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Ecography Technological advances are enabling ecologists to conduct large-scale and structured
2025: 07461 community surveys. However, it is unclear how best to extract information from these
S novel community data. We metabarcoded 48 vertebrate species from their eDNA in
doi: 10.1111/ecog.07461 ) p , .
320 ponds across England and applied the ‘internal structure’ approach, which uses
Subject Editor: Miguel G. Matias joint species distribution models (JSDMs) to explain compositions as the result of four
Editor-in-Chief: Miguel Aratjo metacommunity processes: environmental filtering, dispersal, species interactions, and
Accepted 08 January 2025 stochasticity. We confirm that environmental filtering plays an important role in com-

munity assembly, and find that species’ estimated environmental preferences are con-
sistent with known ecologies. We also detect negative biotic covariances between fish
and amphibians after controlling for divergent environmental preferences, consistent
with predator—prey interactions (likely mediated by predator avoidance behaviour),
and we detect high spatial autocorrelation for the palmate newt, consistent with its
hypothesised relict distribution. Promisingly, ecologically and spatially distinctive sites
are better explained by their environmental covariates and geographic locations, respec-
tively, revealing sites where environmental filtering and dispersal limitation act more
strongly. These results are consistent with the recent proposal that applying JSDMs to
species distribution patterns can help reveal the relative importance of environmental
filtering, dispersal limitation, and biotic interaction processes for individual sites and
species. Our results also highlight the value of the modern interpretation of metacom-
munity ecology, which embraces the fact that assembly processes differ among species
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and sites. We discuss how novel community data allow for several study design improvements that will strengthen the infer-
ence of metacommunity assembly processes from observational data.

Keywords: Aquatic eDNA, biodiversity, joint species distribution model (JSDM), macroecology, metabarcoding, Triturus

cristatus

Introduction

Metacommunity theory, which explicitly models feedback
between local communities and regional species pools, has
been proposed as a unifying theory of spatial community
ecology (Leibold et al. 2004, Leibold and Chase 2018). In
the framework of this theory, we consider a set of communi-
ties whose local population dynamics are governed by envi-
ronmental filtering, species interactions, and ecological drift
and that are additionally linked by dispersal. The goal of the
theory is to understand how these four basic assembly pro-
cesses determine species compositions in the metacommu-
nity (Vellend 2016). Traditionally, this has been done with
classical community data gathered by human observers, but
the fact that modern sensors such as eDNA deliver commu-
nity observations that are ideally suited for metacommunity
analysis has created excitement in the field and also makes
metacommunity analysis interesting for molecular ecologists
(Hartig et al. 2024).

Empirical approaches to studying metacommunities
mainly aim at inferring the relative contributions of the four
assembly processes (dispersal, environmental filtering, spe-
cies interactions, and drift) from empirical data. Examples
of these are analyses based on community summary statis-
tics, such as ordinations that describe different metacom-
munities using centroids and distances, and alpha and beta
diversities (Fig. 1). Another common approach to analyse
metacommunity data is variation partitioning, where, classi-
cally, community composition is explained by metacommu-
nity-level contributions of environmental and spatial factors
(Cottenie 2005). However, those approaches exhibit limited
power to reveal assembly processes (Ovaskainen et al. 2019,
Guzman et al. 2022), in part because summary metrics can-
not reveal how the four processes differentially affect indi-
vidual species and sites. Leibold et al. (2022) refer to such
metacommunity-level metrics as studying the ‘external struc-
ture’ of metacommunities, because they assume that there is
‘one average mix’ of assembly processes that is the same across
sites and species.

To avoid averaging assembly processes across sites and
species, Leibold et al. (2022) propose studying the ‘internal
structures of metacommunities, which dissect the impor-
tance of different assembly processes by each species and site.
Technically, this can be done by using a joint species distri-
bution model (JSDM) to partition the varying contribu-
tions of three model components (environmental covariates,
species covariances, and spatial autocorrelation) to explain
species presence/absence, for each individual species and
site (Fig. 1). Among other things, this approach allows one
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to relate environmental differences between sites, and trait
differences between species, to differences in the variation
explained by each component, thereby generating testable
hypotheses that link distribution patterns to metacommunity
assembly processes.

Simulation studies have shown that internal-structure
analysis can indeed differentiate synthetic metacommuni-
ties that differ in site environmental distinctiveness and in
species niche breadth, dispersal ability, niche centrality, and
the presence or absence of competitive interactions (Fig. 1,
Leibold et al. 2022, Terry et al. 2023). While these simu-
lation results are encouraging, real metacommunity datasets
have more complicated properties, including detection fail-
ures, measurement errors, and model uncertainty; not all
species, environmental covariates, and sites can be included;
species interact in multiple ways; and real metacommunities
might be non-stationary, not least because of climate change
(Abrego et al. 2021, Terry et al. 2023, Kadoya et al. 2024).
Thus, it is important to gain more experience about the appli-
cability of the internal structure idea to real data.

An ideal empirical metacommunity dataset for inferring
internal structure would 1) consist of many local-commu-
nity inventories with standardised species presence—absence
or abundance information, 2) be within an area that is con-
nected (and large) enough for dispersal (and dispersal limita-
tion) to operate, 3) have the taxonomic breadth to include
interacting guilds such as predators and prey, and 4) have
measutes of local environmental conditions relevant to the
niche requirements of all these species. An exemplary study is
provided by Kadoya et al. (2024) who applied internal-struc-
ture analysis to gillnet survey data covering three countries,
93 fish species, and 1853 lakes, and found that environmen-
tal covariates explained the most variation in species distribu-
tions and lake compositions, highlighting the importance of
environmental filtering. Kadoya et al. (2024) then projected
the effect of future climate heating on lake species composi-
tions by running the fitted model with higher values of the
degree-days environmental covariate while using the biotic
covariances to simulate the effect of species interactions.

A promising alternative to traditional community observa-
tions is eDNA metabarcoding, which can generate repeated,
large-scale, structured, and standardised community surveys
(Hartig et al. 2024), but eDNA has so far rarely been used
in metacommunity ecology (Vass et al. 2022, Macher et al.
2024).

Our survey data come from ponds in the south Midlands
of England that were originally sampled to detect the great
crested newt Triturus cristatus, a UK-protected amphib-
ian species that breeds in ponds (Biggs et al. 2015).
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B2. Internal-structure analysis of metacommunities

Leibold et al. (2022) applied a joint species distribution model (JSDM) to synthetic metacommunities and partitioned total
variation. JSDMs are multivariate regression models that fit environmental-covariate and (optionally) spatial-autocorrelation
terms to individual species distributions and then estimate pairwise species covariances from the residuals. For each species and
site, variation in species distributions and compositional variation, respectively, is partitioned into that which can be attributed to
environmental covariates (E), spatial autocorrelation (S), and biotic covariances (C, the combined effects of unmeasured
environmental covariates + biotic interactions). Unexplained variation measures the contribution of ecological drift.

Biotic covariances

Species distributions are relatively better explained by negative or positive co-occurrences with other species.
These co-occurrences can be caused by correlated responses to the same (but unmeasured) environmental
covariates or to dispersal limitation, to mediator species (such as shared predators), or to direct biotic interactions
(such as competition or predation).

Environmental covariates

Species are relatively better
explained by environmental
covariates, presumably with
distributions that are
relatively more driven by

environmental filtering.

Spatial autocorrelation

Species are relatively better
explained by spatial covariates
are those that show signals of
dispersal effect (at the spatial
scale and resolution being
analysed).

bt ’ S(ju ey

C. Narrow- and broad-niche metacommunity scenarios with competitive species interactions

In the narrow niche simulations of Leibold et al. (2022), the distributions of some species and the composition of the more
environmentally distinctive sites were well explained by local environmental covariances (high E values), consistent with
environmental filtering. Other species were better explained by biotic covariances (high C values), suggesting the effect of
competition on their distributions, or by spatial autocorrelation (high S values), suggesting dispersal limitation. In contrast, when
species were given broad niches, little of the variance in species distributions or site composition was explained by environmental
covariates, consistent with weak effects of environmental filtering.
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Figure 1. External- versus internal-structure analysis of metacommunities.
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We metabarcoded the residual eDNA to detect vertebrates,
generating a community matrix of 320 ponds X 48 vertebrate
species. Each pond was associated with eight environmental
covariates and a geographic location, allowing us to fit three
data matrices in a JSDM (Fig. 1). Here, we test how well the
internal structure of a candidate pond metacommunity sur-
veyed with eDNA matches expectations derived from exter-
nal knowledge of species ecologies.

We expect to observe negative biotic covariances at the
pond scale between newts and fishes. First, fish can reduce
newt populations in two ways, via predation of eggs, lar-
vae, and possibly adults; and via competition with newts for
invertebrate prey (Beebee and Griffichs 2005, Hartel et al.
2007, Winandy et al. 2017). Second, Hartel et al. (2007)
visually surveyed ponds and found negative correlations at
the pond scale between predatory fish and two newt species,
great crested 7. cristatus and smooth Lissotriton vulgaris, but
no correlation with common toad Bufo bufo, which is pro-
tected by bufotoxin (see also Hartel et al. 2007). Third, while
this negative correlation could in theory be driven entirely by
divergent environmental preferences along unmeasured niche
axes, a behavioural mesocosm experiment with the alpine
newt Iehthyosaura alpestris (Winandy et al. 2017) found that
adult newts actively disperse away from aquaria with fish,
but stay longer in otherwise equivalent aquaria without fish.
Since newts are amphibious and can thus switch ponds more
easily than fish can, this behaviour can rapidly generate nega-
tive residual covariances between newts and fish, except when
ponds are isolated.

We also expect to see environmental covariate effects on
newt distributions, with visual survey studies (Denoél and
Lehmann 2006, Hartel et al. 2007, 2010, Denoél et al. 2013)
finding greater newt occupancy in larger, deeper, more vege-
tated ponds near other ponds, especially when also inhabited
by newts. Finally, we expected to obtain spatial covariance
effects that are consistent with dispersal limitation, consis-
tent with other freshwater community studies that have par-
titioned variation among biotic, environmental, and spatial

components (Padial et al. 2014, Montafa et al. 2022).

Material and methods

Environmental covariates

To quantify land cover around each pond, we used
Rowland et al.’s (2017) 21 UK land classes. For each pond,
we calculated the proportions of land class within a 500 m
radius of its point location and used principal component
analysis in {FactoMineR} ver. 2.4 (L& et al. 2008) to extract
the top three principal components (accounting for 40% of
total variation, Supporting information), which correlate
with the degree of agriculture versus urban cover, grassland
cover, and woodland cover. Each pond was also scored during
sampling for ten standard pond variables used by surveyors
to calculate the pond’s habitat suitability index (HSI) for the
great crested newt (ARG-UK 2010), of which we used five
(Supporting information).
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Pond water sampling and metabarcoding assays

The pond water samples were the result of a single-sea-
son, great crested newt survey of 544 ponds in the south
Midlands of England, UK, in 2017. Samples were collected
and processed following Biggs et al. (2015) and were stored
at ambient temperature until shipped to a commercial lab
(NatureMetrics, Egham, UK), and DNA was extracted using
a precipitation protocol (Tréguier et al. 2014), after which
each sample’s DNA was cleaned and subjected to 12 separate
qPCR tests. After the qPCR assays, the residual eDNA was
stored at —80°C.

In 2019, the residual eDNA samples were retrieved and
subjected to metabarcoding at NatureMetrics (PCR) and
at Kunming Institute of Zoology (library preparation). The
PCR and library preparation were conducted using a twin-
tagging protocol (Yang et al. 2021). The resulting prod-
ucts were then sequenced on an Illumina HiSeq platform
(PE150) at Novogene Tianjin, China. We processed the
raw sequence data with the modified DAMe bioinformatics
pipeline of Cai et al. (2021). After sequence clustering, we
generated a table of 540 ponds by 74 operational taxonomic
units (OTUs). We assigned taxonomies to the OTUs using
PROTAX (Somervuo et al. 2017, Axtner et al. 2019), setting
prior probabilities to 0.90 for a list of expected UK verte-
brate species (Harper et al. 2018). Further details regarding
the metabarcoding process can be found in the Supporting
information.

Joint species distribution modelling

To fit JSDMs to the observed community data, we converted
OTU read counts to presence—absence data. We retained
only OTUs present in > five ponds and only sites with >
one targeted OTU (= vertebrate species present in the UK),
which reduced the number of OTUs from 74 to 48 and the
number of ponds from 540 to 320. We assigned species-level
taxonomies to OTUs that received > 98% PROTAX prob-
ability of species assignment, and we classified the OTUs into
six trait groups: fish, amphibians, perching birds, waterfowl,
mammals, and domestic species. Domestic species are whose
distributions we deemed as determined largely by humans
(Supporting information).

We fit our data with two distinct JSDM structures. One
model was fit to all the species in our dataset, terrestrial and
aquatic (320 ponds X 48 species), and the other model fit
to only the aquatic species (amphibians and fish, 279 ponds
X 15 species; fewer ponds because we excluded those with-
out aquatic species). A priori, aquatic species should be more
likely to be filtered by pond characteristics, which make up
five of our cight environmental covariates. Thus, we expect
the aquatic species, especially the fish, to act more like nar-
row-niche species, and the terrestrial species to act more like
broad-niche species (Fig. 1C).

All models were fitted using {sjSDM} ver. 1.0.6 (Pichler
and Hartig 2021) running under R ver. 4.2.2 (www.r-proj-
ect.org). We used a binomial likelihood and a multivariate
probit link, linear main effects for the eight environmental
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covariates, and a DNN (deep neural net) spatial model.
To avoid overfitting, a light elastic net regularisation (Zou
and Hastie 2005) was applied to all regression slopes and
weights of the DNN (model fitting details in the Supporting

information).

Internal structure of the metacommunity

After ficting the two models (aquatic, terrestrial + aquatic), we
used the ANOVA functions implemented in sjSDM (based
on Leibold et al. 2022) to partition the variation of each spe-
cies’ distribution and each site’s composition across environ-
mental covariates (E), spatial autocorrelation (S), and biotic
covariances (C) components. The relative partial McFadden
R? are visualised using ternary plots, where the positions of
the species and sites reveal the relative contributions of E, S,
and C: the metacommunity’s internal structure (Fig. 1B2).
Leibold et al. (2022) found that environmentally more
distinctive sites (at the ends of their one niche axis) received
higher E values (implying a greater contribution of environ-
mental filtering). To test for this result in a natural metacom-
munity, we regressed the individual pond partial E, S and C
R? values against pond environmental distinctiveness using
quantile regression (50% quantile) (Fasiolo et al. 2021). We
also tested the parallel hypothesis that geographically distinc-
tive sites would have higher partial S R* values (implying a
greater contribution of dispersal limitation). In both cases,
we defined distinctiveness as the leading eigenvector of the
corresponding environmental or geographical euclidean dis-
tance matrix. We note that if predictor variables are collinear,
bivariate correlations can be spurious and partial correlations
calculated using multiple regressions should be preferred.
However, environmental and geographic distinctiveness
show practically no collinearity (Supporting information).

Model generality

Our results are the outputs of a complex model that includes
a linear environmental structure with eight environmental
covariates and a DNN spatial structure with 30 X 2 layers.
Complex models run a risk of overfitting, so to estimate the
risk of overfitting after elastic-net regularisation and to val-
idate the predictive performance, we carried out a 20-fold
cross-validation test with stratified multi-label sampling
(Gunopulos et al. 2011, Szymariski and Kajdanowicz 2017).
The final explanatory and predictive area under the curves
(AUCs) per species are the means over 20 folds. Species with
higher predictive AUCs are those whose fitted models are
more general (details in the Supporting information).

Results

Internal structure of the pond metacommunity

When analysing aquatic species only, we find that the fish are
bimodally arrayed along the E-C axis, with four species rela-
tively better explained by environmental covariates (higher

E values), and six species relatively better explained by biotic
covariances (higher C values), which reflect the effects of
unknown environmental covariates plus possible species
interactions (Fig. 2A).

In contrast, none of the five amphibian species shows a
high contribution of either environmental covariates or
biotic covariances, but relative to fishes, amphibians show
greater contributions of spatial effect (higher S values), espe-
cially the palmate newt Lissotriton helveticus, whose distribu-
tion is mostly explained by spatial effect. This species was
detected in 16 ponds, in three separate sections of the survey
area (Supporting information).

Including terrestrial species in the analysis (Fig. 2C)
increases the relative contribution of biotic covariance for
both fish and amphibians, which could reflect either the con-
tributions of species interactions with terrestrial species or
more unmeasured environmental covariates that have been
revealed by adding the terrestrial species. The terrestrial spe-
cies themselves also largely range along the E-C axis, with no
clear clustering by trait group. Like the aquatic species, only
one terrestrial species, Mandarin duck Aix galericulata, has a
high S value (Supporting information) and is found in only
five ponds. For the two site ternary plots (Fig. 2B, D), the
general effect of adding terrestrial species is an increase in the
variance accounted for by biotic covariances (site points shift
upwards toward C).

We now examine species and site variation to try to infer
some of the assembly processes that have resulted in these
observed internal structures.

Estimated environmental preferences

In the aquatic-only model (Fig. 3A), the pond effects for the
fish species are in the direction of greater prevalence in larger
ponds with lower risk of drying and less macrophyte cover.
Several of the fish species are known to eat macrophytes,
reduce macrophyte cover through other behaviours, and/or
require higher oxygen with less macrophyte cover (Lopes et al.
2015, Maceda-Veiga et al. 2017, Stefanoudis et al. 2017). In
contrast, for the amphibians, pond effects are in the direc-
tion of greater prevalence in smaller ponds with higher mac-
rophyte cover. Pond drying risk, water quality, and shade
showed essentially no effects on amphibian prevalence. Most
of the effects of land cover on fish species are in the direc-
tion of lower prevalence in areas surrounded by agriculture
or grassland. For amphibians, the effect is towards the preva-
lence of ponds bordered by woodland. This effect is observed
for all five amphibian species but is only significant for the
palmate newt and the common frog.

In the aquatic + terrestrial model (Fig. 3B), the effects of
the environmental covariates on fish and amphibians remain
largely the same as in the aquatic-only model. For the ter-
restrial species, most of the significant environmental-covari-
ate effects are shade (% of pond perimeter shaded by trees),
macrophyte cover, and land cover. Shade, which affects many
perching birds and the grey squirrel, is most parsimoniously
interpreted as increasing species detectabilities. Land-cover
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Figure 2. The internal structure of a pond metacommunity. The explained variation in species distributions or site compositions is decom-
posed, attributed to the three model components, environmental covariates (E), spatial autocorrelation (S), and biotic covariances (also
known as co-distribution) (C), and visualised in a ternary plot after dividing each components explained variance by its sum to allow
comparison among species. Top row: aquatic species only. Bottom row: aquatic + terrestrial species. Left column: each point is a species,
point size scales to total R, ;. ... of each species, and the colours code for species trait group. Right column: each point is a site (pond), and

point size scales to total R% ;. .., of each site.

effects are variable across species, but we note that cows
and sheep have higher prevalences in ponds bordered by
(‘improved’) grassland.

Biotic covariances

We visualise the residual biotic covariances in pairwise correla-
tion plots (Fig. 4), where large absolute correlation-coeflicient
values correlate with high C-values in the internal-structure
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ternary plots (Fig. 2 left column; linear model, aquatic species
only, R?=0.726, p < 0.001; aquatic + terrestrial, R?=0.201,
p < 0.001).

In the aquatic species model (Fig. 4A, B) and after filter-
ing to the 2.5% most negative and positive values, the three
surviving negative correlations are between the common frog
Rana temporaria and two omnivorous fish species Carassius
carassius and Cyprinus carpio and between great crested newt
Triturus cristatus and a carnivorous fish Esox /ucius. There are
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Figure 3. Estimated environmental effects. Eight environmental covariates were included in the model. The first five covariates from the left
are taken from the ten standard pond variables used by surveyors to calculate the habitat suitability index (HSI) of each pond for the great
crested newt and are therefore measured at all ponds in our dataset (ARG-UK 2010). The last three covariates describe the dominant land
cover class within 500 m of each pond (more details in the Supporting information). Horizontal bars show the magnitudes, directions, and
standard errors of the coefficients of each of the eight environmental covariates for each species. All covariates were normalised before fitting.
Significance values are not corrected for multiple comparisons. Colours indicate species trait groups.
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Figure 4. Biotic covariances. (A) Aquatic species only, all pairwise covariances. (B) Covariances filtered to the 2.5% most negative and posi-
tive. (C) Aquatic + terrestrial species, all pairwise biotic covariances. (D) Covariances filtered to the 2.5% most negative and positive.

also three surviving positive correlations between fish species,
which we conservatively interpret as indicating unmeasured
environmental covariates.

In the aquatic + terrestrial species model (Fig. 4C, D) and
after filtering to the 2.5% most negative and positive val-
ues, there are four surviving negative correlations between
amphibians and fish. The common frog is negatively corre-
lated with two omnivorous fish species Gyprinus carpio and
Rutilus rutilus, and great crested newt Triturus cristatus is neg-
atively correlated with two carnivorous/omnivorous fish Esox
lucius and Tinca tinca. Most of the surviving positive correla-
tions occur among the fish species and among the bird spe-
cies, which we again interpret as unmeasured environmental
covariates. Also notable are negative correlations between sev-
eral fish species with ring-necked pheasant Phasianus colchicus
and red fox Vulpes vulpes.

Relating distribution patterns to assembly processes

By site, the partial R* explained by the environment increases
significantly with the environmental distinctiveness of the
site (Fig. 5A), and the partial site R* explained by space
increases significantly with the geographical distinctiveness
of the site (Fig. 5B). This result holds up for four of the six
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trait groups tested individually (amphibians, perching birds,
domestic animals, and mammals) (Supporting information).
Differing from Fig. 2, where the position of species in the
internal structure depends on the relative weights of the three
components (relative R?), the R? here refers to the total con-
tribution of a single component, regardless of its weight with
other components. In other words, environmental filtering
appears to be an increasingly more important assembly pro-
cess for more environmentally distinctive sites, as predicted
by Leibold et al. (2022), and spatial effect appears to be
increasingly more important for geographically distinctive
sites. Given this environment effect, we post hoc tested each
covariate individually and found that the partial R? explained
by the environment increases only with pond area (Fig. 5C,
Supporting information), suggesting that the species compo-
sitions of large ponds is determined more strongly by envi-
ronmental filtering.

By species group, the partial R? explained by biotic covari-
ances is greatest for fish, amphibians, and waterfowl, and
about equal with the R* explained by the environment for
the other three trait groups (Fig. 5D), which is consistent
with species distributions being primarily governed by a com-
bination of environmental filtering and (to a lesser extent)
species interactions. The most pond-dependent species (fish,
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Figure 5. Correlation of the importance of assembly processes per site and species to environmental predictors and traits. (A)—(C) Quantile
regression, correlating the importance of the three assembly mechanisms (measured by the share of absolute partial R* values, each in a dif-
ferent colour) per site against (A) environmental distinctiveness (p < 0.001 for the environmental line), (B) geographical distinctiveness (p
< 0.001 for the spatial line), and (C) pond area (p=0.006 for the environmental component line). (D) Association of R? shares per species
with traits, in this case, species groups. Note that the shared fractions were removed from the partial R?, so the three components will not

necessarily sum up to the total R* value, which is displayed in Fig. 2.

amphibians, waterfowl) are the least well explained by our
environmental covariates, although there are individual
exceptions (Fig. 2A, C).

Model generality

For the aquatic-only model, explanatory AUCs are always
somewhat but not much greater than predictive AUCs, and
explanatory and predictive AUCs are positively correlated
(linear model, adjusted R*=0.546, p=0.001) (Fig. 6A). For
the aquatic + terrestrial model, explanatory AUCs are again
still always greater than predictive AUCs, but the correlation
weakens considerably (linear model, adjusted R*=0.139,
p=0.005), and for some terrestrial species, the model makes
worse-than-random predictions (predictive AUCs < 0.5)
(Fig. 6B). The risk of overfitting is greater for low-predic-
tive-AUC species, so the risk is greater for terrestrial species.
We therefore focus on the aquatic species when interpreting
model outputs.

Discussion

The goal of our study was to reveal the internal structure of a
real metacommunity, in order to infer the importances of dif-
ferent assembly processes per species and site. We estimated

the relative contributions of environmental covariates, biotic
covariances, and space for explaining spatial variation in
pond compositions. Pondscapes are convenient study systems
because 1) each pond is unambiguously identified as a local
community (De Meester et al. 2005), 2) there is an a priori
division between pond niche aquatic versus terrestrial niche
(Hill et al. 2021), 3) aquatic eDNA metabarcoding can effi-
ciently generate hundreds of local-community inventories,
and 4) the detected species encompass multiple trophic lev-
els, increasing the possibility of detecting species interactions
(Hering et al. 2018).

Importance of taxonomic breath

We estimated two internal structures, one for aquatic species
only and one for aquatic + terrestrial species (Fig. 2), which
both showed that the distribution of each species and the spe-
cies composition of each site were shaped by different mixes
of ecological processes. This gives us our first conclusion,
which is that the ‘one average mix’ approach to metacom-
munities indeed loses useful information contained in the
variation among species and sites (Leibold et al. 2022). In
this pond metacommunity, even if one makes the extreme
assumption that all the variation partitioned to biotic cova-
riance is also environmental filtering (but unmeasured), the
species and sites still vary in their inferred degrees of dispersal
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Figure 6. Predictive versus explanatory performance in two joint species distribution models (JSDMs). (A) Aquatic-species-only model. (B)
Aquatic + terrestrial species model. Model performance was assessed using the AUC metric, and the dotted lines indicate mean AUC values
(vertical for predictive and horizontal for explanatory). In both models, predictive performance is generally higher for fish than for amphib-
ians, and explanatory performance is generally somewhat greater than the predictive performance, indicating moderate overfitting.

effect, and thus no single metacommunity paradigm (i.e. spe-
cies-sorting, mass-effect, patch-dynamic, and neutral com-
munities; Holyoak et al. 2005, Shoemaker and Melbourne
2016, Thompson et al. 2020, Suzuki and Economo 2021)
can serve as an adequate description.

Influence of environmental filtering

Looking at how metacommunity assembly processes vary
across sites and species, both of the internal structures (Fig. 24,
C) suggest that environmental filtering is an important struc-
turing force for many of the species in this pondscape. These
findings are supported by the fact that environmental-covari-
ate coeflicient values are consistent with known biology. For
instance, smooth and great crested newts are more prevalent
in smaller ponds with greater macrophyte coverage (Fig. 3).
In Romania, a visual survey found that macrophyte cover was
also the strongest positive predictor of the great crested newt
(Hartel et al. 2010), and in England, an eDNA pond survey
also found that great crested newt is more prevalent in smaller
ponds (Harper et al. 2020). Conversely, higher water quality
is not associated with a higher prevalence of any amphibian
species, despite its use as a component of the great crested
newt’s habitat suitability index (ARG-UK 2010). Indeed,
Beebee and Griffiths (2005) and Sewell and Griffiths (2009)
have argued that amphibians are not necessarily sensitive bio-
logical indicators of environmental quality.

Environmental filtering has also been implicated as the
main determinant of macroinvertebrate species compositions
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in pondscapes in the UK Midlands (Hill et al. 2017) and the
US south (Montafa et al. 2022). Heino et al. (2017) found
that insects, macrophytes, and fish were better predicted by
environmental filtering than by spatial effects in Finnish
streams.

That said, observed niche preferences (environmental
covariate values in fitted JSDMs) represent realised niches,
not necessarily fundamental niches (Poggiato et al. 2021),
and in the case of amphibians, parts of their realised niches
are probably shaped by the predator-avoidance behaviour
that we hypothesised in the Introduction drives the negative
biotic covariances between newts, common frog, and fish
(Fig. 4). As a result, the observed amphibian preferences for
smaller ponds might disappear if fish were to disappear, since
great crested and smooth newts have been observed to prefer-
entially breed in larger ponds in continental Europe (Denoél
and Lehmann 2006, Rannap and Briggs 2006, Skei et al.
2006, Denoél et al. 2013).

To the extent that environmental filtering is an impor-
tant assembly process in this metacommunity, Leibold et al.
(2022) predict that more environmentally distinctive sites
should be more strongly determined by environmental fil-
tering. This is what we indeed observe (Fig. 5A). Moreover,
it appears that pond size is a major driver of uniqueness,
since the compositions of large ponds are determined more
strongly by environmental filtering (Fig. 5C). Tornero et al.
(2024) censused macroinvertebrates in ponds and also found
that environmentally more distinctive ponds, including larger
ponds, are more compositionally distinctive.

85U8017 SUOWIWIOD SISO 8|qedt|dde auy Aq pausenob a1e ssppie YO ‘88N J0 S3|nJ oy Ariq1T8UIIUO AB[IAA UO (SUORIPUOD-PUR-SWBH WD A8 |IMAteIq 1 BUl|UO//:SANY) SUORIPUOD Pue SWIB | 38U} 89S *[5202/90/50] Lo Ariqi]auliuo |1 eiibuy 1e3 O AseAlun Ad T9v206008/TTTT 0T/I0p/W00 A8 | IM ARIq U1 UOS eUINO osU//:SANY Wo.y papeo|umoq ‘9 ‘GZ0Z ‘2850009T



Influence on space on the community assembly

Looking at the contribution of space, one interpretation of
which is a proxy for dispersal limitation in metacommunities
(Leibold et al. 2022), the dataset does not show that different
trait groups — as we defined them — differ consistently in the
degree of spatial autocorrelation (Fig. 2C and 5D), contrary
to our initial hypothesis.

Instead, we find that spatial effects are dominant for only
two species, palmate newt and mandarin duck (Fig. 2). The
spatial distribution of the 16 palmate newt detections is vis-
ibly patchy (Supporting information), which may reflect the
persistence of relictual populations with a historic distribu-
tion associated with woodland (Beebee and Griffiths 2000).
Whether the palmate newt is truly dispersal limited depends
on whether nearby woodland is truly environmentally equiv-
alent to historical woodland as the palmate newt perceives it.
If not equivalent, then the patchy distribution is better inter-
preted as environmental filtering (here, habitat loss) leading
to population decline and fragmentation. Alternatively, if
the palmate newt requires continuous woodland to disperse
through, which is not available in our study area, then dis-
persal limitation remains a viable hypothesis. Only individual
tracking and experimental translocations and monitoring of
population trajectories can answer this question definitively.

There are only five detections for mandarin duck
(Supporting information), so we cannot conclude much
about this species, but clearly a flighted bird should not be
physically dispersal limited. Our working hypothesis is that
this introduced species appears dispersal limited because it
has successfully established in a range of pond environments,
but the populations have not grown enough to start expand-
ing. In short, a group of founder populations should appear
dispersal limited.

Parallel to the environmental distinctiveness test (Fig. 5A),
we found that geographically distinctive sites show stronger
signals of dispersal limitation (Fig. 5B), or in other words,
isolated ponds are better explained by their location than by
their environmental conditions. Tornero et al. (2024) used
network metrics to show that both active and passive dis-
persal macroinvertebrate communities in ponds are more
compositionally unique the more isolated they are, which
is suggestive of the same effect. More generally, pond stud-
ies report significant spatial effects (e.g. proximity to other
ponds) on species compositions of both macroinvertebrates
(Hill et al. 2017, Tornero et al. 2024) and vertebrates (Denoél
and Lehmann 20006).

Influence of co-distribution on community assembly

It is not a general rule that predators and prey should exhibit
only negative biotic covariances, since predators search
for prey, and they must overlap at some times and places,
including over and above any shared environmental prefer-
ences. Theoretically, the covariances could go both directions,
favouring a positive relationship when the prevalence of both
species is equal, and possibly favouring a negative relationship

when the prevalence of one species is higher (Zurell et al.
2018). In fact, two remarkable studies that applied JSDMs
to trawl data and to observational data from marine fisheries
have reported both positive and negative biotic covariances
between predators and prey (Astarloa etal. 2019, Zhang et al.
2022). However, Astarloa et al. (2019) found that most of the
biotic covariances in their marine study system were negative,
and they attribute this to predator-avoidance behaviour.
Keeping in mind the caveat that biotic (i.e. residual pair-
wise) covariances should not be taken as direct evidence
for species interactions (Dormann et al. 2018, Zurell et al.
2018, Blanchet et al. 2020, Poggiato et al. 2021, Hartig et al.
2024), smooth newt, great crested newt, and common frog
exhibited negative biotic covariances with nearly all the fish
species (Fig. 4AC), and three (or four) of the covariances
were among the 5% most extreme (Fig. 4BD). As suggested
by Astarloa et al. (2019), these covariances are plausibly
generated by the newt species actively avoiding predators
(Winandy et al. 2017). The common frog is also known to
avoid ovipositing in ponds that contain fish (or even ponds
that were experimentally emptied of fish but still containing
fish odour), even when alternative oviposition sites are pools at
risk of drying (Kloskowski 2020, Kloskowski and Nieoczym
2022). In contrast, the bufotoxin-protected common toad
showed both weak positive and negative covariances with
fish (Fig. 4AC), and this species does not avoid ovipositing
in fish-containing ponds (Kloskowski and Nieoczym 2022).

What can eDNA bring to metacommunity ecology
and internal structure analysis?

The large gains from eDNA metabarcoding in efficiency and
error homogeneity over traditional survey methods make it
feasible to generate datasets with many samples and many
species, which can strengthen inference of metacommu-
nity assembly processes. Most obviously, the large number
of species detectable with eDNA increases the probability
of detecting sets of species that are truly interacting, such as
the negative correlations between fish and amphibians in this
study (Fig. 4). Of particular interest would be adding data
on pond macroinvertebrates and fungal diseases, which are
obvious candidates for determining vertebrate distributions
via species interactions (Beebee and Grifliths 2005).
Including more species could also suggest important but
unmeasured environmental covariates via their pairwise spe-
cies covariances. For example, while terrestrial and aquatic
species mostly do not interact, some terrestrial species could
be proxies for unmeasured land uses that affect aquatic
species, such as increased agricultural runoff. In our mod-
els, we included agricultural and improved-grassland land
cover types as environmental covariates, so we saw this effect
directly (Fig. 3). The negative covariances of foxes and pheas-
ants with multiple fish species (Fig. 4D) might be revealing
other unmeasured land-use covariates. Specifically, > 35 mil-
lion pheasants are released annually in the UK, mostly in
England, and appear to boost fox numbers and incentivise
land-cover management measures (Sage et al. 2020).
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More technically, eDNA sampling makes it more feasible
to collect multiple sample replicates, which would allow com-
bining a JSDM with a detection model to account for obser-
vation error (Guillera-Arroita et al. 2017, Tobler et al. 2019,
Doser et al. 2023, Diana et al. 2024, Hartig et al. 2024).
Also, only two species in our dataset showed strong signals
of dispersal limitation (Fig. 2), but this low number could
be because near-neighbour ponds were not sampled in our
dataset, removing the possibility of detecting fine-scale spa-
tial autocorrelation and thereby possibly reducing the relative
importance of dispersal that would support source—sink rela-
tions among closely adjacent ponds. Denser sampling might
have detected more evidence of dispersal limitation. In our
case, unfortunately, our dataset used the great crested newt
sampling protocol, which requires only one sample per pond,
and the ponds were dispersed across the landscape because
the original use was to fit a species distribution model.
Finally, eDNA sampling also makes it more feasible to survey
pondscapes repeatedly over time, thereby creating a dataset
that could be used to infer causality (Hartig et al. 2024). For
example, if fish colonisation of ponds is consistently followed
by loss of amphibians, we would have direct evidence sup-
porting the causal hypothesis that we inferred from the nega-
tive biotic covariances between fish and amphibians.

What can JSDMs and internal structure analysis
bring to eDNA researchers?

Novel community datasets, including eDNA metabarcoding,
are multivariate abundance datasets; that is, each species is a
response variable, and there are many of them. Before com-
puting power was widely available, such datasets were gen-
erally first reduced to tractable dissimilarity matrices before
visualisation and analysis (e.g. NMDS and constrained
ordination), but this approach may lose information and
generate artefacts (Warton et al. 2012). However, for over
a decade, it has been possible to analyse multivariate abun-
dance data directly (Ovaskainen et al. 2017, Warton 2022).
Here we have shown that JSDMs and variation partitioning
allow the simultaneous analysis of environmental covari-
ates, biotic covariances, and spatial autocorrelations, and the
outputs can be visualised and interrogated in powerful ways
(Ovaskainen et al. 2017, Popovic et al. 2019, Leibold et al.
2022, van der Veen et al. 2022, Warton 2022, Terry et al.
2023, Hartig et al. 2024).

Conclusion

In conclusion, our study demonstrates that the combination
of eDNA data and the analytical approach of exposing the
‘internal structure’ of metacommunities using JSDMs is a
powerful tool for examining community assembly processes
in structured landscapes. For the pond metacommunity in
this study, we could reveal interesting patterns of how the
importance of community assembly processes differs across
sites and species, and relate those differences to spatial, envi-
ronmental, and trait predictors. These results are consistent
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with other empirical studies (Mehner et al. 2021, Vass et al.
2022, Kadoya et al. 2024) that support Leibold et al.’s (2022)
inspiring insight that applying JSDMs to patterns of species
distributions can help to reveal the relative importance of
environmental filtering, dispersal limitation, and biotic inter-
action assembly processes on individual sites and individual
species. Our study thus provides a blueprint for ecologists
who want to study metacommunity processes and also for
molecular ecologists who want to extract more information
from their eDNA data.
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