building the

first synthetic diatom.

Box 2. Open questions

• Considering that diatoms are the most species-rich

group of algae, how many diatom species do we

need to develop into model systems to address the

most significant fundamental and applied

questions?

• What kind of genetic engineering is required to iden-

tify the mechanisms underpinning the interactions

of diatoms with other species?

• How can genetic engineering help to make use of

diatoms in fast-emerging fields such as energy

technology?

• Will it be possible to generate the first synthetic dia-

tom for the development of novel carbon-capture

mechanisms and the sustainable synthesis of high-

value products?
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synthetic diatom. To achieve that goal, synthetic chromo-

somes need to be assembled, transformed, and expressed

in a diatom host, which remains challenging, but current

work in this exciting field of research paves the way for

building the first synthetic diatom soon. With respect to

the latter, entire ~500 kbp chromosomes of P. tricornutum

were successfully assembled in yeast and subsequently

transferred to E. coli, establishing a critical proof of con-

cept that demonstrates the ability of these organisms to

maintain large diatom DNA fragments (Karas et al., 2013).

Building on these results, it is proposed that all 25 chromo-

somes of P. tricornutum could be redesigned and

resynthesized as 50 chromosomes that are ~400–500 kbp

in size (Pampuch et al., 2022). This approach would allow

for assembly in yeast and efficient propagation in E. coli.

Furthermore, a recently developed rapid method for chlo-

roplast genome assembly (Walker & Karas, 2025) could

accelerate the creation of synthetic genomes with

enhanced features, such as the removal of non-essential

elements (e.g., repetitive sequences, transposons),

genome recoding, and architectural reorganization. The

delivery of whole chromosomes is anticipated to be possi-

ble through bacterial conjugation. Additionally, smaller

fragments of approximately 50 kbp can now be delivered

using an optimized electroporation protocol, enabling par-

allel testing of synthetic constructs (Walker et al., 2024).

These recent advancements in the field of diatom genetic

engineering, combined with many high-resolution refer-

ence genomes that will become available soon, position

diatoms as robust and promising organisms for synthetic

genomics to advance fundamental biological research and

biotechnology (Boxes 1 and 2).
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