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A B S T R A C T

The present study addresses problems faced by data-driven social science caused by having too much or not 
enough data. In particular, an abundance of data or a (sudden) lack thereof makes it challenging to identify the 
most important predictors in a sea of noise using the most parsimonious and reproducible model possible. In this 
article, we present the model-X knockoff method, which was introduced by Candès et al. (2018) for reducing the 
false identification of significant effects due to flexibility-ambiguity issues, to a broader audience, particularly 
within the social sciences and humanities. Our goal is to provide an accessible starting point and ideally spark 
interest among researchers in these fields to explore how model-X knockoffs can enhance their work. The 
findings from a performance contrast simulation indicate that model-X knockoffs select fewer relevant variables 
than other statistical methods to automatically identify variables, resulting in fewer mistakes. The simulation 
findings also demonstrate that model-X knockoffs are stable and less sensitive to even small changes in the 
dataset than other procedures, making them a viable way to reduce researcher degrees of freedom and increase 
the reproducibility of scientific findings. An additional real data example demonstrates the operational utility of 
the simulation.

Data-driven science simultaneously suffers from two problems: 
having too much data and not having enough. Big data, digital trace 
data, ecological momentary assessment data, sensory user data, and data 
from social media application programming interfaces (APIs) are either 
available in abundancy or access is limited or suddenly shut off, creating 
a research APIcalypse (Bruns, 2019) by not having access to data for 
research. However, what about the abundancy side of the problem? 
What if there are more predictors (p) than observations (n) for a given 
social phenomenon? Such high dimensional data scenarios (i.e., p > n 
settings) provide researchers with much more room for making de
cisions when analyzing data, which is more likely than not going to 
challenge the analysis of large-scale datasets in the future. Importantly, 
the number of available predictors might dramatically outgrow the 
discovery of new social science phenomena, bringing attention to the 
challenge of identifying “important predictors in a sea of noise” (Candès 
et al., 2018, p. 552). The aim of this paper is to introduce model-X 
knockoffs as a new and viable strategy for reducing researcher degrees 
of freedom and improving variable selection in high-dimensional data
sets. Specifically, we will address the challenge of selecting variables in 
large datasets where the number of predictors exceeds the number of 

observations, while controlling for false discovery rates, especially when 
the available data is dynamic and constantly changing.

When it is easy and relatively cheap to access an abundance of pre
dictors, a researcher will be even more likely to falsely find evidence 
supporting the existence of an effect than correctly find evidence that 
the effect does not exist. This tendency occurs due to “researcher degrees 
of freedom” (Simmons et al., 2011, p. 1359), which is a 
flexibility-ambiguity problem that involves important questions about 
whether more data should be collected, decisions about inclusion and 
exclusion criteria for observations, and the selection of relevant model 
covariates. Similarly, Ioannidis (2005) highlights the relevance of the 
flexibility of designs, definitions, outcomes, and analytical models, 
which leads to more false positive findings especially when a study is 
conducted in a smaller field, when expected effect sizes are smaller, and 
when more relationships between variables are tested. In a similar vein, 
The Open Science Foundation (2015) emphasized the importance of 
addressing researcher degrees of freedom in their large-scale replication 
project, highlighting the threats they pose to the reproducibility of sci
entific research. In fact, researchers should disclose some of their de
cisions before conducting research in light of an increasing awareness of 
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open science practices (Dienlin et al., 2021) and disclosure-based, 
intersubjectively replicable science (The Open Science Foundation, 
2015). Specifically, and in line with the journal’s scope, model-X 
knockoffs can enhance the replicability of studies by reducing false 
positives, clarifying whether a variable’s original significance was 
genuine or the result of chance or bias. Combined with other techniques, 
such as directed acyclic graphs (DAGs; see Pearl, 2009), they can help 
identify variables that initially appear to be significant predictors in one 
study but fail to replicate under different conditions or in new data 
samples. By providing rigorous control over false positives, model-X 
knockoffs contribute to the development of leaner, more reliable 
models when re-analyzing data from earlier experiments or applying the 
same analytical framework to new datasets.

However, there are at least three aspects of data-driven science in 
which open science best practice recommendations are hard or even 
impossible to accomplish (e.g., Simmons et al., 2011). First, researcher 
may not be able to list all available variables (e.g., when the data stems 
from a social media API). There might simply be too many available 
variables and data points. Moreover, at any given time, an entity can 
revoke access to its API or shut down access to certain types of content 
(e.g., Pfeffer et al., 2022). Second, social media companies are not only 
constantly running A/B testing for different interfaces and user experi
ences but also regularly running large-scale experiments, unbeknownst 
to users (e.g., Bond et al., 2012; Kramer et al., 2014; Rajkumar et al., 
2022), which affect the data accessible through their APIs. It is virtually 
impossible for researchers to determine all of the conditions under 
which the data from an API was gathered. Third, it is impossible to know 
whether the owner granting access to the API eliminated any observa
tions before the data became publicly accessible.

Nonetheless, there is good news. In this article, we shed light on a 
statistical approach to tackling the researcher degrees of freedom issue 
and the production of false-positive findings in large datasets. Using 
social media platforms such as X, formerly Twitter, as a popular example 
of an academic API (Pfeffer et al., 2022), we first introduce the concept of 
the statistical true model as a preface to our discussion of the statistical 
“knockoff method” (Candès et al., 2018). Then, we discuss the simula
tion we conducted in the present study and show how the knockoff 
method is suitable for building interpretable models under big data 
conditions when inference is drawn from finite samples with arbitrary or 
unknown response distributions. A real data application is also provided 
to showcase the practical value of the method.

1. The (unknown) true model

Modern statistical textbooks sometimes refer to a concept called the 
“true model” (Gelman & Hill, 2007, p. 47), which is an abstract un
derlying mathematical model that defines how observed data is origi
nally generated. It describes a formula for the underlying data 
generating process. In this sense, the true model is the most parsimo
nious model because it only includes the variables necessary to explain 
and predict a set of observations at a given point in time. The true model 
is, therefore, the best of all possible models that try to explain and 
predict these observations. By definition, all alternative models that are 
not the true model include too many (overfitting) or too few (under
fitting) predictor variables.

The true model focuses on data aggregation. The model changes 
based on the level of data aggregation under observation (e.g., hourly, 
daily, weekly, local, regional, cross-country). Researchers have even 
gone so far as to challenge the mere existence of a true model because all 
possible models are ultimately wrong (e.g., Perretti et al., 2013). 
Importantly, the true model can only be known beforehand if all theo
retical premises can be assumed or if the data is simulated and follows 
specific, predefined rules. When working with aggregated, observed 
data, one cannot know the true model; however, all models that can be 
identified will only get close to the true model. Even though a model fits 
the data quite well or is almost as good as the true model, there will 

always be hidden unknown variables or variables that are simply not 
observed, complicating any inferences made from the observations.

Importantly, there are variable selection techniques that help to 
approximate the True Model by identifying relevant variables. Among 
the more popular techniques are the Lasso method and model-X 
knockoffs. While the Lasso method is particularly suitable for sce
narios in which the number of variables exceeds the number of obser
vations (Tibshirani, 1996), model-X knockoffs are a better choice for 
settings where controlling the false discovery rate is crucial and pro
ducing more parsimonious results, i.e., identifying fewer variables that 
are relevant to describe the true model (Candès et al., 2018).

Let us consider a hypothetical example involving a theory called 
“platform theory.” This theory encompasses a comprehensive set of rules 
that explains every aspect of how a social media platform operates, 
including how content is presented to its users and the effects of this 
content on users around the world at any given moment. Through the 
platform’s API, a researcher can observe the entire population of content 
on the platform but is usually restricted to drawing only a sample. This 
sample may be limited by factors such as the number of items, a specific 
time period, or geographical location. Additionally, even if the data 
request parameters remain constant, the sample can vary each time it is 
downloaded. In other words, while the population of all content remains 
constant, the samples themselves are dynamically changing constantly. 
Consequently, the researcher cannot know the true model of how the 
platform operates or effectively test the “platform theory.” Furthermore, 
the variability in sample data not only means that observed samples will 
differ from the unknown true model but also increases the likelihood of 
obtaining false positive findings when testing specific hypotheses about 
the platform. In such a dynamic context, researchers are faced with an 
overwhelming number of decisions, which complicates the determina
tion of whether an analysis is accurate and how close it is to the true 
model. To reduce the researcher degrees of freedom in selecting relevant 
predictors, the model-X knockoff method (Candès et al., 2018) is a 
valuable tool.

2. Method

2.1. The knockoff method: a primer

Technological advancements have not only drastically reduced the 
cost of data collection but also made data collection more versatile. 
Large-scale datasets tend to contain a massive collection of predictor 
variables X =

(
X1,…,Xp

)
that often exceeds the number of observations 

n. However, only a small fraction of variables are relevant for predicting 
the variable of interest (i.e., the outcome variable Y). In this case, var
iable selection becomes crucial for further model interpretation and 
alleviating the over-/underfitting problem of having included too many 
or too few predictors.

Two measures are crucially tied to variable selection: control of the 
false discovery rate (FDR) and guaranteeing enough statistical power. 
The following formulas were used in the present study: 

FDR=E
[
the number of selected irrelevant variables

the number of selected variables

]

Power=E
[
the number of selected relevant variables

the number of relevant variables

]

Variable selection should aim to control FDR under a prespecified 
level q (i.e., the wrongfully selected irrelevant variables take no more 
than (q×100)% of the total number of selected variables). At the same 
time, a high selection power is desired; therefore, as many relevant 
variables as possible should be selected. However, predictors are often 
correlated with the outcome in a linear or nonlinear fashion, providing 
leeway for the development of machine learning procedures to identify 
relevant predictors (e.g., Scherr & Zhou, 2020). For the aforementioned 
example about a “platform theory,” we used model-X knockoffs as a 
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variable selection method that controls FDR.
First, we introduce conditional independence, which defines all null or 

irrelevant variables. In the regression setting, conditional independence 
holds for irrelevant variables that are redundant in explaining the 
outcome variable given the relevant ones. A variable Xj is a null variable 
if and only if the response variable Y is independent of Xj and condi
tional on all other random variables X1,…,Xj− 1,Xj+1,…,Xp. For gener
alized linear models in which the response variable Y depends on Xj as a 
linear combination η = β1X1 + …+ βpXp, a variable Xj is irrelevant to Y 
if and only if the coefficient βj = 0. We then performed the model-X 
knockoff variable selection by constructing a new family of X distribu
tional knockoffs X̃ =

(
X̃1,…, X̃p

)
that satisfied the following properties 

as defined by Candès et al. (2018): 

(1) (pairwise exchangeability) the joint distribution of the original 
variables X and the corresponding knockoff variables X̃ denoted 
by (X, X̃) remains the same if a subset of variables is swapped with 
the corresponding knockoffs, e.g., 

(
X1,X2,X3, X̃1, X̃2, X̃3

)
follows 

the same distribution as 
(
X̃1, X̃2,X3,X1, X2, X̃3

)
. In other words, 

the correlation between knockoff variable X1 and knockoff variable 
X2 is the same as the correlation between the original variable X1 
and the original variable X2.

(2) (independence) X̃ is independent of Y given X, i.e., the knockoffs 
are irrelevant to the response of interest. That means that 
knockoffs are developed without information about the outcome 
variable(s).

Property (1) suggests that "knockoffs" mimic the original variables in 
their distribution and can partially explain the variability of the outcome 
variable. Property (2) guarantees that the knockoffs are irrelevant to Y. 
These two properties collectively provide the underlying intuition of the 
approach: since the knockoffs are irrelevant to Y, they would have null 
coefficients in the true model. Consequently, the relevant variables are 
expected to exhibit significantly different coefficients compared to their 
knockoffs. Property (1) is particularly meaningful for null variables, 
where both the original variables and their knockoffs will have zero or 
near-zero estimated coefficients. This property is utilized to introduce 
the "flip-sign" property of the score statistic (Candès et al., 2018) and is 
further used to derive an estimator of the false discovery rate in Equation 
(2).

Constructing knockoffs satisfying the above two properties is critical 
for guaranteeing that the variable selection has enough statistical power. 
To extend constructing knockoffs for Gaussian distributed variables to 
more general cases, Candès et al. (2018) developed two strategies for 
knockoff construction: 1) exact and 2) approximate construction stra
tegies for non-Gaussian distributed continuous variables.

Exact construction generates the knockoff variables using the con
ditional distribution of the corresponding original variables given all 
other variables, which simultaneously approximates the original vari
able in the distribution and minimizes the correlation with the other 
variables. A Sequential Conditional Independent Pairs algorithm for exact 
construction was also proposed in Algorithm 1 in Candès et al. (2018). 
Approximate construction requires the first two moments—the mean 
and variance of (X, X̃)—to remain unchanged if a set of variables in X is 
swapped with its knockoffs in X̃. Therefore, adequately constructed 
knockoffs show a pairwise exchangeability of nulls, suggesting that the 
conditional distribution of (X, X̃) on Y does not change if the nulls 
(irrelevant predictors) are swapped with their knockoffs. Both strategies 
have been implemented in the R package knockoff and have recently 
sparked broader interest in knockoff methods and derivates of this 
method (e.g., Barber et al., 2020).

Generating knockoffs is being further developed, but this falls 
outside the scope of the current paper. Innovations include the metro
polized knockoff sampling (Bates et al., 2021) and deep knockoff 

(Romano et al., 2020), which are both contributions to adapting the 
method to general continuous distributions. Specifically, Romano et al. 
(2020) discuss the importance of property (1) and suggested several 
goodness-of-fit diagnostics for testing if property (1) holds in practice. 
The proposal tests are based on testing if the joint distribution of (X, X̃)
remain unchanged after swapping either all of them or randomly 
selected subset of them. The results have been implemented in Python 
and have been made available on their GitHub page [weblink].

Under the assumption of pairwise exchangeability of nulls, variable 
selection is performed by contrasting the importance of each pair 

(
Xj, X̃j

)

using a score statistic Wj for j = 1, …, n, which satisfies a “flip-sign” 
property. In other words, Wj adds a negative sign when swapping Xj and 
X̃j for relevant variables but remains unchanged for irrelevant ones.

For example, we estimated the linear correlation between Y and 
(X, X̃) as follows: 

Y =(X, X̃)β + ε 

In addition, we used the following Lasso estimator: 

β̂ = argmin
β

�Y −
(

X, X̃
)

β �2
2 + λ �β �1 .

A typical choice of score statistic follows Wj =
⃒
⃒β̂j

⃒
⃒ −

⃒
⃒β̂ j+p

⃒
⃒, which 

compares the relevance of Xj and X̃j by contrasting the magnitude of the 
coefficient estimators for the original variable and the corresponding 
knockoff variable. A variable Xj is selected if Wj exceeds certain 
threshold t, i.e., the relative relevance of Xj compared to that of its 
knockoff variable X̃j that reaches a certain threshold t. The threshold t is 
data dependent and can be chosen based on Equation (2).

Importantly, FDR is controlled when choosing the threshold t. Since 
Xj and X̃j are both irrelevant to Y, βj and βj+p are either both set to zero or 
one is randomly larger than the other as a result of estimation uncer
tainty. Consequently, for all irrelevant variables, the number of Wj ≥ t is 
approximately equal to that of Wj ≤ − t. Thus, the adjusted FDR, which 
reflects the knockoff selection, is as follows: 

FDR = E

[
the number of irrelevant variables having Wj ≥ t

the number of Wj ≥ –t

]

(1) 

Since the numerator is approximately equal to Wj ≤ − t for irrelevant 
variables, Wj ≤ − t happens when the knockoffs are estimated to be more 
important than their original counterparts. This can be expected to occur 
much more frequently in irrelevant variables. Therefore, we constructed 
an upward biased estimator of FDR as follows: 

F̂DR = E

[
the number of Wj ≤ –t
the number of Wj ≥ –t

]

(2) 

This biased estimator F̂DR enlarges the numerator of Equation (1) for 
the true FDR by searching through all variables in the numerator instead 
of only the irrelevant variables. This procedure is relatively accurate, 
especially for small FDR values (Weinstein et al., 2017; 2020; Zhou & 
Claeskens, 2022). Therefore, using the estimator F̂DR as described 
above, we can choose a threshold t when controlling the estimated 
F̂DR ≤ q, with q representing a preselected FDR level. The data- 
dependent value of t is essentially determined by the prespecified 
value q, which is the main parameter of the model-X knockoff selection 
and controls the number of selected variables. Typically, the number of 
selected variables increases when we increase the level q, which lets 
more irrelevant variables be selected after the relevant ones are 
exhausted. Since one typically has no information on the relevance of 
each variable, the true FDR in Equation (1) cannot be estimated in 
practice. Therefore, we used an estimator F̂DR for practical use. By 
estimating F̂DR as in Equation (2), we can also estimate FDR as a 
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function of the predetermined levels q (i.e., the total number of selected 
variables) to realize FDR control.

2.2. Performance contrast simulation: the basics

The numerical performance of the model-X knockoff filter was 
determined in R using the package knockoff. To show the advantage of 
the knockoff filter in controlling FDR, we compared it to a widely used 
alternative variable selection method called the Lasso method (see 
Scherr & Zhou, 2020; Tibshirani, 1991). The Lasso is a regularization 
technique used to enhance the prediction accuracy and interpretability 
of statistical models by imposing a penalty on the absolute size of the 
coefficients. Specifically, the Lasso minimizes the residual sum of 
squares subject to a constraint on the sum of the absolute values of the 
coefficients. A key feature of the Lasso is the regularization parameter 
(λ), which critically affects model performance. A larger λ increases the 
shrinkage level, resulting in sparser models with fewer non-zero co
efficients but potentially more bias. Conversely, a smaller λ yields a 
model with more variables and reduced bias but also increased variance. 
Consequently, the results of the Lasso model can vary significantly 
depending on the chosen value of λ.

The choice of the tuning parameter is a complex issue and is beyond 
the scope of this paper. In linear regression, the regularization param
eter is typically chosen by minimizing the cross-validation prediction 
error, which ensures optimality in terms of prediction accuracy. We do 
not advocate adjusting the regularization parameter if it compromises 
the optimality of the predefined loss function, such as the commonly 
used cross-validation error. However, this optimality does not guarantee 
controlled false discoveries or optimal selection power. Controlled var
iable selection is not directly achievable through Lasso or similar regu
larized estimators. Model-X knockoffs, however, enhance the Lasso by 
providing controlled variable selection, which is particularly useful for 
finite samples. Thus, our focus is on comparing the controlled variable 
selection performance of the Lasso with the model-X knockoff, using the 
Lasso coefficient difference statistic.

We examined performance contrasts in two scenarios and simulated 
how variations in the number of variables and observations influence 
variable selection and model performance. In the first scenario, we 
simulated adding more variables to an existing dataset. In the second 
scenario, we simulated adding more observations to an existing dataset. 
We aimed to explore the extent to which even small changes to a dataset 
result in different or more irrelevant variables being incorrectly selected 
as relevant model predictors (i.e., yielding a higher FDR or a high 
fluctuation of selected variables), and we contrasted this with another 
established method of variable selection.

2.3. Performance contrast simulation: specific adjustments for its 
application

We used a simulation to answer the following questions: How can a 
researcher best perform these two scenarios? What is the best strategy 
for selecting the best predictors in a given situation? What is the FDR 
when choosing a specific method of data selection?

We simulate two scenarios, in both of which we assumed that the 
“platform theory” was linearly associated with k = 10 variables, that is, 

Y =Xβ + ε, (3) 

where Y is a continuous response variable of interest such as users’ time 
browsing posts; X =

(
X1,…,Xp

)⊤ is the vector of explanatory variables 
such as users’ content preferences, number of likes on each category of 
posts, etc.; ε is a latent random error. To reflect the fact that 10 variables 
are associated with Y, we randomly set 10 components of β to be 
nonzero and set the signal strength to be either − 3.5 or 3.5. The rest of 
the components of β are set to be zero such that the corresponding 
variables are irrelevant to Y. We vary the number of observations n and 

the number of variables p in the two examples. To address multi
collinearity between the variables, we sample X from a multivariate 
Gaussian distribution with the correlation between any two variables i, j 
being 0.5|i− j|. The random error ε is sampled from a standard Gaussian 
distribution. The following flowchart (see Fig. 1) is intended to illustrate 
the simulation procedure.

The first example aims to simulate a real life scenario in which we 
have more participants signing up for a social media platform after the 
initial data collection period, thereby creating a dataset with more ob
servations. We reflect this by fixing the number of variables p = 300 and 
gradually increasing the number of observations from n = 100 to n =

300 with increments of 50 individuals.
In the second example, we assumed that the “platform theory” was 

linearly associated with 10 variables among p = 110, and we collected a 
sample of n = 100 observations to test that assumption. Over the course 
of the simulation, we still believed that these 10 variables were impor
tant. However, we also considered additional variables that were offered 
by the social media platform through its API after the initial data 
collection period and had not previously been accessible to the public. 
These variables potentially provided additional information on the 
“platform theory.”

Fig. 1. Flowchart for Model-X knockoff procedure with lasso regression for 
simulating datasets and evaluating variable selection accuracy.
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Optimal variable selection is important because using redundant 
variables typically causes overfitting problems and yields uncontrollable 
model variability. Nevertheless, theory-based variable selection is 
oftentimes not accurate, leaving the researcher with some wiggle room 
to decide which variables and information are used to test hypotheses 
that are frequently relatively vague. However, when choosing variables 
in large-scale datasets (e.g., X API) with thousands of possibly relevant 
predictors and observations, it is (and will be even more) crucial to 
support variable selection algorithmically based on data that simulta
neously controls for falsely selecting irrelevant variables while 
increasing power and confidence in findings.

In the two examples in our simulation study, we demonstrated the 
ability to control a false discovery bias using the model-X knockoff 
method (Candès et al., 2018). Within each simulation, we validated our 
findings using identical replications in which we varied the core pa
rameters of our underlying assumptions (i.e., the number of predictors 
and the number of observations available to test our theory) in order to 
contrast their impact.

The variable selection results were described in terms of estimated 
FDR defined as 

eFDR=
1
R
∑R

r=1

number of falsely selected variables in the rʹth replication
total number of selected in the rʹth replication

,

(4) 

and power defined as 

ePower=
1
R
∑R

r=1

number of correctly selected in the rʹth replication
k

(5) 

and the average number of selected variables defined as 

eN=
1
R
∑R

r=1
number of selected in the rʹth replication . (6) 

The number of simulation replications is set to be R = 500. We set 
the nominal FDR level for the knockoff filter at 0.2. The nominal FDR 
level controlled the selection restriction; in some cases, none of the 
variables were selected when setting the nominal FDR level too low 
because (1) the restriction was too tight or (2) the number of true 
relevant variables was too small (for example, only one out of five 
selected variables was a false discovery, and FDR was still 1/5 = 0.2 in 
this case, meaning that 20% of the irrelevant variables were selected). 
To present the average performance over 500 replications, we generated 
a simulation dataset using seed numbers from 1 to 500. By fixing the 
pseudo seed number, we determined the following random numbers in 
our simulations. All materials including a manual to perform all analyses 
are accessible as online supplements on OSF [weblink].

3. Results

The performance contrast simulation results in Table 1 show that the 
model-X knockoff selected fewer variables than the Lasso method. When 
it comes to FDR control, the model-X knockoff method made many fewer 
mistakes, as evident from a combined look at the number of selected 
variables and FDR. For example, the model-X knockoff method only 
used 12 relevant variables and irrelevantly chose a wrong one at the 
odds of 0.14 (see top panel of Table 1).

Importantly, with respect to statistical power, both the Lasso and the 
model-X knockoff filter exhibit power close to 1. This indicates that, 
when the FDR threshold q is chosen appropriately, the model-X knockoff 
can effectively filter out relevant variables while simultaneously con
trolling false discoveries.

Importantly, when more variables were added (see the bottom panel 
of Table 1), the Lasso method was more responsive to the dataset and the 
number of relevant variables. In contrast, the knockoff method was very 
stable throughout and much less sensitive to even small changes in the 

dataset (Fig. 2).

3.1. Real data application: online news popularity

This application employs a Mashable dataset (Fernandes et al., 
2015), which includes 39,797 articles characterized by 58 predictive 
attributes (e.g., linguistic features, temporal metadata) and one outcome 
variable (number of shares). Model-X knockoffs, using a Poisson 
regression framework with a 0.15 false discovery rate (FDR) threshold 
and Lasso coefficient difference statistic, identified seven common sig
nificant predictors of article virality. The dataset was partitioned into 

Table 1 
Performance contrast simulation in two example scenarios.

Example 1. Adding more observations

p = 300 p = 300 p = 300 p = 300 p = 300

n = 100 n = 150 n = 200 n = 250 n = 300

Lasso eFDR 0.56 0.47 0.39 0.40 0.39
ePower 1.00 1.00 1.00 1.00 1.00
Selected 24 20 17 18 18

Knockoff eFDR 0.14 0.17 0.15 0.16 0.15
ePower 0.83 1.00 1.00 1.00 1.00
Selected 12 12 12 12 12

Example 2. Adding more variables

p = 110 p = 130 p = 150 p = 170 p = 190

n = 100 n = 100 n = 100 n = 100 n = 100

Lasso eFDR 0.56 0.51 0.49 0.47 0.58
ePower 1.00 1.00 1.00 1.00 1.00
Selected 24 22 21 20 25

Knockoff eFDR 0.21 0.17 0.22 0.15 0.21
ePower 1.00 1.00 1.00 1.00 1.00
Selected 13 13 13 12 13

Note. p = number of variables, n = number of observations. eFDR = empirical 
false discovery rate defined in Equation (4), i.e., the number of selected, irrel
evant variables divided by the number of selected variables. ePower = the 
average number of correctly selected relevant variables divided by the number 
of true relevant ones; this is defined in Equation (5). Selected = the average 
number of selected variables; this is defined in Equation (6).

Fig. 2. Averaged False Discovery Rate in Two Simulation Examples 
Note. In Example 1 (top panel), more observations n are added (i.e., vary n), in 
example 2 (bottom panel), more variables p are added (i.e., vary p).
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three sequential 33.33% folds to simulate incremental data acquisition, 
revealing patterns such as higher shares for articles. Six predictors were 
consistently identified as predictors of the number of shares for news 
articles: Average length of the words in the content (predictor 11), the data 
channel [is] ’entertainment’ (predictor 14), [average shares of the] best 
keyword (predictor 26), [minimum number of] shares of referenceapid 
articles in Mashable (predictor 28), closeness to LDA topic 2 (predictor 
41),1 and text subjectivity (predictor 44). These findings enable 
data-driven strategies, such as optimizing content length for specific 
categories, tailoring publication wording, and keyword choices to 
maximize engagement. The R code for this analysis is available on the 
Open Science Framework [weblink], and the dataset is publicly acces
sible via Kaggle [weblink]. This real-world data application demon
strates how model-X knockoffs can be applied to editorial 
decision-making, providing actionable insights to optimize audience 
reach.

4. Discussion

Having an abundance of available data can be a problem. In addition, 
using high dimensional scenarios in which there are more predictors (p) 
than observations (n) can be a challenge for the future analysis of large- 
scale applications (e.g., Brady, 2019). We have argued that access to 
large-scale data can facilitate bias from false-positive findings in large 
datasets by increasing researcher degrees of freedom (Simmons et al., 
2011). Researchers can disclose their criteria for data collection, inclu
sion and exclusion criteria for observations, and offer a rationale for 
selecting relevant model variables and covariates. However, data 
abundancy exacerbates the flexibility-ambiguity issues involved in those 
decisions. In addition to open science practices (e.g., Dienlin et al., 
2021), model-X knockoffs (Candès et al., 2018) have been introduced in 
the present study as a strategy to reduce researcher degrees of freedom 
and identify the true model (Gelman & Hill, 2007).

Specifically, the numerical performance of a model-X knockoff in R 
using the package knockoff can be helpful in two specific scenarios for 
scholars. In the first scenario, more variables were added to an existing 
dataset; in the second scenario, more observations were added to an 
existing dataset. The performance contrast simulation results indicated 
that model-X knockoffs select fewer variables than, for example, the 
common Lasso method (e.g., Scherr & Zhou, 2020). Overall, the model-X 
knockoffs performed better and made fewer mistakes, as indicated by 
the number of selected variables and the respective FDR results. The 
reason behind this is that the knockoff method chooses the difference as 
a contrast between used and selected variables. As such, compared to the 
Lasso method, the knockoff method is very stable and operates in a 
similar fashion as an extra filter. Importantly, although our simulation 
involved adding observations and variables, the findings can also be 
interpreted in reverse. They hold true when observations and/or vari
ables are removed from a dataset.

In this article, we showcased model-X knockoffs (Candès et al., 2018) 
as a relatively novel method that can help researchers efficiently identify 
relevant variables, such as in high dimensional environments, where the 
available predictors outnumber the available observations. The biggest 
advantage of model-X knockoff variable selection methods is their 
ability to reduce researcher degrees of freedom (Simmons et al., 2011); 
therefore, they can help increase the transparency and reproducibility of 
scientific findings (e.g., Dienlin et al., 2021). The primary focus of this 
paper is the performance contrast simulation, which serves as a foun
dational tool for exploring theoretical applications. To illustrate the 
utility of this simulation, we used a hypothetical application around the 

“platform theory.” Social media platforms, provide data that can be used 
to apply our suggested approach in empirical social science and hu
manities research.

In the first scenario (top panel of Table 1), we used the simulation to 
analyze data from n participants and selected p variables as one could do 
through e.g., X API. It is important to emphasize that the “platform 
theory” discussed is purely hypothetical and serves as an illustrative 
example rather than a validated explanation. Among the p variables 
examined, only a subset was relevant to this hypothetical framework. 
Additionally, an API may offer more variables in the future (i.e., adding 
more variables p), and the platform could also introduce new data that 
might affect the theoretical model.

In the second scenario (bottom panel of Table 1), the researcher 
identified specific p variables, e.g., based on the existing literature and 
conceptual models, as they were deemed relevant for testing the hypo
thetical “platform theory.” If these variables are accurate predictors, 
new users joining the platform could necessitate adjustments to the 
theory over time which is simulated in our second scenario, in which 
model-X knockoffs help identifying a stable number of relevant pre
dictors largely independent of the fact that new cases, i.e., new users 
signed up for the platform and their data is available through the API.

Importantly, FDR control methods are necessary when multiple hy
potheses are simultaneously tested using large datasets. Originally a big 
issue in genome-wide studies (Storey & Tibshirani, 2003), a researcher 
can e.g., test an abundance of media use data points from social media 
environments to determine their association with topics such as mental 
well-being. However, when multiple hypotheses are tested simulta
neously, the probability of observing a significant result by chance alone 
increases, leading to a high FDR. In such cases, methods such as the 
well-known Bonferroni method are much too conservative and lead to 
many missed findings. Instead, new FDR control methods are being used 
to adjust p-values to control the proportion of false discoveries among all 
significant results, but not equally across disciplines. Although p-val
ue-based FDR control methods, such as the Benjamini-Hochberg pro
cedure (Benjamini & Hochberg, 1995), are usually stable and effective, 
they rely on p-values, which can be a controversial and challenging topic 
when n and p are large.

There are at least three reasons why model-X knockoffs should be 
considered a successful FDR control method. First, model-X knockoffs do 
not rely on p-values and therefore address some of the limitations of the 
widely-used Benjamini-Hochberg procedure. Second, the Benjamini- 
Hochberg procedure assumes that the hypothesis tests, as well as the 
p-values are independent. In the regression setting, this independence 
assumption is barely met. Since the model-X knockoff relies on param
eter estimation rather than p-values, it naturally bypassed this inde
pendence requirement of Benjamini-Hochberg. Moreover, this is 
something that other procedures do not take into account. Third, model- 
X knockoffs can be effective when the number of variables is large 
relative to the sample size.

4.1. Limitations

As with any statistical method, model-X knockoffs have limitations 
that should be considered before using them. One important limitation is 
the model-X knockoff method’s computational intensity. This method 
involves generating a large number of knockoffs to construct and test 
hypotheses about the importance of each feature. For very large data
sets, the computational cost may become prohibitive, making it difficult 
to use the method in practice. Additionally, as noted by Ren et al. 
(2023), the method introduced in this paper relies on a single instance of 
randomly generating knockoff variables. To derandomize the approach 
and achieve more robust selection, one could use the de-randomization 
procedure outlined by Ren et al. (2023). This procedure involves 
combining results multiple knockoff generations, which inevitability 
increases computational complexity.

Moreover, model-X knockoffs have been shown to be effective for 

1 Fernandes et al. (2015) applied Latent Dirichlet Allocation (LDA) to the 
Mashable news articles, identifying five dominant topics and quantifying each 
article’s alignment with them. Predictor 41 reflects the closeness to ‘LDA topic 
2,’ an undefined construct in the original study.
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real-world data in empirical applications (Pan, 2022; Sesia et al., 2018), 
however, they face specific challenges in the context of social science 
data. The additional challenges of social science data include biased 
sampling frames and social network effects (Hargittai, 2015), for which 
the use of model-X knockoffs can be particularly advantageous in order 
to control the false discovery rate.

Further, model-X knockoffs are designed for variable selection, not 
for variable transformation or model building. This means that the 
method may not be useful in situations where the goal is to identify 
complex (e.g., non-linear) relationships between variables. Finally, the 
threshold that controls the false discovery rate q is predetermined by the 
users, and it follows a similar idea as the nominal significance level in 
hypothesis testing. A larger threshold q will lead to both relevant and 
irrelevant variables being selected. There is no data-driven approach to 
determining the threshold to our knowledge. Users must assess and 
adjust the threshold case by case. For example, when users hope to select 
as many relevant variables as possible and do not worry about irrelevant 
ones, the threshold q can be higher. However, when the primary goal is 
finding the most relevant variables, the threshold q should be set lower 
to achieve a stricter control of false discoveries.

5. Conclusion

In this paper, we have introduced model-X knockoffs as a viable 
strategy for reducing researcher degrees of freedom and improving 
variable selection in high-dimensional datasets. The performance 
contrast simulation results demonstrate that integrating FDR-controlled 
variable selection with the commonly used Lasso estimator can sub
stantially enhance the finite sample selection performance of regular
ized estimators. The model-X knockoff selection method shows 
relatively stable empirical false discovery rates compared to the Lasso, 
even with minor changes in dataset size, which improves the FDR con
trol for variable selection. Additionally, the knockoff framework offers 
at least two significant advantages over traditional p-value-based FDR 
control methods, such as the Benjamini-Hochberg procedure: 1) p-values 
are not available for regularized estimators like the Lasso; p-value-based 
FDR control is feasible only with debiased estimators (Javanmard & 
Montanari, 2014; van de Geer et al., 2014). To our knowledge, practical 
implementations of p-values for debiased estimators, such as SCAD 
penalties, Multiple Comparison Procedures (MCP), or the group Lasso, 
are not yet available. In contrast, the model-X knockoff framework al
lows for FDR control directly with regularized estimators. 2) The 
knockoff framework does not rely on the assumption of independent 
p-values, which is often unrealistic to assume in practice. In conclusion, 
the study findings suggest that the model-X knockoff method can be a 
valuable tool for researchers seeking to identify the most parsimonious 
model that explains and predicts a set of observations, particularly in 
scenarios where there are more predictors than observations. This can 
ultimately help increase the transparency and reproducibility of scien
tific findings and mitigate the risk of false-positive findings in large 
datasets.
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