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A B S T R A C T   

Plant-based (PB) food products have surged in popularity over the past decade. Available PB products in the UK 
market were extracted from NielsenIQ Brandbank and compared with animal-based (AB) counterparts in their 
nutrient contents and calculated Nutri-Scores. The amino acid contents of four beef products and their PB al-
ternatives were analysed by LC-MS/MS. PB products consistently exhibited significantly higher fibre content 
across all food groups. Protein was significantly higher in AB products from all food groups except beef and ready 
meals. PB products were more likely to have higher Nutri-Scores compared to AB counterparts, albeit with 
greater score variability within each food group. Nutrient fortifications were primarily focused on dairy and 
ready meals; the most supplemented nutrient was vitamin B12 (found in 15% of all products). A higher pro-
portion of EAAs in relation to total protein content was observed in all beef products.   

1. Introduction 

Due to the rapid global population growth and the anticipated strain 
on the world's food supply, it is projected that by 2050, there will be a 
44% increase in the demand for animal-based (AB) products to meet the 
current global consumption trends (Niklewicz et al., 2023). Neverthe-
less, the livestock industry places substantial demands on resources and 
contributes significantly to issues like global warming and pollution 
(Santo et al., 2020). A shift to a more sustainable dietary pattern that 
reduces or eliminates the consumption of AB foods has the potential to 
decrease water usage in food production by 50% and reduce both land 
utilization and greenhouse gas emissions by up to 80% (Aleksandrowicz, 
Green, Joy, Smith, & Haines, 2016). Along with the widespread 
malnutrition concerns, including obesity, undernutrition, and other di-
etary risks (Swinburn, Kraak, Allender, Larijani, & Tootee, 2019), and 
the inequitable distribution of resources around the world, these com-
bined pressures have prompted the formulation of numerous scientific 
objectives concerning balanced diets and sustainable food production. 
The EAT-Lancet Commission and the World Health Organization have 

both established that guiding populations towards wholesome plant- 
based (PB) diets featuring fewer AB foods could yield substantial posi-
tive effects on human, animal, and environmental health (Willett et al., 
2019). 

A diet centred around PB foods is often characterized by a high 
intake of dietary fibre and bioactive compounds sourced from fruits, 
vegetables, whole grains, nuts, and seeds. This dietary approach typi-
cally entails reduced consumption of animal fats and proteins 
(McMacken & Shah, 2017). There exists widespread acknowledgment 
that such a dietary regimen, coupled with a limited intake of salt, 
saturated fats, and added sugars, is strongly correlated with a decreased 
likelihood of premature mortality and provides a protective effect 
against noncommunicable diseases (NCDs). In more specific terms, 
beneficial impacts have been found in different aspects of health, 
especially in developed countries, including weight management, low-
ered blood pressure and cholesterol levels, mitigation of atherosclerosis, 
management of type II diabetes, and a potential reduction in the risk of 
certain cancers, including prostate and colon cancer (Domic, Grootsw-
agers, van Loon, & de Groot, 2022; Sterling & Bowen, 2019). 

* Corresponding author. 
E-mail addresses: Liangzi.zhang@quadram.ac.uk (L. Zhang), ntejera@ebi.ac.uk (N. Tejera), paul.finglas@quadram.ac.uk (P. Finglas), maria.traka@quadram.ac.uk 

(M.H. Traka).  

Contents lists available at ScienceDirect 

Food Chemistry 

journal homepage: www.elsevier.com/locate/foodchem 

https://doi.org/10.1016/j.foodchem.2024.139059 
Received 22 December 2023; Received in revised form 14 March 2024; Accepted 15 March 2024   

mailto:Liangzi.zhang@quadram.ac.uk
mailto:ntejera@ebi.ac.uk
mailto:paul.finglas@quadram.ac.uk
mailto:maria.traka@quadram.ac.uk
www.sciencedirect.com/science/journal/03088146
https://www.elsevier.com/locate/foodchem
https://doi.org/10.1016/j.foodchem.2024.139059
https://doi.org/10.1016/j.foodchem.2024.139059
https://doi.org/10.1016/j.foodchem.2024.139059
http://crossmark.crossref.org/dialog/?doi=10.1016/j.foodchem.2024.139059&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Food Chemistry 448 (2024) 139059

2

The recognition of the positive effects on both health and the envi-
ronment has resulted in a notable increase in the number of individuals 
adopting a PB diet. Up until July 2022, data from the YouGov tracker 
revealed that 2–3% of the population in the UK identified as vegan, and 
63% of them started the diet only in the last five years. Around 5–7% 
classify themselves as various types of vegetarians (“Dietary choices of 
Brits (e.g. vegeterian, flexitarian, meat-eater etc),”, 2023). This trend 
has powered the emergence of PB alternatives in the market over the 
past decade (Kim et al., 2021). The analysis of the National Diet and 
Nutrition Survey 2008–2019 revealed that the consumption of PB 
products between 2008 and 2011 and 2017–2019 doubled in the UK 
(Alae-Carew et al., 2022). A substantial portion of these alternatives are 
recognized as meat analogues, known for their convenience in prepa-
ration and their ultra-processed nature (Bohrer, 2019; Flint, Bowles, 
Lynn, & Paxman, 2023). The European Consumer Survey on Plant-based 
Foods reported that the United Kingdom holds the highest rates of 
purchase and consumption of PB products across categories like milk, 
meat, butter/margarine, cheese, ready meals/food-to-go, and seafood, 
compared to other European countries (European consumer survey on 
plant-based foods - describing the product landscape and uncovering prior-
ities for product development and improvement, 2020). While not all ultra- 
processed foods are necessarily unhealthy, it was found that a significant 
proportion of plant-based products have higher energy density, sodium, 
saturated fat, and free sugars while lacking in dietary fibre when 
compared to unprocessed and minimally processed PB foods (Brooker, 
Hendrie, Anastasiou, & Colgrave, 2022; Gehring et al., 2021). 

Furthermore, it is widely acknowledged that strict PB diets, 
including vegan diets, generally offer a limited supply of specific 
essential nutrients. These include protein, omega-3 fatty acids, vitamin 
B2, B3, B12, vitamin D, iron, zinc, calcium, potassium, selenium, and 
iodine (Bakaloudi et al., 2021; Weikert et al., 2020). However, due to the 
diverse range of existing PB products and the limitations of available 
data on the content of vitamins and minerals, it's a complex task to 
evaluate the sufficiency of these nutrients in current PB products 
(Bryngelsson, Moshtaghian, Bianchi, & Hallström, 2022). Previous 
studies have employed different methods to estimate the micronutrient 
compositions of PB products within various national markets. These 
methodologies include approaches such as recipe calculations (L. Har-
nack et al., 2021), chemical analysis (Ložnjak ̌Svarc et al., 2022), and the 
compilation of fortified nutrient information (D'Andrea, Kinchla, & 
Nolden, 2023). These studies were more focused on either particular 
food groups or a limited selection of individual PB products. 

Given that our understanding of the nutritional profiles of PB prod-
ucts is still limited, it is important that further research be undertaken to 
comprehensively assess the nutritional quality of these products in 
relation to their AB counterparts (Wickramasinghe et al., 2021). This is 
crucial to engaging stakeholders, policymakers and the food industries 
to improve the quality of these products that can contribute towards 
better health and the environment, as well as empower consumers to 
make informed dietary choices. The present study sets out to do a 
multifaceted examination of the majority of the PB products available in 
the UK market in contrast to conventional AB products. Specifically, the 
study aims to evaluate the nutritional compositions of PB products, their 
Nutri-Scores as an indicator of overall nutritional quality, and the scope 
of nutrient supplementation in these products. Furthermore, chemical 
analysis of the amino acid compositions was conducted across four beef 
products and their corresponding PB alternatives. The findings were 
examined, in conjunction with other established references, for their 
potential implications for human health. 

2. Materials and methods 

2.1. Data gathering 

The back-of-pack nutrient information for all available PB products 
in the UK market up until 26th May 2022 was sourced and extracted 

from NIQ Brandbank © 2022. NIQ Brandbank holds the largest central 
repository of grocery products (including foods) in the UK and covers 
98% of the existing products. The following key terms were searched in 
the Brandbank database: including ‘plant-based’, ‘vegan’, ‘vegetarian’, 
‘meat-free', plus a list of PB ranges from major supermarkets and com-
mercial brands that manufacture PB products. A total of 2695 products 
were downloaded for further product screening. Product information 
relevant for the study was extracted, including food name, portion size, 
food group and subgroup, ingredient list, nutrient information for both 
per 100 g and per portion. Products with empty nutritional information 
were excluded from the analysis. 

2.1.1. Back of pack nutrient analysis 
Products falling into the following categories were grouped together 

manually and extracted from the PB products database, including fish (n 
= 22), chicken (n = 104), beef (n = 197), sausages (n = 105), cheese (n 
= 51), milk (n = 33), and ready meals (n = 446). The nutrient contents 
from the product labels were compared to the nutrient contents of the 
corresponding ten generic AB products in each food group. The nutrient 
information for the AB products was sourced from the UK Composition 
of Foods Integrated Dataset (Composition of Foods integrated dataset, 
2021), with the exception of ready meals, where the AB products chosen 
for comparisons were popular selections available in UK supermarkets. 
The nutrients available in the back-of-pack nutrition labels were used for 
comparisons with those from the AB counterparts, including energy, fat, 
saturated fat, carbohydrates, sugars, fibre, protein, and salt. 

2.1.2. Nutri-Score 
The Nutri-Score algorithm was developed to thoroughly evaluate the 

nutritional quality of food products, considering both nutrients and the 
inclusion of beneficial food groups. It has been widely adopted in 
various European countries and is prominently displayed on the pack-
aging of many food items. A Nutri-Score for each product from both PB 
and AB categories was computed from an in-house Nutri-Score calcu-
lator, which was developed based on the algorithm outlined by the 
French Ministry of Health (van der Bend, van Eijsden, van Roost, de 
Graaf, & Roodenburg, 2022). The inputs of the calculator include 
nutrient contents per 100 g of product, energy (kJ), saturated fat, sugars, 
fibre, protein, and salt. The percentage of ‘fruits, vegetables, pulses, 
nuts, and rapeseed, walnut, and olive oils’ is also one of the contributors 
to the final score; however, the percentages of ingredient contributions 
were frequently absent in most products, hence it was not included in 
this particular analysis. The outcome of this computation is a letter 
grade ranging from A to E, with A denoting the highest nutritional value 
and E representing the lowest nutritional value. 

2.1.3. Nutrient supplementations 
The type and scope of nutrients supplemented in the products were 

summarized in PB products. This analysis was based on all PB products 
downloaded from the Brandbank database (excluding products without 
nutrient information) separated in food groups predefined by the data-
base. The nutrient contents of supplemented nutrients are normally 
listed on the nutritional labels of products. The main nutrients identified 
in the downloaded products include vitamin B12, calcium, vitamin D, 
iron, vitamin B2, vitamin E, other Vitamin Bs (niacin, thiamine, and 
vitamin B6), vitamin A, vitamin C, and other vitamins (vitamin K, biotin, 
and Pantothenic acid). 

2.2. Amino acid analysis of beef and PB beef products 

Proteins consist of amino acids linked by peptide bonds and are 
categorised as essential, conditionally essential, or non-essential. Ac-
cording to the nutrient comparison results, PB and AB products from the 
beef group didn't show significant differences in their protein contents. 
Hence, a further amino acid analysis was planned to examine the amino 
acid composition in some example products. Four popular beef products 
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(burgers, mince, meatballs, and pastrami) and their PB beef equivalents 
were purchased from the supermarket Tesco (a supermarket that has the 
highest market share in the UK) in February 2022 and sampled on the 
same day, as detailed in the Supplementary Materials. All the beef 
products contain at least 86–100% beef. For the PB products, PB burgers 
contain textured soy and wheat protein; PB mince contains soy protein 
concentrate and isolate; PB meatballs contain pea protein; and the PB 
pastrami contains wheat gluten and chickpea flour as their main sources 
of protein. 

Amino acid contents in these PB and beef products were determined 
using either acid, alkaline, and performic acid hydrolysis as described by 
Natalia Perez-Moral et al. (Perez-Moral, Saha, Pinto, Bajka, & Edwards, 
2023), followed by LC-MS/MS analysis. A schematic description of 
sample preparation and analysis can be seen in Fig. S1 in the Supple-
mentary Materials, together with the detailed descriptions of the 
experimental procedures. 

2.3. Statistical analysis 

The normality of the data was determined by the Shapiro-Wilk test, 
the Kolmogorov-Smirnov test and QQ plots in each food group for PB 
and AB products separately. For food groups that were not normally 
distributed, the Mann-Whitney test was used to compare the nutrient 
differences (energy, fat, saturated fat, carbohydrates, sugars, fibre, 
protein, and salt) between PB and AB products. For food groups that are 
normally distributed, an independent sample t-test with Welch's 
correction was used due to the different sample sizes for PB and AB 
products. For the amino acid analysis, three biological replicates and 
triplicate injections of each food sample (four beef and four PB beef 
alternatives) were carried out, and all data points from LC-MS were 
averaged +/− the standard deviation (SD) for each food sample. Similar 
to the nutritional analysis, the data was assessed for normal distribution 
using a Shapiro-Wilks test. For normally distributed data, an indepen-
dent sample t-test was conducted, and where data failed to show normal 
distribution, a Mann-Whitney U test was conducted to identify whether 
there was a significant difference between the amino acids contained in 
beef products and their PB equivalents. 

Statistical analysis was performed using SPSS and GraphPad Prism 9. 
The Nutri-Scores were computed by inputting the nutritional informa-
tion from products into a calculator developed in R-Studio®. 

3. Results 

3.1. Back of pack nutrient analysis 

According to the normality test (Fig. S2 and Table S2), cheese and 
fish groups were not normally distributed and were analysed with the 
Mann-Whitney U test. The rest of the food groups were analysed with an 
independent sample t-test with Welch's correction. Fig. 1 shows that all 
seven categories had significantly higher fibre content among the PB 
products compared to the AB products. All categories except beef (P =
0.115) and ready meals (P = 0.593) had significantly higher protein 
content in AB than PB. For salt comparisons, all categories except the 
sausage group had a higher mean salt content in PB products. However, 
the differences in the cheese (P = 0.100) and chicken (P = 0.153) groups 
were not significant. Compared to the recommended 6 g of salt intake 
per day in the UK (Recommendations, 2016), the differences in all food 
groups were minimal (Table 1). The sausage group was the only group 
that had a significantly higher amount of fat in AB products. Other 
groups had an insignificantly higher amount of fat in AB products, 
except fish, chicken, and ready meals, which had an insignificantly 
higher fat content in PB products. With insignificant differences in other 
categories, sugar content was significantly higher in PB chicken prod-
ucts (P < 0.0001), while significantly lower in PB milk products (P =
0.001). In terms of energy content, all categories showed no significant 
difference between PB and AB products. The complete list of P values for 

nutrient comparisons in each food group can be found in Table 1. AB 
cheeses had a significantly lower amount of carbohydrates (19.7 g, P <
0.0001) and a higher amount of protein (18.9 g, P < 0.0001) compared 
to AB cheeses. The largest difference in fibre between AB and PB 
products was found in the beef group, where PB products have 4.3 g 
more fibre (P < 0.0001) than AB products on average. The largest dif-
ference in fat and saturated fat was found in the sausage group, with an 
average of 7.1 g more fat (P = 0.043) and 2.9 g more saturated fat (P =
0.039) in AB sausage products. 

3.2. Nutri-Score 

The Nutri-Score distributions of AB (n = 70) and PB products (n =
958) are shown in Fig. 2. All the AB cheese products had Nutri-Scores at 
the lower end, either E or D, while around 8% of the PB cheeses were 
scored as C, representing a better nutrient composition in some PB 
cheeses. However, in the beef, sausage, and chicken groups, although 
the PB categories have more products with high scores (A or B), they also 
include a small percentage of D and even E (in the sausage group) that 
the AB counterparts didn't have, which represented large variations in 
the nutritional quality in those food groups. In the rest of the food 
groups, including the milk, ready meals, and fish groups, their PB cat-
egories have higher percentages of products with lower scores than their 
AB counterparts. 

3.3. Nutrient supplementations 

Fig. 3 shows the scope of certain nutrients supplemented in PB 
products in each food group. Only food groups containing at least one 
product being supplemented were included, which results in 1485 
products from 11 food groups. Among included products, the ‘milk & 
cream’ group had the highest number of products being supplemented, 
followed by ‘ready meals’, ‘yoghurts’, ‘other drinks’. In general, ‘meat’, 
‘snacks’, ‘ice cream’, and ‘sauces’ were less likely to be supplemented, 
comparing to either all included products or within their own respective 
groups. A detailed breakdown of the numbers and percentages of 
products being supplemented in each food group can be found in 
Table S4. Across all food groups, 15% of all plant-based products had 
been supplemented with vitamin B12, making it the most supplemented 
nutrient compared to other nutrients, followed by calcium, vitamin D 
and iron. Other vitamin Bs (excluding vitamin B12 and B2), vitamin A, 
vitamin C and other vitamins (pantothenic acid, biotin, and vitamin K) 
were the least commonly supplemented nutrients across all food groups. 

Table 2 shows the average amount of nutrients supplemented in 
different food groups, along with the UK Recommended Nutrient Intakes 
(RNIs) of each nutrient for the average population (Recommendations, 
2016). The majority of the food groups had lower average nutrient 
supplementations compared to the RNIs, except for vitamin B12 in some 
food groups, iron and vitamin C in ‘other drinks’, and vitamin A in ‘jams 
& spreads’. All food groups included in the study had products supple-
mented with vitamin B12. ‘Milk & cream’ and ‘yoghurt’ group had the 
least average amount of vitamin B12 supplemented, whereas ‘bacon & 
sausages’ and ‘jams & spreads’ had the highest average. However, the 
high averages do not represent the majority of the products in those 
groups, as they were mostly contributed by a few products that had a 
larger amount of vitamin B12 supplementation. Protein shakes from the 
‘other drinks’ group were the main contributors to the high average 
amounts of iron and vitamin C. 

3.4. Amino acid analysis 

To evaluate the protein quality of PB against AB products we selected 
four representative products from burgers, mince, meatballs, and 
pastrami categories and quantified their individual AA content analyt-
ically. In Table 3, the content of most of the amino acids was signifi-
cantly higher in all beef products except beef mince. For essential amino 
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Fig. 1. Comparisons of the mean (±SD) back of pack nutrient contents between plant-based (PB) and animal-based (AB) products in each food group. Cheese and fish 
groups were not normally distributed and were analysed with the Mann-Whitney U test. The rest of the food groups were analysed with an independent sample t-test 
with Welch's correction. Statistical significance is indicated as follows: *P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P ≤ 0.0001. 
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acids, all beef products had higher contents (both significantly and non- 
significantly) of histidine, methionine, lysine and threonine. For non- 
essential amino acids, all beef products had higher contents of alanine 
and glycine. In all products except meatballs, the PB products had higher 
amount of phenylalanine, GLX, proline, and serine. Table S5 lists the 
detailed average amino acid content for each product. 

To identify the quantity of amino acids in each sample relative to the 
amount of protein in the individual products, the percentage of total 
protein was individually calculated using the sample wet weight 
(detailed in Table S6). The protein contents of PB pastrami and mince 
were slightly higher than those of beef versions, whereas PB meatballs 
only contain 60% of the protein content of beef meatballs. Despite the 
fact that the protein contents in some PB products were higher, when 
plotted as a percentage of total protein in Fig. 4, it was evident that all 
the beef products contained a higher percentage of EAAs compared to 
the PB products. Beef pastrami contained the highest percentage of 
EAAs, followed by beef meatballs, beef burgers, and beef mince. On the 
contrary, PB pastrami had the lowest percentage of EAAs, showing the 
biggest gap in EAA% between the AB and PB versions. Mince and 
meatballs had the smallest gap between the AB and PB versions. 

4. Discussion 

The PB diet has gained popularity in the western world with its claim 
of a dual-edged impact on alleviating the burden of compromised health 
conditions while also addressing the environmental consequences of 
food production. With the growth of novel PB products, this study 
investigated the nutritional profile of these items from different angles, 
particularly within the context of the UK market. Briefly, PB products 
from all food groups consistently exhibit higher fibre contents and lower 
protein contents compared to their AB counterparts. High salt contents 
were detected in some but not all products. As for general nutritional 
quality, PB products are more likely to have higher Nutri-Scores 
compared to AB counterparts, but they also come with larger score 
variations within each food group. The nutrient fortifications were pri-
marily focused on dairy and ready meals. The most frequently supple-
mented nutrient is vitamin B12; however, it was only found in 15% of all 
products. Through the amino acid analysis of four pairs of beef and beef 
alternatives, it was found that all beef products, except beef mince, have 
significantly higher contents of nearly all EAAs. This trend has led to a 
higher proportion of EAAs in comparison to total protein contents in all 
beef products compared to their PB alternatives. 

One of the advantages of PB products is their high fibre content. This 

Table 1 
The mean differences and P values of the back of pack nutrient contents between AB and PB products in each food group (positive indicates higher in AB whilst negative 
indicates higher in PB). Statistical significance is indicated as follows: *P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P ≤ 0.0001.  

Food Groups  Fat (g) Saturates (g) Carbs (g) Sugars (g) Fibre (g) Protein (g) Salt (g) 

Cheese 
P value 0.217 0.217 <0.0001**** 0.217 <0.0001**** <0.0001**** 0.100 
Mean Diff. 5.1 − 2.0 − 19.7 0.3 − 2.3 18.9 − 0.5 

Fish P value 0.557 0.557 0.206 0.818 <0.0001**** 0.004** 0.018* 
Mean Diff. − 1.8 − 0.1 − 5.2 − 0.2 − 2.4 6.3 − 0.5 

Milk 
P value 0.935 0.337 0.685 0.0011** <0.0001**** <0.0001**** 0.935 
Mean Diff. 0.2 0.7 0.6 1.9 − 0.6 1.7 0.0 

Beef 
P value 0.120 0.010** <0.0001**** 0.200 <0.0001**** 0.115 0.006** 
Mean Diff. 3.1 2.5 − 9.9 − 0.6 − 4.3 6.2 − 0.7 

Chicken 
P value 0.574 0.246 0.116 <0.0001**** <0.0001**** 0.004** 0.153 
Mean Diff. − 0.8 0.5 − 6.8 − 1.5 − 4.2 7.7 − 0.4 

Sausage P value 0.043* 0.039* 0.003** 0.621 <0.0001**** 0.000199*** 0.034* 
Mean Diff. 7.1 2.9 − 5.8 0.2 − 2.9 4.5 0.2 

Ready meals 
P value 0.061 0.443 0.834 0.443 <0.0001**** 0.593 0.002** 
Mean Diff. − 3.3 − 0.7 − 0.6 − 0.7 − 2.0 − 1.0 − 0.5  

Fig. 2. The Nutri-Score distributions of AB and PB products for each food category. ‘A' representing the highest nutritional value and ‘E' representing the lowest 
nutritional value. 
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study demonstrated that across all seven food categories, PB products 
exhibited significantly higher fibre content compared to AB products. 
This trend has been observed in numerous studies conducted in different 
countries (Boukid, 2021; Bryngelsson et al., 2022; Clegg, Ribes, Rey-
nolds, Kliem, & Stergiadis, 2021; Cole, Goeler-Slough, Cox, & Nolden, 
2022; L. Harnack et al., 2021; Katidi, Xypolitaki, Vlassopoulos, & Kap-
sokefalou, 2023; Tonheim, Austad, Torheim, & Henjum, 2022). Given 
that plants are known to naturally contain fibre, it logically follows that 
products made with mainly plant sources would inherently have greater 
fibre content, except for those made with primarily isolated plant pro-
teins. Sometimes fibre can be added as a functional ingredient as well 
(McClements & McClements, 2023). Furthermore, the substitution of AB 
products with PB alternatives has been shown to promote overall fibre 
intake in dietary modelling studies (Salomé et al., 2021; Seves, Verkaik- 
Kloosterman, Biesbroek, & Temme, 2017). Insufficient fibre intake is a 
prevalent issue in Western countries (van der Weele, Feindt, Jan van der 
Goot, van Mierlo, & van Boekel, 2019). In the UK specifically, the 

average daily intake of fibre is 19.7 g/d for adults 19–64 years old 
measured from 2016 to 2019, considerably lower than the recom-
mended 30 g/day (Bates et al., 2020). Low fibre intake is closely linked 
to the development of chronic conditions such as cardiovascular disease, 
type 2 diabetes, and cancer (Toribio-Mateas, Bester, & Klimenko, 2021). 
This augmented fibre content provided by PB products has the potential 
to contribute towards aligning the population's fibre intake more closely 
with established recommendations. 

Nevertheless, an improved fibre intake can also be achieved through 
the consumption of traditional PB foods like tofu and tempeh, and even 
more straightforwardly, from minimally processed grains, nuts, seeds, 
vegetables, and fruits. Robust evidence supports their associations with 
increased micronutrient intakes and efficacy in improving health and 
reducing the risk of chronic diseases (Tso & Forde, 2021), and they are 
notably more affordable than the novel PB products (Blanco-Gutiérrez, 
Varela-Ortega, & Manners, 2020). While these foods might not fully 
substitute meat within conventional meat-centred diets (Beardsworth & 

Fig. 3. The number of PB products (total number of products = 1485) in each food group that has specific nutrient supplementations.  

Table 2 
The average amount of nutrients supplemented, stratified by food groups.  

Food Groups Average amount of nutrients supplemented 

Vitamin B12 
(μg/100 g) 

Calcium (mg/ 
100 g) 

Vitamin D (μg/ 
100 g) 

Iron (mg/ 
100 g) 

Vitamin B2 
(mg/100 g) 

Vitamin E (mg/ 
100 g) 

Vitamin A (μg/ 
100 g) 

Vitamin C (mg/ 
100 g) 

Milk & Cream 0.4 142 0.8 9.1 0.2 3 219 37 
Ready Meals 0.9 346  3.1   135 18 
Yoghurts 0.4 122 0.7  0.2 1  4 
Other Drinks 1.9 312 0.9 17.6 1.0 14 741 128 
Cheese 2.2 294 1.2 2.1     
Jams & Spreads 2.8 135 6.8 2.1  29 820  
Meat & Other Deli 0.6 120  4.0 0.2 3   
Snacks 2.1 282 3.6      
Ice Creams & Frozen Desserts 0.8  2.4  0.5 4   
Bacon & Sausages 2.9   5.7     
Sauces & Condiments 1.5 200       
RNIs (adults aged 

19 to 64) 
Male 1.5 μg/d 700 mg/d 10 μg/d 8.7 mg/d 1.3 mg/d – 700 μg/d 40 mg/d 
Female 1.5 μg/d 700 mg/d 10 μg/d 14.8 mg/d 1.1 mg/d – 600 μg/d 40 mg/d  
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Bryman, 2004), their consumption needs improving for western pop-
ulations (Willett et al., 2019). The original intent behind the develop-
ment of novel PB products was to mimic and replace meat, which led to 
the addition of nutrients like sugar, fat, and salt (Aydar, Tutuncu, & 
Ozcelik, 2020; McClements & McClements, 2023; Tachie, Nwachukwu, 
& Aryee, 2023; Tso & Forde, 2021), along with additives and colourings 
(Giacalone, Clausen, & Jaeger, 2022; Hartmann, Furtwaengler, & 
Siegrist, 2022) to enhance the organoleptic properties of these products 
or to replicate the appearance and texture of meat (Nolden & Forde, 
2023). Additionally, they typically contain lower micronutrient contents 
in comparison to traditional plant-based foods, largely attributable to 
food processing (Tso & Forde, 2021). Nonetheless, there are contrasting 

findings concerning salt and particularly sugar (Nolden & Forde, 2023). 
In this study, the average sugar content was significantly lower in PB 
milk products (P = 0.001) but showed a large variation within the group 
compared to AB milks. This broad variation is also observable in 
chicken, beef, sausages, and ready meals. In terms of salt, across all food 
groups except the sausage group, PB products generally exhibit a higher 
average salt content. Yet, the variability in salt content is not as pro-
nounced as that of sugar, and the disparity between PB and AB doesn't 
markedly exceed the daily allowance of 6 g. Hence, the emphasis on 
reducing salt intake should be on decreasing the consumption of foods 
that are generally high in salt, rather than specifically targeting plant- 
based foods. Consequently, it's premature to assume that all PB 

Table 3 
The mean amino acid differences (in grams) and P values in 100 g beef and PB beef products. Values are calculated from the wet weight of the product.   

Amino acid Difference in burgers (AB-PB) Difference in mince (AB-PB) Difference in meatball (AB-PB) Difference in pastrami (AB-PB) 

Essential amino acids 

Tryptophan 0.02* − 0.10** 0.13*** 0.12*** 
Phenylalanine − 0.13*** − 0.39*** 0.03 − 0.71*** 
Histidine 0.25*** 0.04 0.36*** 0.16* 
Methionine 0.17*** 0.16** 0.29*** 0.04 
Lysine 0.89*** 0.12 0.34** 2.96*** 
Leucine 0.01*** − 0.01** 0.02*** − 0.01** 
Isoleucine 0.06* − 0.04 0.22*** − 0.42*** 
Threonine 0.24*** 0.02 0.32*** 0.25** 
Valine 0.15*** − 0.13*** 0.27*** − 0.16 

Non-essential amino acids 

Tyrosine 0.04* 0.12 − 0.04 0.01 
Arginine 0.11*** − 0.29*** 0.02 0.20 
GLX − 0.96*** − 1.02*** 0.45** − 7.52*** 
Proline − 0.40*** − 0.21*** 0.23** − 3.41*** 
Serine − 0.04* − 0.39*** 0.07 − 0.67*** 
Alanine 0.48*** 0.32*** 0.46*** 0.20* 
Cystine 0.16 − 0.55*** 0.02 − 0.16 
Glycine 0.02 0.04** 0.14** 0.17*** 
ASX 0.20*** − 0.76*** 0.08 0.95*** 

Note: GLX is glutamic acid + glutamine. ASX is aspartic acid + asparagine. P values were calculated using an independent sample T-test. Negative values represent 
higher AA contents in PB products. Statistical significance is indicated as follows: *P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P ≤ 0.0001. 

Fig. 4. The amino acids shown as the percentage of total protein in AB and PB equivalent products. EAAs are in colour and the non-essential amino acids are grey. 
The percentage of EAAs: AB burger (37.64%), PB burger (29.38%), AB mince (36.30%), PB mince (32.42%), AB meatball (41.06%), PB meatball (35.98%), AB 
pastrami (43.39%), PB pastrami (24.78%). 
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products have higher levels of health-sensitive nutrients. Given that food 
industries consistently reformulate or introduce new products, it is 
imperative to evaluate them on a case-by-case basis. 

Regarding PB products that exhibit comparable nutrient profiles to 
AB counterparts, they cannot be readily deemed healthy. This study did 
not specifically delve into the ingredient lists of these products, yet 
findings from other studies indicate that novel PB products often have 
longer ingredient lists containing additives like colouring, flavouring, 
binding agents, preservatives, emulsifiers, and more (Giacalone, Clau-
sen, & Jaeger, 2022; Hartmann et al., 2022; Tachie et al., 2023). While 
the precise dose-response associations between prolonged consumption 
of food additives and health outcomes remain uncertain, it's important 
to note that these novel PB products often fall within the classification of 
ultra-processed foods, which have been linked to adverse long-term 
health effects (23). Thus, when evaluating the health impact of pro-
cessed foods, the role of additives and their interactions with other food 
components should not be dismissed (24). In addition, the effects of 
processing itself remain unclear. 

Protein is another key nutrient that was found to be significantly 
lower in most PB products, consistent with findings in other studies 
(Cole et al., 2022; Gorissen et al., 2018; Nolden & Forde, 2023). Even 
within the beef group, where the difference wasn't statistically signifi-
cant, a further amino acid analysis revealed that the content of essential 
amino acids was notably higher in all beef products. The PB burgers and 
pastrami included in this study were made with both wheat and legume 
protein, which could ideally compensate their limiting EAAs, lysine and 
methionine content, respectively (Boye, Zare, & Pletch, 2010; Mariotti & 
Gardner, 2019). However, the contents of histidine, methionine, lysine 
and threonine were consistently lower in all PB products; similar 
limiting EAAs in PB products were also found in previous studies (De 
Marchi, Costa, Pozza, Goi, & Manuelian, 2021; Gorissen et al., 2018; 
Mathai, Liu, & Stein, 2017). In comparison to the recommended AA 
intake published by WHO (Protein and amino acid requirements in 
human nutrition: report of a joint FAO/WHO/UNU expert consultation, 
2007), replacing these AB products with PB alternatives would lead to a 
higher chance of individuals failing to meet the recommended intakes of 
certain AAs. Sustained inadequate intake of a specific amino acid can 
potentially lead to oxidation of the remaining amino acids, which 
further decreases the bioavailability of the digested amino acids (Domic 
et al., 2022; Moehn, Bertolo, Pencharz, & Ball, 2005). The AA discrep-
ancies in AB and PB mince were comparatively less pronounced, pre-
sumably because it was made with soya concentrate and isolates, which 
are deemed to closely resemble animal protein in terms of protein 
quality (Gorissen et al., 2018; Schaafsma, 2000; Vanga & Raghavan, 
2018). However, it shares the same limiting AAs as other PB products, 
likely due to the processing of protein extractions or interactions with 
other components within the food (Meade, Reid, & Gerrard, 2005; 
Rutherfurd & Moughan, 2012; Schutyser, Pelgrom, Van der Goot, & 
Boom, 2015; Singh, Gamlath, & Wakeling, 2007). This highlights the 
importance of obtaining and maintaining, at the national level, accurate 
AA composition data for a variety of ingredients, which should inform 
new PB product development. 

The composition of AAs is one of the key criteria for assessing protein 
quality. However, evaluating protein quality requires consideration of 
other factors, such as the presence of antinutritional components like 
phytate, tannins, and fibre in most plant foods. These components can 
notably decrease the accessibility and digestibility of proteins (Scholz- 
Ahrens, Ahrens, & Barth, 2020; Verduci et al., 2019). While this study 
lacked the necessary resources and data to estimate the content of 
antinutritional factors in the products, it's clear that the combination of 
lower protein content and the potential hindrance of protein absorption 
further reduces the pool of amino acids available for utilization by the 
human body (Forde & Bolhuis, 2022). Nevertheless, protein extraction 
and extrusion techniques could potentially improve the digestibility of 
protein from plant-based products, partially by reducing the content of 
antinutritional factors (Mayer Labba, Steinhausen, Almius, Bach 

Knudsen, & Sandberg, 2022; Pinckaers, Trommelen, Snijders, & van 
Loon, 2021; Singh et al., 2007). When discussing protein adequacy, it's 
essential to take into account the population's status. The average pro-
tein intake within Western populations exceeds recommended levels 
(Mayer Labba et al., 2022; van der Weele et al., 2019). Thus, within the 
general population, a reduction in protein coupled with an enhancement 
in fibre could help achieve a balanced intake of these two nutrients; the 
additional consumption of antinutritional components is shown to be 
beneficial to health as well (Toribio-Mateas et al., 2021; van Vliet et al., 
2021). However, this dietary transition might fall short of providing 
sufficient protein for population groups that have higher protein re-
quirements, such as older adults, people who are pregnant or breast-
feeding, or people with certain medical conditions (Clegg et al., 2021; 
Domic et al., 2022). 

To comprehensively assess the nutritional quality of a product, it is 
advisable to apply a nutrition profiling system that takes into consid-
eration multiple nutrient contents rather than evaluating each nutrient 
individually. The Nutri-Score algorithm serves as an example and is 
extensively used on the front-of-pack of food items in various European 
countries. This system integrates considerations of both nutrients and 
the consumption of beneficial food groups, including fruits, vegetables, 
pulses, nuts, and olive/rapeseed/walnut oil (Hercberg, Touvier, & Salas- 
Salvado, 2021). It ranks the nutritional quality with a single score from 
A to E for each product, simplifying categorization and comparisons 
across foods. In this study, PB products exhibited a broad range of scores 
in all food groups, in contrast to the more consistent scores observed in 
animal products (Katidi et al., 2023). This variance can be attributed to 
the diverse compositions and additives found in PB products, compared 
to the relatively less heterogeneous nature of AB products (Ma et al., 
2022). The contributions of beneficial food groups weren't incorporated 
in calculating the Nutri-Score, given that the ingredient compositions of 
most products don't provide enough information to make accurate as-
sumptions about their proportions. However, it's assumed that the Nutri- 
Score of PB products would likely improve further overall once these 
aspects are factored in. This observation aligns with the earlier nutri-
tional comparisons and underscores that it's inadvisable to make a 
blanket judgment that all PB products are inherently unhealthy or 
healthy. Rather, a more prudent approach involves individualized 
assessment of their overall nutritional quality, additives, inclusion of 
antinutritional factors, and the existence of other key micronutrients 
(Bohrer, 2019). 

Neither nutritional labels nor nutritional profiling systems account 
for most minerals and vitamins (Flint et al., 2023). Special consideration 
is warranted when replacing all animal products with novel PB alter-
natives (Rust et al., 2020). It has been observed that such products tend 
to offer lower amounts of vital elements like calcium, iron, iodine, se-
lenium, vitamin B2, and vitamin B12 (Aimutis, 2022; Bryngelsson et al., 
2022; Clarys et al., 2014; L. Harnack et al., 2021). Especially nutrients 
like vitamin B12, which are exclusive to animal-derived foods. Pro-
longed deficiencies in one or more of these nutrients without regular 
supplementation can give rise to serious health consequences (Gilsing 
et al., 2010). Fortifying nutrients in food products has proven effective 
in maintaining recommended vitamin B12 intake levels without the 
need for supplements (Turner-McGrievy et al., 2008). Within this study, 
a substantial majority of PB products lacked nutrient fortification, 
aligning with findings from previous studies conducted in various 
countries (Curtain & Grafenauer, 2019; D'Andrea et al., 2023; L. J. 
Harnack, Reese, & Johnson, 2022; Walther et al., 2022). Vitamin B12 
was supplemented in just 15% of all products, and approximately half of 
PB dairy products. Another nutrient of concern is iodine, with only 12 
out of 1485 products containing iodine supplementation, a limitation 
also evident in Clegg et al., 2021 (Clegg et al., 2021). Dairy products 
constitute the primary source of vitamin B12 and iodine intake for all 
age groups in the UK (Alzahrani, Ebel, Norton, Raab, & Feldmann, 2023; 
Matte, Britten, & Girard, 2014). Particularly noteworthy is the absence 
of a formal iodine fortification program in the UK. People predominantly 
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obtain iodine from dairy products due to the practice of adding iodine to 
cattle feed, which elevates iodine levels in milk. Without dairy con-
sumption and the inclusion of iodine-fortified PB products, there's a 
significant risk of iodine deficiency (Dineva, Rayman, & Bath, 2021; 
Woodside & Mullan, 2021). Additional concerns for nutrient supple-
mentation include the unstable nature of some nutrients within the plant 
food matrix (Walther et al., 2022), the impact of extensive food pro-
cessing on the bioavailability of sensitive nutrients (Aguilera, 2019). 
Plus, antinutritional components present in plants can interfere with the 
subsequent digestion and absorption of nutrients (Rousseau, Kyomu-
gasho, Celus, Hendrickx, & Grauwet, 2020; Walther et al., 2022). Hence, 
similar to the case with protein, the actual utilization of nutrients by the 
human body including that of fortified nutrients is subject to high 
variability, often differing from what is stated on the nutritional label 
(Forde & Bolhuis, 2022). 

The current study has certain limitations that need acknowledgment. 
The data presented is a snapshot in time, reflective of the UK market, 
particularly the market for novel PB products, which is constantly 
updated (Guess et al., 2023). Employing longitudinal data collection and 
analysis would offer a more accurate representation of market trends. 
Unlike observational human studies, the analysis in this study could not 
directly capture real food consumption habits, making it challenging to 
draw conclusions regarding the extent to which individuals integrate 
these products into their diets. This is important because partial 
replacement of animal products would yield different nutrient and 
health outcomes compared to complete replacements (Derbyshire, 
2017). Due to the limited data available, our assessment was confined to 
the nutrients explicitly mentioned on product packaging, excluding 
other vital micronutrients and plant components that play a pivotal role 
in determining nutritional quality. Matching each PB product with a 
perfect AB alternative proved impractical due to the lack of industry 
standards for compositions and the extensive variation in ingredients 
and food processing methods across different PB manufacturers (Tyn-
dall, Maloney, Cole, Hazell, & Augustin, 2022). Consequently, more 
options for PB products were aligned with fewer, more generic AB 
counterparts. This study does leverage a substantial portion of the 
available product information, filling gaps in existing research by of-
fering an overarching perspective on nutrient compositions, quality, 
supplementation, and by delving into the amino acid profiles of PB 
products. It serves as a guide for future efforts within the food industry, 
indicating the type of data that would facilitate the evaluation of 
product quality, including ingredient proportions and the presence of 
limited micronutrients in PB foods, among others. 

Based on the analysis, it's evident that the current information 
available on food labels falls short of equipping consumers to make well- 
informed choices (Nolden & Forde, 2023; B. Ridoutt, 2023). The study 
did not evaluate the correspondence between health claims and the 
actual nutrient contents. Guess et al. (2023) discovered that these claims 
frequently do not align with the real nutrient composition (Guess et al., 
2023). These novel products are generally more expensive and convey a 
perception of being superior for both health and the environment (B. 
Ridoutt, 2023; Sadler et al., 2022). While PB products do exhibit a more 
favourable environmental impact compared to animal products (Boukid, 
2021; Bryant, 2022; Carlsson Kanyama, Hedin, & Katzeff, 2021), the 
complexity of processed foods, involving numerous stages before 
reaching the final product, requires a standardized and comprehensive 
evaluation of the impact at each step (B. Ridoutt, 2023; Rosi et al., 
2017). Unfortunately, the methods to evaluate environmental impact 
are currently quite diverse, making it challenging to apply one specific 
set of indicators to a wide range of food products (Andreani et al., 2023). 
Furthermore, studies have highlighted that a diet that is beneficial for 
the environment may not necessarily be good for health, and vice versa 
(González-García, Esteve-Llorens, Moreira, & Feijoo, 2018; Heerschop, 
Kanellopoulos, Biesbroek, & van ‘t Veer, P., 2023; B. G. Ridoutt, Baird, & 
Hendrie, 2021). This complexity further underscores the need for in-
dividuals to be well-informed about their specific nutritional needs, 

which is rather difficult without consulting a healthcare professional, e. 
g., a dietitian. Therefore, it is currently challenging to achieve a balance 
that considers both the environmental and health impacts of one's diet 
and lifestyle. Innovations in food labelling that address both aspects 
have the potential to contribute to achieving this goal. 

This study employed a large dataset containing product information 
from a significant portion of the food products available in the UK 
market. It encouraged efforts to utilize such a dataset to disseminate 
scientific findings related to food quality that can shape our food system 
and enhance population health. Future investigations can extend to 
other dimensions of the collected data, such as ingredients and health 
claims, leveraging machine learning and data mining technologies to 
uncover correlations between these attributes and product nutritional 
quality. Estimations on nutrient digestibility and bioavailability can also 
be done potentially when ingredient data are linked to relevant nutri-
tional and antinutrient compositions (Hunt, 2003). This approach holds 
the potential to catalyse transformative changes in our food systems by 
emphasizing holistic nutrient quality, empowering consumers (Cutro-
neo et al., 2022) and promoting improved product formulations. The 
continuous collection and analysis of data can deliver the information 
needed for monitoring the food supply chain and understanding dy-
namics of the food system (Wickramasinghe et al., 2021). Moreover, it 
enables regulators and policymakers to swiftly adapt and refine food 
policies (B. G. Ridoutt, Hendrie, & Noakes, 2017). 

5. Conclusions 

Through the analysis of the nutritional information of the majority of 
the PB products within the UK market, it was evident that, in general, PB 
products have a higher amount of fibre, a lower amount of protein, and a 
varied nutritional profile compared to their AB counterparts. However, 
the determination of their overall healthfulness is not straightforward 
and hinges on several factors. These include ingredient compositions, 
additives, nutrient fortifications, personal nutrient requirements, and 
the extent to which these products are integrated into individual diets. In 
making decisions about their health merits, it's essential to weigh these 
considerations on a case-by-case basis. Collaborative efforts and sharing 
of data involving stakeholders, food manufacturers, and policymakers 
are pivotal to empowering consumers to make well-informed choices, 
standardize methods for assessing environmental impact, enhancing 
product transparency, and improving our food system and supply chain. 
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