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ABSTRACT
Objective  To compare growth, tolerance and safety 
parameters in very preterm infants receiving human milk 
(HM) fortified with a multicomponent cow’s milk-based 
HM fortifier (HMF; control) versus a novel HMF-
containing lipids (including docosahexaenoic acid and 
arachidonic acid), higher protein and lower carbohydrate 
levels (test). Our hypothesis was that weight growth 
velocity in the test group would be non-inferior to that in 
the control group.
Design  Double-blind, randomised controlled trial.
Setting  Nine European neonatal intensive care units.
Patients  HM-fed infants born at <32-week gestational 
age.
Interventions  Fortification of HM with Test or Control 
HMF for a minimum of 21 days.
Primary outcome  Weight growth velocity between 
baseline and intervention day 21.
Results  From March 2018 to July 2020, 102 and 103 
infants were enrolled in the test and control groups, 
respectively. Weight growth velocity during the first 
21 days in the test group (mean 18.4 g/kg/day) was 
non-inferior to that of controls (mean 18.5 g/kg/day), 
with a difference in estimated means of –0.175 g/kg/
day (90% CI –1.34 to +0.99 g/kg/day; per-protocol 
population). No significant differences between groups 
were observed for gain in length, head circumference or 
anthropometric Z-scores. Rates of digestive intolerance, 
stool frequency and consistency were comparable. 
No significant differences were reported in common 
neonatal morbidities including necrotising enterocolitis 
(test: 2.9%, control: 6.9%, mean difference –4.0% (95% 
CI –11.1% to 2.2%); all subjects treated population).
Conclusions  Use of the novel HMF containing lipids, 
higher protein and lower carbohydrate levels supports 
adequate postnatal growth and appears safe and well 
tolerated in very preterm infants.
Trial registration number  NCT03315221

INTRODUCTION
Human milk (HM) is the preferred nutrition for 
preterm infants.1 2 However, levels of macronu-
trients and micronutrients in HM are considered 
inadequate to support their optimal growth, body 
composition and neurodevelopment, especially in 
very preterm infants.1–5 Therefore, multinutrient 
fortification of HM is recommended to enhance 

nutrient content and promote growth in preterm 
infants with a birthweight <1800 g.2 6 7 Human milk 
fortifiers (HMFs) are especially important to reduce 
cumulative nutrient deficits and postnatal growth 
restriction because poor growth is associated with 
impaired neurodevelopmental outcomes.8 9

Although HM fortification is standard practice in 
very low birth weight (VLBW; <1500 g) infants, 
the optimal composition of multinutrient HMFs 
is a topic of debate. Optimal protein content of 
HMFs is unclear, as that of mothers’ own milk 
varies between and within individuals, is influenced 
by many factors including time after delivery,10 11 
and is often lower than needed to support postnatal 
growth.10 12

As preterm infants are at risk of long-chain poly-
unsaturated fatty acid (LCPUFA) deficiency, dietary 
supplementation with docosahexaenoic acid (DHA) 
and arachidonic acid (ARA) is recommended.2 11–14 
Addition of lipids to HMFs, at the expense of 
carbohydrates, allows for a reduction in osmolality 
and an enhanced LCPUFA supply.

A novel multicomponent lower osmolality HMF 
was developed to improve fatty acid supply when 
compared with conventional HMF. It contains 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Fortification of human milk with a multinutrient 
human milk fortifier (HMF) is recommended to 
promote optimal growth in preterm infants with 
a weight <1800 g.

	⇒ The optimal composition of multinutrient HMFs 
is still a topic of debate.

WHAT THIS STUDY ADDS
	⇒ Very low birth weight (VLBW) infants receiving 
a novel HMF with lipids, a lower carbohydrate 
and higher protein content had a non-inferior 
weight growth velocity compared with VLBW 
infants receiving a conventional HMF.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ Use of the novel lower osmolality HMF was safe 
and well tolerated in this population of VLBW 
infants and supported adequate postnatal 
growth.
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DHA and ARA in equal amounts, easily absorbed fats (ie, medium 
chain triglycerides and anhydrous milk fat), higher protein and 
lower carbohydrate levels. This study’s objectives were to: (1) 
demonstrate non-inferiority of weight growth velocity during 
the first 21 days of intervention for the novel HMF compared 
with control HMF and (2) confirm that the novel HMF is safe 
and well-tolerated in VLBW infants.

METHODS
Participants
Infants born <32 weeks gestational age (GA) with birthweight 
<1500 g who were fed HM, enterally and needing HMF for 
minimum 21 days, were eligible. Nine neonatal intensive care 
units (NICUs) in the United Kingdom, France, Netherlands and 
Germany participated.

Exclusion criteria were chromosomal anomaly, metabolic 
disorder, genetic syndrome, congenital central nervous system 
malformation, gastrointestinal malformation/compromise, no 
realistic prospect of survival or participation in another investi-
gational study. All parents/guardians provided written informed 
consent before enrolment.

Study design and intervention
A double-blind parallel-group, non-inferiority RCT was 
conducted (online supplemental figure 1). Infants were 
randomly allocated (block size of four), on a 1:1 basis, stratified 
by site to receive the test or control HMF daily. For multiples, 
other eligible siblings were allocated the same HMF as the first 
sibling randomised. Site staff responsible for feeding adminis-
tration and study assessments were blinded to the actual HMF 
allocation (online supplemental methods). The intervention 
lasted ≥21 days, from the first use of HMF until the infant no 
longer required HMF, or was discharged home or to a non-
participating NICU, whichever came first. Infants were followed 
up until 24 months corrected age (CA). The study was conducted 
in compliance with the principles of the Declaration of Helsinki, 
according to ICH-GCP, and approved by Ethics Review Boards 
of participating centres/countries.

Feeding regimen
During the study period, infants were fed mother’s own milk 
or pasteurised donor milk when the former was insufficient or 
not available. Preterm infant formula was provided if fortified 
HM was insufficient. Fortification of HM was started when a 
sufficient enteral feeding volume was reached according to each 
unit’s protocol. Both study products were powdered multinu-
trient HMFs (200 g tins). The novel HMF (test) provided 17 
kcal, 0.7 g lipids, 1.3 g protein and 1.5 g carbohydrates per 4.0 
g (dose per 100 mL HM; table 1). The added lipids included 
(phospholipid- and triglyceride-bound) DHA and ARA, medium-
chain triglycerides and anhydrous milk fat as source of beta-
palmitate. The control HMF, a product in widespread clinical 
use at the time of study conduct, provided 15 kcal, 0.0 g lipids, 
1.1 g protein and 2.7 g carbohydrates per 4.4 g (dose per 100 
mL HM). Both HMFs contained extensively hydrolysed protein 
(casein:whey ratio 50:50) and maltodextrin, as this glucose 
polymer is preferred to glucose due to its lower osmolality.2 
The test HMF had a higher protein content than the control 
HMF, as recent studies have shown that a HMF protein level 
of 1.0–1.1 g/100 mL may result in lower than recommended 
protein intakes.2 Products were manufactured by Danone 
Nutricia according to Good Manufacturing Practices (FSSC 

22000 standard). Osmolalities of HM fortified with HMF were: 
test 410 mOsm/kg; control 450 mOsm/kg.

Primary and secondary outcomes
The primary outcome was weight growth velocity (g/kg/day) 
between the start of intervention (baseline) and intervention 
day 21. Secondary outcomes were gains in length, head circum-
ference (HC) and anthropometric z-scores, digestive tolerance 
parameters and adverse events (AEs). Weight-for-age, length-
for-age, HC-for-age z-scores and percentiles were calculated 
using Fenton growth charts for preterm infants15 (online supple-
mental methods).

Data collection
Data were collected from randomisation until 24 months CA, 
captured into an electronic database (online supplemental 
methods).

Safety monitoring
Information on AEs, including onset, duration, relationship with 
study product, severity, seriousness, actions taken, outcomes, 
concomitant medication use and medical interventions, were 
recorded (online supplemental methods).

Statistical analysis
A sample size of 91 per group was calculated with a one-sided 
test (α=0.05, power=0.80, dropout rate=20%, potential loss 
of df due to number of sites (>5)). With the predefined non-
inferiority margin of −1.6 g/kg/day,16 difference between groups 
of 0.2 g/kg/day17 and standard deviation (SD) of 4.3 g/kg/day.18 
Analyses for weight growth velocity were performed using a 
parametric growth curve mixed-effects model with a quadratic 
effect of time adjusted for potentially prognostic fixed effect 
covariates and a family-specific random effect to account for the 
correlation of the growth outcomes in twins/multiples (online 
supplemental methods).19 20 The all subjects treated (AST) popu-
lation, which included infants with at least one feeding with 
study HMF, was used for the analyses of safety and digestive 
tolerance parameters. The per protocol (PP) population was the 
primary dataset for the efficacy analyses. In non-inferiority trials, 
there is a general concern that by including participants who 
did not receive the planned interventions, the two comparison 
groups become more similar, resulting in incorrect conclusions 
of non-inferiority.21–23 Supplementary analyses were performed 
in the all subjects randomised (ASR) population to evaluate the 
robustness of the results obtained in the PP population.

RESULTS
Infant characteristics
Between March 2018 and July 2020, 205 infants (102 test, 103 
control) were enrolled, of whom 183 were randomised and 22 
siblings of multiples were allocated (figure 1). One infant did not 
consume any study HMF and was excluded from the AST popu-
lation. The PP population included 155 infants. Dropout rates 
and reasons for early termination were similar in both groups.

Baseline characteristics were similar between groups in both 
PP (table 2) and ASR populations (online supplemental table 1). 
Infants were born at a mean GA of 27.8 (SD: 2.1) weeks with 
a mean birth weight of 986 g (SD: 264 g). Thirteen per cent of 
infants were small for GA (birthweight <10th percentile).
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Growth
The primary outcome measure, that is, weight growth velocity 
during the first 21 days of intervention, of the test group (mean 
18.4 g/kg/day), was non-inferior to that of controls (mean 18.5 
g/kg/day). The difference in estimated means between groups 
was –0.175 g/kg/day (90% CI, –1.34 to +0.99) for the PP popu-
lation, with the lower CI above the pre-defined non-inferiority 
margin (table 3). No significant differences between groups were 
observed in length gain, HC gain or changes in anthropometric 
z-scores (table  3). Results were similar for ASR analyses (data 
not shown).

At the start of the intervention, 33 (38.8%) test and 21 (30.4%) 
control infants had a weight <10th percentile (PP population). 
At day 21 and day 28 after the start of intervention, 35 (41.2%) 

and 31 (41.3%) of the test and 28 (40.6%) and 17 (29.8%) of 
the control infants had a weight <10th percentile respectively.

Model estimates for weight, length, HC and anthropometric 
z-scores during the first 21 days of intervention are presented in 
online supplemental figures 2 and 3. The weight-for-age z-scores 
were stable in both groups.

HMF intake and digestive tolerance
Infants reached enteral feeding volumes of ≥150 mL/kg/day 
at an average age of 13.7 (test) and 13.4 days (control; AST 
population). Mean (SD) enteral feeding intake during the first 
21 days of intervention was 144 (19.4) mL/kg/day in test and 
143 (18.8) mL/kg/day in control groups. In both groups, the 

Table 1  Nutrient composition of intervention human milk fortifiers (HMFs)

Test HMF
per serving of 4.0 g (4 
scoops)†

Per 100 mL fortified 
human milk‡

Control HMF
per serving of 4.4 
g (4 scoops)†

Per 100 mL 
fortified human 
milk‡

Macronutrients

 � Energy kcal (kJ) 17 (72) 82 (352) 15 (65) 80 (345)

 � Protein g (%Energy) 1.3 (30) 2.8 1.1 (29) 2.6

 � Carbohydrate g (%Energy) 1.5 (33) 8.4 2.7 (71) 9.6

 � Fat g (%Energy) 0.7 (37) 4.2 – 3.5

  �  Arachidonic acid (ARA)* mg 5.0 25 – 20

  �  Docosahexaenoic acid (DHA)* mg 5.0 20 – 15

  �  Medium chain fatty acids g 0.3 0.59 – 0.29

  �  Milk fat g 0.4 0.4 – –

Vitamins

 � Vitamin A µg RE 232 298 232 298

 � Vitamin D3 µg 5.54 5.74 5.0 5.2

 � Vitamin E mg α-TE 2.6 2.8 2.6 2.8

 � Vitamin K µg 16 16.3 6.4 6.7

 � Vitamin C mg 12 16.5 12 16.5

 � Thiamin mg 0.13 0.14 0.13 0.14

 � Riboflavin mg 0.17 0.20 0.17 0.20

 � Niacin mg 2.3 2.8 2.3 2.8

 � Pantothenic acid mg 0.75 0.95 0.76 0.96

 � Vitamin B6 mg 0.11 0.12 0.11 0.12

 � Biotin µg 2.5 3.0 2.5 3.0

 � Folic acid µg 30 38 30 38

 � Vitamin B12 µg 0.20 0.22 0.20 0.22

Minerals

 � Sodium mg 33 62 35 64

 � Potassium mg 23 73 23 73

 � Chloride mg 25 79 25 79

 � Calcium mg 70 95 66 91

 � Phosphorus mg 38 52 38 52

 � Magnesium mg 5.0 8.1 5.0 8.1

 � Iron mg ≤0.02 0.035 ≤0,02 0.035

 � Zinc mg 0.60 0.97 0.61 0.97

 � Copper µg 41 81 35 75

 � Manganese µg 7 7.4 8.1 8.5

 � Selenium µg 1.8 3.4 1.7 3.3

 � Iodine µg 11 24.6 11 24.6

Osmolality

 � Osmolality mOsm/kg 410 450

*ARA source is egg lipid and single-cell oil derived from Mortierella alpina, DHA source is fish oil and egg lipid.
†Amount to be added to 100 mL human milk.
‡The composition of (preterm) human milk varies greatly. Therefore, the nutrient concentrations in human milk are estimated from literature43–46 and internal data.
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Figure 1  Subject flow. HMF, human milk fortifier. ‡Allocated subjects were siblings assigned to the same group. #One subject randomised to the 
Control group received Test HMF. 3Noncompliance with study: subjects with major protocol deviations: A. Major violation of the inclusion or exclusion 
criteria: n=0. B. Non-compliance with study product intake, as indicated by exposure to study product for <21 days: n=50. C. Not having any post-
baseline measurements of weight – no additional exclusions. 4PP subjects were all subjects without major protocol deviations.

Table 2  Demographics and infant characteristics of the per protocol population

Test (N=85) Control (N=70) Total (N=155)

Sex Female (%) 48.2 40.0 44.5

Male (%) 51.8 60.0 55.5

Country Germany (%) 16.5 18.6 17.4

France (%) 15.3 20.0 17.4

The Netherlands (%) 29.4 18.6 24.5

United Kingdom (%) 38.8 42.9 40.6

Gestational age at birth (weeks) Mean (SD) 27.8 (2.18) 27.9 (2.04) 27.8 (2.11)

Min–max 23.7–31.7 23.3–31.7 23.3–31.7

Birth weight (g) Mean (SD) 966.7 (270.8) 1009.1 (254.6) 985.8 (263.6)

Min–max 415–1490 450–1457 415–1490

Length at birth (cm) Mean (SD) 36.0 (3.3) 36.2 (3.1) 36.1 (3.2)

Head circumference at birth (cm) Mean (SD) 25.2 (2.3) 25.2 (2.3) 25.2 (2.3)

Mode of delivery Vaginal (%) 35.3 42.9 38.7

Caesarean section (%) 64.7 57.1 61.3

Small for gestational age* Yes (%) 15.3 10.0 12.9

No (%) 85.3 89.3 87.3

Birth plurality Singleton (%) 70.6 71.4 71.0

Twin (%) 27.1 27.1 27.1

Triplet or quadruplet (%) 2.4 1.4 1.9

Apgar score at 5 min Median (Q1, Q3) 8 (7, 9) 8 (7, 9) 8 (7, 9)

Need for resuscitation in delivery room Yes (%) 11.8 14.3 12.9

Number of days before baseline on (invasive) mechanical ventilation (days) Median (Q1, Q3) 6 (2, 10) 6 (2, 9) 6 (2, 9)

Postnatal age at randomisation (days) Mean (SD) 10.2 (5.2) 9.9 (5.5) 10.0 (5.4)

*Defined as birth weight<10th percentile for gestational age, based on Fenton growth charts for preterm infants.
n, number; Q, quartile; SD, standard deviation.
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dominant feeding was own mother’s milk (81%–87%), with 
donor milk and preterm formula comprising 10%–15% and 
1%–6% of the feeding volumes, respectively. During the first 
21 days of intervention, 99 (96.1%) infants in the test group 
received own mother’s milk, 28 (27.2%) received donor milk 
and 20 (19.4%) infants received preterm infant formula next 
to the supplemented HM. In the control group, this was 95 
(94.1%), 32 (31.7%) and 29 (28.7%), respectively (AST; online 
supplemental table 2). Overall, infants started with HMF at a 
mean (SD) postnatal age of 10.6 (5.6) days. With a mean (SD) 
number of 40 (20.8) days on study HMF in test and 32 (19.8) 
days in Control groups.

Average stool frequency was 2.9 stools/day in the first three 
intervention weeks, without significant differences between 
groups. In both groups, most infants (>75%) had soft stools.

Percentages of infants with occurrences of vomiting, regurgi-
tation or clinically significant gastric residuals during the first 
21 days of intervention were similar between groups (online 
supplemental table 3). There was a small difference in the 
number of vomiting occurrences per day (medians: 0.3 vs 0.1, 
p<0.001) in infants with vomiting (test: n=35; control: n=33). 

A higher percentage of infants with any vomiting in test versus 
control groups was seen in the first week only, with the differ-
ence statistically significant in one site (online supplemental 
table 4).

AEs and clinical parameters
Out of 204 infants in the AST population, at least one AE was 
reported for 77.7% of test subjects and 75.2% of controls. 
Similar incidence of AEs was observed between groups.

At least one serious AE (SAE) was reported in 41.7% of 
test subjects and 36.6% of controls. No significant differences 
between groups were observed for any SAE category, except for 
a lower incidence of ‘gastrointestinal disorders’ in the test group 
(7.8% in test and 16.8% in control; Δ –9.1% (95% CI –18.56% 
to –0.04%); online supplemental table 5).

No significant differences were observed between groups in 
rates of common neonatal morbidities: necrotising enteroco-
litis, retinopathy of prematurity, bronchopulmonary dysplasia, 
periventricular leukomalacia and intraventricular haemorrhage 
(table 4).

Table 3  Weight growth velocity, length gain, head circumference gain, anthropometric z-scores and changes in anthropometric z-scores during 
the first 21 days of the intervention (per protocol population)

Anthropometric parameter Timepoint
Test
(N=85)

Control
(N=70) Test vs control

n (nmiss) Mean (SE) n (nmiss) Mean (SE) Mean diff (90% CI)

Weight growth velocity* (g/kg/day) 18.36 (0.47) 18.53 (0.52) −0.175 (−1.34, 0.99)

Mean diff (95% CI)

Length gain*(cm/week) 1.03 (0.10) 0.95 (0.08) 0.080 (−0.100, 0.261)

Head circumference gain* (cm/week) 0.94 (0.03) 0.90 (0.04) 0.045 (−0.054, 0.145)

Mean (SD) Mean (SD)

Weight-for-age z-score (unit) Baseline (day 0) 85 (0) −1.02 (0.70) 69 (1) −1.02 (0.57)

Intervention day 21 85 (0) −1.07 (0.72) 69 (1) −1.02 (0.70)

Intervention day 28 74 (11) −1.05 (0.74) 57 (13) −0.87 (0.76)

36 weeks PMA† 54 (31) −1.13 (0.94) 30 (40) −1.09 (0.98)

Mean (SE) Mean (SE) Mean diff (95% CI)

Weight-for-age z-score change‡ (unit/week) −0.01 (0.01) −0.01 (0.01) −0.006 (−0.037, 0.025)

Mean (SD) Mean (SD)

Length-for-age z-score (unit) Baseline (day 0) 78 (7) −0.93 (1.07) 62 (8) −0.90 (0.89)

Intervention day 21 76 (9) −1.32 (1.03) 67 (3) −1.31 (0.76)

Intervention day 28 64 (21) −1.36 (0.91) 53 (17) −1.31 (0.82)

36 weeks PMA† 55 (30) −1.39 (0.98) 37 (33) −1.44 (0.97)

Mean (SE) Mean (SE) Mean diff (95% CI)

Length-for-age z-score change‡ (unit/week) −0.13 −0.15 0.012 (−0.061, 0.085)

Mean (SD) Mean (SD)

Head circumference-for-age z-score (unit) Baseline (day 0) 75 (10) −1.11 (0.77) 65 (5) −1.07 (1.01)

Intervention day 21 80 (5) −1.00 (0.82) 70 (0) −1.08 (1.02)

Intervention day 28 69 (16) −0.93 (0.80) 56 (14) −1.03 (1.13)

36 weeks PMA† 57 (28) −0.66 (0.82) 38 (32) −0.62 (1.10)

Mean (SE) Mean (SE) Mean diff (95% CI)

Head circumference-for-age z-score change‡ (unit/week) 0.03 0.00 0.033 (−0.037, 0.103)

*Parametric growth curve model with: (1) fixed terms for study group, t (time), t², sex, gestational age, postnatal age at baseline, birth weight and interactions study group by 
t, study group by t² and (2) random effects for intercept, t, and t² with unstructured covariance matrix, a random intercept for site-ID (for a subject), and a random intercept for 
family ID (for a subject).
†36 weeks ±4 days; for length and HC 36 weeks ±7 days.
‡Parametric growth curve model with: (1) fixed terms for study group, t (time), t², sex, postnatal age at baseline, birth weight and interactions study group by t, study group by t² 
and (2) random effects for intercept, and t with unstructured covariance matrix, a random intercept for site-ID (for a subject), and a random intercept for family ID (for a subject).
§§For weight growth velocity, the 90% CI of the difference is presented.
CI, confidence interval; diff, difference; HC, head circumference; N, number; nmiss, number of missing data items; PMA, postmenstrual age; SD, standard deviation; SE, standard 
error.
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The number of infants with an AE leading to product with-
drawal was similar between groups: test, n=7 (6.8%); control, 
n=9 (8.9%), as was the number of infants who terminated the 
study early: test, n=3 (2.9%); control, n=4 (3.9%), reasons for 
termination were also similar.

Blood levels of urea, blood urea nitrogen, pH, bicarbonate, 
sodium, potassium and albumin were available for a subgroup 
when collected as part of standard care. In this subgroup (n=46), 
mean (SD) urea levels for test versus control were comparable; 
5.9 (3.7) versus 5.4 (2.7) mmol/L in the third week of interven-
tion, respectively.

There was no difference between groups in postnatal age 
at discharge from NICU, postnatal age at discharge home or 
mortality during hospital stay (online supplemental table 6).

DISCUSSION
In this double-blind randomised, controlled trial, we demon-
strated non-inferiority in weight growth velocity during the first 
21 days of intervention in VLBW infants receiving a novel lower 
osmolality HMF containing lipids (including DHA and ARA), 
higher protein and lower carbohydrate levels compared with 
those receiving a control HMF without lipids.

The primary outcome measure of average weight growth 
velocity during the first 21 days of intervention was similar in 
both groups, just above 18 g/kg/day, in line with recommen-
dations,24 and similar to growth rates observed in a study with 
other lipid-containing HMFs.25 Average weight-for-age z-scores 
and percentages of infants with a weight <10th percentile were 
stable during the first 28 days of intervention in both groups, 
suggesting that accumulation of postnatal growth deficit could 
be prevented in most infants with routine use of HMF.26 This 
contrasts with the findings of Martin et al, who observed that 
the proportion of ELBW infants with a weight <10th percentile 
increased from 18% at birth to 75% at 28 days of life, despite 
growth velocity rates above 15 g/kg/day and HMF.27

The comparable growth rates of test and control groups might 
come from the relatively small difference in protein content 
(0.2 g/100 mL fortified HM) between study HMFs.1 28 29 Other 
studies in preterm infants did not show improved growth 
comparing HMFs with different protein levels (1.8 g vs 1.0 g per 
100 mL HM,30 31 pointing towards a ceiling effect for enteral 
protein supply). Increasing protein intake enhances protein 
accretion and clinical outcome such as weight gain in a linear 
dose–response manner. It is hypothesised that beyond a so-called 

‘beneficial upper limit’, higher protein intakes do not yield 
further improvements in clinical outcome32

More studies have compared HMFs with varying protein 
and lipid levels in preterm infants.20 33–36 Rigo et al compared a 
new fortifier adding 0.7 g fat (including 6.3 mg DHA) and 1.4 g 
partially hydrolysed protein to 100 mL of HM, to an isocaloric 
fortifier with 0.0 g fat and 1.0 g extensively hydrolysed protein. 
Average weight growth velocity in the new fortifier group 
was 18.3 g/kg/day compared with 16.8 g/kg/day in controls.25 
Notably, the growth rate observed in their new fortifier group 
was similar to those of both groups in the current study. Another 
study compared a liquid HMF with a higher protein content (and 
ARA and DHA) to a traditional powder HMF in VLBW infants. 
Those who completed a 2-week intervention period showed no 
differences in weight, length, HC or knee–heel length gains.37 
This is in contrast to a study investigating the same liquid versus 
powder HMF, which showed significantly higher length growth 
in the liquid group.18

The novel HMF tested in this study contains components 
that may have benefits for preterm infants. First, it contains 
lipids at the expense of carbohydrates, reducing osmolality 
compared with the conventional HMF. The osmolality of the 
novel HMF fortified to HM of 410 mOsm/kg is well below the 
maximum tolerable level of 450–500 mOsm/kg indicated in 
recent reviews.33 38 Second, the novel HMF includes DHA and 
ARA in equal amounts. A balanced DHA and ARA supplementa-
tion is needed for optimal infant growth and cognitive develop-
ment.2 13 14 Moreover, the DHA and ARA are partially bound to 
phospholipids, which are more efficiently absorbed by preterm 
infants than triglyceride-bound DHA,34 and possibly more effi-
ciently incorporated in body tissues.35 36 Furthermore, the novel 
HMF contains medium-chain triglycerides, an easily absorbable 
source of energy,39 and anhydrous milk fat with 38% of palmitic 
acid at the beta-position. Benefits of beta-palmitate are improved 
fat and calcium absorption and softer stools.40 41 Finally, it 
contains extensively hydrolysed proteins, in line with clinicians’ 
preferences.1 Recently, Doshi et al showed decreased levels of 
faecal calprotectin in preterm infants after using a HMF with 
hydrolysed protein, suggesting that intestinal inflammation may 
be lower compared with fortifiers containing intact protein.42

Overall, AEs reported in this study were typical for preterm 
infants and no clinically relevant differences in AEs were observed 
between groups. Hence, there are no safety concerns for the 
use of this novel HMF in VLBW infants. The low incidence of 

Table 4  Neonatal morbidities; percentages of occurrence* and point estimate of difference between study groups, with 95% CIs for the all 
subjects treated population

Test
(N=103)
n (%)

Control
(N=101)
n (%)

Test vs control†
% difference (95% CI)

Necrotising enterocolitis (Bell’s stage≥2) 3 (2.9%) 7 (6.9%) −4.02% (−11.12%, 2.24%)

Retinopathy of prematurity 7 (6.8%) 10 (9.9%) −3.10% (−11.41%, 4.82%)

Bronchopulmonary dysplasia 26 (25.2%) 17 (16.8%) 8.41% (−2.86%, 19.61%)

	► Mild 7 (6.8%) 10 (9.9%)

	► Moderate 15 (14.6%) 5 (5.0%)

	► Severe 4 (3.9%) 2 (2.0%)

Intraventricular haemorrhage (≥ grade 3)/periventricular leukomalacia 2 (1.9%) 1 (1.0%) 0.95% (-3.65%, 5.95%)

*Occurrence is presented as the percentage of infants with at least one adverse event starting during study product use.
†Miettinen-Nurminen confidence limits (including bias correction factor). Definitions: Necrotising enterocolitis with Bell’s stage ≥2; Retinopathy of prematurity: based on 
International Committee for the Classification of Retinopathy of Prematurity; Bronchopulmonary dysplasia: categorised into mild/moderate/severe based on Sahni et al22, 
Intraventricular haemorrhage ≥grade 3 based on Papile et al23/periventricular leukomalacia assessed on cranial ultrasound.
CI, class interval; n, number.
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necrotising enterocolitis, a condition often linked with preterm 
enteral nutrition, in this study (test: 2.9% and control: 6.9%) is 
reassuring. Furthermore, it is encouraging that the incidence of 
gastrointestinal SAEs was lower in test compared with control 
infants. We hypothesise that this is related to the lower osmo-
lality of the novel HMF.

In the first week of the intervention, a higher percentage 
of infants with vomiting was reported for test versus control. 
Vomiting was not defined a priori and was assessed according 
to local investigators’ judgement. This led to high inter-hospital 
variability in its recording with incidence ranging from 8% to 
91% between sites. In the centre with a significant diffrence 
between groups, it was due to the joint recording of vomiting and 
aspirates. Their reports of vomiting should be best interpreted 
as a combination of ‘spitting up/posseting’ and true vomiting. 
Overall, infants with vomiting had on average <1 vomiting 
episode per day. No subject terminated the study prematurely 
due to vomiting, while all infants grew adequately. We therefore 
consider these findings as not clinically relevant.

Strengths of our study include the randomised controlled trial 
design, strict blinding and a relatively large study group. Nine 
hospitals in four European countries participated, with varia-
tions in fortification approaches and standard clinical care. This 
enhances external validity of the results, as it mimics reality. The 
study included infants who were fed with their own mother’s 
milk, donor human milk and/or preterm formula, reflecting 
reality as a mother’s own milk is not always available in suffi-
cient amounts.

An important limitation is that the intervention period had 
a minimum duration of 21 days, which is relatively short. 
Data were available for a longer period, but only for a subset 
of the population. This hindered evaluation of growth during 
a longer time frame. Also, no data on individual HM composi-
tion were available. It is known that there is large variation in 
the composition of HM between mothers,10–12 and that donor 
milk on average has a different composition to own mother’s 
milk, including lower protein and LCPUFA levels.28 43 No blood 
sampling was done to analyse fatty acid profiles, which would 
have provided valuable insights into the LCPUFA status. Finally, 
the PP approach instead of the intention to treat approach could 
be questioned. The PP population was, by design, the primary 
dataset for the efficacy analyses, as it is the preferred approach 
in non-inferiority trials believed to lead to more conservative 
conclusions.21 However, analysis in the PP population can lead 
to biased estimates of the treatment effect, as non-compliant 
subjects are removed from the comparison. In a sensitivity anal-
ysis, non-inferiority was confirmed in the ASR population indi-
cating robustness of our conclusions. In addition, comparison 
of the baseline covariates between the PP and ASR population 
showed similar characteristics in both population arms, which 
confirms the balance of randomisation was not severely influ-
enced by excluding non-adhering participants in the PP popula-
tion, although this cannot be fully ruled out.

In summary, in a population of VLBW infants, we observed 
that a novel multicomponent HMF containing LCPUFA and 
well-absorbable fats appears to support adequate postnatal 
growth and to be safe and well-tolerated.
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