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Abstract 

Undisturbed sleep is important at any age, but especially during development, when sleep is necessary 

for healthy brain maturation. However, during sleep, the brain continues to receive and process 

sensory input from the environment, awaking if necessary. The brain needs to achieve the right 

balance between processing sufficient input and protecting underlying processes from sensory 

disturbance. This thesis aims to understand the mechanisms that link disrupted sleep and sensory 

sensitivities, two symptoms that are common in autistic individuals, starting early in development. One 

potential reason why these symptoms often co-occur is that ineffective gating of sensory input disrupts 

sleep, though other reasons include sleep difficulties causing sensory issues, or both symptoms sharing 

an underlying cause. This thesis investigated whether there is support for a causal relationship from 

sensory processing differences to sleep difficulties, focussing on infancy. First we showed that an 

objective neural measure of sensory gating predicts sleep onset latency in 10 month-old infants, but 

not night awakenings (Chapter 2). A first indicator that poor gating of sensory input may drive at least 

some aspects of sleep difficulties. To further explore causality, we analysed a longitudinal secondary 

dataset with measurements of sensory profiles and sleep onset and maintenance at 5, 10 and 14 

months in infants at typical and elevated likelihood for autism (Chapter 3). We examined the 

directionality of effects – whether sleep difficulties predict sensory differences or vice versa – but 

found no evidence for either. Instead we found that infants that woke up frequently at night tended to 

have heightened sensory profile across the course of the study, indicative of a common underlying 

mechanism driving both sleep and sensory profiles. Then we conducted an experimental study to 

assess the effect of sensory input on sleep and the interaction with sensory profiles (Chapter 5). We 

investigated sleep protective markers, such as slow waves and sleep spindles, and arousibility. Before 

doing so, we ensured that these measures could be reliably detected in our infant dataset by improving 

the performance of an automated algorithm originally designed for adults (Chapter 4). We found 

tentative evidence that sensory input during sleep disrupts sleep spindle production only in infants 

that are more hypersensitive. We also found that infants with heightened sensory profiles tended to 

have lower slow wave activity and higher arousal levels, irrespective of the sensory environment. 

These findings indicate that already early in development sleep and sensory processing are 

intertwined. We find more support for a common underlying mechanism driving both sleep and 

sensory differences, rather than sensory differences causing sleep difficulties. 
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Introduction to the thesis 

When we fall asleep, the world around us seems to disappear and we drift between unconscious states 

and dream worlds. Yet, reality around us does still exist and while we might not always be aware of it, 

we are still monitoring what is happening within the vicinity of our senses. Luckily we do still monitor 

the world around us - if we did not, our species might not have survived. A sleeping animal is extremely 

vulnerable to predation and therefore needs to maintain some vigilance. However, sleep also 

performs many vital functions necessary for survival (Rasch & Born, 2013; Rechtschaffen, 1998). Some 

of these processes likely rely on being in a disconnected state, undisturbed by interfering sensory 

signals. A balance between these two opposing needs has to be achieved during sleep. To do so, a 

system is in place that selectively tunes into the environment when something important requires our 

attention, whilst maintaining sleep when input can safely be ignored. Andrillon et al. (2020) introduced 

the term ‘vigilant sleeper’ to describe this phenomenon, though other terms have been used as well, 

such as ‘a standing sentinel’ (Blume et al., 2018) or ‘a night watch’ (Tamaki et al., 2016).  

Interestingly, the selective tuning into the environment depends on the internal state of the sleeper 

and the type of environment they live (and sleep) in (Beck et al., 2021; Cordi et al., 2019). In an 

environment that is perceived as ‘risky’, an animal might sacrifice deep sleep for increased vigilance. 

For example, when a dove sees a predator before going to sleep, it will ‘peek’ more during sleep than 

usual (Lendrem, 1984). A human sleeper in an unfamiliar environment will also be more vigilant, 

showcased by the ‘first night effect’ (Agnew Jr et al., 1966; Tamaki et al., 2016) - sleep is more 

superficial and prone to disturbance when individuals sleep in an unfamiliar environment, such as in 

a sleep lab for the first time. High vigilance is then prioritised over deep sleep. The opposite also 

happens, where deep and restorative sleep is prioritised over sensory connection to the environment 

following physical or mental exertion. For example, deep sleep improves after physical activity (Park 

et al., 2021) or after sleep deprivation (Ferrara et al., 1999). Sleep also deepens after a learning 

experience, promoting memory consolidation (Crupi et al., 2009; Pugin et al., 2015).  

Furthermore, across the lifespan, sleep architecture changes, with more and deeper sleep during 

childhood compared to adulthood (Ringli & Huber, 2011), likely reflecting the need for sleep for 

learning and brain development. Infants in particular spend large amounts of the day asleep and their 

sleep patterns as well as brain activity during sleep undergo stark changes in the first year of life 

(Lenehan et al., 2023). Having sufficient sleep is important at any age, but may be especially important 

during early development (Henderson et al., 2010; Joseph et al., 2015), when sleep plays a crucial role 

in brain development by regulating cortical plasticity (Frank et al., 2001; Li et al., 2017), and early sleep 

predicts behavioural outcomes and mental health later in life (Cook et al., 2020; Jaramillo et al., 2023).  
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Besides state-like differences that change from day-to-day or over longer developmental periods, 

there are also trait-like differences in sensory responsiveness to the environment during sleep. Some 

individuals will always wake up more easily from sensory input than others (Bonnet et al., 1978). 

Individuals with neurodevelopmental conditions often have sleep difficulties (Cortese et al., 2009; 

Kamara & Beauchaine, 2020), such as waking up frequently at night and prolonged sleep onset 

(Deliens & Peigneux, 2019) and these symptoms emerge early in life (MacDuffie et al., 2020), 

potentially influencing the progression of the condition.  

Many autistic individuals experience sensory processing differences, such as poor gating of sensory 

input, during wakefulness (Chamak et al., 2008; Piccardi et al., 2021), but it is unclear whether this 

extends to sleep. These sensory symptoms tend to emerge early in development (Guiraud et al., 2011; 

Kolesnik et al., 2019), together with sleep difficulties (Begum-Ali et al., 2023).  While sensory 

processing differences and sleep difficulties are associated, both in autistic and non-autistic individuals 

(Appleyard et al., 2020; Lane et al., 2022), it is poorly understood how variation in sensory processing 

translates into sleep difficulties. One hypothesis is that poor gating or filtering of irrelevant sensory 

input persists during sleep and interferes with sleep onset and maintenance. Understanding this could 

help inform the development of appropriate interventions for sleep difficulties in infants with sensory 

processing differences, irrespective of autism diagnosis. 

The main aim of this thesis is to investigate why infants who have altered sensory processing so often 

also have sleep difficulties. In particular, the idea that sensory differences lead to sleep difficulties, 

due to poor gating mechanisms is explored. First, we ask whether an objective measure of poor gating, 

and not just subjective rating of a range of infant sensory behaviours, during wakefulness predicts 

worse sleep initiation and maintenance. Then, to assess causality, two approaches are taken. First, 

using a longitudinal design, the directionality between sensory processing differences and sleep onset 

and maintenance is explored in the first year of life, using caregiver reports. Second, using an 

experimental design, the effect of sensory input on sleep is assessed in relation to an infant’s sensory 

profile. Here we ask whether infants who are scored as highly sensitive by their caregiver have altered 

sleep using objective sleep measures and whether this depends on the presence or absence or sensory 

input.  

 

 

 

 



3 
 

  

Chapter 1.  

General Introduction 
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Three main topics will be introduced in this chapter. The first part will discuss current theories on 

mechanisms of sensory (dis)connection during sleep. The second part overviews changes in sleep 

during development and the importance of sleep in brain development, with a particular focus on the 

first year of life. Lastly, sensory processing differences in autistic and non-autistic individuals will be 

covered, particularly focussing on the relationship with sleep. Finally, a detailed overview of the 

following chapters will be provided.   

1.1 Sensory processing during sleep 

The flow of sensory information to the cortex gradually decreases when we fall asleep and drastically 

declines when deep sleep is reached. Whether sensory input reaches the cortex heavily depends on 

vigilance state and alertness levels during wakefulness (Livingstone & Hubel, 1981). Intracellular 

recordings in cats demonstrate that during wakefulness 90% of incoming visual input reaches the 

cortex, which diminishes to 70% during drowsiness and 40% during deep sleep (Coenen & Vendrik, 

1972). This reduction in efficiency of sensory processing is called sensory gating. Reduced sensory 

processing and responsivity to the environment are key elements that define sleep, and make it 

distinct from wakefulness. The gating of sensory input facilitates and protects sleep.  

When an external stimulus is propagated from the periphery to the cortex, it inevitably needs to pass 

the thalamus. That is the case for all sensory modalities except for olfaction, which is the only sense 

that can bypass the thalamus (Öngür & Price, 2000). From the thalamus, signals are propagated to 

layer 4 of the primary sensory cortices (see Fig. 1.1). Sensory input is then modulated by neurons in 

layer 5 and 6, before cortico-thalamic neurons project back to the thalamus. These cortico-thalamic 

neurons also have axons that project to the thalamic reticular nucleus (TRN) and local thalamic 

interneurons, which both inhibit thalamic relay neurons. From there, signals are transmitted to higher-

order integrative cortical areas and elsewhere in the cortex. This complex thalamo-cortico-thalamic 

system and all its modulatory input yield gain modulation, adjusting the sensitivity of neurons to 

sensory input (Ferguson & Cardin, 2020). This process is crucial for the state-dependent modulation 

of sensory input (Livingstone & Hubel, 1981). So how is the gating of sensory input achieved during 

sleep?  
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Figure 1.1 Thalamo-cortico-thalamic loop. Sensory input arrives at thalamic neurons (blue), which pass the signal 

on to Layer 4 of the primary sensory cortices. There the signal is modulated by Layer 5 and 6 neurons and passed 

back to the thalamus (red). Additionally, axons projecting to the thalamic reticular nucleus (TRN) and thalamic 

interneurons (black) inhibit thalamic relay neurons. Figure from Briggs & Usrey (2008). 

1.1.1 Mechanisms of sensory (de-)coupling during sleep 

In 1994, McCormick & Bal proposed a mechanism for sensory disconnection during sleep: the thalamic 

gating hypothesis, a theory that has been influential for many years. McCormick & Bal suggested that 

sensory input is blocked at the level of the thalamus during sleep, preventing it from reaching the 

cortex. The thalamus was considered a likely gatekeeper because it receives and propagates most of 

the sensory input. However, accumulating evidence shows that this thalamic gate can be breached 

during sleep, even without eliciting a behavioural response. For example, it is possible to encode 

sensory stimuli during sleep, as evident from evoked potentials in primary sensory cortices to auditory 

and visual stimuli (Portas et al., 2000; Sharon & Nir, 2018). Furthermore, more complex processing of 

stimuli is still possible during sleep. The brain is able to discriminate meaningful from non-meaningful 

stimuli during sleep, a process which goes beyond the encoding of stimuli. For example, two early 

influential studies demonstrate that a sleeper’s arousal threshold - the sound intensity required to 

wake up - depends on the stimulus saliency, irrespective of the stimulus intensity. In one of these 

studies, adult sleepers are more likely to wake up when hearing their own name than another name 

(Oswald et al., 1960). In the second study, new parents were awoken more often from the cries of 

their own baby than from an unfamiliar baby (Formby, 1967). Even without a behavioural response, 
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familiar voices and names and emotional tones elicit enhanced neural responses compared to 

unfamiliar voices and names and unemotional tones (Blume et al., 2017, 2018). Furthermore, the 

violation of simple auditory rules and arrhythmic facts can (at least partially) be detected (Ruby et al., 

2008; Strauss & Dehaene, 2019; Tamaki et al., 2016). For example, sleepers can detect deviations in 

repetitive auditory input as evidenced by enhanced neural responses, in most sleep stages, but less 

often in the deepest sleep stage (Ruby et al., 2008; Tamaki et al., 2016). These studies show 

overwhelming evidence for sensory processing during sleep which would not be possible with strict 

thalamic gate. However, there are still limitations to the cognitive processes that are possible during 

sleep and with increasing sleep depth, sensory processing becomes less likely. In fact, the level of 

sensory disconnection is not equal across sleep states.  

During sleep, distinct states are identified based on differences in activity patterns. In mammals, sleep 

is divided into Rapid Eye Movement (REM) sleep and non-REM (NREM) sleep. In humans, NREM sleep 

is further divided into N1, N2 and N3, the latter also called slow wave sleep (SWS). See box 1 for more 

information on sleep stages in humans and an examples of brain activity in each sleep stage. Arousal 

thresholds are lowest in N1, higher in N2 and REM and highest in N3 (Bonnet et al., 1978; Ermis et al., 

2010; Keefe et al., 1971). Because NREM sleep and REM sleep show such fundamentally distinct 

activity patterns, different gating mechanisms likely operate during both states. As NREM sleep is the 

focus of this thesis, potential mechanisms of sensory decoupling during NREM will be discussed, but 

see Andrillon & Kouider (2020) for potential mechanisms during REM sleep. 
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In humans, sleep is divided into four distinct sleep stages: N1, N2, N3 and REM (Iber et al., 

2007). These sleep stages can be distinguished using polysomnography, which includes the 

measurement of electroencephalography (EEG), electro-oculography (EOG) and 

electromyography (EMG). See figure 1.2 for examples of EEG activity in each sleep stage. 

Sleep stage N1 is the lightest sleep stage, and the transition between wake and sleep. In this 

stage, alpha waves, that are seen in quiet wakefulness, start to disappear and replaced by 

slower oscillations amidst low amplitude, mixed frequency background signal. Sleep stage N2 

is marked by the appearance of sleep spindles and K-complexes. The start of N2 is sometimes 

considered the true onset of sleep. The deepest sleep stage N3 or SWS, is dominated by large 

slow waves, with high amplitudes (> 75µV) and low frequencies. Finally, REM sleep is 

characterized my low amplitude, mixed frequency EEG activity that resembles wakefulness. 

However, it is accompanied by muscle atonia and characteristic rapid eye movements. 

Sometimes sharp sawtooth waves and theta waves can be seen in the EEG signal, which 

indicate the sleeper is in REM sleep. Typically, a sleeper cycles through all sleep stages in cycles 

of 90 min, with more REM sleep towards the end of the night and more SWS in the first half 

of the night. 

Box 1. Sleep stages in humans 

Figure 1.2 EEG activity during different sleep stages. Figure adapted from Britannica (2024) and Dutt et 
al. (2023). 
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Due to the accumulating evidence that the thalamic gate can be breached during sleep, a new gating 

mechanism was proposed, the cortical gate (Esser et al., 2009), as a complementary mechanism to a 

partial thalamic gate (see Fig. 1.3). This was based on observations of cortical connectivity across 

different vigilance states. Direct stimulation of the cortex by transcranial magnetic stimulation (TMS) 

shows that during NREM sleep the effective connectivity between cortical regions declines and 

induced activity is limited to the area of stimulation (Massimini et al., 2005). During wakefulness in 

contrast, activity rapidly spreads to other cortical regions. The decline in connectivity during NREM 

sleep, and therefore the diminished propagation of signals between regions, could explain the loss of 

responsiveness to the environment, whilst also explaining occasional evoked activity seen in the 

cortex. What is it about NREM sleep that induces this reduction in connectivity? 

 

Figure 1.3  Sensory gating mechanisms during sleep. The thalamic gating hypothesis suggests that sensory input 

is gated on the level of the thalamus. The cortical gating hypothesis suggests that the breakdown of functional 

connectivity during NREM sleep explains the partial sensory disconnection. Figure adapted from Andrillon & 

Kouider (2020). 

During NREM sleep, and in abundance during N3, the activity pattern is dominated by large slow waves  

(SWs), which have a frequency of 0.5-4 Hz (See box 1). The large SWs visible in the scalp EEG result 

from synchronized firing patterns across neural networks. This is due to individual neurons that 

alternate between  active (or ON or up) states and inactive (or OFF or down) states in cycles of 1 Hz, 

called the slow oscillation or slow rhythm (Timofeev et al., 2020). When large amounts of neurons 

exhibit the slow oscillation synchronously, SWs appear in the scalp EEG signal. The ‘up states’ refer to 

the resting membrane potentials of neurons which are depolarized. In a depolarized state, neurons 

are slightly more positively charged on the inside, making it easier for a neuron to fire. In contrast 

during ‘down states’, membrane potentials are hyperpolarized, meaning they are more negatively 

charged on the inside, which prevents the neurons from firing (Steriade et al., 1993). During the up 
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states, neurons fire in bursts, which can both be inhibitory or excitatory. The terms up- and down- 

states are more often used when referring to intracellular processes, while active or ON and inactive 

or OFF are commonly used relating to neural firing patterns (Adamantidis et al., 2019). SWs reflect bi-

stable dynamics of the brain, where active states are inevitably followed by inactive states. How bi-

stability exactly reduces cortico-cortical communication and the effective breakdown of connectivity 

in the cortex is debated. Rosanova & Timofeev (2005) suggest that the inevitable down state that 

follows an up state interrupts signal transmission and causes the breakdown of functional connectivity 

during periods of high bi-stability. Indeed, during a slow wave down state, stimuli can still elicit 

responses in primary cortices, but signal propagation in higher cortical areas is particularly affected 

(Schabus et al., 2012). However, Esser et al. (2009) argue that effective communication between 

cortical areas happens on a shorter timescale than a SW, therefore the transition from an up- to 

downstate would not truly interrupt signal transmission between cortical areas. Esser et al. suggest 

that additional mechanisms have to be in place to achieve the reduced effective connectivity. Through 

computational modelling, they find that the most likely mechanism that creates the cortical gate 

during SWS is an increase in the ratio of evoked inhibitory to excitatory synaptic responses, which are 

the consequence of reduced levels of arousal promoting neuromodulators, such as acetylcholine, 

during SWS.   

That SWs de-couple the sleeper from their sensory environment is supported by the fact high slow 

wave activity (SWA) is related to high arousal thresholds (Neckelmann & Ursin, 1993) and the higher 

SWA before a stimulus, the less likely a behavioural arousal will follow (Hayat et al., 2020). SWs are 

therefore a marker of sleep depth and sensory disconnection. SWs determine the extent to which an 

incoming stimulus is processed and can therefore be considered as a passive form of sleep protection. 

I will refer to these SWs as spontaneous, in contrast with evoked SWs that are elicited by sensory input, 

actively promoting sleep over wakefulness. The factors that determine the amount and strength of 

spontaneous SWs will be discussed further in section 1.1.2. 

External stimulation can on the one hand disrupt sleep by causing an awakening, but on the other 

hand it can also promote sleep by enhancing SW production. Bellesi et al. (2014) propose a mechanism 

in which SWs are enhanced through acoustic stimulation. They suggest that just like during 

wakefulness, auditory stimulation can activate ascending pathways. For a mild stimulus, only parts of 

the ascending pathways are activated, while an intense stimulus could fully activate the ascending 

pathways, resulting in an arousal or full-blown awakening. Issa & Wang (2011) indeed find that 

stimulus intensity affects the processing of sensory input differently during SWS compared to wake. 

Quiet sounds evoke weak responses in the primary auditory cortex during SWS, much weaker than 

during wakefulness. However, for loud sounds, neurons are activated similarly during SWS and wake. 
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According to Bellesi et al. (2014), partly activating the ascending pathways, and thus not arousing the 

sleeper, still leads to depolarization of many cortical neurons. Due to the bi-stable dynamics during 

sleep, synchronous depolarization will induce a large hyperpolarization. This leads to an enhanced 

slow wave with a larger amplitude and steeper slope, that is more widely distributed than a 

spontaneous slow wave. Indeed, when a stimulus is presented during the up state of a SW, which is 

the depolarized state, it can induce a train of SWs (Ngo et al., 2013), which promotes and deepens 

sleep. However, during the down state of a slow wave, an incoming stimulus does not enhance SWs. 

Therefore, the fate of an incoming stimulus and whether it promotes or disrupts sleep is highly 

dependent on the ongoing brain activity at the time of stimulus presentation, in addition to the 

properties of the stimulus, such as its intensity and saliency. 

K complexes. Besides trains of SWs, sensory stimulation can also induce isolated SWs, most easily 

visible in sleep stage N2, called K-complexes. The ‘K’ is derived from the word ‘knock’, as the large 

slow wave was such a noticeable response to ‘knocking on the sleeper’s door’ (Loomis et al., 1935a). 

K-complexes occur exclusively during NREM sleep, either spontaneously or evoked by any sensory 

stimulus (Cigánek, 1961; Goff et al., 1966), but most easily by auditory stimulation (Riedner et al., 

2011). K-complexes have a refractory period of 10-15 seconds, in which a new K-complex cannot be 

elicited (Colrain, 2005). The function of K-complexes has been debated for decades as it seems to mark 

responsiveness to the environment as well as sensory gating. In recent years, a dual function has been 

proposed that underpins a self-inhibitory function (Halász, 2016). Evoked K-complexes start with an 

initial modality-dependent response (P200) in distinct cortical areas that is followed by a large 

downstate (N500) and terminates with a large up state again (P900) (Laurino et al., 2014; Riedner et 

al., 2011). In a self-inhibitory scenario, a stimulus of any modality would trigger a subsequent global 

silencing, largest in prefrontal areas, that interrupts cortical propagation and processing of the signal 

and therefore protects sleep (Fig. 1.4). Indeed, evoked activity resulting in a P200 response that is not 

followed by a large downstate is associated with further sensory processing, whilst the presence of a 

downstate is associated with further suppression of stimulation (Andrillon et al., 2016). Not only the 

function of K-complexes has been debated heavily, but also its relationship with SWs. One suggestion 

is that K-complexes are forerunners of SWs (Amzica & Steriade, 2002; De Gennaro et al., 2000). Indeed 

they are more easily elicited the closer they are to a transition from N2 to N3, which is rich in SWs (De 

Gennaro et al., 2000). Halász (2016) proposes a slightly more nuanced version in which K-complexes 

and SWs are part of a continuum of reactive sleep elements, where K-complexes are situated in 

between evoked potentials and SWs. In both views, K-complexes are isolated elements that resemble 

a slow wave with its bi-stable nature, which attempts to preserve sleep in response to a stimulus.  
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Figure 1.4 Evoked slow wave. P = Posterior; A = Anterior. Figure from Andrillon & Kouider (2020). 

Sleep spindles. While many studies point at SWs as a potential mechanism that decouples the sleeper 

from its environment, SWs are not omnipresent throughout NREM sleep and can therefore not be the 

only mechanism of sensory disconnection. Another oscillation in NREM sleep has been associated with 

sensory disconnection, namely sleep spindles. Sleep spindles are short burst of activity in the sigma 

range (11 – 16 Hz) and a hallmark feature of sleep stage N2, although they are also present in N3 (See 

more detail in section 1.1.3).  

The spindle gating hypothesis proposes that sleep spindles serve as protective elements, shielding the 

cortex from external input and thus promoting sleep maintenance. According to this theory, sleep 

spindle activity contributes to the effective gating of incoming sensory input, which ultimately 

decreases arousibilty. A growing body of literature supports this theory. An fMRI study shows that the 

signal transmission of simple tones is indeed limited during a spindle event, whilst being similar to 

responses during wakefulness when presented outside of a spindle event (Schabus et al., 2012). Not 

only is the flow of input interrupted, elevating sleep spindle power in mice through genetic 

overexpression of SK2-channels, that underlie spindle generation, is also accompanied by an elevation 

in arousal threshold (Wimmer et al., 2012). Even in humans, the pharmacological upregulation of sleep 

spindles raises the arousal threshold (Johnson et al., 1976). Additionally, individuals with more 

spindles per minute tend to be more resilient to waking up from external noise (Dang-Vu et al., 2010). 
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However, the spindle gating hypothesis is not supported by all findings. In rats, neuronal and local 

field potential (LFP) responses to a range of auditory stimuli, salient and non-salient, were similar in 

the presence or absence of a sleep spindle (Sela et al., 2016). In humans, neither cortical nor thalamic 

responses to nociceptive stimuli during sleep were affected by the presence of a sleep spindle (Claude 

et al., 2015), questioning whether sleep spindles facilitate sensory gating to any extent. 

Another aspect which remains unclear is whether sleep spindles passively protect the brain from 

sensory interference or whether they are reactive elements and are upregulated in the face of noise. 

Research in favour of the latter suggests that sleep spindle density increases during a “stimulation 

period”, when the participant’s own name was spoken by a familiar or an unfamiliar voice  (Ameen et 

al., 2022) and that intervals between spindles are shorter and spindle duration is longer in periods 

with stimulation (Sato et al., 2007). However, a study using transportation noise did not find an 

upregulation of sleep spindles and described a shortening of sleep spindles rather than lengthening 

(Rudzik et al., 2018). Similarly in rats, sleep spindles tend to be terminated prematurely by auditory 

input (Sela et al., 2016). 

These seemingly contradictory results question whether and how sleep spindles actually gate sensory 

input. In their comprehensive review on sleep spindles, Fernandez & Lüthi (2020), suggest that the 

evoked responses seen during sleep spindles could indicate a cortical rather than thalamic gating 

mechanism of sleep spindles. Indeed, sleep spindles have a refractory period, 5-10 seconds in which 

a new sleep spindle cannot be initiated, which suggests there are lasting changes in the brain after a 

spindle event. So rather than individual sleep spindles gating incoming input, periods of increased 

sleep spindle activity might reflect a period of sensory disconnection. Indeed, humans and mice show 

infra-slow fluctuations during sleep around 50 seconds (Lázár et al., 2019), with phases more and less 

vulnerable to external perturbation (Lecci et al., 2017; Yüzgeç et al., 2018). Periods of less vulnerability 

are rich in sleep spindles compared to highly vulnerable periods.  

Another question which remains is which features of sleep spindles contribute to effective gating, if 

they do so at all. A recent study in rats argues that not only the mere amount of sleep spindles matters, 

but the quality too, as the muscle activation in response to an auditory stimulus is lower in spindles 

with high - compared to low oscillatory strength (Blanco-Duque et al., 2024). This is interesting as sleep 

spindle characteristics such as amplitude and duration change with age (Crowley et al., 2018; Scholle 

et al., 2007), as will be addressed in more detail in section 1.2.3 and Chapter 4, and are often also 

affected in neurodevelopmental conditions (Herrera & Tarokh, 2024).  
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Although it is unclear if and how sleep spindles protect sleep, the majority of studies finds at least an 

association between sleep spindles, either quality or abundance, and responsiveness to the sensory 

environment.  

Interestingly, sleep spindles originate in the TRN, a structure which is paramount in the processing of 

sensory input and part of the thalamo-cortical loop. More on the origins of sleep spindles will be 

discussed in section 1.1.3. 

Local sleep and arousals. Lastly, an emerging theory on how a degree of vigilance is maintained during 

sleep is the phenomenon of local sleep and wake states. Sleep rhythms, such as slow waves, can 

appear locally and asynchronously (Siclari & Tononi, 2017). Also during wakefulness, local slow waves 

can intrude the awake brain activity, predicting lapses of inattention (Andrillon et al., 2021). One 

interesting study shows that during the first night in a novel environment the brain exhibits differences 

between hemispheres in vigilance states. One hemisphere will show deeper sleep than the other 

(Tamaki et al., 2016). Tamaki and colleagues describe this phenomenon as a ‘night watch’. 

Interestingly, the more vigilant hemisphere showed not only enhanced neural responses to deviant 

sounds compared to the ‘sleepy’ hemisphere, but also more arousals when a stimulus was detected. 

This ‘night watch’ effect is even more pronounced in marine mammals that sleep with one hemisphere 

at a time (Dill et al., 1964). Furthermore, in response to stimulation, slow waves and sleep spindles 

can increase in one region, but decrease in another (Andrillon et al., 2016). Potentially local arousals 

during sleep can present regional windows to monitor the environment, whilst promoting sleep in 

another to prevent full blown awakenings.  

In conclusion, while the flow of sensory input to the cortex is reduced during sleep, it is clear that 

some sensory input, depending on the saliency, can still reach the cortex during sleep. In NREM sleep, 

a cortical gate, alongside a partial thalamic gate, may explain selective processing of sensory input 

during sleep. Oscillations such as sleep spindles and slow waves may mediate the balance between 

sensory coupling and decoupling to the environment. Sleep spindles potentially reduce the flow of 

sensory input to the cortex, however, there is evidence supporting and opposing this theory. Slow 

waves, driven by underlying neural bi-stability, may establish the cortical gate by reducing the 

communication between cortical regions, explaining elevated arousal thresholds with deepening 

NREM sleep. Additionally, local sleep rhythms could explain selective processing of sensory input 

without necessarily arousing the sleeper. In this thesis, I do not go further into the local aspects of 

sleep. Instead, I focus on slow waves and sleep spindles, which are linked to sensory de-coupling 

during sleep and are altered in neurodevelopmental conditions, the latter is discussed further in 

Chapter 5.  
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Interestingly, both sleep spindles and slow waves have dual properties: They occur spontaneously, 

influencing incoming stimulation, and evoked, in response to stimulation. This underscores the 

influence of active strategies besides passive mechanisms that protect sleep from perturbation. 

Environmental and inter-individual differences may modulate both spontaneous and evoked brain 

activity. In Chapter 5, those dual properties are investigated in depth in individuals with a variety of 

sensory profiles.  

In the next section of the introduction, I will go more in depth into the biological origins of these 

oscillations and discuss how they are generated as well as functions besides sensory gating. 

Understanding where SWs and sleep spindles come from is important to understand which factors 

may influence their spontaneous and evoked presentations. In Chapter 5, we look at whether 

spontaneous and/or evoked oscillations are altered depending on an infant’s sensory profile. 

1.1.2 Slow waves and K-complexes 

How are slow waves and K-complexes generated? 

Slow waves and K-complexes that are visible on the scalp EEG depict the synchronized bi-stable slow 

oscillation in neuronal populations. The features of cortical slow waves seen in the EEG signal depend 

on the size and efficiency of neuronal populations that exhibit the slow oscillation and the degree of 

synchrony between neurons. The amplitude and overall slow wave activity depend on the number of 

neurons that fire synchronously. The steepness of the slopes—both descending and ascending—

shows how quickly and synchronously neighbouring neurons can switch between the ON and OFF 

states. The steepness indicates the efficiency of the transition between activation and silence. Lastly, 

the prevalence of slow waves reflects the tendency for neurons to enter the down state. 

It was originally thought that slow waves originated in the neocortex, as the slow oscillation could 

emerge in isolated neocortical slices (Sanchez-Vives & McCormick, 2000), but did not appear in the 

thalamus of de-corticated animals (Timofeev & Steriade, 1996). However, subsequent studies showed 

that activity in the thalamus precedes cortical slow waves (David et al., 2013) and that cortical slow 

waves are interrupted when the thalamus is functionally disconnected, although only temporarily 

(Lemieux et al., 2014). In conclusion, an intricate interplay between thalamus and neocortex is likely 

needed to initiate the slow waves seen in vivo. Single neurons can produce a slow wave rhythm, but 

the large synchronization and almost exact simultaneous start of silent states in neurons far apart (12 

mm) implies that some sort of central coordination must be present (Volgushev et al., 2006). However, 

slow waves are not perfectly synchronized across the whole cortex (Amzica & Steriade, 1995). Instead, 

slow waves propagate through the cortex, with a speed of up to once per second, usually in an 

anteroposterior direction (Massimini et al., 2004). This suggests slow waves are regulated centrally 
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likely by subcortical structures and propagated cortically. It is thought that slow waves and K-

complexes have similar origins, both underpinned by the bistable dynamics of the brain, but it is still 

unclear what triggers one or the other (Bellesi et al., 2014). 

Homeostatic influences on SWs and K-complexes 

Both night sleep and naps are believed to be regulated by circadian rhythms and homeostatic sleep 

drive (Borbély, 1982). Homeostatic sleep pressure builds up during wakefulness and dissipates during 

sleep. This sleep pressure is what makes us feel tired after a long, exhausting day even if it is still light 

outside. SWA is often used as a proxy for homeostatic sleep pressure, or simply referred to as ‘sleep 

need’. After sleep deprivation, SWA is increased and SWA dissipates over the course of the night (Dijk 

et al., 1987, 1990; Esser et al., 2007; Pappenheimer et al., 1975). Also spontaneous and evoked K-

complex occurrence is higher in a night after sleep deprivation and their incidence decreases over the 

course of the night (Nicholas et al., 2002; Rajna et al., 1983). So, the occurrence of spontaneous and 

evoked SWs and K-complexes is partly driven by the needs of the sleeper at that moment, with more 

SWs and K-complexes when high sleep pressure is high.  

Cellular mechanisms behind slow wave dynamics  

Although SWA appears to reflect homeostatic pressure, there is still debate about the mechanisms 

behind the changes in SWA. Two theories explain the mechanism behind the increase in SWA after 

prolonged wakefulness and the following decrease during sleep. One hypothesis suggests that 

neurons get fatigued from firing (Vyazovskiy & Harris, 2013), for example due to depletion of energy 

resources, such as glycogen (Dalsgaard & Secher, 2007) or calcium (O’Donovan & Rinzel, 1997). To 

recover from this fatigue, neurons need extended periods of inactivity, leading to the synchronous 

OFF periods during SW sleep. Another, more widely accepted theory is the synaptic homeostasis 

hypothesis (SHY), which states that SWs are not a response to fatigued neurons per se, but that 

learning in particular drives the increase in SWA (Tononi & Cirelli, 2006). Wake experiences are 

encoded, primarily through input-dependent long-term potentiation (LTP), which results in an overall 

increase in synaptic strength during wake. Without synaptic downscaling, which reduces synaptic 

strength, synapses would be saturated and that would leave neurons unable to continue learning. 

Sleep, and in particular SWs, rebalance the system by downscaling the synapses, which allows for new 

encoding during wakefulness the next day and also contribute to selective pruning and forgetting (see 

Fig. 1.5). According to the SHY, the increase in SWA after periods of wakefulness is caused by an 

increase in neuronal synchrony through stronger synaptic coupling, the longer the wake period or the 

more learning occurs, the stronger the synaptic coupling. Accumulating evidence favours the synaptic 

homeostasis hypothesis over the ‘neuronal fatigue’ hypothesis. For example, Rodriguez et al. (2016) 
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show that SWA increases in mice after exploratory wakefulness, which is assumed to be accompanied 

by higher synaptic plasticity, but not after neuronal activation by optogenetic stimulation, which 

‘fatigues’ the neurons without leading to learning. Moreover, in humans, local increases in SWA are 

seen in brain regions involved in a learning task during prior wake (Huber et al., 2007), suggesting 

again a special role of pre-sleep learning in subsequent SW production. In return, the decrease in SWA 

over the course of sleep, reflects the weakening of synapses and a reduction in the strength of 

corticocortical connections, which is essential for facilitating the encoding of new memories the next 

day. 

In summary, slow waves, generated through a complex interplay between the neocortex and 

thalamus, reflect the synchronized bi-stable slow oscillation in neuronal populations. The dynamics of 

slow waves are closely linked to homeostatic sleep pressure, increasing after prolonged wakefulness 

and gradually decreasing as sleep progresses. The synaptic homeostasis hypothesis offers a compelling 

explanation for these changes, suggesting that slow waves help to restore synaptic balance after 

wakefulness by downscaling synaptic strength. This process preserves the brain's capacity for learning.  

Therefore what happens before sleep partly determines how connected or disconnected a sleeper is 

to the environment the next night. Sleep is prioritized over vigilance when synaptic homeostasis needs 

to be rebalanced. Interestingly, SWA does not only change over the course of the night, but it also 

changes across development, with high SWA during infancy and childhood. More on that will be 

discussed in section 1.2.2. of this chapter; but first I discuss the generation and function of sleep 

spindles. 
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Figure 1.5 Synaptic Homeostasis Hypothesis (SHY). Figure adapted from Rantamäki & Kohtala (2020). 

1.1.3 Sleep spindles  

Sleep spindles are named after their resemblance to a spindle used for wool spinning (Loomis et al., 

1935b). Loomis gave both sleep spindles and K-complexes their names and left a legacy of creative 

naming behind. Sleep spindles are burst of activity around 11-16 Hz that last more than 0.5 s, with a 

characteristic ‘waxing’ and ‘waning’ shape (see Fig. 1.6A)(Iber et al., 2007). 

Sleep spindles are most commonly measured as discrete events or as power in the sigma frequency 

band. Sigma power represents the squared amplitudes of oscillations in the sigma range (somewhere 

in between 7-16 Hz) averaged over a time period (Fernandez & Lüthi, 2020). This period is often sleep 

stage N2, but can also include N3. When the power spectrum is plotted during N2, usually a prominent 

peak is visible in the sigma range (Fig. 1.6B). The shape of that peak and its topographical distribution 

is remarkably unique to an individual and has been called ‘a fingerprint of sleep’ (De Gennaro et al., 

2005). Alternatively, sleep spindles can be measured as discrete events, detected visually or 

automatically (See more detail on this in Chapter 4). From these distinct events a number of features 

can be extracted, such as the sleep spindle density, average time interval between sleep spindles, 

amplitude or power, frequency (number of cycles per min) and duration (See fig. 1.6A). In humans - 

but not in all animals (e.g. mice (D. Kim et al., 2015), sheep (W. T. Schneider et al., 2020) and cats 

(Iotchev & Kubinyi, 2021)) - sleep spindles can be subdivided into slow (<13 Hz) and fast (>13 Hz) sleep 



18 
 

spindles, that are topographically separated. Slow spindle activity occurs predominantly over frontal 

channels whilst fast spindle activity is highest over central channels (Gibbs & Gibbs, 1950). 

 

Figure 1.6 A. Sleep spindle features. B. Power spectrum in N2.  Adapted from Fernandez & Lüthi (2020). 

How are sleep spindles generated?  

The sleep spindles that we observe on scalp EEG recordings are only a surface manifestation of 

oscillations generated by a deeper structure situated in the thalamus, the thalamic reticular nucleus 

(TRN). A structure which was described earlier in relation to sensory processing (see Fig. 1.1). The TRN 

is a thin sheet of inhibitory neurons surrounding the dorsal thalamus that is the most prominent 

source of Gamma-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the brain  

(Crabtree, 1999) and has a purely modulatory function (Pinault, 2004). TRN neurons fire in a ‘tonic’- 

or ‘burst’- mode, depending on vigilance state. During wakefulness, TRN neurons are in the tonic mode 

and signals from the ascending pathways passing through the thalamus to the cortex are left relatively 

unaltered. However, in the burst-mode during sleep, signal transmission via thalamocortical relay is 

altered, though not completely extinguished (Mukherjee & Kaplan, 1995). In burst mode a higher 

signal-to-noise ratio facilitates signal transmission of relative changes in input rather than the reliable, 

linear signal transmission that occurs in the tonic mode during wakefulness. A unique feature of this 

system is that novel stimuli can trigger a switch from burst to tonic mode, therefore increasing reliable 

information transmission in response to salient stimuli (Guillery et al., 1998).  

The importance of the TRN for the generation of spindles was first discovered by Steriade et al. (1985). 

They demonstrated in cats in vivo that the isolated TRN, deprived from major cortical and thalamic 
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input sources, could still produce spindle oscillations. Thalamic nuclei disconnected from the TRN on 

the other hand lost the ability to produce spindle rhythms (Steriade et al., 1985). 

During sleep, when TRN neurons switch to the burst mode, TRN neurons cause an exceptionally strong 

and synchronous inhibition of thalamo-cortical neurons. After repeated inhibitions, thalamo-cortical 

neurons will exhibit excitatory rebound bursts in response. Thalamo-cortical neurons have excitatory 

projections to the cortex and collaterals to the TRN. These are open loop projections, meaning that 

they will not project to the same TRN neurons which caused the excitation in the first place, but 

instead project to adjacent TRN neurons. The result is a lateral spread of the TRN and thalamo-cortical 

bursts and eventually a synchronized spread of spindle activity. After repetitive bursting, 

thalamocortical neurons enter a afterdepolarized state, which prevents further activity (Bal & 

McCormick, 1996). The combination of thalamic, cortical and brainstem activity likely causes the 

termination of a sleep spindle and the following refractory period, that lasts 5-10 seconds, before a 

new sleep spindle can be initiated.  

Due to the importance of the TRN for state-dependent signal transmission, as well as its importance 

for the generation of sleep spindles, TRN impairment has been suggested as a factor driving the co-

occurrence of sleep and sensory processing in neurodevelopmental conditions (Krol et al., 2018). 

More on potential mechanisms that link sleep and sensory processing will be discussed in 1.3.2. 

Sleep spindle functions  

Besides a protective function of sleep spindles, gating sensory input, as described above, sleep 

spindles have also been implicated in synaptic plasticity and memory. 

The role of sleep spindles in memory consolidation is perhaps its most studied aspect (See review 

(Peyrache & Seibt, 2020)). In humans, pre-sleep learning is followed by an increase in sleep spindle 

amplitude and density, particularity in context of declarative or procedural memory tasks (Fogel & 

Smith, 2006; Schabus et al., 2004), but not for episodic memory (Ackermann et al., 2015). Enhancing 

sleep spindles through transcranial direct or alternating current stimulation in humans improves 

declarative memory (L. Marshall et al., 2006) and motor consolidation (Lustenberger et al., 2016). 

However, not just the amount or strength of sleep spindles is linked to learning, but also the timing of 

sleep spindles in relation to other oscillations.  The ‘active systems consolidation’ theory describes 

that memories are consolidated by reactivation of memory traces during SWS  (Born & Wilhelm, 2012). 

However, some memories traces are strengthened while others are weakened when transferred from 

temporary storage in the hippocampus to long-term storage in the neocortex. According to this 

theory, the integration of memories in the long-term storage is facilitated by the synchronization of 

neocortical slow oscillations, thalamo-cortical sleep spindles and hippocampal sharp wave ripples. 
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Indeed, sleep spindles that are in phase with cortical slow waves up states enhance memory 

consolidation more than those that are out of phase (Latchoumane et al., 2017).  

Both sleep spindles and SWs play a key role in the consolidation of memories (Rasch & Born, 2013). It 

is thought that memory replay, a key part of the successful consolidation of memories, happens during 

NREM sleep. When memory traces are replayed, or reactivated, they are temporarily vulnerable to 

external perturbation and susceptible to modification by other input. Thus, the ideal state for memory 

consolidation is therefore an ‘offline’ state, when the brain can turn inwards without interruption from 

the outside world. That SWs and sleep spindles are implicated in both sensory gating and memory 

consolidation is therefore perhaps not surprising, as minimal interference is optimal for reliable 

consolidation. One possibility is that these rhythms just reflect a period of sensory disconnection, 

however, the research outlined above in section 1.1.1. suggests an active role for SWs and sleep 

spindles in decoupling the sleeper from their environment, whilst still maintaining a degree of 

vigilance.  

Most of the studies mentioned above are based on adult data in humans or rodents. In the next 

section, I will give an overview of sleep in infancy and discuss the development of sleep spindles and 

slow waves.  

1.2 Sleep in infancy 

Across the lifespan, sleep patterns and sleep architecture change significantly (Skeldon et al., 2016). 

For example, adolescents start going to bed later and wake up late, while elderly tend to rise early, 

under influence of changing circadian rhythms. Sleep need also varies across the lifespan, with infants 

and children needing substantially more sleep than adults. The increased sleep need during early 

development is believed to support the high rates of learning and neuroplasticity during that time 

(Frank et al., 2001; Frank & Heller, 2019).   

Sleep is a multidimensional term, that covers behavioural, physiological and neural levels. Different 

aspects of sleep broadly fall into two categories: sleep macro-architecture and sleep micro-

architecture. In Box 2, I provide examples of sleep macro- and micro-architecture aspects and through 

which methods these various aspects can be assessed in infants. Below, I will discuss changes in sleep 

macro- and micro-architecture across infancy, which maps onto the age range in Chapter 2 and 3 (5-

14 months). I will then delve deeper into SW and sleep spindle development in the first year of life to 

provide a framework for assessing how ‘mature’ these oscillations are between 8 and 11 months, the 

age range of Chapter 4 and 5. Lastly, I discuss the link between these changes and brain maturation 

to understand why individual trajectories of sleep macro- and micro-architecture may differ. 
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Sleep measures are typically divided into two categories: sleep macro- and micro-architecture. 

Sleep macro-architecture refers to the larger structural components of sleep. These can be 

further subdivided into sleep quantity and quality, circadian factors or sleep schedule and 

sleep stages. Sleep micro-architecture refers to more granular features of sleep at the level of 

brain activity. In table 1 examples of each category are given. However, it should be noted that 

some variables may overlap across categories. For example, the percentage of time spent in 

N3, is closely related to sleep quality.  

Infant sleep can be assessed using a variety of methods, depending on the research objectives 

and available resources. These methods include polysomnography, videosomnography, 

actigraphy, and subjective reports, like questionnaires and sleep diaries (Sadeh, 2015). While 

polysomnography is considered the gold standard in sleep research, it presents unique 

challenges in the context of infant sleep, such as safety concerns and the difficulties of EEG 

setup (Sadeh, 2015). Subjective reports and actigraphy are easier and cheaper methods to 

assess sleep, but are not always reliable . Moreover, polysomnography is the only method that 

provides reliable estimates of sleep stages and measures of brain activity, such as sleep 

spindles and slow waves. See table 2 for a summary of which methods are able to assess 

different aspects of sleep. 

 

Box 2. Measuring sleep in infants 
Table 1.2 Examples of sleep macro- and micro-architecture variables of sleep. This list provides a few 
examples and is not exhaustive. 

Table 1.1 Sleep measurement methods. 
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1.2.1 Changes in sleep macro- and micro-architecture in infancy 

Human newborns spend the majority of the day asleep, transitioning between wake and sleep 

irregularly multiple times a day, a pattern known as polyphasic sleep. Around 4 months of age, infants 

start to develop a day-night or circadian rhythm, mostly sleeping at night and being awake during the 

day (Iglowstein et al., 2003). By around 9 months, infant sleep becomes triphasic, consisting of one 

big bout of sleep at night and two naps during the day (Weissbluth, 1995). Between the first and 

second year, infant sleep becomes diphasic when infants drop from two to one nap a day. In 

toddlerhood, sleep patterns become similar to adulthood, when toddlers transition to monophasic 

sleep (Staton et al., 2020).  

Not only the amount and pattern of sleep differ greatly from adulthood, sleep stage distributions are 

vastly different in infancy as well (Lenehan et al., 2023). In sleep research, the identification of sleep 

stages relies on physiological signals from polysomnography, which includes EEG, electromyography 

(EMG), electrooculography (EOG) and sometimes heart rate and breathing measures. Visual 

identification of sleep stages (See box 1) is ideally compared between two expert sleep scorers and is 

considered the gold standard. However, in recent years, automated methods have become popular 

due to the time-consuming nature of manual sleep scoring (Fiorillo et al., 2019). In neonates, EEG 

activity looks so distinct from adults that sleep cannot be classified into adult-like sleep stages. Instead 

sleep is divided into quiet sleep (QS), active sleep (AS) and indeterminate sleep (Grigg-Damberger 

Madeleine, 2016). From 3 months onwards, adult-like sleep features start to appear that facilitate the 

division into sleep stages N1, N2, N3 and REM (Grigg-Damberger Madeleine et al., 2007). However, 

sleep EEG features, such as sleep spindles and slow waves undergo large developmental changes even 

after they start to appear in the EEG signal (See more info in 1.2.2 and 1.2.3). Furthermore, the 

proportion of REM/NREM sleep changes drastically across the lifespan. REM sleep dominates in the 

first months of life, but gradually NREM sleep becomes more prominent reaching adults levels at the 

end of the first year of life (Jenni et al., 2004).  

Individual sleep trajectories can vary greatly from the average, influenced by a complex interplay of 

factors. Biological and genetic factors, such as melatonin production (Touchette et al., 2013) and sleep 

practices, such as settle methods (Henderson et al., 2020), bedsharing and breastfeeding (Hysing et 

al., 2014), all contribute to how an infant’s sleep develops. Additionally, changes in sleep patterns do 

not always occur linearly and sudden changes may be related to other developmental milestones 

(Atun-Einy & Scher, 2016). See figure 1.7 for a summary of the changes in sleep in the first year of life. 

 



23 
 

 

Figure 1.7 Development of sleep and its EEG features in the first year of life. Figure from Lenehan et al. (2023). 

1.2.2 Development of slow waves and K-complexes 

Slow waves 

Already in neonates, some form of slow wave activity is present, but defined and distinct slow waves 

or trains of slow waves are not visible in the EEG yet (Ellingson & Peters, 1980). These only appear 

gradually within the first six weeks after birth (Dan & Boyd, 2006). From 2 months, slow waves start 

to show homeostatic properties, with a decrease in amplitude and slope steepness over the night 

(Fattinger et al., 2014; Jenni et al., 2004). Between two to nine months slow waves continue to evolve, 

showing increasing amplitudes and steeper slopes (Fattinger et al., 2014). Increasing rates of 

synaptogenesis, which improves the efficiency of neurons transitioning between up- and down states, 

may underlie the development of steeper slopes and higher amplitudes of SWs. Additionally, the 

topography  of slow waves changes across development, with higher SWA in occipital regions during 

infancy and early childhood (Novelli et al., 2016; Sokoloff et al., 2021). Over time, SWA maxima shifts 

in a posterior-to-anterior direction throughout childhood and adolescence, until maxima occur 

frontally (Kurth et al., 2010).  

K-complexes 

The literature on K-complexes in infancy is surprisingly limited, which may be due to the difficulty in 

detecting them. A K-complex is defined as an isolated event that stands out from the EEG background 

signal (see Fig. 1.8A. for a typical K-complex in adults). However, due to the high amplitude, low 
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frequency background EEG activity in infancy, K-complexes are not as easily identified as in adults. K-

complexes are thought to appear around 5- to 6-months-of-age (Lenehan et al., 2023). Metcalf et. al 

(1971) suggest that K-complexes might be present earlier, but are not discernible from the background 

EEG. According to them, adult-like K-complexes are only visible from 7 years onwards. In a longitudinal 

study, Verma & Baisakhiya (2021) do not find any K-complexes in newborns and 3-month-olds. 

However, by six months-of-age, the majority of infants – around 80% - have visible K-complexes, which 

increased to 90% at 9 months and 95% at 12 months. In addition, the shape of K-complexes evolves 

from a blunt shape at 6 and 9 months to a sharper shape - similar to adults - at 12 months. The studies 

by Metcalf (1971) and Verma & Baisakhiya (2021) focus on the development of spontaneous K-

complexes. There is some evidence for the presence of evoked K-complexes in 3- to -5-month-old 

infants (King et al., 2018). In this study, K-complexes are averaged across trials, but no information is 

provided on how many K-complexes were detected per infant. However, the study shows clear K-

complex responses to auditory stimulation early in infancy (see Fig. 1.8B). 

In conclusion, K-complexes start to appear in the EEG signal between 3 and 6 months-of-age, but the 

presence or visibility is highly variable between individual infants. In Chapter 4, I discuss the visibility 

and development of K-complexes in more detail and the implications for detection in infancy. 

 

Figure 1.8 Examples of K-complexes. A. Typical K-complex in adults. KC: K-complex; SS: Sleep Spindle. Figure from 

Tapia-Rivas et al. (2024) B. Averaged evoked K-complexes from a study in 3-5 month-old infants. Notice that the 

Y-axis is plotting negative voltages upward, opposite to part A. CTL: Controls, PNE : Infants exposed to nicotine 

prenatally. Figure adapted from King et al. (2018). 

1.2.3 Development of sleep spindles 

As discussed in section 1.1.3, the initiation, synchronization and termination of sleep spindles rely on 

a complex interplay between thalamocortical neurons and TRN neurons. The maturation of those 

neurons and their connections are essential for the generation of a sleep spindle. Research in animals 

shows that thalamocortical and TRN neurons undergo rapid maturational changes during the 

postnatal period (Murata & Colonnese, 2019; Pirchio et al., 1997; Warren & Jones, 1997).  
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True sleep spindles, as seen in adults, only start to appear in the EEG signal of 6-week to 3-month-old 

human infants (Ellingson & Peters, 1980; Louis et al., 1992). In rodents, the emergence of sleep 

spindles coincides with maturational trajectory of the thalamic circuit (Jouvet-Mounier et al., 1969), 

confirming the need for developed thalamic structures to produce sleep spindles. Sleep spindles are 

therefore also used as a marker for thalamocortical connectivity (Jaramillo et al., 2023). In adults, sleep 

spindles are typically symmetric, occurring simultaneously in both hemispheres. They predominantly 

appear in central and frontal EEG channels and can be categorized into fast and slow spindles (see 

1.1.3). However, when sleep spindles first emerge in infants, they are often asymmetric (Ellingson, 

1982), with only one sigma peak visible on the spectrogram, around 13 Hz (Jenni et al., 2004), rather 

than two distinct peaks seen in adults. It is only after 12 months, between the 1st and 2nd years of life, 

that two distinct sigma peaks start to emerge in frontal and central channels (Kwon et al., 2023). 

Additionally, the amplitude and duration of sleep spindles shows clear differences in the first year of 

life compared to adulthood. In the first few months when sleep spindles appear, they tend to have a 

smaller amplitude and have a  longer duration, around 1-4 seconds, compared to 1-2 seconds in adults 

(Fernandez & Lüthi, 2020; Ventura et al., 2022). The development of different sleep spindle 

characteristics across the lifespan are summarized in figure 1.9. 

In summary, sleep spindles emerge in the first months of life, but undergo maturational changes that 

are likely linked to the maturational stage of the thalamocortical circuit. Early sleep spindles are similar 

to adult ones, but show distinct differences in features such as sleep spindle duration, frequency and 

amplitude. This has implications for the detection of spindle events, which will be discussed in Chapter 

4.   

 



26 
 

 

Figure 1.9 The development of sleep spindle features and brain structures across the lifespan. The intra-frequency 

is the number of oscillations per sleep spindle, referred to as just ‘frequency’ in the text. The approximate time 

window that will be investigated in this thesis is highlighted in yellow. Figure from Fernandez and Lüthi (2020). 

1.2.4 Early sleep and brain development 

The substantial changes in sleep patterns, architecture and oscillations that occur during development 

likely mirror brain maturation. For example, sleep-wake rhythms can only occur once connections 
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between circadian clock regions and behavioural output neurons are formed (Poe et al., 2023). Before 

those connections are made, it is anatomically impossible for infants to exhibit circadian behaviours. 

The emergence of circadian rhythms therefore reflects the maturation of long-range connections in 

the brain. Also transitions in sleep patterns have been suggested to reflect changes in brain 

maturation. Spencer & Riggins (2022) propose that the amount of naps a child takes, may reflect the 

maturity of the hippocampus. In theory, an immature hippocampus is less efficient and cannot store 

as many short-term memories as a mature hippocampus. Therefore an immature hippocampus needs 

to “offload” memories more often in the long-term storage, a process that is sleep-dependent (See 

‘active systems consolidation’ theory in 1.1.3). Spencer & Riggins’s theory is supported by a study 

showing that toddlers that nap habitually have greater memory loss when deprived of a midday nap 

than non-habitual nappers (Kurdziel et al., 2013). Furthermore, nappers tend to have larger 

hippocampal volumes than non-nappers (Riggins & Spencer, 2020). According to the authors, a larger 

volume may suggest that less synaptic pruning has occurred, a process linked to structural maturation. 

Interestingly, circadian rhythms and as a result longer and deeper sleep at night, are essential to 

unlock more sophisticated learning. In an elegant study using fruit flies, Poe et al. (2023) show that 

deep sleep is needed for improvement on a long-term memory task, but not a short-term memory 

task. This in turn suggests that sleep not only mirrors brain development, but drives it as well.  

As early as 1966, Roffwarg proposed that early sleep, particularly REM sleep, plays a pivotal role in 

neurodevelopment. This theory was based on the observation that sleep is abundant in early life, with 

a notably high proportion of REM sleep. The fact that this pattern is conserved across species further 

underscores the importance of early sleep in development (Jouvet-Mounier et al., 1969). Since 

Roffwarg's initial proposal, the study of sleep ontogenesis and its relationship to brain maturation has 

been a growing area of research, gaining more traction in recent years, as evidenced by the 

accumulation of reviews on this topic recently (de Groot et al., 2024; Gorgoni et al., 2020; Knoop et 

al., 2021; Kurth et al., 2015; Lokhandwala & Spencer, 2022; Riggins et al., 2024).  

On a neural level, major changes happen across development. Initial rapid growth in synapses and 

connections between neurons is followed by synaptic pruning, which improves the efficiency of the 

brain by refining and specializing neural networks. Synaptic density follows an inverted U-shaped 

trajectory from birth to adulthood with a peak during childhood, when the brain has more neural 

connections than during adulthood (Rakic et al., 1986). While Roffwag saw a major role for REM sleep, 

more recently it is proposed that both REM - and NREM sleep have distinct functions that contribute 

to neurodevelopment (Knoop et al., 2021). REM sleep is believed to contribute to the expansion of 

neural networks, by providing endogenous activity, while NREM sleep optimises these networks 
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through synaptic downscaling and pruning. This theory may explain the shift in sleep stage proportions 

across development, with a larger proportion of REM sleep in infancy and a predominance of SWS 

during childhood. That SWS may be involved in synaptic pruning is supported by the fact that SWA 

maxima travel in an posterior-to-anterior direction during development paralleled by cortical 

maturation (Kurth et al., 2010; Shaw et al., 2008). These results an sich do not provide enough 

evidence for a causal relationship from SWs to cortical pruning, but instead could indicate that SWA 

is a proxy for cortical matureness.  

In humans, it is challenging to provide evidence for a causal relationship between early sleep and brain 

development. However, animal studies can provide some insight in the role of early sleep by disrupting 

sleep in a specific time window early in life and measuring neural and behavioural outcomes later in 

life. An experimental study in prairie voles shows that early life sleep disruption – decreased REM 

sleep and more fragmentation of NREM sleep – results in increased dendritic spine density, spine 

immaturity and altered glutamatergic neurotransmission in adulthood (Jones et al., 2021). At a 

behavioural level, these prairie voles show impaired social behaviour (Jones et al., 2019) and less 

cognitive flexibility (Jones et al., 2021) later in life. Similarly, induced sleep loss in young fruit flies 

results in deficits in courtship brain structures and behaviour (Kayser et al., 2014). These studies 

confirm that early sleep has lasting impacts on brain development and behaviour. 

Using a longitudinal design, a few studies in human infants show that early sleep predicts later 

structural brain features as well as behaviour. For instance, the trajectories of sleep duration in the 

first year of life, assessed with caregiver reports, predict white matter volume at 12 months of age 

(Pittner et al., 2023). Infants that showed less of a decrease in sleep duration had greater white matter 

volumes. White matter reflects the myelination of axon bundles and is important to increase the 

efficiency of signal transmission in the brain (Paus et al., 2001). The authors interpreted the results as 

meaning that more sleep is needed for white matter maturation. Besides structural features, 

behavioural outcomes are also be predicted by early sleep features. Sleep spindle density at 6 months, 

but not SWA, SW slope or sleep spindle/SW coupling, predicts overall developmental status at 12 

months and motor development at 12 and 24 months (Jaramillo et al., 2023).  

In conclusion, sleep is a dynamic process that changes across development. Changes are especially 

large in the first year of life, likely contributing to and reflecting brain maturation. The features that 

are associated with sensory processing during sleep in adulthood, slow waves, K-complexes and sleep 

spindles, are still developing in infancy and early childhood, which raises questions about their 

functionality in terms of sensory gating at that time in life.  
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So far, I have discussed sleep and sensory processing during sleep in typical populations. In the next 

section, I explore whether sleep is affected in individuals who show heightened awareness and 

annoyance to sensory input during wakefulness. I therefore turn to sleep and sensory processing in 

autism, a condition in which sensory processing differences and sleep difficulties are common. 

 

1.3 Sensory processing differences and sleep 

1.3.1 Autism 

Autism spectrum disorder (ASD), or simply autism, is defined in the Diagnostic and Statistical Manual 

of Mental Disorders, fifth edition (DSM-5) as a condition characterised by two core domains: 1. 

persistent deficits in social communication and social interaction and 2. restricted, repetitive 

behaviours, interests or activities. The DSM- 5 highlights that these symptoms must be present in the 

early developmental period, but recognises that they may only become fully evident when social 

demands surpass an individual’s social capacities or that these symptoms may be masked later in life. 

The DSM-5 also emphasizes that these symptoms should not be better explained by intellectual 

disability or developmental delay. In addition, the symptoms a person exhibits must cause significant 

difficulties in daily functioning (American Psychiatric Association, 2013).  

The diagnosis of autism relies on behavioural signs and autism can therefore usually only be diagnosed 

reliably by the age of three (Steiner et al., 2012). However, symptoms of autism often emerge much 

earlier. Studying autism before a formal diagnosis is important for early detection of autism and to 

develop potential early interventions, as well as to contribute to our understanding of the aetiology 

of autism  (Gliga et al., 2014). To do so, we can use prospective studies of infants at elevated likelihood 

of developing autism (EL), who have an older autistic sibling diagnosed. By the age of three, nearly 

half of EL-infants will either be diagnosed with autism themselves, approximately 20%, or show 

subclinical symptoms, around 10-20% (Messinger et al., 2013; Ozonoff et al., 2011, 2024).  

The earliest measures that predict diagnostic outcome are sensory and motor behaviours, as early as 

6 months (Estes et al., 2015; Sacrey et al., 2015), while other symptoms such as social communication 

differences do not predict diagnostic outcome until after 12 months (Estes et al., 2015; Sacrey et al., 

2015).  

1.3.1.1. Sensory processing differences in autism 

In the earlier editions of the DSM, sensory processing differences were not included as a core 

diagnostic symptom (Grapel et al., 2015), despite autistic individuals consistently highlighting these 

experiences in their personal accounts of autism (Chamak et al., 2008; Grandin, 2009). Moreover, 
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these sensory differences were already acknowledged by Leo Kanner in his initial observations of 

autism (Kanner, 1943). In the fifth edition of the DSM, sensory processing differences, both hyper- and 

hypo-reactivity to sensory input, were finally included as a core diagnostic feature of autism under the 

category of repetitive and restrictive behaviours. Indeed, sensory differences are prevalent in the 

majority of autistic people, estimated in up to 90% of autistic individuals (Ben-Sasson et al., 2019; 

Tavassoli et al., 2014; Tomchek & Dunn, 2007), and span across all sensory modalities: touch 

(Mikkelsen et al., 2018), taste (Tavassoli & Baron-Cohen, 2012b), smell (Okumura et al., 2019; Tonacci 

et al., 2017), vision (Simmons et al., 2009) and audition (Bonnel et al., 2003).  

A framework to define sensory processing difference  

To describe sensory differences, a broad range of terminology has been used within autism research, 

such as ‘sensory sensitivity’, ‘sensory reactivity’ and ‘sensory responsivity’. Inconsistent use of 

terminology can lead to confusion and hinders the progression of our understanding of sensory 

processing differences in autism (He et al., 2023), for example, when the same terminology is used for 

different aspects of sensory processing. This can lead to a phenomenon known as the ‘jingle fallacy’, 

where distinct concepts are wrongly assumed to be the same because they have the same name. He 

et al. (2023) propose a taxonomy for sensory differences in autism to overcome the inconsistent 

terminology use in research (see Fig. 1.10). This framework will be used throughout the thesis to 

integrate different sensory processing measures across studies researching autistic and non-autistic 

individuals. 

The proposed taxonomy is made up of 5 hierarchical levels: 1. Sensory related neural excitability; 2. 

Perceptual sensitivity; 3. Physiological reactivity; 4. Affective reactivity to sensory input; 5. Behavioural 

responsivity to sensory input.  
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Figure 1.10 Hierarchical framework of sensory processing in autism. Models a-d represent potential models of 

the interactions between different levels. Figure from He et al. (2023) 

Sensory-related neural excitability reflects neural activity in response to stimulation. When neural 

activity increases,  this would be considered neural hyperexcitability, whereas reduced neural activity 

would be considered neural hypoexcitability. Neural excitability can be measured in animal models of 

autism and humans using various neuroimaging techniques. For example, one study shows that 

autistic children have less neural habituation to pure tones than controls, showing evidence of neural 

hyperexcitability (Cary et al., 2024). Perceptual sensitivity describes an individual’s ability to detect 

and discriminate sensory input, usually measured with psychophysical tasks or questionnaires. For 

example, one study shows that autistic adults have similar olfactory detection thresholds to non-

autistic controls, indicating neither perceptual hypersensitivity nor hyposensitvity (Tavassoli & Baron-

Cohen, 2012a). While a person may show enhanced perception of a stimulus, that does not necessarily 

mean they will appraise it as negative or positive nor will they always show a different behavioural 

response to it. Stimulus appraisal is therefore captured by both physiological reactivity and affective 

reactivity to sensory input. Physiological reactivity involves changes in physiological parameters, such 

as heart rate, blood pressure or electrodermal activity, to sensory input. For instance, one study found 

that autistic children have stronger skin conductance reactions to tones that non-autistic children 

(Chang et al., 2012). Affective reactivity, on the other hand, refers to the subjective rating of whether 

a stimulus is pleasant or unpleasant. Interestingly, affective reactivity is not always related to 

perceptual sensitivity (Z. J. Williams et al., 2019), confirming that these are indeed be separate 

concepts. Lastly, behavioural responsivity refers to the overt behaviours, or lack thereof, in response 

to sensory input. A behavioural response to an unpleasant stimulus, as indicated by affective 

reactivity, might be to physically avoid it by running away for example or putting on headphones. A 
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behavioural response is still distinct from an affective one, as an individual may find something 

unpleasant without showing any overt reaction. This aspect is often assessed through questionnaires, 

like the Infant and Toddler Sensory Profile (ITSP; (Dunn, 2002)), where caregivers might be asked if 

their child avoids certain foods or smells.  

To illustrate, imagine a group of people in a forest. One person, Mike, hears a birdcall far away, but 

no one else in the group does, indicating Mike has perceptual hypersensitivity. They get closer and 

more people start to hear the sound. Mike’s heart rate goes up when he hears the birdcall, showing 

physiological hyperreactivity, and he tells the group that he finds the sound very unpleasant whilst 

others find it just mildly annoying, indicating affective hyperreactivity. Mike then puts on his 

headphones to drown out the sound, showing behavioural hyperresponsivity. If we had EEG 

equipment in the forest, we might have been able to distinguish increased activity in Mike’s auditory 

cortex compared to the rest of the group, showing evidence of neural hyperexcitability.  

Measuring sensory processing in infants  

On each level of He’s framework, I have illustrated with an example how sensory processing can be 

measured, such as psychometrics, electrodermal activity etc. Most commonly though, sensory 

processing differences are assessed through subjective reports, likely due to the ease of 

administration and the ability to evaluate sensory symptoms against a normative sample (Yeung & 

Thomacos, 2020). In infancy and childhood, these assessments often rely on caregiver reports. In 

addition, clinical observations are used, such as the Sensory Assessment for Neurodevelopmental 

Disorder (SAND) (Siper et al., 2017) and the Autism Diagnostic Observation Schedule (ADOS) (C. Lord, 

1999).  

In infancy and toddlerhood, a widely used questionnaire is the Infants/Toddler Sensory Profile 

(ITSP;(Dunn, 2002)), or its shortened version, the short sensory profile (SSP (Tomchek & Dunn, 2007)) 

or the second edition, the Sensory Profile 2 (SP-2(Dunn, 2014)). In this questionnaire, caregivers rate 

the frequency of their child’s behaviour on a 5-point scale. According to Dunn’s model, different 

sensory profiles result from differences in neurological thresholds. This is in turn reflected in the 

behaviour of the child. High neurological thresholds result in sensory hyposensitivity, which is 

manifested as a failure to notice or respond to sensory stimulation. Low neurological thresholds on 

the other hand correspond to sensory hypersensitivity and are displayed as high awareness of sensory 

stimulation and high responsiveness to sensory stimulation. Dunn further divides behaviours into 

active or passive. Seeking and avoiding behaviours are defined as active behaviours, while registration 

and sensitivity are categorized as passive behaviours. Dunn’s model thus describes four behavioural 

quadrants to score a child on: Sensory seeking, Low registration, Avoidance and Sensory sensitivity 
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(Dunn, 2014).  Autistic children tend to score higher on all four quadrants of the ITSP compared to 

typically developing children (Little et al., 2018).  

Dunn’s model illustrates how terminology around sensory processing can sometimes cause confusion. 

For example, Dunn uses the term ‘Sensory sensitivity’ to describe the ability to detect and respond to 

stimuli passively. From the description, it seems that this measure partly reflects stimulus detection 

thresholds, at the perceptual sensitivity level in He’s framework. However, the individual questions in 

the ‘Sensory sensitivity’ quadrant tend to tap into emotional and behavioural response to stimulation 

rather than the mere detection of them (E.g. ‘My child gets fussy when exposed to bright lights’). Dunn 

assumes that this reflects lower detection thresholds for stimuli, which might be so, but is not directly 

tested with the ITSP. In the context of He’s framework, scores on any quadrant of the ITSP are likely 

best suited to assessing affective reactivity and behavioural responsivity.  In Chapters 2, 3, and 5, the 

ITSP will be used to assess an infant's sensory profile, and interpreted as a measure that reflects both 

affective reactivity and behavioural responsivity. 

Sensory processing in the first year of life in EL -infants 

This section outlines differences in sensory processing between infants at TL and EL for autism in the 

first year of life. Findings will be organised according the levels of He’s framework and measures 

used to assess sensory symptoms will be highlighted. 

A few studies have looked at neural responses to stimulation comparing infants at EL for autism to 

infants at TL. Guiraud et al. (2011) found that 9-months old EL infants show reduced habituation 

repeated sounds compared to infants at TL. This is also true for infants at EL for autism that receive 

an autism diagnosis at three years (Kolesnik et al., 2019). Moreover, 10-month-old infants at EL for 

autism show decreased gating of tactile input compared to TL, which also predicted later autism traits 

(Piccardi et al., 2021). These paradigms measure sensory gating by comparing activity to repeated 

stimuli. When pairs of stimuli are presented with fixed inter-stimulus intervals, such as in Piccardi’s 

study, the response to the second stimulus, which is highly predictable and therefore less relevant for 

the individual, is typically attenuated – a phenomenon known as repetition suppression (Nordt et al., 

2016). We will use this same measure, tactile repetition suppression in Chapter 2. 

These studies show a convincing picture of altered sensory-related neural excitability in infants at EL-

ASD, likely preceding other behavioural manifestations of autism. Interestingly, while Piccardi et al. 

(2021) found a difference in neural markers depending on autism likelihood status, they did not find 

a difference in body movements or screen directed looking after a stimulus between the two groups. 

This suggest that neural hyperexcitabilty does not necessarily translate into behavioural 

hyperresponsivity. 
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As early as 6 months, infants at EL for autism who went on the receive an autism diagnosis at three 

years show differences in behavioural responsivity, measured through observations (Estes et al., 2015; 

Sacrey et al., 2015). Using caregiver report, infants at EL show atypical sensory behaviours – both 

hyper- and hypo – compared to TLs in most quadrants of the ITSP (Mulligan & White, 2012; Van Etten 

et al., 2017). Wolff et al. (2019) find from 12 months onwards, sensory hypersensitivity, measured 

with the Sensory Experiences Questionnaire, differed significantly between infants at EL who were 

later diagnosed with autism, EL infants who were not diagnosed with autism and TL infants, with 

highest sensitivity scores for EL infants with autism. It is possible these differences are visible earlier, 

but the study did not include any earlier timepoints. These studies indicate that in the first year of life, 

differences at the level of behavioural responsivity and affective reactivity to sensory input emerge 

between infants at EL and TL, with more unusual behaviours in both the hyper- and hypo-direction.   

In conclusion, in the first year of life, infants at EL already show altered sensory processing compared 

to infants at TL. From 8 months onwards, infants at EL show sensory-related hyperexcitability, 

however, it is still unclear whether differences are visible earlier than 8 months. Sensory processing 

captured by caregiver report of observed behaviour also indicates differences between EL- and TL-

infants, but again it is not clear when those differences emerge precisely in the first year of life. 

Interestingly, while neural response indicate hyper-excitability, behavioural assessments capture both 

hypo- and hyper-responsivity to sensory input in EL-infants.  

1.3.1.2. Onset of sleep difficulties in autism 

Sleep difficulties are one of the most common co-occurring symptoms in autistic individuals, with 

prevalence estimates ranging widely from 11% to 80% (Hodge et al., 2014; Souders et al., 2017). The 

wide range of prevalence estimates is likely due in part to variations in measurement methods, the 

age range of the participants, and the type of sleep problems studied (Deliens & Peigneux, 2019). A 

large study in 2- to 5-year-olds found that 53% of autistic children have sleep problems compared to 

32% of typically developing children (Krakowiak et al., 2008). Although sleep difficulties are also 

common in typically developing children, they generally tend to decrease over time, whereas in 

autistic children, these sleep difficulties often persist or even worsen (Verhoeff et al., 2018). 

Reported sleep problems in autism vary considerably, including sleep disordered breathing and 

parasomnias. However shorter sleep duration, longer sleep onset latency and more night awakenings 

are consistently reported (Deliens & Peigneux, 2019). In agreement with subjective reports, objective 

polysomnography studies find shorter total sleep time, prolonged sleep onset latency and more 

frequent night awakenings in autistic- compared to non-autistic individuals (See review (Petruzzelli et 

al., 2021)).  
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Already in the first year of life, sleep difficulties are more prevalent in infants at EL than infants at TL 

for autism. At 5-, 10- and 14 months-of-age, infants at EL for autism show worse sleep compared to 

TL, based on a composite measure of caregiver reported night sleep, capturing sleep onset problems, 

night sleep duration and frequency of night wakings (Begum-Ali et al., 2023). MacDuffie et al., (2020) 

found that caregivers of 6- to 12-month-old infants at EL who went on to develop autism reported 

more sleep onset problems. Nguyen et al., (2018) did not find an association with sleep onset time, 

but did find that more night awakenings predicted autism symptoms in infants at EL. 

To our knowledge, no studies in infants at EL have used polysomnography before 12 months-of-age. 

However, in 13-30 month-olds, Page et al. (2020) used polysomnography to study differences in NREM 

spectral power. They found that theta (5-7.25 Hz) and fast sigma (15-16 Hz) power were decreased 

and beta (20-25 Hz) power was increased in autistic toddlers compared to non-autistic peers. During 

wakefulness, increased beta and gamma (25-70 Hz) are thought to reflect an imbalance in 

excitation/inhibition in the brain (Orekhova et al., 2007). In typically developing children, theta peak 

frequency and power during sleep increase in the first years of life (Novelli et al., 2016). Page et al. 

suggest these differences represent a neurodevelopmental delay in the autistic group. Thus, while 

sleep differences seem to be present in the first year of life in infants at EL, the biological origin 

remains unclear. 

 

Understanding the origins and mechanisms that underlie sleep problems is important because poor 

sleep exacerbates behavioural manifestations of autism, such as increasing communication difficulties 

or stereotypic behaviour (S. Cohen et al., 2014; Mazurek et al., 2019), and decreasing cognitive 

performance (Limoges et al., 2013). Autistic children with insomnia also utilise health services twice 

as much as those without insomnia (Solomon et al., 2022). In addition, there is evidence that 

caregiver’s well-being is impacted by poor sleep (Eyuboglu & Eyuboglu, 2020), which may in turn 

amplify infant sleep difficulties, resulting in decreased sleep duration and increased night awakenings 

(Sidor et al., 2013; Sinai & Tikotzky, 2012; Sorondo & Reeb-Sutherland, 2015).  

Multiple potential biological causes for sleep problems in autism have been identified, most likely 

overlapping and with amplifying effects (Deliens & Peigneux, 2019; Lorsung et al., 2021) : 1) Aberrant 

synaptic functionality - Sleep is highly dependent on normal synaptic functioning and synaptogenesis 

and synaptic plasticity rely in turn on good sleep (Tononi & Cirelli, 2014; Wang et al., 2011), 2) 

abnormal sleep-regulating hormones, such as atypical melatonin production (Wu et al., 2020), 3) 

circadian rhythmicity disruptions, such as mutations in core clock genes (Lorsung et al., 2021), as well 

as 4) sensory dysregulation.  
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However, sleep difficulties are not unique to autism, and are prevalent in a number of 

neurodevelopmental conditions, such as ADHD (Cortese et al., 2009), down syndrome and fetal 

alcohol spectrum disorder (Kamara & Beauchaine, 2020). Recently, more researchers have been 

advocating for a transdiagnostic approach that groups individuals based on symptoms rather than 

diagnosis, both for therapeutic and research purposes (Chawner et al., 2023). It is possible that sleep 

difficulties originate from similar causes across conditions. 

The high variability in sleep difficulties within autism along with their prevalence across a range of 

neurodevelopmental conditions, suggests that multiple pathways likely lead to different aspects of 

sleep difficulties. Thus, understanding the origin of sleep difficulties in autism may benefit from a 

transdiagnostic approach.  

In this thesis, I will explore the association between sensory processing and sleep in infants at TL and 

EL for autism, focussing on sensory symptoms. This approach allows for a more accurate 

understanding of how sensory processing impacts sleep, irrespective of whether an autism diagnosis 

is made. This could potentially benefit a wider range of infants with sleep difficulties, regardless of 

their diagnostic status. In the studies presented in this thesis, infants at EL for autism were recruited, 

but infants that were additionally at elevated likelihood for ADHD, a commonly co-occurring condition,  

were not excluded, as our main aim is to investigate sleep in relation to sensory processing. In the 

following section, I will review the current literature that examines the association between sensory 

processing and sleep difficulties and emerging theories on the nature of this association. 

1.3.2 The relationship between sleep and sensory processing differences 

In section 1.1, I discussed that most sensory input is processed by the thalamo-cortico-thalamic loop 

(see Fig. 1.1), but that this is modulated by vigilance state, with more sensory gating during sleep 

(Coenen & Vendrik, 1972). However, this same system also modulates the influx of sensory input 

during various wakefulness states, such as attention (Livingstone & Hubel, 1981). It is possible that 

differences in sensory gating during sleep between individuals reflect broader differences in sensory 

processing that could also manifest as sensory differences during wakefulness. Here, I summarize 

whether sensory differences measured during wakefulness are related to sleep difficulties. 

Cross-sectional studies consistently report an association between sensory processing differences and 

sleep difficulties in neurotypical infants (Appleyard et al., 2020), toddlers and children (Hartman et al., 

2022; Kılıç et al., 2024; Vasak et al., 2015), and adults (Engel-Yeger & Shochat, 2012). This association 

is also evident in autistic children (Hollway et al., 2013; Mazurek & Petroski, 2015; Tzischinsky et al., 

2018a) and adults (Hohn et al., 2019), suggesting a common mechanism linking sleep and sensory 

issues regardless of autism diagnosis. While some studies demonstrate that sleep problems are 
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related to particular sensory modalities, such as the tactile (Appleyard et al., 2020; Tzischinsky et al., 

2018a) or visual modality (Appleyard et al., 2020), overall findings across studies are mixed (Lane et 

al., 2022).  

Regarding the direction of these effects, most studies in both autistic (Hohn et al., 2019; Mazurek et 

al., 2019; Mazurek & Petroski, 2015; Tzischinsky et al., 2018a) and non-autistic (Appleyard et al., 2020; 

Vasak et al., 2015) individuals report that hyperresponsivity is associated with greater sleep 

difficulties. However, one study finds the opposite relationship: that hypo- rather than hyper- 

responsivity is related to greater sleep difficulties, though this finding was marginal and based on a 

small sample size of just seven hyposensitive individuals (Jamioł-Milc et al., 2021). This indicates a 

particular link between heightened responsivity to sensory input and sleep difficulties. This association 

is not limited to a single type of sleep problem but extends across various aspects of sleep, such as 

total sleep time (Manelis-Baram et al., 2021), overall measures of sleep disturbance (Tzischinsky et al., 

2018a),  sleep onset time (Appleyard et al., 2020; Vasak et al., 2015) and night awakenings (Mazurek 

& Petroski, 2015). 

In these studies, sensory processing is typically assessed using subjective reports of behavioural or 

affective manifestations of sensory responsivity, most commonly the ITSP. Similarly, sleep is 

predominantly captured through subjective reports, the most popular one being the Children’s Sleep 

Habits Questionnaire (CSHQ)(Owens et al., 2000). Studies investigating other aspects of sensory 

processing and objective measures of sleep are scarce, but there are a few. For example, Reynolds et 

al. (2012) measured physiological reactivity to sensory input, using electrodermal activity. Regardless 

of autism diagnosis, poor sleepers had higher levels of electrodermal activity in response to an array 

of sensory input from all modalities compared to good sleepers. Good and bad sleepers were 

distinguished based on caregiver report. Using polysomnography, a study in non-autistic adults 

showed that individuals who rated themselves as sensitive to sensory input indeed showed differential 

responses to sensory input during sleep (Lechat et al., 2021). Sensitive individuals produced less 

evoked K-complexes to louder noises compared to non-sensitive individuals during sleep. This shows 

that affective hyperreactivity during wakefulness is also reflected in how individuals respond to 

sensory input during sleep. Since evoked K-complexes are thought to promote sleep in response to 

sensory input (see section 1.1.1.), less frequent sleep promoting responses to sensory input could 

explain why sensitive individuals experience sleep difficulties, such as waking up frequently at night. 

These studies show promising results that may help elucidate why hyperresponsivity and sleep 

problems are associated. 
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Lane et al. (2022) conducted a review of 24 studies examining the relationship between sensory 

processing and sleep in autistic individuals and concluded there was substantial evidence that both 

symptoms co-occur. It is possible that a causal relationship exists between these factors, but research 

investigating this is still needed. However, pilot intervention studies indicate that alleviating sensory 

symptoms slightly improves sleep (Cullen et al., 2005; Gringras et al., 2014; Silva et al., 2007), 

suggesting a causal relationship may exist.   

In summary, heightened sensory responsivity appears to be linked to sleep difficulties, from infancy 

to adulthood. Various aspects of sleep seem to related to sensory processing atypicalities that span 

across all modalities. Both in autistic and non-autistic individuals, sleep difficulties are accompanied 

by sensory processing differences, suggesting an underlying mechanism that is independent of autism 

diagnosis. Three potential scenarios (or a combination of them) explain why both factors may co-occur 

in the same individuals (see Fig. 1.11): 1. Sensory processing atypicalities cause sleep problems; 2. 

Sleep difficulties induce sensory processing atypicalities; 3. Sleep difficulties and sensory atypicalities 

co-occur, driven by a common underlying mechanism.  

1.3.2.1 Potential mechanisms that link sleep and sensory processing differences 

1.3.2.1.1 Sensory processing differences lead to sleep difficulties  

Sensory gating 

One plausible mechanism of how sensory processing differences could result in sleep difficulties is 

through atypical gating of sensory input (Deliens & Peigneux, 2019). As discussed in section 1.1.1, a 

network of sub-cortical structures typically ensures that the processing of sensory stimuli is 

attenuated, facilitating sleep initiation and maintenance (Gent et al., 2018). In the same section, the 

reduced flow of sensory input to the cortex was introduced with the term sensory gating. Attenuated 

repetition suppression is believed to reflect aberrant sensory gating mechanisms and is therefore 

particularly relevant to the study of difficulties in initiating and maintaining sleep. Indeed, adult poor 

sleepers, show less repetition suppression in pre-sleep wakefulness compared to good sleepers 

(Milner et al., 2009).  

Correlational studies have described associations between behavioural manifestations of 

hyperresponsivity, one potential consequence of reduced gating of sensory input, and sleep 

difficulties. An intuitive interpretation of this is that hyperresponsive or -reactive individuals do not 

gate sensory input effectively, which is why they have trouble falling and staying asleep. However as 

described above in section 1.3.1.1., behavioural manifestations of sensory responsivity are not 

necessarily a direct consequence of neural excitability. Whether reduced gating explains the link 
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between behavioural hyperresponsivity and sleep initiation and maintenance difficulties has not been 

studied to the best of our knowledge. 

Sensory processing and stress  

Another related – but distinct – hypothesis, is that sleep difficulties arise due to higher physiological 

arousal caused by behavioural hyperresponsivity. Specifically this theory suggest that sensory stimuli 

are perceived as averse and therefore activate the hypothalamic-pituitary-adrenal (HPA) - axis, 

resulting in a state of hyperarousal (Mazurek & Petroski, 2015). The HPA axis has a modulatory role in 

arousal and sleep regulation. In healthy sleepers, HPA axis activity is low at sleep initiation, while 

awakenings at night are accompanied by an increases in cortisol, the end product of the HPA axis 

(Buckley & Schatzberg, 2005). Overactivity of the HPA axis would cause hyperarousal, which has been 

suggested as a potential mechanism for sleep problems in insomniacs, who have heightened cortisol 

levels (Dressle et al., 2022). Whether HPA axis activity is actually disturbed in autism is still unclear, as 

is the link with sleep problems in autism (Dell’Osso et al., 2022). In support of this theory, Richdale et 

al. (2014) found that autistic adults who self-reported higher pre-sleep arousal, as well as higher 

anxiety, had longer sleep onset latencies and shorter sleep duration measured by actigraphy. Also, 

physiological reactivity to sensory input measured by electrodermal activity, was higher in poor 

sleepers than good sleeper, irrespective of autism diagnosis (Reynolds et al., 2012). Additionally, 

electrodermal activity, salivary cortisol levels and sensory profiles together accurately predict whether 

children are good or poor sleepers. This suggests physiological hyperreactivity associates with sleep 

difficulties, however, no conclusions can be drawn about a causal relationship from these studies. 

 

1.3.2.1.2 Sleep difficulties lead to sensory processing differences  

A second plausible mechanism is that sleep difficulties induce or exacerbate sensory atypicalities. 

Indeed, there is some evidence from studies in non-autistic people that sleep affects sensory 

experiences the next day. Sleep deprivation increases reactivity in the somatosensory cortex and 

predicts increased pain experiences (Krause et al., 2019). In addition, sleep deprivation impairs 

sensory gating (Zhang et al., 2019), and extending sleep in healthy habitually short sleepers normalizes 

their sensory gating response (Gumenyuk et al., 2013). 

It is also possible that disrupted early sleep interferes with the development of the neural circuitry 

underlying sensory systems. Emerging research suggests that early sleep disruptions drive or 

exacerbate symptoms of autism, amongst which sensory processing atypicalities (Doldur-Balli et al., 

2022; Medina et al., 2023; Wintler et al., 2020). For example, Medina et al. (2023) propose that sleep 

disruptions in early critical windows interfere with synaptic plasticity and brain development leading 

to hardwired changes in the brain. Indeed, disrupted early sleep leads to altered somatosensory cortex 
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development in prairie voles (Jones et al., 2019) and nociceptive sensitivity in adolescent mice (Araujo 

et al., 2018). 

In conclusion, sleep difficulties may play a significant role in the development and exacerbation of 

sensory atypicalities, both through immediate effects on sensory processing and by influencing the 

long-term development of neural circuits underlying sensory systems. 

1.3.2.1.3 Sleep and sensory differences are caused by the same underlying mechanisms 

A third possible mechanism is that sleep and sensory processing difficulties develop independent of 

each other but as the outcomes of the same underlying factor. I will briefly describe two potential 

candidates that may influence both sleep and sensory processing, and that are related to autism.  

One potential biological mechanism driving both sleep and sensory processing differences is disrupted 

GABA-ergic functioning. GABA, the main inhibitory neurotransmitter in the brain, is important for 

sleep onset and maintenance (Gottesmann, 2002) and as mentioned in section 1.1.3., is also crucial 

for the typical manifestations of sleep rhythms such as sleep spindles. The TRN is the main producer 

of GABA in the brain and essential for sleep spindle production. In addition, sensory processing is also 

highly dependent on GABA and a balance between Excitation and Inhibition (E/I) in the brain (Carcea 

& Froemke, 2013). In autistic individuals, GABA dysfunction is related to processing atypicalities  in the 

tactile (Puts et al., 2017) and auditory (Huang et al., 2023) domain. Thus, disrupted GABA-ergic 

functioning may be a key factor linking sleep disturbances and sensory processing differences. 

Another possibility is that synaptic dysfunction underlies both sleep problems and sensory processing 

atypicalities. As outlined in section 1.1.2, sleep and in particular SWS, depends on and drives healthy 

synaptic functioning according to the SHY. Interestingly, dysregulation of synaptic plasticity has been 

proposed as one of the mechanisms leading to autism itself (Bourgeron, 2015; Guang et al., 2018). 

Evidence corroborating this theory comes from studies looking at risk genes for autism that are 

involved in the formation and  elimination of synapses and synaptic plasticity  (Guo et al., 2017; Veatch 

et al., 2017). In addition, post-mortem brain studies of autistic individuals show atypicalities in 

synaptic anatomy, such as increased synaptic density and immature synapses (Hutsler & Zhang, 2010; 

Irwin et al., 2001). Recently, it has been suggested that synaptic dysfunction may drive both sleep 

difficulties and other symptoms of autism, placing sleep difficulties as a core symptom of autism 

(Doldur-Balli et al., 2022; Missig et al., 2020). See figure 1.11 for a summary of the three possible 

relationships between sleep and sensory processing. 
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Figure 1.11 Three possible pathways explaining the co-occurrence of sensory differences and sleep difficulties. 

Sensory processing difference may cause sleep problems (a), sleep problems may cause sensory processing 

differences (b) or they may arise independently and an underlying mechanism may cause sleep problems and 

sensory differences (c) 

1.4 Overview of the thesis 

In this thesis, I investigate evidence in support of a causal relationship from sensory processing 

differences to sleep difficulties, and a potential role for aberrant gating of sensory input. I ask whether 

sensory processing differences drive sleep difficulties and whether this is due to altered sensory gating 

during sleep. Across the thesis, sleep will not be characterised as one entity, but rather dismantled 

into subcomponents which are most closely connected to sensory processing, focussing on macro-

elements of sleep such as awakenings and sleep onset, and micro-elements, like sleep spindles and 

slow waves. Another central theme of this thesis is the emphasis on infancy. Investigating sleep and 

sensory processing differences as they first emerge is crucial for understanding how these symptoms 

interact. Moreover, as discussed in Section 1.2.4, sleep plays a particularly important role during 

infancy, making it crucial for the development of interventions to focus on this early window in order 

to achieve the greatest impact. 

In the second chapter, I test whether the relationship between sensory hyperresponsivity and sleep 

difficulties extends to the neural level of sensory processing. In particular, I test whether prolonged 

sleep onset and more frequent night awakenings are associated with decreased repetition 
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suppression, measured during wakefulness. Before doing so, I describe the trajectories of sleep onset 

and night awakenings in infants at TL and EL for autism in the first year of life.  

In the third chapter, the directionality between sensory processing differences and sleep onset and 

maintenance is explored in the first year of life, using caregiver reports. Here, I ask whether sensory 

differences predict later sleep or vice versa, using a longitudinal design, with data at 5, 10 and 14 

months. 

The fourth chapter focusses on adapting methodologies to measure sleep EEG features in infancy. I 

discuss the development of sleep spindles and K-complexes in infancy and the implications for their 

automatic and visual detection. In particular, adaptations to an existing adult algorithm to detect sleep 

spindles in infants are discussed, alongside an approach to detect evoked K-complexes in infancy. 

The fifth chapter explores whether markers of sensory disconnection during sleep, SWs, K-complexes 

and sleep spindles, are affected by an infant’s sensory profile. Additionally, I ask whether sensory input 

during sleep affects those oscillations and whether there is an interaction with an infant’s sensory 

profile. To do so, a within-person experiment was conducted, measuring an infant nap with and 

without auditory stimulation.  

The sixth and last chapter, the findings of all chapters are summarised. Then the theoretical 

implications are discussed as well as the practical implications for studying infant sleep and sensory 

processing.  Finally, I discuss whether we find support for our main question: Is sleep disturbed in 

infants with sensory processing differences due to poor gating of sensory input?  
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1.5 The studies behind the datasets 

All analyses in this thesis are based on two main datasets that are part of longitudinal studies. In 

Chapter 2 and 3, secondary data was used from the BASIS study. Chapter 4 and 5 are based on primary 

data collection from the SNOOSE study. Both studies had aims beyond what is presented in this thesis. 

To provide context for the experimental chapters that follow, I will offer a brief overview of both 

studies. 

1.5.1 The BASIS study 

The BASIS (British Autism Study of Infant Siblings) network, founded in 2008, aims to study infants that 

are at elevated likelihood (EL) for autism. They investigate prospective measures of brain function and 

behaviours in infants at EL for autism and a control group of infants at typical likelihood (TL), with the 

aim to develop earlier interventions. Infants were recruited at 5 months of age and followed up until 

they were 7 years old. In this thesis, I use a small part of a large battery of measures that was collected 

between 2013 and 2018, at 5, 10 and 14 months of age.   

1.5.2 The SNOOSE study 

The SNOOSE (SeNsOry Origin of poor Sleep in Early development) study was part of a Wellcome Trust 

grant that started in January 2020 (my PhD started in October 2020). Pilot studies were delayed due 

to the Covid-19 pandemic. The first data was collected in May 2021, when the research labs were re-

opened at the University of East Anglia. The SNOOSE study recruited 8 to 10-month-old infants that 

had an older sibling, either autistic or non-autistic. Similar to the BASIS study, these infants were 

classified as infants at EL and TL for autism, respectively. Infants that had on older sibling on the waiting 

list for an autism diagnosis were also included.  

Aim of the SNOOSE study 

The SNOOSE study aimed to understand the effects of sensory processing differences, common in 

autistic individuals and infants at EL for autism, on sleep difficulties and the potential knock-on effects 

on memory consolidation and learning. In this thesis, I focus solely on sensory processing and sleep.  

Study procedure and collected measures 

The SNOOSE study consisted of three visits: two visits when infants were 8-11 months-old and a follow-

up visit at 24 months (see Fig. 1.12). In the first two visits an infant nap was recorded using 

polysomnography in two conditions: a baseline and stimulation condition, of which the order was 

counterbalanced. In the stimulation condition, auditory input was played in pairs during sleep. The aim 

of using pairs rather than singletons was to understand whether repetition suppression was also 

present during sleep. The nap was followed by a study during wakefulness, where EEG was recorded 

during a tactile gating task whilst infants watched a video clip of the movie fantasia. This task was 
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added to replicate earlier findings of Piccardi et al. (2021) and understand mechanisms of predictive 

coding in infants at EL for autism (not included in this thesis). Caregivers were sent questionnaires 

before the visit and were asked to fill out additional questionnaires during the visit. Before the visit 

caregivers kept a sleep diary for a week, filled out the Ages and Stages Questionnaire (Squires & Bricker, 

2009) and Infant Behaviour Questionnaire (Putnam et al., 2014). Depending on the sleep arrangements 

in the lab, caregivers filled out a battery of questionnaires whilst the infant napped. Otherwise, 

questionnaires were sent to the caregivers via email to fill out at home. These included questionnaires 

about the caregiver themselves assessing sensory symptoms (Adult Autism Spectrum Quotient  (Baron-

Cohen et al., 2001)), the Glasgow Sensory Questionnaire (Robertson & Simmons, 2013)), about the older 

sibling(s) (Social Communication Questionnaire (Bölte et al., 2008)) and the infant itself (Infant Sleep 

Habit Questionnaire (Dias et al., 2018), Infant Toddler Sensory Profile 2 Questionnaire (Dunn, 2014, p. 2)). 

When the infants turned 24 months, all participants (including those who only completed one visit at 

the first timepoint) were invited for a follow-up visit. During this visit, toddlers participated in a 

developmental assessment: the Mullen Scales of Early learning (Mullen, 1995). The aim of this third visit 

is to understand the predictive effects of early sleep on later development. At the time of submission 

of this thesis, four infants still need to turn 24 months and return for the last visit. 

 

Figure 1.12 The SNOOSE study in action. Visits 1 and 2 at 8-11 month of age (A-C) and visit 3 at 24 months (D). 

A. Preparing the EEG cap before the nap. During sleep auditory input is played from the two speakers next to the 

arm chair. B. Sleeping infant in mother’s arms. C. After the nap, an infant watches a cartoon while paired 

vibrations are delivered to the soles of their feet to measure tactile gating. D. At the follow-up visit a toddler 

participates in the Mullen Scales of Early Learning.   
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Data collection for the SNOOSE study started in May 2021 and will end in October 2024. Over the 

course of these three years, data collection has been completed with the help of students, research 

assistants and post-docs: Hope Fincham, Dr. Achilleas Pavlou, Dr. Dominic Mclean, Fabiola Ruiz Castro, 

Morgan Whitworth, Emily Hurst and Giulia D’Avino.  

In Chapter 5, I address one of the main aims of the SNOOSE study: Is there a sensory origin of sleep 

difficulties in early development? I ask whether sleep macro- and micro-architecture differ between 

the baseline and stimulation condition, and whether this is dependent on an infant’s sensory profile. 

Before answering the theoretical questions, I discuss automated methods to detect micro-architecture 

events, sleep spindles and K-complexes, and why adaptations may be needed to measure these in 

infant populations reliably in Chapter 4. I then present how I adapted automated detection of micro-

events for the SNOOSE age range.   
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Chapter 2. 

Sensory Gating and Sleep 
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2.1 Introduction 

In Chapter 1, we reviewed the growing body of literature that demonstrates that sleep and sensory 

processing difficulties are correlated, both in autistic and non-autistic individuals and that this 

association emerges early in development. I outlined a few potential pathways that could give rise to 

this association, summarized in Fig. 1.11. This thesis mainly focusses on one potential pathway: 

whether sensory processing differences lead to sleep difficulties due to diminished sensory gating. 

Previous work has used a variety of sleep and sensory processing measures, some of these being 

composite measures combining various aspects of sensory processing and of sleep. In this Chapter, I 

focus on whether sensory gating predicts sleep initiation and maintenance. Results presented in this 

Chapter are published in Scientific Reports (De Laet et al., 2022). 

As described in Chapter 1, one way to quantify sensory gating is by comparing neural responses to 

repeated stimuli. An identical stimulus, presented at predictable time intervals, is expected to elicit an 

attenuated response, this phenomenon is called repetition suppression. Piccardi et al. (2021) found 

that neural repetition suppression to tactile input is diminished in 10 month-old infants at EL for autism 

compared to infants at TL. Using the same dataset, we ask whether decreased neural repetition 

suppression to tactile stimulation, measured at 10 months-of-age, associates with parent-report 

measures of sleep in infants at TL and EL for autism.  

Furthermore, we focus on two aspects of sleep, which may be particularly affected by diminished 

sensory gating: sleep initiation and maintenance (Coenen, 2024). These will be measured as sleep 

onset latency, the time it takes to fall asleep, and the frequency of night awakenings, assessed through 

caregiver report. These measures are consistently reported to be elevated in autistic individuals 

(Deliens & Peigneux, 2019). Typically developing infants take less time to fall asleep and wake up less 

at night, as they develop (Henderson et al., 2010; Joseph et al., 2015). There is some indication that 

these features of sleep are altered within the first year of life in infants at EL for autism. Sleep onset 

latency is longer in 6- to 12-month-old infants at EL who went on to develop autism (MacDuffie et al., 

2020)  and more night awakenings at 12 months predict more severe later autism traits (A. Nguyen et 

al., 2018). However it is unclear when these differences start to emerge. 

Our first aim is to characterize developmental changes in infants’ ability to initiate and maintain sleep 

by looking at sleep onset latencies and number of night awakenings at 5, 10, and 14 months of age and 

testing the point at which EL and TL sleep trajectories diverge. Differences between infants at TL and 

EL for autism could result both from genetic differences between the two groups as well as from 

environmental differences, e.g. having an older autistic sibling may disturb their sleep patterns. The 

second key aim is to test, for the first time, whether an EEG marker of tactile repetition suppression is 
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associated with individual variation in sleep in infants at TL and EL for autism. If such association exists, 

it would support the hypothesis that sleep atypicalities in infants with EL for autism are intrinsically 

driven, rather than a result of their environment. Additionally, we will test whether this association 

holds even when the group of infants that went on to develop autism are removed. An affirmative 

answer will be in line with previous work suggesting the link between sensory issues and sleep is not 

specific to autism (Appleyard et al., 2020). Lastly, we test whether sensory gating predicts sleep over 

and above subjective scores of an infant’s sensory behaviours. Here we aim to understand whether 

sensory gating explains the commonly reported association between sensory profiles and sleep 

difficulties. These are additional analyses that are not included in the peer-reviewed paper.   

2.2 Methods and Materials 

2.2.1 Participants 

One hundred and twenty four infants took part in a longitudinal study running from 2013 to 2019 at 

5, 10, and 14 months (the BASIS study). The experimental protocol was approved by the National 

Research Ethics Service (13/LO/0751) and the Research Ethics Committee of the Department of 

Psychological Sciences, Birkbeck, University of London (13/1617). All experiments were performed in 

accordance with relevant guidelines and regulations. Parents provided informed, written consent 

before the onset of the study. The study recruited participants with a first degree relative with autism 

and/or ADHD. As the focus of the current study is understanding autism-related atypicalities in sensory 

processing and sleep, infants with a family history of only ADHD were not included. Participants were 

classified as infants at EL for autism if they had a first-degree relative diagnosed with autism by a 

licensed clinician (n=97, female=45). Infants with no first-degree relatives with an autism diagnosis and 

a typically developing older sibling were classified as infants at TL for autism (n=27, female=9). Infants 

at TL were recruited from a volunteer database at the Centre for Brain and Cognitive Development, 

Birkbeck University of London. At the 10-month visit, infants (n=65; EL=48, TL=17), participated in an 

EEG study measuring responses to tactile stimulation. The sample size for particular analyses varied 

due to missing responses or attrition (see Table 2.1 and 2.3). 
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Table 2.1 Characteristics of participants included in data analysis at 5-, 10- and 14-month assessments. Means 

(standard deviation); a independent t-test; b Pearson Chi square test. 

 EL TL ρ-value 

5 month visit   

Age in days  176 (20) 179 (14) .463 a 

Number of awakenings 2.00 (1.48) 2.44 (1.47) .209 a 

N 65 25  

M:F 35:30 18:7 .117b 

Sleep onset latency in min 12.42 (10.35) 11.15 (10.10) .604 a 

N 65 24  

M:F 34:31 17:7 .117 b 

10 month visit   

Age in days  319 (15) 322 (17) .430 a 

Number of awakenings 1.95 (1.37) 1.27 (1.08) .032 a 

N 81 22  

M:F 46:35 15:7 .335 b 

Sleep onset latency in min 11.45 (7.51) 7.92 (6.19) .041 a 

N 82 22  

M:F 46:36 15:7 .307 b 

Tactile Suppression Index -0.009 (0.212) 0.141 (0.141) .008a 

N 51 17  

M:F 24:27 10:7 0.401b 

14 month visit   

Age in days 450 (19) 448 (18) .548 a 

Number of awakenings 1.87 (1.46) 1.00 (1.45) .022 a 

N 83 19  

M:F 44:39 12:7 .423 b 

Sleep onset latency in min 13.18 (11.40) 6.46  (7.25) .002a 

N 84 19  

M:F 45:39 12:7 .448 b 

 

2.2.2 Measures 

Sleep measures. Questions from the Sleep and Settle Questionnaire (SSQ) (Matthey, 2001) were used 

as measures for sleep onset latency and the number of awakenings. The number of awakenings 

indicates the number of times the infant woke up during the night on average in the preceding week. 

Integers were required for analysis of this ordinal variable (see Analytical approach 2.2.3), therefore 

where parents filled in a range instead of one number, the average was taken and, in case of a non-

integer, the value was truncated (e.g. 2.5 would become 2). Parents reported separately on the time it 

took to settle their infant for day (5am to 6pm), evening (6pm to 10pm) and night sleeps (10pm to 

5am), again, with an average estimate over the preceding week. If parents reported a range, the mean 

was taken. We averaged day, evening and night values to create a continuous sleep onset latency 
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measure. Participants were also included if they only filled in one or two of the questions, since not all 

infants take two additional naps. However, this was less than 10% of the total participants included in 

the calculation of sleep onset latency at all three visits. 

Autism diagnosis. At 3 years, infants at EL were assigned a best estimate research diagnosis autism 

(EL-ASD+) or non-autism (EL-ASD-) according to the DSM-5 diagnostic criteria by experienced 

researchers with the help of a licensed clinical psychologist (GP and TC). The decision was based on 

outcomes from the Autism Diagnostic Observation Schedule, Second Edition (ADOS-2) (C. Lord et al., 

2000), Autism Diagnostic Interview-Revised (ADI-R) (C. Lord et al., 1994), Mullen Scales of Early Learning 

(MSEL) assessments (Mullen, 1995), the Vineland Adaptive Behaviour Scales (VABS) (Sparrow & Cicchetti, 

1989) and researcher observations during previous visits. 

EEG Paradigm. A full description is reported in Piccardi et al. (2021). 

Stimuli 

Custom built voice coil tactors were attached to the bare soles of each foot of the infant with cohesive 

tape. Vibrotactile stimuli were delivered to both feet simultaneously with a frequency of 220Hz. Stimuli 

lasted 200ms and were consistently presented in pairs (S1–S2) with a 500ms interstimulus interval 

(Figure 2.1). The time between pairs of stimuli, the intertrial interval, varied randomly between 8-12s. 

In total, 38 pairs of stimuli were administered split across two 4 minute blocks with a 2 minute break 

in between. As a distraction, a visually engaging cartoon without language content (Fantasia by Walt 

Disney) was played during the experiment. Infants were seated on the lap of the parent 60 cm from 

the screen in a dimly illuminated room.  

Apparatus and time-frequency analysis of EEG 

EEG was recorded using 124 channels of a 128-channel HydroCel Geodesic Sensor Net connected to a 

NetAmps 400 amplifier (Electrical Geodesic, Eugene, OR) and referenced online to the vertex (Cz). Net 

station (Electrical Geodesic) was used to pre-process the EEG data offline. If individual epochs 

exhibited voltage changes over 200 µV in one segment (identified by automated artefact detection), 

individual channels within segments were eliminated after additional visual inspection.  Artefact free 

EEG segments were processed and analysed using EEGLAB (v.13.4.3b) in MATLAB®. Spectral 

decompositions were conducted using Wtools (developed  by  E.  Parise,  L.  Filippin,  &  G.  Csibra,  

available  upon  request), employing complex Morlet wavelets 3-20Hz with 1Hz resolution. A 

continuous wavelet transformation of all segments was conducted, and the absolute value of the 

results was extracted. A 100 ms pre-stimulus window was used as a baseline. Individual epochs were 

averaged per participant. Time-frequency decomposition was used to quantify oscillatory alpha 

amplitude desynchronization to tactile stimulation (i.e. 6–10-Hz alpha amplitude during the task as  
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compared  to  alpha  amplitude  at  baseline). The average 6–10-Hz alpha desynchronization oscillatory 

amplitude was extracted from two 500-ms-long windows time-locked to S1 and S2 offset. A tactile 

suppression index (TSI) was computed by subtracting alpha amplitude desynchronization at S1 from 

alpha amplitude desynchronization at S2.  

 

Figure 2.1 A. Time frequency plots in both groups, TL and EL. Black dotted lines indicate the first (S1) and second 

(S2) stimuli. Red dotted lines indicate the 500-ms-long time-windows post-stimulus offset selected for statistical 

analysis. Amplitude scale is−0.5, 0.5μv. B. Experimental design. Vibrotactile stimuli are presented in pairs (S1 and 

S2) with a fixed interstimulus interval of 500ms. The interval between the onsets of pairs of stimuli ranged from 

8 to 12s randomly. Figures adapted from Piccardi et al., (2021) and created using WTools (Parise & Csibra, 2013). 

Sensory profile measure. Infant’s sensory profiles were measured as low threshold (LT), a combination 

of the sensory sensitivity and sensation avoidance quadrants from the ITSP (Dunn, 2002). These two 

quadrants are chosen because they are consistently correlated with sleep difficulties (Manelis-Baram 

et al., 2021) and are conceptually most relevant to the study of sleep onset and maintenance. A low 

threshold for sensory stimulation, rather than a high threshold, could lead to hyperarousal and trouble 

falling and staying asleep (Riemann et al., 2010). On the ITSP, caregivers indicate the frequency of their 

child’s behaviour on a five-point scale ranging from almost always to almost never. LT contains 

questions from five modalities: general, auditory, oral, touch and vestibular. LT was reverse scored, so 

a high score reflects high behavioural and affective reactivity to sensory stimulation. The ITSP was 

collected at all three timepoints of the study. In this Chapter, we will only use concurrent measures of 

LT and sensory gating at 10 months. In the Chapter 3, the bi-directional links between LT and sleep 

measures will be modelled longitudinally. At 10 months LT consists of 23 questions (see Appendix B 

table A.3), of which the average was taken.  
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2.2.3. Analytical approach 

Statistical analysis was performed in SPSS v25. Three values of sleep onset latency (2 EL; 1 TL), one 

value of the number of awakenings (TL) and one value of the TSI (EL) were more than three standard 

deviations above the mean and trimmed to one integer above the highest value. To analyse the 

trajectory of sleep onset latency and the number of awakenings, generalized estimating equations 

(GEE) were used factoring in Group and time of the measurement (Visit). GEE was chosen to model 

the non-normal response variables and to accommodate for missing data. For number of awakenings, 

a count variable, a Poisson distribution with a log-link was specified. Due to a right skew for the sleep 

onset latency variable (see table 2.2 for skewness and normality), a gamma distribution with log-link 

was specified. An integer of 1 was added to the sleep onset latency variable, so values of zero would 

not be omitted in the GEE. Maximum likelihood was selected for scale parameter estimation. The 

structure of the working correlation matrix was specified as ‘unstructured’ with a robust estimator. 

Table 2.2 Skewness and normality values of sleep onset latency at 5, 10 and 14 months.  

Sleep 

Onset 

Latency  

Kolmogorov-

Smirnov 

df Sig Shapiro-

Wilk 

df Sig Skewness 

(SE) 

Kurtosis 

(SE) 

5 months 0.179 66 0.000 0.840 66 0.000 1.78 (0.26) 3.64 (0.51) 

10 

months 

0.128 66 0.009 0.927 66 0.001 0.78 (0.24) 0.36 (0.47) 

14 

months 

0.218 66 0.000 0.814 66 0.000 1.59 (0.24) 2.75 (0.47) 

 

To assess the main effects of Visit (5, 10 and 14 months) and Group (EL and TL), the GEE was run with 

main effects only and then a Group*Visit interaction was added in a separate step, from which the 

interaction terms are ascertained. Post hoc Bonferroni corrected pairwise comparisons were run for 

significant main effects of Visit. In case of a significant interaction with Visit, a separate GEE was run 

per timepoint to assess group differences. GEE models were run to test whether the TSI was associated 

with the sleep parameters, first concurrently (i.e. at 10 months), then longitudinally. To test the 

generalisability of results across the EL group, all analyses were repeated after removing infants who 

were subsequently diagnosed with autism at 36 months. We also excluded infants at EL who did not 

come to the 36 month assessment and therefore could not be assigned to EL-ASD+ nor EL-ASD-. The 

concurrent models at the 10-month timepoint were rerun with LT as an additional predictor. 
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Table 2.3 Sample sizes of the analyses with EEG data per model. Sleep Onset Latency (SOL); Night awakenings 

(Awa); Tactile Suppression Index (TSI); Typical likelihood (TL); Elevated Likelihood (EL); EL with a confirmed 

autism diagnosis (EL-ASD+); EL without an autism diagnosis (EL-ASD-). 

Model Concurrent Longitudinal 

Outcome SOL (10 mo) Awa (10 mo) SOL (14 mo) Awa (14 mo) 

Covariates Group, TSI (10 mo) Group, TSI (10 mo) 
Group, TSI (10 mo), 

SOL (10 mo) 

Group, TSI (10 mo), 

Awa (10 mo) 

Total n (m:f) 58 (31:27) 58 (31:27) 50 (27:23) 49 (26:23) 

TL(m:f)/EL(m:f) 15(9:6)/43(22:21) 15(9:6)/43(22:21) 11(7:4)/39(20:19) 11(7:4)/38(19:19) 

TL/EL-ASD-/EL-

ASD+/missing 
15/34/5/4 15/34/5/4 11/30/5/4 11/29/5/4 

 

2.3. Results 

2.3.1. Sleep trajectory 

The number of awakenings significantly decreased each consecutive visit in the whole sample (see 

Figure 2.2, Waldχ2 = 10.503, p = .005) with post hoc pairwise comparisons indicating that infants had 

significantly fewer awakenings at 14 months (estimated mean [EM] = 1.63; 95% confidence interval 

[CI] = 1.36, 1.97) compared to 5 months (EM = 2.14; CI = 1.84, 2.50; p = .004, Bonferroni corrected p = 

.05/3). There was no significant main effect of autism likelihood status on awakenings (Waldχ2 = 1.116, 

p = .291), but there was a significant interaction between visit and autism likelihood status (Waldχ2 = 

10.777, p = .005); post-hoc tests revealed no significant group difference in awakenings at 5 months 

(Waldχ2 = 1.773, p = .183), but a significant difference at 10 months with infants at EL waking more 

often (Waldχ2 = 5.068, p = .024), and a marginally significant difference, in the same direction, at 14 

months (Waldχ2 = 3.465, p = .063).      

For sleep onset latency, there was no significant main effect of visit (Waldχ2 = 2.567, p = .277), nor did 

autism likelihood status reach significance (Waldχ2 = 2.850, p = .091). However, the interaction 

between visit and autism likelihood status was significant (Waldχ2 = 17.421, p < .001). Post-hoc tests 

showed no significant differences at 5 months (Waldχ2 = .273, p = .601), but significantly longer sleep 

onset latencies at 10 months in infants at EL compared to infants at TL (Waldχ2 = 4.402, p = .036), which 

persisted at 14 months (Waldχ2 = 7.545, p = .006). 

Looking at the sleep trajectory by group (see Figure 2.2), the number of awakenings (Waldχ2 = 13.239, 

p = .001) and sleep onset latency (Waldχ2 = 15.272, p < .001) significantly decreased with age in infants 
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at TL, while in infants at EL they remained stable over time (Waldχ2 = 1.753, p = .416 and Waldχ2 = 

3.787, p = .151, respectively). In TL infants, post hoc tests indicated that the number of awakenings 

was significantly higher at 5 months (EM = 2.47; CI =1.97, 3.09) compared to 10 months (EM = 1.36; CI 

= 0.94, 1.97; p = .001, Bonferroni corrected) and 14 months (EM = 1.09; CI = 0.64, 1.86; p < .001, 

Bonferroni corrected). TL infants’ sleep onset latency also significantly decreased from 5 months (EM 

= 12.62 mins; CI = 9.28 mins, 17.16 mins) to 14 months (EM = 7.93 mins; CI = 5.53 mins, 11.37 mins; p 

= .001 Bonferroni corrected), but not from 5 to 10 months (EM = 7.94 mins; CI = 5.45 mins, 11.59 mins; 

p = 0.096).  

 

Figure 2.2 Sleep trajectories from 5 to 14 months. Infants at typical likelihood for autism (TL) are depicted in blue and infants 

at elevated likelihood for autism (EL) are depicted in red. Fitted lines are shaded by the 95% confidence interval. A. The number 

of night awakenings. B. Sleep onset latency. 

Sleep trajectories split on autism likelihood and - diagnostic status 

Infants at EL (n=82) were assessed for autism at a subsequent 36-month visit; 12 infants met diagnostic 

criteria for autism (EL-ASD+) and 70 infants did not (EL-ASD-) (see Appendix A for descriptives). When 

the sleep trajectory analyses were re-run by splitting the data in groups based on autism outcome (TL 

vs EL-ASD- and TL vs EL-ASD+), the small EL-ASD+ group (n=12) tended to have the most extreme values 

(see figure 2.3). The number of awakenings was significantly affected by visit and decreased with time 

(Waldχ2 = 7.633, p = .022). There were no group effects for TL versus EL-ASD- (Waldχ2 = .522, p = .470) 

or EL-ASD+ (Waldχ2 = 1.459, p = .227). However, there was a significant interaction between visit*EL-

ASD- (Waldχ2 = 10.510, p = .005) and visit*EL-ASD+ (Waldχ2 = 9.260, p = .010). Neither TL versus EL-

ASD- (Waldχ2 = 2.430, p = .119; EL-ASD-: n = 47) or EL-ASD+ (Waldχ2 = 0.044, p = .833, EL-ASD+: n = 10) 

had a significant effect on the number of awakenings at 5 months. At 10 months EL-ASD- had 

significantly more night awakenings than TL infants (Waldχ2 = 4.663, p = .031; EL-ASD-: n = 62), but EL-
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ASD+ did not (Waldχ2 = 2.021, p = .155; EL-ASD+: n = 10). However, at 14 months the results were 

reversed and EL-ASD+ has significantly more night awakenings than TL infants (Waldχ2 = 7.252, p = 

.007; EL-ASD+ n = 11), while EL-ASD- did not (Waldχ2 = 2.563, p = .109; EL-ASD-: n = 64).  

In comparison to the TL infants, EL-ASD+ had a significantly longer overall sleep onset latency (Waldχ2 

= 4.379, p = .036) after controlling for visit, whereas EL-ASD- did not differ significantly from TL (Waldχ2 

= .227, p = .634). The interactions of both Visit*EL-ASD- and Visit*EL-ASD+ were significant (Waldχ2 = 

17.173, p < .001; Waldχ2 = 9.260, p = .010). Post hoc tests revealed that TL infants did not differ from 

EL-ASD- or EL-ASD+ for sleep onset latency at 5 months (EL-ASD-: Waldχ2 = .013 , p = .910, p= .812, n= 

47; EL-ASD+: Waldχ2 = 1.137 , p = .286, n = 10), whereas from 10 months EL-ASD+ had significantly 

longer sleep onset latency (Waldχ2 = 8.185, p = .004; n = 10), which continued at 14 months (Waldχ2 = 

11.093, p = .001, n = 11). In comparison to TL, EL-ASD- did not have significant different sleep onset 

latency at 10 months (Waldχ2 = 1.791, p = .181, n = 62), but they had a significant longer sleep onset 

latency at 14 months (Waldχ2 = 6.064, p = .014, n = 65). These results are summarized on figure 2.3. 

 

Figure 2.3 Sleep trajectories from 5 to 14 months based on autism likelihood and – diagnostic status. A. Number 

of night awakenings. B. Sleep onset latency. Groups are based on autism diagnosis at 36 months. TL: infants at 

Typical Likelihood for autism; EL-ASD-: Infants at Elevated Likelihood for autism who were not diagnosed with 

autism at 36 months; EL-ASD+: Infants at Elevated Likelihood for autism who received an autism diagnosis at 36 

months. Stars in red indicate a significant difference between infants at TL and at EL-ASD-. Stars in blue indicate 

a significant difference between infants at TL and at EL-ASD+. *p < .05. **p = .01 - .001. ***p< .001. 
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2.3.2. Associations with tactile repetition suppression 

Table 2.4 Correlation coefficients (Spearman) of all measures used in the analyses. SOL = Sleep Onset Latency; 

TSI = Tactile Suppression Index; LT= Low Threshold;  mo = months. *significant correlation p < .05 (2-tailed). 

**significant correlation p < .01 (2-tailed) 

  TSI Awakenings 
5mo 

Awakenings 
10mo 

Awakenings 
14mo 

SOL  
5mo 

SOL          
10mo 

SOL  
14mo 

LT 
10mo 

TSI 1        

Awa 5mo .107 1       

Awa 10mo -.075 .379** 1      

Awa 14mo -.030 .386** .577** 1     

SOL 5mo -.348* .208* .209 .172 1    

SOL 10mo -.370** .042 .354** .360** .426** 1   

SOL 14mo          -.260* .190 .288** .429** .469** .631** 1  

LT 10mo -.117 .044 .264** .286** .245* .346** .234* 1 

 

Scores on the TSI were significantly higher (more suppression of the repeated response) in infants at 

TL compared to infants at EL (t = 2.717 (66), p = .008) in line with results previously reported by Piccardi 

et al. (2021) in infants from the same cohort (Table 2.1). Summary correlations between TSI, LT and 

sleep measures at 5, 10 and 14 months are presented in Table 2.4. To test whether emerging sleep 

problems associate with the TSI concurrently, two GEE models were run, one with the number of 

awakenings and the other with sleep onset latency at 10 months as the outcome variable. In both 

models, TSI and autism likelihood status were entered as predictors. TSI had a significant effect on 

sleep onset latency (Waldχ2 = 7.775, p = .005), but not on the number of awakenings (Waldχ2 = .009, p 

= .923), see Figure 2.4. Autism likelihood status did not have a significant effect on awakenings at 10 

months (Waldχ2 = 2.616, p = .106) and there was also no significant effect of the interaction between 

autism likelihood status and TSI (Waldχ2 = 1.146, p = .284). Autism likelihood status did not have a 

significant effect (Waldχ2 = 2.125, p = .145) nor did it significantly interact with TSI (Waldχ2 = .284, p = 

.594) in predicting sleep onset latency at 10 months. 
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Figure 2.4 Associations with tactile suppression index (TSI) at the 10-month visit. Infants at typical likelihood for 

autism (TL) are depicted in blue and infants at elevated likelihood for autism (EL) are depicted in red. A. The 

number of night awakenings is not significantly associated with TSI. B. Sleep onset latency is significantly 

associated with TSI. 

To evaluate if the TSI at 10 months associates longitudinally with the sleep parameters at 14 months, 

over and above 10-month sleep, separate models were run with 14-month sleep onset latency or 

number of awakenings as outcomes. In both models TSI, autism likelihood status and the relevant 10-

month sleep measure (sleep onset latency/number of awakenings), were entered as predictors. TSI 

did not significantly associate with the number of awakenings (Waldχ2 = .128, p = .721) or sleep onset 

latency at 14 months (Waldχ2 = .635, p = .425).  

We excluded the EL-ASD+ participants (n = 5)  and infants who did not come in for the 36-month visit 

and therefore could not be categorized as EL-ASD+ or EL-ASD- and reran the GEE with infants at TL and 

EL-ASD-. Identical to the main analysis, GEE was performed to assess the effects of tactile repetition 

suppression, measured at 10 months, on sleep onset latency and the number of night awakenings 

concurrently at 10 months and longitudinally at 14 months in two separate models per sleep measure. 

Removal of the EL-ASD+ group did not change the results substantively (See Table 2.5), suggesting that 

these infants did not drive the results in the main analysis.   

Additionally, we wanted to understand whether poor sensory gating explains the commonly reported 

association between poor sleep and behavioural and affective hyperreactivity. We therefore 

investigated whether the TSI predicted sleep measures over and above LT. Indeed, when LT was added 

to the model, both TSI and LT significantly predicted SOL (respectively, Waldχ2 = 6.406, p =.011; Waldχ2 

= 5.719, p = .017), with decreased TSI and higher scores on LT predicting longer sleep onset times. 

There was no significant interaction between LT and autism likelihood status (Waldχ2 = .006, p = .361). 

The same model was run with night awakenings as the outcome variable. As before, the TSI did not 
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significantly predict the number of night awakenings (Waldχ2 = .077, p = .781), but LT did, with high 

scores on LT predicting more night awakenings (Waldχ2 = 3.973, p = .046). There was no significant 

interaction between LT and autism likelihood status (Waldχ2 = 2.195, p = .138). 

Table 2.5 Summary of results of the concurrent models and longitudinal models with the tactile suppression index 

(TSI) as a predictor. The first column are the main results with all participants included. The second column are 

the results of the sensitivity analysis excluding all EL-ASD+ infants and infants without a diagnostic outcome 

status. In the concurrent models, after removal of the EL-ASD+ infants, a total of 50 infants remained (TL: n = 15: 

EL-ASD-: n = 35). In the longitudinal models, after exclusion of the EL-ASD+ infants, a total of  the total number 

of 41 infants remained for awakenings (TL: n = 11, EL-ASD-: n = 30) and 42 for sleep onset latency (TL: n = 11, EL-

ASD-: n = 31).   

  All participants Without EL-ASD+ 

  Waldχ2 p-value Waldχ2 p-value 

Awakenings 10 mo       

TSI 0.009 0.923 0.003 0.953 
Group 2.616 0.106 3.030 0.082 
TSI*Group 1.146 0.284 1.299 0.254 
Sleep Onset Latency 10 mo      

TSI 7.775 0.005 6.833 0.009 
Group 2.125 0.145 1.378 0.240 
TSI*Group .284 0.594 0.275 0.600 

Awakenings 14 mo      

TSI 0.128 0.721 0.012 0.912 
Group 8.718 0.003 6.014 0.014 
Awa 10 mo 171.226 < .001 36.805 < .001 

Sleep Onset Latency 14 mo      

TSI 0.635 0.425 0.14 0.708 
Group 11.695 0.001 11.877 0.001 
SOL 10 mo 32.530 <.001 17.884 < .001 

 

2.4. Discussion 

Characterising sleep trajectories of infants at TL and EL for autism revealed that sleep onset latency 

and night awakenings decrease in infants at TL from 5 to 14 months. These patterns mirror previous 

findings that sleep consolidates during the first year of life in typically developing infants (Henderson 

et al., 2020). In contrast, no developmental change was seen in infants at EL, leading to significant 

differences between the groups from 10 months, with longer sleep onset latency and more night 

awakenings in infants at EL than TL. Further, our results show that an objective measure of poor 

sensory gating of tactile stimulation significantly associates with longer sleep onset latency. This finding 

was independent of autism likelihood status, implying that there is a general association between 

sensory gating and sleep onset latency, in line with previous evidence in typically developing children 

(Appleyard et al., 2020). No association between sensory gating and number of night awakenings was 
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found, either suggesting a differential mechanism of sensory gating during pre-sleep wake and sleep 

itself or simply reflecting unreliable caregiver reports of night awakenings compared to sleep onset 

latency. We discuss each of these findings in turn, below. 

 

Trajectories of sleep parameters. In a previous paper, using the same cohort of children, Begum-Ali et 

al. (2023) reported that a composite score of night sleep was worse in infants at EL compared to infants 

at TL at 5, 10 and 14 months. Here, we specifically focused on two measures of sleep that are expected 

to be influenced by the ability to gate sensory input - sleep onset latency and night awakenings.  Our 

findings suggest that differences in both of these parameters emerge between 5 and 10 months, which 

narrows down the developmental interval within which to investigate underlying causes. Using a less 

precise measure, asking about the presence of frequent night awakenings (3 or more) and not the 

exact number awakenings, in a longitudinal population study, Humphreys et al. (2014) only found a 

significant difference in frequent night awakenings between non-autistic and autistic toddlers at 30 

months, but not at 6 or 18 months. In our sample, however, infants at EL woke up more frequently 

than infants at TL from 10 months, suggesting an earlier emergence.  

Subdividing the EL infants into those that were or were not subsequently diagnosed as autistic (EL-

ASD+ and EL-ASD- respectively) showed that infants at EL-ASD+ took longest to fall asleep, suggesting 

that sleep onset latency is intrinsically driven in infants at EL for autism, rather than a result of a shared 

environment with an older autistic sibling. The differences in night awakening trajectories between 

infants at EL-ASD+ and  EL-ASD-  were less consistent, likely due to the small sample sizes in the 

subgroups. Further research is needed to investigate these differences in infants at EL-ASD+ and EL-

ASD-. 

 

The impact of sensory gating on sleep. That reduced sensory gating was associated with longer sleep 

onset latency, but not with more night awakenings is consistent with literature suggesting these sleep 

processes have different underlying mechanisms. For example, adults with sleep onset problems, 

showed reduced repetition suppression to auditory stimuli during pre-sleep wake compared to good 

sleepers, but not during REM or N2 (Milner et al., 2009). In support of different neural mechanisms 

underlying sleep onset and maintenance, the manipulation of the inhibitory neurotransmitter GABAA 

receptor, which has an important role in sleep (Gottesmann, 2002), affected sleep initiation more than 

sleep maintenance in fruit flies (Agosto et al., 2008). In adult patients with primary insomnia (PI), 

auditory stimulation did not increase the number of awakenings compared to an undisturbed, baseline 

night sleep. However, the PI group was more likely to stay in REM sleep when stimulation occurred 

while controls transitioned to N2 more often (Hairston et al., 2010). Thus, while increased stimulus 
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input (due to poor gating) might not result in more awakenings, it may still affect sleep quality and 

architecture to a larger extent in populations with sleep difficulties, like in autism. In Chapter 5, we 

investigate the effects of sensory input on macro- and micro-architecture features of sleep. 

The incongruity of the reported association between sensory gating and sleep onset latency but not 

awakenings may also reflect the nature of the sensory gating measure used in this study. Sensory gating 

was measured during wakefulness and may therefore be more closely related to arousibility at sleep 

onset compared to arousibility from sleep. Kisley et al. (2001) reported differences in sensory gating, 

although in response to auditory stimulation, dependent on vigilance state in the same individuals. 

Alternatively, the discrepancy in our findings between awakenings and sleep onset latency could be 

caused by the accuracy of caregiver report. Sadeh et al., (1996) found that parents reported the 

number of awakenings significantly less accurately than sleep onset in infants when compared with 

actigraphy results. Moreover, Pisch et al. (2015) found no significant association between parent 

reported awakenings and actigraphy in infants. 

The association we find between tactile repetition suppression and sleep onset latency may also be 

indicative of common underlying mechanisms. One possibility is that impaired GABAergic functioning 

impacts both sensory gating and sleep. GABA is the main inhibitory neurotransmitter in the brain. 

Altered functioning of GABAergic signalling in autism is evident from lower GABA levels, reduced 

expression of GABAergic genes and microdeletion in genes coding for subunits of the GABAA receptor 

(Coghlan et al., 2012). Both sensory processing atypicalities and sleep onset problems could be 

triggered by reduced GABA levels. In fact, sleep onset latency was decreased in rats after oral 

administration of GABA (S. Kim et al., 2019), and mutation of GABAA-receptor in fruit flies resulted in 

a reduction of sleep onset latency (Agosto et al., 2008). At the same time, Puts et al. (2017) found that 

reduced sensorimotor GABA-levels in autistic children are associated with sensitivity to touch. Thus, 

an impaired GABA-ergic system could underlie the co-occurrence of sensory issues and sleep 

disturbances in autistic individuals. In general, there is accumulating evidence to believe that an 

excitation/inhibition (E/I) imbalance, particularly relevant during brain development, plays an 

important role in the pathophysiology of autism. Besides affecting basic sensory processing and sleep, 

an E/I imbalance disturbs optimal information transmission, which could alter processing of complex 

information such as social stimuli, resulting in social and cognitive impairments seen in autism. 

Therefore, while this study shows that poor sensory gating is indeed predictive of longer sleep onset 

times, it is impossible to infer a causal relationship from these results. In Chapter 3 and 5, we 

investigate evidence in support of a causal pathway. 
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In exploratory analyses, we investigated the effects of two different measures of sensory processing 

on sleep, sensory gating and sensory profiles. Poor tactile gating and high scores on low threshold both 

predicted longer sleep onset times in the same model, suggesting that they contribute to longer sleep 

onset but independently of each other. While tactile gating did not predict night awakenings, high 

scores on low threshold did. This suggests that sensory profiles may capture sleep difficulties more 

broadly, whereas tactile gating appears to relate to specific aspects of sleep, such as sleep onset.  

Interestingly, there was no significant correlation between the two sensory processing measures (see 

Table 2.4). The lack of correlation between these two measures is perhaps not very surprising as they 

capture quite distinct aspects of sensory processing. The TSI captures an infant’s ability to detect and 

supress a response to an irrelevant stimulus on a neural level, whereas LT captures a variety of 

behaviours and emotions in response to sensory input. In addition, LT includes measures of all sensory 

modalities, while sensory gating was measured in response to tactile stimulation. This not the first 

study that does not find the expected correlation between different measures of sensory processing. 

For example, autistic adults that have better perceptual sensitivity for sound had lower, not higher, 

self-reported auditory sensitivity (M. W. M. Kuiper et al., 2019). As discussed in Chapter 1 section 

1.3.1.1, the questions on the ITSP seem to relate mostly to affective reactivity and behavioural 

responsivity to sensory input in He et al.’s taxonomy of sensory differences (He et al., 2023), which 

may reflect general anxiety rather than poor sensory gating alone. Anxiety, which is highly prevalent 

in autism and has been suggested to contribute to sleep problems in autism (Deliens & Peigneux, 2019; 

Hollway et al., 2013), and is often associated with difficulties in sleep initiation and maintenance 

(Bourdet & Goldenberg, 1994).  A more in-depth study of the relationship between these two 

measures in needed to understand whether they are truly unrelated or whether this relationship is 

obscured by the composite nature of sensory profile scores. 

Longitudinal effects of sensory gating. TL participants showed a further decrease in sleep onset 

latency between 10 and 14 months. These changes may, in part, reflect the development of self-

soothing strategies. The mechanisms driving individual progress in self-soothing are poorly 

understood, but it is believed this requires infants to identify body cues for sleepiness and to use 

behavioural strategies, such as sucking on fingers, to fall asleep more easily (Camerota et al., 2019; 

Goodlin-Jones et al., 2001) . It is therefore plausible that poor sensory gating may not only delay sleep 

onset but it may also interfere with the development of these strategies. We found tactile repetition 

suppression did not predict sleep onset latency at 14 months after controlling for 10-month sleep 

onset latency. This suggests that the effects of reduced sensory gating on sleep do not accumulate over 

time. Manelis-Baram et al., (2021) found that changes in sleep disturbances between 3 and 5 years of 

age were associated with changes in sensory sensitivities specifically, and not with other core autism 
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symptoms, in autistic children. Similar to our results, they found that initial sensory profile scores did 

not predict sleep disturbances at a later timepoint, but they did not test whether early sleep predicts 

later sensory scores. To better understand the directionality of sensory processing and sleep, a 

longitudinal study design is needed. In the current study, that focussed on sensory gating, we could 

not assess the directionality between symptoms because sensory gating was only measured at one 

timepoint. In Chapter 3, we test the directionality of effects between sleep onset and maintenance 

and sensory profiles, which were collected at 5, 10 and 14 months.  

While this study is novel in its use of an objective measure for sensory gating, sleep is captured by 

caregiver reports and not by more objective measures. The use of actigraphy or polysomnography 

could greatly improve the reliability of sleep behaviours, particularly for night awakenings. In Chapter 

5, we investigate the effect of sensory input on arousal during an infant nap using polysomnography.  
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3.1 Introduction 

In Chapter 2, we showed that sensory gating predicts sleep onset latency concurrently, but not night 

awakenings, confirming that poor sensory gating may explain some of the sleep difficulties seen in 

infants at EL for autism. However, an infant’s sensory profile - their average affective and behavioural 

responses to sensory input - predicted both sleep onset latency and night awakenings, in combination 

with sensory gating. Thus, while both sensory processing measures predicted sleep, the reverse 

direction of association could also be the case: Sleep difficulties could induce or exacerbate sensory 

responses. Indeed, there is some evidence from studies in non-autistic people that sleep affects 

sensory experiences the next day. Sleep deprivation increases reactivity in the somatosensory cortex 

and predicts increased pain experiences (Krause et al., 2019). In addition, sleep deprivation impairs 

sensory gating (Zhang et al., 2019), and extending sleep in healthy habitually short sleepers normalizes 

their sensory gating response (Gumenyuk et al., 2013).  

Assessing whether there is a directionality in symptom emergence/change could direct effective 

strategies to improve quality of life for autistic individuals. One way of measuring directionality is by 

using longitudinal study designs, which take advantage of the temporal ordering of measurements to 

make inferences about cause and effect (Hamaker et al., 2020). Common statistical methods to do so 

will be discussed in further detail below. Only a few studies have looked at the longitudinal relationship 

between sleep and sensory atypicalities in autism. Mazurek et al. (2019) looked at sleep problems and 

a range of co-occurring symptoms in 2- to 10-year-olds with ASD. Sensory over-responsivity was the 

only significant predictor of a change in sleep between baseline and follow-up (3.8 years later) in the 

younger age group, the 2- to 3-year-olds. The result was uni-directional, sleep did not predict a change 

in sensory over-responsivity. One other study found that auditory processing in typically developing 6-

month-olds predicted sleep onset latency at 2.5 years (Appleyard et al., 2020). Unfortunately, they did 

not have data on sleep at the 6-month time-point in order to test whether early sleep predicts sleep 

onset latency at 2.5 years. Manelis-Baram et al. (2021) looked at change in sleep disturbances and 

sensory profiles in children with ASD from 3- to 4.5-years-old. They found that sleep disturbances and 

sensory sensitivities covary longitudinally. Changes in sensory sensitivity, but not initial sensitivity 

scores, predicted future sleep disturbance over and above initial sleep disturbances. The study did not 

look at the opposite prediction. In summary, of the few longitudinal studies that look at sleep and 

sensory processing, most looked at whether early sensory processing predicted later sleep or a change 

in sleep, but not the opposite way around. Only Mazurek et al. (2019) tested a possible bi-directional 

relationship and found a unidirectional association from early sensory processing to later sleep. 

Nevertheless, results from one study with a limited timeframe, 3 to 4.5 years, is not sufficient to rule 

out a potential pathway from sleep to sensory processing difficulties. It is possible that good sleep, 
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particularly during the first year of life drives the development of sensory processing systems. The 

foundations for sensory neurodevelopment are laid in early life and early sleep plays a key role in the 

development of the central nervous system (Grubb & Thompson, 2004; Knoop et al., 2021; Whitehead 

et al., 2018). Assessing whether directionality is present at the onset of symptoms of autism could 

allude to which symptom initially drives the other.   

3.1.1 Statistical approaches to capture reciprocal influences  

In essence, this is a causal question, much like many of the key questions in developmental science 

that ask how different constructs co-develop over time and whether reciprocal relationships exist 

between them (Curran & Hancock, 2021). How to make inferences about cause and effect 

appropriately has been a topic of heavy debate (Cartwright, 2007; Hamaker et al., 2020; Zyphur et al., 

2020). Besides experimental studies, several methods exist that use longitudinal panel data to make 

inferences about causality. Initially, researchers began testing causal relationships with longitudinal 

panel data by simply looking at cross-lagged relationships, taking advantage of the chronological order 

of events to address causation. The rationale being that, if one value precedes the other in time, the 

earlier one must be the cause and the latter the effect, assuming that time only travels forward. 

However, this approach was critiqued because it fails to account for the degree of stability of the 

constructs (Rogosa, 1980). If one construct is highly stable and the other is not, then seemingly 

‘causative’ associations would appear that are actually due to the stability of the constructs. Rogosa 

(1980) suggested a more elaborate panel model, the cross-lagged panel model (CLPM), which controls 

for the stability of constructs. The problem seemed to be resolved and researchers could once again 

make causal inferences with longitudinal panel data. Until a new critique was delivered. Not only the 

stability of a construct has to be taken into account, but also the stability of a construct within an 

individual. Both critiques stem from ‘the omitted variable problem’. A ‘causal’ pathway might appear, 

but this may be driven by a third unobserved variable that is the root of the cause. If one fails to 

account for this unknown third variable in the model, then erroneous conclusions about causality 

could be made. New improvements were suggested to the CLPM with the help of advanced statistical 

methods such as structural equation modelling (SEM). For an overview of the different statistical 

approaches that aim to draw more accurate conclusions about causality with longitudinal panel data 

see Usami et al. (2019). In the section below, the CLPM will be discussed and compared to two more 

statistically complex models that aim to circumvent the shortcomings of the CLPM, the Random 

Intercept (RI) -CLPM and the Latent Curve Model with Structured Residuals (LCM-SR).  

3.1.1.1 (Random Intercept) Cross lagged panel model  

For decades, the CLPM has been used to examine the reciprocal relationship between two or more 

variables (Rogosa, 1980). Using longitudinal data, this model assesses how a variable Y at one 
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timepoint (t) can be predicted by another variable X at a previous timepoint (t-1), constituting what is 

known as the cross lagged relationship (see Fig. 3.1). In the CLPM, stability of measures is accounted 

for by controlling for variable Y at t-1, known as the autoregressive relationship. In other words, X 

predicts a change in Y over time. The CLPM also models the opposite relationships and assesses 

whether Y at t-1 predicts a change in X from t-1 to t. 

In 2015, Hamaker et al., published an influential paper (cited 2618 times on 29/03/2024) critiquing the 

traditional CLPM. They, alongside others (Berry & Willoughby, 2017; Curran et al., 2014), argue that if 

the stability of the variables over time is to some extent trait-like and time-invariant, the autoregressive 

relationships of the CLPM fail to account for this. As a consequence, erroneous conclusions about 

reciprocal effects could be made, if temporal fluctuations are confounded with time-invariant traits 

(Hamaker et al., 2015). It is not unreasonable to assume some level of individual stability of constructs 

over time, as many constructs in psychology do have some degree of stability, such as personality 

types, anxiety, emotional intelligence and mental health to name a few (Carter Leno et al., 2022; 

Lodder et al., 2022; Zadorozhny et al., 2024). Hamaker et al. (2015) propose an extension to the CLPM, 

the RI-CLPM (Fig 3.2), which controls for the individual time-invariant stability by separating the 

between-person variance from the within-person variance, using principles from multilevel modelling. 

In a multilevel model, data has a hierarchical structure. A classic example of hierarchical data with two 

levels are test scores of pupils that are nested within classrooms and within schools. By centring the 

individual scores around the means per classroom and per school, variation that is due to common 

factors is accounted for. A great strength as well as a methodological challenge of longitudinal data is 

that it can be treated as hierarchical data, where data is nested within the individual itself over time. 

To circumvent the issue of confounding factors due to trait-like individual differences, the RI-CLPM 

extends the CLPM with the addition of a latent variable for each construct, called the random intercept, 

that draws on the observed variables with factor loadings of 1.  

Before elaborating on the mathematical differences between the CLPM and RI-CLPM, let us explore 

why it necessary to separate within and between person effects from a conceptual standpoint of view. 

Hamaker (2012) gives a clear example to illustrate why it is not possible to generalize results from the 

between-person level to the within-person level. Imagine that people who type faster (than others) 

tend to make less mistakes (than others). This is a finding on the between person level. However, it 

does not imply that the same is true on a within-person level, so that when an individual types faster 

than they usually do, they will make less mistakes. In fact, the opposite is more likely. In this scenario, 

a negative relationship would be expected on the between-person level, but a positive one on the 

within-person level. In the context of the current study, significant effects on the between-person level 

would have different implications than effects on the within-person level. E.g. Infants that are more 
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sensitive compared to others might wake up more at night (between-person level), but that does not 

mean that if an infant is more sensitive than usual on a particular day, they will wake up more than 

usual (within-person level). It is often the within-person effects that researchers are actually interested 

in, when asking causal questions about underlying mechanisms. Of course, that does not mean that 

effects on the between person level are not valuable or interesting in themselves, but it is crucial that 

the two levels are not conflated. In both cross-sectional data and the traditional CLPM it is not possible 

to distinguish the within-person (state-like) aspect from the between-person (trait-like) aspect and to 

know which of the two drives the results. The variance and correlations obtained in a cross-sectional 

study rely on the variances and correlations of both the within-person and between-person level. The 

cross-sectional variance is the sum of the variances at both levels and the correlation is a weighted 

sum of the within- and between-person correlation. The relative contributions depend on the variance 

at each level. Only if there is no variance at the between-person level, then the cross-sectional results 

would coincide with the within-person results.  

To clarify the differences between the traditional CLPM and the RI-CLPM, the equations of both models 

will briefly be compared (for a more comprehensive explanation, see Hamaker et al. (2015)). In the 

CLPM and RI-CLPM two (or more) constructs, x and y, are modelled in waves over time. For simplicity, 

just one variable x, will be described further. However, the exact same equations apply for variable y. 

In a traditional CLPM the measurement xit at time (t) for individual (i) is described as the sum of the 

mean of all participants at time t (𝜇𝑡)  and the individual’s deviation from this mean at time t  (𝑝𝑖𝑡)  

(Equation 3.1). In the RI-CLPM,  𝑝𝑖𝑡
∗ , the individual’s temporal deviation from the group mean, is divided 

into two terms: a time invariant stable trait factor κi and a temporal deviation from the individual 

means 𝑝𝑖𝑡
∗  (Equation 3.2). κi is an individual’s trait-like deviation from the temporal group means. 𝑝𝑖𝑡

∗  

now represents the individual’s temporal deviation from their expected scores (𝜇𝑡 +  𝜅𝑖) rather than 

from the group means only (𝜇𝑡). If there is no stable factor, then κi is zero and the RI-CLPM becomes 

equivalent to the traditional CLPM.  

Equation 3.1 Measurement equation of variable x in the CLPM 

𝑥𝑖𝑡 =  𝜇𝑡 +  𝑝𝑖𝑡  (1) 

Equation 3.2 Measurement equation of variable x in the RI-CLPM 

𝑥𝑖𝑡 =  𝜇𝑡 +  𝜅𝑖 + 𝑝𝑖𝑡
∗   (2) 

An individual’s temporal deviation from either the group means 𝜇𝑡  in the CLPM or their expected 

scores (𝜇𝑡 + 𝜅𝑖) in the RI-CLPM are modelled with structural equations (Equation 3.3 and 3.4). From 

these we can get the estimates of the autoregressive parameter, 𝛼𝑡 or 𝛼𝑡
∗ , and the cross-lagged 

parameter, 𝛽𝑡 or 𝛽𝑡
∗. Although the structural equations of the CLPM and RI-CLPM are similar, the 
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interpretation of the autoregressive and cross-lagged parameters are different. The autoregressive 

parameter, 𝛼𝑡 , of the CLPM represents the stability of rank order of individuals within the group from 

one wave to the next, while 𝛼𝑡
∗, in the RI-CLPM represents the amount of within-person carry-over 

effect. E.g. if 𝛼𝑡
∗ is positive, it implies that the occasions on which a person scored above their expected 

score are likely to be followed by a score above their expected score again. The cross lagged 

parameters in a RI-CLPM explain to what extent a deviation from one’s expected score on x at t2 can 

be explained by a deviation from one’s expected score on y at t1, whilst controlling for a deviation 

from one’s expected score on x at t1.  

Equation 3.3 Structural equation of the temporal deviation in the CLPM. 𝑞𝑖,𝑡−1 is the temporal deviation of 

variable y at the timepoint preceding time t. 

𝑝𝑖𝑡 =  𝛼𝑡𝑝𝑖,𝑡−1 + 𝛽𝑡𝑞𝑖,𝑡−1 + 𝑢𝑖𝑡   (3) 

Equation 3.4 Structural equation of the temporal deviation in the RI-CLPM. 𝑞𝑖,𝑡−1
∗  is the temporal deviation of 

variable y at the timepoint preceding time t. 

𝑝𝑖𝑡
∗ =  𝛼𝑡

∗𝑝𝑖,𝑡−1
∗ +  𝛽𝑡

∗𝑞𝑖,𝑡−1
∗ + 𝑢𝑖𝑡

∗     (4) 

A limitation of the RI-CLPM is that growth is not explicitly modelled. However, because the group 

means at each wave are not constrained over time, the RI-CLPM implicitly allows for growth in the 

model (Mulder & Hamaker, 2021). However, it may be of interest to know if there is variability in 

individual trajectories and whether this variability can be explained by another variable of interest. If 

individual growth is a key interest then another model should be considered, such as the LCM-SR, 

which will be discussed next. 

 

 

Figure 3.1 Cross Lagged Panel Model (CLPM). Figure from Hamaker (2018). 
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Figure 3.2 Random Intercept – Cross Lagged Panel Model (RI-CLPM). Figure from Hamaker (2018). 

3.1.1.2 Latent Curve Model with Structured Residuals  

Around the same time as Hamaker et al. (2015), Curran et al. (2014) suggested an approach to separate 

between- and within-person components using latent curve models with structured residuals (LCM-

SR) (Fig. 3.3). In the LCM-SR, an individual’s score on an observed variable x at time t is described as 

the individual regression line with intercept, Ixi, and slope, Sxi  (Usami et al., 2019).The residual 𝑥𝑖𝑡
∗ , can 

be thought of as the timepoint specific deviation from an individual’s expected growth curve (Equation 

3.5). 

Equation 3.5 Measurement equation of variable x in the LCM-SR. 

𝑥𝑖𝑡 =  𝐼𝑥𝑖 + (𝑡 − 1)𝑆𝑥𝑖 +  𝑥𝑖𝑡
∗    (5) 

The LCM-SR consists of two parts, a latent growth model that captures between person differences in 

stable traits and development, and the CLPM that captures the within person differences. A key 

difference with the RI-CLPM is that the latent slope factors are modelled as well as the latent 

intercepts. Just as in a RI-CLPM, the lagged relationships are pure within-person associations, 

separated from the between-person effects. However, due to the inclusion of the slope factor, the 

residuals represent the time point specific deviations from the person-specific mean and person 

specific growth curve. This has implications for the interpretation of the lagged parameters. In a LCM-

SR, significant autoregressive parameters indicate that a deviation from the person specific trajectory 

is enduring over time, a non-significant effect indicates that a deviation from the trajectory does not 

persist and the individual falls back to the expected trajectory. Significant cross-lagged parameters 

indicate that a deviation from the person specific growth curve in x at time t is associated with 
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deviations from the person specific growth curve in variable y at time t+1. In a linear LCM-SR, it is 

assumed that the means change linearly over time, while the RI-CLPM estimates means per time point 

and therefore allows for development to take on any shape (Usami et al., 2019). In a LCM-SR, It is 

possible to model growth curves with other shapes than linear, such as quadratic, but a minimum of 4 

waves is needed to do so – in this study we only have 3 waves. Thus a key difference between the two 

is that growth is explicitly modelled in the LCM-SR, and implicitly included in the RI-CLPM. 

 

Figure 3.3 Latent Curve Model with Structured Residuals (LCM-SR) with intercept (I) and slope (S) on the 

between person level. Figure adapted from Usami et al. (2019) 

3.1.2 Aim and hypothesis  

The aim of the current study is to clarify whether sleep problems influence sensory differences or vice 

versa, using a longitudinal design with infants who are at EL for autism. Using a prospective sibling 

design allows us to capture sleep problems and sensory differences as they emerge in infancy. A 

longitudinal design with three timepoints enables us to separate between- and within-person effects, 

which no previous studies have attempted before. We ask whether early sensory processing, starting 

from 5 months, drives a change in sleep 4-5 months later and/or whether early sleep drives a change 

in sensory processing 4-5 months later. Answering this question will help clarify whether sleep 

problems and sensory processing atypicalities have a bidirectional or unidirectional relationship at 
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their onset. Additionally, if effects are only found on the between person level, this would imply there 

is a third variable driving both sleep and sensory processing difficulties.  

In this study, we will run a traditional CLPM and compare its results to models that do separate within- 

and between person effect, such as the RI-CLPM and LCM-SR. The main difference between the two 

models is that growth is explicitly modelled in the LCM-SR. Curran & Hancock  (2021) recommend 

adapting the choice of model to both theory and model fit. Therefore, since modelling growth is not 

the main aim of this study, initially a RI-CLPM will be run. However, a LCM-SR will also be conducted in 

case it fits the data better. Running the traditional CLPM alongside these models allows us to discuss 

methodological differences and helps clarify the interpretation of the separation between within- and 

between-person effects. 

These models enable us to tease apart whether sleep difficulties arise as a secondary symptom of 

autism, driven by sensory atypicalities, or whether they are a core symptom caused by a common 

biologic and genetic factors as other core symptoms of autism. If there are significant effects on the 

within person level, either uni-or bi-directional, it would suggest a causal relationship between sleep 

and sensory issues. If effects emerge on the between person, then common underlying factors likely 

drives both variables (See section 1.1.2.1.3 for examples of potential common factors).  

3.2 Methods 

3.2.1 Participants 

The dataset used in this chapter is the same as in Chapter 2 from the longitudinal British Autism Study 

of Infant Siblings (BASIS). The study involved three lab visits when infants were 5, 10, and 14-months-

old. A total of 127 infants contributed to the analyses in this Chapter. Three infants were included here 

who completed the Infant/Toddler Sensory Profile (ITSP), but were excluded in the Chapter 2 due to 

missing responses on the Sleep and Settle Questionnaire (SSQ). The sample of this study included 100 

infants at EL for autism (female : n = 47) and 27 infants at TL for autism (female: n = 10). More detailed 

information on the BASIS study and recruitment is available in Chapter 2 section 2.2.1. 

3.2.2 Measures 

3.2.2.1 Sleep measures 

Sleep onset latency and number of night awakenings were taken from the SSQ (Matthey, 2001). Sleep 

onset latency was averaged across daytime and nighttime sleep and was calculated in exactly the same 

way as in Chapter 2 (See 2.2.2). For night awakenings, parents were asked to report the number of 

times their child woke up during the night on average in the preceding week. When parents provided 

a range, the average was taken. As a result of these average values, the variable night awakenings is 



72 
 

treated as a continuous variable, rather than a count variable. Note that in Chapter 2, values were 

truncated instead and the variable was treated as a count variable there. 

3.2.2.2 Sensory processing measure 

Sensory processing was measured as low threshold (LT) a combination of the quadrants sensory 

sensitivity and sensation avoidance from the ITSP (Dunn, 2002)). The age-appropriate version of the 

ITSP was used at each visit. At 5 months, LT consists of 17 questions, however question 5 ‘My child has 

difficulty getting to sleep and is easily awakened’ was excluded, due to the similarity to the sleep 

measures used in this study. This results in a total of 16 questions that were averaged at the 5 month 

wave. At 10 and 14 months the age-appropriate ITSP consists of 23 questions that make up the LT 

subscale. This version did not have any sleep related questions. See Appendix B for a full list of all 

questions included at the 5 month timepoint (table A.2) and 10 and 14 month timepoint (table A.3). 

LT contains questions from five modalities: general, auditory, oral, touch and vestibular. On the ITSP, 

caregivers indicate the frequency of their child’s behaviour on a five-point scale ranging from almost 

always to almost never. LT was reverse scored, so a high score reflects high reactivity to sensory 

stimulation, identical to Chapter 2.  

3.2.3 Statistical Analyses 

As a first step, all variables were checked for outliers using Python version 3.8.13 (Van Rossum & Drake, 

2009). Outliers were not eliminated, but Winsorized to reduce their influence. All datapoints that had 

a z-score above 4 were Winsorized to one value above the next highest value. The points between 3 

and 4 SD were checked visually on a scatterplot in relation to other concurrent variables. If the 

datapoints did not follow the same trend as the other datapoints, they were Winsorized. See Appendix 

C table A.5 for all datapoints that were above 3 SD. As a result, three values of sleep onset latency 

were Winsorized (2 EL, 1 TL) and one value of night awakenings (1 EL).  

Model specifications 

All panel models were performed in MPLUS version 8.5 (Muthén & Muthén, 1998). To test for a 

bidirectional relationship between LT and sleep, panel models were run for sleep onset latency and 

night awakenings separately. Three different types of models were run for each sleep variable, a CLPM, 

RI-CLPM and LCM-SR (see Figures 3.4-3.6). Due to the small sample size and uneven group sizes (EL: 

n=100, TL: n=27), no multi-group analysis was done, instead autism likelihood was controlled for on 

each observed variable. There are two possibilities when including a time-invariant predictor, such as 

autism likelihood, in RI-CLPM or LCM-SR; either the predictor is regressed on each observed variable 

or on the random intercepts (Mulder & Hamaker, 2021). Because our previous results showed a 

significant difference between ELs and TLs only from 10 months onwards and not at 5 months, autism 
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likelihood was regressed on each observed measurement. This allows the effect of autism likelihood 

on sleep and sensory profiles to differ at each timepoint. Most variables were not normally distributed 

(see Appendix C table A.6 for Normality, skewness and kurtosis values per variable). In case of non-

normality, Finney & DiStefano (2013)  recommend using maximum likelihood estimation with robust 

standard errors and chi-square test statistic. Therefore, a sandwich estimator is applied using the MLR 

command in MPLUS, which is more robust to non-normality and additionally can handle 

incompleteness of data under a missing at random assumption.  

It is possible to constrain multiple parameters a priori if there are theoretical assumptions to support 

it or a posteriori based on model fit. A few parameters are commonly constrained to be invariant over 

time in longitudinal models. One option is to constrain the group means at each time point to be equal. 

However, the group means are not expected to be the same in a variable that shows a developmental 

pattern. In Chapter 2, we showed that both sleep onset latency and night awakenings decrease from 

5 to 14 months. The group means are therefore not constrained in these models. Other parameters 

that can be constrained are the lagged parameters, both the cross lags and autoregressive lags, but 

only if the time between waves is approximately similar (Gollob & Reichardt, 1987; R. M. Kuiper & 

Ryan, 2018). In this dataset there are 5 months between the first and second wave and 4 months 

between the second and third wave, which we consider to be similar. Because we did not have any 

strong predictions of time invariant lagged relationships, unconstrained models were run first. 

However, if the model did not fit the data properly, parameters were constrained to improve model 

fit. First, an unconstrained version of each model was run (version a). If the model fit was not 

acceptable, the autoregressive parameters and cross-lagged parameters were constrained to be time-

invariant (version b). When the model fit was still not acceptable, the co-variances were constrained 

in addition to the autoregressive and cross-lagged parameters (version c).  

In models using latent variables – here the RI-CLPM and LCM-SR – additional parameters can be 

constrained. Typically, observed variables are regressed on their random intercept and constrained to 

1, which ensures that all timepoints contribute equally to the latent factor. It is possible to freely 

estimated the factor loadings, but only with panel data with 4 or more assessment waves (Mulder & 

Hamaker, 2021). In this study there were only 3 assessment waves, so factor loadings were constrained 

to 1. In a LCM-SR a slope is added as a latent factor, in addition to a random intercept. The slope is 

established by setting the factor loadings to be proportional with the time intervals (Curran et al., 

2014). The factor loadings were set at 0, 5 and 9 to accurately represent the time between visits, which 

were at 5, 10 and 14 months. 
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As a first step, we ran the RI-CLPM - version a to c depending on model fit indices. Then a CLPM was 

run that was equivalent in terms of constraints to the best fitting RI-CLPM. An equivalent version is 

needed to compare the results of the models. Lastly, a unconstrained version (a) of a LCM-SR was run 

to see whether growth could be modelled explicitly.  

Model fit 

How well the specified model fits the data is commonly assessed by the χ2 -test of model fit, which 

compares the observed data to the restricted data of the model. If the test is non-significant then the 

restricted and observed data are not significantly different, and the model fits the data. However, this 

test is particularly sensitive to sample size. Models with small sample sizes, such as in this study, may 

often have non-significant χ2 tests, because of the lack of power rather than actual ‘good fit’ of the 

data (Satorra & Saris, 1985). Because of this, additional fit statistics were consulted to evaluate model 

fit: Root Mean Square Error of Approximation (RMSEA), Comparative Fit Index (CFI), Tucker-Lewis index 

(TLI) and the Standardized Root Mean Square Residual (SRMR). The recommended cut-offs for these 

measures are: RMSEA < .08, CFI >= .90, TLI >= .95 and SRMR <0.08 (Hu & Bentler, 1999). STDXY 

standardised values are reported throughout the text and on the figures when they were available, 

otherwise unstandardized values are used. Significance values from the unstandardized results are 

reported.  

 

Figure 3.4 CLPM. Double headed arrows are covariances and single headed arrows regressions. LT=Low 

Threshold.  
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Figure 3.5 RI-CLPM. Latent variables are circles and observed variables are squared. Double headed arrows are 

covariances and single headed arrows regressions. LT=Low Threshold. 
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Figure 3.6 LCM-SR. Latent variables are circles and observed variables are squared. Double headed arrows are 

covariances and single headed arrows regressions. LT=Low Threshold. 

3.3 Results 

3.3.1 Descriptive statistics 

A total of 127 participants contributed data to at least one of the analyses (See table 3.1 for descriptive 

statistics). The mean age of participants was 177 days (5.8 months) at wave 1, 320 days (10.5 months) 

at wave 2 and 449 days (14.8 months) at wave 3. Because of attrition, incomplete responses, and 

additional recruitment at the second and third wave, not all participants had a complete dataset. In 

figure 3.7 the sample sizes are shown for each variable at each timepoint. The models of awakenings 

and LT included data of a total of 127 participants of which 64 did not have any missing data. The 
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models of SOL and LT included data of a total of 127 participants of which 63 did not have any missing 

data.  

Table 3.1 Descriptives of the sample included in the analyses. Means are reported for infants at elevated (EL) 

and typical (TL) likelihood for autism with standard deviation in brackets. Significant differences between 

groups are in bold.  aChi-square test, bindependent samples t-test. 

 EL TL p-value 

N 100 27  

M:F 53:47 17:10 0.48a 

5 month visit    

Age (in days) 176 (20) 178  (13) 0.52b 

Awakenings 2.07 (1.45) 2.5 (1.45) 0.21b 

Sleep onset latency 12.42 (10.35) 11.15 (10.10) 0.60b 

Low Threshold 1.86 (0.53) 1.79 (0.37) 0.49b 

10 month visit    

Age (in days) 319 (15) 321 (16) 0.08b 

Awakenings 2.07 (1.39) 1.32 (1.10) 0.01b 

Sleep onset latency 11.45 (7.51) 7.92 (6.19) 0.03b 

Low Threshold 1.93 (0.65) 1.82 (0.35) 0.32b 

14 month visit    

Age (in days) 450 (19) 446 (18) 0.33b 

Awakenings 1.96 (1.49) 1.11 (1.51) 0.03b 

Sleep onset latency 13.18 (11.40) 6.46 (7.25) 0.002b 

Low Threshold 2.02 (0.63) 1.88 (0.35) 0.20b 

 

 

Figure 3.7 Sample size per variable per timepoint. Awa = number of night awakenings, SOL = Sleep Onset 

Latency, LT = Low Threshold. 

Table 3.2 reports the bivariate correlations between the continuous variables used in the longitudinal 

models. All variables tend to have strong positive correlations over time, assumptions necessary for 

longitudinal models. From 10 months onwards, night awakenings and sleep onset latency have 

significant positive concurrent correlations. Also, from 10 months onwards, both sleep measures tend 

to have positive significant concurrent correlations with LT. Partial correlations (table 3.3) show that 

early LT tends to have positive associations with later sleep after taking early sleep into account. 

Wave 1: 5 months

•Awa n = 90

•SOL n = 89

•LT n = 90

Wave 2: 10 months

•Awa n = 103 

•SOL n = 104

•LT n = 106

Wave 3: 14 months

•Awa n = 102

•SOL n = 103

•LT n = 108
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However, there is no evidence for the opposite association, with early sleep correlating with later LT 

after early LT was partialled out. 

Table 3.2 Bivariate correlation table with Spearman correlation coefficients. Mo = months. *p= 0.05-0.01, 

**p=0.01-0.001, ***p=<0.001 

 Awakenings Sleep Onset Latency Low Threshold 

Measure 1 2 3 4 5 6 7 8 9 

1. Awa 5 mo - 
        

2. Awa 10 mo 0.360** - 
       

3. Awa 14 mo 0.388*** 0.621*** - 
      

4. SOL 5 mo 0.191 0.213 0.167 - 
     

5. SOL 10 mo 0.033 0.371*** 0.385*** 0.426*** - 
    

6. SOL 14 mo 0.188 0.303** 0.426*** 0.469*** 0.631*** - 
   

7. LT 5 mo 0.110 0.088 0.363** 0.13 0.280* 0.261* - 
  

8. LT 10 mo 0.044 0.264** 0.286** 0.245* 0.346*** 0.234* 0.614*** - 
 

9. LT 14 mo 0.162 0.206* 0.310** 0.164 0.283** 0.171 0.542*** 0.724*** - 

 

Table 3.3 Partial correlations. Spearman correlations coefficients are reported. Significant correlations are in 

bold. SOL = Sleep Onset Latency, Awa = Awakenings, LT = Low Threshold. 

x y covar n r p-value 

SOL_5 LT_10 LT_5 77 0.182 0.116 

SOL_10 LT_14 LT_10 96 0.06 0.563 

SOL_5 LT_14 LT_5 75 0.09 0.444 

Awa_5 LT_10 LT_5 78 -0.057 0.624 

Awa_10 LT_14 LT_10 96 0.009 0.933 

Awa_5 LT_14 LT_5 76 0.103 0.381 

LT_5 SOL_10 SOL_5 76 0.286* 0.013 

LT_10 SOL_14 SOL_10 94 -0.039 0.709 

LT_5 SOL_14 SOL_5 73 0.27* 0.022 

LT_5 Awa_10 Awa_5 78 0.051 0.661 

LT_10 Awa_14 Awa_10 93 0.147 0.162 

LT_5 Awa_14 Awa_5 73 0.343** 0.003 
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3.3.2 Night Awakenings 

The RI-CLPM (a) showed excellent fit on all indices (See table 3.4). The variances of the latent variables 

representing the trait-like nature of night awakenings and LT were both significant, indicating that 

there are indeed stable trait-like parts over time for these variables (Unstandardized Est. = 1.14, SE = 

0.27, p<0.001; Unstandardized Est. = 0.14, SE = 0.066, p = 0.033, respectively). Additionally, the latent 

variables are highly correlated (Est. = 0.75, SE = 0.32, p = 0.004), indicating that infants that tend to 

score higher on LT than their peers, tend to wake up more frequently at night. The autoregressive 

pathways were not significant except for a positive autoregressive pathway from 10-month LT to 14-

month LT (Est. = 0.69, SE = 0.12, p<0.001), showing that a deviation from the expected score on LT at 

10 months was carried over in the same direction to 14 months. There was no evidence of reciprocal 

influences between night awakenings and LT, although there was a marginal negative pathway from 

awakenings at 10 months to subsequent LT (Est. = -0.47, SE = 0.35, p = 0.073). There were no significant 

concurrent state-like associations between night awakenings and LT. More (or less) night awakenings 

than expected, did not coincide with higher (or lower) scores on LT than usual. Autism likelihood status 

significantly predicted night awakenings at 10 months and marginally at 14 months, such that infants 

at EL for autism had more night awakenings (Est. = 0.22, SE = 0.08, p = 0.009, Est. = 0.18, SE = 0.10, p 

= 0.058). All results are summarized in figure 3.8. The LCM-SR, did not converge due to the maximum 

number of iterations being exceeded. Increasing the number of iterations from 1000 to 5000 did not 

solve the issue. The LCM-SR was therefore not taken forward. All fit indices of the CLPM, showed poor 

model fit, therefore the results cannot be reliably interpreted (table 3.4). 
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Figure 3.8 Summary of the results of the unconstrained RI-CLPM. LT= Low Threshold; Awa = Night awakening; 

int = intercept. *p= 0.05-0.01, **p=0.01-0.001, ***p=<0.001. 

3.3.3 Sleep Onset Latency 

None of the models for sleep onset latency showed acceptable model fit (See summary of model fit 

statistics in table 3.4). RI-CLPMs (a and b) produced negative variance estimates, known as Heywood 

cases, which are frequently encountered in structural equation modelling. One approach to address 

Heywood cases is to constrain the variance of the problematic variable to zero or a value close to zero 

(Dillon et al., 1987). However, setting the residual variance to 0.001 in the RI-CLPMs a and b only caused 

the Heywood case to jump to other variables. There are a variety of potential reasons why Heywood 

cases occur, e.g. outliers (Bollen, 1987), small sample sizes (Anderson & Gerbing, 1984), and structural 

misspecification of the model (Dillon et al., 1987; Kolenikov & Bollen, 2012). Given that the outliers 

were Winsorized, we opted to reconfigure the model as version c. While the constraining of the cross-

lag -, autoregressive - and covariance parameters over time helped eliminate the Heywood cases, the 

model fit was poor. Also the LCM-SR, produced Heywood cases that could not be resolved by 

constraining the variance and was therefore not interpreted further. The CLPM equivalent to the best 

fitting RI-CLPM, resulted in an improper solution as well, with correlations larger than 1, suggesting 
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misspecification of the model. In summary, none of the models that includes sleep onset latency could 

be interpreted due to improper solutions or poor model fit.  

Table 3.4 Model fit statistics of models of night awakenings (Awa) and Low Threshold (LT) and models of Sleep 

Onset Latency (SOL) and LT. 

Model 

variables 
Model χ2 (df) 

p-

value 
AIC BIC RMSEA CFI TLI SRMR 

Awa 

LT 

RI-CLPM(a) 0.004 (1) 0.950 1355.53 1446.54 0.000 1.000 1.000 0.001 

LCM-SR(a)  No convergence: Number of iterations exceeded (even after 5000) 

CLPM(a) 30.147 (4) <.001 1372.51 1454.99 0.227 0.895 0.447 0.067 

SOL 

LT 

RI-CLPM(a) Warning: negative variance 

RI-CLPM(b) Warning: negative variance 

RI-CLPM(c) 30.586 (8) <.001 2464.50 2535.61 0.149 0.915 0.778 0.128 

LCM-SR(a) Warning: negative variance 

CLPM(c) 48.921 (10) <.001 2473.22 2538.64 0.175 0.854 0.694 0.109 

 

3.4 Discussion 

The aim of this study was to evaluate whether sensory processing drives changes in sleep and vice 

versa, distinguishing for the first time between effects on the within- and between-person level. Only 

one of the models had acceptable model fit, which was the unconstrained RI-CLPM of night 

awakenings and LT. That the RI-CLPM yielded better model fit that the traditional CLPM is consistent 

with previous studies (Griffin et al., 2021; Littlefield et al., 2022; Shi et al., 2023). The results from this 

RI-CLPM suggest that both night awakenings and LT have trait-like properties in the 5 to 14 month 

window that was captured in this study. These traits show a strong positive association; infants that, 

in general, wake up frequently at night, also tend to be more aware and reactive to sensory input. 

However, this is not reflected in the state-like pathways. If an infant has more awakenings than usual 

at a specific timepoint, this does not result in higher scores that usual on LT at that time. Neither do 

higher scores than usual on LT result in a deviation in night awakenings at a subsequent timepoint or 

vice versa. This study shows no evidence for a reciprocal relationship between sleep and sensory 

processing in the 5 to 14 month window.   

3.4.1 The latent variables 

Consistent with literature indicating that infants learn how to sleep through the night in the first years 

of life (Goodlin-Jones et al., 2001; Henderson et al., 2010), we demonstrated in the Chapter 2 that 

night awakenings, on average, significantly decrease from 5 to 10 months in the same sample that was 

used for this study. Nevertheless, we also find a high degree of stability of night awakenings from 5 to 
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14 months within the same infants. Infants that wake up often at 5 months will likely still wake up often 

at 10 and 14 months compared to peers. These findings are in line with other studies in infancy using 

parental report. Hysing et al. (2014) find that frequent night awakenings at 6 months carry over to 18 

months. In a similar age range, 8-24 months, night awakenings decrease over time, whilst also showing 

a high degree of within-person stability (Mäkelä et al., 2018). Also, our measure for sensory processing, 

LT, exhibited stable properties over the course of this study. E.g. infants that scored high on LT at 5 

months consistently scored high at 10 and 14 months. Similarly, longitudinal studies in childhood find 

that sensory profiles of children with and without autism tend to show high within-person stability 

over a timespan of years (Baranek et al., 2019; Dwyer et al., 2020; McCormick et al., 2016). The high 

stability of an infant’s sleep and sensory profile, underscores the need to take the trait-like properties 

into consideration in future studies that are interested in investigating causal relationships between 

these variables.  

The latent factors that measure time-invariant variance, might partly capture the consistent parental 

accuracy/error in estimating their child’s sleep and sensory profile. In other words, the latent factor 

might partly reflect the caregiver profile, besides the child’s actual measurements. Gossé et al. (2022) 

show that caregivers who are more anxious and stressed rate their child’s night awakenings more 

accurately in concordance with objective measures. Possibly because anxious caregivers are awake 

more themselves or remember night awakenings better than less anxious caregivers. That caregiver 

characteristics, such as stress, influence ratings of sleep, has important implications, particularly in 

samples where such characteristics are highly variable. Caregivers of autistic children experience 

higher stress-levels than caregivers of typically developing children and children with other 

developmental delays  (Estes et al., 2009; Hayes & Watson, 2013), which could influence the accuracy 

of the reported measures. Additionally, caregivers of autistic children tend to have heightened sensory 

profiles themselves (Glod et al., 2017), which may influence their report of sleep and the child’s 

sensory profile. In studies that use caregiver report, the confounding effects of caregiver characteristics 

are another reason for the separation of trait-like and state-like effects. For example, by implementing 

a RI-CLPM, which will ensure that the consistent differences in caregiver characteristics are accounted 

for in the trait-like part, as long as these caregiver traits are time-invariant themselves.  

The strong positive association between the latent factors for LT and night awakenings indicates that 

infants that tend to be more aware and reactive to sensory input, also tend to wake up more frequently 

compared to others. One possible explanation may be that common underlying mechanisms drive 

both night awakenings and sensory differences. In Chapter 2 we explored the notion that disrupted 

GABA functioning may contribute to the association between sleep onset latency and sensory gating. 

Likewise, atypical GABAergic circuitry may underly both frequent night awakenings and sensory 
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difficulties by subjective report (Deliens & Peigneux, 2019). GABA is the main inhibitory 

neurotransmitter in the central nervous system and has an important role in the regulation of the 

sleep-wake cycle (Oishi et al., 2023). Decreased GABA levels have also been linked to abnormal tactile 

processing in autistic children (Puts et al., 2017). A recent paper found a marginal association between 

genetic variation in GABA genes and sensory profiles, in adolescents and adults with and without 

autism (Hollestein et al., 2023). Interestingly, this association was specific to sensory profiles, but not 

autism severity scores, confirming a particular role of GABA in sensory related features of autism. More 

generally, an Excitation/Inhibition (E/I) imbalance has been suggested as a factor in the aetiology of 

autism (Lee et al., 2017). It is possible that variation in the E/I balance, is partly responsible for both 

sleep and sensory issues in autistic and non-autistic individuals. 

Another mechanism, which could drive both traits is impaired thalamic functioning. This mechanism 

could be intertwined with an E/I imbalance, because the thalamus contains major inhibitory 

structures, such as the thalamic reticular nucleus (Guillery et al., 1998). The thalamus is considered 

the relay station of the brain, filtering information from the outside world. Selective regulation of the 

stream of sensory input from the periphery to the cortex is important for sleep and processes during 

wake, such as attention regulation (Z. Chen et al., 2016). Altered thalamic functioning and 

thalamocortical pathways have been detected in autism, and it contributes to sensory atypicalities 

associated with autism(S. A. Green et al., 2017; Linke et al., 2018). In relation to sleep, overconnectivity 

of the thalamus and auditory cortex was associated with sleep onset latency in autistic children (Linke 

et al., 2021). Possibly, GABAergic functioning in the thalamus is of particular importance. One study 

found that increased sensory over-responsivity was related to reduced thalamic GABA (Wood et al., 

2021). Common underlying mechanisms, such as E/I imbalance and or thalamic functioning may partly 

explain the association between sleep and sensory issues as trait-like features across life.  

In addition, the strong association between the latent factors of LT and night awakenings could partly 

be explained by time-invariant confounders such as consistent tendencies in caregiver report on both 

measures, a caregiver that is more attuned to their infant might report more night awakenings as well 

as pick up more on responsivity to sensory input by the child (Priddis, 2009) 

3.4.2 The within-person reciprocal effects 

The partial correlations show that high scores on early LT associate with later night awakenings after 

controlling for early sleep, but not the opposite way around. At a first glance this seems to suggest that 

there could be a directional effect of sensory processing on sleep, similar to findings from Mazurek et 

al. (2015) and Manelis-Baram et al. (2021). However, the within- and between-person effects are 

conflated in the partial correlations, which makes it impossible to know if state- or trait-like differences 
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are driving the effect. Once between-person effects are accounted for in the RI-CLPM, no significant 

causal pathways between night awakenings and LT were found over the course of this study. These 

results imply that strategies to improve sleep or sensory profiles at 5 or 10 months are unlikely to have 

knock-on effects on sensory profiles or sleep respectively 4-5 months later. Accounting for the trait-

like stability via the RI-CLPM shows that the results from the partial correlations are likely driven by 

between- rather than within-person variance. This demonstrates the importance of incorporating 

time-invariant traits, as not doing so may result in false conclusions or at the least uncertainties about 

causal patterns. 

Hamaker (2023) highlights the importance of ensuring that the study design and the research 

questions are well matched in RI-CLPMs. In the next part, I will discuss how this particular study design 

guides and limits the interpretation of the results. Firstly, the timeframe of the study in relation to the 

development of sleep and sensory systems will be considered. Secondly, the timescale of the study, 

particularly the spacing of the measurements and the expected scale that interactions between sleep 

and sensory processing operate on will be touched upon. 

3.4.3. The timeframe 

One major strength of this study is that it captures sleep and sensory issues during an important 

developmental window. To our knowledge, this is the first longitudinal study to look at sensory 

processing and sleep in the first year of life. Chapter 2 showed that between 5 and 10 months 

differences in sleep start to emerge between infants at TL and EL for autism, based on caregiver report. 

However, it is possible that a causal pathway is established even earlier than 5 months. It is known that 

sensory neurodevelopment predominantly happens early in life, prenatally and postnatally (Grubb & 

Thompson, 2004; Whitehead et al., 2018). It is plausible that early sleep contributes to the formation 

of the sensory circuitry largely before 5 months of age, the earliest measurement in this study. Indeed, 

evidence suggests a special role of neonatal sleep in sensory neurodevelopment, where state-

dependent modulation of sensory activity plays a key role in shaping the sensory circuitry in early 

infancy. For example, self-generated sensory input is differentially processed during sleep and wake in 

infant rats (Dooley et al., 2019; Tiriac et al., 2014). During REM sleep, myoclonic twitches, which are 

isolated muscle movements, activate the sensorimotor cortex. Whereas during wake, activation of 

cortical sensorimotor neurons from self-generated muscle movements are inhibited. Blumberg et al. 

(2013) suggest that these twitches during REM sleep have a special role in the development of 

somatotopic maps of the body, which would benefit from being formed against a background of 

muscle atonia during sleep. However, this state-dependent modulation of sensory input is transient 

and specific to a short developmental time-window. It is challenging to measure in humans when that 

window closes. In rats, adult-like sensory processing that is independent of state, appears from P11-
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P13. Rats only start weaning from P21, comparable to 6 months of age in humans (Sengupta, 2013). 

However, we do know that human infants show a shift from immature to mature EEG patterns around 

2-3 months of age (Dereymaeker et al., 2017), and abrupt changes in sensory evoked responses even 

before birth (Colonnese et al., 2010; Fabrizi et al., 2011).  

In line with this, studies in different species, such as prairie voles, mice and fruit flies show that early 

life sleep disruption has effects on later development, including sensorimotor area development and 

nociceptive sensitivity (Araujo et al., 2018; Jones et al., 2019, 2021; Kayser et al., 2014; J. S. Lord et al., 

2022). Lord et al. (2022) additionally show that effects of early life sleep disruption are more severe in 

mice with a genetic vulnerability for autism. Interestingly, the timing of the sleep disruptions matter. 

Early life sleep disruptions in mice (P14-P21), impairs sensory motor gating later in life, but sleep 

disruption in the adolescent period does not have the same effect. Suggesting a particular vulnerability 

to sleep disruption early in life (Jones et al., 2019). Again, it is difficult to pinpoint when exactly the 

equivalent periods are for human infants. It is plausible however that this ‘vulnerable’ period, occurs 

before 5 months in humans. As described in Chapter 1 section 1.2, the first months of human life have 

a distinct sleep pattern and are characterized by a predominance of REM sleep over NREM sleep (Jenni 

et al., 2004; Roffwarg et al., 1966). Indeed, REM sleep during infancy has been associated with the 

development of the central nervous system (Knoop et al., 2021). Therefore, disrupted early sleep, 

before the first measurement of this study, may impair the formation of the sensory circuitry, which 

would in turn lead to behavioural sensory differences.  If these causal mechanisms occur earlier than 

5 months, it could explain why LT and night awakenings do not show any significant reciprocal 

pathways, but rather associated trait-like factors over the course of this study. 

It is also possible that disrupted early sleep impacts the formation of the thalamus and thalamo-

cortical projections. Impaired thalamic functioning would impact both the expression of mature sleep 

rhythms as well as sensory atypicalities (Murata & Colonnese, 2019). In this scenario, early sleep 

disruption results in an underlying mechanism, thalamic impairment, that drives both sleep and 

sensory differences later in life. This could explain why both traits are highly associated in our dataset 

from 5 months onwards. 

3.4.4 The timescale 

Hamaker (2023) illustrates how the design of the study, and in particular the timescale, influences the 

meaning of the trait- and state-like factors. She demonstrates that the interpretation of the factors 

very much depends on whether the timescale of the study is on a micro-, meso- or macro-level or 

across the whole lifespan (Fig. 3.9). What may be constant across days, may be partly fluctuating over 

weeks. Suppose that measurements are taken every day for a week and a person sleeps badly every 
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day that week. The stable factor across those seven days will capture that ‘poor sleep’, because sleep 

was consistently poor. However, if measurements are taken weekly rather than daily, the meaning of 

the stable factor will be different. If the person sleeps poorly the first week, but the next weeks they 

sleep better, then that ‘poor sleep’ will not be taken up in the stable factors anymore. Instead, it will 

be a state-specific fluctuation in the model. This illustrates that the interpretation of the trait and state-

like factors depend on the timescale of the study, and it is important to consider on which level 

variation in the construct of interest is theoretically most meaningful. 

 

Figure 3.9 The timescales continuum. Figure from Hamaker (2023). 

Accumulating effects on a meso-scale 

We can imagine that the relationship between sleep and sensory processing manifests differently on 

multiple timescales. E.g. The effect of one day of bad sleep on sensory processing may be different 

from the effects of multiple weeks, months or years of bad sleep. This study looked at the reciprocal 

pathways between sleep and sensory processing over several months, targeting cascading effects. The 

changes in sleep that manifest over the course of months in infancy are processes such as the 

development of circadian rhythmicity, sleep patterns and sleep habits. These processes could, at least 

theoretically, be influenced by sensory atypicalities. E.g. increased reactivity to sensory input could 

interfere with the development of self-settling strategies that start to appear in the second half of the 

first year of life (Goodlin-Jones et al., 2001). (Self-)soothing strategies often encompass some sensory 

component, e.g. touch in stroking or sucking (Uvnäs-Moberg & Handlin, 2015). As outlined above, 

sleep disruptions could interfere with the proper development of sensory systems, also a process 
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which likely spans over months. However, in this study, we did not find any evidence of reciprocal 

effects between 5 and 14 months.  

Other studies that use longitudinal panel data tend to use much longer intervals between 

measurements than months, often years. For example, a study that also used a RI-CLPM, found 

significant bidirectional reciprocal effects in adults between sleep and pain (Griffin et al 2022). The 

distance between the measurements was 2 years, showing that state-like differences in sleep can have 

an influence on variables far into the future. However, the study was looking at older adults, while the 

current study is focussed on a developmental window where changes in sleep are expected to happen 

faster. Yet another study, utilising a RI-CLPM, looking at sleep and anxiety, found unidirectional within-

person effects from early sleep to later anxiety (Narmandakh et al., 2020). The distance between waves 

was 2-3 years in this study and was in an adolescent sample of 11- to 21-year-olds, an age range when 

sleep undergoes developmental changes. It is possible that noticeable differences in sleep and sensory 

processes manifest over longer timescales, but it is difficult to make a direct comparison to the current 

study due to the different age ranges and variables used. There are no studies in infancy with a similar 

design to base the timescale on. 

From a more theoretical perspective, the pace of changes in sleep patterns in infancy is much quicker 

than years (Burnham et al., 2002), and meaningful fluctuations may be captured better with 

measurements taken every couple of months, starting soon after birth. What the best timescale is to 

capture meaningful differences in sensory profiles is less straightforward. To our knowledge, no studies 

have looked at individual trajectories of sensory profiles in infancy. The ITSP itself does not specify the 

timeframe that caregivers are supposed to keep in mind when answering questions about their child’s 

behaviour. We assume that caregivers take a sort of ‘average’ of their child’s behaviour, but it is 

impossible to know how far back they go when rating the frequency of behaviours.  

Immediate effects on a micro-scale 

In addition to a timescale of months, sleep and sensory processing may influence each other on a day-

to-day basis, where poor sleep increases next day sensory issues and heightened sensory sensitivity 

worsens sleep that day (Gumenyuk et al., 2013; Zhang et al., 2019). The current study did not test this 

hypothesis. However, further studies could consider a few approaches to test whether there is a causal 

link between sleep and sensory processing on a day-to-day scale. 

One approach involves conducting a longitudinal study, but on a micro-scale, measuring sensory 

processing and sleep each day. Recently there has been an increase in studies in psychology that model 

within-person processes using intensive longitudinal designs, that use many repeated measures, 

spaced densely in time (Hamaker & Wichers, 2017). In sleep research, for example, Chevance et al. 
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(2022) found meaningful within-person day-to-day fluctuations in sleep in correspondence to physical 

activity. Both variables were measured for more than 100 days.  

Another approach could be to conduct an intervention study, to alleviate either sleep or sensory 

problems. Studies assessing the effectiveness of sensory interventions on sleep do hint at causal 

effects on shorter timescales. For instance, autistic adults reported improved sleep quality when using 

weighted blankets (L. Green et al., 2020) and interventions based on massage before bedtime also 

showed improvements in parent reported sleep measures (Silva et al., 2007; Spira, 2021).  

Lastly, an experimental design could measure the effects of sensory input on sleep in individuals with 

different sensory profiles. To our knowledge, only one study in non-autistic adults has looked at the 

effect of sensory input on sleep in relation to an individual’s sensory profile (Lechat et al., 2021). This 

study revealed that individuals that report high subjective sensory sensitivity show differences in EEG 

markers during sleep in response to stimulation. In the next chapters we will use an experimental 

design to test the effect of sensory input on sleep in infants with a range of sensory profiles. 

3.5 Conclusion 

In this study we do not find any evidence for cascading effects of early sensory processing difficulties 

on night awakenings between 5 and 14 months or vice versa. The strong correlation between the latent 

factors and lack of cross-lagged effects implies that, at least in this time window, neither early sleep 

nor early sensory processing drives the other, but rather that a common mechanism underlies both. 

This has implications for interventions targeting sleep or sensory issues, as it implies that improving 

sensory symptoms will not affect sleep patterns over the next months or vice versa. However, this 

study focussed on cascading effects over the course of months and it is possible that interventions will 

improve sleep or sensory issues on a more immediate time scale, e.g. the next day or week. It is also 

possible that causal pathways are established earlier than the start of this study. Future work should 

capture sleep and sensory profiles as early as possible. Common biological mechanisms that could 

potentially drive both sensory and sleep difficulties are disrupted thalamic and/or GABAergic 

functioning. However, commonalities between the measures could also reflect consistent tendencies 

of caregiver report. The use of objective measures would help clarify to what extent the caregiver’s 

profile drives the association between sleep and sensory processes. From a methodological 

standpoint, this study contributes to emerging literature that underscores the importance of 

accounting for time-invariant stability of measurements. In Chapter 5 immediate effects of sensory 

profiles on sleep will be explored using an experimental design incorporating objective measures of 

sleep. 
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4.1 Introduction 

The visual detection of transient events, such as sleep spindles and K-complexes, by experts has long 

been considered the gold standard in the sleep field. However, this is a demanding and time-

consuming task. Although there are general guidelines that define sleep spindles or K-complexes, the 

reliability of expert scorers is far from perfect, with large variation between experts and even within 

the same scorer when re-scoring the same segment (Wendt et al., 2015). There are several approaches 

to address the low reliability problem. One option is for multiple experts to score the same data and 

use qualitative confidence scores. From these scores, weighted means can be calculated to make up 

the final count. While this may improve accuracy, it is time- and resource-intensive. Alternatively, 

automated detection methods can be used, which are efficient and objective. Moreover, algorithms 

consistently produce the same results, no matter how many times it is given the same data, thereby 

eliminating the within-scorer variability. However, a major limitation of automated detection methods 

is that they perform worse than human experts - and even non-experts - when presented with slightly 

atypical data (Warby et al., 2014).   

In recent decades, interest in automated detection methods for sleep micro-events such as sleep 

spindles, slow waves and K-complexes has grown exponentially. New and improved detection 

algorithms for adult data seem to be developed almost daily (Tapia-Rivas et al., 2024). However, there 

has been a growing awareness of the reduced performance of these algorithms in special populations, 

such as individuals with medical conditions that affect EEG signals, as well as elderly and infants. 

Recently, efforts have been made to address these challenges, leading to the development of 

specialized detection algorithms (L. Wei et al., 2022). A particular challenge for developmental 

research is that features of micro-events change rapidly with age, especially in the first year of life (see 

Chapter 1 section 1.2, and section 4.2.2 and 4.3.2 below). For example, an algorithm that is trained on 

data of 3-month-olds might not perform optimally anymore in 6 month-olds.  

The aim of this chapter is to outline the methodological approach to detect sleep spindles and K-

complexes in a 8-11 month-old cohort. This cohort is part of the SNOOSE study, which is discussed in 

detail in Chapter 5. Sleep spindles and K -complexes are addressed separately. For both, current 

approaches to detect events will be outlined, focusing on infancy where possible. Then, 

developmental changes in features of sleep spindles and K-complexes in the first year of life will be 

discussed. The challenges that these developmental changes pose for detection with automated 

methods will be outlined throughout. Lastly, for sleep spindles, I present adaptations to an existing 

algorithm, YASA, to improve performance in 8-11 month-olds. For K-complexes, the automated 

detection of evoked K-complexes is trialled. 
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4.2 Sleep spindles 

4.2.1 Approaches to detect sleep spindles in infancy 

Studies investigating sleep spindles in the first year of life implement a variety of methods. Some 

studies do not distinguish sleep spindles as distinct events, but measure sigma activity as a proxy (Kärki 

et al., 2022; Satomaa et al., 2020). Sigma activity or power is the squared amplitude of oscillations in 

the sigma range, usually anywhere between 7-16 Hz. This approach involves analysing the overall 

sigma power of the signal, but does not isolate individual spindle events. To detect spindle events, 

either visual (Ventura et al., 2022) or automated detection is used (D’Atri et al., 2018; Friedrich et al., 

2015; Jaramillo et al., 2023; Sokoloff et al., 2021).  

The majority of studies use an automated method that tends to follow the same general key steps: 

 1. Bandpass Filtering: The data is filtered within the sigma range, typically anywhere between 7 and 

16 Hz.  

 2. Root Mean Square (RMS) representation: The filtered signal is then transformed into an RMS 

representation, which provides a measure of the signal's power or amplitude over time. Usually, the 

signal is segmented in windows of 1 or 0.5 seconds, and the averaged squared power or amplitude 

over that time window is calculated. 

 3. Thresholding: The RMS of each segment is compared against specific thresholds to identify 

potential spindle events. For example, a segment might be classified as a spindle if its RMS value 

exceeds 1.5 standard deviations from the mean for a duration of 0.5 to 2 seconds (Vallat & Walker, 

2021).  

While this is the general workflow, each team sets different threshold and uses customized algorithms 

that have slight variations. For example, Friedrich et al. (2015) use a customized algorithm that first 

determines the sigma peak frequency for each individual participant. They then apply a more narrowly 

defined bandpass filter, set at ±1.5 Hz around each individual’s sigma peak. Recently, an algorithm 

was developed for infant data specifically (L. Wei et al., 2022) which was trained and validated on the 

nap data of 4-month-olds. Their algorithm was trained on data of 81 infants using a random forest 

algorithm and tested on 30 infants of the same age. Although their trained algorithm performed well 

within this dataset, it has yet to be evaluated on other age groups or datasets that use different EEG 

systems. 

4.2.2 Development of sleep spindles  

The first sleep spindles typically emerge between 6-weeks and 3-months of age (Ellingson & Peters, 

1980; Louis et al., 1992), although at this stage, they are not fully developed yet. In Chapter 1 section 
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2.3, I provided a brief overview of the development of sleep spindle characteristics and topography in 

the first year of life. These developmental changes may affect sleep spindle detection visually and 

automatically. Many automated detection methods are feature-based, meaning that particular 

spindle characteristics are identified by experts and used as inputs for a model or algorithm. A few of 

those features are particularly influential for accurate automated detection: Sleep spindle amplitude 

or power, duration and frequency. Next, I will describe what is currently known about the 

developmental trajectories of these features in the first year of life and how they might affect the 

detection of sleep spindles. 

As discussed earlier in Chapter 1, sleep spindle duration undergoes large changes across the first year 

of life. In the first few months when sleep spindles emerge, the length of sleep spindles tends to be 

the longest they will ever be. A clear decrease in duration can be seen after 5 months (see Fig 4.1). 

Ventura et al., who detected sleep spindles visually in 91 nap recordings of 4-5 month-olds, found that 

sleep spindles were 2.9 seconds long on average. In adults, sleep spindles tend to be between 1 and 

2 seconds on average (2020). This has implications for threshold settings of sleep spindle duration for 

automated methods. Although a 4 second long sigma oscillation may likely be noise in an adult sleep 

recording, it may be a true spindle event in a 4 month-old’s data. This suggests that an algorithm’s 

threshold for sleep spindle duration should be adapted depending on age range.  

 

Figure 4.1 Development of sleep spindle duration across the first year of life. A. Smooth trajectory. B. Box-plots 

per month. Figure from Kwon et al. (2023). 

To our knowledge, only one study has looked in detail at the development of sleep spindle amplitude 

across the first year of life. This longitudinal study looked at 1.5 to 6 months and showed a significant 

increase in sleep spindle amplitude (Louis et al., 1992). Sigma power during NREM sleep, which is 

highly correlated with mean spindle amplitude (Purcell et al., 2017), has been studied more often. For 

example, a longitudinal study in early childhood found that sigma power during NREM sleep increases 

from 2 to 5 years old (McClain et al., 2016). Although they did not include any timepoints before 2 
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years, the findings suggest that sleep spindle amplitude may be lower in early childhood and infancy. 

Indeed, a study from D’Atri et al. (2018) shows a clear visual increase in spindle amplitude from 0 to 4 

years old (see Fig. 4.2), but unfortunately they did not quantify sleep spindle amplitude or power in 

their study.  

As described in Chapter 1, the power of oscillations changes depending on sleep pressure. E.g. SWA 

decreases over the course of the night (Dijk et al., 1987, 1990; Esser et al., 2007; Pappenheimer et al., 

1975), reflecting a decrease in homeostatic sleep pressure the more a sleeper sleeps. Interestingly, a 

study in 4-5 month-old infants found that sleep spindle power decreases in response to diminished 

sleep pressure from one NREM cycle to the next (Ventura et al., 2022). In adults, the opposite is 

observed: When sleep pressure decreases, sigma power increases (Werth et al., 1997).  Lower 

amplitudes could significantly affect the detection of true sleep spindles. Indeed, Purcell et al. (2017) 

show through computational modelling that accuracy of sleep spindle density estimates is dependent 

on sleep spindle amplitude. This indicates that perhaps sensitivity thresholds need to be lower when 

measuring sleep spindles in infancy. 

 

Figure 4.2 Representative examples of sleep spindles in different age groups. Figure from D'Atri et al. (2018). 

Sleep spindle frequency is around 13 Hz in the first year of life, both for sleep spindles measured in 

frontal and central channels (Kwon et al., 2023; Ventura et al., 2022). Between the first and second 

year of life, slower spindles start to appear in the frontal channels (see Fig. 4.3). D’Atri et al. propose 

that these slower spindles are the first mature spindles, whilst the earlier spindles that peak at 13 Hz 

are an immature antecedent. Although this may have implications for the functional significance of 
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sleep spindles, it likely does not impact standard automated detection. This is because the 13 Hz 

frequency falls within the standard sigma ranges typically used for spindle detection (9-16 Hz). 

However, it does imply that it is unnecessary to detect slow and fast spindles separately in the first 

year of life. 

Next, I will describe how I used this information to adapt an existing algorithm to detect sleep spindles 

in the SNOOSE cohort. 

 

Figure 4.3 Sleep spindle frequency across development. A. Changes in mean frequencies of spindles detected in 

Fz and Cz. B. Power changes per frequency in Fz and Cz. Figure adapted from Kwon et al. (2023).  

4.2.3 Sleep spindle detection in the SNOOSE study 

4.2.3.1 Rationale 

While some customized algorithms for sleep spindle detection are freely available, their underlying 

code often remains inaccessible which limits their adaptability. For example, the specialized infant 

algorithm developed by Wei et al.(2022) for 4 month-olds is available online for public use but cannot 

be modified. This lack of flexibility can be a significant limitation when data is used that does not match 

the conditions of the original training dataset exactly.  

Given these limitations, we opted to use an existing sleep spindle detection algorithm that offers 

greater flexibility. Yet Another Spindle Algorithm (YASA) is an open source software for sleep research 

written in Python (Vallat & Walker, 2021). One of the features of YASA is an automated spindle 

detection function which has parameters and thresholds that can easily be adjusted. The default 

settings of YASA are based on sleep recordings of 2 to 80 year-olds, which does not include the age 

range of the SNOOSE study. Therefore, we decided to adjust the default thresholds by cycling through 

an array of thresholds to determine which ones are most in agreement with visual detection. This 

approach follows a common principle for algorithm validation. First, parameters are optimized based 

on a training dataset to maximize agreement with a ground truth – here the manually annotated sleep 

spindles. Performance is evaluated based on precision, recall and F1-scores (explained in detail in 
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4.2.3.2.4). The adjusted algorithm is then tested on a separate validation dataset and should perform 

similarly to the training dataset. 

4.2.3.2 Methods 

4.2.3.2.1 Sample 

Data used in this chapter is part of the SNOOSE study, which is described in detail in Chapter 5. In 

short, infants at EL and TL for autism were invited to the sleep lab at the university of East Anglia twice 

to take a nap. At one visit, infants slept undisturbed (Baseline condition). At the other visit, auditory 

stimulation was playing during the infant’s nap (Stimulation condition). The order of visits was 

counterbalanced. All infants were between 8 and 11 months old. At the time of the analysis, data from 

69 naps had been recorded. However, a few additional infants were included afterwards and are part 

of the analysis in Chapter 5. Out of 69 recordings, 11 were excluded from the analysis: five due to 

noise in the C4 channel and six due to noise in one of the reference channels. Therefore, a total of 58 

recordings are used for these analyses. To create training and validation datasets,  29 recordings were 

randomly chosen using the pd.sample() function in python to use as the training set. The remaining 

29 recordings were used as the validation set. The training and validation set were balanced in terms 

of sex, autism-likelihood status, nap condition (baseline or stimulation), and order of visit (see table 

4.1).  

Table 4.1 Comparison between the training and validation datasets. EL = Elevated Likelihood for autism; TL = 

Typical Likelihood for autism. 

 

4.2.3.2.2. Preprocessing 

Preprocessing steps are described in detail in Chapter 5. In short, the data was re-referenced to the 

linked mastoids. Automatic artefact rejection was performed in all sleep stages using the artefact 

rejection function from YASA with a 1 second window. Both automatic and visual sleep spindle 

detection were performed on artefact-free N2 and N3 epochs. 

 
Training Validation Chi-Squared p-value 

N 29 29 
  

Male : Female 16:13 15:14 0 1 

EL : TL 4:25 5:24 0 1 

Baseline : Stimulation 12:17 16:13 .621 0.431 

Visit 1 : Visit 2 16:13 16:13 0 1 



96 
 

4.2.3.2.3. Automatic detection 

In YASA, an event is classified as a sleep spindle depending on several adjustable parameters, which 

we modified based on previous infant literature. The default sleep spindle duration in YASA is set to 

0.5-2 seconds. In the SNOOSE age range (8-11 months), sleep spindle duration should already be 

decreasing, but some infants may still have longer sleep spindles than adults. To account for this 

variation, the upper limit was increased to 4 seconds. YASA also defines the minimum distance 

between sleep spindles. At default, sleep spindles that are closer than 500 ms are merged into a single 

sleep spindle. Given that infant sleep spindles often have lower amplitudes, longer durations, and do 

not have their typical waxing and waning shape, there is a higher likelihood of spindles being 

mistakenly split into two separate events. We therefore increased the minimum distance slightly to 

750 ms to ensure one sleep spindle was not mislabelled as two. The default frequency range settings 

in YASA are 12-15 Hz. We opted for a wider frequency range to maximize the inclusion of sleep spindles 

(Coppieters ’t Wallant et al., 2016; J. Cox et al., 2016).  

The YASA algorithm detects spindles based on three additional thresholds: Root mean square (RMS), 

Relative power and correlation. The first threshold is the moving Root Mean Square (RMS) of the EEG 

signal within the sigma band. It detects an increase in sigma power in the signal. In the default setting 

the RMS threshold is set to 1.5, which means the power in the sigma band needs to exceed the mean 

sigma power plus 1.5 times the standard deviation. The second threshold, the moving correlation, 

calculates the Pearson correlation between the raw, unfiltered EEG signal and the EEG signal filtered 

in the sigma band. The purpose of this threshold is to detect spindles that are clearly visible even in 

the raw EEG signal. In the default setting the Pearson correlation coefficient needs to exceed 0.65. 

Lastly, the third threshold, the relative power refers to the proportion of the sigma power in the 

signal’s total power. The default setting is 0.2, meaning that at least 20% of the signal's total power 

must be in the sigma band for an event to be classified as a spindle. It is recommend to lower this 

threshold when detecting spindles in N3, a sleep stage with high power in the lower frequency ranges. 

This may be particularly relevant for infants as they tend to have large amplitude background activity, 

and, as mentioned above, the spindle power tends to be lower. For more information on these 

thresholds see the YASA website. These three thresholds largely determine the sensitivity of the 

detection algorithm. We systematically adjusted these thresholds to optimize the algorithm 

performance on this particular dataset, which is described below. 

4.2.3.2.4. Performance evaluation  

As a ground truth, sleep spindles were visually identified in artefact-free N2 and N3 in channel C4, 

using the Sleep software (Combrisson et al., 2017) by annotating the start and end time of each sleep 

spindle. Ten initial recordings were scored by two independent scorers (ADL and MW) and compared 

https://raphaelvallat.com/yasa/build/html/index.html
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until agreement was reached. The remaining recordings were scored by one scorer (MW). Automated 

detection was run with varying thresholds and the outcomes were compared to the visual detection 

results. 

In a first round, 10 ‘exploratory’ algorithms with varying thresholds were run. The thresholds were 

lowered systematically by 10% increments from the default algorithm (see table 4.2), this makes the 

thresholds more lenient. The minimum thresholds were set at 10% because at least one threshold 

should be greater than zero for the algorithm to work. During this phase, all three thresholds were 

lowered equally. The purpose of the initial step was to identify a broad range for further systematic 

exploration in round two, where each threshold could be varied independently to fine-tune the 

algorithm’s performance. All three thresholds were varied, because we did not have a strong a priori 

reason to prioritize one threshold over the others. 

Table 4.2 Thresholds of the 10 algorithms that were run in the initial exploratory phase. 

Algorithm RMS Correlation Relative power 

1: Default 1.5 0.65 0.2 

2: 90% 1.35 0.585 0.18 

3: 80% 1.2 0.52 0.16 

4: 70% 1.05 0.455 0.14 

5: 60% 0.9 0.39 0.12 

6: 50% 0.75 0.325 0.10 

7: 40% 0.6 0.26 0.08 

8: 30% 0.45 0.196 0.06 

9: 20% 0.3 0.13 0.04 

10: 10% 0.15 0.065 0.02 

The performance of a detection algorithm can be evaluated using several metrics: Recall, Precision 

and the F1-score (Liu et al., 2017; Warby et al., 2014). These metrics rely on a comparison of the 

detected events by the algorithm and the ground truth. First, a few key terms need to be explained. 

A true positive (TP) is a detected spindle that is also identified in the ground truth (the human expert 

detection). A False Negative (FN) is a spindle present according to the ground truth, but undetected 

by the algorithm, or in other words, a missed spindle. A False positive (FP) is a spindle detected by the 

algorithm which is not present in the ground truth scoring. 

Recall is the proportion of all true spindles (according to the ground truth) that were correctly 

detected by the algorithm. It is expressed as: 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Precision is the proportion of all detected spindles by the algorithm that are true positives. It is 

expressed as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

The F1-score is the harmonic mean of recall and precision, providing a single metric that balances both 

precision and recall. It is expressed as: 

𝐹1 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

YASA provides a function to calculate the performance of an algorithm compared to a ground truth, 

including recall, precision and the F1-score. Whether an estimated spindle is considered a TP is 

dependent on the temporal overlap between the estimated and expert-detected spindle. In YASA, this 

can be adjusted by changing the maximum distance between the start of the estimated and expert-

detected spindles. The maximum distance was set to 1 second. The average F1-score of all recordings 

in the training set was calculated to obtain one score per algorithm. The best-performing algorithm 

was chosen based on the highest average F1-score. 

However, precision, recall and F1-scores are dependent on the number of detected spindles. For 

example one FP will have more weight in a recording with fewer spindles compared to a recording 

with many sleep spindles. Therefore, we also tested whether the best-performing algorithm showed 

an improvement compared to the default algorithm in the estimated sleep spindle density (N/min), a 

measure that controls for the length of the recording. To do so, sleep spindle density (N/min) was 

calculated for the default algorithm, the best-performing adjusted algorithm and manual detection. 

Pearson correlations were calculated between sleep spindle density of the default algorithm and the 

manual detection, and the adjusted algorithm and the manual detection. To test if there was a 

significant improvement, the two correlations were compared using the Fisher’s Z-transformation. 

Because the correlations are in the same groups and the two correlations are overlapping - due to one 

shared variable (sleep spindle density from the manual detection) - a test based on dependent groups 

was used. The test was performed using the function cocor.dep.groups.overlap from the R-package 

cocor (Diedenhofen & Musch, 2015). A p-value lower than 0.05 indicates a significant difference 

between the correlations.  
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4.2.3.3 Results  

Round one 

Table 4.3 Performance metrics for the 10 exploratory algorithms. The maximum values per metric are displayed 

in bold. 

 Precision Recall F1 

Algorithm Mean SD Min Max Mean SD Min Max Mean SD Min Max 

1: Default 0.84 0.23 0.00 1.00 0.30 0.19 0.00 1 0.40 0.16 0.00 0.67 

2: 90% 0.79 0.17 0.45 1.00 0.42 0.20 0.03 1 0.51 0.15 0.06 0.80 

3: 80% 0.72 0.20 0.34 1.00 0.52 0.19 0.03 1 0.56 0.14 0.06 0.80 

4: 70% 0.63 0.18 0.25 1.00 0.61 0.18 0.06 1 0.58 0.13 0.11 0.78 

5: 60% 0.51 0.20 0.17 0.89 0.65 0.15 0.21 1 0.53 0.14 0.27 0.74 

6: 50% 0.38 0.19 0.11 0.80 0.66 0.13 0.39 1 0.45 0.15 0.19 0.70 

7: 40% 0.26 0.15 0.05 0.56 0.63 0.12 0.43 1 0.35 0.16 0.09 0.62 

8: 30% 0.16 0.10 0.02 0.35 0.54 0.15 0.23 1 0.23 0.13 0.03 0.45 

9: 20% 0.08 0.06 0.00 0.28 0.42 0.17 0.00 1 0.13 0.08 0.00 0.37 

10: 10% 0.03 0.03 0.00 0.17 0.22 0.12 0.00 0.5 0.05 0.05 0.00 0.25 

 

The average performance of each algorithm, measured by the precision, recall and F1-score, is 

displayed in table 4.3. The default thresholds resulted in high precision but low recall scores, meaning 

that the algorithm missed many true spindles in the recording. As expected, the precision decreased 

when the thresholds were lowered, ranging from 0.84 (SD = 0.23) for the default parameters to 0.03 

(SD = 0.3) for the lowest thresholds, likely due to an increase of false positives. The highest average 

score for recall (mean = 0.66, SD = 0.13) was obtained when thresholds were lowered by 50%. 

Lowering the thresholds below 50% did not result in improved recall. The average precision versus 

recall scores per algorithm are plotted in figure 4A. The highest F1-score (mean=0.58, SD=0.13) was 

obtained by lowering the thresholds to 70% (algorithm 4). The same algorithm also has the highest R2 

value when its sleep spindle density is regressed on the ground truth sleep spindle density (see Fig. 

4.4B). 
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Figure 4.4 Performance of 10 exploratory algorithms with varying thresholds (see table 4.4 for thresholds per 

algorithm). Algorithm 1 has the default thresholds. A. Average recall and precision values per algorithm. B. Sleep 

spindle density based on visual detection (Y-axis) compared to sleep spindle densities based on automated 

detection (X-axis). 

Round two  

Based on these results we attempted to improve the performance within a range where precision and 

recall where both acceptable (above 0.5). In this second step, all possible combinations were tested 

systematically by varying each threshold individually (see table 4.4). The minimum was set to 55% and 

the maximum to 85% with increments of 5%. For example, the RMS and correlation threshold would 

be kept on 85% while the relative power threshold would be lowered stepwise in 5% increments. In 

total, 343 threshold combinations were tested. Results from these analyses showed only minor 

improvements. The average F1-scores of all different threshold settings ranged from 0.491 to 0.593. 

The best performing algorithm based on the F1-score had thresholds set to: rms 85% = 1.275, 

correlation 80%= 0.52 and relative power 65% = 0.13. For this algorithm the average precision was 

0.635 (SD=0.174) and the average recall was 0.626 (SD= 0.192).  

Table 4.4 Threshold settings for round 2. 

Parameter Min (55%) Max (85%) Increment (5%) 

RMS 0.825  1.275 0.075 

Correlation 0.3575  0.5525 0.0325 

Relative Power 0.11 0.17 0.01 

 

In a next step, we used the best performing threshold settings on the validation set, which yielded 

similar results (see table 4.5). Sleep spindle density from the default algorithm correlated significantly 

with sleep spindle density obtained from the manual detection (r = 0.61, p < .001), as did sleep spindle 
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density from the adjusted algorithm (r = 0.73, p < .001). When comparing the correlations, the 

correlation with the adjusted algorithm was significantly higher than the correlation with the default 

algorithm (z = -1.97, p = 0.049), supporting the choice for the adjusted algorithm (see Fig. 4.5).  

Table 4.5 Comparison between the performance on the training and validation datasets. 

Dataset Precision Recall F1 
 

Mean SD Min Max Mean SD Min Max Mean SD Min Max 

Training 0.635 0.174 0.261 1.000 0.626 0.192 0.061 1.000 0.593 0.139 0.111 0.776 

Validation 0.622 0.191 0.000 0.840 0.543 0.236 0.000 1.000 0.553 0.189 0.000 0.800 

 

 

Figure 4.5 Scatterplots with linear regression model fit of sleep spindle density based on visual and automatic 

detection. In blue is the best performing (based on F1-score) algorithm with adjusted thresholds. In orange is 

the algorithm with the default threshold setting.  

4.2.3.4 Discussion 

We aimed to improve the performance of an existing spindle detector, YASA, originally trained on data 

spanning from early childhood to adulthood, for use in infant sleep recordings, age 8 to 11 months. 

The YASA algorithm is based on the A7-spindle detector designed by Lacourse et al (2019), which 

reached an average F1-score of 0.7 in adult sleep recordings. However, when applied to our dataset 

of 8-11 month-olds, the performance significantly declined, with an F1-score of 0.4. The reduction is 
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primarily driven by a low recall score, indicating that the algorithm fails to detect a large amount of 

spindles identified by visual detection. However, the spindles that were identified by the automated 

detector were largely correct, as reflected by a high precision score.  

To improve the algorithm’s performance, we used a subset of the data (the training set) to test a range 

of threshold settings. In a first step, the three detection thresholds were lowered simultaneously in 

10% increments to identify a broad range of optimal settings. The algorithm performed best when the 

thresholds were set between 55% and 85% of the original default values. In a second step, we fine-

tuned the algorithm by lowering each threshold individually in 5% increments and tested all possible 

combinations within the 55% to 85% range. The best performing algorithm on the training set had an 

F1-score of 0.59 and a similar performance in the validation set with an F1-score of 0.55.   

Adjusting the threshold markedly improved the algorithm’s performance compared to the default 

threshold settings, raising the F-score from 0.4 to 0.55. Although this is a significant improvement, the 

adjusted algorithm is still not as effective as the original A7 algorithm in adults (F1 =0.7). One possible 

reason for the lower performance is that N3 was included in our analysis. Abrupt increases or 

decreases in voltages, such as slow waves during N3, impact other frequency bands (Kramer et al., 

2008), which may affect sleep spindle detection (Purcell et al., 2017). If the inclusion of N3 is the 

reason that spindles were underdetected, we would expect worse recall scores in recordings that had 

a lower proportion of N2 to N3 and better recall scores in recordings with higher proportions of N2 to 

N3. However, there was no significant correlation between the N2/N3 proportions and recall scores, 

either using the default settings (r = -0.15, p = 0.43) or the adjusted settings (r = -0.24, p = 0.20). This 

suggests that underdetection of sleep spindles is not due to the inclusion of N3.  

When looking at the three thresholds separately, lowering the relative power, which reflects the 

proportion of the sigma power in the signal’s total power, seemed particularly beneficial to enhance 

the performance. Specifically, the optimal settings of the best performing algorithm were: RMS = 

1.276 (85%), correlation = 0.52 (80%) and relative power = 0.13 (65%). That the relative power 

threshold needed to be lowered in particular may reflect lower amplitudes of sleep spindles in infancy 

in combination with the high background activity (D’Atri et al., 2018; Frey et al., 2016; McClain et al., 

2016). It is possible that the human eye can adapt its ‘thresholds’ more flexibly to higher background 

noise than an algorithm. 

In comparison to other automated spindle detectors, an F1-score of 0.55 is average – not the worst, 

but certainly not the best either. For example, Kwon et al. (2023) report an F1-score of 0.48, while the 

infant-specific algorithm developed by Wei et al. (2022) reaches high F1-scores of around 0.88. The 

disparity in these scores could be attributed to several factors, including different algorithms and 
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methodologies used. However, it is possible that the lower performance in Kwon et al.’s study is due 

to the wide age range used (0-18 years), while Wei et al. trained and tested their algorithm on a very 

specific dataset with a narrow age range (4-5 months). This highlights the challenge of finding an 

algorithm that fits all. Ideally, an sleep spindle detector would be developed that has separate 

thresholds settings depending on the specific age range used. 

Although the average performance was acceptable, there was a large variability between individual 

recordings. For example, the recall scores for the best performing algorithm ranged from 0.06 to 1 in 

the training dataset. This means that at worst, automated detection barely found any of the sleep 

spindles that were visually detected and at best, all of them were found. These extreme values could 

be a consequence of extremely low numbers of detected sleep spindles both visually or automatically. 

If only a few sleep spindles were found, which can happen in short naps, the recall values can easily 

be extreme. However, we did not find a significant correlation between nap duration and recall score, 

neither using the default settings (r = 0.05, p = 0.81) or the adjusted settings (r = 0.05, p = 0.78). 

Importantly, we show that sleep spindle densities obtained through automated detection with the 

adjusted algorithm were correlated to a high degree with sleep spindle densities from visual detection, 

and that this was improved compared to the default settings. This gives us confidence to proceed the 

analyses in Chapter 5 with the adjusted thresholds.  

4.3 K-complexes 

K-complexes are researched much less than sleep spindles. A quick search on PubMed (on 3/09/2024) 

shows 2534 search results for papers analysing sleep spindles and 716 for K-complexes. When 

constricting the search to infancy, 173 search results remain for sleep spindles, but only 14 for K-

complexes. As a consequence, much less is known about the development of K-complexes and 

specialized automated detection methods for infants are non-existent.  

4.3.1 Approaches to detect K-complexes 

In adults or children, spontaneous K-complexes are typically measured using visual or automated 

detection methods (Ameen et al., 2022; Colrain, 2005; Ranjan et al., 2018). According to the American 

Academy of Sleep Medicine (AASM) a K-complex is: ‘A well-delineated, negative, sharp wave 

immediately followed by a positive component standing out from the background EEG, with total 

duration ≥0.5 seconds, usually maximal in amplitude when recorded using frontal derivations’ (Iber et 

al., 2007). See figure 4.6 for examples of adult K-complexes. As mentioned in Chapter 1 section 1.1, K-

complexes are regarded as a special type of SW, either a forerunner of SWs in N3 (De Gennaro et al., 

2000) or as part of a continuum of reactive sleep elements (Halász, 2016). Due to the similarity with 

SWs, one approach for automated detection is to adapt SW detection algorithms with additional 
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criteria tailored to a K-complex (Parapatics et al., 2015). Besides automated and visual methods, 

evoked K-complexes can also be measured by averaging the EEG signal time-locked to a stimulus 

(Bastien & Campbell, 1992),  a technique commonly used in ‘wakefulness research’, for example in 

event related potentials. Averaging across trials is helpful to amplify the signal-to-noise ratio. 

Background noise, if truly random, will average to zero, while any consistent neural response remains 

visible. Indeed, when averaging across trials during N2, usually an evoked response is visible, albeit 

much smaller in amplitude than would be expected from individual K-complexes (Weitzman & 

Kremen, 1965; H. L. Williams et al., 1962). This is because not all trials elicit a K-complex. The likelihood 

of eliciting a K-complex is dependent on the physical features of the stimulus, such as the intensity 

and rate of presentation. For example, at 60 Db, a K-complex will be elicited in 25% of the trials, while 

at 80 Db, 50-60% of trials elicit a K-complex (Bastien & Campbell, 1992). The rate of stimulus 

presentation matters too, due to the refractory period of K-complex generation, which is between 10-

15 seconds (Colrain, 2005). Some studies therefore separate trials into K-complex positive and 

negative trials before averaging (Ameen et al., 2022; Bastien & Campbell, 1992). The averaged signal 

then represents the average K-complex more accurately without being influenced by the likelihood of 

K-complex occurrence. In adults, this approach works well because evoked K-complexes have a 

distinct shape and reliable timing relative to the stimulus.  

 

Figure 4.6 Examples of K-complexes in an adult recording. Figure from Ameen et al. (2022). 

4.3.2 Development of K-complexes and detection in infancy 

As part of the definition, a K-complex is an isolated event that stands out from the background activity 

(Iber et al., 2007). However, infant sleep EEG is characterised by high voltage background activity (Frey 

et al., 2016), which makes it challenging to identify a true K-complex that ‘stands out’. Metcalf et al. 

(1971) describe 4 grades of K-complex discernibility across development (see Fig. 4.7 and 4.8). These 

grades are based on individuation, shape parameters and topographical spread. Before six months-
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of-age, K-complexes might be present already, but are almost impossible to distinguish from the 

background signal (Grade 0). After six months-of-age, K-complexes can be detected, but are still 

“hidden” within the EEG signal (Grade 1). Around two years of age, K-complexes become more easily 

discernible, although EEG background activity is still high in childhood (Grade 2). Metcalf and 

colleagues conclude that until 7 years of age, when K-complexes reach Grade 3, differentiating K-

complexes is challenging. In line with Metcalf et al., but in a larger sample of 50 infants, using repeated 

measurements at 2 weeks, 3 months, 6 months, 9 months and 12 months, Verma & Baisakhiya (2021) 

show that spontaneous K-complexes are not visible before 3 months of age. Between 3 and 6 months, 

K-complexes start to emerge. However, when K-complexes become visible depends on the individual. 

At 9 months, 10% of infants (4/40) still did not have any visible K-complexes. By 12 months, this 

number decreased to 5% (2/38). Thus, while spontaneous K-complexes generally start to emerge 

before 6 months, there is considerable variability among infants. In addition, the shape of the K-

complexes changes from blunt at 6 and 9 months to mostly sharp at 12 months. Again, some infants 

still have blunt K-complexes at 12 months (8%), showing that individual maturational trajectories are 

highly variable. 

While the studies mentioned above looked at spontaneous K-complex development, one study in 5 

month-old infants investigated evoked K-complexes, focusing on the effects of smoking during 

pregnancy (King et al., 2018). In this study, K-complexes were detected visually in a 1400 ms window 

after stimulus onset, but it is unclear which criteria were used for visual detection. In the control group 

(infants not exposed to nicotine), K-complexes were elicited in response to 85 dB paired clicks in 28% 

of the trials on average, with a range of 9.5 to 41%. This suggests that by 5 months infants are capable 

of producing K-complexes in response to stimulation. It is unclear whether those infants that did not 

show any spontaneous K-complexes in Verma & Baisakhiya’s study would however be able to produce 

evoked K-complexes. 
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Figure 4.7 Grade of K-complex maturity across development. Figure from Metcalf (1971) 

 

Figure 4.8 Example data of different levels of K-complex maturity. Figure from Metcalf et al. (1971). 
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4.3.3 K-complexes detection in the SNOOSE study 

4.3.3.1 Rationale and justification 

In 8-11 month-olds (the age range of the SNOOSE study), K-complexes are still difficult to distinguish 

from the background signal. According to Metcalf’s discernibility scale, K-complexes fall into Grade 1 

around that age. Moreover, at this age, the characteristic sharpness of K-complexes is 

underdeveloped, often appearing more blunt (Verma & Baisakhiya, 2021), which further complicates 

detection. Without clear guidelines on what should be considered a K-complex at this age range, visual 

detection likely results in unreliable estimates that vary between scorers. Reliable visual detection is 

a crucial step in the improvement or development of automated detection algorithms. Furthermore, 

open source and easy-to-use algorithms are not as abundant for K-complex detection compared to 

sleep spindle detection. Therefore, we decided it was not feasible to adopt the same approach as we 

did above for sleep spindle detection. 

Instead, we decided to tap into the precise timings of evoked K-complexes. We aimed to explore 

whether evoked K-complexes could be detected automatically using YASA’s slow wave detection 

algorithms. In adults, there is a well-defined and reliable time-window in which K-complexes appear 

in response to sensory input. Specifically, the negative peak of an evoked K-complex occurs between 

450 and 700 ms after stimulus onset (Forget et al., 2011). However, it is unclear whether these timings 

are the same in infants age 8-11 months old. Averaged evoked K-complex responses in 5-month-olds 

indicate a peak around 450-500 ms after stimulus presentation. We therefore wanted to check if we 

could see an increase in detected SWs in the 450-700 ms time window in this age range using an 

automated SW detector.  

This approach allows us to circumvent two key challenges regarding K-complex detection in infants. 

Firstly, while the human eye might have difficulty separating a K-complex from the background noise, 

an automated approach might have less problems doing so. Secondly by focusing on evoked K-

complexes which have a predictable timing relative to the stimulus, we can bypass some of the 

ambiguity that makes spontaneous K-complex detection difficult in this age group. 

4.3.3.2. Methods and results 

All pre-processing steps were identical to those used in the sleep spindle detection (see 4.2.3.2.2.). K-

complexes were detected in N2 only using YASA’s slow wave detection algorithm. Most of the default 

setting were used, including a frequency band of 0.5 – 2 Hz, a negative peak duration of 0.3-1.5 

seconds, and a positive peak duration was 0.1-1 second. However, due to high slow waves amplitudes 

in infancy compared to adulthood (Frey et al., 2016), the upper limits of the negative (>50µV) and 

positive  (>20 µV) peaks and peak-to-peak amplitude (>75 µV) were removed.  
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In the SNOOSE study, a total of 34 naps were recorded whilst auditory stimulation was played, where 

60 dB pure tones were presented in pairs (S1 and S2) every 12-18 seconds (see Chapter 5 for more 

details on the stimulation). Of those 34 recordings, two were excluded: One recording did not have 

any trigger markers due to technical failure and one recording had a noisy Cz channel. This leaves a 

total 32 sleep recordings that were included in these analyses. In adults, K-complexes amplitudes are 

largest in frontal regions (Iber et al., 2007) in children however amplitude maxima are seen over 

central areas (Melendres et al., 2008). Therefore, K-complexes were detected in channel Cz. Detection 

was performed on 16 second long artefact-free N2 segments that started at -4.15 and ended at 12.35 

seconds time-locked to S1. This length was chosen to meet the minimum length requirement for the 

algorithm to detect SWs. 

Figure 4.9 shows an example of SWs detected by the YASA algorithm in a segment during stimulation 

(S1 onset is 0.0 in the figure). YASA filters the raw data in the 0.5 – 2 Hz frequency band (Fig. 9B). In 

adults, the negative peak of K-complexes is expected between 450-700 ms (see blue shading in Fig. 

4.10). In this example, none of the detected SWs have a negative peak within the 450-700 ms post-

stimulus window and they would therefore not be classified as evoked K-complexes. 

 

Figure 4.9 Example of SWs detected by YASA in channel Cz. Time 0 is the onset of an auditory stimulus. A. 

Detected SWs in the raw data. B. The same detected SWs in the filtered data with a 0.5-2 Hz bandpass filter. 
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Across all recordings, a total of 3571 SWs were detected in artefact-free N2 segments. A clear increase 

in the production of SWs was observed following S1 and a slight increase following S2 (see figure 4.10). 

In the 450-700 ms window after S1, 145 SWs were detected, and 126 SWs after S2. For comparison, 

only 90 SWs were detected within a time window of the same length before the stimuli. Therefore, 

we concluded that this time-window is appropriate to use in this age range as well.  

 

Figure 4.10 Timing of the negative peaks of automatically detected slow waves in the time window around 

auditory stimuli S1 and S2. A clear increase in SWs can be seen after S1. The blue shading shows the expected 

time windows for the negative peaks based on adult literature (450-700 ms post stimulus onset). 

There are several limitations using this approach. For example, many of the SWs detected in the post-

stimulus window may actually not be evoked K-complexes, but rather ongoing SWs, which seems likely 

given the high number of detected SWs throughout the entire segment. Moreover, these detected 

SWs may still be spontaneous K-complexes or SWs. To rule out this possibility, in the following chapter, 

analysis will always involve a comparison with detected SWs in a window before stimulus onset. 

A potential future improvement to this method could be to select detected SWs that are not followed 

by another SW immediately, because, as part of their definition, K-complexes are isolated events. This 

could potentially exclude some ongoing SWs and improve the precision of K-complex detection. 
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4.4 Summary and conclusion 

There are unique challenges to reliably detect sleep spindles and K-complexes in infants age 8-11 

months old. For both events, literature that characterises developmental trajectories in the first year 

of life is limited. For K-complexes in particular, the literature is almost non-existent. Without clear age-

dependent guidelines for visual identification for K-complexes, it is impossible to establish a reliable 

‘ground truth’, necessary for the development of automated methods.  

For sleep spindles, features such as sleep spindle duration, frequency and amplitude are still maturing 

and likely at a different pace for each individual. In open-source algorithms, such as YASA, frequency 

ranges and duration are often easily adapted. However, low amplitudes of sleep spindles and high 

background activity can result in underdetection of sleep spindles compared to visual detection when 

algorithms are trained on adult data. Indeed, using YASA’s default thresholds, sleep spindles were 

underdetected in the SNOOSE sample. Adjusting the thresholds based on optimal performance in a 

training dataset successfully improved algorithm performance in a validation dataset. However, it 

should be mentioned that the improved algorithm could be further improved, as it shows ‘acceptable’ 

performance scores. However, these scores are similar to other algorithms used in the field. High 

correlations between sleep density obtained by the improved automated detection and visual 

detection gave us confidence to continue with this algorithm for the analyses in Chapter 5. 

For K-complexes, we focus on evoked K-complexes due to the predictable timing in response to a 

stimulus. Additionally, an automated detection method is chosen over visual detection due to the 

difficulty discerning K-complexes from background activity. In the SNOOSE sample, we see a clear 

increase in automatically detected SWs in the expected time-window. Going forward, we will use this 

method to detect evoked K-complexes. 
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Chapter 5.  

Auditory input during an 

infant nap and the interaction 

with sensory profiles 
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5.1 Introduction 

Chapter 1 showed that sensory processing is dependent on vigilance state. The dual needs during sleep 

- the protection of the sleeping brain from interference and responsiveness to salient stimuli - are 

managed by sensory gating and gaining. Throughout this thesis, a potential causal relationship 

between sleep and sensory atypicalities is explored. In this chapter, I focus on whether infants that are 

more responsive to sensory input during wakefulness show atypical markers of sensory 

(dis)connection during sleep. Understanding how sensory input interacts with these sleep features 

could help to unravel why these infants have sleep difficulties. 

Two key aspects of sensory processing during sleep can be disentangled: The influences of sleep on 

sensory processing and the consequences that sensory processing have on sleep. The former is 

concerned with the spontaneous ongoing activity that determines to what extent an incoming stimulus 

is processed, while the latter relates to the reactive or evoked response to sensory input. One potential 

mechanism that links sleep and sensory processing atypicalities is that spontaneous sleep rhythms 

related to sensory (de-)coupling are altered in individuals that have sensory atypicalities, which would 

make their sleep more susceptible to external sensory disruption. Another possibility is that, in the 

absence of environmental sensory disturbance, there are no differences in sleep between individuals 

with sensory differences, but once external sensory input is introduced or increased, the evoked brain 

responses are altered in individuals with heightened sensory atypicalities.   

According to the framework proposed by He et al. (2023), there are multiple aspects of sensory 

processing differences in autism, which cannot be thought of as homogenous. Throughout this thesis 

two aspects of sensory processing have been captured: an objective, neural measure of sensory 

processing (which I referred to as sensory gating), and a subjective behavioural measure (low 

threshold). The latter taps into affective and behavioural reactivity to sensory input and is assessed 

through the Sensory Profile, a caregiver report (ITSP or SP-2, (Dunn, 2002, 2014)).  In this chapter, we 

again use the ITSP low threshold measure, for a couple of reasons. Firstly, this measure, and in 

particular this questionnaire, has been by far the most commonly used measure of sensory differences 

in relation to sleep in autism (Lane et al., 2022). Therefore, to understand the underlying mechanism 

of the frequently reported association between sleep and sensory processing, it seems intuitive to use 

a similar measure. Secondly, in this study, we want to capture sensory processing during wakefulness 

as a stable trait, rather than a time-specific fluctuation. The questionnaire asks about the frequency of 

an individual’s behaviours and therefore captures an infant’s sensory profile as a trait. Indeed, the 

results from chapter 3 also indicate that low threshold is highly stable over time within the same 

individual. Thirdly, the results from chapter 2 show that low threshold maps onto sleep more broadly, 



113 
 

both sleep onset and night awakenings, while the neural measure of sensory gating seems to associate 

with specific features of sleep only (i.e. sleep onset).    

The aim of this chapter is to understand whether brain activity, related to sensory (de-)coupling during 

sleep, differs during undisturbed sleep (baseline condition) or when auditory stimulation is presented 

during sleep (stimulation condition) in individuals with a variety of sensory processing profiles. Using 

a within-subject design, where infants at typical and elevated likelihood for autism take a nap in a 

baseline and a stimulation condition, allows us to capture both spontaneous and evoked activity during 

sleep in relation to variation in sensory profiles.  

In the section below, features of sleep that are expected to influence and be influenced by sensory 

input are discussed. These will be divided into features that have been linked to sensory disconnection 

during sleep, which are therefore protecting sleep, and features that are markers of sensory 

disconnection, disrupting sleep. Slow waves (SWs) and sleep spindles are discussed as sleep protective 

elements, and markers of arousal will be discussed as sleep disruptive elements. 

5.1.1 Sleep protection  

5.1.1.2 Bistability: Slow waves and K-complexes 

As described in detail in Chapter 1 section 1.1.1, one mechanism that could gate sensory input during 

NREM sleep is the bi-stable dynamics of neuronal populations, reflected as large SWs in the cortex. In 

short, SWs may limit sensory processing by disrupting cortico-cortical communication and therefore 

establishing a cortical gate during NREM sleep. That SWs de-couple the sleeper from their sensory 

environment is supported by the fact high SWA is related to high arousal thresholds and the higher 

SWA before a stimulus (Neckelmann & Ursin, 1993), the less likely a behavioural arousal will follow 

(Hayat et al., 2020). These SWs can be considered spontaneous, because they are not evoked by 

sensory input. However, SWs can also be evoked. One special type of SW, the K-complex, is particularly 

known for its reactive nature. K-complexes can most easily be seen and measured in sleep stage N2, 

when they stand out from the background activity. Whilst K-complexes appear in response to 

stimulation they also occur spontaneously without any known sensory input. In this Chapter, I focus 

on SWA as a feature of SWs, because it is most commonly used and as mentioned above is known to 

capture ‘sleep protection’. Due to the challenges of measuring K-complexes in infants (See Chapter 4), 

K-complexes are measured in N2 as evoked SWs in response to the auditory stimulation during the 

stimulation condition.  

Relationship with sensory profiles and autism  

Here, we are interested in how variability in sensory profiles determines spontaneous and evoked 

markers of sensory disconnection. To our knowledge very few studies have looked at the relationship 
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between SWs and sensory processing differences. One study, that was mentioned before, shows that 

K-complexes are less likely to be elicited by high volume noise in adult participants that rate themselves 

highly on a noise sensitivity questionnaire (Lechat et al., 2021). This shows that a person’s sensory 

profile may indeed determine responses to sensory input during sleep. 

Whether slow waves are atypical in autistic individuals is still unclear with mixed findings in the 

literature. In 4 year-olds with autism, SWA is lower and the slope of the SW is shallower in the first part 

of the night compared to controls (Arazi et al., 2020). Other studies in both older children and younger 

toddlers do not find any differences in SWA between autistic and typically developing children (J. 

Nguyen et al., 2022; Page, 2018). Nguyen et al (2022) did not distinguish between different parts of 

the night, which could explain why they did not find any differences in SWA between groups. None of 

these studies looked at a specific association with sensory processing differences. These studies 

focussed on spontaneous SWs, but it is unclear whether evoked responses, such as K-complexes, are 

altered in autistic individuals. 

5.1.1.2 Sleep spindles 

Another feature of sleep which has been proposed to contribute to (or be a correlate of) sensory 

disconnection are sleep spindles. The spindle gating hypothesis proposes that sleep spindles serve as 

protective elements, shielding the cortex from external input and thus promoting sleep maintenance. 

In Chapter 1 section 1.1.1, I describe that some studies indeed show that sensory input is gated during 

a sleep spindle event (Schabus et al., 2012) and that the arousal threshold is higher during a spindle 

(Wimmer et al., 2012) or in periods when sleep spindles are abundant (Cardis et al., 2021; Lecci et al., 

2017). However, not all findings align with this view (Rudzik et al., 2018; Sela et al., 2016). Moreover, 

whether sleep spindles passively protect the brain from sensory interference or whether they are 

reactive elements and are upregulated in the face of noise is also still debated, with evidence for 

(Ameen et al., 2022; Sato et al., 2007) and against an upregulation of sleep spindles (Rudzik et al., 

2018).  

Relationship with sensory profiles and autism  

A decrease in spindle density has been observed in children and adolescents with autism (Chilakamarri 

et al., 2017; Farmer et al., 2018; Mylonas et al., 2022). Activity in spindle frequency range (10-16 Hz) 

is decreased in infants with autism compared to controls as young as 12-30 months; lower spindle 

activity is associated with higher autism symptom severity (Page, 2018). It still remains unclear 

whether reduced spindle activity is related to particular symptoms of autism. One possibility is that 

sensory processing atypicalities and sleep spindle generation reflect common underlying mechanisms. 

For example, both sensory sensitivities and disrupted sleep spindle generation could be caused by 
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atypical functioning of the thalamus. Thus, previously described associations between sensory 

sensitivity and poor sleep in infants with older autistic siblings may be mediated by alterations in sleep 

spindle generation. To our knowledge, this has not been looked at in autistic individuals. However, in 

typically developing 4-year-olds measures of sensory gating and sleep spindle features are related to 

each other (P.-P. Wei et al., 2017), suggesting that variability in sensory processing could potentially be 

linked to sleep spindle atypicalities.  

In summary, we ask whether infants with sensory differences show disruptions in neural measures 

previously related to sensory disconnection. Studies in autistic individuals suggest a decrease in 

spontaneous SWA and sleep spindle density, but they did not investigate whether the decrease was 

particularly related to sensory atypicalities. Subjective sensitivity scores in non-autistic adults are 

associated with diminished evoked responses, suggesting that perhaps both spontaneous and evoked 

responses to sensory input could be affected. We hypothesize that individuals with a low threshold, 

that are more reactive to sensory input, will show decreased sleep protective elements, either 

spontaneous or evoked or both.  

5.1.2 Sleep disruption 

Arousibility is the capability to be awakened from sleep by sensory input. It also encompasses 

intermediate levels of wakefulness that blend with sleep. During sleep, transient phases of activation 

occur spontaneously or induced by an external event, without necessarily leading to wakefulness 

(Schieber et al., 1971). These transient arousals during sleep are part of healthy sleep (Halasz et al., 

1979). Failing to wake up when faced with harmful stimuli can have detrimental consequences, such 

as sudden infant death syndrome (Kahn et al., 2003). Arousal frequency also follows a developmental 

trajectory, decreasing throughout the first year of life (Grigg-Damberger Madeleine et al., 2007; 

Montemitro et al., 2008). Although arousals during sleep are natural and necessary, excessive sleep 

fragmentation can negatively affect next-day functioning, leading to increased daytime sleepiness and 

lower mood (Bonett, 1985; Martin et al., 1997; Stepanski, 2002). Moreover, it can increase long-term 

health risks (E. J. Van Someren et al., 2015). Therefore, a balance is essential to maintain the 

reversibility of sleep when needed, but not fragment sleep too often.  

An arousal is characterized by autonomic responses, such as increased heart rate or blood pressure, 

muscle activation and cortical activation, which occur in a hierarchical order. However, a stimulus does 

not necessarily activate the whole pathway, but can also partly activate it, e.g. only autonomic 

responses and increased muscle tone, but not visible cortical activation (Davies et al., 1993). The same 

continuum of arousals in response to a stimulus has been documented in young infants (McNamara et 

al., 1998). Arousals are under influence of circadian and homeostatic forces, occurring more during 



116 
 

the 2nd part of the night and less during rebound sleep (Halász et al., 2004). Humans and mice show 

infra-slow fluctuations during sleep, with phases more and less vulnerable to external perturbation 

during sleep (Lecci et al., 2017; Yüzgeç et al., 2018). 

In this study, we measure infant naps and therefore do not focus on awakenings, which are more likely 

to occur in longer sleep periods, such as a night sleep. Instead we focus on arousals, with and without 

cortical activation, as it is known that they can trigger sleep stage transitions, fragment sleep and 

impact next day functioning (Martin et al., 1997; Stepanski, 2002). There are multiple ways of 

measuring arousibility. One way is to measure the frequency of arousals, by detecting arousals as 

discrete events based on a set of definitions. Another way is to measure cortical arousibility through 

the activation index (AI), defined as the ratio of activity in the beta- over delta band. A synchronized 

reduction in delta power and increase in beta power can be induced by the stimulation of the reticular 

formation, which plays a major role in promoting wakefulness (Moruzzi & Magoun, 1949). In mice, 

peaks in AI tend to co-occur with micro-arousals or increases in heart rate (Cardis et al., 2021). The AI 

is also higher in mice with chronic neuropathic pain, which suggests a link between this index and 

sensory processing. Interestingly, in humans a higher AI can predict subjective underestimation of 

sleep (individuals perceive their sleep worse than it was according to objective measures), whilst the 

number of arousals does not (Fasiello et al., 2024; Lecci et al., 2020). This suggest that both measures, 

although related, perhaps tap into different mechanisms. Lecci et al (2020) suggest that AI captures 

long-lasting increased activity of ‘subthreshold’ arousals systems compared to suprathreshold 

transient arousals. The AI is therefore a better measure of arousibility throughout sleep. 

Here, we explore whether infants with sensory atypicalities show increased sleep neurophysiological 

measures of sensory connection, both spontaneous and evoked. We hypothesize that individuals with 

a low threshold, that are more reactive to sensory input, will show increased markers of arousibility, 

either spontaneous arousals or arousals evoked by sensory input or both. 

5.1.3 Analysis approach 

Sleep protective and disruptive elements during sleep will be analysed on two scales. First, we will 

investigate micro-scale responses to stimulation. This approach allows us to understand immediate 

changes in brain activity following a stimulus. Specifically, we will compare neural activity before and 

after the stimulus to elucidate underlying mechanisms. 

Second, we will explore macro-scale processes across the duration of a nap. Studies have 

demonstrated that sensory input can influence sleep patterns on a larger scale. For instance, research 

using models of sensory deprivation has shown significant alterations in sleep stages. For example, 

guinea pigs with cochlear removal exhibit increased slow wave and REM sleep, and decreased 
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wakefulness (Pedemonte et al., 1997). Similarly, deaf humans experience changes in sleep stages upon 

activating their cochlear implants, transitioning from reduced N2 and REM sleep to increased N3 sleep 

(Velluti et al., 2010). This suggests that sensory input accumulated over the course of a nap may affect 

sleep differently and potentially impact daily functioning to a greater extent. The analyses of this 

chapter will be divided into micro-scale responses, focusing on immediate neural reactions to stimuli, 

and macro-scale processes, exploring the broader effects of sensory input on sleep stages over the 

course of a nap.  

5.2 Methods  

5.2.1 Experimental model and subject details 

Forty-four infants, age 8 – 11 months, participated in a nap study, consisting of two visits (Baseline and 

Stimulation condition). Four infants did not fall asleep, but one of those infants returned another day 

and managed to fall asleep at their second go. A total of 41 infants napped at least once in the lab 

(female = 23). Thirty infants completed both visits, however data of infants that only completed one 

visit was also included in analysis (See figure 5.1), resulting in a total of 71 sleep recordings. The study 

recruited infants with an older sibling with or without an autism diagnosis. Infants were classified as 

being at elevated likelihood for autism (EL) if they had an older sibling diagnosed with autism or 

undergoing diagnosis (n = 8, female = 3). Infants without an autistic first-degree relative were 

considered at typical likelihood for autism (TL; n = 35). Participants were recruited on a voluntary basis 

through the university participant database and adds on social media. Organisations and charities 

related to autism were contacted as well to advertise the study. Participants received a £10 voucher 

for each visit and they received reimbursement for travel and accommodation if needed. They also 

received a book at the first visit and a T-shirt at the second visit. 
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Figure 5.1 Study completion. Baseline and stimulation condition were counterbalanced. Sample size refers to 

the number of participants, not number of recordings. 

5.2.2 Study procedure 

Infants and their caregivers were invited for two visits at the sleep laboratory at the University of East 

Anglia, UK. Ethical approval was given by the Ethics Committee of the School of Psychology of the 

University of East Anglia (ethics reference code: ETH2324-0296). Participants arrived just before 

infant’s usual naptime and were asked to come back at the same time for their second visit. The 

majority of infants took part in a morning visit, between 8 am and 1 pm. Five infants visited the lab in 

the afternoon, between 1 and 5 pm. The time between visits was 15 days on average (SD = 14), but 

ranged from 2 to 61 days. Caregivers were encouraged to settle their infant as they normally would. 

Infants slept either in the caregiver’s arms on an armchair (n = 29), in a cot or on a bed alone (n =12). 

Again, we ensured this was consistent across the two visits. When possible, caregivers filled out 

questionnaires during the nap, otherwise they filled them out at home. An experimenter stayed in the 

room with the caregiver and infant, making notes during the session. Caregivers were encouraged to 

let their child nap until they woke up naturally. However, on four occasions caregivers woke the infant 

up prematurely for practical reasons (e.g. pick up the older sibling from nursery). 

Infants napped in two different conditions: baseline and stimulation. The order of conditions was 

randomly counterbalanced across the study (Fig. 5.1.). In the stimulation condition, auditory 

stimulation was played from two speakers which were positioned approximately 50 cm from each ear. 

The stimulation was started once the infant was asleep for a couple of minutes. Auditory input was 

applied in the form of 60 dB 225 Hz pure tones, lasting 1 sec each and presented in pairs, S1 and S2 

(Fig. 5.2). The volume was set at 60 dB to make sure this was below the arousal threshold whilst still 

being noticeable. Previous studies in infants show that the arousal threshold for auditory stimuli tends 
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to be between 70 and >100 dB (Franco et al., 1998; Trinder et al., 1990). The intra-stimulus interval 

was 700 ms and the interval between pairs varied randomly between 12-18 seconds. This interstimulus 

interval and jitter were chosen to minimize habituation to and anticipation of the stimulus. The total 

number of pairs of stimuli depended on the nap length, was 175 on average and ranged between 89 

and 325.  

 

Figure 5.2 Stimuli design. Pairs of stimuli (S1 and S2) were presented in a jittered interval every 12-18 seconds. 

Each stimulus lasted a 1000 ms and the time between stimuli was 700 ms. 

5.2.3 EEG data acquisition 

Brain activity was recorded using a wearable LiveAmp with 32-channels (Brain Products GmbH, 

Gilching, Germany) placed within  an EEG sensor cap according to the 10-20 system. Different cap sizes 

were available, sized to the infant’s head circumference (ActiCap snap, Brain Products GmbH, Gilching, 

Germany). Four out of thirty-two electrodes (FT9, P7, P8 and FT10) were used to measure 

electrooculography (EOG) and electromyography (EMG). The sampling rate during data acquisition was 

500 Hz and the online reference was FCz. 

5.2.4 Pre-processing and sleep staging 

All pre-processing steps were performed in MNE python (Gramfort et al., 2013). Data was filtered 

between 0.2 and 40 Hz using a 1st  order butterworth bandpass filter. Notch filters at 50, 100, 150 and 

200 Hz were added to exclude line noise. Data was re-referenced offline to the contralateral mastoids 

for sleep staging and visual arousal detection. Manual sleep staging was performed using the graphical 

user interface Sleep from Visbrain, a python based package (Combrisson et al., 2017, 2019). Sleep 

staging was done on 30 s epochs by two individual scorers based on the AASM criteria and guidelines 

from the Pediatric Task Force (Grigg-Damberger Madeleine et al., 2007; Iber et al., 2007). All 

hypnograms were compared between the two scorers. Where the hypnograms deviated from each 

other, the scorers discussed until an agreement was reached. Visually detected arousals, minimal 3 

sec, were marked on the hypnograms. Arousals detection was based on guidelines from the 
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International Pediatric Work Group (The International Paediatric Work Group On Arousals, 2005) and 

The Pediatric Task Force (Grigg-Damberger Madeleine et al., 2007). See section 5.4.1.1.4 for more 

information on the definition of an arousal. Automatic artefact rejection was performed in all sleep 

stages using the artefact rejection function from YASA using a 1 sec window (Vallat & Walker, 2021). 

5.2.5 Low Threshold from the SP-2 Questionnaire 

In Chapter 3, sensory processing was measured with the Infant/Toddler Sensory Profile (ITSP) using a 

combination of the sensory sensitivity and sensation avoidance subscales, referred to as the ‘low 

threshold’. Since data from the BASIS study was collected, Dunn has published a second version of the 

ITSP, the Sensory Profile 2 (SP-2, (Dunn, 2014)), which we decided to use in the SNOOSE study. The SP-

2 adopts a similar theoretical framework as the ITSP but does not use the term low threshold (LT) 

anymore to describe the combination of sensory sensitivity and sensation avoidance. However, to be 

consistent with the previous chapters, we decided to continue using this construct. Although many 

questions remain the same in the SP-2 compared to the ITSP, some questions were dropped, added or 

moved quadrant. According to Dunn, this is due to the data-driven approach and because perception 

and interpretations of behaviours changed over the 20 years that passed between the construction of 

the ITSP and SP-2 (personal correspondence with Dunn on 11-08-2022). In the SP-2, the avoidance 

quadrant consists of 11 questions and the sensitivity quadrant consists of 12 questions. Both quadrants 

contain questions from general, auditory, oral, touch and behavioural modality. Sensitivity additionally 

consists of one question from the movement modality (see a list of all questions in Appendix B table 

A.4). Overall, both versions are still largely similar, likely capturing the same concepts. The age-

appropriate version, 7-36 months, of the SP-2 was used. Another change in the SP-2 is that caregivers 

have the option to answer ‘not applicable’. LT was calculated by taking the average score of all 

questions that were not marked as ‘not applicable’ on the sensory sensitivity and sensation avoidance 

scales per individual. Forty-nine percent of caregivers completed all questions of the LT subscale. 

However, 20% of participants answered ‘not applicable’ to more than 25% of the questions. The high 

frequencies of ‘not applicable’ likely reflect a high variability in developmental milestones in 8-11-

month-olds and the inappropriateness of some questions for infants at the lower end of the intended 

age range (7-36 month-olds). For example, one of the questions which was answered ‘non-applicable’ 

by 23% of responders was ‘My child prefers one texture of food (for example, smooth, crunchy)’. It is 

possible that not all infants have started solid foods by 10 months of age, when invited to our study. 

No participants were removed based on the amount of missing/not applicable answers.  See figure 5.3 

for the distributions of LT scores in infants at EL and TL in the SNOOSE sample compared to the BASIS 

sample used in Chapter 3. The range of LT scores is narrower in the SNOOSE study, with less high scores 

compared to the BASIS study. I discuss potential reasons for this in Chapter 6 section 6.3. 
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Figure 5.3 Boxplots of Low Threshold in the BASIS (A) and SNOOSE (B) study split by autism likelihood status. In 

the BASIS study the first version of the Infant/Toddler Sensory Profile questionnaire was used. In the SNOOSE 

study the second version, the SP-2, was used. 

The analysis in this chapter will be divided in two parts. The first set of analyses are exploratory and 

focus on time-locked responses to the stimuli in the stimulation naps only. Here we aim to understand 

whether auditory input is registered by the sleeping infant and what the immediate effects of the 

stimulation are on the ongoing brain activity. The second set are pre-registered analyses which focus 

on the comparison of the two nap conditions: with and without auditory stimulation. The first analyses 

explore the immediate responses to the stimulation, while the second ones compare features across 

the whole naps. 

5.3 Time-locked responses to stimulation 

The main aims of this study are to examine whether sleep is affected by an individual’s sensory profile, 

by sensory stimulation and/or by the interaction of both. In this part, we focus only on recordings 

made during the Stimulation Condition but compare EEG measures taken after (ON windows) and 

before stimulation onset (OFF window). These measures are time-locked to stimulation and evoked by 

it. The main aims of this section are: 

1. To visualise the responses evoked by the stimulation during sleep, by computing ERPs and TRFs to 

S1-S2. 
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2. To test whether sleep spindles and K-complexes are evoked by auditory stimulation, by comparing 

the likelihood of the events occurring before and after S1-S2 and to test whether these evoked 

responses are different depending on an infant’s LT score.  

5.3.1 Methods 

A total of 34 stimulation naps were recorded, one recording was excluded that did not have any trigger 

markers due to technical failure. Other exclusions based on bad channels are mentioned separately 

for each analysis.  

There are multiple ways to approach time series data in a time-locked manner. One way is to look at 

event-related potentials (ERPs). ERPs average EEG activity across multiple trials per subject time-locked 

to the start of a stimulus. ERPs are a powerful tool to provide precise temporal resolution of responses 

to stimulation compared to baseline activity, but give a combined output for all frequency bands. Time-

frequency representations (TFRs), extract not just time resolved signal, but time-resolved frequency 

representations of the data. Adding this extra dimension in the frequency domain, provides additional 

information about neural oscillations and neurophysiological mechanisms associated with those 

oscillations. As a first step, event-related potentials (ERPs) are plotted to visually assess whether the 

stimulation is registered during sleep. Subsequently, TFRs allow us to make inferences about the 

neurophysiological mechanisms triggered by the stimulation. Finally, we explore whether a stimulus 

elicits a demarcated event, such as a k-complex or a sleep spindle. In summary, the effect of stimulation 

will be explored by investigating changes over time in the EEG signal overall (ERPs), oscillations (TFRs) 

and elicited events. All time series analyses were performed in MNE python (Gramfort et al., 2013).  

5.3.1.1 Event related potentials 

ERPs are plotted in the central channels, as the mean of C3, Cz and C4, in artefact-free NREM (N2 +N3) 

epochs. Out of 33 stimulation recordings, 4 recordings were excluded because of one or more bad 

channels in the central region, leaving a total of 29 recordings. The analysed epochs were timelocked 

to S1, started 1.0 second before S1 and ended 3.4 seconds after S1 onset. This ensured that both S1 

and S2 were included in the same epoch. Baseline correction was applied to each individual epoch by 

calculating the mean signal in the second before S1 onset and subtracting it from the entire epoch. On 

average, 115 epochs were included per individual, with a minimum of 59 and maximum of 201.  

5.3.1.2 Time frequency representations: Morlet Wavelets 

The Fourier transform is often used to obtain frequency representations of EEG data, but it cannot 

track frequency changes over time. Here we are interested in tracking changes in the power of 

oscillations in response to the stimuli, and thus across frequencies and time. One common method to 

calculate TFRs is through Morlet wavelets. Morlet wavelets are sine waves with a Gaussian taper (See 
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Fig. 5.4). A Morlet wavelet can be thought of a small window that moves along the EEG signal and 

calculates how well the wavelet matches the signal at that particular point in time. The better the fit, 

the higher the resulting transformed signal at that timepoint. For each frequency a different wavelet 

is constructed. This way the signal is broken down into its frequency components over time. The 

Gaussian taper ensures edge artefacts are diminished.  

 

Figure 5.4 Morlet wavelet. Adapted from Cohen (2014). 

In this study, TFRs were calculated using Morlet wavelets in time windows time-locked to stimulus 

onset of S1. Analyses were done in sleep stage N2, when K-complexes and sleep spindles are most 

abundant. Only artefact free segments were included. Morlet Wavelet analyses require setting 

multiple parameters which influence the data analysis: segment length, frequency range, bin width 

and number of wavelet cycles. The segment length needs to balance two opposing needs. On the one 

hand shorter segments are preferred to increase the number of segments to average, per participant. 

The longer the segments are, the higher the chance they will include artefacts and therefore be 

excluded. On the other hand, the length of the segment determines the lower end of the frequency 

spectrum that can be analysed. Cohen (2014) describes that several cycles of a frequency band should 

be present per segment to extract robust band-specific information. This means that to obtain accurate 

information, lower frequencies need longer segments than higher frequencies. We settled on 6 second 

long segments (from -1 to 5 seconds timelocked to S1), which still allows for the inclusion of 

frequencies of 2 Hz. The higher end of the frequency range in turn is limited by the sampling rate as 

there need to be sufficient datapoints per cycle to get a reliable estimate. In theory, according to the 

Nyquist-Shannon sampling theorem, with a sampling frequency of 500 Hz, the maximum frequency 

that could be reliably determined is 250 Hz. However, during sleep, the EEG signal is mostly composed 

of much lower frequencies. In addition, as a general rule of thumb, it is better to limit the range of 

frequencies to increase the statistical power. Including many frequencies requires performing multiple 
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statistical tests, which increases the risk of false positives due to multiple comparisons. The upper limit 

of the frequency range is therefore set to 30 Hz. Lastly, the number of wavelet cycles of the Gaussian 

taper, which determines the width of the wavelet has to be set. This parameter influences the temporal 

and frequency precisions of the signal. More cycles result in better temporal precision, but at the cost 

of frequency precision. Moreover, the right number of cycles depends on the frequency band. If a large 

range of frequencies are analysed at once, it may be beneficial to change the number of cycles of the 

wavelet accordingly, to avoid distortions. Cohen (2014) recommends a minimum of three cycles and a 

maximum of 14 cycles. In this study, the frequency range was 2-30 Hz in bins of 1 Hz, and we increased 

the number of cycles linearly from 3 to 14 Hz in the same number of steps as the frequencies.  

In the segmented data, the power of the signal was computed in channel 'Cz' using Morlet wavelets 

via the time_frequency.tfr_morlet() function from the MNE package. Two recordings with noisy 'Cz' 

channels were excluded, resulting in 31 recordings for analysis. Next, the computed power was 

averaged across segments for each participant. On average, each participant had 50 artifact-free N2 

segments (SD = 28, min = 14, max = 114). A baseline correction was then applied using a log ratio from 

-0.5 to -0.1 relative to the onset of S1, so the signal now represents the change in power relative to 

before stimulation. For a summary of the analyses steps see Fig. 5.5. To test whether there was a 

significant change in the power of any of the frequency bands after the stimulus compared to before, 

a one-sample t-test was run on the baselined power at each timepoint in the segment. To correct for 

multiple comparisons, a cluster-based permutation approach was used, which will be explained in 

detail in the following section.  

 

Figure 5.5 Summary of the analyses steps of time frequency representations 

Single subject

analysis

• preprocessing steps as described before

• Segment the data

• Compute power per segment

• Average power across segments

• Baseline correction (logratio)

Group 

Analysis

• Cluster based permutation

o Cluster determination

o One sample t-test 



125 
 

5.3.1.2.1 Statistical approach for TFR: cluster-based permutation 

One of the challenges in the statistical analysis of TFR data is its three-dimensional nature. TFR data 

includes a large number of data points over time, across many frequency bands, and from multiple 

electrodes. The temporal resolution is determined by the sampling rate, and the number of electrodes 

depends on the EEG system used for data collection. When conducting significance testing to identify 

effects, this gives rise to the multiple comparison problem: the probability of finding false positives 

increases with the number of statistical tests performed, known as the family-wise error rate (FWER). 

A common solution to this problem is reduce the dimensions by focusing on an area of interest and 

then taking an average across that area. This limits the amounts of significance tests that need to be 

conducted. While this might be an appropriate choice for a study interested in a well-established 

effect, such as N400 in language research, it is not an ideal approach for every study. This is a particular 

issue in developmental science because many well-known phenomena are established in studies using 

adult participants. In the developing brain, neural responses are often delayed as information 

processing takes longer (A. Chen et al., 2016), frequency ranges tend to shift to the slower side 

compared to adults (P. J. Marshall et al., 2002) and the topographical distribution changes as a result 

of anatomical and morphological changes in the brain (Ringli & Huber, 2011). Identifying an a-priori 

area of interest is therefore not always possible. In addition, averaging across multiple datapoints 

reduces the richness of the data.   

One way to circumvent the multiple comparison problem and at the same time still preserving the 

richness of the data, is to use cluster-based permutation analysis. This is a method which was first used 

for MRI data (Bullmore et al., 1999), but was then expanded to EEG (Maris & Oostenveld, 2007). There 

are two parts to cluster-based permutation: 1. Cluster formation and 2. Permutation-based inference.  

Cluster based permutation starts by performing a statistical test, for example between conditions or 

groups, on each datapoint. This results in a map of test statistics instead of raw data points. Usually, 

an observed test statistics would be compared to a t-distribution and if a p-value that exceeds the 

chosen alpha-level is found, that result is concluded to be likely different from zero. However as 

outlined above, the likelihood of false positives increases when statistical tests are repeated many 

times. To circumvent this issue, before making any inferences about the test statistics, clusters are 

formed within the data. The test scores are grouped into clusters, based on the assumption that true 

effects would show similar patterns in neighbouring datapoints. A real effect will not happen in just 

one isolated datapoint, but will rather be similar across spatially and or temporally adjacent 

datapoints. If an effect does occur in a singular point, then it is either an artefact or it might not be 

that meaningful from a biological standpoint. A key difference with choosing an area of interest a-
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priori, is that this approach is completely data-driven. An algorithm is used to detect clusters of 

datapoints and each cluster gets assigned a summary value, for example by summing all test-statistics 

within a cluster. Due to the cluster formation, no statistical inferences will be made about individual 

datapoints. This has important conceptual implications, as it means that interpretations about 

temporal or spatial precision cannot be made. Instead the statistics will inform about the size of the 

cluster (Maris & Oostenveld, 2007; Sassenhagen & Draschkow, 2019). At this stage, a first threshold is 

set, the cluster threshold, that determines which datapoints are included in a cluster.  

Next, statistical inferences are made from the cluster size based on a generated permutation 

distribution. This is done by repeating the cluster formation process many times, but each time the 

labels of condition or group are randomly assigned or ‘permuted’, hence the name cluster-based 

permutation. Each permutation produces a test statistic from the largest cluster found in the data. 

These cluster test statistics are used to generate the permutation distribution, which surrogates as a 

null distribution. The test statistic of the observed data is then compared to the permutation 

distribution. In case of an alpha level of 0.05, an effect in the observed data is considered significant if 

the test statistic of the cluster only occurred in less than 5% of the permutations. In theory, the more 

permutation one uses to build the permutation distribution, the better. However, as this can be quite 

time-consuming, the permutation distribution tends to be approximated by a Monte Carlo estimate. 

A rule of thumb is that at least 1000 permutations should be run (Meyer et al., 2021). 

It is important to highlight again that this approach does not formally establish the onset or offset of a 

cluster (e.g. latency of the effect). It only informs us whether the size of an observed cluster is 

significantly different to other cluster sizes when the data is randomly rearranged. This is because the 

clusters group similar test statistics, however, it is not formally tested whether a point on the edge of 

the cluster should or should not be included (Sassenhagen & Draschkow, 2019).  

Cluster-based permutation offers several key advantages. Firstly, it is a non-parametric method, so it 

does not rely on assumptions about the normality of the data, because the permutation distribution 

can take on any shape. Secondly, it can be used as a correction method for multiple comparisons on 

any statistical test, whether it be t-tests, ANOVAs or correlations. Thirdly, cluster-based permutation 

testing does not require the identification of a priori regions of interest, particularity interesting for 

developmental data.  

Settings 

In this study, a two-tailed, one sample t-test was used to determine whether the log ratios were 

different from zero, using the function mne.stats.permutation_cluster_1samp_test(). A cluster 

threshold of 0.05 was set to define clusters, quantified by summing values within each cluster. The 
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permutation distribution was generated by randomly shuffling the signs of the log ratios for each 

participant over 10,000 iterations. Clusters were considered significant at p < 0.05.  

5.3.1.3 Elicited events  

Event-likelihood, sleep spindles and K-complexes, is compared in stimulus ON and stimulus OFF 

windows. A higher likelihood of events in the stimulus ON window than OFF, would indicate that 

stimulation evokes these events. The effect of LT scores on event likelihood will also be explored, as 

well as the interaction with ON/OFF windows. The latter will inform about whether LT scores impact 

the evoked responses to stimulation in particular rather than the spontaneous presentation of these 

events. Again, two recordings were removed that had a noisy Cz channel, as well as two participants 

with missing data on the LT questionnaire, leaving 29 recordings for these analyses. 

5.3.1.3.1 K-complex likelihood 

K-complex detection was performed with the automated slow wave detection algorithm by YASA (See 

details in Chapter 4). For this analysis, artefact-free N2 segments were created starting  4.15 seconds 

before S1 and ending 12.35 sec after S1 onset. A K-complex was counted in response to S1 if the 

negative peak fell in a window 450-700 ms from S1 onset (stimulus ON window). Because of a 

refractory period after an evoked K-complex (Campbell, 2010), only the response to S1 is presented 

here but see Appendix E for measures of K-complex likelihood after both S1 and S2. K-complexes were 

also counted in a stimulus OFF window of the same length at -1250 to -1000 ms time-locked to S1 

onset (See fig. 5.6). Although the OFF-window is consistently 1250 ms before S1 onset, it is jittered in 

comparison to the previous stimulus, as the interstimulus interval varied between 12 and 18 sec (see 

fig. 5.2). It is therefore unlikely that there are any confounding anticipatory effects which would 

influence the event count in the OFF window. From these counts, the likelihood of a K-complex was 

calculated by dividing the total number of K-complexes in each window (ON or OFF) by the number of 

stimuli. On average there were 41 stimuli per recording in artefact-free N2. The number ranged from 

11 to 92.  
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Figure 5.6 Analysis window used for K-complex likelihood. 

5.3.1.3.2 Sleep spindle likelihood 

Sleep spindles were detected automatically in sleep stage N2 in channel Cz, using Yet Another Spindle 

Algorithm (YASA). Details on the parameters and justification of those parameters are described in 

detail below in section 5.4.1 and in Chapter 4.  While the (adult) literature is clear about the timings 

of an evoked K-complex, there is much less clarity about the timings of evoked sleep spindles and even 

whether sleep spindles are evoked by stimulation all together. We therefore choose a longer time 

window for the detection of sleep spindles that spanned over both S1 and S2.  

Artefact free N2 segments of 8.8 sec were selected, from -4.4 to +4.4 from S1 onset. This allowed for 

a buffer zone of 1 sec at each end of the segment to avoid interference of edge artefacts with sleep 

spindle detection. Sleep spindles were counted in response to the stimulation if they started between 

0 and 3.4 seconds after S1 onset, called the ON window. Sleep spindles in the control window were 

counted if they started at -3.4 to 0 seconds before S1 onset, called the OFF window (See Fig. 5.7). From 

these counts, the likelihood of a sleep spindles was calculated by dividing the total number of sleep 

spindles per recording by the number of stimuli. On average there were 48 of stimuli per recording in 

artefact-free N2. The number ranged from 14 to 108.  
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Figure 5.7 Analysis window used for sleep spindle likelihood. 

5.3.1.3.3 Statistical approach for elicited events 

Justification for using linear mixed models  

In this section, stimulation is represented by the absence or presence of auditory stimulation in 

stimulus OFF vs stimulus ON windows, coded as 0 or 1 respectively. The simplest statistical approach 

would be to use general linear models, such as a multiple linear regression, with stimulus and LT as 

predictor variables and the micro- and macro-sleep measures of interest as outcome variables. This 

also allows for additional co-variates to be added, such as age and sex. However, the study design 

violates the independence assumption, as some variables are measured twice within the same 

participants. A common approach when the independence assumption is violated is to run a repeated 

measures ANOVA. However, an ANOVA does not allow any incompleteness of data. Additionally, no 

covariates can be added. In the second chapter, we used a marginal model, GEE, to account for the 

dependence between measures. In this chapter we will use a mixed effect model. A key difference 

between the two is the way the correlations between repeated measures are accounted for. In 

marginal models, a working correlation matrix is specified, which accounts for the dependence 

between measures, but treats it as a ‘nuisance’. The results of marginal models, do not include any 

information about the individual variability. Mixed effect models on the other hand explicitly model 

individual variability, through the inclusion of ‘random effects’. While the working correlation matrix 

in marginal models is the same across all subjects, the random effect allows the dependency to differ 

for each subject. To better account for the within person variation in the sample, mixed effect models 

are used here.  

Mixed effects models are called ‘mixed’, because they combine fixed and random effects. Fixed effects 

model average trends across the entire sample, while random effects capture the subject-specific 

deviations from the average trend. If a random effect variance is zero, this indicates that there is no 
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subject specific variation. Random effects can either allow for differences in the intercept, slope or 

both. However, when there are only two measurements per subject, as in our study design, it is not 

possible to estimate random slopes because there are no residuals from a line connecting two points. 

We therefore only specify a random intercept in these models.   

Linear mixed effect models (LMM) assume that the residuals of the model are normally distributed. 

For non-normal or non-continuous data, generalized mixed effect model can be used instead (GMM). 

Evaluating significance in LMMs is not straightforward, as, unlike general linear models, the output of 

LMMs does not provide a p-value for each effect within the model. This is because the denominator 

degrees of freedom are ambiguous in multilevel models (Baayen et al., 2008). E.g. Should the degrees 

of freedom be derived from the number of observations (level 1), the number of subjects (level 2) or 

a combination of both? However, an estimate of the degrees of freedom is needed to calculate a p-

value from t- and F-statistics. Two common methods to evaluate significance of effects in LMMs are 

likelihood ratio tests and the t-as-z approach. Both these methods are sensitive to sample size, with 

higher Type 1 error rates for smaller sample sizes, and are not recommended when the number of 

participants is < 50. For smaller sample sizes, the Satterthwaite approximation for degrees of freedom 

can be used. This method is considered more robust to different sample sizes, because it produces 

similar Type I errors across sample sizes (Luke, 2017). Therefore in this study, the estimates and t-

statistics of model parameters are obtained using the maximum likelihood method, followed by the 

Satterthwaite approximation to obtain df and p-values for each fixed effect in the model.  

LMMs were run with stimulus, LT, sex and age as fixed main effects and the individuals as random 

intercept (See equation 5.1a). In a next step, the interaction effect between stimulus and LT was added 

(equation 5.1b). Sensitivity analysis followed by adding autism-likelihood status as a covariate 

(equation 5.2). This approach and the choice of covariates are based on the preregistered analyses 

(see more detail 5.4.1.2). LMM were performed with the R-package lmerTest (Kuznetsova et al., 2017). 

Equation 5.1 Linear mixed effect models. The base model (a) includes the main effects only, the interaction model (b) includes 

the interaction term. Event likelihood is either K-complex or sleep spindle likelihood. LT = Low threshold.   

𝐸𝑣𝑒𝑛𝑡 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ~  𝑆𝑡𝑖𝑚𝑢𝑙𝑢𝑠 (0𝐹𝐹 𝑣𝑠 𝑂𝑁) +  𝐿𝑇 +  𝑆𝑒𝑥 +  𝐴𝑔𝑒 +  (1|𝑠𝑢𝑏𝑗𝑒𝑐𝑡)   (a) 

𝐸𝑣𝑒𝑛𝑡 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ~  𝑆𝑡𝑖𝑚𝑢𝑙𝑢𝑠 (𝑂𝐹𝐹 𝑣𝑠 𝑂𝑁) +  𝐿𝑇 +  𝑆𝑒𝑥 +  𝐴𝑔𝑒 +  𝑺𝒕𝒊𝒎𝒖𝒍𝒖𝒔 ∗ 𝑳𝑻 +

 (1|𝑠𝑢𝑏𝑗𝑒𝑐𝑡)      (b) 
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Equation 5.2 Sensitivity analysis including ASD-likelihood status coded as 0 (TL) and 1 (EL) to the base model (a) and 

interaction model (b). 

𝑦 ~ 𝑆𝑡𝑖𝑚𝑢𝑙𝑢𝑠 + 𝐿𝑇 + 𝑆𝑒𝑥 + 𝐴𝑔𝑒 +  𝑨𝑺𝑫𝒍𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅 +  (1|𝑠𝑢𝑏𝑗𝑒𝑐𝑡)   (a) 

𝑦 ~ 𝑆𝑡𝑖𝑚𝑢𝑙𝑢𝑠 + 𝐿𝑇 + 𝑆𝑒𝑥 + 𝐴𝑔𝑒 + 𝑨𝑺𝑫𝒍𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅 +  𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ∗ 𝐿𝑇 +  (1|𝑠𝑢𝑏𝑗𝑒𝑐𝑡)   (b) 

5.3.2 Results of time-locked responses 

5.3.2.1 ERPs 

ERPs were plotted to visually assess whether stimulation was registered during NREM sleep in the 

central channels (Fig. 5.8). A clear response can be seen after onset of S1 and S2. No further analysis 

was carried out on the ERPs. 

 

Figure 5.8 Event Related Potentials in the central channels (C3, Cz and C4). Onset of S1 and S2 are demarcated 

by the dotted vertical lines. Shaded areas indicated the duration of the stimuli. Baseline correction was applied 

from -1 – 0 from S1 onset. 

5.3.2.2 TFR 

Cluster based permutation 

The cluster-based permutation test detected 31 clusters in the data, of which the size of two clusters 

was significant or marginally significant after comparison to the permutation distribution (See fig. 5.9). 
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A positive cluster was found that approached significance (p = .067) with a two-tailed test, but reached 

significance with a one-tailed test (p= .047). The positive cluster was located at the lower end of the 

frequency spectrum, in the delta and low theta band, approximately between 0 and 1000 ms after the 

onset of S1. A significant negative cluster was found, with a probability of 0.047 in the permutation 

distribution, indicating a decrease in power compared to the baseline activity. The negative cluster 

spanned over the sigma band and started around the onset of S2. This leads us to conclude that on 

average, infants tended to register the stimuli, as activity before and after the stimulus was significantly 

different. We continue these analyses by exploring whether the increase in low frequency activity 

corresponds to an increase in K-complex occurrence and whether the decrease in the sigma band 

reflects altered sleep spindle production. 

 

Figure 5.9 TFR cluster-based permutation. Dashed black vertical lines are the stimulus onsets of S1 and S2. The 

shaded yellow area is the duration of the stimuli. A. All detected clusters before permutation. B. Clusters that 

have a p-value < 0.1 after permutation. 

5.3.2.3 Elicited events 

K-complex likelihood 

The LMM of K-complex likelihood resulted in a singular fit, likely because there was almost no within 

person variance in K-complex likelihood. A multiple linear regression was therefore run, without the 

random effect of individual. The OFF/ON window significantly predicted K-complex likelihood, with 

more K-complexes in the window after S1 than before S1 (Est. 4.37, p=0.017; see fig 5.10A). LT also 

predicted the likelihood of a K-complex occurring, with infants that score high on LT (more sensitive to 

sensory stimulation) having a lower likelihood of K-complexes, irrespective of the presence or absence 

of stimulation (Est. = -5.35, p = 0.035; see fig 5.10B). There was no interaction effect of LT and the 
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OFF/ON window (Est. = 3.02, p = 0.544). The results did not change when autism-likelihood was added 

as a covariate. 

 

 

Figure 5.10 K-complex likelihood results. A. K-complexes increase significantly in response to stimulation. B. 

Association between K-complex likelihood and low threshold; higher LT values correspond to higher sensory 

sensitivity. 

Sleep spindle likelihood 

Sleep spindle likelihood did not differ significantly in windows with (ON) or without (OFF) stimulation 

(Est = -0.91, p=0.313; see fig 5.11A). LT did not have a significant effect on sleep spindle likelihood (Est. 

= 3.69, p = 0.153; see fig. 5.11B), nor did the interaction between LT and OFF/ON windows (Est. = -

0.23, p = 0.927). The results did not change when autism-likelihood was added as a covariate.  

To summarise, after an auditory stimulus, the power of oscillations in the lower end of the spectrum 

(theta and delta range) increases compared to before the stimulus. This is likely due to evoked K-

complexes. Indeed, the likelihood of a detected K-complex is higher after the stimulus than before. The 

likelihood of a K-complex occurring is significantly lower in infants that score high on LT, but is not 

related to whether a stimulus was presented. Although there was a significant decrease in the sigma 

range in the window after stimulation compared to before, this was not reflected in detected sleep 

spindles. There was no significant decrease in sleep spindle likelihood after stimulation, nor did LT 

predict the likelihood of a sleep spindle occurring. 
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Figure 5.11 Sleep spindle likelihood results. A. Sleep spindle likelihood (%) before (OFF) and after (ON) 

stimulation is not significantly different. B. Sleep spindle likelihood is not significantly associated with an 

infant’s low threshold score. 

5.4 Pre-registered analyses: comparison of the Baseline vs. Stimulation naps 

The second part of these analyses are pre-registered on the Open Science Framework (see link). A few 

changes were made to the pre-registered analyses. First, sex and age were added to all models as 

covariates. Second, all analyses with sleep spindles were performed in N2 only rather than in the 

combination of N2 and N3, because very few spindles were detected in N3. Using N2/N3 would have 

therefore reflected the proportions of N2/N3 for the variable sleep spindle density rather than how 

closely sleep spindles were spaced in time. Other deviations to the preregistration will be highlighted 

throughout. To justify regions of interest, some preliminary descriptive analyses were performed on 

the first 14 recordings.   

5.4.1 Methods 

5.4.1.1 Measures 

5.4.1.1.1 Spindle detection 

Sleep spindles were detected in channels F3, Fz, F4, FC1, FC2, C3, Cz, C4. The region of interest was 

based on topography of sleep spindle activity in 5-6-months-old infants (Sokoloff et al., 2021). 

https://osf.io/34r26/
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Topography plots in the pilot sample confirmed a similar topography in our sample of 8-11 month old 

infants (see Appendix D Fig. A.1). Automatic sleep spindle detection was performed as described in 

Chapter 4. We chose not to separate slow and fast spindles, because previous literature suggests two 

separate frequency peaks emerge from 18 months onwards, but are indistinguishable before that 

(Kwon et al., 2023). Preliminary analysis of 14 recordings confirmed that there was no markedly 

different topography of slow (9-13 Hz) and fast (13-16 Hz) sigma power across N2 and N3 (Appendix D 

Fig. A.2). Nor did we see two distinct sigma peaks in the individual power spectrum densities of F-, C- 

and P-channels (Appendix D. Fig. A.3). The YASA algorithm detects spindles based on three additional 

thresholds: Root mean square (rms), Relative power and correlation. The choice of these thresholds 

differs slightly from the pre-registration, as a more meticulous threshold determination was performed 

on a larger sample (see Chapter 4). The thresholds were set as follows: rms = 1.275, relative power = 

0.13, correlation = 0.52. 

5.4.1.1.2 Sigma power 

In addition to sleep spindle density, sigma power (9-16 Hz) was in calculated in N2. Absolute power 

was calculated using Welch’s method and a Hann window with a length of 4 sec. Median sigma activity 

was calculated in the same channels of interest as sleep spindles.   

5.4.1.1.3 Slow wave activity 

Slow waves are measured as slow wave activity in sleep stage N3, when slow waves are most 

prominent. A frequency band of 0.5-2 Hz was used. The absolute power spectral density was calculated 

using Welch’s method and a Hann window with a length of 4 sec. The median was used when averaging 

periodograms. Next, SWA was averaged, using the median, across the following electrodes: F3, Fz, F4, 

FC1, FC2, C3, Cz, C4, O1, Oz and O2. This region of interest was selected based on Sokoloff et al. (2021), 

and confirmed in the subset of recordings (see Appendix D Fig. A.1).  

5.4.1.1.4 Arousals and EEG activation 

Arousals are measured in two ways, a discrete measure – arousal density (i.e. number of arousal 

divided by the time asleep) and a continuous measure of arousal – the activation index (AI). The latter 

was not pre-registered and added as an exploratory analysis.  

Arousals were visually identified based on guidelines from the International Paediatric Work Group On 

Arousals (The International Paediatric Work Group On Arousals, 2005) and The Pediatric Task Force 

(Grigg-Damberger Madeleine et al., 2007). An arousal is scored if a change in activity lasts for more 

than 3 seconds, provided that baseline sleep has been established for at least 30 seconds prior to the 

arousal. To count as separate events, arousals have to be spaced by at least 10 seconds. An arousal can 
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lead to an awakening if it lasts for more than 30 seconds. Thus, the total number of arousals during 

sleep also incorporates the number of awakenings, as an awakening is an extension of an arousal. 

The paediatric workgroup further divides arousals in subcortical arousals or cortical arousals, however 

both are combined in this study because differences in arousal thresholds are not the focus of this 

study. Due to the absence of equipment measuring heart rate or breathing patterns, an arousal was 

defined when two of the following criteria were present: 

• A gross body movement detected by movement sensors or seen as movement artefacts in the 

somatic channels (ECG, EEG, respiratory parameters) or by observation. 

• An increase in chin EMG amplitude, unless associated with sucking, that was not previously 

present. 

Or for cortical arousals 

• Abrupt change in EEG background frequency (of at least 1 Hz) for a min of 3 sec 

Arousal density was measured as the total number of arousals (subcortical and cortical) divided by 

total sleep period (sleep onset – sleep offset) without arousal time. Arousals were excluded if they 

were caused by a known external factor, other than the auditory stimulation, such as the caregiver 

moving the baby. Arousals were not scored in 10 recordings, due to bad quality chin electrodes. 

The second measure is the activation index (AI), which was calculated as the logarithm (base 10) of the 

power in the beta range (18-30 Hz) divided by the power in the delta range (0.5-4 Hz). This measure is 

based on two recent papers, one in mice (Cardis et al., 2021) and one in humans (Lecci et al., 2020). 

Because infants manifest slower rhythms than adults, the lower bound of the delta range was set at 

0.5 instead of 1 Hz as in Lecci et al.’s study. Similar to Lecci et al., the AI was calculated in N2 and N3 

separately. Visually detected arousals were excluded due to the interference of movement artefacts. 

Lecci et al. found a maximum effect of at Cz, which we therefore also used. The bandpower was 

calculated using the Welch method with a Hanning window and median as average across windows. 

Regarding the interpretation of the AI: recall that the logarithm of a division is equivalent to the 

subtraction of the log of the denominator from the log of the numerator (see equation 5.3). Delta 

power tends to have larger values than beta power, and the resulting AI will therefore be a negative 

value. The smaller the difference between beta and delta power, and thus the smaller the absolute 

value of AI, the more ‘aroused’ the brain is, as a large amount of beta compared to delta is assumed 

to represent a more awake brain. The larger the difference between beta and delta power, and thus 

the more negative the AI, the more ‘asleep’ the brain is assumed to be.  
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Equation 5.3 Activation index. 

𝑙𝑜𝑔10
𝑏𝑒𝑡𝑎

𝑑𝑒𝑙𝑡𝑎
  = 𝑙𝑜𝑔10(𝑏𝑒𝑡𝑎) −  𝑙𝑜𝑔10(𝑑𝑒𝑙𝑡𝑎) 

5.4.1.2 Statistical approach 

Similar to the statistical approach of the time-locked analyses, stimulation is characterised as a binary 

variable. In this part, the stimulation is represented by the absence or presence of auditory stimulation 

across a whole nap.  

Analysis steps and model specification 

As a first step, the distribution of the variables was checked for the presence of outliers. Similar to the 

previous chapters, outliers were defined as any value that had a z-score above 3. Any outlier above 4 

SD was Winsorized. Values between 3 and 4 SD were visually checked on a scatterplot in relation to 

other variables. See Appendix G for a table with all datapoints that were above 3 SD. As a result, two 

values for sleep spindle density in N2 (1 EL, 1 TL), one value for median sleep spindle frequency (TL) 

and one value for arousal density (TL) were Winsorized. 

The main analyses focus on sleep micro-architecture and are split into two parts, variables related to 

sleep protection and to sleep disruption. Before the main analyses, preliminary analyses were run to 

see whether stimulation affected sleep macro-architecture. A simple mixed model was run to assess 

the effects of condition on sleep macro-architecture whilst accounting for within-person effects (see 

equation 5.4). Separate models were run for nap duration and sleep stage distribution. The latter is 

the proportion of the nap spent in each sleep stage. Although the pre-registration states that a GMM 

with a logit link function and quasi-binomial distribution would be used (because it is a proportion 

variable), using a quasi-binomial distribution was possible in R-package lmerTest only for generalized 

linear models. Therefore a LMM was run for sleep stage proportion, but that resulted in a ‘singular fit’. 

A singular model fit happens when the random effect variance is close to zero. This means that there 

is no person-specific variance in the proportion of sleep stages. A generalized linear model was 

eventually run with a logit link function and quasi-binomial distribution. For nap duration a LMM was 

run. Contrary to the pre-registration, analysis with wake after sleep onset (WASO) as an outcome 

variable was not included, because 65% of the recordings did not have wake periods during the nap. 
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Equation 5.4 Linear mixed effect model to test differences in macro-architecture variables (y). 

𝑦 ~ 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 +  (1|𝑠𝑢𝑏𝑗𝑒𝑐𝑡) 

 

For the main analyses, LMM were run separately for all outcome variables of interest: SWA, sleep 

spindle density and arousal density. Given the increased interest in the literature, we will also report 

on the activation index.  Studies often also report on other spindle characteristics such as sleep spindle 

duration, frequency and absolute power; these were added as exploratory analyses. Based on the 

results from the time-locked analyses, which showed a decrease in sigma activity after stimulation, 

sigma power was also added as an outcome variable as exploratory analysis. The fixed effects were 

nap condition (baseline = 0; stimulation = 1), LT, sex and age. In the pre-registered analyses, sex was to 

be included only if the preliminary analysis indicated significant sex differences based on a t-test. 

However, we decided to err on the side of caution and add sex to all models, as some variables showed 

marginally significant differences between sexes. In the model with arousal density as an outcome 

variable, sleep position (whether the infant was sleeping on the caregiver or alone) was added as 

control variable. In all models, participants were added as a random intercept. First the models were 

run with the main effects only (Equation 5.5a), then the interaction effect between condition and LT 

was added (equation 5.5b). Estimates and significance values for the main effects were taken from the 

first model, while those for the interaction effect was taken from the second. As a sensitivity check, 

autism likelihood status was added as a control variable to the models (See equations 5.6a and 5.6b), 

instead of removing EL-ASD participants as pre-registered. The former approach was preferred over 

the latter, to maximise sample size. Although not all continuous outcome variables were normally 

distributed, LMMs were used because they are fairly robust to non-normality (Schielzeth et al., 2020). 

 

Equation 5.5 Linear Mixed Effect Model. Base model includes the main effects (1), interaction model includes the interaction 

term (2). y = sleep variable of interest, LT = Low Threshold 

𝑦 ~ 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 + 𝐿𝑇 + 𝑆𝑒𝑥 + 𝐴𝑔𝑒 + (1|𝑠𝑢𝑏𝑗𝑒𝑐𝑡)   (a) 

𝑦 ~ 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 + 𝐿𝑇 + 𝑆𝑒𝑥 + 𝐴𝑔𝑒 +  𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 ∗ 𝑳𝑻 +  (1|𝑠𝑢𝑏𝑗𝑒𝑐𝑡)   (b) 

Equation 5.6 Sensitivity analyses. ASD-likelihood status is added to the base model (1)  as well as the interaction model (2). 

𝑦 ~ 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 + 𝐿𝑇 + 𝑆𝑒𝑥 + 𝐴𝑔𝑒 +  𝑨𝑺𝑫𝒍𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅 +  (1|𝑠𝑢𝑏𝑗𝑒𝑐𝑡)   (a) 

𝑦 ~ 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 + 𝐿𝑇 + 𝑆𝑒𝑥 + 𝐴𝑔𝑒 + 𝑨𝑺𝑫𝒍𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅 +  𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ∗ 𝐿𝑇 +  (1|𝑠𝑢𝑏𝑗𝑒𝑐𝑡)   (b) 
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5.4.2 Results of pre-registered analyses 

Table 5.1 Descriptives per condition. Sleep Onset Latency was measured as the time from the lights off moment 

to the start of first epoch of sleep (including N1). Sleep efficiency is calculated as the total sleep time (N1 + N2 + 

N3 + REM) divided by the duration from the first to last period of sleep. Mean (SD). V = visit; M=male; F=female. 

  Baseline  Stimulation 

N  38 34 
M:F 21:17 17:17 
EL:TL 7:31 7:27 
V1:V2 22:16 19:15 
Age (in days) 303 (34) 300 (32) 
Sleep Macro-architecture   
Sleep onset latency (min) 10.3 (6.6) 11.5 (7.2) 
Nap duration (min) 62.2 (23.5) 50.9 (16.7) 
Wake After Sleep Onset (min) 0.9 (1.6) 0.6 (1.6) 
Sleep efficiency (%) 96.9 (3.7) 97.5 (3.1) 
Sleep stages    

N1 (min) 12.1 (9.7) 10.0 (4.6) 
N2 (min) 21.5 (11.4) 17.1 (10.4) 
N3 (min) 20.8 (9.1) 20.8 (8.4) 

REM (min) 5.8 (6.7) 4.1 (5.9) 
 

A total 41 participants and 71 nap recordings contributed to at least one of the analyses. The exact 

sample sizes are stated per analysis. Sex, autism likelihood status, visit and age were not significantly 

different in the two conditions (See table 5.1). All outcome measures, except sleep spindle density and 

- power, showed high within-person stability across the two naps (r > 0.5, table 5.2).  

Table 5.2 Pearson correlations between repeated measures. AI = Activation index, SWA = Slow wave activity 

  Pearson's r p-value 

Arousal density 0.541 0.004 

AI N2 0.753 <0.001 

AI N3 0.624 <0.001 

SWA N3 0.842 <0.001 

Sleep spindles N2   

density 0.095 0.674 

 abs power 0.378 0.083 

frequency 0.896 <0.001 

duration 0.723 <0.001 
 

5.4.2.1 Macro-architecture 

On average, infants slept 60.2 ± 23.5 min in the baseline condition and 50.9 ± 16.7 min in the 

stimulation condition (Fig. 5.12B). Stimulation significantly affected the duration of the nap, so that 

infants napped shorter in the stimulation compared to baseline condition (Est. = -11.7, p = 0.018). As 
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expected, there was a significant effect of sleep stage on the proportion of time in the nap (Est. = -

0.17, p < 0.001), indicating that different sleep stages had varying proportions of the nap. There was 

no significant interaction effect between condition and the proportion of sleep stages (Est. = -0.04, p 

= 0.705, Fig 5.12A), meaning that the distribution of sleep stages was not significantly different 

between the baseline and stimulation nap. 

 

Figure 5.12 Differences in sleep macro-architecture between the baseline (green) and stimulation (purple) nap. 

A. Percentage of the nap spent in each sleep stage. There were no significant differences in sleep stage 

proportions across the two naps. B. The duration of the naps. Infants spent significantly less time asleep in the 

stimulation nap compared to the baseline nap (p=0.018). 

5.4.2.2 Sleep protection 

SWA 

The power of the slow waves in N3 was not significantly different between the baseline and stimulation 

nap. (Est. = -61, p = 0.449, see fig. 5.13A). LT scores significantly predicted SWA, irrespective of the 

condition, such that higher LT scores associated with lower SWA (Est.= -629, p = 0.029, see fig. 5.13B). 

However, there was no significant interaction effect between LT and condition (Est. = -18, p = 0.930), 

indicating that infants that score higher on LT tend to have lower SWA, regardless of the sensory 

environment. See results summarized in table 5.3. Results remained similar when controlling for 

autism likelihood status.  
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Table 5.3 Results from linear mixed effect model with slow wave activity (SWA) as the outcome variable. SE = 

Standard Error; LT = Low Threshold. Number of recordings = 58, Number of participants= 35. 

Predictors Estimate SE t p 

Condition -60.94 79.20 -0.769 0.449 

LT -628.62 276.15 -2.276 0.029* 

Sex (0=M, 1=F) -362.30 216.70 -1.672 0.103 

Age 1.635 2.77 0.589 0.558 

LT*Condition -18.15 203.49 -0.089 0.930 

 

Figure 5.13 A. Slow Wave Activity (SWA) in baseline (B) and stimulation (S) conditions in sleep stage N3. B. 

Association between SWA and low threshold. 

Sleep spindle features  

Sleep spindle density in N2 was not significantly different between the baseline and stimulation nap 

(Est. = -0.19, p = 0.308). There was no significant main effect of LT on sleep spindle density (Est. = 0.44, 

p = 0.100). However, when there was stimulation, infants that scored higher on LT, showed a reduction 

in sleep spindle density compared to the baseline nap (Est. = -1.27, p = 0.004, see fig 5.14A). Adding 

autism likelihood status to the model did not change the results. To confirm whether these differences 

are also reflects in sigma power and given the significant decrease in sigma power after stimulation 

(See section 5.3.2.2), we ran an exploratory analysis on sigma power in N2. There was no significant 

difference in sigma power between the baseline and stimulation nap (Est. = 0.89, p = 0.583), nor was 
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there a significant main effect of LT on sigma power (Est. = 1.15, p = 0.623). In contrast to sleep spindle 

density, there was no significant interaction effect between nap condition and LT scores Est. = -3.22, p 

= 0.436). The results remained similar, when autism likelihood status was added to the model.  Results 

of both models summarised in table 5.4 

Table 5.4 Results from linear mixed effect models with sleep spindle density and sigma activity in sleep stage 

N2 as the outcome variable. For sleep spindle density there were 57 recordings of 35 participants. For Sigma 

activity there were 58 nap recordings from 35 different participants. SE = Standard Error; Est = Estimate; LT = 

Low Threshold. 

 Sleep spindle density  Sigma activity 

Predictors Est. SE t p Est. SE t p 

Condition -0.189 0.182 -1.039 0.308 0.890 1.605 0.554 0.583 

LT 0.439 0.258 1.701 0.100 1.150 2.317 0.496 0.623 

Sex (0=M, 1=F) 0.237 0.204 1.158 0.257 0.591 1.830 0.323 0.749 

Age 0.003 0.003 0.791 0.434 0.024 0.030 0.802 0.427 

LT*Condition -1.267 0.394 3.218 0.004 -3.219 4.083 -0.788 0.436 

 

As additional exploratory analyses, three more models were run with sleep spindle frequency, duration 

and absolute power as outcome variables (see table 5.5). The condition had a significant effect on 

sleep spindle frequency, with lower frequency sleep spindles in the stimulation condition (Est. = -0.11, 

p = 0.050), but not on the duration (Est. = 0.01, p = 0.806) or power (Est. = 0.08, p=0.241). LT did not 

significantly predict any of the sleep spindle features (frequency: Est. = -0.03, p = 0.922; duration: Est. 

0.11, p = 0.087; power: Est.< -0.01, p = 0.987). However, the interaction between LT and condition was 

significant for sleep spindle duration (Est.= -0.15, p=0.017, see fig 5.14B). Individuals with high scores 

on LT had significantly shorter sleep spindles during the stimulation nap compared to the baseline nap. 

This finding is in line with what was reported for sleep spindle density as density and median sleep 

spindle duration are inversely correlated (r = 0.714, p < 0.001). All results were similar after controlling 

for autism likelihood. 
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Table 5.5 Results from linear mixed effect models with Sleep spindle frequency, duration and absolute power in 

sleep stage N2 as the outcome variables. Number of recordings = 57, Number of participants= 35. SE = 

Standard Error; LT = Low Threshold. 

 Frequency Duration Absolute power 

Predictors Estimate p Estimate p Estimate p 

Condition -0.114 0.050* 0.006 0.806 0.083 0.241 

LT -0.025 0.922 0.110 0.087 -0.002 0.987 

Sex (0=M, 1=F) 0.403 0.048* 0.061 0.221 0.128 0.139 

Age -0.001 0.5503 -0.0002 0.743 0.002 0.274 

LT*Condition 0.000 0.559 -0.147 0.017* -0.174 0.326 

 

Figure 5.14 Interaction between sleep spindle features and condition. A. Sleep spindle density and low threshold. 

B. Median sleep spindle duration and low threshold.  

5.4.2.3 Sleep disruption 

Arousal density  

There was no significant effect of condition on arousal density (Est. = 0.002, p = 0.837). Neither was 

there a significant effect of LT (-0.003, p = 0.929), nor of the interaction between LT and condition (Est. 

= -0.001, p = 0.973). Results remained similar after controlling for autism likelihood. Results are 

summarised in table 5.6. 
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Table 5.6 Results from the linear mixed effect model with arousal density as the outcome variable. Number of 

recordings = 56; Number of participants = 36. SE = Standard Error; LT = Low Threshold. 

Predictors Estimate SE t p 

Condition 0.002 0.011 0.208 0.837 

LT -0.003 0.029 0.090 0.929 

Sex (0=M, 1=F) 0.001 0.022 0.050 0.960 

Age 0.000 0.000 -0.282 0.779 

Sleep position 0.023 0.002 -1.207 0.233 

LT*Condition -0.001 0.031 -0.034 0.973 

 

Activation index 

There is no difference in the AI between the baseline and stimulation nap in N2 (Est. = -0.03, p=0.407) 

or N3 (Est. = 0.04, p=0.259). LT is significantly and positively associated with the AI in N3 (Est. = 0.16, 

p=0.014, see fig. 5.15), but not in N2 (Est. = 0.117, p=0.117). A higher score on LT is therefore associated 

with a higher AI, meaning that individuals that are more disturbed by sensory input tend to have a 

more active EEG signal during N3. There was no significant interaction effect between the nap 

condition and LT on the AI, neither in N2 (Est. = -0.08, p = 0.339), nor in N3 (Est. = 0.08, p = 0.330). 

Controlling for autism likelihood status did not change the results. Results are summarised in table 5.7 

for both the AI in N2 and the AI in N3. 

Table 5.7 Results from the linear mixed effect models with the activation index (AI) in N2 and N3 as the outcome 

variables. Number of recordings = 53; Number of participants = 35. SE = Standard Error; LT = Low Threshold. 

 AI N2  AI N3 

Predictors Est. SE t p Est. SE t p 

Condition -0.027 0.032 -0.846 0.407 0.039 0.034 1.163 0.259 

LT 0.117 0.072 1.610 0.117 0.163 0.062 2.620 0.014 

Sex (0=M, 1=F) 0.119 0.060 1.986 0.055 0.151 0.052 2.935 0.007 

Age 0.001 0.001 1.153 0.255 0.001 0.001 0.672 0.506 

LT*Condition -0.078 0.080 -0.978 0.339 0.083 0.083 0.997 0.330 
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Figure 5.15 Association between Activation index in N3 and low threshold 

To summarise, higher scores on LT, meaning higher sensory sensitivity, significantly associate with 

lower SWA and higher AI (but not the number of arousals), irrespective of the nap condition. Higher 

scores on LT also associate with overall lower frequency of K-complexes, throughout the Stimulation 

nap. There is no significant main effect of LT on any of the sleep spindle parameters. However, when 

there is stimulation, sleep spindle density and duration decreased significantly compared to baseline, 

but only in individuals with higher scores on LT.  

5.5 Discussion 

First, this study shows that 8-11-month-old infants process and react to auditory input during sleep, 

even without the presence of behavioural awakenings. Immediately after a stimulus was presented, 

TFR analysis showed that activity in the lower end of the frequency spectrum, in the theta and delta 

range, was increased in sleep stage N2. This likely results from the increased production of evoked K-

complexes, which I show were increased after stimulation. Besides altered delta activity after a 

stimulus, TFR analysis also showed sigma activity was subsequently decreased. However, we did not 

find a significant decrease in individual sleep spindle occurrence corresponding with the sigma 

decrease.    

Second, the aim of this study was to explore whether an infant’s LT score, a subjective measure of an 

infant’s behavioural and affective responsivity to sensory input, is associated with sleep protective and 

sleep disruptive markers and whether the presence of sensory input specifically affects infants with 

high scores on LT. In terms of sleep protective elements, we found that SWA in N3 and K-complexes in 

N2 were lower in infants with higher LT scores, irrespective of the sensory environment. When there 
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was auditory stimulation during a nap, sleep spindle density and duration decreased, but only in 

infants with higher scores on LT. For sleep disruptive markers, the AI, a measure of EEG activation, was 

increased in infants with higher LT scores, independent of the presence of sensory input. However, the 

number of micro-arousals was not. 

5.5.1 Higher LT scores associate with lower spontaneous SWA and K-complexes  

We find that infants with heightened sensory reactivity tend to have less slow wave occurrence and 

activity. One possibility is that slow wave production is altered because sensitive infants are more 

disturbed by sensory input during sleep. However, our findings do not support this potential 

mechanism, as slow waves were lower irrespective of the presence or absence of sensory input. Below 

we will explore what other mechanisms could explain this link between slow wave sleep and sensory 

profiles. 

Situation of the findings in the literature  

In line with these findings, Arazi et al. (2020) reported a decrease in SWA in autistic children compared 

to non-autistic children age 2-8-years-old. Their study revealed a difference in the first hours of the 

night, which disappears as sleep pressure dissipates towards the end of the night, similar to Lambert 

et al. (2016) that find a reduction of SW sleep in autistic children. Nguyen et al. (2022) did not find a 

difference in SWA in autistic and non-autistic 9-16 year-olds, however they did find more externalizing 

behaviours associated with lower SWA in the non-autistic children. Externalizing behaviours were 

extracted from the Child behaviour checklist (CBCL) and include aggressive behaviours, rule-breaking 

and conduct problems. Possibly, these types of behaviours share similar characteristics with 

behaviours evaluated in the sensory profile 2, which often draw upon behavioural and affective 

reactivity to the environment (e.g. Q54. ‘My child becomes so upset in a new setting that it’s hard to 

calm down’).  

That spontaneous K-complexes are reduced in infants with higher scores on LT aligns with a study on 

older children (ages 6-13) that reported fewer K-complexes in autistic children than non-autistic 

children (Lambert et al., 2016). However, we did not replicate findings in adults, that suggest subjective 

noise sensitivity is related to evoked K-complexes to sound (Lechat et al., 2021). This could be because 

Lechat et al. focussed on noise-specific sensitivity, whereas LT captures a broader sensory profile. 

Additionally, the immaturity of K-complexes in infancy could have made K-complex detection less 

sensitive. 

Our findings in infants largely seem to align with existing literature comparing SWA and K-complex 

occurrence in autistic and non-autistic children, as well as the association with daytime behaviours, 

rather than autism diagnosis. However, we provide further insight into what aspects of the autism 
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phenotype are associated with sleep micro-architecture by showing a particular association with a 

parent-reported measure of sensory processing. There are several possibilities for why SWA and LT 

may be associated. Either SWA drives LT, LT drives SWA, SWA and LT co-occur because both are caused 

by a common underlying mechanism or a combination of all three. Below, I discuss potential 

mechanisms that link SWs and LT.   

How could this be related to sensory processing differences?  

As outlined in Chapter 1 section 1.1.2, SWA partly reflects sleep pressure, with increased SWA during 

a recovery night after sleep deprivation and its gradual dissipation over the course of the night (Dijk et 

al., 1987, 1990; Esser et al., 2007; Pappenheimer et al., 1975). According to the Synaptic Homeostasis 

Hypothesis (SHY; See Chapter 1 section 1.1.2), SWA depends on and drives healthy synaptic 

functioning. Disrupted synaptic plasticity has been proposed as a potential cause of autism (Bourgeron, 

2015; Guang et al., 2018), and recent research suggest that synaptic dysfunction may drive both sleep 

difficulties and other symptoms of autism, positioning sleep difficulties as a core symptom of autism 

(Doldur-Balli et al., 2022; Missig et al., 2020). Doldur-Balli et al. (2022) propose a model (See fig 5.16) 

where synaptic dysfunction leads to sleep difficulties and autism symptoms, but in which sleep, 

especially early in development, also impacts synaptic functioning (the latter is discussed below in 

more detail). In their model, sleep and autism symptoms also have a bidirectional relationship. The 

relationship between SWA and LT could be explained by this model where synaptic dysfunction drives 

lower SWA as well as increased reactivity to sensory input during wakefulness. While the relationship 

between synaptic functioning and SWs has been widely studied and modelled, how exactly synaptic 

dysfunction would lead to high scores on LT is less straightforward and likely complex. However, that 

synaptic plasticity could influence sensory processing in autism has been proposed before (Hansel, 

2019). Other symptoms of autism besides sensory processing differences could also be affected by 

synaptic dysfunction, but one study in a similar cohort as ours show a particular link for sensory 

behaviours. The study finds that lower functional connectivity, a potential consequence of synaptic 

dysfunction, is correlated with more restrictive and repetitive behaviours (RRBs), but not social affect 

(O’Reilly et al., 2023). This study was run in a large sample of infants at EL and TL for autism, age 12 

months. As RRBs and sensory processing differences often co-occur (Wigham et al., 2015), it is possible 

that underconnectivity drives lower SWA in infants with higher scores on LT. A common underlying 

mechanism such as synaptic dysfunction, could provide a transdiagnostic explanation of why other 

(neurodevelopmental) conditions have a high prevalence of sleep difficulties (Chawner et al., 2023) 

and potentially sensory differences.  
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Figure 5.16 Pathway from synaptic dysfunction to sleep difficulties and autism symptoms. Figure from Doldur-

Bali et al. (2022) 

Besides a common underlying mechanism, it is also possible that reduced SWA drives high scores on 

LT. If SWA is necessary for synaptic pruning and rebalancing synaptic strength as suggested by the SHY, 

then it is plausible that lower SWA could impact sensory processing in both the short- and long-term.  

In the short-term, one night of sleep deprivation has been shown to induce increased reactivity in the 

somatosensory cortex and decreased sensory gating responses the next day (Krause et al., 2019; Zhang 

et al., 2019). However, whether this is due to a reduction in SWS particularly is unclear, as these studies 

looked at total sleep deprivation rather than SW deprivation.   

If SWA remains low consistently over many nights, it could have lasting effects on sensory processing 

in the long run. Ringli & Huber draw a link between developmental changes in SWA topography, 

cortical maturation, reflected by synaptic pruning, and behavioural development. For example, 

synaptic pruning intensifies in the prefrontal cortex during puberty, paralleled by improvements in 

executive functioning and a shift of the topography of SWA from central to frontal regions. Similarly, in 

the first year of life, maximum SWA is located occipitally, whilst at the same time synaptic density in 

the visual cortex decreases and visual skills are developing. If SWA would be reduced over a prolonged 

period, this could potentially disrupt brain and behaviour development. However, findings on SWA in 

early development and the effects on later behavioural outcomes are mixed. For example, a positive 

concurrent association between SWA and psychomotor development was found in 8-month-olds 

(Satomaa et al., 2020), but the frontal/occipital ratio of SWA at 6 months had no predictive power on 

concurrent or later gross motor and social development (Beaugrand et al., 2023). In conclusion, 

reduced SWA may lead to short- and long-term effects on sensory processing, however more research, 

e.g. using targeted SW deprivation, is needed to confirm this relationship. 

Lastly, high scores on LT may drive a decrease in SWA. From the results of this study it seems unlikely 

that SWA is altered due to increased sensory processing during sleep in infants with high scores on LT. 

Also the idea that SWA would be reduced, because infants with high LT scores are more reactive to 
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sensory input during wakefulness seems counterintuitive. In fact, the opposite might be expected. If 

changes in SWA depend on awake learning experiences, then more awareness and reactivity to 

sensory input would result in increased SWA. Previous research has shown that the amount of sensory 

input received does indeed increase SWA. Sensory stimulation of one hand before sleep results in an 

increase of SWA in the opposite hemisphere in the somatosensory area while immobilization led to a 

decrease in SWA (Kattler et al., 1994; Vyazovskiy et al., 2000). Although in this study we did not 

investigate topographical effects, an increase in global SWA rather than decrease would be expected 

in highly reactive infants if high scores on LT were driving SWA.  

In summary, our findings suggest that SWA and LT scores are associated, but likely not because SW 

production during sleep is altered by sensory input in more sensitive infants. It may be that a common 

underlying mechanism drives both, such as synaptic dysfunction. Alternatively, altered SW production 

may increase long- and short-term sensory atypicalities, and potentially other features of autism, such 

as language learning difficulties (Fletcher et al., 2020). A potential link with learning will be discussed 

in more detail in Chapter 6. 

5.5.2 Arousibility 

While neither the number of arousals nor activation index increased in the stimulation nap compared 

to the baseline nap, the activation index did associate with LT scores, such that higher LT scores 

predicted higher activation indices in N3. This indicates that infants with high LT scores had higher 

cortical ‘activation’, regardless of presence or absence of sensory input. It is possible that individuals 

with sensory atypicalities have higher levels of subthreshold arousal activity, that not necessarily 

results in detectable arousals. However, these higher levels of cortical activation could still affect 

subjective rating of sleep, as demonstrated by Lecci et al. (2020). Alternatively, the association 

between AI and LT is driven by the lower SWA in infants with high LT scores, as the AI is calculated as 

the ratio of beta activity over SWA. While AI and SWA are correlated (r = -0.45*** in N3 and r = -

0.33*** in N2), this is only a medium effect size association, suggesting that they may still 

independently be predicted by LT. 

5.5.3 Do sleep spindles decrease in the face of noise?  

The results of the sigma and sleep spindles analyses are less coherent compared to those for SWA and 

K-complexes. We observed a significant decrease of activity in the sigma range after stimulation, which 

we expected to coincide with a decrease is sleep spindle likelihood. However, automated detection of 

sleep spindles did not show a significant decrease in sleep spindle likelihood in the stimulus OFF 

compared to stimulus ON window. The reduction of sigma power after stimulation, but not the number 

of sleep spindles, may be because stimulation disrupts ongoing sleep spindles, but does not reduce 
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their occurrence. Sela et al. (2016) found that stimulation, both salient and non-salient, tends to 

terminate ongoing sleep spindles prematurely. Similarly in humans, Rudzik et al. (2018) found that 

transportation noise does not effect spindle density, but rather that duration and amplitude of the 

spindles decrease when comparing a noisy vs silent night sleep. In young infants, sigma activity also 

decreases during startles and sighs (Wulbrand et al., 1998). The authors suggest that a decrease in 

spindle activity could serve as a marker for brainstem arousal. This could explain why we do not 

observe a significant difference in the number of sleep spindles before and after stimulation here, but 

rather see a decrease in power,  perhaps due to the shorter duration of sleep spindles in the stimulus 

ON period.  

In the context of the sleep spindle gating theory, our findings suggest that stimulation disrupts sleep 

spindles, or at least sigma activity, rather than actively upregulating sleep spindle production. These 

findings are not in agreement with studies that find that sleep spindles are actively upregulated in 

response to sensory input (Ameen et al., 2022; Sato et al., 2007). While it remains possible that 

spindles protect sleep by interrupting sensory input, we did not specifically investigate the effects of 

the timing of stimulus presentation (during or sleep spindle evens or not) on further sensory 

processing or arousal probability in this study. 

Despite the observed decrease in sigma activity after stimulation, there was no significant effect of 

stimulation on overall sigma activity during the entire N2 period, as sigma activity was not significantly 

lower in N2 of the stimulation nap compared to the baseline nap. This suggests that the decrease in 

sigma activity was short and transient, without a lasting impact on further sleep spindle production.  

When comparing the baseline to stimulation nap, we found that sleep spindle density and duration 

decrease in the stimulation nap, but only in infants with high scores on LT. Surprisingly, when inspecting 

the results visually, infants with high LT scores tend to have higher sleep spindle density and duration 

during the baseline nap, which then decreases in the stimulation nap, though not falling below other 

infants with lower LT scores. It is important to note that there is no significant positive association 

between LT and sleep spindle density or duration, however, p-values are close to significant in both 

cases (sleep spindle density: p=0.100, sleep spindle duration: p =  0.087). One possibility is that for 

those infants that have more and longer sleep spindles the chance that the stimulation coincides with 

a sleep spindle, and possibly disrupting it, is higher. To confirm this, a follow-up study should be 

conducted with more frequent stimulation that targets sleep spindles.  

For the time-locked analyses we did not look at other sleep spindle characteristics, such as duration, 

because of the low numbers of detected sleep spindles in such short time windows. Thirteen of the 31 

stimulation recordings did not have a single detected sleep spindle in either the ON of OFF window. 
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This left us with only 18 recordings, some of which had low numbers of sleep spindles, which 

jeopardizes the reliability of the estimates of average sleep spindle characteristics.  

Sleep spindle duration and low threshold  

A handful of studies looked at differences in sleep spindle duration between autistic and non-autistic 

individuals and found either no difference (Fletcher et al., 2020; Mylonas et al., 2022) or shorter sleep 

spindles in autistic individuals (Farmer et al., 2018). In contrast, in this study we found a marginal 

association of longer sleep spindle duration, rather than shorter, with high LT scores. However, it is 

important to consider that sleep spindle duration changes dynamically with age and might therefore 

reflect different functions or processes at different ages. The aforementioned studies focussed on 

children older than 2 years, which may explain the different findings. In the age range of this study, 

sleep spindles duration may be more variable depending on an infant’s developmental trajectory. As 

described in Chapter 4, early sleep spindles tend to be longer, likely reflecting an immature thalamo-

cortical circuit. In particular, inhibitory cortical input to thalamocortical networks is essential for the 

termination – and as a consequence the duration - of sleep spindles (Bartho et al., 2014). Changes in 

sleep spindle characteristics, such as the long duration, have been suggested to reflect the shift in 

GABA-ergic functioning from excitatory to inhibitory that happens in the first year of life (Chegodaev 

et al., 2022; Peerboom & Wierenga, 2021). Animal studies show that alterations in the timing of the 

postnatal GABA shift, have effects on behavioural outcomes later in life, both accelerated and delayed 

GABA shifts. Delayed GABA shifts result in reduced social behaviour, increased anxiety, impaired 

sensory sensitivity and long-term memory (Peerboom & Wierenga, 2021). Thus, sleep spindle duration 

in the first year of life could be a marker of the GABA shift, with longer sleep spindles potentially 

reflecting a delayed GABA shift. Within person studies are needed that map the development of sleep 

spindle characteristics over the first year of life in detail. Those developmental trajectories might 

accurately predict behavioural outcomes later in life. Although in this study sleep spindle duration was 

only marginally associated with LT and in the opposite direction than expected based on the studies in 

autistic children, it does highlight that spindle duration would be an interesting feature to investigate 

particularly in the first year of life. 

5.5.3.1 Methodological limitations 

For the interpretation of the sleep spindle results, it is important to address the limitations of the 

automatic sleep spindle detection, which as described in detail in Chapter 4, under-detects sleep 

spindles compared to human visual detection. That sigma decreases after a stimulus, but not sleep 

spindle occurrence, may just be a reflection of the imperfect sleep spindle detection. Additionally, the 

interaction effect of nap condition and LT on sleep spindle density and duration, could be because 

longer sleep spindles are detected more easily, while shorter sleep spindles may not be picked up by 
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the detection algorithm. We would perhaps be more confident in these results if the same interaction 

effect appeared for sigma activity in N2, but that effect, although in the same direction, was far from 

significant (p=0.436).  

Nevertheless, these results highlight the importance of sleep spindle duration as a measure for future 

work in infancy for three reasons. From a methodological standpoint, sleep spindle duration may be a 

more robust measure than sleep spindle density. Sleep spindle density is more reliant on the 

performance of the automated detection algorithm, while sleep spindle duration, even if 

underestimated by the algorithm, is likely affected to the same extent across all the detected sleep 

spindles. From a developmental standpoint, if one is interested in a marker for brain maturation for 

example, sleep spindle duration may be the most reliable of the commonly used sleep spindle features, 

as it is least affected by homeostatic processes (Knoblauch et al., 2003). Sleep spindle density for 

example is well known to decrease after a night of sleep deprivation in adults (Fernandez & Lüthi, 

2020). Sleep spindle duration could therefore be a more reliable individual marker, less reliant on 

previous sleep. Thirdly, in relation to sensory processing during sleep, this measure in particular is 

affected by sensory input in rats (Sela et al., 2016), adults and elderly (Rudzik et al., 2018). Also for  

memory researchers, sleep spindle duration might be of particular interest, as it was found to predict 

the stabilization of new semantic knowledge, whilst sleep spindle density was not (Fletcher et al., 

2020). 

Furthermore, these discrepancies between measures highlights the need to include multiple measures 

for sleep spindle activity in future work. A good practice could be to include more robust measures 

such as sigma activity besides measures that are highly dependent on algorithm performance, like 

sleep spindle occurrence or density. This is of particular importance for studies in populations which 

have atypical sleep spindle features. These analyses show that sleep spindle density and sigma activity, 

which are often used interchangeably in the literature, can give rise to different results, and therefore 

different conclusions. 

5.5.4 Does the type of stimulation matter? 

In this study, pairs of pure tones were played during a nap. While there were clear markers of the 

stimuli being processed (ERPs and TRF analyses), stimulation seemed to have a minimal effect on sleep 

macro-architecture, arousibility or sleep micro-architecture. In adults, the more salient a stimulus is, 

such as emotional tones or unfamiliar voices, the larger the neural response to that stimulation 

(Ameen et al., 2022; Blume et al., 2017). It is possible that more salient stimulation will have a larger 

effect on infant sleep. Blume et al. (2021) investigated the effect of traffic noise on infant sleep across 

the first year of life, using actigraphy at home. Interestingly, they found a decrease in the duration of 
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night-time sleep, but only in infants that did not have an older sibling, which they attribute to an 

adaptation to habitual noise from the sibling. They did not find any effects of traffic noise on night 

awakenings or night-to-night variability in sleep. Similarly, we only found an effect of auditory 

stimulation on nap duration, but not other macro-architecture variables or arousibility. In contrast to 

Blume’s study, infants in this study had an older sibling. However, infants slept in a new environment 

with an EEG cap, compared to in the comfort of their own home wearing only a watch in Blume’s study. 

It is well known that sleepers are more vigilant when they sleep in a new environment (first night 

effect), although this is not as pronounced during infancy (Rebuffat et al., 1994). It is therefore possible 

that in this study, infants, although accustomed to a noisy sibling, were in an increased state of 

vigilance in the lab environment which affected their nap duration.  

5.6 Implications and conclusion 

This study is the first to demonstrate that subjective caregiver reports of an infant’s sensory profile are 

associated with objective measures of sleep depth. This finding is important as it confirms that the 

relationship often observed in the literature between subjective reports of sleep and sensory 

sensitivity is not solely influenced by the caregiver’s profile, as discussed in Chapter 3. Additionally, the 

study validates the reliability of caregivers' assessments of their child's sensory profiles, providing 

empirical support for their use in both clinical and research settings. Furthermore, it highlights the 

potential for using subjective reports to identify infants at risk for sleep difficulties, and could be used 

for early detection and intervention. 

Our findings have implications for sleep practices in infants with and without sensory atypicalities. 

Sensory input, at least simple, non-salient auditory input, is registered by 8-11 month old infants, even 

without causing a behavioural awakening. While auditory stimulation does not significantly impact nap 

macro- or micro-architecture, it does shorten an infant nap. Future studies should explore whether 

salient input has larger effects on a nap. Furthermore, a question that still remains is whether a slightly 

shorter nap has significant impacts on daytime functioning.  

Our findings open new avenues of research for testing the causal links between SWA and sensory 

processing. Recently, new non-invasive methods have been developed to increase SWA through closed 

loop auditory stimulation (Ngo et al., 2013). With this method, SWs are detected online during sleep 

and are ‘hijacked’ by introducing an auditory stimulus in the upstate of the slow wave. This introduces 

a train of slow waves. Targeting the improvement of slow waves could potentially benefit infants with 

sensory sensitivities. Other behavioural methods exist as well to improve slow wave activity, for 

example working memory training increases SWA in children (Pugin et al.,2015). However, it is 

unknown whether these would be effective in individuals with sensory atypicalities. 
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Chapter 6. 

Discussion 
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Accumulating evidence shows that sensory processing differences often associate with sleep 

difficulties (Appleyard et al., 2020; Engel-Yeger & Shochat, 2012; Hartman et al., 2022; Mazurek & 

Petroski, 2015; Tzischinsky et al., 2018b). This may not be surprising, as one of sleep’s defining features 

is that the sleeper is partly unresponsive to sensory input from the environment. Sleep onset and 

maintenance are facilitated by reduced processing of environmental stimuli and an overall reduction 

of brain activity. The former is either achieved by simply avoiding strong external stimulation or by 

effective filtering of irrelevant or redundant sensory information, or a combination of both (Coenen, 

2024). Atypical gating of sensory simulation is common in autism and emerges early in development. 

Infants at elevated likelihood for autism as young as eight months show increased neural responsivity 

to repeated auditory stimulation (Kolesnik et al., 2019) as well as decreased gating of tactile input 

(Piccardi et al., 2021). If an individual does not effectively gate incoming sensory input either in the 

run-up to sleep or during sleep, their sleep may be affected. Alternatively, both sensory processing and 

sleep difficulties may stem from a common underlying mechanism, such as altered synaptic function 

or an excitation/inhibition imbalance. Lastly, poor sleep may induce or exacerbate sensory responses. 

The relationship between sleep and sensory processing is likely complex, with multiple pathways—

such as those described above—interacting simultaneously. 

The main aim of this thesis is was to better understand whether sensory processing differences drive 

sleep difficulties, due to poor gating of sensory input. Determining cause and effect is important for 

the development of intervention strategies. Because early sleep is critical for healthy brain 

development, we focussed on sleep and sensory processing in the first year of life. The improvement 

of sleep in infancy may have immediate benefits for health and wellbeing of the infant and caregiver 

(Eyuboglu & Eyuboglu, 2020), and could also have long lasting effects on behavioural outcomes later 

in life (Cook et al., 2020; Jaramillo et al., 2023; Mäkelä et al., 2021) .  

Studies investigating sensory processing and sleep often focus on autistic individuals, because sleep 

and sensory differences are highly prevalent in autism (Lane et al., 2022). However, the relationship 

between the two variables seems to extend beyond autism diagnosis as the same association is found 

in non-autistic individuals (Hartman et al., 2022; Vasak et al., 2015). Therefore, in this thesis, I 

investigate the pathway between sensory processing and sleep in infants at typical and elevated 

likelihood for autism, a population with a broad range of sensory processing differences.  

In this last chapter, I will summarise the key empirical findings, discuss theoretical implications, 

considerations for the study of sleep and sensory processing in infancy and potential avenues for 

further research. 



156 
 

6.1 Summary of findings 

6.1.1 Sensory processing measures predict sleep onset and night awakenings 

Across Chapter 2 and 3, I looked at the effects of two sensory processing measures on sleep onset 

latency and night awakenings. The sleep measures were assessed by caregiver report and reflected 

the average sleep onset latencies and night awakenings in the past week. 

Using a longitudinal secondary dataset, we had measurements of 134 infants at EL and TL for autism 

at 5, 10 and 14 months. In Chapter 2, I first asked whether trajectories of sleep onset latency and night 

awakenings differed between infants at EL and TL for autism. Indeed, while sleep in infants at TL tended 

to improve – less night awakenings and shorter sleep onset latencies – over the course of the study, 

infants at EL did not show the same improvement. From 10 months onwards, infants at TL had 

significantly less night awakenings and shorter sleep onset latency than infants at EL. This was the first 

study to show sleep differences in infants at EL compared to infants at TL longitudinally in the first year 

of life.  

 I then investigated whether these differences in sleep could be explained by differences in sensory 

gating, measured as repetition suppression in response to pairs of tactile stimuli when the infant was 

awake. I found that at 10 months of age, the extent to which an infant gated sensory input during 

wakefulness predicted how long it took them to fall asleep. This may indicate that the suppression of 

irrelevant information is necessary to fall asleep quickly. However, poor sensory gating did not predict 

the frequency of night awakenings. This indicates that gating mechanisms during wakefulness and 

sleep differ, in line with previous studies in adults (Kisley et al., 2001).  

Next, I investigated whether sensory profiles, and in particular low threshold – the combined subscales 

sensory sensitivity and sensation avoidance – predicted sleep independently of sensory gating. We 

initially expected a correlation between low threshold scores and sensory gating, so that infants that 

gate sensory input less well on a neural level would also be hyperreactive on a behavioural and 

affective level. However, tactile gating and low threshold scores were not correlated. Furthermore, 

when we controlled for an infant’s low threshold score, both low threshold and sensory gating 

predicted sleep onset latency independently of each other. Whilst sensory gating did not predict night 

awakenings, low threshold did. Infants that are more sensitive and avoidant of sensory input generally 

have more night awakenings. Parental reports of sensory profiles therefore more broadly explained 

sleep differences, while a neural measure of sensory gating showed a specific association with sleep 

onset.  

In all these models, sensory processing differences predicted sleep irrespective of on infant’s autism 

likelihood status. This suggests that a general mechanism links sleep and sensory processing as 
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confirmed by studies showing the same association in non-autistic individuals (Appleyard et al., 2020; 

Hartman et al., 2022; Kılıç et al., 2024).  

One key assumption of causality is that the cause precedes the effect in time. Therefore, in Chapter 3 

I tested whether early sensory differences predict later sleep difficulties and/or vice versa, taking 

advantage of the longitudinal design of the dataset. A RI-CLPM was used to appropriately account for 

the stability of the measures over time within the same person, e.g. some infants will have more night 

awakenings than others at all time points, but still show a decrease from one visit to another compared 

to their younger selves. Indeed, we found that both sensory profiles and night awakenings are highly 

stable over time. Individuals that tend to wake up frequently at night – in comparison to others – will 

likely do so at 5, 10 and 14 months. The same was true for sensory profiles, high scores on LT were 

highly stable over time. Moreover, these stable traits were correlated. Infants that generally woke up 

frequently, also generally had high scores on low threshold. When investigating the within-person 

effects, there were no significant concurrent state-like correlations at each timepoint. A deviation in 

sleep from the usual did not relate to a deviation in sensory profiles from the usual. The within-person 

cross-lagged effects were also not significant. A deviation in low threshold at an early timepoint did 

not predict a later deviation in sleep. Therefore, there was no evidence that early sensory processing 

differences drove later night awakenings. However, these results need to be interpreted carefully. We 

may not have found any evidence for a temporal precedence of sensory differences, but this could be 

due to the timeframe and timescale used in this study. Due to the spread of the measurements – 

several months apart – we can  only conclude that between 5 and 14 months of age sensory processing 

differences do not drive night awakenings several months later. It is still possible that sensory 

processing differences drive sleep difficulties on a smaller time scale, e.g. the following night or week. 

None of the models with sleep onset latency could be interpreted due to improper solutions or poor 

model fit.  

6.1.2 Sleeping sensory profiles in a noisy environment 

If sensory differences drive sleep problems, we would expect that sensory input during sleep would 

affect sleep differently in those with heightened sensory profiles. To test this hypothesis, I focused on 

the effects of sensory input on markers during sleep associated with sleep protection – SWs (including 

K-complexes) and sleep spindles – and sleep disruption – arousals and EEG activation.  

However before doing so, I ensured that methods to detect sleep spindles and K-complexes were 

adapted to the age range used in the SNOOSE study (8 to 11 month-olds), which is described in Chapter 

4. In infancy, sleep spindles tend to have a lower amplitude and the background EEG signal is often 

higher, which results in an under-detection of sleep spindles compared to manual sleep spindle 
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detection. I improved the performance of an existing automatic detector from the YASA package by 

adjusting the threshold settings systematically. This resulted in a significant improvement, with an F1-

score of 0.55 for the adapted algorithm compared to 0.4 with the default setting. An F1-score of 0.55 

is acceptable – but not optimal – and  similar to other algorithms used in the field (Kwon et al., 2023). 

Additionally, the correlation between the algorithm’s detected sleep spindle density and the manually 

detected sleep spindle density was significantly higher for the adapted algorithm. This gave us 

confidence to proceed with the improved algorithm.  

K-complexes are still immature in infancy and difficult to discern from background activity and from 

other SWs. Therefore, in Chapter 4, I explored whether evoked K-complexes could be identified by 

taking advantage of the reliable timing of a K-complex in response to a stimulus. However, it was 

unclear from the literature whether the timings of evoked K-complexes are similar in infancy and 

adulthood. In adults the negative peak of an evoked K-complex tends to occur within 450 to 700 ms 

after stimulus onset. Results from the SNOOSE cohort revealed a clear increase in SWs after stimulation 

in a similar time-window as adults. We therefore concluded that these are likely evoked K-complexes 

and continued in the following analyses with this method.  

In Chapter 5, I first showed that the sensory input, 60 Db pure tones in pairs, were registered during 

sleep even without any behavioural awakenings. Using Time Frequency Representations, I 

demonstrated  that activity in the sigma range decreased and activity in the delta range increased after 

a stimulus in sleep stage N2. The latter likely due to an increase in evoked K-complexes after 

stimulation, which were indeed significantly more abundant after a stimulus compared to before. The 

decrease in the sigma activity was expected to correspond to a general disruption of sleep spindle 

production due to stimulation. However, there was no significant decrease of sleep spindles after 

stimulation compared to before. On a larger timescale, we also observed that nap duration was shorter 

(approximately 10 min on average) when there was stimulation, but infants did not have more arousals 

or altered sleep architecture due to stimulation.  

Next, the effects of sensory profiles and their interaction with external sensory input on sleep 

protective and disruptive markers was investigated. We found that infants with high scores on LT had 

significantly lower slow wave activity in N3 as well as less K-complexes in N2, irrespective of the 

presence of sensory input. Sleep spindle density and duration decreased in the stimulation nap 

compared to the baseline nap, but only in infants with higher scores on LT. Arousal density was not 

increased in infants that score high on LT, nor was it increased when there was stimulation. However, 

the activation index (AI), a measure of EEG activation (ratio of beta/delta), was increased in infants 

with higher LT scores, irrespective of the nap condition.  
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In conclusion, in terms of sleep protective markers, infants that score higher on LT have lower SWA 

independent of the sensory environment around them. Sleep spindle density was decreased in the 

stimulation nap, but only in infants with higher scores on LT. In terms of sleep disruptive markers, LT 

scores did not affect arousal density, but did affect the AI, with more EEG activation in infant with 

higher scores on LT, independent of the presence of sensory input during a nap.  

6.2 Theoretical implications 

In the next part, I discuss the wider implications of some of our findings. I explore why SWA may be 

reduced in highly sensitive infants and how that could relate to memory consolidation. I then focus on 

the importance of sensory processing when falling asleep and during sleep in infancy. Furthermore, I 

discuss the importance of choosing the right measurements and methods demonstrated by the studies 

in this thesis. Throughout, I  highlight pathways that future research could explore. But first, I address 

to what extent our findings provide support for a causal pathway from sensory processing differences 

to sleep difficulties. 

6.2.1 Do sensory processing differences lead to sleep difficulties? 

In Chapter 1, I identified three pathways that could explain the co-occurrence of sensory differences 

and sleep difficulties (See figure 1.11): 1. Sensory processing difference may cause sleep problems; 2. 

sleep problems may cause sensory processing differences; or 3. they may arise independently, and an 

underlying mechanism may cause sleep problems and sensory differences. In this thesis, we aimed to 

tease apart these three pathways. I hypothesized that sensory processing differences lead to sleep 

problems (pathway 1), due to the ineffective gating of sensory input during sleep. Three research 

designs were used to address this question: a cross-sectional, a longitudinal and an experimental 

design. For a causal relationship to be established, the consensus is that three criteria need to be met: 

a correlation between cause and effect, temporal precedence of the cause, and a lack of plausible 

alternative explanations. 

In support of the first criteria, Chapter 2 demonstrates that both tactile gating and sensory profiles 

predict sleep onset and night awakenings – a first indication that sensory processing differences may 

lead to sleep problems. Then we set out to test whether sensory processing differences preceded sleep 

difficulties in Chapter 3. Initially, partial correlations indicated that early sensory profiles predicted 

later sleep, but not vice versa. However, after accounting for between-person variance in sleep and 

sensory profiles, changes in an individual’s sensory profile no longer predicted subsequent changes in 

night awakenings. Instead, we observed a strong correlation of the between-person latent variables of 

sensory profiles and night awakenings. This suggests that both may be driven by a shared underlying 
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mechanism, that temporal precedence might occur earlier than captured in our study, or that these 

effects manifest over shorter timescales, such as day-to-day variations, rather than over months. 

In the last study, we shifted our focus from changes in sensory profiles to how different sensory profiles 

interact with the sensory environment during sleep. We again investigated effects on the within-

person level. We asked whether sensory input differentially impacted sleep depending on an infant’s 

sensory profile, expecting that infants that are more sensitive would show greater sleep disruption or 

weaker sleep protective responses to sensory input.  We found tentative evidence supporting this 

hypothesis regarding sleep spindles: Sensory input led to a reduction in sleep spindle density and 

duration, but only in hypersensitive infants. These findings suggest that sensory input may disturb 

sleep spindle production in infants that score high on LT, which could be a potential mechanism that 

drives sleep difficulties in these infants. Disrupted sleep spindle production may increase vulnerability 

to external disturbance during sleep and could additionally have knock-on effects on memory 

consolidation (Peyrache & Seibt, 2020). However, we did not observe an interaction effect of sensory 

profiles and arousibility, and therefore it is still unclear what the effects are of the decreased sleep 

spindle density and duration in infants with high scores on LT. Furthermore, the lack of a similar result 

when using sigma activity as a measure of sleep spindle activity raises questions about whether these 

results may be driven by suboptimal sleep spindle detection. To confirm these findings, the results 

should be replicated in a different cohort.  

For two sleep measures we found an association with sensory profiles that was independent of the 

sensory environment. The amount and power of SWs associated with an infant’s sensory profile: The 

more sensitive an infant is the less deep their sleep, whether or not there was sensory input. Similarly, 

more sensitive infants also had more ‘active’ brain activity, as measured by the activation index 

(beta/delta activity), but again independent of the sensory environment. These findings suggest an 

association with sleep, that does not seem to be driven by ineffective gating of sensory input during 

sleep.  

Whilst these studies do not rule out the possibility that sensory processing difficulties lead to sleep 

difficulties, they offer more support for a common underlying mechanism driving both symptoms. 

Throughout this thesis, several potential common factors have been identified that may contribute to 

sleep difficulties and sensory processing differences and that are related to autism. The focus on 

specific sleep and sensory characteristics in these studies may help pinpoint potential underlying 

factors that affect both symptoms. In Chapter 2, we observed that gating during wakefulness only 

associates with sleep onset but not night awakenings. As discussed in detail in there, this may indicate 

altered GABAergic functioning. Lower GABA levels or mutations in GABA-receptors are associated with 
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longer sleep onset latencies (Agosto et al., 2008; S. Kim et al., 2019), altered sensory processing 

differences, such as lower detection thresholds for somatosensory input (Puts et al., 2017) and are 

common in autism (Coghlan et al., 2012). In Chapter 5, we find a strong effect of LT scores on SWs, 

which may indicate atypical synaptic functioning as an underlying mechanism, which is also thought 

to be altered in autistic individuals (Doldur-Balli et al., 2022). Interestingly, SWs are not only thought 

to depend on, but also to drive healthy synaptic functioning (Cirelli, 2013), which may suggest a 

pathway from altered SWA to synaptic dysfunction, which in turn could lead to sensory processing 

differences, in support of pathway 2. Below, I discuss in more detail how this may be related learning 

and memory.   

In conclusion, the findings in this thesis confirm that there is a clear association between sensory 

processing measures and sleep measures already early in development. A particular role for SWs was 

uncovered in relation to sensory profiles. Sensory gating during wakefulness relates to sleep onset 

latency, but not night awakenings. We do not find clear evidence of a causal relationship from sensory 

processing differences to sleep difficulties. Instead, our findings lean slightly more towards an 

underlying mechanism driving both sleep and sensory differences. Additionally, our findings highlight 

the need for research that tracks within-person changes in sensory processing measures and the 

effects on sleep the same day.  

6.2.2 Lower slow wave activity: Underlying mechanisms and implications for learning 

The results of Chapter 5 show that reduced SWA is associated with higher scores on LT. However, it 

remains unclear whether reduced SWA indicates a reduced need for sleep or whether it reflects an 

inability to effectively build up sleep pressure despite the need for it. Additionally, it is unclear whether 

having lower SWA compared to peers has negative consequences. Let us explore these two questions.  

In regards to the homeostatic properties of SWA, a study in one particular mouse model of autism 

(Shank3∆C) – with a truncation in the Shank3 gene, which encodes a neural junction protein critical for 

synaptic function– looked at the dynamic effects of sleep loss on sleep the next day (Medina et al., 

2022). Firstly, Shank3∆C mice exhibited disrupted sleep onset adaptations to sleep deprivation. 

Whereas wild-type (WT) mice fell asleep quicker after sleep loss, the Shank3∆C mice had long sleep 

onset latencies despite previous sleep loss. Regarding SWA, the study shows that SWA is decreased at 

baseline in Shank3∆C mice, similar to findings in humans (Arazi et al., 2020). Nevertheless, Shank3∆C 

mice did show increased SWA after sleep deprivation, indicative of intact SWA dynamics in response to 

sleep loss. This suggest that homeostatic responses to sleep are intact in autistic individuals in terms 

of SWA. Indeed, in autistic children, SWA decreases over the course of the night – another typical 

homeostatic feature of SWA - despite being lower than in non-autistic children in the first hours of the 
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night (Arazi et al., 2020). These studies demonstrate that lower SWA does not necessarily indicate that 

homeostatic regulation of SWA is absent, as both a build-up of SWA is seen in mice after sleep 

deprivation and a dissipation of SWA over the course of the night in humans. However, it may be that 

the build-up of sleep pressure is weaker. 

However, the question remains: why is SWA lower at baseline in infants that have higher scores on LT 

or in autistic children? According to the synaptic homeostasis hypothesis (SHY; see Chapter 1 section 

1.1.2), synaptic strength increases during the day, which results in larger SWA. During the night, 

synaptic strength renormalized and SWA dissipates, facilitating new learning the next day. Arazi et al. 

(2020) did not find significant differences between autistic and non-autistic individuals in SWA and SW 

slope in the second half of the night, suggesting that synaptic renormalization reaches normal levels 

in both groups by the morning, according to SHY. Lower SWA at the beginning of the night on the other 

hand may suggest that the overall increase of synaptic strength during the day is lower or less rapid 

than non-autistic peers. This could reflect either altered synaptic function, as discussed in Chapter 5 

section 5.5.1, and/or potential learning differences, as according to SHY, it is not just neuronal firing 

that causes an overall increase in synaptic strength but learning specifically.  

Indeed learning difficulties are common in autism (Boucher & Anns, 2018; Kercood et al., 2014). That 

sensory gating is altered in infants at EL for autism, as shown in Chapter 2, could also indicate a learning 

impairment, as habituation may be seen as the simplest form of learning (McDiarmid et al., 2019). The 

ineffective build-up of SWA could indicate difficulties with encoding of information during the day. It is 

possible that sensory hyperreactivity interferes with the effective encoding of information. Keith et al. 

(2019) find that autistic adolescents perform similarly to non-autistic peers on a working memory task, 

however once broadband noise was added in the more difficult version of the task, performance was 

worse in the autistic group and autonomic arousal levels measured by heart rate increase. Individuals 

that feel overwhelmed by sensory input may show particularly ineffective learning, which may result 

in decreased upscaling of synapses, which may in turn lead to lower SWA at night. Further research 

could investigate this pathway. 

Reduced SWA may in turn have implications for memory consolidation. SWA has consistently been 

linked to better performance on declarative memory tasks in healthy adults (Rasch & Born, 2013),  with 

studies showing an association between higher SWA and better task performance (Holz et al., 2012; 

Simon et al., 2017), and that boosting SWA can enhance memory performance (Crupi et al., 2009; 

Harrington & Cairney, 2021). Additionally, local increases of SWA over brain regions involved in the 

pre-sleep learning task demonstrate a convincing role of SWA in memory consolidation. However, 

when looking at atypical populations, the magnitude of overnight improvement on task performance 
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is not always related to SWA, e.g. in dyslexic children (Smith et al., 2018) and children with ADHD 

(Prehn-Kristensen et al., 2011). Similarly, a study in autistic children did not find a relationship between 

SWA and next day task performance. However, it should be noted that in this particular study the 

control group also did not exhibit the relationship (Maski et al., 2015). In this study and others, 

overnight task improvement did occur in the autistic group, despite no relationship with SWA 

(Knowland et al., 2019). It has been suggested that autistic individuals may use compensatory 

strategies, such as increased hippocampal recruitment during encoding (Hogeveen et al., 2020). 

Therefore, it is unclear whether lower SWA may negatively affect learning. Further research could 

investigate the role of SWs and memory consolidation in relation to sensory profiles, rather than 

autism diagnosis.  

6.2.3 Improving measurements and the search for the ‘right’ methodology 

A theme which emerges throughout this thesis is the importance of selecting the right methodology 

and measurements. Below I discuss how the results in Chapter 3 showed the importance of the 

separation of within- and between person effects to understand causation. Then I discuss visual 

detection of sleep spindles and recent advances in the field that go beyond the current gold standard. 

Within- and between-person effects 

In Chapter 3, I demonstrated that the separation of within- and between-person effects can 

significantly change the interpretation of results. Initially, partial correlations suggested a one-

directional relationship: early sensory processing predicted later sleep, but not the opposite way 

around. This might have led us to incorrectly assume the effect was driven by within-person variation 

and inferred that changing an individual’s sensory profile could alleviate long-term sleep difficulties. 

However, when we separated within- and between-person effects using a RI-CLPM, it seems that the 

results from the partial correlations were primarily driven by between-person differences. An effect 

on the between-person level is not less valuable or interesting than an effect in the within-person level, 

but the interpretation of the results is different. These between-person findings inform us about a 

predictive relationship: infants with heightened sensory profiles likely also experience sleep difficulties 

or are at risk of developing sleep difficulties in the future. A similar longitudinal study with two 

timepoints in autistic children, found that sleep and sensory symptoms covary over time (Manelis-

Baram et al., 2021). They conclude that an intervention in one of the variables will likely improve the 

other variable. Had they been able to separate within- from between-person effects, they may not 

have come to the same conclusion. It should be noted that they also acknowledged that a common 

underlying mechanism may drive both. Our study shows that improving sensory symptoms between 

5 and 10 months of age may not significantly improve the trajectory of night awakenings months later, 

contrary to what we might have concluded without differentiating within- and between-person effects. 
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Nonetheless, the between-person effects indicate that infants who experience sensory differences at 

5 months may already benefit from an intervention targeting sleep, although not necessarily by 

improving sensory symptoms.  

This showcases the importance of using the right statistical methods for the research question. When 

asking about causal within-person effects, appropriate statistical methods should be used that are able 

to distinguish within- from between-person effects. 

The future of sleep spindle measurements  

In Chapter 4, we showed that automated detection algorithms trained on adult data do not perform 

as well in an infant dataset, a problem also recognised by others (Berja et al., 2024; L. Wei et al., 2022). 

These studies, like ours, aimed to improve the algorithm performance in comparison to manually 

annotated sleep spindles, a necessary step to increase the reliability of sleep spindle counts in infancy 

and build normative data on sleep spindle development. However, this assumes that manual detection 

represents the ‘ground truth’. In essence, we improved the agreement between the algorithm and 

human, but does the human detection truly capture the underlying biological reality?  

Sleep spindles are visually detected in the time representation of the EEG signal, but all frequencies 

are mixed into one signal. As described in Chapter 4, the visibility of sleep spindles therefore depends 

on the activity in other frequency bands that happens at the same time. For example, sleep spindles 

are harder to identify when they occur simultaneously with a slow wave. High background activity is a 

particular issue in infant sleep recordings. This raises the question of whether sleep spindles that are 

not as visible to the human eye in the EEG signal are not real and functional sleep spindles? A question 

which has been asked by others in the field. 

Recently, Dimitrov et al. (2021) investigated an alternative method of sleep spindle detection based on 

time-frequency representation of the signal rather than just time representations (see figure 6.1). They 

find clear demarcated increases in sigma activity, which they call TFσ peaks, that often overlap with 

visually detected sleep spindles in the time signal, but also reveal many more peaks that are not as 

visible (or would not be identified as a sleep spindle) in the time representations. They suggest that 

classically defined sleep spindles are only a subset of a larger class of events. The detected TFσ peaks 

are a broader phenomenon from the same underlying event. Dimitrov et al. highlight that the classic 

definition of a sleep spindle is based on an arbitrary cut-off – what is visible to us in the EEG signal.  
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Figure 6.1 Time-frequency sigma peaks. Purple squares represent TFσ peaks that overlap with visually detected 

sleep spindles in the time signal. Black squares are TFσ peaks that do not overlap with a classic sleep spindle. 

Figure adapted from Dimitrov et al. (2021). 

This raises the question whether the visibility of a sleep spindle on scalp EEG recordings matters for its 

functionality? In other words, does a sleep spindle that stands out less do just as good of a job as a 

very visible sleep spindle? A recent study in mice investigated whether the ‘quality’ of a sleep spindle 

is related to its functionality (Blanco-Duque et al., 2024). The study parameterized the strength of 

oscillatory events in the sigma range using ‘damping’, a metric that captures the decay in the amplitude 

of and oscillation and therefore reflects the strength and stability. The authors named this measure o-

Quality. The study found that the o-Quality of a sleep spindle is related to its distribution and 

spatiotemporal dynamics and reflects the degree of network synchronization, e.g. local sleep spindles 

have a lower o-quality than global ones. In terms of functionality, higher o-Quality sleep spindles are 

more often coupled with slow waves and provide greater sleep protection. The latter was 

demonstrated by an inverse relationship with behavioural responsiveness – measured with muscle 

twitches – to auditory stimulation.  

The study by Dimitrov et al. (2021) shows that there may be more spindles than the ones we can see, 

but the less visible and ‘of lower’ quality spindles may not be as functionally relevant as those that are 

of high quality and more visible as indicated by Blanco-Duque et al. (2024). However, the current 

‘visibility cut-off’ might still be arbitrary, potentially overlooking sleep spindles of lower quality that 

may still be functionally relevant.  

These undetected sleep spindles may explain why we found differences between results with sleep 

spindle density and sigma activity. Indeed, other studies find that these measures are not perfectly 

correlated (R. Cox et al., 2017). Sigma activity may better capture these ‘invisible’ sleep spindles. In 
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Chapter 5, we showed that in individuals with high scores on LT, sleep spindle density and duration – 

but not sigma activity – are decreased during the stimulation nap compared to the baseline nap. This 

may suggest that infants with high scores on LT produce less high-quality sleep spindles when there is 

stimulation during sleep, but still have lower quality sleep spindles that are not as easily detectable. 

The decrease in high quality sleep spindles may be due to a decreased network synchronization due 

to influence of sensory input.  

The future of sleep spindle research may include a transition towards data driven methods that will 

rely less on visual detection. This could benefit research in infant populations – with perhaps more 

‘invisible’ sleep spindles than other populations – and will advance our understanding of the functions 

of sleep spindles. However, the quality of sleep spindles (which may be reflected in their visually 

detected number) could inform about the maturational status of the brain. In future research, a more 

accurate measure of sleep spindles could involve a quantification with a measure such as TFσ that 

captures a broader range of sleep spindle with a less arbitrary cut-off (than what the human eye can 

see) as well as a qualification that captures how “good” sleep spindles are, with a measure such as o-

Quality.  

6.2.4 Sensory influences on sleep onset and awakenings 

6.2.4.1 Sensory strategies for inducing sleep onset 

Sensory processing and sleep onset have a complex relationship: The transition from wake to sleep is 

facilitated by increasing ánd reducing sensory stimulation. Evading sensory stimulation, by closing your 

eyes or turning of the lights eases the transition to sleep. However, the opposite is also true. An infant 

will fall asleep to a soothing lullaby or by being rocked gently, activating the auditory and 

somatosensory systems respectively. Strategies used to settle an infant, including the first self-soothing 

strategies that infants develop, such as sucking their thumb, are often sensory in nature (Uvnäs-

Moberg & Handlin, 2015).  

Many of the common soothing strategies to fall asleep have been linked to oxytocin release, e.g. 

suckling (Lupoli et al., 2001), food intake (Ohlsson et al., 2002), mother-infant touch (Matthiesen et al., 

2001), and also massage (Uvnäs-Moberg & Field, 2004). Oxytocin is known to reduced stress and 

anxiety, potentially inducing sleep onset. However, if sensory input is perceived as annoying by an 

infant, it may interfere with the development of soothing behaviours. Indeed, as shown in Chapter 2, 

sleep onset is both related to infant’s sensory profiles, indicating heightened behavioural and affective 

reactivity to sensory input, as well as an infant’s ability to gate tactile input. Infants with sensory 

differences may therefore not perceive these soothing strategies as calming.  
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However, it seems unlikely that this would apply to all sensory soothing strategies, as autistic 

individuals with sensory differences often engage in restrictive and repetitive behaviours (RRBs) that 

can be sensory in nature, such as watching a spinning object or flapping their hands, to calm down. It 

is thought that these type of behaviours help reduce the unpredictability of the environment by 

engaging in controlled predictable situations (Hirsh et al., 2012; Van de Cruys et al., 2014). A study in 

healthy fruit flies shows that sleep onset is facilitated by repetitive bursts of vibrations – similar to 

rocking in humans – but only if these burst are identical and thus predictable (Öztürk-Çolak et al., 

2020). Therefore, the predictability of sensory input may be particularly important for sleep onset in 

all individuals, but perhaps even more so for those with sensory differences. 

While this idea sounds plausible, it is puzzling that repetitive sensory behaviours are perceived as 

calming for individuals who also show reduced repetition suppression, which essentially reflects the 

reduced ability to accurately predict highly predictable stimuli. One possibility is that autistic 

individuals may particularly struggle with prediction of external sensory input, but that prediction of 

self-generated sensations, such as self-touch and movement, remains intact. Supporting this, a study 

found that neural activation to self-touch is similar between an autistic adults and non-autistic adults 

(Frost-Karlsson et al., 2022). Self-touch is highly predictable due to afferent proprioceptive feedback 

that can be used for prediction of the sensation, known as reafference (Sommer & Wurtz, 2002; von 

Holst & Mittelstaedt, 1950). Additionally, autistic individuals show a tendency for overreliance or 

preference of proprioceptive feedback signals over other signals, such as visual input, when learning a 

pattern (Haswell et al., 2009; Izawa et al., 2012). This may indicate that proprioceptive feedback is 

particularly informative for prediction purposes in autistic individuals and may be useful for sleep 

onset.  

If infants with reduced sensory gating are more likely to calm down from self-generated sensory input, 

it raises the question of how they would respond to soothing methods provided by a caregiver. Would 

externally delivered input, such as stroking or rocking, be less effective than self-generated sensations? 

More research is needed to explore different soothing strategies, such as predictable vs unpredictable 

input or self-generated vs externally generated input, and how these approaches affect sleep onset in 

infants with a variety of sensory profiles. 

6.2.4.2 Waking up from sensory stimulation 

In Chapter 2, I demonstrated that infants at TL for autism gradually wake up less frequently between 

5 and 14 months of age, consistent with research showing that most infants start sleep through the 

night in the first year of life (Henderson et al., 2020). In the first months of life infants wake up and 

sleep more irregularly throughout the day and night, which is likely linked to their feeding needs and 
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immature circadian rhythms (Mühlematter et al., 2023). As infants develop, the number of full-blown 

awakenings decrease as well as the number of brief arousals from sleep (Montemitro et al., 2008).  

While waking up from sleep is often seen as sign of poor sleep, the quick reversibility of sleep is also a 

key sign of healthy sleep (Halász et al., 2004). Failing to wake up, especially when faced with a noxious 

stimulus may have detrimental consequences. For example, infants need to wake up in response to 

endogenous signals such as hunger or respiratory signals. This is critical because failure to arouse to 

those endogenous signals may have detrimental consequences, such as sudden infant death syndrome 

(SIDS) (Franco et al., 2010). Prospective studies of infants that will later die of SIDS show that these 

infants had reduced frequency of awakenings, particularly in the early morning (Kahn et al., 1992; 

Schechtman et al., 1992). Research in fruit flies shows that juveniles compared to adults are less likely 

to transition to wake once asleep, which is due to the immaturity of sleep promoting neurons and 

modulatory dopaminergic input (Gong et al., 2022). Therefore, decreased arousibility during sleep is a 

normal part infant sleep, as neuronal pathways are still maturing, but insufficient arousals may have 

serious consequences, highlighting a delicate balance between waking up too often and not waking 

up enough.  

The findings of Chapter 5 show that arousal density did not increase in a nap with auditory stimulation, 

which may have been due to the higher likelihood of sleep protective reactions to sensory input as 

confirmed by the increase in K-complexes in the time-window after stimulation. Despite the shorter 

nap durations during the stimulation nap, infants seem to sleep well in the sleep lab, as shown by the 

high sleep efficiencies and the proportion of wake time during sleep in both nap conditions (>95% on 

average). That infants were not so disturbed by the auditory input may be due to the stimulus being 

innocuous. Already early in life, infants can adapt their arousal response to the saliency of a stimulus. 

Infants age 1 to 22 weeks gradually eliminate an arousal response to repeated tactile stimulation 

during sleep (McNamara et al., 1999). The elimination of the arousal response is sequential: first 

cortical arousals are eliminated, then brainstem responses and finally spinal responses. Even though 

the auditory stimulation in the SNOOSE study was presented in jittered intervals, infants may have 

habituated quickly due to the innocuous nature of the stimuli.  

Another factor that may have contributed to low arousal rate from the stimulation is the perceived 

safety of the environment. As discussed in Chapter 1, the sleeping brain can adapt to the perceived 

level of risk in its surroundings. For example, adults exhibit a ‘first night effect’ when sleeping in an 

unfamiliar environment and are more reactive to sensory input that night (Agnew Jr et al., 1966; 

Tamaki et al., 2016). However, the ‘first night effect’ is not as prominent in infants as shown by a study 

in 5 week to 8 month-old infants (Rebuffat et al., 1994). They show that the structure of sleep is not 
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significantly different between consecutive nights in a sleep lab, which fits with the common notion 

that a baby can sleep anywhere. Whether infants are more reactive to stimulation during sleep in an 

unfamiliar environment has not been tested to my knowledge. It may be the case that for infants, 

perceived safety of an environment is determined less by the sleep location and more by the proximity 

of a caregiver. Indeed, research shows that neonates have lower heart rate variability and have 

significantly longer quiet sleep (the precursor of NREM sleep) when they have skin-to-skin contact with 

the mother compared to when they do not (Morgan et al., 2011). In the SNOOSE study, the majority 

of infants slept in their caregivers’ arms (29 out of 41). This close contact with a caregiver may have 

deepened sleep due to the calming effect (Matthiesen et al., 2001) and reduced their responsiveness 

to the environment.  

6.3 Considerations for the study of sleep and sensory processing in infancy 

The SNOOSE study highlights important challenges in research on sleep and sensory processing in 

infancy. Here I explore key considerations for future research, including the sleep environment, 

participant diversity in terms of sleep and sensory symptoms and age-appropriate measures of sensory 

processing behaviours. 

The sleep environment  

In section 6.2.4.2 I discussed the influence of the sleep arrangement (whether an infant is near the 

parent or not) , on awakenings from sleep. This raises the question whether future infant sleep 

research should standardize sleeping arrangements to minimize variability in a study. Some studies 

already take this approach, e.g. in Sokolof et al.’s study all infants (0-6 months old) were put to sleep 

in a car seat. However, the feasibility of such an approach may depend on the age range of the study. 

In the SNOOSE study, we encouraged caregivers to use their typical settle methods to increase 

ecological validity. However, sleeping in a sleep lab with an EEG cap is a highly unusual environment 

for an infant and caregivers often engaged in settle methods they would perhaps not always use at 

home. Some caregivers who usually placed their infant down to nap instead held the infant in their 

arms during the experiment. Changes in the routine were often because the infant was upset due to 

the application of the sensors or because the caregiver thought the infant would not sleep otherwise 

in the novel environment. This strategy was very successful as only 4 out of 44 infants did not fall 

asleep in the lab. A solution to this would be to conduct studies in the participant’s own home rather 

than a sleep lab. However, this brings its own practical challenges, such as technical set up, and 

decreased standardization of environmental factors. In the context of the SNOOSE study, background 

noise, an important confounding variable, may have varied significantly depending on each 

participant’s home.  



170 
 

The question remains: which of the two approaches confounds the results of a study more? Is it more 

disruptive to change an infant's typical sleep conditions, or do the differences in sleep arrangements 

between participants lead to greater variability in sleep outcomes? 

Recruitment of poor sleepers and sensitive infants  

One key consideration for future in-lab sleep studies is the need to diversify the sample in terms of 

sleep and sensory profiles. In the SNOOSE study, we observed a limited variety of sensory profiles 

despite recruiting infants at EL for autism. Low threshold, which is assessed on a scale from 1 to 5, 

ranged from 1.14 to 2.73 in the SNOOSE sample. This could indicate that there may have been a self-

selection process, where caregivers of highly sensitive infants may not have wanted to participate in 

an EEG sleep study. Indeed, some caregivers of infants at EL for autism indicated that their older autistic 

children would not have tolerated the EEG sensors.  Compared to the BASIS dataset (see figure 5.3), 

the range in the SNOOSE study was much narrower, however, this may also be due to the much smaller 

sample size. Similarly, we may have collected a sample of exceptionally good sleepers. It is possible 

that only caregivers of good sleepers volunteered to participate. A potential solution to this self-

selection problem could be to particularly advertise the study for infants with sensory or sleep 

difficulties.  

Measuring sensory behaviours   

When measuring behavioural and affective reactivity to sensory input, the age-appropriateness of the 

tasks and questions is essential. In the SNOOSE study, we noticed that some of the behaviours assessed 

by the Sensory Profile 2 (SP-2) may not have been suitable for all infants in our age range.  As 

mentioned in Chapter 5 (section 5.2.5), the SP-2 has age-appropriate versions with adapted questions. 

The youngest version is designed for 0-7 month olds, followed by a version for 7-36 month-olds. Infants 

in the SNOOSE study, age 8 to 11 months-old, just falls within the latter version but are on the younger 

end of the 7-36 month age range.  

One important feature added to the SP-2, which was not included in the ITSP, is the non-applicable 

option (Dunn, 2014). In the SNOOSE study, approximately half of the caregivers selected the ‘non-

applicable’ for at least for 1 of the 23 questions. Whether this falls within typical ranges is uncertain, 

as to my knowledge, no studies have investigated nor reported the rates of non-applicable in their 

samples. In an interview with occupationaltherapy.com (accessed on 21-09-2024) Winnie Dunn 

explains: “We added 'does not apply' because some of the items on the Sensory Profile™ 2 and the 

original Sensory Profile had behaviors that children in the vulnerable groups like autism and ADHD 

were much more likely to engage in, but parents of children, without those conditions, never saw those 

behaviors at all.” However, it is unclear why the option ‘never’ would not suffice to indicate behaviours 
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caregivers have never seen. Some questions that are left unanswered may be age-inappropriate rather 

than unfamiliar to the parent. For example, question Q4_9 (“My child becomes anxious when walking 

or crawling on certain surfaces (for example, grass, sand, carpet, tile)”) was indicated as non-applicable 

by 8/35 participants in the SNOOSE study. This may be due to the individual age differences in learning 

how to walk or crawl. In the SNOOSE study, the unanswered questions were excluded. However, 

without knowing the reason for the missing responses, it is unclear how this may skew the results. A 

more elaborate quantification is needed of the rates of ‘non-applicable’ per question in relation to age. 

Additional qualitative research is needed to understand why caregivers choose the ‘non-applicable’ 

option. These could help inform adaptations needed for a 3rd version of the ITSP. 

6.4 Future directions 

A major theme that emerged from this thesis is the importance of timescales and the difference 

between immediate effects and long-term effects, state-like variation and trait-like variation. Any 

further research should consider these aspects carefully during the design of a study and 

interpretation of the results. 

As outlined in the introduction, both sleep and sensory processing are broad constructs, which consist 

of multiple subcomponents. The recently proposed taxonomy of He et al. (2023) highlights the 

complexity of what it means to have ‘sensory differences’. The studies presented in this thesis confirm 

that various sensory processing measures may capture entirely separate concepts. It is still largely 

unclear how measures at different levels of sensory processing are related, although some studies 

have begun to investigate this (Kisley et al., 2004; M. W. M. Kuiper et al., 2019). Moreover, to what 

extent sensory measures represent trait- or state-like variation is largely unknown. For example, in the 

case of sensory gating, one study in healthy adults looked at the test-retest reliability of sensory gating 

of auditory input, measured as the difference of P50 response to S1 and S2 (Fuerst et al., 2007). They 

measured sensory gating twice on the same day and found a moderately high correlation (r=.610). 

Understanding how much daily or even hourly fluctuation there is in measurements is important to 

understand the relationship with sleep measures. The degree of variability across multiple nights is 

better established for sleep variables (De Gennaro et al., 2005). As proposed in Chapter 3, an intensive 

longitudinal study that measures sleep and sensory processing on a daily basis for multiple days could 

help clarify the directionality of sensory differences and sleep, as well the stability of measures. Recent 

advances in wearables to measure sleep at home, such as actigraphy or EEG headbands (González et 

al., 2024), make such studies more feasible. Intensive longitudinal studies with actigraphy are also 

feasible in infants and can monitor both daytime and nighttime sleep (Schoch et al., 2021).  
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Our finding that infants with heightened sensory profiles exhibit lower SWA should be explored further. 

One intriguing avenue for future research would be to investigate whether increasing SWA improves 

sensory responses the next day. One way to enhance SWA is through auditory closed loop stimulation. 

Additionally, this could inform about whether SWs react similarly to auditory closed loop stimulation 

in individuals with sensory differences. In elderly people, for example, auditory closed loop stimulation 

had minimal effects on SWA and did not enhance memory performance the next day (J. Schneider et 

al., 2020). It is therefore unclear whether atypical populations react similarly to auditory closed loop 

stimulation. Furthermore, the effects are of having lower SWA than others should be explored. It is not 

fully understood whether lower SWA has a significant impact on daily functioning and further 

development.  

In Chapter 5, we looked at the effects of simple, non-salient auditory input. Another line of research 

could build on thus by investigating the effects of the saliency of stimulation before and during sleep 

on infant sleep. These stimuli could be more ecologically valid, such as emotional speech or unfamiliar 

voices. Three-month-old infants are already able to distinguish a familiar from an unfamiliar voice. 

Studies in adults show enhanced responses during sleep to unfamiliar voices over familiar voices and 

emotional over unemotional tones (Ameen et al., 2022; Blume et al., 2017). Additionally, sensory 

gating during sleep onset itself could be explored in relation to how quickly infants fall asleep. This 

could further clarify our finding that sensory gating and sleep onset latency are related.  

6.5 Conclusion 

In this thesis, I investigated whether sensory processing differences lead to sleep difficulties, due to 

poor gating mechanisms of sensory input. We tested this in infants at elevated and typical likelihood 

for autism who have a variety of sensory profiles. In our first study, we found for the first time that an 

objective measure of sensory gating associates with sleep onset, with poor gating predicting longer 

sleep onset times at 10 months of age. We then investigated temporal precedence, using a longitudinal 

study design from 5 to 14 months, this time with a parental-reported measure of an infant’s sensory 

behaviours. We did not find any evidence that early sensory profiles predict changes in later sleep. 

Instead, we found that over the course of the study infants that in general wake up frequently at night 

also tend to have heightened sensory profiles, suggestive of a common mechanism driving both. We 

then looked at the effect of sensory input – simple auditory tones - on sleep in infants with a variety 

of sensory profiles. We found that sleep protective markers are linked to sensory profiles. Specifically, 

an infant’s sensory profile, as assessed by caregiver report, associates with objective measures of sleep 

depth, irrespective of the sensory environment. Additionally, sensory input may disrupt sleep spindle 

production in infants that have heightened sensory profiles. 
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Taken together these findings suggest that already early in development sensory differences and sleep 

are entangled. Our findings indicate that a common underlying mechanism may drive both sleep and 

sensory differences. In addition, sensory differences may drive sleep difficulties on shorter timescales. 

Further studies should investigate day-to-day variations in sleep and sensory differences. The studies 

in this thesis give some indications of why sleep and sensory processing differences often co-occur, but 

give rise to many more questions. Importantly, we show that the terms ‘sleep’ and ‘sensory processing’ 

need to be disentangled if we want to understand the nature of their relationship.  
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Appendix A. Descriptive statistics by autism likelihood and diagnostic status 

Table A. 1 Autism Diagnostic Observation Schedule calibrated severity scores; EL: Elevated likelihood; ELC: Early 

learning component; SOL: Sleep onset latency; TL: Typical likelihood; TSI: Tactile suppression index; 

 Autism likelihood status EL group autism diagnosis 

 TL EL EL-ASD- EL-ASD+ 

5-month visit 

n 25 66 48 10 

Age in Days 178.42 (13.29) 176.08 (19.61) 175.26 (19.99) 174.50 (18.47) 

Sex (M:F) 18:7 35:31 24:24 6:4 

ADOS CSS 1.55 (0.69) 3.10 (2.25) 2.83 (1.92) 3.89 (2.80) 

Mullen ELC 85.08 (9.704) 83.55 (10.943) 84.72 (11.78) 82.60 (15.01) 
Number of 
awakenings 2.44 (1.47) 2.00 (1.48) 1.89 (1.46) 2.30 (1.95) 

SOL 11.15 (10.10) 12.42 (10.35) 10.88 (8.98) 15.62 (13.43) 

10-month visit 

n 22 82 62 10 

Age in Days 318.77 (15.76) 318.04 (14.16) 319.57 (15.05) 319.40 (9.24) 

Sex (M:F) 15:7 46:36 34:28 6:4 

ADOS CSS 1.53 (0.61) 2.97 (2.20) 2.73 (1.83) 3.89 (3.14) 

Mullen ELC 90.09 (11.05) 87.56 (14.66) 87.61 (14.76) 87.80 (12.53) 
Number of 
awakenings 1.27 (1.08) 1.95 (1.37) 1.95 (1.40) 2.00 (1.76) 

SOL 7.92 (6.19) 11.45 (7.51) 10.08 (6.42) 16.25 (10.33) 

TSI 0.1412 (0.1407) -0.0088 (0.2120) -0.0098 (0.2246) -0.0320 (0.1486) 

14-month visit 

n 19 84 65 11 

Age in Days 448.16 (17.62) 449.56 (18.90) 451.56 (19.38) 443.82 (15.68) 

Sex (M:F) 12:7 45:39 34:31 7:4 

ADOS CSS 1.59 (0.71) 2.96 (2.16) 2.69 (1.79) 4.00 (2.98) 

Mullen ELC 80.26 (10.84) 76.29 (12.69) 77.06 (13.81) 69.27 (7.28) 
Number of 
awakenings 1.00 (1.45) 1.87 (1.46) 1.72 (1.33) 2.73 (1.74) 

SOL 6.46 (7.25) 13.18 (11.40) 12.59 (12.25) 17.29 (10.15) 
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Appendix B. Low Threshold Questions 

All questions included for the calculation of the variable Low Threshold are listed here. In Chapter 2 

and 3, the first version of the Infant/Toddler Sensory profile (ITSP) was used. At the 5 month 

timepoint caregivers completed the 0-7 month version (Table A.2). At the 10- and 14-month 

timepoint caregivers completed the 7-36 month version (Table A.3). In Chapter 5, the second version 

of the same questionnaire was used: the Sensory Profile-2 (SP-2). Caregivers completed the 7-36-

month version of the SP-2 (Table A.4). 

Table A.2 Questions from the Infant/Toddler Sensory Profile of the sensory sensitivity and avoidance quadrants 

0-7 months. Question 5 (in red) was removed for the analysis 

Quadrant Item 
number 

Question Modality 

Sensory sensitivity 4. My child’s behaviour deteriorates when the 
schedule changes 

General 

5. My child has difficulty getting to sleep and is easily 
awakened 

General 

6. My child is irritable when compared to same age 
children 

General 

13. My child startles easily at sound compared to other 
children the same age 

Auditory 

14. My child is distracted and/or has difficulty eating in 
noisy environments 

Auditory 

19. My child gets fussy when exposed to bright lights Visual 

21. My child startles at own reflection in the mirror Visual 

25. My child becomes agitated when having hair 
washed 

Tactile 

27. My child is distressed when having nails trimmed Tactile 

33. My child becomes upset when placed on their back 
to change diapers 

Vestibular 

34. Riding in the car upsets my child Vestibular 

36. My child cries or fusses whenever I try to move 
him/her 

Vestibular 

Avoidance 22. My child avoids looking at toys Visual 

24. My child resists being held Tactile 

26. My child avoids getting face/nose wiped Tactile 

28. My child resists being held Tactile 

35. My child resists having head tipped back during 
bathing 

Vestibular 
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Table A.3 Questions from the Infant/Toddler Sensory Profile of the sensory sensitivity and avoidance quadrants 

7 – 36  months. 

Quadrant Item 
number 

Question Modality 

Sensory sensitivity 1. My child’s behaviour deteriorates when the 
schedule changes 

General 

8. My child startles easily at sound compared to other 
children the same age 

Auditory 

9. My child is distracted and/or has difficulty eating in 
noisy environments 

Auditory 

22. My child becomes agitated when having hair 
washed 

Tactile 

24. My child is distressed when having nails trimmed Tactile 

26. My child is upset by changes in the bath water 
temperature, from one bath to the next.  

Tactile 

28. My child becomes upset if own clothing, hands, 
and/or face are messy 

Tactile 

29. My child gets upset with extreme differences in 
room temperature (for example, hotter, colder) 

Tactile 

30. My child becomes anxious when walking or crawling 
on certain surfaces (for example, grass, sand, carpet, 
tile) 

Tactile 

39. My child becomes upset when placed on back to 
change diapers 

Vestibular 

41. My child cries or fusses whenever I try to move 
him/her 

Vestibular 

Avoidance 2. My child avoids playing with others. General 

3. My child withdraws from situations General 

11. My child tries to escape from noisy environments Auditory 

17. My child refuses to look at books with me Visual 

21. My child resists being held Tactile 

23. My child avoids getting face/nose wiped Tactile 

25. My child resists being cuddled Tactile 

27. My child avoids contact with rough or cold surfaces 
(for example, squirms, arches, cries.) 

Tactile 

40. My child resists having head tipped back during 
bathing 

Vestibular 

45. My child refuses all but a few food choices. Oral 

46. My child resists having teeth brushed. Oral 

48. My child refuses to try new foods Oral 
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Table A.4 Questions from the Sensory Profile 2 (7-36 months version) of the sensory sensitivity and avoidance 

quadrant .  

Quadrant Item 
number 

Question Modality 

Sensory sensitivity 1. Needs a routine to stay content or calm General 

2. Acts in a way that interferes with family schedules General 

13. Startles easily at sound compared to same-age 
children (for example, dog barking, children 
shouting) 

Auditory 

16. Becomes upset or tries to escape from noisy 
settings 

Auditory 

26. Becomes upset when having nails trimmed. Touch 

31. Pulls all clothing or resists getting clothing on Touch 

34. Becomes anxious when walking or crawling on 
certain surfaces (for example, grass, sand, carpet, 
tile) 

Touch 

39. Becomes upset when placed on the back (for 
example, at changing times) 

Movement 

41. Fusses when moved around (for example, at 
changing times) 

 

44. Prefers one texture of food (for example, smooth, 
crunchy) 

Oral 

48. Has difficulty weaning to chunky foods Oral 

52. Is fussy or irritable Behavioural 

Avoidance 3. Resists playing among other children General 

10. Gets anxious in new situations General 

27. Resists being cuddled Touch 

28. Is upset when moving among spaces with very 
different temperatures (for example, colder, 
warmer) 

Touch 

29. Withdraws from contact with rough, cold, or sticky 
surfaces (for example, carpet, countertops) 

Touch 

33. Becomes upset if own clothing, hands, or face are 
messy 

Touch 

35. Withdraws from unexpected touch Touch 

42. Shows a clear dislike for all but a few food choices Oral 

49. Has temper tantrums Behavioural 

53. Is bothered by new settings Behavioural 

54. Becomes so upset in new settings that it’s hard to 
calm down 

Behavioural 
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Appendix C. Chapter 3: variable distributions and outliers 

Table A.5 Datapoints with a z-score above 3. Values in red were Winsorized. Awa: Night awakenings; SOL: 

Sleep Onset Latency; LT: Low Threshold 

 z-score Original value Winsorized value 

Awa 5 months /   

Awa 10 months 5.404 10 7 

Awa 14 months 3.429 7 / 

SOL 5 months 5.896 
3.861 

90 
63.33 

48.67 
47.67 

SOL 10 months 3.202 34.17 / 

SOL 14 months 5.849 
3.221 

85.33 
52.5 

53.5 

LT 5 months 3.684 3.625 / 

LT 10 months 3.510 
3.073 

4 
3.739 

/ 

LT 14 months 3.39955 4 / 

 

Table A.6 Normality, skewness and kurtosis of all continuous variables included in the models. Outliers have been 

Winsorized 
 

Mean Variance Skewness Kurtosis Normalilty test 
 

W p-value 

Awa_5 2.19 2.10 0.40 -0.47 0.95 0.001 

Awa_10 1.91 1.84 0.88 1.41 0.92 <0.001 

Awa_14 1.80 2.30 1.15 1.35 0.89 <0.001 

SOL_5 12.08 103.77 1.70 3.70 0.83 <0.001 

SOL_10 10.70 53.71 0.80 0.29 0.95 <0.001 

SOL_14 11.94 120.71 1.57 2.57 0.84 <0.001 

LT_5 1.84 0.24 0.90 1.26 0.95 0.001 

LT_10 1.90 0.36 1.28 1.63 0.90 <0.001 

LT_14 1.99 0.35 1.16 0.88 0.90 <0.001 
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Appendix D. Topography of sigma and delta power in the pilot sample 

Topography of sigma and delta in the first 14 recordings, used to justify regions of interest in the pre-

registration. 

 

Figure A.1 Comparison of topography for sigma and delta power topography in the pilot sample of this study and 

infants 0-6 months old. A) Sigma power (9-16 Hz) in N2 and N3 in the pilot sample (n = 14). B) Delta power (0.5-

4 Hz) in N2 and N3 in the pilot sample. C) Figure adapted from Sokoloff et al. (2021) showing the sigma and delta 

power changes from 0-6 months of age. 
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Figure A.2 Comparison of the topography of slow and fast sleep spindle activity (9-13 Hz and 13-16 Hz 

respectively). Average of the pilot sample (n=14). 

 

Figure A.3 Individual sigma peaks plotted from 9-16 Hz. Grey lines are individual channels (F3, F4, C3, C4, P3, P4), 

black line in the average of those channels. 
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Appendix E. K-complex likelihood S1 and S2 
 

 

Figure A. 4 K-complex likelihood in the absence of stimulation (OFF), after S1 (ON S1) and S2 (ON S2). 

 

Appendix F. AI, SWA and Sigma across sleep stages 

 

Figure A.5 A. Activation index (beta/delta), B. Slow wave activity (SWA) and C. sigma power across sleep 

stages. 
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Appendix G. Chapter 5: Outliers 

Table A.7 Outliers and Winsorized values (in red) of Chapter 5. 

 z-score Original value Winsorized value 

Sleep duration SPT 3.310 127 / 

Arousal density 4.36 0.422 0.261 

Spindle density N2 3.614 
3.416 

4.723 
4.538 

3.599 
3.499 

Median spindle frequency 
N2 

-3.834 9.819 11.184 

Median SWA N3 3.227 
3.592 

4062.31 
4309.04 

/ 
/ 

Median Sigma N2 3.141 42.427 / 

 

 

 

  

 

 

 


