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ABSTRACT

Numerous statistical models have been proposed for conducting meta-analysis of diagnostic accuracy studies when a gold standard is available.
However, in real-world scenarios, the gold standard test may not be perfect due to several factors such as measurement error, non-availability,
invasiveness, or high cost. A generalized linear mixed model (GLMM) is currently recommended to account for an imperfect reference test. We
propose vine copula mixed models for meta-analysis of diagnostic test accuracy studies with an imperfect reference standard. Our general models
include the GLMM as a special case, can have arbitrary univariate distributions for the random effects, and can provide tail dependencies and
asymmetries. Our general methodology is demonstrated with an extensive simulation study and illustrated by insightfully re-analyzing the data
of a meta-analysis of the Papanicolaou test that diagnoses cervical neoplasia. Our study suggests that there can be an improvement on GLMM

and makes the argument for moving to vine copula random effects models.

KEYWORDS: imperfect reference test; meta-analysis; mixed models; vine copulas.

1 INTRODUCTION

Therise of evidence-based medicine hasresulted in increased fo-
cus on meta-analytic studies of diagnostic test accuracy. A meta-
analysis of diagnostic test accuracy studies combines informa-
tion from different studies. It provides an integrated analysis with
more statistical power to detect an accurate diagnostic test than
an analysis based on a single study (Normand, 1999). As diag-
nostic test, accuracy is commonly measured by a pair of indices
such as sensitivity (the probability that an actual positive will test
positive) and specificity (the probability that an actual negative
will test negative), synthesis of diagnostic test accuracy studies
is the most common medical application of multivariate meta-
analysis (Jackson etal., 2011). Most existing meta-analysis mod-
els and methods have mainly focused on a single test when a
perfect reference standard is available (eg, Rutter and Gatsonis,
2001; Reitsma et al., 2005; Chu and Cole, 2006; Nikoloulopou-
los, 2015).

Nevertheless, in practice, the reference test may be imperfect
due to measurement error, non-existence, invasiveness, or the
high cost of a gold standard. This is the case in the meta-analysis
of 59 studies to evaluate the accuracy of the Papanicolaou (Pap)
test that diagnoses cervical neoplasia (Fahey et al., 1995; Liu
et al,, 2015). As acknowledged in Liu et al. (2015), the litera-
ture on meta-analytic studies of diagnostic test accuracy, when
a gold standard is unavailable, is very limited. Chu et al. (2009)
proposed a S-variate generalized linear mixed model (GLMM)
to account for heterogeneity in test accuracies across studies by
treating the disease prevalence (the probability of those with the

disease), sensitivities, and specificities of the index and reference
tests as random effects. Their model assumes independent multi-
nomial distributions for the counts of each combination of the
index and reference test results, conditional on the 5-variate nor-
mally distributed transformed latent disease prevalence, sensi-
tivities, and specificities of the index and reference tests in each
study. Dendukuri et al. (2012) extended the hierarchical sum-
mary receiver operating characteristic (HSROC) of Rutter and
Gatsonis (2001) to the situation where no gold standard test is
available. Both the GLMM and HSROC have the advantage that
they account for heterogeneity across studies and allow for de-
pendence between the index and reference test. As shown by Liu
etal. (2015), who re-analyzed the existing meta-data on the diag-
nosis of cervical neoplasia, the GLMM and HSROC are closely
related, and some of their submodels with fewer random effects
are equivalent.

Nevertheless, the S-variate normal distribution of the trans-
formed latent proportions in the GLMM has restricted prop-
erties, that is, a linear correlation structure and normal mar-
gins that might lead to biased meta-analytic estimates of diag-
nostic test accuracy. In order to create a flexible distribution to
model the random effects, we exploit the use of regular vine cop-
ulas (Bedford and Cooke, 2002) as other parametric copulas
such as Archimedean, nested Archimedean, and elliptical cop-
ulas have limited dependence (Nikoloulopoulos, 2013). Reg-
ular vine copulas are suitable for high-dimensional data (Er-
hardt et al.,, 2015); hence, given the low dimension, we use their
boundary case, namely a D-vine copula. D-vine copulas have be-
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come important in many application areas, such as finance (Aas
et al,, 2009; Nikoloulopoulos et al.,, 2012) and biological sci-
ences (Killiches and Czado, 2018; Barthel et al., 2019; Hoque
et al,, 2022; Sahin and Czado, 2024), to name just a few, in or-
der to deal with dependence in the joint tails. Another bound-
ary case of regular vine copulas is the canonical vine copula,
but this parametric family of copulas is suitable if there exists
a pilot variable that drives the dependence among the variables
(Nikoloulopoulos and Joe, 2015; Erhardt and Czado, 2018; Kad-
hem and Nikoloulopoulos, 2021), which apparently is not the
case in this application area.

We propose a copula mixed model as an extension of the
GLMM by using a D-vine copula representation of the random
effects distribution with both normal and beta margins. We as-
sume independent multinomial distributions for the counts of
each combination of the index and reference test results, condi-
tional on the latent disease prevalence, sensitivities, and specifici-
ties of the index and reference tests in each study. The proposed
model (1) includes the S-variate GLMM (Chu et al., 2009) as
a special case, (2) can have arbitrary univariate distributions for
the random effects, and (3) can provide tail dependencies and
asymmetries.

The remainder of the paper proceeds as follows. Section 2
summarizes the standard S-variate GLMM for synthesis of di-
agnostic test accuracy studies without a gold standard. Section 3
introduces the S-variate D-vine copula mixed model for meta-
analysis of diagnostic studies without a gold standard, and pro-
vides computational details for maximum likelihood (ML) es-
timation. Section 4 insightfully re-analyzes the data from the
meta-analysis of the Pap test that diagnoses cervical neoplasia.
Section § studies the reliability of our methodology to select the
necessary latent variables (random effects) and gauge the small-
sample efficiency and robustness of the ML estimation of the
proposed D-vine copula mixed model. We conclude with some
discussion in Section 6.

2 THE 5-VARIATE GLMM

In this section, we summarize the S-variate GLMM in Chu et al.
(2009). Before that, we first introduce the notation we use. The
dataare y;j, i=1,...,N, j=0,1, k=0, 1, where i is an in-
dex for the individual studies, j is an index for the index test out-
come (0: negative; 1: positive), and k is an index for the imper-
fect reference test outcome (0: negative; 1: positive). Each cell
in Table 1 provides the cell frequency corresponding to a com-
bination of the index and reference test outcomes in study i.

The within-study model assumes that the counts
(Yi11, Yi10, Yio1» Yioo) of each combination of test results are
multinomially distributed given the transformed latent disease
prevalence X, the transformed latent sensitivities X, and X; for
the index and reference test, and the transformed latent speci-
ficities Xy and X for the index and reference test, respectively,
viz.,

where p . are the cell latent probabilities in Table 1, and M (n,
P1s - - -, pa) is shorthand notation for the multinomial distribu-
tion; d is the number of cells, n is the number of observations,
and (py, - .., pa) with p; + ... + pg = 1is the d-dimensional
vector of success probabilities. Under the assumption that the 2
tests are independent conditional on the true disease status, the
cell latent probabilities are the following functions of the disease
prevalence, sensitivities, and specificities for the index and refer-
ence test:

pi =1 ) () () +
(1= 17 Ge) = 17 ) 1 = 17" ()}

pro =1 ) )1 — 17 ()} +
(1=1"" ) 1 =17 ) ]I () (2)

por =17 (e ) {1 =17 ) 17 (3) +
{1=17"CGe) P () {1 = 17" (x5) |

where I(p) is a link function as the commonly used logit(p) =
log( % ). For further explanation on the structure of equa-

tions in (2), we refer the interested reader to Gart and Buck
(1966).

The between-studies model assumes that X follows a mul-
tivariate normal (MVN) distribution with mean vector gt =
(I(ry), I(7,), I(m3), I(74), 1(7r5)) and variance-covariance
matrix:

012 P120102  P130103 0140104 P150105

P120103 022 0230203 0240204 0250203

Y = | p130103 0230203 032 P340304  P350307%

P140104 0240204 0340304 042 P450407
P150105 0250205  P35030s  P450405 (752

Here, 7, is the meta-analytic parameter for the prevalence, ,
and 73 are the meta-analytic parameters for the sensitivity of
the index and the reference test, respectively, and 74 and 75 are
the meta-analytic parameters for the specificity of the index and
the reference test, respectively. In addition, the variance parame-
ters o’tz, t =1,..., 5 denote the between-study heterogeneity
in disease prevalence, sensitivities, and specificities for the index
and reference test, and the oft-diagonal parameters p;,;, : 1 <
t; < t, < S denote the pairwise correlations among the trans-
formed latent prevalence, sensitivities, and specificities (random
effects).

3 THE 1-TRUNCATED D-VINE COPULA
MIXED MODEL

In this section, we introduce the 1-truncated D-vine copula
mixed model for the meta-analysis of diagnostic accuracy stud-

TABLE 1 Data from an individual study ina 2 x 2 table.

Index test
Reference test Positive Negative
(Y115, Yioi, Youi, Yooi )| (X1, Xa, X5, X4, Xs) = (o1, %2, X3, %4, &) Positive il Yo
~ M4(yir+, P11, P10, poi» Poo) (1) Negative Yiol Yioo
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ies without a gold standard and discuss its relationship with the
GLMM in the preceding section. Before that, the first subsection
has some background on vine copula models. We complete this
section with details on ML estimation.

3.1 Overview and relevant background for vine copulas
A copula is a multivariate cumulative distribution function (cdf)
withuniform U (0, 1) margins (Joe,2014).IfF isa 7 -variate cdf
with univariate margins F, . . . , Fr, then there is a copula C such
that

Fxy, ..., %7) = C(Fl(xl), o Fd(x7)>.

The copulaisuniqueif Fy, . . ., Fr are continuous. If F is contin-
uous and (Yy, ..., Y7) ~ F, then the unique copula is the dis-
tribution of (Uy, ..., Ur) = (F (Y1), ..., Fr(Yr))leading to

Clur, ... up) = F(Fl_l(ul), o F;(uT)),
O<u <1,t=1,....,T

where F~ are inverse cdfs (Nikoloulopoulos and Joe, 2015). In
particular, if ®7(+; R) is the MVN cdf with correlation matrix

R=(pyn,:1<ti<t, <T)

and N(0,1) margins, and & is the univariate standard normal cdf,
then the MVN copula is

Clu, ... uy) = q>T(q>—1(u1), D () R). 3)

Copulas have become useful for flexible modeling of multivari-
ate data when the variables are non-normal. In particular, there
are copula families that can lead to more dependence in the up-
per or lower joint tail than with the MVN copula and these are
important for dependence among extreme values.

The 7 -dimensional D-vine copulas can cover flexible de-
pendence structures, different from assuming simple linear
correlation structures, tail independence and normality (Joe
et al, 2010). They are built via successive mixing from

T (T — 1)/2 bivariate linking copulas on levels. For the 7 -
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1,...,7T — £.Thatis, for the D-vine, conditional bivariate cop-
ulas are specified for variables t and t + £ given the variables in-
dexed in between (Nikoloulopoulos et al., 2012). In Figure 1,
the S-dimensional D-vine copula with 7 = S variables and 4
trees/levels is depicted.

Joe et al. (2010) have shown that in order for a vine copula to
have (tail) dependence for all bivariate margins, it is only neces-
sary for the bivariate copulas in level 1 to have (tail) dependence,
and it is not necessary for the conditional bivariate copulas in
levels 2, ..., 7 — 1 to have (tail) dependence. That provides
the theoretical justification for the idea to model the depen-
dence in the first level and then just use the independence cop-
ulas to model conditional dependence at higher levels without
sacrificing the tail dependence of the vine copula distribution.
In line with our previous contributions in copula mixed models
(Nikoloulopoulos, 2015, 2017, 2018a,b, 2019, 2020a,b, 2022,
2024b), we use bivariate parametric copulas with different tail
dependence behavior, namely the bivariate normal (BVN) with
intermediate tail dependence, Frank with tail independence, and
Clayton with positive lower tail dependence. For the latter, we
also use its rotated versions to provide negative upper-lower tail
dependence (Clayton rotated by 90°), positive upper tail depen-
dence (Clayton rotated by 180°), and negative lower-upper tail
dependence (Clayton rotated by 270°). Note in passing that vine
copulas have as a special case the MVN copula in (3), if all the
bivariate parametric copulas are BVN (Aas et al., 2009).

3.2 The 1-truncated D-vine copula mixed model with
normal and beta margins

Here, we generalize the GLMM in Chu et al. (2009) by propos-
ing a model that links the random effects using a 1-truncated D-
vine copula rather than the MVN distribution. The within-study
model is the same as in the standard GLMM,; see (1).

For the between-studies model, there are different latent vari-
ables (Xi, X5, X3, X4, X5 ), but they are dependent. To model
the dependence among the latent variables X;, t =1, ..., 5,we
employ copulas. The power of copulas for dependence model-
ing is due to the dependence structure being considered separate

dimensional D-vine, the bivariate pairs at level 1 are X;, X;44, from the univariate margins. Fort = 1, ..., 5 denote the uni-
fort =1,...,7 — 1,and forlevel £ (2 < £ < T), the (con-  variate cdf of X, by F(-; I(7r; ), St),whereas inSection2,7;, t =
ditional) bivariate pairs are X;, X;y¢| X415 - - -, Xpo—g fort = 1, ..., S are the meta-analytic parameters of the proportions of
Level 1 [Xi] X [ X X4 [Xs]
Level 2 X1X2 X2X3 X3X4 X4X5
Level 3 X1X5 X, X0 X4 X3 X3 X5/ Xy
Level 4 X1X4\X2X3 XoX5| X35Xy

FIGURE 1 Graphical representation of the D-vine copula with S variables and 4 levels.
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TABLE 2 The choices of the F ( 5 (), 8) and [ in the copula mixed
model.

F(-;1(m), 8) 1 1 b
N(u, o) logit, probit, cloglog =) o
Beta(m, y) identity T y
interest, but now the univariate parameters §;, t = 1, ..., Sde-

note the between-study heterogeneity in disease prevalence, sen-
sitivities, and specificities of the index and reference test. The
choices of the F(-; I(m), 5) and [ are given in Table 2. If the
Beta(7, y) distribution is used for the marginal modeling of
the latent proportions, then one does not have to transform the
prevalence, sensitivities, and specificities and can work on the
original scale.

In multivariate models with copulas, a copula or multivariate
uniform distribution is combined with a set of univariate mar-
gins. That is, if a S-dimensional parametric family of copulas
Cs(-; @) is combined with the parametric model F (-; I(m;), 5t),
then

CS(F(-’CI; 1(71), 51), F(x; 1(7m2), 32), F(x3:1(m3), 83),

F(x4, 1(7T4), 54), F(XS, l(ns), 85), 0)

is a multivariate parametric model with univariate margins
F('; I(m,), St), t =1,...,5. This is equivalent to assuming
that the latent variables X;, t = 1, ..., Shave been transformed
to standard uniform latent variables U; = F (Xt; I(m,), St), t =
1,...,5. So we assume that (U, U,, Us, Uy, Us) is a S-
dimensional random vector, where U; ~ U (0, 1). The joint cdf
is then given by Cs(ur, up, u3, ug, us; 0), where Cs(+; 0) isa 5-
dimensional 1-truncated D-vine copula, with copula parameter
vector @ = (01,6053, O34, 45). The 1-truncated D-vine copula
has 4 parametric bivariate copulas C(+; 01, ),C(+; 023),C(+; 634),
and C(-; 045) that link X; with X,, X, with X3, X5 with X,, and
X, with X5, respectively, in the first level of the vine and inde-
pendence copulas in all the remaining levels of the vine (trun-
cated after the first level). If one is restricted to the first level, then
the result is a Markov tree dependence structure where 2 vari-
ables not connected by an edge are conditionally independent
given the variables between them. Figure 2 depicts the graphi-
cal representation of the 1-truncated D-vine copula model. This
truncation, as per the terminology in Brechmann et al. (2012),
offers a substantial reduction of the dependence parameters. In
our case, there are 6 (conditional) dependence parameters less,
which is extremely useful for estimation purposes given the typi-
cally small number of primary studies involved in meta-analysis.
To this end, the stochastic representation of the between-studies
model takes the form

(F(Xx; 1(71), 81), ... F(Xs; 1(ms), 55)) ~Cs(+0). (4)

Letc(u,v;0) = % be a bivariate copula density. Then,

the S-dimensional 1-truncated D-vine copula density is decom-
posed in a simple manner by multiplying the bivariate copulas
densities in the nodes of the tree in Figure 2, as indicated below

Cs (141, Uy, U3, Ug, Us; 0) = C(”l, Uz, 912>c<u2, uz; 923)

C(”s, Uy 934)C<l44, us; 945)~ ()

Note that for a S-dimensional D-vine copula density, there are
% distinct permutations of the variables (Aas et al., 2009). To be
concrete in the exposition of the theory, we use the permutation
in Figure 2; the theory though also applies to the other permuta-
tions. The models in (1) and (4) together specify a 1-truncated
D-vine copula mixed model with joint likelihood

L(7T17 T, T3, T4, s, 81, 83, 83, 84, 85, 0) =

N
l_[/ g(yillainOa)’iOI’)’ioo;)’i++7 P11, P1os Pm)
i=1 Y [0.1F

(6)

where pj. are as in (2) with x :Fﬁl(ut; l(m),&), t=
1,...,5.

Our general statistical model allows for the selection of cop-
ulas and margins independently, that is, there are no con-
straints in the choices of parametric copulas and margins.
Note in passing that when the univariate distribution of the
random effects is the N(u, o) distribution and all the bi-
variate copulas are BVN with copula (correlation) parameters
P12, P23s P34, Pas, the resulting random effects distribution is
the MVN with mean vector g and variance-covariance ma-
trix X where 013 = 012023, 014 = 012024, P15 = P14P45, P24 =
023034y P25 = P24P4s) P35 = P34P4s. Hence, the 1-truncated D-
vine copula mixed model has as special the GLMM with a struc-

tured correlation matrix. The above pairwise correlations are de-
duced using the partial correlation vine parametrization (Joe,
2014, page 119) of the MVN copula, which consists of alge-
braically independent pairwise correlations (first level) and par-
tial correlations (higher levels).

Cs (”1, Uy, U3, Ug, Us; 0)du1du2du3du4du5,

3.3 ML estimation and computational details

Estimation of the model parameters can be approached by the
standard ML method, by maximizing the logarithm of the joint
likelihood. The estimated parameters can be obtained by using a
quasi-Newton method applied to the logarithm of the joint like-
lihood. We employ a quasi-Newton method as an alternative to
Newton’s method in order to achieve faster computation without
having to calculate the Hessian matrix every time. Therefore, the
quasi-Newton minimization with an input function of the nega-
tive log-likelihood to be minimized provides the output point of
minimum and the inverse Hessian at the point of minimum.

C(;6h2) C(+;023)

C(~;934) C(‘§945)

Xy Xo

X3

Xy X5

FIGURE 2 Graphical representation of the S-dimensional 1-truncated D-vine copula model.
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For the 1-truncated D-vine copula mixed model, numerical
evaluation of the joint probability mass function (pmf) can be
achieved with the following steps:

(1) Calculate Gauss-Legendre quadrature points {u, : g =
1,..., Nq} and weights {wq igq=1,..., Nq} in terms
of standard uniform.

(2) Convert from independent uniform random vari-
ables {ug, :q1 =1,.... Ny}, {ug, : o = 1,..., N},
(g, g3 =1,..., Ny}, and {uy, :q4=1,..., N},

{ug, : g5 = 1, ..., Ny} to dependent uniform random
variables that have a 1-truncated D-vine distribution

1 = ug,

2: = C_l(”qz|Vq1§ 612)

3: v, = c! (ttg,vg,: 623)

4 = C_l(”q4lvq3; 634)
S: Vg = c! (qu5 |Vq4; 945),
where C™!(v|u; 0) is the inverse conditional bivariate
copula cdf. The method is based on the simulation algo-
rithm of a 1-truncated D-vine copula (Joe, 2014), where
asinput, instead of independent uniform variates, it uses
the independent quadrature points.

(3) Numerically evaluate the joint pmf

/ g(}/im Yi105 Yio1» Yioos YVi++» P11, P10, Pm)
[0,1]°

c(ur, ty, uz, ug, us; 0)du,duydusduydus
in a quintuple sum:

Ny Ny Np Ny N

PIDIPIPIP MR

q1=1q2=1q3=1 q4=1g5=1

g(}’illv)’ilm)’iOl’yiOO; Yi++> P115 P1os Po1>,

where pi1, p1o, por are calculated as in (2) with x; =
F_l(vqt; TT¢, St)

With Gauss-Legendre quadrature, the same nodes and weights
are used for different functions; this helps in yielding smooth
numerical derivatives for numerical optimization via quasi-
Newton.

4 META-ANALYSIS OF THE PAPANICOLAOU
TEST

In this section, we illustrate the proposed methodology by in-
sightfully re-analyzing the data of a meta-analysis of the Pap test
that diagnoses cervical neoplasia (Fahey et al., 1995). These data
are comprised of N = 59 studies that were published between
January 1984 and March 1992. The diagnostic accuracy of the
Pap test (ie, index test) is evaluated by comparing with the his-
tology test (ie, reference test), which is not a perfect test (Fa-
hey et al,, 1995). These data have been previously analyzed by
Liu et al. (2015), who have fitted the GLMM and the HSROC
model. It was established that these 2 models lead to equivalent
submodels with fewer random effects, and hence identical infer-
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ences. Note in passing that the GLMM is a special case of our
model when all the bivariate copulas are BVN and the univariate
distribution of the random effects is the N (1, 0%) distribution
as discussed in Section 2.

To avoid over-fitting the data with an excess of random effects
(latent variables), we use an all possible random effects proce-
dure based on information criteria. We start with the initial as-
sumption, that all bivariate linking copulas are BVN copulas, that
is the starting model is the GLMM. We use both Akaike’s infor-
mation criterion (AIC) and the Bayesian information criterion
(BIC) to select which random effects provide the most parsimo-
nious fit as the number of parameters is not the same among
the random effect models. The goal is to find the “best” sub-
set of the random effects. We refer to models with 1 random ef-
fect X; as submodel A.t,, with 2 random effects (X;,, X;, : 1 <
ti <ty <5) as submodel Bss, s =1, ..., 10, with 3 random
effects (X, X;,, X;, : 1 <t <t <t3 <5) as submodel C.s,
with 4 random effects (th, X X X, 1 St <t <tz <
ty < 5) as submodel D.t, and with the all S random effects
(X1, X, X3, X4, X5 ) in (1) and (4) as model E. The full spec-
ification of the submodels with fewer random effects is provided
in Web Appendix A.

For the data on the Pap and histology tests, both AIC and BIC
in Table 3 suggest the use of the submodel C.2, which includes
random effects for the prevalence Xj, sensitivity X, and speci-
ficity X4 of the Pap test, and fixed effects for the sensitivity 73
and specificity 75 of the histology test (reference test). That is,
the within-study and between-studies models in (1) and (4) re-
duce to

(Y1165 Y10is Youis Yoo )| (X, Xa, X)) = (21, %2, x4)
~ M4 (yit+s 11> Pros poi» poo)s (7)
where
puo= 1) ) + {1 =1 @) {1 =17 () (1 = 75)
pro =1 ) )1 —m3) + {1 =17 @) 1 = 17 ) s (8)
por = 17 () {1 =17 ) Jrs + {1 = 17 (a) [ () (1 — 1),
and
(F(X1: I(m1), 1), F(X: 1(m2), &), F(Xa: 1(4), 54)) ~ G (-5 0), )
respectively, where C3(+; @) is a trivariate 1-truncated D-vine
copula with dependence parameter vector @ = (01, 6,4 ). It has
2 parametric bivariate copulas C(+; 0}, ) and C(-; 6,4) that link
X; with X, and X, with Xy, respectively, in the first level of the
vine and independence copulas in all the remaining levels of the

vine (truncated after the first level). Consequently, the joint like-
lihood of the models in (7) and (9) has the reduced form

L(Trl’ T, 7T37 7T4, 7T51 811 821 549 0) =

N
1_[ / g()’illv}’ilm,)’mh Yioos Yi++> P11, P10, P(n)
i=1 Y [0,1

c(ur, up; O12)c(ua, ug; 0r4)duydupduy, (10)

where pj are as in (8) with x, :F_l(ut; l(JTt),(St), t =
1,2, 4.

After determining the random effects, we incorporate both
normal and beta margins along with copulas with lower or up-
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TABLE 3 Akaike’s information criterion (AIC) and the Bayesian information criterion (BIC) from all the
fitted random effects models. We refer to models with 1 random effect X; as submodel A.t,, with 2 random
effects (X, X, : 1 <t; <t <S§) as submodel B.s, s = 1, ..., 10, with 3 random effects (X;,, X,,, X,
1<t <t <t3 <S5)assubmodel C.s, with 4 random effects (X;,, X;,, Xp,, Xp, : 1 <t <ty <t3 <ty <
5) as submodel D.t, and with the all § random effects (X;, X5, X3, X4, X5 ) in (1) and (4) as model E. The

selected model, that is, the model with the smallest information criteria, is boldfaced.

Random effects models —L AIC BIC

Al1(X) 9792.93 19597.86 19596.49
A2 (%) 10199.53 20411.06 20409.69
A3(X5) 10388.13 20788.27 20786.89
A4 (X4) 10295.68 20603.37 20601.99
AS(X5) 10213.40 20438.79 20437.42
B.1 (X, Xz) 9259.70 18535.40 18533.57
B.2 (Xl s X3) 9539.64 19095.27 19093.44
B.3 (X, X,) 9539.34 19094.69 19092.85
B4 (X, Xs) 9259.19 18534.38 18532.55
B.5 (X5, X3) 9430.84 18877.68 18875.85
B.6 (X;, X4) 10037.44 20090.87 20089.04
B.7 (Xz, Xs) 9722.67 19461.34 19459.50
B.8 (X3, X,) 10072.07 20160.13 20158.30
B9 (X5, Xs) 10081.92 20179.84 20178.00
B.10 (X4, X5) 9332.84 18681.68 18679.85
C1 (X1, Xo, X3) 9066.02 18152.05 18149.76
C2 (X1, X5, Xy) 9056.26 18132.53 18130.24
C3 (X1, X,, X5) 9254.62 18529.24 18526.95
C4 (XI , X, X4) 9538.83 19097.66 19095.37
C.5 (X, X3, Xs) 9060.31 18140.62 18138.33
C.6 (X1, X4 Xs) 9062.52 18145.03 18142.74
C.7 (X, X3, X3) 9200.49 18420.98 18418.69
C8 (X, X3, XS) 9340.18 18700.36 18698.07
C9 (X, X4, Xs) 9198.71 18417.41 18415.12
C.10 (X3, Xy, Xs) 9258.81 18537.62 18535.33
D.1 (X1, X, X3, X3) 9056.94 18137.87 18135.12
D2 (X1, X, X3, Xs) 9090.45 18204.91 18202.16
D.3 (Xl, X5, X4, Xs) 9055.70 18135.40 18132.65
D4 (X, X3, Xa, Xs) 9064.27 18152.54 18149.79
D.5 (%, X3, Xu, Xs) 9076.88 18177.76 18175.01
E (X1, X5, X3, X4, X5) 9053.22 18134.44 18131.23

X, : random effect for the prevalence; X;: random effect for the sensitivity of the Pap test; X3: random effect for the sensitivity of the
histology test; X;: random effect for the specificity of the Pap test; Xs: random effect for the specificity of the histology test.

per tail dependence necessary to account for more probabil-
ity in one or both joint tails. We fit the trivariate 1-truncated
D-vine copula mixed model for all different pair copulas and
univariate marginal distributions. We use the decomposition of
the vine copula density in (5), as different decompositions lead
to similar results as long as the “best” permutation for D-vines
consists of choosing and connecting the most dependent pairs
(Nikoloulopoulos et al., 2012). This is the pair (X;, X;) of the
Pap test. In our general statistical model, there are no constraints
in the choices of the parametric marginal or pair-copula distri-
butions. This is one of the limitations of the GLMM where all
the pair copulas are BVN and marginal distributions are nor-
mal. However, for ease of interpretation, we do not mix pair-
copulas or margins. To make it easier to compare strengths of
dependence, we convert the BVN, Frank, and rotated Clayton
estimated copula parameters to Kendall’s s in (—1, 1) via the
relations in Joe (2014, Chapter 4).

Because the number of parameters is the same between the
models after fixing the number of random effects, we can use the
log-likelihood at the ML estimates as a rough diagnostic mea-

sure for model selection between the models. For vine copulas,
Dissmann et al. (2013) found that pair-copula selection based on
likelihood seems to be better than even using bivariate goodness-
of-fit tests. The goodness-of-fit procedures involve a global dis-
tance measure between the model-based and empirical distri-
bution; hence, they might not be sensitive to tail behaviors and
are not diagnostic in the sense of suggesting improved paramet-
ric models in the case of small p-values (Joe, 2014, page 254).
A larger likelihood value indicates a model that better approxi-
mates both the dependence structure of the data and the strength
of dependence in the tails.

The results from fitting the trivariate 1-truncated D-vine cop-
ula mixed models with normal and beta margins are given in Ta-
ble 4. The log-likelihoods showed that a trivariate 1-truncated
D-vine copula mixed model with beta margins and

Clayton rotated by 180° if T > 0

Cln{180°, 2707} = : Clayton rotated by270° if T < 0

bivariate copulas provides the best fit. As a result, the estimate of
overall disease prevalence is 0.588 (95% CI: 0.519-0.653), and
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TABLE 4 Maximized log-likelihoods, estimates and standard errors (SE) of the trivariate 1-truncated D-vine copula mixed models with normal
and beta margins which include random effects for the prevalence X, sensitivity X, and specificity X4 of the Pap test, and fixed effects for the
sensitivity 773 and specificity 775 of the histology test (reference test).

BVN Frank CIn{0°,90°} CIn{0°,270°} CIn{180°,90°} CIn{180°,270°}

Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE
Normal margins
Ty 0.629 0.055 0.622 0.054 0.618 0.085 0.578 0.046 0.629 0.056 0.631 0.055
T 0.646 0.047 0.640 0.046 0.635 0.050 0.690 0.046 0.644 0.048 0.653 0.054
T3 0904  0.015 0.901 0.014 0.893 0.013 0.906 0.014 0.904 0.015 0.902 0.014
Ty 0.836 0.034 0.846 0.033 0.856 0.031 0.825 0.033 0.835 0.037 0.843 0.037
s 0.988 0.015 0.985 0.015 0.980 0.012 0.963 0.011 0.989 0.014 0.987 0.015
o, 1.506 0.158 1.535 0.184 1.540 0.216 1.439 0.152 1.500 0.157 1.513 0.157
0y 1.359 0.151 1.357 0.151 1.438 0.165 1.435 0.164 1.398 0.159 1.341 0.164
04 1.347 0.185 1.372 0.192 1.393 0.200 1.325 0.177 1.353 0.188 1.341 0.185
T 0.073 0.103 0.059 0.105 0.000 0.113 0.000 0.115 0.105 0.086 0.099 0.081
Ty —0.327 0.113 —0.328 0.112 —0.245 0.092 —0.262 0.093 —0.271 0.146 —0.291 0.227
—L 9056.26 9056.27 9058.19 9057.92 9056.96 9055.35
Beta margins
Ty 0.588 0.034 0.588 0.035 0.588 0.034 0.586 0.036 0.588 0.034 0.588 0.034
Ty 0.607 0.035 0.605 0.034 0.606 0.036 0.616 0.035 0.604 0.035 0.610 0.036
T3 0.901 0.015 0.898 0.014 0.900 0.015 0.898 0.014 0.903 0.015 0.901 0.014
Ty 0.776 0.032 0.785 0.031 0.773 0.034 0.782 0.031 0.771 0.033 0.781 0.031
s 0.987 0.017 0.984 0.016 0.986 0.016 0.976 0.012 0.990 0.015 0.987 0.016
Y1 0.291 0.034 0.294 0.034 0.292 0.034 0.302 0.033 0.287 0.034 0.290 0.033
V2 0.246 0.036 0.245 0.035 0.255 0.036 0.253 0.037 0.251 0.035 0.244 0.036
Va 0.197 0.039 0.198 0.040 0.205 0.042 0.195 0.039 0204  0.041 0.190 0.037
T12 0.061 0.105 0.054 0.103 0.011 0.102 0.000 0.101 0.105 0.093 0.101 0.092
Ty — 0312 0.117 —0.309 0.111 —0.277 0.153 —0.275 0.097 —0.288 0.133 —0.293 0.135
—L 9056.23 9056.02 9057.33 9055.98 9056.62 9055.25

Clayton rotated by w] if 7 >0

The resulting model with normal margins and BVN copulas is the trivariate GLMM; Cln{w{, w5} = { Clayton rotated byw; if 7 <O0.

the overall sensitivity and specificity for the Pap test are esti-
mated as 0.61 (95% CI: 0.537-0.678) and 0.781 (95% CI: 0.713-
0.836), respectively. The overall sensitivity and specificity for
the histology test are estimated as 0.901 (95% CI: 0.869-0.925
) and 0.987 (95% CI: 0.869-0.999), respectively. Furthermore,
the covariance between the latent sensitivity and specificity for
the Pap test is estimated to be negative, as would be expected
due to the trade-off between sensitivity and specificity when the
cutoff value varies across studies. In contrast, in the trivariate
GLMM, the estimate of overall disease prevalence is 0.629 (95%
CI:0.516-0.730), the estimated overall sensitivity and specificity
for the Pap test are 0.646 (95% CI: 0.550-0.732) and 0.836 (95%
CI: 0.758-0.893), and that for the histology test are 0.904 (95%
CI:0.872-0.929) and 0.988 (95% CI: 0.871-0.999), respectively.
Note that the logit transformation and the delta method are used
to construct the confidence intervals with input the results from
Table 4.

It is revealed that a 1-truncated D-vine copula mixed model
with the vector of probabilities of each combination of tests re-
sults on the original scale provides better fit than the GLMM,
which models the vector of probabilities of each combination
of tests results on a transformed scale. The improvement over
the GLMM is small in terms of the likelihood principle, but for a
sample size such as N = 59, —9055.22 — (—9056.26) = 1.04
units log-likelihood difference is sufficient.

The fact that the best-fitting bivariate copula that links the la-
tent sensitivity and specificity of the Pap test is Clayton rotated
by 270° reveals that there exists negative lower-upper tail depen-
dence among the latent sensitivity and specificity. It is also appar-
ent that the estimates of the meta-analytic parameters of interest
from the 1-truncated D-vine copula mixed models with normal
margins differentiate from the ones with beta margins. For exam-
ple, the resultant meta-analytic estimate of the sensitivity of the
Pap test ranges from 0.635 to 0.653 (normal margins) and from
0.604 t0 0.610 (beta margins). Thisis consistent with the simula-
tion results and conclusions in the upcoming section. The main
parameters of interest, that is, the meta-analytic parameters of
sensitivity and specificity of the Pap test, are biased when the uni-
variate random effects are misspecified. Our general model can
allow both normal and beta margins, that is, it is not restricted to
normal margins as the GLMM.

S SIMULATION STUDIES

An extensive simulation study was conducted to (1) examine
the reliability of using the all possible random effects procedure
based on information criteria to select the random effects, (2)
gauge the small-sample efficiency of the proposed estimation
method and investigate the misspecification of either the para-
metric margin or bivariate copula of the random effects distri-
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bution, and (3) examine the reliability of using the likelihood to
select the correct bivariate copula and margin.

In our simulations, we set the sample size, random effects,
and the true univariate and dependence parameters to mimic
the data on N = 59 studies from the meta-analysis of the Pap
test that diagnoses cervical neoplasia in the preceding section.
We use the following simulation process to generate data from
the selected submodel C.2 in the preceding section, that is, the
trivariate 1-truncated D-vine copula mixed model with random
prevalence, sensitivity, and specificity of the index test and fixed
sensitivity and specificity of the reference test:

(1) Simulate (uy, us, us) from a 3-variate 1-truncated D-
vine distribution C; (+; 6).

(2) Convert to normal or beta realizations via x =
PV E (e 1(me), &), t = 1,2, 4.

(3) Simulate the study size n from a shifted gamma distri-
bution with shape of 1.2, rate of 0.01, and shift of 30 to
obtain heterogeneous study sizes (Paul et al,, 2010), and
round off n to the nearest integers.

(4) Draw (yillvinaniOhyiOO) from
M4(”a P115 pP1os Pois Poo); where P11, P1os po1 are

calculated as in (8).

Findings on the reliability of the all possible random effects
procedure based on information criteria are given in Web Tab
le 1. We simulate from a trivariate 1-truncated D-vine copula
model with CIn{180°,270°} copulas and normal or beta mar-
gins. The table presents the number of times each random effects
model was chosen over 100 simulation runs and reveals our ap-
proach has a good probability of selecting the “true” submodel
C.2. Note that the AIC tends to choose the submodel D.3 more
often than BIC does because AIC is more likely to result in an
overparameterized model.

Representative summaries of findings on the performance of
the ML method in Section 3.3 are given in Web Tables 2 and
3 for trivariate 1-truncated D-vine copula mixed models with
normal and beta margins. The true (simulated) bivariate copu-
las are the CIn{180°,270°}. We have estimated the 1-truncated
D-vine copula mixed model with different bivariate copulas and
margins. To make it easier to compare strengths of dependence
among different copulas, we convert from the BVN, Frank, and
(rotated) Clayton 6’s to T’s via the relations in Joe (2014, Chap-
ter4). Web Tables 2 and 3 contain the resultant biases, root mean
square errors (RMSEs), and standard deviations (SDs), along
with average standard errors (ASEs) for the MLEs under dif-
terent copula choices and margins. The standard errors of the
MLEs are obtained via the gradients and the Hessian that were
computed numerically during the maximization process.

Conclusions from the values in Web Tables 2 and 3 are the fol-
lowing:

(1) ML with the true 1-truncated D-vine copula mixed
model is highly efficient according to the simulated bi-
ases, SDs and RMSEs.

(2) The MLEs of the random effects are not robust to
margin misspecification, for example, in Web Table 2

(Web Table 3), where the true univariate margins are
normal (beta), the biases for the MLEs of 774 for the var-
ious copula mixed models with beta (normal) margins
range from —0.06 (0.056) to —0.052 (0.063).

(3) The MLEs of the random effects are rather robust to bi-
variate copula misspecification, but their biases increase
when the assumed bivariate copulas have different tail
dependence behavior. For example, in Web Table 2 (We
b Table 3), the biases for the MLEs of 7, for the var-
ious copula mixed models with normal (beta) margins
increase to 0.027 (0.017) when rotated Clayton copulas
with opposite direction tail dependence are called.

(4) The MLEs of the variabilities of the random effects are
rather robust to bivariate copula misspecification, but
their biases increase when the assumed bivariate copula
has tail dependence of opposite direction from the true
bivariate copula. For example, in Web Table 2, the bias
for the MLE of o4 is —0.006, but it increases to 0.111
when rotated Clayton copulas with opposite direction
tail dependence are called.

(5) The ML estimates of T’s are robust to margin misspeci-
fication, as the copula remains invariant under any series
of strictly increasing transformations of the components
of the random vector, for example, in Web Table 2, the
bias of T4 is —0.001 for the true 1-factor copula mixed
model and 0.004 for a 1-factor copula mixed model with
the true bivariate copulas but beta margins.

Finally, Web Table 4 presents the number of times each fitted
model was chosen over the 10 000 simulation runs and reveals
the true (simulated) model has been chosen for a considerable
large number of times.

6 DISCUSSION

We have proposed a 1-truncated D-vine copula mixed model for
meta-analysis of the accuracy of 2 diagnostic tests without a gold
standard. Our model generalizes the GLMM proposed by Chu
etal. (2009), which as we have shown, might lead to biased esti-
mates of the meta-analytic parameters of interest. The improve-
ment over the GLMM is due to the expression of the random
effects distribution using a vine copula. This allows for flexible
dependence modeling, which is different from assuming simple
linear correlation structures and normality. The strength of mul-
tivariate meta-analysis approaches using copulas has been high-
lighted in the literature by Jackson and White (2018) and Jack-
son et al. (2020). The 1-truncated D-vine copula mixed model
enables independent selection of parametric bivariate copulas
and univariate margins from different parametric families. Con-
sequently, the latent probabilities for each combination of test
results can be modeled on the original proportions scale and can
exhibit tail dependence.

We have developed an efficient ML estimation technique
based on dependent Gauss-Legendre quadrature points, using a
1-truncated D-vine copula distribution. We utilized the concept
of a truncated at level 1 D-vine copula, resulting in a significant
reduction of the dependence parameters. This is highly useful for
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estimating purposes, especially considering the typically small
sample sizes in meta-analyses of diagnostic test accuracy studies.
Chu et al. (2009) and Liu et al. (2015) estimated the GLMM
using SAS PROC NLMIXED and acknowledged that optimiz-
ing the likelihood when random effects are allowed for both in-
dex and reference tests is non-trivial because it involves calculat-
ing S-dimensional integrals numerically. Our numerical method,
which is based on dependent Gauss-Legendre quadrature points
that have a 1-truncated D-vine copula distribution, successively
computes the S-dimensional integrals in quintuple sums over
the dependent quadrature points and weights. Nevertheless, in
practice, the complexity of the models that should be consid-
ered depends on the number of studies in the meta-analysis and
the degree of heterogeneity of the studies. Too many random
effects with insufficient data would typically imply near non-
identifiability (flat log-likelihood). We have not come across data
sets with the need for more than 3 random effects, that is, sub-
models with fewer random effects should be considered, as done
in the data analysis in Section 4.

Building on the basic model proposed in this paper, there
are several extensions that can be implemented. Similarly to
Wang et al. (2023), who proposed a GLMM that can incorpo-
rate study-level covariates, the 1-truncated D-vine copula mixed
model can also easily incorporate study-level covariates. Further-
more, as in this article, similarly to Liu et al. (2015), we did not
consider the situation where the 2 tests may be conditional de-
pendent given the latent disease status and study-specific ran-
dom effects. Further research is needed for extensions of the pro-
posed model under such conditional dependence.
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