
Research article

Understanding and managing nutrient pollution in peri-urban wetlands: 
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A B S T R A C T

Nutrient pollution has been broadly studied in developed countries, where the primary source is often agricul
tural diffuse pollution. However, more research is needed in developing countries with a predominance of low- 
income households, insufficient public service infrastructure, pressure from urban expansion, and scarce infor
mation. In this research, centered on the Lerma Cienega protected wetlands in a peri-urban area of Toluca city in 
Mexico, a socio-ecological systems framework was applied to study the nutrient pollution problem and recom
mend nutrient control measures. An export coefficient model was developed to estimate nutrient losses from 
micro-basin areas discharging to the wetlands, which range from 0 to 32 tonnes/year for nitrogen (N) and 0–4.6 
tonnes/year for phosphorus (P). The highest annual N loss occurs in the case of a combination of agriculture or 
grassland with slow infiltration soils. In contrast, P loss is associated with agriculture or urban land use in 
combination with slow infiltration soils. By determining the sources and estimating the magnitude of nutrient 
pollution, nutrient mitigation solutions were considered for the peri-urban wetlands where low-income com
munities surround the immediate area and connections with urban and local communities facilitate options to 
conserve natural assets. In conclusion, controlling nutrient pollution can improve the protection of natural 
aquatic resources and the living conditions of local communities while generating other benefits for surrounding 
urban areas.

1. Introduction

Nutrient pollution, a form of water contamination by excessive 
nutrient inputs, typically of nitrogen (N) and phosphorus (P), is a global 
challenge that affects environmental and ecosystem health (McDowell 
et al., 2021; UN, 2023). The sources of nutrient pollution in freshwater 
and coastal areas include runoff from agriculture, livestock, aquacul
ture, inputs from wastewater treatment, industry and urban stormwater 
overflows, and atmospheric deposition of fossil fuel emissions from in
dustrial activities and vehicles (Selman and Greenhalgh, 2009; Green
shank, 2023).

Excessive nutrients in wetlands can have severe ecological conse
quences. One of the most serious is eutrophication, leading to algal 

blooms, reduced water clarity, and depleted oxygen levels (Greiner, 
2014; Kakade et al., 2021; Akinnawo, 2023). This can severely impact 
aquatic life, causing mass mortality of fish and invertebrates and 
reducing biodiversity (Amorim and Moura, 2021). Excess nutrients can 
also promote invasive species that outcompete native plants, disrupting 
ecosystems (Hong et al., 2020). Furthermore, degraded water quality 
diminishes the ability of wetlands to provide critical services like water 
filtration, flood control, and carbon sequestration (Afitiri et al., 2020). 
Over time, these changes weaken ecosystem resilience, making wetlands 
more vulnerable to further stressors and reducing their capacity to 
support wildlife and human communities (Mozdzer et al., 2020). The 
consequences extend beyond ecological impacts, with substantial eco
nomic costs for water purification, losses in fisheries and wildlife 
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production, reduced recreational value, and losses in property value (Ro 
et al., 2020; Mosheim and Sickles, 2021). Nutrient pollution also 
threatens human health, causing illnesses like rashes, digestive prob
lems, and neurological effects (EPA, 2024). As a global challenge, 
nutrient pollution drives international initiatives to promote effective 
management and awareness among diverse stakeholders (Leach et al., 
2012; UN, 2023).

Peri-urban wetlands in developing countries are vulnerable to 
nutrient pollution from nearby urban and industrial expansion (Lantz 
et al., 2013; Pérez-Belmont et al., 2019). These wetlands provide 
important ecosystem services like food, cultural activities, and flood 
control for local and urban communities (Chaikumbung et al., 2016; UN, 
2023). However, they often have small farms, low-income households, 
limited public services, and pressure from urban growth (Pérez-Belmont 
et al., 2019; Mondal et al., 2022; Soto-Montes-de-Oca, 2023).

In developed countries, nutrient pollution often comes from diffuse 
agricultural sources such as fertiliser runoff and livestock waste entering 
waterways (Konrad et al., 2014; McDowell et al., 2021; Lyon et al., 
2022). However, peri-urban areas in developing countries face a mix of 
urban pollution inputs and diffuse pollution from surrounding 
low-income farming communities (United Nations, 2019).

Nutrient pollution is a serious issue in developing countries, often 
due to inadequate urban water treatment (Nyenje et al., 2010). Reviews 
of wetland degradation in India and elsewhere have identified multiple 
pollution sources, including wastewater, sewage, and agricultural runoff 
(Ahmad et al., 2024). Numerous studies across developing countries 
have identified agriculture, urbanisation, aquaculture, tourism, and in
dustry as key drivers of wetland degradation, with inland wetlands 
facing the greatest impacts (Kansiime et al., 2007; Loiselle et al., 2016; 
Ballut-Dajud et al., 2022; Banderas and González-Villela, 2024). These 
findings highlight the relevance of nutrient pollution in developing 
countries and the need for tailored management solutions.

Effective management is crucial for peri-urban wetlands, often 
designated protected areas of international importance (Ramsar, 2024). 
Management plans should integrate, improve, and adapt to 
context-specific knowledge to enhance wetland conditions. Addressing 
the sustainable use of wetlands requires understanding the relationships 
between human activities in surrounding areas and the drivers of 
change, including nutrient pollution (Munguía and Heinen, 2021; 
Kumar et al., 2023).

In managing nutrient pollution, evaluating point and non-point 
sources is relevant. In urban settings, nutrient loads are often 
multiple-point source releases from septic tanks, sewer overflows, or 
unregulated industrial and commercial activities. Non-point runoff from 
agriculture originates in the application of manure and inorganic fer
tiliser, cropland drainage, and livestock grazing (Lintern et al., 2020). 
Whereas reducing nutrient loads from point sources such as municipal or 
industrial wastewater can often be managed with engineering or struc
tural solutions, loads from non-point or diffuse sources such as agri
culture or livestock require changes to catchment management and land 
use decisions. These changes and decisions need finer spatial scale in
formation to assess reduction alternatives (McDowell et al., 2021; His
cock et al., 2023).

Mitigation options to reduce nutrient pollution assessed in different 
studies include nature-based solutions (NbS) such as wetlands and ri
parian management (Hey et al., 2005; Raffensperger et al., 2017; 
Jabłońska et al., 2020; Kakade et al., 2021), land management strategies 
such as crop conversion (Hiscock et al., 2023), and technology options 
such as biogas digestors (Dahlin et al., 2015). As there are several op
tions to reduce nutrient pollution (UNEP, 2022), it is also essential to 
consider cost-effective mitigation to guide the choices of stakeholders in 
the allocation of resources (Konrad et al., 2014).

Recognising catchments as socio-ecological systems allows trans
parency in who takes ownership of the potential nutrient mitigation 
strategies (Luna Juncal et al., 2023). The socio-ecological systems 
framework defines the hydrological spaces of land in which water is 

stored and released through streams and associates the water quality of 
wetlands with human activity (Adger et al., 2021; Lyon et al., 2022). An 
important consideration is that decisions made by urban and peri-urban 
residents and stakeholders, including farmers, and at different levels of 
governance, can affect catchment conditions and where interaction, not 
being linear, is seen as complex and interdependent (Ostrom, 2009; 
Morrison et al., 2019).

The purpose of this study is to understand the relationship between 
human activities and nutrient pollution in peri-urban wetlands and to 
suggest management strategies in a developing country context. Using a 
socio-ecological systems framework, the study identifies N and P 
pollution sources, estimates their magnitude through export coefficient 
modelling, and proposes context-specific nutrient management strate
gies. The research aims to recommend solutions to improve water 
quality in peri-urban wetlands, support ecosystem health, and enhance 
the living conditions of surrounding low-income communities while 
addressing the challenges of limited data availability.

2. Materials and methods

2.1. Study area

The Ciénegas del Lerma wetlands are located between 19o05’ and 
19o25’ N and 99o25’ and 99o34’ W, east of the Toluca Metropolitan 
Area, the capital of the State of Mexico (CONAPO, 2020; Orozco-
Hernández et al., 2020). The Cienega is part and origin of the Lerma 
River basin, one of two external water sources for nearby Mexico City 
(CONAGUA, 2018a). The Ciénegas del Lerma comprises three spatially 
separated wetlands: Almoloya, Lerma and San Bartolo (Fig. 1). The 
federally protected areas of these wetlands cover an extent of 16 km2. 
Specifically, the area has been a Ramsar site since 2003 (Ramsar, 2003, 
cited in INEGI, 2019a).

The Ciénegas del Lerma, initially formed by a large lake, has 
diminished to only 11% of the original area due to land conversion and 
urban expansion (Orozco-Hernández et al., 2020). The wetlands are 
located at an altitude of 2580 m above sea level, with a mean temper
ature of 11.8 ◦C and a mean annual precipitation of 911.2 mm (INEGI, 
2019a). The rainfall regime determines the extent of the floodable areas 
of the lakes, with periods of flooding between 6 and 8 months. The 
wetlands include deep water (up to 5 m), areas with emergent vegeta
tion, and flooded and riparian vegetation. The soils are mainly of the 
gleysol, swamp-type found in areas where water accumulates and 
stagnates up to 50 cm deep for most of the year. There are also deep clay 
vertisols. To a lesser extent, phaeozem-type soils have a dark, thick 
surface layer rich in organic matter and nutrients (INEGI, 2019a).

The protected wetlands are adjacent to diversely polluted water 
courses that flow through urban and peri-urban areas. The Lerma River 
runs parallel to the wetlands and is highly polluted with untreated 
municipal and industrial discharges after its origins in the Almoloya 
wetland. The locations of overflows are poorly known, but an indication 
of the associated nutrient pollution is the growth of water lilies 
concentrated mainly on wetland banks (CONANP, 2017).

The federal Protected Areas authority monitors biological oxygen 
demand (BOD), an indirect indicator of nutrient pollution. Of the nine 
sampled areas, only one was considered ‘good quality’, five were rated 
as ‘acceptable’ and three as ‘contaminated’ (CONANP, 2018).

Records of N and P for the three wetlands exist from two decades ago 
(Pérez, 2005), but conditions have changed considerably in the region. 
Information from 2016 is available only for the Lerma wetland as shown 
in Table 1.

Subsistence farming practices are present (Albores, 2002), while the 
peri-urban communities are small and medium localities. Local families 
near the wetlands consume wild food from the Cienega and collect 
material to produce handicrafts (CONANP, 2017). Indigenous families 
in the area, mainly Otomi people, have a long-term attachment to the 
natural environment (Albores, 2002; Martínez et al., 2023). Records of 

G. Soto-Montes-de-Oca et al.                                                                                                                                                                                                                 Journal of Environmental Management 374 (2025) 124042 

2 



economic interests in the area exist from the 16th century and, from 
1857, projects were initiated to drain the wetlands that now give the 
region its lake identity (Albores, 1995; Sugiura et al., 2016; Martínez 
and Mendoza, 2022; Martínez et al., 2023).

2.2. Research design

To define the physiographic and socioeconomic characteristics of the 
study area, this research adopted a socio-ecological systems framework 
as applied to catchments (Lyon et al., 2022), using official data produced 
at the national level as well as information generated by federal au
thorities for the specific protected areas (Table 2). The information 
aimed to observe both the ecological dimension through 
hydro-ecological and land use indicators, and the social dimension 
through socio-demographic and economic indicators. The analysis fol
lowed four stages. The first stage delineated the sub-basins and 
micro-basins affecting the water quality of each wetland as these define 

Fig. 1. Location of the Lerma Cienega wetlands showing the Toluca Valley Metropolitan Area and municipal divisions in the State of Mexico (left-hand panels) and 
sub-zoning of the Natural Protected Areas (central panel).

Table 1 
Measured N and P loadings during the dry and rainy seasons in 2016 for the 
Lerma wetland based on Guzman (2017).

Location Dry season Rainy season

N (kg/day) P (kg/day) N (kg/day) P (kg/day)

Eastern area 57.0 71.7 135.6 103.7
Western area 13.8 33.7 38.9 38.9

Table 2 
Data used to characterise hydro-ecological and socio-demographic indicators of 
nutrient pollution in the Lerma Cienega wetlands.

Data type Scale/units Source

Hydro-ecological and land use indicators:
Hydrographic network 1:150,000 INEGI (2010)
National Geostatistical 

Framework
​ INEGI (2021)

Spatial information on 
Protected 
Natural Areas

​ CONANP (2024)

Land use 1:250,000 INEGI (2019b)
Crop area cultivated ha CONANP (2017)
Livestock area and 

number of head
ha and head CONANP (2017)

Socio-demographic and economic indicators:
Locality population Number of inhabitants 

and households
INEGI (2020)

Sewage connection Households without 
connections

INEGI (2020)

Marginality index Municipal level CONEVAL (2023)
Ejido land tenure ​ Registro Agrario Nacional, 

2023b
River and stream 

overflows
Point Google Earth Pro & J. Doe, 

pers. comm., July 2024
Economic units Number INEGI (2024a)
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the hydrological flows for nutrient transport (Fitz, 2008). Micro-basin 
areas were delineated using the SWAT model (Neitsch et al., 2011), a 
digital elevation model (INEGI, 2021), and a 1:50,000 scale water flow 
layer (INEGI, 2010). Micro-basins draining towards the protected areas 
were then selected.

The second stage characterised the socio-economic context of each 
catchment. The localities, population and households established in the 
micro-basin areas influencing each wetland, the municipality bound
aries, and socio-demographic indicators were incorporated. The number 
of households that lack sewage infrastructure was included as an indi
cator of point source pollution (INEGI, 2020). River and stream over
flows were located through Google Earth Pro and verified with the 
CONANP authorities. The percentage of income poverty as a measure of 
social deprivation was considered, though this is only available at the 
municipal level (CONEVAL, 2023). The number of economic units 
(commercial activities) was included to observe the potential impact of 
point source pollution from urban and industrial activities. We included 
data on the number of ejidos in each catchment (Registro Agrario 
Nacional, 2023a) to detect potential conflicts over communally owned 
and managed land due to property rights disputes (Ávila-Sánchez, 2011) 
(Supplementary Material, Table S1).

The third stage involved the development of an export coefficient 
model to estimate the nutrient loading to the wetlands based on the 
methodology originally presented by Johnes (1996). Export coefficient 
modelling is a widely used empirical modelling approach that estimates 
the total amount of N and P exported by agricultural and rural non-point 
sources (Chen et al., 2018) through the equation: 

L=
∑n

i=1
Ei[Ai(Ii)] + P 

where L is the annual loss of nutrients (kg); E is the export coefficient for 
nutrient source i (kg/ha/year); A is the area of the catchment occupied 
by land-use type i (ha), or number of livestock type i, or rural population; 
Ii is the input of nutrients to source i (kg); and P is the input of nutrients 
from precipitation (kg/ha/year).

Due to the scarcity of data on nutrient inputs to the Lerma Cienega 
wetlands, the method described by Osmolovsky (2013) was used to es
timate the most probable value of nutrient export (in kg/ha/year) for 
each land use category (agriculture, urban, grassland, forest, wetland 
and bare land). To reduce uncertainty, the method is based on the 
relationship between land use (obtained from CONABIO, 2015) and the 
range of N and P inputs reported in the literature, modified to account 
for field soil drainage characteristics derived from INEGI (2024b)
(Supplementary Material, Table S2− S4).

Although the nutrient input from precipitation is a relatively minor 
source compared to N and P loads from land use, estimates of nutrient 
loading from precipitation were made based on export coefficient values 
determined using data on the composition of rainfall in the region 
(Supplementary Material, Table S5).

For septic sources associated with the population and livestock in the 
protected areas the export coefficient values given by Ding et al. (2010)
and Tong et al. (2022) were adopted (Supplementary Material, 
Table S6). Households with sewage connections discharge ultimately to 
the Lerma River, which is unconnected to the wetlands. Hence, only the 
fraction of households without sewage connections is assumed to drain 
to the wetlands (Supplementary Material, Table S7).

2.3. Nutrient management options

The final stage of the methodology was to draw upon the literature 
and the results of the socio-ecological systems approach to recommend 
management options to reduce nutrient pollution in the peri-urban 
wetland catchments. Strategies applicable to practices in both urban 
and agricultural sectors within a developing country context were 
considered.

3. Results

3.1. Wetland catchment and land use characteristics

Distinguishing between micro-basins helps define the land use types 
that contribute to the water quality of each wetland. Five micro-basins 
flow directly to the Almoloya wetland, and 21 indirect tributary ba
sins are further upstream (Fig. 2a). Four micro-basins flow directly to the 
Lerma wetland, and 12 are further upstream. Only three micro-basins 
flow directly into the San Bartolo wetland.

The 26 micro-basins that discharge directly or indirectly to the 
Almoloya wetland, in the headwaters of the Lerma River, cover an area 
of 210 km2 and correspond to 14 municipalities (Almoloya del Río, 
Calimaya, Capulhuac, Joquicingo, Lerma, Ocoyoacac, Ocuilan, Rayón, 
San Antonio la Isla, Tenengo del Valle, Texcalyacac, Tianguistengo, 
Toluca and Xalatlaco). The five micro-basins draining to the Lerma 
wetland belong to six municipalities (Atizapán, Capulhuac, Chapulte
pec, Lerma, Ocoyoacac Tinaguistenco and Jalatlaco) and cover an area 
of 194 km2. The three micro-basins that discharge directly to the San 
Bartolo Wetland cover an area of 53 km2 and are all within the Lerma 
municipality. The distribution of land use in the micro-basins that 
discharge directly or indirectly to the wetlands occupies mostly agri
cultural land (56.5%), forestry (29.7%) and urban land (7.9%), as shown 
in Fig. 2b.

The designated protected area of the Almoloya wetland occupies an 
area of 596 ha, the Lerma wetland 656 ha and the San Bartolo wetland 
346 ha. Table 3 shows the land use in the protected areas, including 
vegetation, agriculture, and livestock production.

3.2. Socio-demographic characteristics

The Almoloya wetland catchment comprises 13 localities, with a 
total population of 117,502 inhabitants living in 32,265 households, of 
which 166 have no sewage connection (Supplementary Material, 
Table S7). These localities are in seven municipalities (Almoloya del Río, 
Calimaya, Rayón, Texcalyacac, San Antonio de la Isla, Tenango del Valle 
and Joquingo) with only one communal property (ejido). Regarding the 
point sources, there is an oxidation lagoon in the vicinity of the wetland, 
which might overflow into the wetland, and there is also an aquaculture 
farm, but information from local sources needs to confirm whether there 
is any associated contamination. The catchment has three overflows 
from streams with polluted water, but only one impacts the wetland (see 
Fig. 2a for locations).

The Lerma wetland catchment has 13 localities, with 161,331 in
habitants in 42,805 households, of which 188 are without a sewage 
connection. The localities are in five municipalities (Capulhuac, 
Ocoyoacac, Lerma, Tiangistenco and Xalatlaco). One overflow from the 
Lerma River and three overflows from streams with polluted water are 
registered in this wetland, with the first appearing to occur during the 
rainy season when water is drained towards the wetland to avoid 
flooding of the adjacent land (Fig. 2a). Another overflow receives the 
disposal of residues from sheep meat sold in restaurants at localities in 
the Capulhuac municipality, which pollute the wetland through canals. 
In this catchment, there are three registered ejidos.

The San Bartolo wetland has five localities in its catchment area, 
with 33,339 inhabitants living in 9135 households, 89 of which do not 
have sewer connections. Six registered ejidos border its entire perimeter, 
which may explain why the San Bartolo wetland is the smallest water 
body because ejidos use water for agricultural activities 
(Orozco-Hernández et al., 2020). Six overflows from streams with 
polluted water are registered in this wetland, probably linked to urban 
localities, but more information is required (Fig. 2a).

Primarily small commercial activities are registered in the sub-basins 
of the three wetlands (Supplementary Material, Table S7). Of the 4578 
economic units registered, 93% are very small units (less than five em
ployees), while only 19 establishments (mostly government offices) 
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Fig. 2. (a) Delineation of micro-basins flowing to the Lerma Cienega wetlands and showing the location of wastewater overflows. (b) Land use distribution in the 
micro-basins discharging to the Lerma Cienega wetlands based on data from CONABIO (2015).
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have more than 50 employees. In the Lerma sub-basin, the predominant 
economic activity is sheep-processed food restaurants (586 units) 
(INEGI, 2024a). A general characteristic of the three wetland areas is 
household poverty across the municipalities, with 57–75% of house
holds classified as living in income poverty (CONEVAL, 2023).

3.3. Export coefficient modelling

Based on the land use types and hydrologic characteristics of the soils 
present, the estimated export coefficient values ranged from 0 to 30.0 
kg/ha/year for N and 0–4.4 kg/ha/year for P across the three wetland 
catchments (Supplementary Material, Fig. S1). Given the spatial distri
bution of export coefficient values, the losses per micro-basin ranged 
from 0 to 32.0 tonnes/year for N and 0–4.6 tonnes/year for P (Fig. 3). 
Some micro-basins that drain directly into protected watersheds have 
the highest losses. The estimated inputs to the Almoloya wetland are 231 
tonnes/year for N and 34 tonnes/year for P (Table 4). To the Lerma 
wetland, inputs are 163 tonnes/year for N and 24 tonnes/year for P, and 
to the San Bartolo wetland, 85 tonnes/year for N and 12 tonnes/year for 
P. The highest annual N loss occurs in the case of a combination of 
agriculture or grassland with slow infiltration soils (hydrologic soil 
groups C and D; Supplementary Material, Table S2). The highest annual 
loss for P is associated with agriculture or urban land use in combination 
with slow infiltration soils.

Further application of the export coefficient model to the specific 
region of the wetland protected areas (16 km2) allows comparison of the 
relative contributions of land use, septic sources (population without 
sewage connection and livestock) and precipitation. As shown in 
Table 5, land use dominates the nutrient sources in the Lerma wetland, 
accounting for 78% of N inputs and 87% of P inputs. In contrast, the 
Almoloya and San Bartolo wetlands show greater nutrient pressure from 
septic sources that account for at least 40% of N inputs and 27% of P 
inputs. Nutrient inputs to the wetlands from precipitation are <14% for 
N and <4% for P.

4. Discussion

4.1. Nutrient inputs

The results provide evidence of the nutrient pollution pressures in 
each wetland, with many localities and municipalities involved in each 
catchment area. There are different proportions of land use, with a 
predominance of agricultural land (57%), forestry (30%) and urban 
areas (8%) in a context of marginality and urban growth 

(Orozco-Hernández and Sánchez-Salazar, 2004). As previously noted, 
official (2016) data confirm pollution levels in the Lerma wetland 
(Table 1), but there are no data for the Almoloya and San Bartolo wet
lands. Total nutrient inputs to the Lerma wetland based on export co
efficient modelling (163 tonnes/year for N and 24 tonnes/year for P) 
compared with the 2016 data (ranges of 5.0–49.5 tonnes/year for N and 
12.3–37.9 tonnes/year for P) appear to show no improvement in P in
puts and a deteriorating condition in N inputs.

Average nutrient inputs to the Lerma Cienega wetlands based on land 
use type range from 8.4 to 16.1 kg/ha/year for N and 1.24–2.27 kg/ha/ 
year for P (Table 4), and for the specific region of the wetland protected 
areas range from 5.4 to 14.3 kg/ha/year for N and 0.74–2.08 kg/ha/year 
for P (Table 5). These ranges are similar to published values for export 
coefficient modelling studies that encompass various nutrient inputs 
(crop land, grassland, livestock, residential, forestry, orchards, bare 
land, atmospheric deposition) that range from 6.3 to 19.6 kg/ha/year 
for N and 0.35–1.94 kg/ha/year for P (Ding et al., 2010; Wu et al., 2015; 
Chen et al., 2018; Tong et al., 2022). Compared to these studies, the rate 
of P input for the San Bartolo wetland is higher (>2.08 kg/ha/year) and 
reflects the fact that the micro-watersheds that discharge into this 
wetland have mostly soils with low and very low infiltration rates, which 
cause greater runoff and nutrient loss.

The export coefficient model provides a simple and widely adopted 
approach to estimating nutrient loading in a data poor context (Chen 
et al., 2018; Liu et al., 2022). The results presented in this study are a 
first approximation of likely N and P discharges to the wetlands and the 
findings should be evaluated considering the sources of uncertainty. 
Using export coefficients derived from bibliographic values may not 
accurately reflect local or temporal conditions, although this is miti
gated by using the most likely estimate of nutrient export for each land 
use category (Osmolovsky, 2013). To limit uncertainties, further 
research should validate the model results against available field data. 
Due to its simplicity, the model structure does not consider the complex 
hydrological interactions that influence pollutant transport (Ding et al., 
2010; Guzmán et al., 2015; Moreno-Rodenas et al., 2019). Process-based 
models that describe the hydrological dynamics (e.g., runoff, sediment 
transport, nutrient attenuation) and the complex interactions between 
pollutants and ecosystem processes (e.g., nutrient cycling and vegeta
tion uptake) can be developed where data availability allows (Xin et al., 
2019).

The pollution sources identified in this study are associated with 
small-scale farming, livestock, and specific point sources from domestic 
and commercial activities, with no apparent evidence of industrial dis
charges. However, official information mentions that industrial waste
water and effluents from more than 700 industries from five industrial 
parks discharge into the Lerma River, near the wetlands (CONAGUA, 
2018b). Official documents also mention discharges of domestic 
wastewater in the Almoloya and Lerma wetlands (Gobierno del Estado 
de México, 2011; INEGI, 2019a), as confirmed by the detected overflow 
points found through Google Earth (Fig. 2a), but fieldwork is necessary 
to confirm the inputs of N and P to reduce this source of uncertainty.

4.2. Nutrient management options

Despite the scarcity of information about water quality conditions, 
the combination of methods allowed an estimation of pollution levels of 
non-point sources and the identification of point pollution practices 
typical of developing countries that impact water quality, such as small- 
scale livestock farming, specific peri-urban commercial activities, and 
polluted water courses generated in urban areas.

Several runoff mitigation strategies have been proposed and assessed 
(Collins et al., 2016; Luna Juncal et al., 2023; Hiscock et al., 2023; UN, 
2023), with several strategies relevant to the Lerma Cienega wetlands. 
Application of the export coefficient model to the protected areas 
(Table 5) showed that land use dominates the nutrient sources in the 
Lerma wetland, in contrast to the Almoloya and San Bartolo wetlands 

Table 3 
Land use in the protected areas of the Lerma Cienega wetlands.

Polygon (ha/number) Almoloya (596 
ha)

Lerma (656 
ha)

San Bartolo 
(346 ha)

Moisture agriculture (ha) 196.72 312.95 59.04
Non-irrigated agriculture 

(ha)
10.68 5.45 3.88

Human settlements (ha) 0.59 0.04 –
Waterbody (ha) 119.19 – –
Cultivated grassland (ha) – 235.57 –
Tular (sedge) vegetation 

(ha)
269.42 102.58 283.85

Total 596.60 656.59 346.77
Corn (maize) (ha) 8.77 67.79 7.8
Broad beans (ha) 1.87 5.32 –
Livestock area (ha) 194.3 90.5 44.1
Sheep (number) 150 200 20
Cattle (number) 50 – 15
Horse (number) 20 – –
Ejidos in adjacent areas 

(number)
1 3 6

Source: https://www.inegi.org.mx/temas/usosuelo/#descargas; CONANP, 
2017; Registro Agrario Nacional (2023b).
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that show greater nutrient pressure from septic sources. Considering 
these pollution sources, the recommendations listed in Table 6 are 
intended for sectors associated with (i) agricultural practices scalable to 
small farmers and (ii) small-scale technologies to address pollution from 
localised household sewage discharges and commercial activities.

While some options are relevant for the three protected wetlands and 
their catchment areas, particularly agricultural, nature-based solutions 
and overflow options, others are case-specific (Table 6). Animal 
confinement and waste management systems are relevant options for the 
Lerma and Almoloya wetlands because of the number of livestock in the 
immediate area. Bio-digestors are a likely solution to manage meat 

Fig. 3. Nutrient losses per micro-basin in tonnes/year in the Lerma Cienega wetlands.

Table 4 
Estimated nutrient losses to the Lerma Cienega wetlands based on export coef
ficient modelling of land use types.

Wetland Area N input P input

(km2) (tonnes/ 
year)

(kg/ha/ 
year)

(tonnes/ 
year)

(kg/ha/ 
year)

Almoloya 210 231 11.0 34 1.62
Lerma 194 163 8.4 24 1.24
San 

Bartolo
53 85 16.1 12 2.27
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discharges in the Lerma wetland. Alternatives to reduce the effects of 
aquaculture and the oxidation lagoon should be considered for the 
Almoloya wetland. Some options might be helpful in the protected areas 
but less efficient for the wider catchment area, such as drip irrigation 
because this practice might increase the agricultural intensity or 
extension.

Recommended nature-based solutions (NbS) in the three wetlands 
are riparian buffers and vegetation recovery, most likely through land 
use change, particularly in protected areas. Engineered logjams are 
another solution by building ditches with natural material in water 
courses to trap sediments and attenuate nutrients from upstream runoff 
canals (Lloyd et al., 2024). An option for the overflows of contaminated 
water from the Lerma River to the Lerma wetland is to improve drainage 
ditches and maintenance. However, a constraint on this option is that 
authorities allow overflows during the rainy season to prevent flooding. 
Hence, actions are also necessary to reduce the risk of flooding in the 
surrounding areas to minimise this practice.

The efficiency of specific nature-based solutions in reducing N and P 
has been assessed in some cases. For instance, riparian grass buffers can 
reduce N losses by 13–46% and P by 30–45% (BMPD, 2016), depending 
on their width (10− 30 m) (Lloyd et al., 2024). Engineered logjams 
present benefits to removing N because of the vegetation behind dams, 
but more evidence is required to estimate the actual reduction (Lloyd 
et al., 2024). Silvopasture can reduce N and P losses because trees inhibit 
leaching and reduce wind erosion. A tree density of 100/ha provides 
these environmental benefits, but more monitoring is required to esti
mate the specific N and P reduction (Lloyd et al., 2024).

The mitigation strategies proposed here should be undertaken by 
specific actors depending on the driving force (Table 6). Ejidos and 
landowners could implement actions associated with agriculture, live
stock and nature-based solutions, supported by the agriculture and 
forestry authorities (CONAFOR); specific municipalities could install 
lacking sewerage connections; small commercial businesses could 
associate to build biodigesters in the Lerma and Almoloya wetlands, 
supported by municipal or state governments; the federal water au
thorities (CONAGUA) could undertake actions to avoid overflows from 
streams and the Lerma River with polluted water, and also produce in
formation about water pollution. At the same time, the National Com
mission of Natural Protected Areas could use nature-based solutions to 
reduce N and P pollution in the three wetland areas.

The protected wetlands are managed with rules determined by the 
National Commission of Natural Protected Areas and the Ramsar 
Convention. In general, the Commission should work with stakeholders 
to incorporate management options towards reducing nutrient pollu
tion. Wetland-protected areas depend on the collaboration between 
different actors and the ability of authorities to produce context-specific 
information and alternatives for sustainable management (Kumar et al., 
2023). In addition, Ramsar Convention administrators sometimes have 
inadequate instruments to maintain ecological conditions (Munguía and 
Heinen, 2021) and, therefore, generating specific guidelines addressing 
nutrient pollution should become a valuable input.

The Mexico City Government is a further stakeholder because the 
Lerma system provides an external water source. Here, the New York 
City’s experience is an example of how the city government is involved 
in maintaining and enhancing the high quality of surface water sources 
through its Watershed Protection and Watershed Agricultural Programs, 
which develop projects with farm and forest landowners in the relevant 
watersheds to protect water quality (NASEM, 2020).

Table 5 
Comparison of nutrient source inputs to the Lerma Cienega wetland protected areas based on export coefficient modelling.

Source N input (kg/ha/year) P input (kg/ha/year)

Almoloya Lerma San Bartolo Almoloya Lerma San Bartolo

Land use 1.50 11.10 2.50 0.51 1.81 0.52
Population 1.90 2.02 1.76 0.15 0.23 0.20
Cattle and horse 0.86 0.00 0.32 0.04 0.00 0.01
Sheep 0.35 0.43 0.08 0.01 0.01 0.00
Precipitation 0.74 0.74 0.74 0.03 0.03 0.03
Total 5.35 14.29 5.40 0.74 2.08 0.76
Land use/Total 0.28 0.78 0.46 0.69 0.87 0.68
Septic sources/Total 0.58 0.17 0.40 0.27 0.12 0.28
Precipitation/Total 0.14 0.05 0.14 0.04 0.01 0.04

Table 6 
Management options to control nutrient pollution in the Lerma Cienega wetland 
catchments.

Wetland 
catchment

Sector Management 
option

Party responsible for 
implementation

Almoloya, 
Lerma, San 
Bartolo

Agriculture Conservation 
tillage and 
prevention of soil 
erosion 
Controlled-release 
fertiliser 
Crop rotation 
Drip irrigationa

Vegetated streams 
Organic 
production

Ejidos, landowners, 
agriculture authority, 
CONANP (protected 
areas), NGOs.

Almoloya, 
Lerma

Livestock Animal 
confinement 
Fencing around 
streams 
Animal waste 
management 
systems 
(biodigestors) 
Silvopasture

Ejido, landowners, 
agriculture authority, 
CONANP (protected 
areas), CONAFOR, NGOs.

Almoloya, 
Lerma, San 
Bartolo

Nature-based 
solutions

Riparian forest 
buffers 
Riparian grass 
buffers 
Silvopasture 
Vegetation 
recovery (land use 
change)

Ejido, landowners, 
CONANP (protected 
areas), CONAFOR and/or 
state or municipal 
government, NGOs.

Almoloya, 
Lerma, San 
Bartolo

Sewage Connection to 
sewage system 
Artificial wetlands 
Bio-digestors

Municipal governments, 
state government.

Almoloya Aquaculture Removing 
aquaculture waste 
and use in 
agriculture 
Bio-digestors

Ejido, agriculture 
authorities, CONANP, 
NGOs.

Lerma Food 
commercial 
activities

Artificial wetlands 
Bio-digestors 
Engineered 
logjams

Commercial sector, 
municipal and/or state 
government

Almoloya, 
Lerma, San 
Bartolo

Overflows Improved drainage 
ditches and 
maintenance 
Engineered 
logjams

CONAGUA, CONANP, 
ejido, landowners.

a Option recommended for the protected area but not the catchment area.
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Despite some alternatives that might seem rational from an ecolog
ical perspective, the socio-economic context could reduce the possibility 
of success, such as a negative preference for buffer zones in agricultural 
catchments in small field systems (Buckley et al., 2012). A collaborative 
approach is recommended, as observed in some peri-urban communities 
that are willing to try new practices based on their awareness of an 
environmental problem, and where local knowledge and traditional 
practices help to define adaptation strategies based on the specific 
conditions of communities (Soto-Montes-de-Oca and Alfie-Cohen, 
2019).

Reducing nutrient pollution problems in peri-urban wetlands in 
Mexico requires the recognition of the three levels of government and 
the importance of consulting local communities. The goal is to establish 
strategies, finance commitments and timelines. This means that the 
planning, regulation and finance instruments should be harmonised to 
reflect congruency with local conditions and long-term sustainability.

Future research should investigate the perceptions, attitudes and 
preferences of people and other stakeholders to observe whether they 
are concerned with nutrient pollution and their willingness to try new 
practices (Imdad et al., 2023). To advance this approach, a better un
derstanding of the factors affecting pollution needs to be supported by 
monitoring, reporting and verification processes of the point and 
non-point pollution sources to assess N and P losses to water bodies.

5. Conclusions

This study, focusing on the Ciénegas del Lerma in Mexico, demon
strated the utility of a socio-ecological systems approach to address 
nutrient pollution in peri-urban wetlands and to propose suitable miti
gation strategies scalable for other regions facing similar socio- 
ecological challenges. Socio-demographic data emphasised the chal
lenges of addressing pollution in low-income communities with limited 
resources. The study proposed a suite of context-specific management 
strategies that integrate agricultural practices, nature-based solutions, 
improved sewage systems and small-scale technological options and 
provide actionable insights for stakeholders to address nutrient pollu
tion and enhance wetland conservation. Overall, the choice of nutrient 
pollution management options is oriented towards implementation by 
low-income communities engaged in agriculture, livestock and com
mercial activities, as long as the competent authorities support the so
lutions. In this approach, fieldwork with local communities is 
recommended to understand their perspectives concerning possible 
options and to corroborate actions with nutrient pollution monitoring 
results. Ideally, management practices should become a package of 
nutrient mitigation measures to inform Ramsar Convention adminis
trators of the alternatives to address nutrient pollution problems in 
protected, peri-urban wetlands.
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