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a b s t r a c t

In phylogenetics and other areas of classification, the Buneman graph is commonly used
to represent a collection of bipartitions or splits of a (finite) set X in order to display
evolutionary relationships. The set X usually corresponds to a set of taxa (or species),
and the splits are usually derived from molecular sequence data associated to the taxa.
One issue with this approach is that missing molecular data can lead to bipartitions of
subsets of X or partial splits, instead of splits of the full set X . In this paper, we show
that the definition of the Buneman graph can be naturally extended to collections of
partial splits of a set X . Just as with splits, we show that the graph so obtained is an
X-labeled median graph but, in contrast to the usual Buneman graph, the elements in
X are represented by convex subsets of the vertex set of the graph instead of single
vertices. We also show that the Buneman graph for a collection of partial splits is closely
related to subtree distances. In particular, for a collection S of weighted partial splits
that satisfies a certain pairwise compatibility condition, we show that the corresponding
edge-weighted Buneman graph is the unique minimal tree that represents the subtree
distance d corresponding to S. Moreover, we show that in this special situation the
Buneman graph can also be considered as a type of configuration space for the set of
all tree-metrics that minimally extend the subtree distance d.
© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

1. Introduction

In phylogenetics, evolutionary relationships can be represented by a certain type of undirected graph that was
ntroduced by Barthélemy [7] under the name of a median graph with latent vertices. This graph is also commonly known
as the Buneman graph [13] since, as mentioned in [7,13], one way in which it can be constructed is as an extension of
a method for reconstructing phylogenetic trees presented in [10]. One of the main applications of Buneman graphs is to
nalyze mitochondrial DNA data [6], in which setting they are also known as median networks. This is because they are

examples of median graphs, an important class of graphs that has applications in areas such as lattices, concurrency theory
and cubical complexes (see e.g. [3] and [17, Chapter 12] for reviews of median graphs and some of their applications). The
key difference between Buneman graphs and median graphs is that a subset of their vertices is labeled by some underlying
(finite) set X (corresponding, for example, to a collection of species or individuals), which allows the interrelationships
between the elements in X to be displayed graphically.

One way in which a Buneman graph can be constructed is as follows: Starting with a set of species X , a collection S
of bipartitions or splits S = {A, B} of X (i.e. A ∪ B = X and A ∩ B = ∅) is derived, for example, from the columns of an
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Fig. 1. (a) The Buneman graph B(S) for the collection S of splits S1 = {{a}, {b, c, d, e}} S2 = {{a, b}, {c, d, e}}, S3 = {{a, b, e}, {c, d}} and
S4 = {{a, d, e}, {b, c}} of the set X = {a, b, c, d, e}. The edges in E(S4) are drawn bold. We have ψ(S1) = ψ ′(S1) = {b, c, d, e}, ψ(S2) = {a, b} ̸ =
{c, d, e} = ψ ′(S2), ψ(S3) = ψ ′(S3) = {a, b, e} and ψ(S4) = {a, d, e} ̸ = {b, c} = ψ ′(S4), implying that {ψ , ψ ′

} is not an edge. In contrast, ψ ′(Si) ̸ = φe(Si)
precisely for i = 4, implying that {ψ ′, φe} is an edge. (b) The Buneman graph B(S) for the collection S of partial splits {{x}, X − {x}} for x ∈ {a, d, e, f },
{{a}, {c, d, e, f }}, {{a, b, f }, {d, e}} and S = {{a, e, f }, {b, d}} of X = {a, b, c, d, e, f }. For each x ∈ X the convex set W (x) is enclosed by a gray line. The
bold edges represent the partial split S.

alignment of molecular sequences sampled from the species in X [6]. Let P(X) denote the power set of X . The Buneman
raph B(S) associated to S is defined to be the graph whose vertex set consists of those maps φ : S → P(X) that satisfy

(i) φ(S) ∈ S for all S ∈ S , and
(ii) φ(S) ∩ φ(S ′) ̸ = ∅ for all S, S ′

∈ S ,

and whose edge set consists of those pairs {φ , φ′
} for which there is precisely one split S in S with φ(S) ̸ = φ′(S). Intuitively,

ondition (i) implies that B(S) is a subgraph of a hypercube and Condition (ii) tells us which vertices of the hypercube
re actually used. For example, in Fig. 1(a) we depict a collection of splits and its Buneman graph. Note that the set X is
mbedded in B(S), by associating to each x ∈ X the map φx : S → P(X) which is defined by putting φx(S) to be the set in S
hat contains x. We clearly have x ∈ φx(S)∩φx(S ′) for all S, S ′

∈ S , implying (ii). But not all maps φ : S → P(X) satisfy (ii).
or the collection of splits in Fig. 1(a), for example, we obtain such a map φ by putting φ(S1) = {a}, φ(S2) = {a, b},
(S3) = {c, d} and φ(S4) = {b, c}, for which φ(S2) ∩ φ(S3) = ∅.
The Buneman graph B(S) enjoys several nice properties (for reviews, see e.g. [14, Chapter 4] and [30, Section 3.8]). For

xample, it is a tree (or, more specifically, an X-tree) precisely if every pair of splits in S satisfies a certain compatibility
condition [10] (see also Section 6). Moreover, B(S) represents the underlying collection S of splits as follows: For each
plit S = {A, B} ∈ S , consider the set E(S) of those edges {φ , φ′

} of B(S) with φ(S) ̸ = φ′(S). Then the removal of E(S)
from B(S) gives rise to two connected components, one containing the vertices φx for x ∈ A and the other containing the
vertices φx for x ∈ B (see Fig. 1(a)).

One problem with using this approach for real data sets is that molecular sequence data sometimes gives rise to partial
splits S = {A, B} of X , that is, we still have A∩B = ∅ but need not have A∪B = X (for clarity, if we require A∪B = X from
now on we will say that S is a full split of X) (see e.g. [21,29]). Thus it is of interest to find an analogue of the construction
of the usual Buneman graph outlined above that can be used for collections of partial splits. In this paper, we show that
or any collection S of partial splits we can still define the Buneman graph B(S) and that it has similar properties as the
sual Buneman graph (e.g. it is a median graph). In particular our definition of B(S) yields the usual Buneman graph if all
plits in S are full splits of X .
In Fig. 1(b) we give an example of the Buneman graph B(S) for a collection S of partial splits. Interestingly, as we

hall see, in the Buneman graph B(S) the elements x ∈ X are no longer necessarily represented by single vertices but
nstead by a non-empty convex set W (x) of vertices (convexity is formally defined in Section 3). Moreover, each partial
plit S = {A, B} ∈ S is still represented by a set E(S) of edges, the difference being that the removal of E(S) from B(S)
now gives rise to two connected components, one containing the sets W (x) for x ∈ A, the other containing the sets W (x)
for x ∈ B and all sets W (x) for x ∈ X − (A ∪ B) having a non-empty intersection with both connected components. This
is illustrated in Fig. 1(b), which also shows that we may have W (x) ∩ W (x′) ̸ = ∅ for two distinct x, x′

∈ X and that there
may exist vertices in B(S) that are not contained in the set W (x) for any x ∈ X . We note that our construction of B(S) was
motivated by results of Hirai in [18] concerning subtree distances, and, as we shall see, there are several close connections
ith Hirai’s results.
The rest of this paper is structured as follows. In Section 2, we formally define the Buneman graph B(S) for a collection

S of partial splits and establish some of its basic properties. In Section 3, we present some useful results concerning certain
convex sets of vertices in B(S). Then, after defining the convex sets W (x) mentioned above, we employ these results to
show that for a collection S of partial splits on X , the distance on X given by these convex sets relative to B(S) is precisely
the distance on X that is naturally induced by S (Theorem 4.5). In Section 5, we shed some light on how the combinatorial
roperties of the partial splits in S influence the size and the structure of B(S). In Section 6, we give a characterization for
hen the Buneman graph B(S) is a tree (Theorem 6.3). In Section 7, we present a relationship between Buneman graphs

and subtree distances (Theorem 7.1). In Section 8, in case the Buneman graph for a given collection S of (weighted)
artial splits on X is a tree, we show that it can be considered as a type of configuration space of all those X-trees
hose underlying collection of full splits is a certain type of extension of S (Corollary 8.4). We conclude in Section 9 with

mentioning some potential directions for future work.
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2. Basic properties of the Buneman graph for partial splits

In this section, we shall show that, as with collections of full splits, the Buneman graph for a collection of partial
plits is a median graph. To do this, we begin by presenting some basic terminology for partial splits and for distances
orresponding to collections of partial splits.
Let X be a finite, non-empty set. As informally introduced in the introduction, a partial split of X is an unordered pair

A, B} with A, B ⊆ X , A, B ̸ = ∅ and A ∩ B = ∅. We denote such an unordered pair by A|B. For a partial split S = A|B of
we define Sc = X − (A ∪ B), Ac

S = B and Bc
S = A. If S is clear from the context we omit the subscript in the latter two

xpressions and just write Ac and Bc , respectively. A split system1 on X is a non-empty set S of partial splits of X .

Example 2.1. The partial splits

Si = {xi}|X − {xi} for 1 ≤ i ≤ 5 S7 = {x1, x2, x5, x6}|{x3, x4}
S6 = {x1, x2}|{x3, x4, x5, x7} S8 = {x1, x2, x3, x6}|{x4, x5}

of X = {x1, . . . , x7} form the split system S = {S1, . . . , S8} on X .

A distance on X is a map d : X × X → R≥0 with d(x, y) = d(y, x) and d(x, x) = 0 for all x, y ∈ X . A distance d on X is
a metric if, in addition, d(x, z) ≤ d(x, y) + d(y, z) holds for all x, y, z ∈ X . We write d1 ≤ d2 for distances d1 and d2 on X
f d1(x, y) ≤ d2(x, y) for all x, y ∈ X . For a partial split S = A|B of X , we define the distance dS : X × X → {0, 1} on X by
putting

dS(x, y) = |A ∩ {x, y}| · |B ∩ {x, y}|

for all x, y ∈ X . In addition, for a split system S on X , we define the distance dS : X × X → N by putting dS =
∑

S∈S dS .

Example 2.2. For the split system S on X = {x1, . . . , x7} in Example 2.1 we obtain dS6 (x1, x7) = 1, dS7 (x1, x7) = 0 and
S(x1, x7) = 2.

The following concepts were introduced in [18, p. 113]. Two distinct partial splits S1 and S2 of X are compatible if
here is some A1 ∈ S1 and some A2 ∈ S2 such that A1 ⊆ Ac

2 and A2 ⊆ Ac
1. Note that if such sets A1 and A2 exist then

they are unique and we put N(S1, S2) = N(S2, S1) = {A1, A2}. Otherwise we say that S1 and S2 are incompatible and put
N(S1, S2) = N(S2, S1) = ∅.

For a finite set M , let P(M) denote the power set of M . Given a split system S on X , a map φ : S → P(X) is an S-map
f φ(S) ∈ S for all S ∈ S. We let V ∗(S) denote the set of S-maps and for φ , φ′

∈ V ∗(S) we put

∆(φ , φ′) = {S ∈ S : φ(S) ̸ = φ′(S)}.

The graph B∗(S) with vertex set V ∗(S) and edge set consisting of those pairs {φ , φ′
} of S-maps with |∆(φ , φ′)| = 1

is isomorphic to a hypercube of dimension |S|. We define the Buneman graph B(S) (of S) to be the subgraph of B∗(S)
induced on the set V (S) ⊆ V ∗(S) consisting of those S-maps φ that satisfy the following condition:

BG) For all S, S ′
∈ S with S ̸ = S ′, we have {φ(S), φ(S ′)} ̸ = N(S, S ′).

In the remainder of the paper, slightly abusing notation, we just use B(S) again to denote the Buneman graph for any
plit system S.

Example 2.3. We consider again the split system S on X = {x1, . . . , x7} in Example 2.1. It can be checked that the
artial splits Si and Sj, 1 ≤ i < j ≤ 8, are compatible, except for S7 and S8 which are incompatible. The set V (S)
onsists of the S-maps given in the appendix. To illustrate Condition (BG), consider the splits S6 and S7, for which we
ave N(S6, S7) = {{x1, x2}, {x3, x4}}. This excludes all S-maps φ with φ(S6) = {x1, x2} and φ(S7) = {x3, x4} from V (S). As

can be seen for the S-map φ3 contained in V (S), we have {φ3(S6), φ3(S7)} = {{x1, x2}, {x1, x2, x5, x6}} ̸ = N(S6, S7). The
resulting Buneman graph B(S) is shown in Fig. 2. We will return to this example in Example 4.1.

Condition (BG) plays a role similar to condition (ii) stated in the introduction for full splits in that it filters vertices
from the hypercube B∗(S) to obtain a connected graph which represents the partial splits as described in Fig. 1(b). The
ext lemma makes this more precise.

Lemma 2.4. Let S be a split system consisting of full splits of X, and let φ be an S-map. Then Condition (ii) given in the
ntroduction is equivalent to Condition (BG).

1 We caution the reader that in the literature the term split system usually refers to a collection of full splits. Here, the splits in a split system
ay (but need not) be full. If we require the splits in a split system to be full we will always explicitly say so.
30
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Fig. 2. The Buneman graph B(S) with the vertex set V (S) = {φ1, . . . , φ10} given in Example 2.3.

Proof. Let S = A|B and S ′
= A′

|B′ be two distinct full splits of X . Then the definition of compatibility of two partial splits
given above is equivalent to the condition that precisely one of the four intersections

A ∩ A′, A ∩ B′, B ∩ A′, B ∩ B′ (1)

is empty and the two sets involved in this empty intersection are those contained in N(S, S ′). Hence, S and S ′ are
ncompatible if and only if all four intersections in (1) are non-empty.

Now assume that φ satisfies (BG). Let S, S ′
∈ S. If S = S ′ then we clearly have φ(S) ∩ φ(S ′) ̸ = ∅. Assume S ̸ = S ′. If S

and S ′ are incompatible then φ(S)∩φ(S ′) ̸ = ∅ since all four intersections in (1) are non-empty. If S and S ′ are compatible
hen {φ(S), φ(S ′)} ̸ = N(S, S ′) implies φ(S) ∩ φ(S ′) ̸ = ∅. In summary, φ(S) ∩ φ(S ′) ̸ = ∅ for all S, S ′

∈ S , as required.
Next assume that φ satisfies (i). Let S, S ′

∈ S with S ̸ = S ′. If S and S ′ are incompatible, we clearly have {φ(S), φ(S ′)} ̸ =
∅ = N(S, S ′). If S and S ′ are compatible, then N(S, S ′) consists of two disjoint subsets of X while, by (ii), φ(S)∩ φ(S ′) ̸ = ∅.
Hence, for all S, S ′

∈ S with S ̸ = S ′ we have {φ(S), φ(S ′)} ̸ = N(S, S ′), as required. □

Note that if S, S ′
∈ S , S ̸ = S ′, are incompatible then N(S, S ′) = ∅ ̸ = {φ(S), φ(S ′)} for all φ ∈ V ∗(S). Thus,

(S, S ′) = {φ(S), φ(S ′)} for some φ ∈ V ∗(S) can only hold if the partial splits S and S ′ are compatible. The next lemma
follows immediately from the definitions above.

Lemma 2.5. Let S be a split system on X, φ ∈ V ∗(S) and S, T ∈ S , S ̸ = T . Then the following statements are equivalent:

(a) S and T are compatible with N(S, T ) = {φ(S), φ(T )c}.
(b) φ(S) ⊆ φ(T ) and φ(T )c ⊆ φ(S)c .
(c) φ(S) ⊆ φ(T ) and Sc ∩ φ(T )c = ∅.

The next technical lemma implies that V (S) is always non-empty, and it will be used in Section 4. For a partial split
= A|B of X and x ∈ X , we put S(x) = A if x ∈ A, S(x) = B if x ∈ B and S(x) = ∅ otherwise.

Lemma 2.6. Let S be a split system on X. Then, for all x ∈ X, there exists some φ ∈ V (S) with x ∈ φ(S) ∪ Sc for all S ∈ S .

Proof. Consider x ∈ X and put x0 = x, S0 = {S ∈ S : S(x) ̸ = ∅} and R0 = {S ∈ S : S(x) = ∅}. For i ≥ 1, if Ri−1 ̸ = ∅, we
select xi ∈ X such that there exists at least one S ∈ Ri−1 with S(xi) ̸ = ∅. In addition, we put Si = {S ∈ Ri−1 : S(xi) ̸ = ∅}

and Ri = {S ∈ Ri−1 : S(xi) = ∅}. Let k ∈ N be such that Rk = ∅. Note that k is well-defined and Ri ̸ = ∅ for 0 ≤ i < k.
Moreover, the sets Si, 0 ≤ i ≤ k, are pairwise disjoint and

⋃k
i=0 Si = S , but S0 may be empty.

Define φ ∈ V ∗(S) by putting φ(S) = S(xi) for all S ∈ Si, 0 ≤ i ≤ k. By construction, we have x ∈ φ(S) ∪ Sc for all
S ∈ S. Thus, it remains to show that φ ∈ V (S). Consider two splits S, T ∈ S , S ̸ = T , such that S and T are compatible.
If there exists some 0 ≤ i ≤ k with S, T ∈ Si then, by construction, xi ∈ φ(S) ∩ φ(T ), implying φ(S) ∩ φ(T ) ̸ = ∅ and,
thus, {φ(S), φ(T )} ̸ = N(S, T ). Otherwise, there exist, without loss of generality, 0 ≤ i < j ≤ k with S ∈ Si and T ∈ Sj,
implying that S(xi) = φ(S) ̸ ⊆ φ(T ) and S(xi) = φ(S) ̸ ⊆ φ(T )c since, by construction, T (xi) = ∅. But then we cannot have
{φ(S), φ(T )} = N(S, T ) since, by the definition of N(S, T ), this would imply φ(S) ⊆ φ(T )c and φ(T ) ⊆ φ(S)c . Thus, we also
have {φ(S), φ(T )} ̸ = N(S, T ) in this case, implying that φ ∈ V (S), as required. □

Now we prove an analogue of [30, Lemma 3.8.2].

Lemma 2.7. Let S be a split system on X, φ ∈ V (S) and T ∈ S . Define a map φ′
∈ V ∗(S) by setting φ′(S) = φ(S) for all

S ̸ = T and φ′(T ) = φ(T )c . Then φ′
∈ V (S) if and only if, for all S ∈ S , φ(S) ⊆ φ(T ) and Sc ∩ φ(T )c = ∅ implies S = T .
31
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Proof. Assume that there is some S ∈ S , S ̸ = T , such that φ(S) ⊆ φ(T ) and Sc∩φ(T )c = ∅. By Lemma 2.5, this is equivalent
to the existence of some S ∈ S , S ̸ = T , such that S and T are compatible with N(S, T ) = {φ(S), φ(T )c} = {φ′(S), φ′(T )}. In
view of (BG), this is equivalent to φ′

̸ ∈ V (S). □

For a graph G we denote by dG(u, v) the length of a shortest path in G from vertex u to vertex v. A subgraph H
of G is an isometric subgraph if dH (u, v) = dG(u, v) for all vertices u and v of H . A graph G is a median graph if, for
ll vertices u, v and w of G, there exists a unique vertex m = mG(u, v , w) of G with dG(u, v) = dG(u,m) + dG(m, v),

dG(u, w) = dG(u,m) + dG(m, w) and dG(v , w) = dG(v ,m) + dG(m, w). The vertex mG(u, v , w) is called the median of u, v
nd w in G. Note that, for all split systems S on X , the graph B∗(S), being isomorphic to a hypercube, is a median graph.

More specifically, the median of φ1, φ2, φ3 ∈ V ∗(S) equals the vertex φ ∈ V ∗(S) with |{i ∈ {1, 2, 3} : φi(S) = φ(S)}| ≥ 2
for all S ∈ S . We now prove the main result of this section, which can be regarded as a generalization of [13, (c), p. 330]
see also [7, Thm. 1]).

Theorem 2.8. Let S be a split system on X. Then B(S) is a median graph, embedded as an isometric subgraph of the hypercube
B∗(S).

Proof. We first establish that dB(S)(φ1, φ2) = |∆(φ1, φ2)| for all φ1, φ2 ∈ V (S), which immediately implies that B(S) is
a connected, isometric subgraph of B∗(S). We use induction on k = |∆(φ1, φ2)|. The base case k ∈ {0, 1} holds by the
definition of B(S). So assume that k ≥ 2. Let S ′ denote the set of those S ′

∈ ∆(φ1, φ2) with φ2(S ′) minimal with respect
to set inclusion. Select T ∈ S ′ such that φ2(T )c is maximal with respect to set inclusion. Define φ′

∈ V ∗(S) by putting
φ′(S) = φ2(S) if S ̸ = T and φ′(T ) = φ2(T )c .

We first establish φ′
∈ V (S) using Lemma 2.7. Consider S ∈ S and assume that φ2(S) ⊆ φ2(T ) and Sc ∩φ2(T )c = ∅. Then

e must have S ∈ ∆(φ1, φ2) since otherwise, by Lemma 2.5, S and T are compatible with N(S, T ) = {φ2(S), φ2(T )c} =
φ1(S), φ1(T )}, in contradiction to φ1 ∈ V (S). By the choice of T and Lemma 2.5, S ∈ ∆(φ1, φ2) implies φ2(S) = φ2(T ) and
2(T )c = φ2(S)c and, thus, S = T , as required.
By construction we have |∆(φ1, φ

′)| = k − 1 and obtain

dB(S)(φ1, φ2) ≤ dB(S)(φ1, φ
′) + dB(S)(φ′, φ2) = |∆(φ1, φ

′)| + 1 = |∆(φ1, φ2)|
≤ dB(S)(φ1, φ2),

where the first inequality holds by the triangle inequality of the shortest path metric, the first equality holds by induction
and the last inequality holds since B(S) is a subgraph of B∗(S). This finishes the inductive proof of dB(S)(φ1, φ2) =

∆(φ1, φ2)|.
It remains to show that B(S) is a median graph. By [28, Theorem 5.6], since we have already established that B(S) is

an isometric subgraph of the hypercube B∗(S), it suffices to show that mB∗(S)(φ1, φ2, φ3) ∈ V (S) for all φ1, φ2, φ3 ∈ V (S).
So, consider S, S ′

∈ S , S ̸ = S ′. By the construction of φ = mB∗(S)(φ1, φ2, φ3) we have

{φ(S), φ(S ′)} ∈ {{φ1(S), φ1(S ′)}, {φ2(S), φ2(S ′)}, {φ3(S), φ3(S ′)}}.

Thus, in view of φ1, φ2, φ3 ∈ V (S) we have {φ(S), φ(S ′)} ̸ = N(S, S ′). But this implies φ ∈ V (S), as required. □

3. Convex subsets of V (S)

As mentioned in the introduction, the Buneman graph B(S) of a split system S on X comes naturally equipped with a
ap W which takes each element in X to a subset of the vertex set V (S) of B(S). As we will see in Section 4, a key property

of the subsets that occur as images of the map W is that they are convex. Recall, that a subset C of the vertex set of a
graph G is convex if, for all c, c ′

∈ C , all shortest paths from c to c ′ in G only contain vertices in C . In this section, we shall
resent some results concerning certain special convex subsets of Buneman graphs that will be useful for understanding
he map W , as well as having some independent interest.

The reader who is familiar with median graphs and the concept of gated sets in metric spaces [16] will probably have
no difficulty relating our results in this and the next section to properties that have been well-studied for median graphs,
ome of which are considered as folklore. Even so, since we are considering labeled median graphs, in order to make
his paper self-contained and to help the reader less familiar with median graphs, we will provide proofs for our results
nd use specific references to the literature on median graphs that we found helpful for translating properties of median

graphs to the case of the Buneman graph B(S). As mentioned in the introduction, more details concerning the general
theory of median graphs and their origins can be found in, for example, [3], [8, Sec. 3], and [17, Chapter 12].

We begin by defining some of the convex subsets of interest. Let S be a split system on X , S ∈ S and A ∈ S. We
define V (S, A) = {φ ∈ V (S) : φ(S) = A}. Note that Lemma 2.6 implies that, for all S = A|B ∈ S , the sets V (S, A) and
V (S, B) are both non-empty. Thus, by the definition of an S-map, {V (S, A), V (S, B)} is a bipartition of V (S). Moreover, since
dB(S)(φ1, φ2) = |∆(φ1, φ2)| for all φ1, φ2 ∈ V (S), V (S, A) and V (S, B) are both convex subsets of V (S). In addition, we define

U(S, A) = {φ ∈ V (S, A) : there exists φ′
∈ V (S, B) with ∆(φ , φ′) = {S}}.
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Note that U(S, A) ̸ = ∅. Our notation is inspired by [22, Sec. 2] where, for any two adjacent vertices a and b in a graph
= (V , E), the sets

Wab = {w ∈ V : dG(w , a) < dG(w , b)}
Wba = {w ∈ V : dG(w , b) < dG(w , a)} and
Uab = {u ∈ Wab : u is adjacent to some w ∈ Wba}

are defined. To show that U(S, A) is convex, we use the fact that, for G a median graph, the set Uab is convex [22, Thm. 2.7].

Lemma 3.1. Let S be a split system on X, S ∈ S and A ∈ S. Then U(S, A) is a convex subset of V (S).

Proof. First note that for φ ∈ U(S, A) and φ′
∈ U(S, B) with ∆(φ , φ′) = {S} we have, by definition, that {φ , φ′

} is an edge
of B(S). Thus, by Theorem 2.8, we have

V (S, A) = {φ′′
∈ V (S) : dB(S)(φ′′, φ) < dB(S)(φ′′, φ′)} = Wφ φ′

and, by symmetry, V (S, B) = Wφ′φ . Hence, U(S, A) = Uφ φ′ and, using the fact that B(S) is a median graph, it follows
rom [22, Thm. 2.7] that U(S, A) is a convex subset of V (S). □

We remark that it can be shown that, for any S = A|B ∈ S , the sets V (S, A) and V (S, B) form half-spaces in the median
graph B(S). Then U(S, A) is the boundary of the half-space V (S, A) and it is established in [27] that the boundary of a
alf-space in a median graph is always convex.
We now show how the sets U(S, A) interact with split compatibility.

Lemma 3.2. Let S be a split system on X, S = A|B ∈ S and φ , ψ ∈ U(S, A) with ∆(φ , ψ) = {T }. Then S and T are
ncompatible.

Proof. By the definition of U(S, A) there exist φ′, ψ ′
∈ U(S, B) with {S} = ∆(φ , φ′) and {S} = ∆(ψ , ψ ′). This implies

(φ′, ψ ′) = {T }. Hence, assuming T = C |D, we have

{{φ(S), φ(T )}, {φ′(S), φ′(T )}, {ψ(S), ψ(T )}, {ψ ′(S), ψ ′(T )}}
= {{A, C}, {A,D}, {B, C}, {B,D}}.

Thus, in view of (BG), we must have N(S, T ) = ∅, implying that S and T are incompatible. □

Lemma 3.3. Let S be a split system on X, S = A|B ∈ S and φ ∈ V (S, A). Suppose that φ′
∈ U(S, B) is such that dB(S)(φ , φ′)

is minimum over all φ′
∈ U(S, B) and that φ = φ0, φ1, . . . , φk = φ′, k ≥ 1, is a path in B(S) with k = dB(S)(φ , φ′). Put

∆(φi, φi+1) = {Ti}, 0 ≤ i ≤ k − 1. Then S and Ti are compatible for all 0 ≤ i ≤ k − 2.

Proof. We use induction on k. The base case k = 1 is established by noting that the set {Ti : 0 ≤ i ≤ k − 2} is empty.
Now consider k ≥ 2. By induction, Ti and S = Tk−1 are compatible for all 1 ≤ i ≤ k− 2. It remains to show that T0 and

k−1 are compatible.
First note that if Ti and Tj are compatible for some 0 ≤ i < j ≤ k − 1 then we must have N(Tj, Ti) = {φk(Tj), φk(Ti)c},

since

• N(Tj, Ti) = {φk(Tj), φk(Ti)} cannot hold since φk ∈ V (S),
• N(Tj, Ti) = {φk(Tj)c, φk(Ti)c} = {φi(Tj), φi(Ti)} cannot hold since φi ∈ V (S), and
• N(Tj, Ti) = {φk(Tj)c, φk(Ti)} = {φj(Tj), φj(Ti)} cannot hold since φj ∈ V (S).

Hence, by Lemma 2.5, if Ti and Tj are compatible for some 0 ≤ i < j ≤ k−1 we have φk(Tj) ⊆ φk(Ti) and φk(Ti)c ⊆ φk(Tj)c .
Assume for a contradiction that T0 and Tk−1 are incompatible. Then T0 and Ti, 1 ≤ i ≤ k−2, must also be incompatible

since otherwise we would have

φk(Tk−1) ⊆ φk(Ti) ⊆ φk(T0) and φk(T0)c ⊆ φk(Ti)c ⊆ φk(Tk−1)c,

in contradiction to our assumption that T0 and Tk−1 are incompatible.
Next, we define ψi ∈ V ∗(S), 1 ≤ i ≤ k, by putting ψ1 = φ0 and, for i ≥ 2,

ψi(S ′) =

{
ψi−1(S ′) if S ′

̸ = Ti−1

ψi−1(S ′)c if S ′
= Ti−1.

Note that ψi(S ′) = φi(S ′), 1 ≤ i ≤ k, for all S ′
̸ = T0. We use induction on i to show that ψi ∈ V (S). The base case i = 1

olds in view of ψ1 = φ0 ∈ V (S). Consider i ≥ 2. We need to show that {ψi(S ′), ψi(S ′′)} ̸ = N(S ′, S ′′) for all S ′, S ′′
∈ S ,

′
̸ = S ′′. Indeed,

• for S ′, S ′′
∈ S − {T } we have {ψ (S ′), ψ (S ′′)} = {ψ (S ′), ψ (S ′′)} ̸ = N(S ′, S ′′) since, by induction, ψ ∈ V (S),
i−1 i i i−1 i−1 i−1
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• for S ′
∈ S − {Ti−1, T0} we have {ψi(S ′), ψi(Ti−1)} = {φi(S ′), φi(Ti−1)} ̸ = N(S ′, Ti−1) since φi ∈ V (S), and

• {ψi(T0), ψi(Ti−1)} ̸ = N(T0, Ti−1) since T0 and Ti−1 are incompatible.

This finishes the inductive argument on i.
To finish the inductive argument on k, note that φ = ψ1, ψ2, . . . , ψk is a path in B(S) with ψk ∈ U(S, B) and

B(S)(ψ1, ψk) = |∆(ψ1, ψk)| = k − 1. But this is in contradiction to the choice of φ′. Hence, T0 and Tk−1 = S must be
compatible, as required. □

Lemma 3.4. Let S be a split system on X, S = A|B ∈ S , φ ∈ V (S, A) and ψ ∈ U(S, B). In addition, let φ′
∈ U(S, B) be such that

dB(S)(φ , φ′) is minimum over all φ′
∈ U(S, B) and let φ = φ0, φ1, . . . , φk = φ′, φk+1, . . . , φℓ = ψ be a path in B(S) consisting

f a shortest path φ0, φ1, . . . , φk from φ to φ′ and a shortest path φk, φk+1, . . . , φℓ from φ′ to ψ . Then φ0, φ1, . . . , φℓ is a
hortest path from φ to ψ in B(S).

Proof. Since U(S, B) is a convex subset of V (S) we have φi ∈ U(S, B) for k ≤ i ≤ ℓ. Thus, by Lemma 3.2, all T ∈ ∆(φk, φℓ)
are incompatible with S. Moreover, by Lemma 3.3, all T ∈ ∆(φ0, φk−1) are compatible with S. Hence, ∆(φ , ψ) is the
disjoint union of ∆(φ0, φk−1), {S} and ∆(φk, φℓ), implying that φ0, φ1, . . . , φℓ is a shortest path from φ to ψ in B(S). □

The following lemma can be viewed as a special case of Property S4 considered for convexity structures in [31] (see
also [11]).

Lemma 3.5. Let S be a split system on X and W ,W ′′ be disjoint, non-empty, convex subsets of V (S). In addition, let φ ∈ W
and φ′′

∈ W ′′ be such that dB(S)(φ , φ′′) is minimum over all φ ∈ W, φ′′
∈ W ′′. Then dB(S)(φ , φ′′) > 0 and, for all S ∈ ∆(φ , φ′′),

there exists some A ∈ S with W ⊆ V (S, A) and W ′′
⊆ V (S, Ac

S).

Proof. Since W ∩ W ′′
= ∅ we clearly have d = dB(S)(φ , φ′′) > 0. Consider S = A|B ∈ ∆(φ , φ′′) and assume for a

contradiction that W ∩ V (S, A) ̸ = ∅ and W ∩ V (S, B) ̸ = ∅. Assume without loss of generality that φ ∈ V (S, A). Since W is
convex, it contains a shortest path from φ to some vertex in V (S, B), implying that there exists some ψ ∈ U(S, B) ∩ W .
Let φ′

∈ U(S, B) be such that dB(S)(φ , φ′) is minimum over all φ′
∈ U(S, B). By Lemma 3.4, there exists a shortest path

= φ0, φ1, . . . , φd = φ′′ in B(S) with φ′
= φi for some 1 ≤ i ≤ d. In particular, φ′

̸ ∈ W by the choice of φ and φ′′. Again
by Lemma 3.4, there also exists a shortest path in B(S) from φ to ψ that contains φ′. Since W is convex, this implies
φ′

∈ W , a contradiction. Hence, we must have either W ⊆ V (S, A) and, by symmetry, W ′′
⊆ V (S, B) or W ⊆ V (S, B) and,

y symmetry, W ′′
⊆ V (S, A), as required. □

4. Labeling maps in Buneman graphs

In this section, we show that, for any split system S on X , there is a natural labeling map W that takes each x ∈ X to
a convex subset W (x) of the vertex set V (S) of the Buneman graph B(S). In the main result of this section, we show that
we can represent the distance dS on X associated to S in terms of the distance in B(S) between the subsets given by W .

Let S be a split system on X . Then we obtain the labeling map W : X → P(V (S)) by setting

W (x) = {φ ∈ V (S) : x ∈ φ(S) ∪ Sc for all S ∈ S}

for all x ∈ X .

Example 4.1. For the Buneman graph B(S) considered in Example 2.3 we obtain the following labeling map W :

W (x1) = {φ1}, W (x2) = {φ2}, W (x3) = {φ6}, W (x4) = {φ10}, W (x5) = {φ8}

W (x6) = {φ3, φ4}, W (x7) = {φ4, φ5, φ7, φ9}

We first present some key properties of the labeling map W .

Lemma 4.2. Let S be a split system on X. Then the following hold:

(a) W (x) ̸ = ∅ for all x ∈ X.
(b) |W (x)| = 1 for all x ∈ X if and only if all S ∈ S are full splits of X.
(c) W (x) is a convex subset of V (S) for all x ∈ X.

Proof. (a) This is just Lemma 2.6 rephrased in terms of the labeling map W .
(b) First assume that S is a set of full splits of X . Then, by definition, W (x) contains precisely the S-map φ ∈ V (S) with

φ(S) = S(x) for all S ∈ S , implying |W (x)| = 1.
Next assume that there exists some S = A|B ∈ S such that S is not a full split of X . Consider x ∈ Sc . For this x = x0,

recall the construction of an S-map φ ∈ W (x) in (a): We have S ∈ R0 and, thus, for x1 we can select some element in A
r some element in B. Depending on this choice of x we obtain two distinct S-maps in W (x), implying |W (x)| > 1.
1
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(c) Consider x ∈ X and assume for a contradiction that there exist φ1, φ2 ∈ W (x) such that there is some shortest
ath in B(S) from φ1 to φ2 whose vertices are not all contained in W (x). Let φ be the first vertex on this path after φ1
hat is not in W (x) and let φ′

∈ W (x) be the vertex immediately before φ on this path. Let {S} = ∆(φ′, φ). Then, in view
f φ′

∈ W (x) and φ ̸ ∈ W (x), we have x ̸ ∈ φ(S) ∪ Sc . Moreover, by Theorem 2.8, we have S ∈ ∆(φ1, φ2) and, therefore,
1(S)c ∪ Sc = φ′(S)c ∪ Sc = φ(S) ∪ Sc = φ2(S) ∪ Sc . But then x ̸ ∈ φ2(S) ∪ Sc in contradiction to φ2 ∈ W (x). □

Proposition 4.3. Let S be a split system on X, S = A|B ∈ S and x ∈ X. Then W (x) ⊆ V (S, A) if and only if x ∈ A.

Proof. First assume x ∈ A and consider φ ∈ W (x). Then, by the definition of W (x), we have φ(S) = A and, therefore,
∈ V (S, A), as required.
Conversely, assume W (x) ⊆ V (S, A). Consider φ ∈ W (x) and φ′

∈ U(S, B) such that d = dB(S)(φ , φ′) is minimum over
all φ ∈ W (x) and φ′

∈ U(S, B). Then we have d ≥ 1. Let φ = φ0, φ1, . . . , φd = φ′ be a shortest path in B(S) from φ to
φ′. By the choice of φ and φ′ we have φi ̸ ∈ W (x) for 1 ≤ i ≤ d. Put {Ti} = ∆(φi, φi+1) for 0 ≤ i ≤ d − 1. Then we have
Td−1 = S. Moreover, x ∈ φ0(T0) must hold in view φ0 ∈ W (x) and φ1 ̸ ∈ W (x). By Lemma 3.3, T0 and S either coincide
or are compatible. More specifically, from the proof of Lemma 3.3 we have φd(S) ⊆ φd(T0) and φd(T0)c ⊆ φd(S)c . Hence,

∈ φ0(T0) = φd(T0)c ⊆ φd(S)c = A, as required. □

Let S be a split system on X and consider the Buneman graph B(S) with labeling map W . We define the distance
d(B(S),W ) : X × X → N by putting

d(B(S),W )(x, x′) = min{dB(S)(φ , φ′) : φ ∈ W (x) and φ′
∈ W (x′)}

for all x, x′
∈ X .

Example 4.4. For the Buneman graph B(S) with labeling map W considered in Example 4.1 we have d(B(S),W )(x1, x7) = 2,
which coincides with the value dS(x1, x7) given in Example 2.2.

Theorem 4.5. Let S be a split system on X and B(S) be the associated Buneman graph with labeling map W. Then
(B(S),W ) = dS .

Proof. Consider x, x′
∈ X . If x = x′ we clearly have d(B(S),W )(x, x′) = dS(x, x′) = 0. So, assume x ̸ = x′ and put

S∗
= {S ∈ S : S(x) ̸ = ∅, S(x′) ̸ = ∅ and S(x) ̸ = S(x′)}.

Then dS(x, x′) = |S∗
|. Select φ ∈ W (x), φ′

∈ W (x′) such that d(B(S),W )(x, x′) = dB(S)(φ , φ′). By Theorem 2.8, it suffices to
show that ∆(φ , φ′) = S∗.

First consider S ∈ S∗. By the definition of S∗ and in view of φ ∈ W (x) and φ′
∈ W (x′), we have φ(S) = S(x) ̸ = S(x′) =

φ′(S), implying S ∈ ∆(φ , φ′). Hence S∗
⊆ ∆(φ , φ′).

Conversely, consider S = A|B ∈ ∆(φ , φ′). Assume without loss of generality that φ(S) = A and φ′(S) = B. Note
that, by Lemma 4.2, W (x) and W (x′) are non-empty, convex subsets of V (S) and, in view of S ∈ ∆(φ , φ′), we must have
W (x)∩W (x′) = ∅. Thus, by the choice of φ ∈ W (x) and φ′

∈ W (x′), Lemma 3.5 impliesW (x) ⊆ V (S, A) andW (x′) ⊆ V (S, B).
Hence, by Proposition 4.3, we have x ∈ A and x′

∈ B, implying S ∈ S∗. It follows that also ∆(φ , φ′) ⊆ S∗, as required. □

5. Crossing graphs

In this section, we show that, we can count induced subgraphs of B(S) that are isomorphic to hypercubes of a given
dimension directly in terms of the structure of S , for any split system S on X . We note that the results that we present in
this section are closely related to well-known results on median graphs which are reviewed in [24]; the original references
or the results that we use can be found in that review.

We first define the crossing graph B(S)# of B(S) to be the graph that has vertex set S and edge set consisting of those
2-element subsets {S = A|B, S ′

= A′
|B′

} ⊆ S for which all four intersections

V (S, A) ∩ V (S ′, A′), V (S, A) ∩ V (S ′, B′),
V (S, B) ∩ V (S ′, A′) and V (S, B) ∩ V (S ′, B′)

are non-empty. In the literature, the vertices of the crossing graph of a graph G are also referred to as the colors of G (see
.g. [23]).

Theorem 5.1. Let S be a split system on X and S, S ′
∈ S with S ̸ = S ′. Then {S, S ′

} is an edge of B(S)# if and only if S and S ′

are incompatible.

Proof. Assume that {S = A|B, S ′
= A′

|B′
} is an edge of B(S)#. Then, by the definition of B(S)#, there exist φ ∈

(S, A)∩V (S ′, A′) and ψ ∈ V (S, A)∩V (S ′, B′). Consider a shortest path in B(S) from φ to ψ . Using the fact that V (S, A) is a
convex subset of V (S), this shortest path must contain some φ′

∈ V (S, A)∩U(S ′, B′). By symmetry, there also exists some
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φ′′
∈ V (S, B) ∩ U(S ′, B′). Since, by Lemma 3.1, also U(S ′, B′) is a convex subset of V (S), any shortest path from φ′ to φ′′ in

B(S) is contained in U(S ′, B′). Moreover, any such path must contain ψ ′, ψ ′′
∈ U(S ′, B′) with ∆(ψ ′, ψ ′′) = {S}. Hence, by

Lemma 3.2, S and S ′ are incompatible.
Conversely, assume that {S = A|B, S ′

= A′
|B′

} is not an edge of B(S)#. Then, again by the definition of B(S)#, we may
ssume without loss of generality that V (S, A) ⊆ V (S ′, A′) and V (S ′, B′) ⊆ V (S, B). Consider x ∈ A. By Proposition 4.3, we
ave W (x) ⊆ V (S, A) ⊆ V (S ′, A′). Thus, again by Proposition 4.3, x ∈ A′. Hence, A ⊆ A′. By symmetry, we also have B′

⊆ B.
It follows that S and S ′ are compatible. □

By Theorem 5.1, the crossing graph B(S)# for a split system S on X coincides with the incompatibility graph Incomp(S)
hat also has vertex set S and whose edge set consists of all 2-element subsets {S, S ′

} ⊆ S with S and S ′ incompatible.
Using results presented in [23] concerning the relationship between median graphs and their associated crossing graphs
see that paper also for more details about the origins of crossing graphs), we immediately obtain some structural
nformation for the Buneman graph B(S) in terms of Incomp(S). We call a hypercube of dimension i an i-cube, for short.

Corollary 5.2. Let S be a split system on X.

(a) B(S) is a tree if and only if Incomp(S) is a coclique.
(b) B(S) is an |S|-cube if and only if Incomp(S) is a clique.

Proof. In view of the fact that B(S)# and Incomp(S) coincide, (a) is an immediate consequence of [23, Corollary 4.3] and
(b) is an immediate consequence of [23, Proposition 4.1]. □

Using results presented in [24], we now show how to count the number of cubes in the Buneman graph of a split system
S on X . For i ∈ N, we denote by βi(S) the number of i-element subsets of S whose elements are pairwise incompatible.
Note that β0(S) = 1 and β1(S) = |S|. In addition, we denote by αi(S) the number of induced subgraphs of B(S) that are
i-cubes. In particular, α0(S) is the number of vertices and α1(S) is the number of edges of B(S).

Theorem 5.3. Let S be a split system on X. Then

αi(S) =

∑
k≥i

(
k
i

)
βk(S) (2)

holds for all i ∈ N.

Proof. (2) restates formula (13.7) given in [24, p. 331] for the case that all S ∈ S are full splits. However, as pointed out
n the proof of formula (13.7) in [24], the crucial fact used is that the Buneman graph of a split system is a hypercube if
nd only if the splits in the split system are pairwise incompatible, a fact that, by Corollary 5.2(b), also holds if the split
ystem contains partial splits. □

Example 5.4. For the split system S considered in Example 2.3 we have β0(S) = 1, β1(S) = 8, β2(S) = 1 and βk(S) = 0
for all k ≥ 3. Thus, with formula (2) we obtain α0(S) = 10, α1(S) = 10, α2(S) = 1 and αi(S) = 0 for all i ≥ 3, which
coincide with the values obtained directly from Fig. 2.

6. Tree representations of split systems

An X-tree is a tree T with vertex set V together with a map φ : X → V such that, for all vertices v ∈ V with degree at
most 2, v is contained in φ(X) [30, p. 16]. Such trees play an important role in the theory of phylogenetics. For example, a
undamental result in phylogenetics states that split systems on X consisting of full splits that are pairwise compatible are
n one-to-one correspondence with X-trees [10] (see also [30, Theorem 3.1.4]). In this section, we generalize this result
to split systems that may contain partial splits. In particular, we characterize those set-labeled trees which correspond to
plit systems consisting of pairwise compatible partial splits.
To this end, we first collect some key properties of Buneman graphs that are a tree.

Lemma 6.1. Let S be a split system on X such that G = B(S) = (V , E) is a tree. Then the labeling map W : X → P(V ) has
he following properties:

(W1) For all x ∈ X, W (x) ̸ = ∅ and the subgraph of G induced by W (x) is a tree.
(W2) For all vertices v ∈ V with deg(v) = 1 there exists some x ∈ X such that W (x) = {v}.
(W3) For all vertices v ∈ V with deg(v) = 2 and adjacent vertices u and w, u ̸ = w, there exists some x ∈ X such that

v ∈ W (x) and |{u, w} ∩ W (x)| ≤ 1.

Proof. (W1): Consider x ∈ X . Then, by Lemma 4.2(a), W (x) ̸ = ∅ and, by Lemma 4.2(c), W (x) is a convex subset of V ,
mplying that W (x) induces a subtree in G.
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Fig. 3. The tree referred to in Example 6.2.

(W2): Consider v ∈ V with deg(v) = 1. Let u be the vertex that is adjacent to v in G and {S = A|B} = ∆(u, v).
ithout loss of generality we assume that {v} = V (S, A). Let x ∈ A. Then, by Lemma 4.2(a) and Proposition 4.3, we have

∅ ̸ = W (x) ⊆ V (S, A) = {v}, implying W (x) = {v}.
(W3): Consider v ∈ V with deg(v) = 2. Let u and w be the vertices that are adjacent to v in G. Put {S = A|B} = ∆(u, v)

nd {S ′
= A′

|B′
} = ∆(v , w). By Theorem 2.8, we have 2 = dG(u, w) = |∆(u, w)| = |{S, S ′

}| and, thus, S ̸ = S ′. Without loss
of generality we assume v ∈ V (S, B)∩V (S ′, A′). Assume for a contradiction that, for all x ∈ X , v ̸ ∈ W (x) or {u, v , w} ⊆ W (x).
Then, by Proposition 4.3, for all x ∈ X , we have x ∈ A if and only if W (x) ⊆ V (S, A) if and only if W (x) ⊆ V (S ′, A′) if and
only if x ∈ A′. Hence, A = A′. By symmetry, we also have B = B′, implying S = S ′, a contradiction. Thus, there exists x ∈ X
with v ∈ W (x) and |{u, w} ∩ W (x)| ≤ 1. □

We call an ordered pair (G,W ) consisting of a tree G = (V , E) and a map W : X → P(V ) a weak X-tree if W satisfies
properties (W1)-(W3) stated in Lemma 6.1. Note that if |W (x)| = 1 for all x ∈ X then a weak X-tree corresponds to a
sual X-tree as defined above2.
Now, for any weak X-tree (G = (V , E),W ) define the split system S(G,W ) = {Se : e ∈ E} where, for all e = {u, w} ∈ E,

he partial split Se of X is obtained by removing e from G. More precisely, let Ve,u and Ve,w denote the vertex sets of
the two connected components of G − e that contain u and w, respectively, and put Ae,u = {x ∈ X : W (x) ⊆ Ve,u} and
Ae,w = {x ∈ X : W (x) ⊆ Ve,w}. In view of (W2) we have Ae,u ̸ = ∅ and Ae,w ̸ = ∅. We put Se = Ae,u|Ae,w .

Example 6.2. Consider the tree G = (V , E) with vertex set V = {v1, . . . , v8} depicted in Fig. 3, the set X = {x1, . . . , x7}
and the map W : X → P(V ) with

W (x1) = {v1}, W (x2) = {v2}, W (x3) = {v7}, W (x4) = {v8}, W (x5) = {v5}

W (x6) = {v3, v4, v6}, W (x7) = {v4, v6, v7, v8}.

Then (G,W ) is a weak X-tree and for the edge e = {v3, v4} ∈ E we obtain the partial split Se = {x1, x2}|{x3, x4, x5, x7}.

As mentioned at the beginning of this section, it is known (see e.g. [30, Thm. 3.1.4]) that for a split system S consisting
f full splits of X there exists an X-tree (G,W ) with S = S(G,W ) if and only if the splits in S are pairwise compatible.
oreover, this X-tree is unique up to isomorphism. The next theorem gives a generalization of this result to split systems

hat may contain partial splits. We say that two weak X-trees (G = (V , E),W ) and (G′
= (V ′, E ′),W ′) are isomorphic if

here exists a graph isomorphism f : V → V ′ such that f (W (x)) = W ′(x) for all x ∈ X .

Theorem 6.3. Let S be a split system on X.

(a) If the Buneman graph B(S) = (V , E) is a tree with labeling map W : X → P(V ) then (B(S),W ) is a weak X-tree with
S = S(B(S),W ).

(b) If there exists a weak X-tree (G′,W ′) with S = S(G′,W ′) then (G′,W ′) is isomorphic to (B(S),W ).
(c) There exists a weak X-tree (G,W ) with S = S(G,W ) if and only if the partial splits in S are pairwise compatible.

Proof. (a): If the Buneman graph B(S) is a tree then, by Lemma 6.1, the labeling map W satisfies (W1)-(W3). To show
that S = S(B(S),W ), first consider S = A|B ∈ S. Let x ∈ A and x′

∈ B, implying that S(x) ̸ = ∅, S(x′) ̸ = ∅ and S(x) ̸ = S(x′).
elect φ ∈ W (x) and φ′

∈ W (x′) such that dB(S)(φ , φ′) = d(B(S),W )(x, x′). In the proof of Theorem 4.5 we have shown that
hen S ∈ ∆(φ , φ′). Hence, there exists an edge e = {ψ , ψ ′

} in B(S) with ∆(ψ , ψ ′) = {S}.
To establish S = S(B(S),W ), it remains to show that, for all edges e = {φ , φ′

} in B(S), we have ∆(φ , φ′) = {Se}. Let
(φ , φ′) = {S = A|B}. Then V (S, A) and V (S, B) are the vertex sets of the two connected components of B(S) − e. Thus,
y Proposition 4.3, we have Se = A|B, as required.

2 In [20] the term weak X-tree is also used but refers to a different generalization of usual X-trees than considered here.
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with x ∈ Ae,u ∩ Ae′,w′ , z ∈ Ae,w ∩ Ae′,u′ and either y ∈ Ae,w − Ae′,u′ or y ∈ Ae′,w′ − Ae,u. Thus Se ̸ = Se′ , implying that for each
S ∈ S there is a unique e = eS = {uS, wS} ∈ E ′ with Se = S.

We define for each v ∈ V ′ an S-map φv by putting

φv(S) =

{
AeS ,uS if v ∈ V ′

eS ,uS
AeS ,wS if v ∈ V ′

eS ,wS

for all S ∈ S. It follows immediately that φv = φv′ for v , v′
∈ V ′ implies v = v′, ∆(φuS , φwS ) = {S} for all S ∈ S ,

nd dG′ (v , v′) = |∆(φv, φv′ )| for all v , v′
∈ V ′. In addition, the partial splits in S are pairwise compatible and we have

v ∈ V (S) for all v ∈ V ′. To see this, consider S, S ′
∈ S , S ̸ = S ′. Without loss of generality we assume that uS′ ∈ V ′

eS ,wS
nd uS ∈ V ′

eS′ ,wS′
. Then AeS ,uS ⊆ AeS′ ,wS′

and AeS′ ,uS′ ⊆ AeS ,wS and, therefore, N(S, S ′) = {AeS ,uS , AeS′ ,uS′ }. In particular, S and
S ′ are compatible. Moreover, in view of V ′

eS ,uS ∩ V ′
eS′ ,uS′

= ∅, we have {φv(S), φv(S ′)} ̸ = N(S, S ′), as required.
The fact that the partial splits in S are pairwise compatible implies, by Corollary 5.2(a) and Theorem 5.3, that the

uneman graph B(S) is a tree with |S| + 1 = |V ′
| vertices. Thus, we have {φv : v ∈ V ′

} = V (S) and f : V ′
→ V (S) with

(v) = φv is a graph isomorphism between G′ and B(S). It remains to show that f (W ′(x)) = W (x) for all x ∈ X . Consider
v ∈ V ′ and x ∈ X . For each S ∈ S assume without loss of generality that v ∈ V ′

eS ,uS . Then have v ∈ W ′(x) if and only if
∈ X − AeS ,wS for all S ∈ S if and only if x ∈ φv(S) ∪ Sc for all S ∈ S if and only if φv ∈ W (x), as required.
(c): It follows from (a) and (b), that there exists a weak X-tree (G,W ) with S = S(G,W ) if and only if the Buneman

graph B(S) is a tree which, by Corollary 5.2(a), is the case if and only if the partial splits in S are pairwise compatible. □

7. Subtree distances

A subtree distance is essentially a distance that can be represented by taking the distance between a collection of
ubtrees of an edge-weighted tree [18]. It is known that any subtree distance has a certain unique minimal representation
hat can be efficiently computed [1,25]. In this section, we prove that this minimal representation can also be obtained
in terms of the Buneman graph.

We first recall some definitions and facts concerning subtree distances. An ordered pair (G, ω) consisting of a tree
= (V , E) and a map ω : E → R>0 is called an edge-weighted tree. For all u, v ∈ V , we denote by d(G,ω)(u, v) the sum

f the weights of those edges of G that lie on the path from u to v in G. A subtree realization of a distance d on X is an
rdered pair ((G, ω),W ) consisting of an edge-weighted tree (G = (V , E), ω) and a map W : X → P(V ) such that

(SR1) W has property (W1) stated in Lemma 6.1 and
(SR2) d(x, y) = min{d(G,ω)(u, v) : u ∈ W (x) and v ∈ W (y)} for all x, y ∈ X .

In [18] it is shown that for distances d on X the following are equivalent:

D1) d has a subtree realization.
D2) There exist a set S of pairwise compatible partial splits of X and a map α : S → R>0 such that d =

∑
S∈S α(S) · dS .

D3) d satisfies a certain 4-point condition given in [18, Theorem 1.2].

We call distances d on X for which any of (D1)-(D3) hold subtree distances, for short. By [19, Thm. 4.13 and Rem. 4.18], the
et S of partial splits and the map α in (D2) are uniquely determined by d. In particular, S = ∅ if and only if d(x, y) = 0
or all x, y ∈ X .

We now consider minimal subtree realizations. To this end, let (G = (V , E), ω) be an edge-weighted tree and
: X → P(V ). Then

• suppressing a vertex v ∈ V having precisely two adjacent vertices u and w means we put V∼v = V − {v},
E∼v = (E − {{u, v}, {v , w}}) ∪ {{u, w}}, ω∼v : E∼v → R>0 with

ω∼v(e) =

{
ω(e) if e ̸ = {u, w}

ω({u, v}) + ω({v , w}) if e = {u, w}

and W∼v : X → P(V∼v) with W∼v(x) = W (x) − {v} for all x ∈ X .
• contracting an edge e = {u, v} ∈ E means we put V∼e = (V − {u, v}) ∪ {w} with some new vertex w ̸ ∈ V ,

E∼e =(E − {e ∈ E : {u, v} ∩ e ̸ = ∅})
∪ {{a, w} : a ∈ V∼e and {{a, v}, {a, u}} ∩ E ̸ = ∅},

ω∼e : E∼e → R>0 with
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and W∼e : X → P(V∼e) with

W∼e(x) =

{
W (x) if {u, v} ∩ W (x) = ∅

(W (x) − {u, v}) ∪ {w} if {u, v} ∩ W (x) ̸ = ∅

for all x ∈ X .

A subtree realization ((G = (V , E), ω),W ) of a distance d on X is minimal if, for all v ∈ V with deg(v) = 2,
((V∼v, E∼v), ω∼v),W∼v) is not a subtree realization of d and, for all e ∈ E, (((V∼e, E∼e), ω∼e),W∼e) is not a subtree
realization of d. Two subtree realizations ((G = (V , E), ω),W ) and ((G′

= (V ′, E ′), ω′),W ′) are isomorphic if there exists a
graph isomorphism f : V → V ′ such that ω({u, v}) = ω′({f (u), f (v)}) for all {u, v} ∈ E and f (W (x)) = W ′(x) for all x ∈ X .
In [25, Theorem 2] it is shown that if a distance d on X has a subtree realization then d has a minimal subtree realization
that is unique up to isomorphism (see also [1] for related results).

We call a subtree realization ((G, ω),W ) of a distance d on X a subtree representation of d if (G,W ) is a weak X-tree. It
s known that a distance d on X is a metric on X characterized by a certain 4-point condition if and only if d has a subtree
representation ((G, ω),W ) with (G,W ) an X-tree (see e.g. [30, Thm. 7.1.8 and Thm. 7.2.6]). The next theorem naturally
eneralizes this result by giving a characterization of the minimal subtree realization of a subtree distance on X .

Theorem 7.1. Let d be a subtree distance on X such that d =
∑

S∈S α(S) ·dS for some non-empty set S of pairwise compatible
artial splits of X and some map α : S → R>0. Consider the Buneman graph B(S) = (V (S), E) with labeling map W and put
α : E → R>0 such that ωα({φ , φ′

}) = α(S) for all φ , φ′
∈ V (S) with ∆(φ , φ′) = {S}. Then the following holds:

(a) ((B(S), ωα),W ) is a subtree representation of d.
(b) Every subtree representation of d is a minimal subtree realization of d.
(c) All subtree representations of d are isomorphic to ((B(S), ωα),W ).

Proof. (a) Since the partial splits in S are pairwise compatible, (B(S),W ) is a weak X-tree by Theorem 6.3. Put ω = ωα
nd consider x, x′

∈ X . Select ψ ∈ W (x) and ψ ′
∈ W (x′) such that

d(B(S),ω)(ψ , ψ ′) = min{d(B(S),ω)(φ , φ′) : φ ∈ W (x) and φ′
∈ W (x′)}.

Put S∗
= {S ∈ S : S(x) ̸ = ∅, S(x′) ̸ = ∅ and S(x) ̸ = S(x′)}. Then, by Theorem 4.5, we have

d(B(S),ω)(ψ , ψ ′) =

∑
S∈∆(ψ ,ψ ′)

α(S) =

∑
S∈S∗

α(S) =

∑
S∈S

α(S) · dS(x, y) = d(x, y).

Hence, ((B(S), ωα),W ) is a subtree representation of d.
(b) Let ((G′

= (V ′, E ′), ω′),W ′) be a subtree representation of d. First consider a vertex v ∈ V ′ that has precisely
wo adjacent vertices u and w. In view of (W3), there exists some x ∈ X with v ∈ W ′(x) and |{u, w} ∩ W ′(x)| ≤ 1. If

′(x) = {v} we have W ′
∼v(x) = ∅ and, thus, (((V ′

∼v, E
′
∼v), ω

′
∼v),W

′
∼v) is not a subtree realization of d because (W1) is

violated. So, assume without loss of generality that {u, w} ∩ W ′(x) = {u}. Let t ∈ V ′ be a vertex with degree 1 such that
the path from u to t in G′ contains v. By (W2) there exists y ∈ X with W ′(y) = {t}. Put G′

∼v = (V ′
∼v, E

′
∼v). Then, by the

definition of suppressing a vertex, we have

d(x, y) = d(G′,ω′)(v , t) < d(G′
∼v ,ω

′
∼v )(u, t)

= min{d(G′
∼v ,ω

′
∼v )(a, b) : a ∈ W ′

∼v(x) and b ∈ W ′

∼v(y)},

implying again that (((V ′
∼v, E

′
∼v), ω

′
∼v),W

′
∼v) is not a subtree realization of d.

Next consider an edge e ∈ E ′. Let u, v ∈ V ′ be two vertices with degree 1 such that e lies on the path from u to v in G′.
By (W2) there exist x, y ∈ X with W ′(x) = {u} and W ′(y) = {v}. Put G′

∼e = (V ′
∼e, E

′
∼e), {u

′
} = W ′

∼e(x) and {v′
} = W ′

∼e(y).
Then, by the definition of contracting an edge, we have

d(x, y) = d(G′,ω′)(u, v) > d(G′
∼e,ω

′
∼e)(u

′, v′),

implying that (((V ′
∼e, E

′
∼e), ω

′
∼e),W

′
∼e) is not a subtree realization of d.

Thus, suppressing a vertex v ∈ V ′ with degree 2 or contracting an edge e ∈ E ′ does not yield a subtree realization of d,
mplying that ((G′

= (V ′, E ′), ω′),W ′) is a minimal subtree realization of d.
(c) This follows immediately from (a), (b) and the fact that the minimal subtree realization of d is unique up to

somorphism by [25, Theorem 2]. □

8. Compatible extensions

To motivate the main result in this section, we first give some additional definitions. We call an ordered pair (S, α)
onsisting of a split system S on X and a weighting map α : S → R>0 a weighted split system on X and put
d =

∑
α(S) · d . In addition, we say that a weighted split system (U, β) is a compatible extension of (S, α) if
(S,α) S∈S S

39
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Fig. 4. (a) A geometric realization of the subtree representation ((B(S), ωα),W ) of the distance d(S,α) on X = {x1, . . . , x7} in Example 8.1. For each
x ∈ X the set W (x) is enclosed by a gray line and the length of each edge e drawn in the figure corresponds to the weight ωα(e). The gray arrows
indicate the points we select from W (x6) and W (x7), respectively, to obtain a geometric realization of an edge-weighted X-tree in (b). Unlabeled
vertices of degree 2 are suppressed after selecting the points from W .

(CE1) every U ∈ U is a full split of X ,
(CE2) the full splits in U are pairwise compatible, and
(CE3) d(S,α) ≤ d(U,β).

A compatible extension (U, β) of (S, α) is minimal if, for all compatible extensions (U ′, β ′) of (S, α), d(U ′,β ′) ≤ d(U,β) implies
(U ′, β ′) = (U, β). We let Emin(S, α) be the set of all possible minimal compatible extensions of (S, α).

In the last section, we saw that in case d is a subtree distance on X with d = d(S,α) for some non-empty set S of pairwise
compatible partial splits of X and some weighting map α : S → R>0, then the Buneman graph ((B(S), ωα),W ) is, up to
isomorphism, the unique subtree representation of d. Interestingly, in this situation we can also obtain an edge-weighted
X-tree from ((B(S), ωα),W ) by selecting, for each x ∈ X , some point in the set W (x) (considered as a continuous object)
and defining the edge-weights to be those naturally given by the subtree representation. In this section, we show that
the set of weighted split systems that correspond to an edge-weighted X-tree that can be obtained in this way is equal
to Emin(S, α) (Theorem 8.3). In particular, we can consider ((B(S), ωα),W ) as being the configuration space of all those
metrics that tightly bound d(S,α) from above (Corollary 8.4).

Example 8.1. Consider the weighted split system (S, α) on X = {x1, . . . , x7} consisting of the partial splits

Si = {xi}|X − {xi} for 1 ≤ i ≤ 5 S7 = {x1, x2, x6}|{x3, x4, x5, x7}
S6 = {x1, x2}|{x3, x4, x5, x7} S8 = {x1, x2, x3, x6}|{x4, x5}

and the following weighting:

i 1 2 3 4 5 6 7 8
α(Si) 1.5 1.3 1.0 0.8 1.2 1.0 0.7 1.1

The partial splits in S are pairwise compatible and the subtree representation ((B(S), ωα),W ) of d(S,α) is shown in Fig. 4(a).
An X-tree resulting from a selection of a point in W (x), for each x ∈ X , is shown in Fig. 4(b).

Before continuing with proving Theorem 8.3, we introduce some additional notation concerning realizations. A
eometric realization of an edge-weighted tree (G = (V , E), ω) (in the plane) is a map ρ : V → R2 such that

GR1) for all {u, v} ∈ E the Euclidean distance between the points ρ(u) and ρ(v) is ω({u, v}), and
GR2) for any two distinct edges {u, v}, {u′, v′

} ∈ E the straight line segment with endpoints ρ(u) and ρ(v) and the straight
line segment with endpoints ρ(u′) and ρ(v′) are disjoint, except for when the two edges are incident to the same
vertex u = u′ in which case the intersection of the straight line segments is the point ρ(u) = ρ(u′).

Every edge-weighted tree has some geometric realization and there exist algorithms for computing one (see e.g. [2]). We
enote by Pρ(G, ω) the set of those points p ∈ R2 for which there exists some edge {u, v} ∈ E such that p lies on the

straight line segment with endpoints ρ(u) and ρ(v). Moreover, for all p, q ∈ Pρ(G, ω), we define dρ(p, q) as the length of
the shortest curve from p to q in Pρ(G, ω). Note that, by definition, we have d(G,ω)(u, v) = dρ(ρ(u), ρ(v)) for all u, v ∈ V .

Now, let d be a subtree distance on X , ((G = (V , E), ω),W ) a subtree representation of d and ρ a geometric realization
of (G, ω). For all x ∈ X we denote by Pρ(x) the set of those points p ∈ Pρ(G, ω) for which there exists some edge {u, v} ∈ E
with u, v ∈ W (x) such that p lies on the straight line segment with endpoints ρ(u) and ρ(v). A map σ : X → Pρ(G, ω)
with σ (x) ∈ Pρ(x) for all x ∈ X is called a selection from the labeling map W with respect to the geometric realization ρ.
o prove Theorem 8.3 we use the following technical lemma concerning selections.

Lemma 8.2. Let d be a subtree distance on X, ((G = (V , E), ω),W ) a subtree representation of d and ρ a geometric realization
of (G, ω). In addition, let D be a metric on X with d ≤ D. Then there exists a selection σ from W with respect to ρ such that
d(x, y) ≤ d (σ (x), σ (y)) ≤ D(x, y) for all x, y ∈ X.
ρ
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Proof. Let L be the set of those x ∈ X with W (x) = {v} such that v has degree 1. In view of (W2), we have L ̸ = ∅. For all
∈ L, put px = ρ(v), where {v} = W (x). Let x1, x2, . . . , xk be an arbitrary ordering of the elements in X − L. Put X0 = L

and, for all i ∈ {1, 2, . . . , k}, put Xi = Xi−1 ∪ {xi}.
We recursively define a map σ on Xi, for 0 ≤ i ≤ k, and use induction on i to show that σ satisfies

(1) σ (x) ∈ Pρ(x) for all x ∈ Xi,
(2) d(x, y) ≤ dρ(σ (x), σ (y)) ≤ D(x, y), for all x, y ∈ Xi, and
(3) mins∈Pρ (x) dρ(s, σ (y)) ≤ D(x, y), for all x ∈ X − Xi and all y ∈ Xi,

which will complete the proof since Xk = X . Note that (1) and (2) are the properties of the map σ stated in the lemma
hereas (3) is an auxiliary property used in the induction to prove the lemma.
We begin by putting σ (x) = px for all x ∈ X0. Then we have σ (x) ∈ Pρ(x) for all x ∈ X0, dρ(σ (x), σ (y)) = d(x, y) ≤ D(x, y),

or all x, y ∈ X0, and mins∈Pρ (x) dρ(s, σ (y)) = d(x, y) ≤ D(x, y), for all x ∈ X − X0 and all y ∈ X0, establishing the base case
of the induction.

Now, suppose that for some i ≥ 0 we have defined a map σ on Xi with properties (1)-(3). We put

Qy = {q ∈ Pρ(G, ω) : dρ(σ (y), q) ≤ D(y, xi+1)},

for all y ∈ Xi,

Ry = {r ∈ Pρ(G, ω) : min
s∈Pρ (y)

dρ(s, r) ≤ D(y, xi+1)},

for all y ∈ X − Xi+1, and

I = Pρ(xi+1) ∩

⎛⎝⋂
y∈Xi

Qy

⎞⎠ ∩

⎛⎝ ⋂
y∈X−Xi+1

Ry

⎞⎠ .

Then, selecting any point in I as σ (xi+1), it follows immediately that σ satisfies properties (1)-(3) also on Xi+1. Hence, it
uffices to show that I ̸ = ∅.
By construction, the point sets Pρ(xi+1), Qy, for all y ∈ Xi, and Ry, for all y ∈ X − Xi+1, are closed and connected subsets

of Pρ(G, ω). Therefore, by the Helly property (see e.g. [9, p. 21]), it suffices to show that these point sets have a pairwise
non-empty intersection:

• Qy ∩ Qy′ ̸ = ∅, for all y, y′
∈ Xi, since

dρ(σ (y), σ (y′)) ≤ D(y, y′) ≤ D(y, xi+1) + D(xi+1, y′),

where the first inequality holds by induction and the second inequality holds by the fact that D is a metric.
• Ry ∩ Ry′ ̸ = ∅, for all y, y′

∈ X − Xi+1, since

d(y, y′) = min
s∈Pρ (y)
s′∈Pρ (y′)

dρ(s, s′) ≤ D(y, y′) ≤ D(y, xi+1) + D(xi+1, y′),

where the equality holds by the definition of a subtree representation, the first inequality holds by the assumption
d ≤ D and the second inequality holds by the fact that D is a metric.

• Qy ∩ Pρ(xi+1) ̸ = ∅, for all y ∈ Xi, since

min
s∈Pρ (xi+1)

dρ(s, σ (y)) ≤ D(xi+1, y),

which holds by induction.
• Ry ∩ Pρ(xi+1) ̸ = ∅, for all y ∈ X − Xi+1, since

d(y, xi+1) = min
s∈Pρ (y)

s′∈Pρ (xi+1)

dρ(s, s′) ≤ D(y, xi+1),

where the equality holds by the definition of a subtree representation and the inequality holds by the assumption
d ≤ D.

• Qy ∩ Ry′ ̸ = ∅, for all y ∈ Xi and all y′
∈ X − Xi+1, since

min
s∈Pρ (y′)

dρ(s, σ (y)) ≤ D(y, y′),

which holds by induction. □

As before, let d be a subtree distance on X , ((G = (V , E), ω),W ) a subtree representation of d and ρ a geometric
ealization of (G, ω). As informally explained in Example 8.1, every selection σ from W with respect to ρ yields an X-tree
(G = (V , E ),W ) together with an edge-weighting ω by putting:
σ σ σ σ σ
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• Vσ = {ρ(v) : v ∈ V , deg(v) ≥ 3} ∪ {σ (x) : x ∈ X}

• Eσ to be the set of those {p, q} with p, q ∈ Vσ , p ̸ = q, for which the shortest curve from p to q in Pρ(G, ω) does not
contain any point in Vσ − {p, q},

• Wσ (x) = {σ (x)} for all x ∈ X , and
• ωσ ({p, q}) to be the Euclidean distance between p and q for all {p, q} ∈ Eσ .

In addition, we define the weighted split system (Uσ , βσ ) by putting Uσ = S(Gσ ,Wσ ) and βσ (Se) = ωσ (e) for all e ∈ Eσ . As
n immediate consequence of these definitions we have

dρ(σ (x), σ (y)) = d(Gσ ,ωσ )(σ (x), σ (y)) = d(Uσ ,βσ )(x, y) (3)

for all x, y ∈ X .

Theorem 8.3. Let (S, α) be a weighted split system consisting of pairwise compatible partial splits of X and let ((B(S), ωα),W )
be the unique subtree representation of d(S,α). Then, for all geometric realizations ρ of (B(S), ωα), we have

Emin(S, α) = {(Uσ , βσ ) : σ is a selection from W with respect to ρ}.

Proof. Let ρ be a geometric realization of (B(S), ωα).
First consider (U, β) ∈ Emin(S, α). Then d(U,β) is a metric on X and, by the definition of a compatible extension, d(S,α) ≤

d(U,β). So, by Lemma 8.2, there exists a selection σ from W with respect to ρ such that d(S,α)(x, y) ≤ dρ(σ (x), σ (y)) ≤

(U,β)(x, y) for all x, y ∈ X . Hence, by Eq. (3), we have d(Uσ ,βσ ) ≤ d(U,β). Thus, since (U, β) is minimal, (U, β) = (Uσ , βσ ).
This establishes

Emin(S, α) ⊆ {(Uσ , βσ ) : σ is a selection from W with respect to ρ}.

To establish the other inclusion, consider a selection σ from W with respect to ρ. Then, by the construction of the X-tree
Gσ ,Wσ ) and the edge-weighting ωσ , we have

d(S,α)(x, y) = min{dρ(p, q) : p ∈ Pρ(x), y ∈ Pρ(y)} ≤ dρ(σ (x), σ (y))
= d(Uσ ,βσ )(x, y)

for all x, y ∈ X . Hence, (Uσ , βσ ) is a compatible extension of (S, α). To show that (Uσ , βσ ) ∈ Emin(S, α), consider a
compatible extension (U, β) of (S, α) such that d(U,β) ≤ d(Uσ ,βσ ). Then, if x, y ∈ X are such that |W (x)| = |W (y)| = 1, we
have d(S,α)(x, y) = dρ(σ (x), σ (y)) = d(Uσ ,βσ )(x, y) = d(U,β)(x, y). Hence, it remains to consider x′, y′

∈ X with |W (x′)| ≥ 2
or |W (y′)| ≥ 2. In view of (W2), there exist x, y ∈ X with |W (x)| = |W (y)| = 1 such that σ (x′) and σ (y′) lie on the path
from σ (x) to σ (y) in Gσ . Then we have

d(S,α)(x, y) = d(Uσ ,βσ )(x, y) = dρ(σ (x), σ (y))
= dρ(σ (x), σ (x′)) + dρ(σ (x′), σ (y′)) + dρ(σ (y′), σ (y))
= d(Uσ ,βσ )(x, x

′) + d(Uσ ,βσ )(x
′, y′) + d(Uσ ,βσ )(y

′, y)
≥ d(U,β)(x, x′) + d(U,β)(x′, y′) + d(U,β)(y′, y)
≥ d(U,β)(x, y) = d(S,α)(x, y),

where the first line holds since |W (x)| = |W (y)| = 1, the second line holds since σ (x′) and σ (y′) lie on the path from σ (x)
to σ (y) in Gσ , the third line holds by Eq. (3), the fourth line holds by our assumption that d(U,β) ≤ d(Uσ ,βσ ) and the last
line holds since d(U,β) is a metric. It follows that also d(Uσ ,βσ )(x

′, y′) = d(U,β)(x′, y′) and, thus, the metrics d(Uσ ,βσ ) and d(U,β)
on X coincide. Since the splits in Uσ and also in U are pairwise compatible, this implies, as pointed out in the discussion
f Property (D2) in Section 7, that (U, β) = (Uσ , βσ ), as required. □

We say that a metric D on X is a minimal extension of a distance d on X if d ≤ D and, for all metrics D′ on X , d ≤ D′
≤ D

mplies D′
= D.

Corollary 8.4. Let d be a subtree distance on X, ((G = (V , E), ω),W ) a subtree representation of d and ρ a geometric
realization of (G, ω). Then a metric D on X is a minimal extension of d if and only if D = d(Gσ ,ωσ ) for some selection σ from W
with respect to ρ.

Proof. First assume that D is a minimal extension of d. Then, by Lemma 8.2, there exists a selection σ from W with
respect to ρ such that d ≤ d(Gσ ,ωσ ) ≤ D. By the minimality of D, this implies D = d(Gσ ,ωσ ), as required.

Next assume that σ is a selection from W with respect to ρ. Consider the metric D = d(Gσ ,ωσ ). Let D′ be a metric
n X with d ≤ D′

≤ D. Then, again by Lemma 8.2, there exists a selection σ ′ from W with respect to ρ such that
≤ d(Gσ ′ ,ωσ ′ ) ≤ D′. Hence we have

d ≤ d(Gσ ′ ,ωσ ′ ) = d(Uσ ′ ,βσ ′ ) ≤ D′
≤ D = d(Uσ ,βσ ) = d(Gσ ,ωσ ).

By Theorem 8.3, we must have d = d , implying D′
= D, as required. □
(Uσ ′ ,βσ ′ ) (Uσ ,βσ )
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9. Discussion

We conclude by giving some potential directions for future research. First, if S is a split system consisting of full
splits of X then after finitely many iterations all vertices of the Buneman graph B(S) are obtained (see e.g [14, Sec. 4.3])
by repeatedly forming the median starting with the vertices in {φx : x ∈ X}, where φx is the S-map defined in the
introduction by putting φx(S) = S(x). Can the vertices of the Buneman graph B(S) for a split system consisting of partial
splits also be obtained in a similar way, possibly starting with the vertices in

⋃
x∈X W (x)?

In another direction, it might be of interest to investigate how the Buneman graph of a split system is related to split
ystem closures. There are various rules which can be applied to some collection of partial splits which aim to produce
 new collection of full splits. Such rules go back to work of Meacham who introduced the ‘‘Z-rule’’ [26]. The repeated
pplication of such rules to a split system eventually leads to a split system for which no new splits are generated after
pplying the rules. This final split system is known as the closure of the original split system, and such closures have been
nvestigated in, for example, [21,29]. It would be interesting to investigate how the Buneman graph of a split system is
related to the Buneman graph of different closures of the system. As a potential application, it might be worth looking
into using the Buneman graph of a split system for constructing supernetworks from collections of partial phylogenetic
trees (cf. [21] where Z-rule closures are used for this purpose).

As we have mentioned above, our definition of the Buneman graph for a set of partial splits was motivated by results
in [18] on subtree distances. In this direction, to any metric on X one can associate the Buneman complex as well as the
tight span, which are both polytopal complexes that in certain circumstances share key structural properties [15]. The
ight span has been generalized to arbitrary distances on X (see [18]). In particular, in [18, Theorem 2.3] it is shown that a
istance d has a subtree realization if and only if the 1-skeleton of the tight span of d is a tree. Can the Buneman complex

also be generalized to arbitrary distances d and, if so, how is it related to the tight span of d?
As mentioned in the introduction, there is an extensive theory of median graphs. It would be interesting to investigate

otential extensions of our results within the theory of these graphs. For example, in [4] a generalization of median graphs
alled lopsided sets is considered, and in [5] a generalization of median graphs to an infinite case is presented, and it could
be worth considering how our results may have relevance within these settings. Other areas with potential connections
r applications include cubical complexes and median algebras — see e.g. [3].
Finally, there is a rich theory concerned with embedding metrics into lp-spaces (see e.g. [12]). For p = 1, a metric that

an be embedded into some l1-space is called an l1-metric. It is well-known that a metric d on X is an l1-metric if and
only if there exists a weighted split system (S, α) on X consisting of full splits with d = d(S,α) (see e.g. [12, Chapter 11]).
In contrast, every distance d on X can be written as

d =

∑
a,b∈X

d(a,b)>0

d(a, b) · d{a}|{b},

with the empty sum evaluating to 0. Thus, whilst weighted split systems that consist of full splits of X yield a proper
ubclass of all metrics on X (the class of l1-metrics), weighted split systems that consist of partial splits of X without any
estrictions yield the class of all distances on X . Even so, it might still be interesting to explore embeddings for distances
orresponding to restricted classes of split systems (e.g. those arising in split decomposition [19]), or studying embeddings
that represent elements in X by subsets rather than single points.
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Appendix. List of S-maps in Example 2.3

The S-maps φ1, φ2, . . . , φ10 are listed below in this order from top to bottom. Each S-map φi, 1 ≤ i ≤ 10, is given as
he 8-tuple (φi(S1), . . . , φi(S8)).

({x1}, X − {x2}, X − {x3}, X − {x4}, X − {x5}, {x1, x2}, {x1, x2, x5, x6}, {x1, x2, x3, x6})

(X − {x1}, {x2}, X − {x3}, X − {x4}, X − {x5}, {x1, x2}, {x1, x2, x5, x6}, {x1, x2, x3, x6})

(X − {x1}, X − {x2}, X − {x3}, X − {x4}, X − {x5}, {x1, x2}, {x1, x2, x5, x6}, {x1, x2, x3, x6})

(X − {x1}, X − {x2}, X − {x3}, X − {x4}, X − {x5}, {x3, x4, x5, x7}, {x1, x2, x5, x6}, {x1, x2, x3, x6})

(X − {x1}, X − {x2}, X − {x3}, X − {x4}, X − {x5}, {x3, x4, x5, x7}, {x3, x4}, {x1, x2, x3, x6})

(X − {x1}, X − {x2}, {x3}, X − {x4}, X − {x5}, {x3, x4, x5, x7}, {x3, x4}, {x1, x2, x3, x6})

(X − {x1}, X − {x2}, X − {x3}, X − {x4}, X − {x5}, {x3, x4, x5, x7}, {x1, x2, x5, x6}, {x4, x5})

(X − {x1}, X − {x2}, X − {x3}, X − {x4}, {x5}, {x3, x4, x5, x7}, {x1, x2, x5, x6}, {x4, x5})

(X − {x1}, X − {x2}, X − {x3}, X − {x4}, X − {x5}, {x3, x4, x5, x7}, {x3, x4}, {x4, x5})

(X − {x1}, X − {x2}, X − {x3}, {x4}, X − {x5}, {x3, x4, x5, x7}, {x3, x4}, {x4, x5})
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