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1 

Abstract 

Automatic analysis and interpretation of human motion is one of the essential chal­

lenges in the field of computer vision and has been the focus of research efforts for 

many decades. The large quantity of research in this field is motivated by its po­

tential applications in a wide variety of areas and make it interesting across many 

disciplines and research communities. 

One of the main parameters of human motion research projects is the type of 

input data that is used for processing. Different input modalities include single­

view (monocular) video cameras, Kinect depth sensors, RGB multi-camera systems 

and optical motion capture. The single view video camera is the most commonly 

used due to it being more affordable and non-specialist and its data being abundant 

online as compared to the other modalities. However, motions that are occluded 

from the single camera view, for example, due to self-occlusion, are difficult to re­

cover. In addition to these sources of inaccuracy, the choice of the 3D human model 

is also important in the captured motion quality. Therefore, we adopted an adaptive 

shape modeling method called Skinned Multi-Person Linear Model (SMPL) which 

can make both joint rotations and positions available. 

In my PhD research, I propose a machine learning-based method that is used in 

post-processing to reconstruct the incorrect motions that are caused by self-occlusion. 

The post-processing network is trained on a data set acquired from different subjects 

doing 30 different basic exercise motions that include self-occlusion. The collected 

data comprise single video camera footage and optical motion capture data as the 

ground truth. To correctly reconstruct the occluded motion, action recognition in­

formation is used to select a machine learning model that is trained on the specific 

motion. The performance of predictive and non-predictive networks are compared 

to each other and also with the state of the art in human motion estimation. The 

results show reduction of the overall pose error and the pose error for selected body 

parts with a large degree of self-occlusion. 

Additionally, I have also investigated human motion evaluation which is con­

cerned with how well a specific motion is performed. I have used both classic ma­

chine learning with feature extraction and deep learning for this purpose. An im­

proved processing pipeline, feature selection and new machine learning models are 

used to improve the accuracy of the human motion evaluation compared to the state 

of the art and baseline methods that are using the same motion evaluation data set. 



Access Condition and Agreement 
 
Each deposit in UEA Digital Repository is protected by copyright and other intellectual property rights, 
and duplication or sale of all or part of any of the Data Collections is not permitted, except that material 
may be duplicated by you for your research use or for educational purposes in electronic or print form. 
You must obtain permission from the copyright holder, usually the author, for any other use. Exceptions 
only apply where a deposit may be explicitly provided under a stated licence, such as a Creative 
Commons licence or Open Government licence. 
 
Electronic or print copies may not be offered, whether for sale or otherwise to anyone, unless explicitly 
stated under a Creative Commons or Open Government license. Unauthorised reproduction, editing or 
reformatting for resale purposes is explicitly prohibited (except where approved by the copyright holder 
themselves) and UEA reserves the right to take immediate ‘take down’ action on behalf of the copyright 
and/or rights holder if this Access condition of the UEA Digital Repository is breached. Any material in 
this database has been supplied on the understanding that it is copyright material and that no quotation 
from the material may be published without proper acknowledgement. 
 





3 

Chapter 1 

Introduction 

Automatic analysis and interpretation of human motion is one of the essential chal­

lenges in the field of computer vision and has been the focus of research efforts for 

many decades since the 1970s. The large quantity of research in this field is moti­

vated by its potential applications in a wide variety of areas and make it interesting 

across many disciplines and research communities. In this chapter, a simple intro­

duction to the project's domain and the research motivation and aims is provided. 

One of the main parameters of human motion research projects is the type of 

input data that is used for processing. Different input modalities include: a single­

view (monocular) video camera, Kinect depth sensors, RGB multi-camera system 

and optical motion capture. Of all these motion capture modalities, the single view 

video camera is the most commonly used due to it being more affordable and non­

specialist and its data being abundant online as compared to the other modalities. 

The extracted motion signal from any input modality can be considered in differ­

ent abstraction levels such as activity, action or gestures. This motion signal is then 

analyzed and evaluated by assigning a number to it as a score or quality metric of 

that particular motion. 

In the field of biomechanics, single and multiple video cameras are also called 

markerless motion capture methods as opposed to the traditional optical marker 

based motion capture methods. They are more cost-effective, offer more data ver­

satility and provide the opportunity for the data to be used with state-of-the-art 

algorithms. Moreover, they don't need specific clothing and additional attire, such 

as markers, and this has a positive effect on the quantity of potential data that can 

be acquired. Markerless human motion capture is useful in the area of health sci­

ence, injury prevention, and rehabilitation in sports, clinical and rehabilitation ap­

plications. Despite these advantages, the accuracy of markerless methods especially 

in the single-video setting is significantly lower than gold standard optical motion 

capture methods. Many of the mentioned applications have high accuracy require­

ments, so it is important to identify gaps in our knowledge that are relevant to future 

developments in this area and develop algorithms that increase the accuracy. Select­

ing an accurate model representation of the human body and correct measurement 

of the accuracy is also important. 



4 Chapter 1. Introduction 

1.1 Background 

This research is focused on capturing and interpreting the 3D human motion using 

a single video camera. As mentioned before, the quality of captured human motion 

using video motion capture methods is usually significantly lower than optical mo­

tion capture. The areas of potential inaccuracies are diverse and they can be revealed 

especially when the input human motion becomes more complex. This is more ev­

ident in sport applications where the human subject can perform diverse motions 

with high speed or unusual poses. 

As mentioned before, the advantage of having a single video camera as input is 

its wide availability. This means diverse motion videos are available to download 

from the internet and can be tested on different human pose estimation methods and 

algorithms. Although these diverse data are widely available for testing, this is not 

the case for the available training datasets of human pose estimation. The training 

datasets provide the video as well as corresponding ground truth data of accurate 

human joints positions and orientations captured by other devices such as IMUs or 

Optical Motion Capture. Capturing a dataset with 3D ground truth is especially 

restricted to a specific environment or setting and eventually doesn't allow the di­

versity that is available in the case of online videos. This means there is a demand 

for new datasets with 3D ground truth and more diverse or application-specific mo­

tions. 

Choosing sport applications as a potential challenging area with complex mo­

tions, we first focused on cases where human motion is challenging for example 

handstand, or other different gymnastics motions or yoga poses. We tested several 

state-of-the-art methods on gymnastics videos downloaded from Youtube and other 

freely available online resources. These preliminary experiments show the main 

complexities of human motion estimation in monocular videos. Problems such as 

inaccurate capture of the occluded body parts (self-occlusion), unnatural poses such 

as handstand and motion blur due to speed of the execution were among the most 

evident issues. 

For overcoming mentioned problems, the preliminary research on various mo­

tion videos showed that using extra knowledge about the motion such as 3D key 

points and the actions that is taken, can help to improve the predicted motion. There­

fore, the main research focus in this part is that further processing the motion can 

result in a better human 3D model prediction in the self-occlusion and unnatural 

poses scenarios. The result is presented as the position and rotation error of the 

estimated SMPL human model compared to the ground truth data computed from 

motion capture. 

The wide problems of the video based 3D human pose estimation methods with 

challenging sport motions (e.g. gymnastics) prompted us to seek out similar yet less 

complex motions such as those observed in martial arts. For resolving the problem of 

self-occlusion we have created a 3D dataset with special emphasis on self-occlusion. 
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In terms of human motion evaluation, supervised learning which is using an­

notated datasets is used as the preferred method. The purpose of human motion 

evaluation is assigning a score number to each motion representing how well an 

specific motion is performed. In supervised learning methods, the annotated scored 

videos from the specific motions of interest should be available. Use of small avail­

able datasets is possible when using classic machine learning while deep learning 

methods usually require larger amount of data. In reality, having large dataset of 

expert annotated 3D motions might not be possible, so improving the methods that 

can utilize the existing limited data is valuable. 

The error measurement in the human motion evaluation is the RMSE error and 

correlation between the annotation and the predicted values. From the previous 

work on the martial art motions, it can be seen that the use of different types of 

more complicated machine learning models and combining the different types of 

features together did not work better for reducing the error. Therefore, the research 

focus in this part is using simpler, non-combined features along with applying bet­

ter machine learning methods that can result in a better prediction of scores with 

high accuracy. In the second part of human motion evaluation, the motions of the 

large dataset of SMPL models are automatically annotated and the motion without 

any feature extraction is evaluated with both deep learning and classical methods to 

compare their performances. 

1.2 Main Objective 

The main objective of this dissertation is to estimate and evaluate complex human 

motions from a single-view, monocular video camera with the highest possible ac­

curacy. These motions will not include handheld aids and particular attention will 

be given to occluded body parts. The two main challenges to meet this objective are 

accurate human motion estimation and evaluation. There are two main parts in this 

research i.e. human motion estimation and human motion analysis and the main 

aim in both parts is to reduce the error between the ground truth annotations and 

the prediction compared to the current state-of-the-art. 

1.2.1 Human Motion Estimation 

Human motion can be represented as a sequence of data that can be found by putting 

multiple consecutive estimated human pose from video frames next to each other. 

Therefore, the problem of human motion estimation (several frames) and pose esti­

mation (single frame) are closely related to each other. 

In order to improve the accuracy in estimated human motion we have focused 

on reducing the error human motion estimation in challenging scenarios such as 

self-occlusion and unnatural poses. We have also chosen the more accurate human 

model (SMPL) which has both joint position and orientation information. 
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1.2.2 Human Motion Evaluation 

Human motion evaluation is analyzing the human motion data with the purpose 

of finding out how well an specific motion is performed. Therefore, human motion 

evaluation is a subgroup of human motion analysis methods. 

In order to improve the accuracy of the human motion evaluation, we have fo­

cused on an specific martial arts dataset and tried to improve the prediction error 

of human motion evaluation method. In order to consolidate this research with the 

previous part which is estimating SMPL human models, we have also evaluated the 

motions of a SMPL dataset of diverse motions. 

1.3 Research Contributions 

1.3.1 Human Motion Estimation 

The main contributions in terms of increasing the accuracy of human motion esti­

mation is as follows: 

• For self-occluded motion recovery, a combination of action-specific modeling, 

predictive modeling, and inverse kinematics (IK) enables a tailored and effec­

tive approach. By leveraging prior knowledge of the specific action being per­

formed, action-specific models are selected to aid in reconstructing occluded 

body parts with high accuracy. Predictive modeling further refines this pro­

cess by using past motion data to forecast future movements, which comple­

ments action-specific modeling. When unnatural poses result in incorrect limb 

predictions, inverse kinematics techniques utilize predicted 3D key point po­

sitions to adjust limbs to more accurate, natural positions. Together, these 

techniques provide a comprehensive solution for robust motion reconstruc­

tion, even in challenging scenarios with self-occlusion and atypical poses. 

• New rotation-based error metric: Adding the rotation error provides a more 

suitable evaluation of 3D human pose accuracy. 

• A new dataset for 3D human pose estimation with SMPL based ground truth. 

The dataset contain a set of exercise actions performed by different subjects, 

with special emphasis on self-occluded motions. 

1.3.2 Human Motion Evaluation 

The main contributions in terms of increasing the accuracy of human motion esti­

mation is as follows: 

• Motion evaluation using classic machine learning methods with handcrafted 

features: This approach combines handcrafted features with traditional ma­

chine learning techniques, such as random forests and regression, tailored to 
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small, annotated datasets. By carefully selecting features and classifier types, 

this method enables effective human motion evaluation even with limited data. 

• Demonstrating potential motion evaluation of SMPL human models using deep 

learning and automatic labeling of a large SMPL dataset. 

1.3.3 Publications 

Malekian, Leila, Rudy Lapeer. "Self-Occluded Human Pose Recovery in Monocular 

Video Motion Capture." 202414th International Conference on Pattern Recognition 

Systems (ICPRS). IEEE, 2024. 

1.4 Thesis Structure 

1.4.1 Chapter 2 

This chapter provides a general overview of two main research areas covered, namely 

human motion estimation (commonly known as human pose estimation) and hu­

man motion evaluation. The former is about inferring accurate (2D or 3D) human 

motion data from the input, which is mainly a monocular video in this project. The 

latter does an assessment of the inferred 3D motion sequence and assign a num­

ber related to how well the motion is performed. This number is refereed to as the 

evaluation score. 

Two main categories of human pose estimation techniques are introduced and 

the general method of extracting human pose data including possible features is 

listed. Since solving the human pose estimation problem also involves various other 

extra sub-tasks, some of the most important ones are explained. In human motion 

estimation, different types of human models that can be inferred using pose estima­

tion methods are introduced. 

Regarding human motion evaluation, the techniques are categorized based on 

the type of input. The input usually is the extracted human model (e.g. kinematic 

skeleton, adaptive shape model) or the input RGB data itself. In this thesis, we have 

extracted the 3D human model from the video and performed the motion analysis 

using the joints data of model. The machine learning techniques can be also different 

in terms of using classic methods with formulized handcrafted features or they can 

use deep learning methods. A list of some previous works in the area of motion 

evaluation in different applications is also explained in this chapter. 

1.4.2 Chapter 3 

This chapter explains the methods that are introduced to improve human motion 

estimation. After human pose estimation, a post-processing step consisting of ma­

chine learning or Inverse Kinematics method are used to resolve the problems such 
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as self-occlusion and unnatural poses. The results are compared to the baseline and 

the state of the art methods to show the improvement. 

1.4.3 Chapter 4 

In the second part two main human motion evaluation projects using classic ma­

chine learning and deep learning methods are explained. The former is using a 

small dataset of martial arts gestures and 3D kinematic skeleton data and the latter 

is using a larger dataset of 3D SMPL human models that have body shape and pose 

parameters. The results are compared to the existing work on the same martial arts 

dataset to show the improvement. 

1.4.4 Chapter 5 

This chapter discuss the research research summary and findings. It also reviews 

the limitations of the project and propose ideas for future research. 
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Chapter 2 

Related work 

2.1 Introduction 

This chapter reviews the previous work regarding the 3D human motion estimation 

and evaluation. Human motion first should be estimated from an input modality 

(in our case video data) with use of a 3D human model and then the motion of the 

resulting model can be processed. Main HPE methods are discussed along with the 

image features that are mostly used. Different ways of modeling the human body 

are discussed. In previous work on human motion estimation, topics such as data 

calibration, foreground segmentation, human detection and tracking and body part 

parsing are mentioned. 

In human motion evaluation, classic machine learning methods and related ar­

eas such as human motion features, motion feature processing methods and ma­

chine learning methods as well as deep learning based methods are discussed. Pre­

processing methods for human motion data is also mentioned. In terms of evalua­

tion of motion, previous research in applications such as physical rehabilitation, skill 

training and sport activity scoring are reviewed. 

2.2 Human Motion Estimation 

A typical task in computer vision is identifying a specific object in the image and 

finding its position and orientation relative to some coordinate system. The pose 

of an object is defined as a combination of position and orientation of that object. 

Articulated body pose estimation is finding the pose of an articulated body that 

consists of joints and rigid parts from input image observation. 

There are many applications of technology that can benefit from pose estimation 

which makes it one of the key problems in computer vision. Some of them are: 

• Human-Computer Interaction: human gesture can be used as an input to con­

trol a computer interface (e.g. in sign language recognition) 

• Human-Robot Interaction: the perception of the human body poses by a robot 

can build easier and more intuitive communication with robots (e.g. in home 

robotics or rehabilitation and assisted living) 
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• Video Surveillance: activity and behaviour of humans in an outdoor or indoor 

environment are monitored for safety, security or managing or directing peo­

ple 

• Gaming: introduction of the Microsoft Kinect sensor popularized the use of 

depth sensors for full body control in video games and virtual reality (VR) 

environment 

• Sport Performance Analysis: analysing the athlete's actions which require ac­

curate pose estimation 

• Scene understanding: obtaining semantic knowledge of a given scene image 

containing humans 

Traditionally, marker-based systems are used for accurate pose estimation. How­

ever, they are not suitable for real-life non-invasive applications. Vision based sys­

tems are a cheaper and more practical alternative that uses input from cameras. The 

input images can be an RGB or grayscale image, depth image or infrared image. 

In infrared imaging devices, the sensor is sensitive to infrared light which make it 

useful for night vision. Depth images contain information about the distance of the 

object from the camera. Depth imaging devices are not expensive and the commer­

cial products like Microsoft Kinect [1], [2] or Leap Motion [3] can be easily used in 

ordinary projects settings, but the distance of the object from the depth sensor is 

limited (around eight meters) and they can be only used in indoor environments. 

Furthermore, most of the standard datasets available online are RGB or grayscale 

images. 

Despite longstanding research in human pose estimation, various problems re­

main due to challenges such as variability in visual appearance and physique, vari­

ability in lightning, partial visibility and self or other types of occlusions, human 

skeletal structure complexity, high dimensionality of pose and problems with pose 

estimation in 3D space including information loss from 2D images. The human body 

has a high degree of freedom leading to a high dimensional solution space. Usually, 

the solution is also required to be able to successfully deal with illumination changes, 

shading problems and viewpoint variations. 

Pose estimation algorithms are expected to work under time, memory and pro­

cessing power constraints. Because pose estimation is usually at the beginning of a 

longer pipeline of algorithms (for example action recognition or human computer 

interaction), its accuracy and time efficiency are important. If it is required to im­

plement pose estimation on embedded systems and mobile devices, also resource 

constraints should be considered. 

2.2.1 Previous work 

Pose estimation techniques can be categorized based on their body structure inter­

pretation method into a model based and model free approaches (Figure 2.1). The 
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estimation process is minimizing the error between observations and a human body 

model (model based), a projection function (learning based) or an example set (ex­

ample based). 

2.2.1.1 Human Pose Estimation Methods 

Top-Down 
(Generative) 

Model Based 

Human Pose 
Estimation 
Method s 

Mod el Free 
(Discriminative) 

Bottom-Up 
(Part Base d) Learning Base.:J 

FIGURE 2.1: Human pose estimation methods 

Exampl e Based 

2.2.1.1.1 Model based approaches In a model based top-down pose estimation 

method, a priori information from motion or kinematic properties of a human body 

is employed to generate a parametric shape model [4]-[8]. For example, in [9], [10] 

the model is based on a priori information on specific motion and context, respec­

tively. Top-down methods match the model with the observation. It is done by per­

forming a local search around initial pose estimates. Due to the high dimensionality 

of the pose space, instead of computationally expensive brute-force local searches, 

an optimization approach is often used to find a posteriori pose estimates. 

Top-down approaches consist of two stages: modelling and estimation [11]. In 

the modelling stage, a likelihood function is generated using the problem descrip­

tion (camera model, human body model, known constraints and image descriptors) 

and in the estimation stage this likelihood function and input image are used for 

predicting the most likely poses. The optimization procedure of this method is com­

putationally expensive and needs to be initialized with accurate parameter values 

(problem descriptors). In top-down approaches, accuracy of the shape model is an 

important factor in the precision of pose estimation. 

One of the disadvantages of the top-down approach is the requirement for man­

ual initialization of the first frame, because the initial estimate of the algorithm is 

obtained from the previous frame. Another drawback is that an initial basic model 

based on physical properties of test subjects is made by taking neutral poses. This 

is a limitation of the top-down approach which makes it difficult for some scenarios 

in which there is no access to co-operative users. Forward rendering of the human 

body model and distance calculation between rendered model and image observa­

tion is also computationally expensive. Top-down methods often have a problem 
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with the (self) occlusion scenarios and can cause inaccurate estimation when the er­

ror is propagated through the kinematic chain (for example error in estimating of the 

head position can cause errors in estimating other body parts lower in the kinematic 

chain). 

Model based bottom-up methods (also called part-based approaches) [12]-[16], 

find body parts in the input image and represent a human skeleton as a set of con­

nected parts restricted by joints. The estimated body parts are used in hypothesis 

generation about body configuration and some of these configurations can exhibit 

unrealistic kinematics of the human body. However, bottom-up methods are usu­

ally fast, and this disadvantage can be compensated by combining it with a tracking 

algorithm to ensure accuracy and consistency between frames. 

There are two stages in bottom-up approaches: finding the body parts and as­

sembling them into a human body. In the assembly stage, physical constraints (e.g., 

body part proximity) is usually used. To deal with the occlusion problem, motion 

constraints can be defined at this stage. Another advantage is that no manual ini­

tialization is needed, and bottom-up approaches can also be employed for initializa­

tion of top-down algorithms. There are also hybrid approaches which combine both 

top-down and bottom-up approaches. Body parts are usually considered as 2D tem­

plates, and this can produce false detections for limb-like structures in the image. 

Another drawback is the necessity to have a part detector for all the body parts. 

Camera 
Ca libration { 

Synchron iza lion 

Human Body 
(Skeleta l) Model 

Joint Positions 
Grou nd Truth 

Multip le Images 
From Cameras 

Body Part Identification 
From Skeleton 

Eva luate 
Res ult 

Input 
lmageNideo 

Camera 
Ca!ibratio nl 

Synchron izalion 

' ............. . ____ , : 

Pre-Processing ~ M!:rng 

..................... . . . . . 
~ Pose Initialization i 
...................... 

Eva luate 
Resu lt 

FIGURE 2.2: Example pipelines of common model-based 3D pose es­
timation systems (Left: bottom-up method, Right: top-down method) 
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2.2.1.1.2 Model free approaches Model free (or discriminative) approaches, es­

tablish a direct relation between human pose and observations without using a hu­

man body model. They can be classified into learning based and example-based 

methods. Leaming based approaches use training data for learning a mapping func­

tion from the image (observation) space to pose space [17]-[19]. In example based 
methods, instead of learning this mapping, a set of example image observations and 

their corresponding poses are stored in a database [20]-[22]. A similarity search in 

the dataset for a given input observation is performed to choose some candidate 

poses. The final pose is estimated by interpolating the selected candidates. 

As the set of feasible human body configurations is always smaller than a set 

of geometrically possible configurations, discriminative approaches are usually fast 

and robust. They also have high precision because of the ability to generalize well, 

and complexity in body configuration or appearance can be handled by them. In the 

learning-based approaches, construction of the training data is an important stage. 

Because of the high nonlinearity of the mapping between image space and pose 

space, the pose space in the training data must be densely sampled. Because of 

variations in body configuration, appearance and size and viewpoints, the training 

data need to generalize well over invariant parameters and distinguish well between 

variant ones. 

2.2.1.2 Accuracy comparison 

The advent of the HumanEva standardized dataset [23] has enabled quantitative 

evaluation of different human pose estimation algorithms and performance com­

parison with the same metric. The proposed error metric is based on a sparse set of 

virtual markers that corresponds to the location of joints or the endpoint of limbs. 

If the pose of the body is represented by M virtual markers, then the state of the 

body can be written as X = { x1, x2, ... , XM}, where Xm E JR3 (or Xm E JR2 in 2D pose 

estimation) is the location of the marker m in the world coordinate system. The error 

of the estimated pose X to the ground truth pose X is expressed as the average of 

absolute distance between marker locations: 

(2.1) 

In terms of accuracy, model free (discriminative) methods tend to be more accurate 

than model-based methods for 3D pose tracking in monocular (single view) images. 

For example, in Bo et al. [24], [25], [26] most of the errors are in the range of 40-50 

mm. In model free algorithms, the choice of inference form or features have less 

effect on the performance. However, generalizing complex motions that are not ob­

served before is difficult. Part-based (bottom-up) methods are a general approach 

for human pose estimation in images, but they lag in accuracy from other meth­

ods. Bergtholdt et al. [27] suggests that they are used for initializing generative (top­

down) methods. Using generative (top-down) approaches for monocular tracking 
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is a challenge and requires very strong subject specific and motion specific priors. 

For example, in [28] an error of 33 mm is reported. Using physics-based models is 

an alternative to subject specific models [29] which is more general but have lower 

accuracy. 

In multi-view settings, the most accurate result for pose estimation and track­

ing is employing a large number (> 10) of cameras in controlled static environment 

and tight clothes (an error of 15 mm is reported in [30]). The related methods do 

background subtraction and recover the volumetric representation of the body. The 

volumetric data and the 3D body model are then fitted for tracking. Generative 

methods can be used for fewer camera views and weaker motion priors (32-45 mm 

error for a 4-camera setting in [31]), but good performance requires careful design 

such as choosing the likelihood function and the inference method. The most used 

inference technique is particle filtering. Different implementations resulted in 106.9 

mm [32], 68 mm [23] and 29.9 mm [31] errors, respectively. Tracking using weak 

likelihood even in the multiview scenario is challenging and the methods usually 

reduce the search space using prior motion models [33]. 

A general pipeline for 3D pose estimation in images/videos is shown in Fig­

ure 2.2. A 3D pose estimation system may use an a priori body model if it is model 

based. Pre-processing techniques are also different among the approaches, many of 

them using background subtraction at this stage. The important features are then 

extracted from the image and used as an input for the pose estimation algorithm. 

Some of the methods use additional information from 2D pose estimation results or 

evaluate the result of projecting 3D estimated pose on 2D image. Then an initial 3D 

pose should be computed or obtained (e.g., Top-down methods need pose initializa­

tion). Applying the constraints will help in eliminating physically unrealistic poses. 

The 3D poses are then inferred, and the result will be evaluated using the motion 

capture ground truth available from the dataset. 

2.2.1.3 Theory and formulization 

Pose estimation problems are often defined probabilistically as estimating the poste­

rior distribution p(xlf), where x is the body pose and f is a set of extracted features 

from the image. Methodologies in pose estimation can be characterized by the dif­

ferent choices of these key parameters: 

• x: the pose representation 

• f: the feature representation/feature encoding method 

• the inference method for estimating p(xlf) 

2.2.1.3.1 Pose representation There are different ways to show the configuration 

of the human body. The kinematic tree is one of the common representations: 

x = { t, 0t, 01, ... , 0n}, where t is the root segment (the pelvis is usually considered 
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as the root segment to make the kinematic tree short), 0t is the orientation of the 

root segment in the world coordinate system and 01, ... , 0n are other joint angles 

which represent the orientation of each body part with respect to its parent. Body 

models with different dimensionality (2D, 2.5D ,3D) can be shown with a kinematic 

tree representation. In 3D models, the 0i dimensions depend on the joint type (i.e., 

Spherical joint, saddle joint or hinge joint). 2.5D models are extensions of 2D mod­

els in which we also have discrete variables (layers) representing the depth of the 

body parts. This representation produces a high dimensional pose vector and the 

alternative way is parameterizing the pose by (2D /3D) position of a set of the most 

important joints x = {pi, p2, ... , Pn}. Despite the simplicity, this representation is 

not invariant to body segment length and is not commonly used. 

Another method of representing human body structure is modelling the body as 

a set of parts: x = { x1, x2, ... , xM}, in which each part has position and orientation 

Xi = { ti, 0i}. By defining physical and statistical constraints, body parts are con­

nected and skeletal or image consistency is enforced. The resulting representation of 

part-based modelling have higher dimensions due to redundancy in parameteriza­

tion, but this redundancy allows more efficient inference of the pose. Although 2D 

representation is more common in part-based models, both 2D and 3D parameteri­

sation is possible. In 2D representation another scaling variable of the body part Si 

is often used: Xi = { ti, 0i, si}. 

2.2.1.3.2 Image features The first step of studying human motion is the accurate 

feature extraction from the input which has a large effect on performance of pose 

estimation and any further steps. The choice of image features that represent the 

main points related to human pose is also important. Another significant factor is 

the feature encoding/feature descriptor method which is employed to describe the 

low-level features and reduce the size of feature space. Some methods also reduce 

the dimensionality of the resulting feature vector by vector quantization. For pose 

estimation, various features can be used for different purposes: 

• Silhouette and Contours: silhouettes [34], [35] and contours [36], [37], [38] 

can be used for separating the human body from the background. The best 

performance in extraction is when the background is static. In other scenarios 

the background is considered different from human appearance. The silhou­

ette is not affected by variation in colour, texture and lighting, but shadows or 

noisy background can have a negative effect on silhouette extraction perfor­

mance. The silhouette also contains lots of information for 3D pose estimation 

[39], however, due to having no information about depth, recovering a certain 

degree of freedom (DOF) is very difficult. 

• Edges: discontinuity or large changes in pixel brightness can be found by edge 

detection. Therefore, external or internal contours of the body are identifiable 

by edges. Extraction of the edges is fast and robust, and this feature is mostly 
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insensitive to changes in lighting. Cluttered background or textured images 

are unsuitable for extracting edge features so the approaches that use the edges 

as features often extract them within a silhouette [40], [41], [42] or the projec­

tion of a human model [43]. 

• Colour/Texture: colour can be a suitable feature for modelling skin and cloth­

ing. As the body part's appearance is mostly unchanged in different human 

body poses, colour and texture can be used for modelling the human body. 

Colour histograms [44], [45] or Gaussian distribution of colours [46] are com­

mon descriptors of body part appearance. 

• Motion: The difference between two consecutive frames when pixel bright­

ness are assumed unchanged produce the motion data. Displacement of pixel 

positions which is caused by motion is called optical flow [47], [48]. Optical 

flow can also be combined with other features, for example for weighting the 

importance of edges [49]. 

Additional raw features include gradient information for texture modeling of 

body parts, along with shading and focus attributes. To enhance robustness, a com­

bination of these features can be used within a likelihood function, where the cost 

functions of individual features are multiplied together. This approach results in a 

sharp peak in likelihood when all feature costs are low-meaning each feature pro­

duces a low cost, which signifies a strong match or high compatibility. Choosing 

an appropriate likelihood function is crucial, as it ensures that performance remains 

high even when some features may not align as expected. 

To reduce the dimensionality and increase robustness to noise, the mentioned 

low-level features are compressed into feature descriptors. The most common fea­

ture description (feature representation) methods are: 

• Scale Invariant Feature Transform (SIFT) [50], [51], [24] 

• Shape Context (SC) [52], [53], [54], [39], [24] 

• Appearance and Position Context (APC) [10] 

• Histogram of Oriented Gradient (HOG) [55], [56], [57] 

HOG has been used extensively in recent publications because of high perfor­

mance in cluttered images and the ability to extract discriminative features of the 

image. POSEBITS [58] is a recent semantic descriptor which infers qualitative in­

formation about the 3D human pose from the image. Hierarchical and multilevel 

descriptors such as HMAX [59], spatial pyramids [59] and vocabulary trees [59] also 

can be used as a feature encoding method. 

2.2.1.3.3 Inference framework Different approaches in pose estimation estimate 

the posterior distribution p(xlf) in various ways. The most direct solution involves 
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defining p as a parametric or non-parametric conditional distribution and using 

training data to learn the parameters of this distribution. This approach frames pose 

estimation as a probabilistic regression problem, where the goal is to learn the re­

gression function. Consequently, this approach aligns with discriminative methods 

mentioned earlier, as it focuses on directly learning the mapping from features to 

poses. The training data (a set of labeled poses and corresponding images) can be 

generated using computer graphics software packages. 

Parametric methods have an advantage of fixed model representation with re­

spect to training data size, but they are not effective when there is a nonlinear rela­

tionship between poses and images. Non-parametric methods perform well in such 

cases, but the complexity of the model and inference is dependent on the size of the 

training data. Ambiguity in features is when some different poses correspond to 

identical features. This situation produces a multimodal distribution. Some para­

metric (e.g. parametric mixture models) and non-parametric solutions are intro­

duced to deal with ambiguity problems. 

In generative (top-down) methods, the posterior p(xlf) is shown as a product of 

likelihood and a prior: 

p(xlf) = p(flx)p(x) (2.2) 

Most methods use maximum a posteriori (MAP) estimation which maximize this 

product and choose configurations that have high likelihood and high prior: 

XMAP = argmax p(xlf) (2.3) 

When the articulation space is high dimensional, the search for finding the men­

tioned configuration is very difficult and usually results in finding a local maximum. 

Some hierarchical search methods can solve this issue for simple skeletal configura­

tions in an upright position and for multi-view input data. However, for single view 

data and more general body configurations, the success of this method is very lim­

ited. 

In part based (bottom-up) methods, the size of the search space is reduced signif­

icantly because of searching each body part separately by considering only adjacent 

constraining body parts. Although the bottom-up method has been usually more 

successful than top-down methods [60], combining top-down and bottom-up ap­

proaches can be used in situations with more complex postures and motions [61]. 

2.2.1.4 Human body and motion modelling 

Due to the importance of the human body model in this research area, in this section 

we are briefly introducing 3D kinematic models, probabilistic models and adaptive 

shape modelling of the human body. 
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2.2.1.4.1 3D kinematic skeleton models One of the effective factors on human 

tracking and modelling is the accuracy of the 3D model of human shape and mo­

tion. The kinematic model or kinematic chain is often considered as the underlying 

structure in 3D computer animation applications such as games and special effect. 

In a kinematic model, length of each limb (body segment) and 2D /3D rotation angle 

between the limbs is usually known. It should be also noted that using a known 

position value of a visible surface point, it is possible to find the joint angle values 

through inverse kinematics (IK) which is widely used in the computer graphics field. 

Figure 2.3 shows the 2D kinematic model from Openpose computer vision library. 

Figure 2.4 shows 3D Kinematic model measured from MoCap data in h36m dataset. 

Figure 2.5, shows 3D Kinematic model from Kinect vl and v2. 

right eye left eye 

nose neck 
right shoulder 

right elbow left elbow 

right wrist ____ ,. left wrist 

r ight hip left hip 

lower back 

right knee left knee 

right heel left heel 

right ankle 
right small toe left small toe 

right big toe left big toe 

FIGURE 2.3: 2D Kinematic model from the Openpose [13] library 

FIGURE 2.4: 3D Kinematic model measured from MoCap data in 
h36m dataset [62] 
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Kinematic chain models can be used for both full body modelling [65] ,[66], [67] 

and hand modelling [68]. Introduction of Kinect RGB-D camera [69], [70] was the 

source of significant advances in real-time reliable hand tracking and after that, RGB 

modelling and tracking methods has also seen a significant improvement with us­

ing neural networks techniques [71], [72], [73], [74], [75], [76], [77], [78], and some 

methods also used a combined body and hand tracking [79], [80], [81], [82]. In the 

area of full body modelling, one of the first approaches is assigning an ellipsoid or 

superquadratic to each limb. This model is fitted to each frame using the extracted 

silhouettes or matching occluded edges [83], [84], [85], [86]. Skeletal model tracking 

in real-time using Kinect depth cameras was one of the first breakthroughs in this 

field that was first used for interactive gaming [87], [88], [89]. In the current skeletal 

modelling and tracking some methods use 2D skeletal models and measurements 

and some use 3D measurement (from range data or multi-view videos) and corre­

sponding 3D model [90] or use monocular video for direct 3D model inference [91], 

[92]. Temporal models are often used in periodic motions such as walking, for ex­

ample, joint angles can be analysed as a function of time [93], [94], [95]. Principal 

component analysis (PCA) and prior knowledge can help to learn typical motion 

patterns in these methods and improve their generality [96], [97]. 

2.2.1.4.2 Adaptive shape modelling Full-body modelling of the human subject 

can be done by fitting a parameterized shape model to visual data. Morphable mod­

els for appearance and shape of an object can be created when a large set of reg­

istered 3D scans is available [98]. Similar to this idea, in [99] first a large number 

of range data scans of different people in a variety of poses are acquired and then 

these scans are registered using (semi-automated) marker placement. Different hu­

man shapes can be modelled as a function of human characteristic and its skeleton 
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pose using this registered dataset. The resulting system called SCAPE (Shape Com­

pletion and Animation for PEople) can be used for recovering a full body 3D human 

mesh model from few captured marker data. This process is called shape comple­

tion which is finding the best fitting shape and pose parameters of the model to the 

measured data. The parametric shape models of the SCAPE system are made using 

subjects with close-fitting clothes and therefore is not compatible with loose-fitting 

subject clothing. This problem is considered in [100] where the body shape is fitted 

within the visual hull of the specific subject in various poses. In [101] an initial sur­

face mesh model of the subject is used for fitting to the parametric shape model of 

the algorithm which cause better matching to the visual hull. 

The previously mentioned methods used multi-view data for fitting the body 

model and pose estimation, whereas monocular image data for human pose and 

shape model fitting is used by Guan et al. [102]. This method uses an image of 

a person in a natural background and firstly a manual initialization determines a 

rough skeleton and the height of the subject and using this information the subject 

outline is found using the GrabCut segmentation algorithm. The extra information 

from the edge and shading is then used to refine the estimated shape and pose the 

model and the result can be used for creating animated 3D subject. 

The first research efforts in the area of 3D human pose and shape fitting was done 

by the above-mentioned method SCAPE and also BLENDSCAPE [103]. Following 

these work, another method named Skinned Multi-Person Linear (SMPL) model 

[104] can model a wide range of different accurate human body shapes and natu­

ral human poses with a skinned vertex-based model. The SMPL model is built via 

training on a large dataset of human 3D scans and composed of a template model 

(for both genders) for a rest pose, pose-dependent blend shapes and identity de­

pendent blend shapes. In [105] the parameters of the SMPL body model in a sin­

gle image are found using a method called SMPLify. The mentioned SMPL model 

does not have underlying articulations for the hand and therefore cannot capture the 

hand poses in the image. In [79] a hand model is introduced that is called MANO 

(hand Model with Articulated and Non-rigid deformations). They further attached 

MANO to the SMPL model and create a fully articulated body and hand model 

called SMPL-H model. The SMPL body model and a face and a hand model are 

joint together in [80] for multi person tracking. The resulting 3D model is called the 

Frank and Adam model. Face and hand articulation is added to the SMPL model 

in [81] with a method called SMPL eXpressive (SMPL-X), because of expressive face 

and also gender specific models. The SMPL model is using the mixture of gaussians 

as a prior. This is changed in the SMPL-X model with a variational autoencoder as 

a prior called VPoser that is trained on the AMASS [106] motion capture dataset. 

All the previously mentioned SMPL estimation methods are using a single frame 

image as an input. To extend this to the video input another method called VIBE 

[107] used the temporal deep neural networks architecture and 2D and 3D human 

motion datasets in video and also the AMASS motion capture dataset and estimate a 
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moving SMPL model inferred from the video input. Another method called ExPose 

(EXpressive POse and Shape rEgression) is introduced in [108] for direct regression 

of hand, face and body parameters in an input image. In the AMASS dataset [106], 

optical motion capture data from more than 15 different datasets are converted to re­

alistic 3D human meshes using the MoSh (Motion and Shape Capture) method [109]. 

This representation replaces the previously widely used 3D skeleton data in MoCap 

datasets. Given a standard marker-set, MoSh estimates the position of markers on a 

3D body model, estimate the body shape and articulated body pose. Recovering the 

moving shape of the body, MoSh is capturing non-rigid soft tissue motion with only 

a small number of markers producing a reasonable result. 

Figure 2.6 shows the SMPL model with the underlying skeleton. Figure 2.7 and 

figure 2.8 shows mosh markerset for front and back of the body. 

FIGURE 2.6: The SMPL model with the underlying skeleton with 
n=24 joints. The first 21 joints of SMPL-H and SMPL are also iden­

tical and in the same positions. 

More recently another model called STAR (Sparse Trained Articulated human 

body Regressor) is introduced [110] with less parameters than SMPL and without 

long range correlation between the model vertices. Shape dependent pose-corrective 

blend shapes are used in STAR that can change depending on the subject's body 

pose and the BMI. it also used an additional 10000 scans of subjects with different 

genders that increase the variety of data. Body and face deformations are inferred 

using nonlinear shape spaces made from deep variational autoencoders in a method 

called GHUM and GHUML [111]. The skeleton kinematics are shown by the flow 

representation that is further normalized. The accuracy and speed of the methods 

are the focus of the recent methods and they often use the challenging 3DPW (3D 

Poses in the Wild) dataset [112] as a benchmark [113], [114], [82]. 
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FIGURE 2.7: MoSh [109] Marker-set, 47 yellow standard Vicon 
marker-set and 20 orange markers added to shape improvement 

2.2.1.4.3 Probabilistic models Due to difficulty of human tracking, to estimate 

how likely a person is in a specific state probabilistic inference methods are used. 

One of such methods is called particle filtering [115] that initially was used for track­

ing the person outline and hands, but was later applied to the problem of full body 

tracking [116], [96], [117] and as of today it is still used in modern trackers [118]. 

Another method that can be used in order to handle the tracking uncertainty is the 

multiple hypothesis tracking [119] and inflated covariance [120]. An example of the 

spatiotemporal probabilistic graphical model is loose-limbed people model in [121], 

that models both the geometrical relationship between limbs and their likely tem­

poral dynamics. Using the training data, the conditional probabilities relating to 

different time instances and limbs are learned and the final pose is inferred using 

particle filtering. 

2.2.1.5 Human Motion Datasets 

Human tracking, shape and appearance modeling, activity recognition of humans 

are among the most popular areas in computer vision [122], [123], [124]. Many 

datasets are produced for this purpose, some important ones include the HumanEva 

dataset [125] with multi-view videos of human actions and its corresponding motion 

capture data, a tracker based on particle filtering is also provided. The Human3.6M 

dataset [ 62] with 3.6 million images from 7 professional actors with 15 daily activities 

(for example walking, sitting, eating, making a phone call or face to face discussion), 

2D joint locations and 3D joints ground truth positions are provided as well as cam­

era parameters and body proportions information for the actors. Humaneva [125] 

is a smaller dataset, but it is widely used as a benchmark in the last decade. The 
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Standard Markerset 

e Optimized Markerset 

FIGURE 2.8: MoSh [109] Marker-set, 47 yellow standard Vicon 
marker-set and 20 orange markers added to shape improvement 
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MPII dataset [126] is a standard 2D pose estimation dataset containing thousands of 

short YouTube videos. The MPI FAUST dataset [127] with 300 human scans of high 

resolution and automatically computed ground truth and the new AMASS dataset 

[106] that has more than 40 hours of motion capture data with 300 subjects and 11000 

motions are among useful 3D datasets. 3DPW (3D poses in the wild) dataset [128] is 

the first dataset in the wild with accurate 3D poses for evaluation, this dataset is also 

widely used as a benchmark for evaluation. The data in 3DPW dataset is captured 

using moving camera and IMUs, containing 60 video sequences with corresponding 

2D and 3D pose annotations and camera poses for every frame, 3D body scans and 

3D people models. 

2.2.1.6 HPE Specific Research 

3D human pose estimation in monocular images has been an active area of research 

in the last two decades. One approach to solve the problem of 3D human pose 

estimation in RGB images is using the training data of images and corresponding 

3D poses. Some popular evaluation datasets like HumanEva [23] and Human3.6M 

[129] contain synchronized images from multiple cameras and the associated ground 

truth obtained from marker-based systems. As the resulting data is produced in a 

lab environment, they are not realistic in many ways. Since 2D and 3D data from one 

source is not practical in real world applications, an alternative approach is to use 

independent 2D and 3D sources of data. As annotating 2D data are done manually 

after the experiment, it does not require any change in the input data. Moreover, 

there is no limitation in the choice of input datasets using this method. The sec­

ond source of data that is considered independent from the first source is accurate 
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3D pose data acquired from a marker-based motion capture system. From the first 

source, it is possible to estimate the 2D pose of the human in the image. The second 

source (motion capture database) is also processed by projecting 3D poses to several 

2D planes of virtual cameras. The next step is retrieving the nearest 3D pose. Then, 

a mapping from 3D pose space to 2D image will refine the estimate of the 2D pose. 

The iterative repetition of this process can improve estimation of 2D and 3D poses. 

Estimating 3D human pose from a 2D pose by exploiting motion capture data 

has been introduced recently in some previous work. Yasin et al. [130] describe a 

method where from 2D annotations of the images the 2D poses can be estimated 

and tracked in the video. The 3D poses are retrieved using the nearest neighbor 

search. The 3D configuration of the human body is computed from 2D anatomical 

key points as described in [131]. They estimated the parameters of the sparse repre­

sentation of the 3D pose in an over-complete dictionary with a matching algorithm. 

This approach was further improved by Wang et al. [132]. They also represent the 

3D pose as a linear combination of a sparse set of bases learned from the 3D human 

skeletons. An anthropomorphic constraint on the limb length is enforced. By min­

imizing the Ll norm error between detected 2D pose and the projection of the 3D 

pose, the correct 3D pose is estimated. To solve the optimization problem, they use 

the alternate direction method (ADM). In [133] a 2D part detector and a stochastic 

sampling that explores each part region are used. For sampling corresponding 3D 

poses from the pose space an evolutionary algorithm is used. This produces a set 

of 3D poses that all have the same image projection. By imposing some kinematic 

constraints that ensure the shape of the human body, the 3D pose is inferred. Simo et 

al. [134] extended this approach by iterating 2D and 3D pose estimation. Unlike the 

previously mentioned algorithms, this approach deals with the error in the 2D pose 

estimation step. Making use of motion priors is discussed in [135], [61], by assuming 

that information about the type of motion is available in advance. These priors can 

be learned from the motion capture data and are used for tracking the 3D pose. 

A general pose estimation framework using part based methods consists of some 

common stages: 

• Data calibration 

• Foreground segmentation 

• Human detection 

• Human tracking 

• Body part parsing 

2.2.1.6.1 Data calibration Camera Calibration is the process of finding camera 

parameters that affect the imaging process. Both the extrinsic (translation and rota­

tion) and intrinsic (focal length, skew factor, lens distortion, aspect ratio, principal 
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point) parameters can be found in single or multiple camera settings. In [136], the 

performance of the actor is captured by synchronizing and calibrating multi-view 

sequences recorded with 12 cameras. Depth imaging devices like Kinect can also be 

used for calibration. In [137] the captured depth and colour data from three Kinect 

devices are synchronized and calibrated automatically using OPENNI [138]. To cap­

ture motion in outdoor settings, Shiratori et al. [139] used body mounted cameras to 

reconstruct the motion of the subject. To calibrate and estimate extrinsic parameters 

of the outward looking cameras attached to the limbs, they first choose the initial 

two images with high number of matches and estimate relative position and orien­

tation and incrementally add the images. From the resulting correspondences they 

reconstruct the camera pose. 

2.2.1.6.2 Foreground segmentation One of the first steps in many human track­

ing systems is modelling the background and extracting the moving foreground ob­

ject (silhouette) that corresponds to humans in the scene. Many human pose esti­

mation methods also need the segmented human as their input. A review of several 

different matting and background maintenance (modelling) methods is introduced 

in [140]. The silhouette of the person can be extracted by considering that the back­

ground is static. The various approaches in background subtraction (segmentation 

of the moving region) differ in their background model and the method of updat­

ing the model. Stauffer et al. [141] introduced a probabilistic background subtrac­

tion method of modelling each pixel as a mixture of Gaussians. In [142] a more 

comprehensive approach was proposed that not only models the background image 

statistics, but also appearance of the foreground objects for example their edge and 

motion statistics. To improve the segmentation error and increasing the robustness, 

Agarwall et al. [39] used the histogram of the edges of extracted silhouette to en­

code the local shape. In part-based methods, the search area of body parts can be 

restricted by finding the foreground. The goal is not having a perfect segmentation, 

but reducing the background clutter and not losing body parts. A more traditional 

approach is background subtraction used in [143] to extract silhouettes. In [144], the 

detection window is used for initializing the Grabcut segmentation algorithm[145]. 

The Grabcut algorithm is rather conservative, and part of the background usually 

remains, but unlike background subtraction, this approach doesn't need any prior 

information about the background and allows the change of background during the 

time in videos. There are also more recent methods for video background matting 

such as [146] and [147]. After extraction of the silhouette from one or more camera, 

they can be modelled using deformable templates or other contour models [148], 

[149]. These silhouettes can be tracked over time, and multiple people moving in 

the scene can be analysed in many ways, for example shape and appearance mod­

elling or detecting a carried object [150], [151], [152] 
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2.2.1.6.3 Human detection Automatic tracking of people requires firstly detect­

ing the human presence in each frame individually. The goal of human detection 

is determining if an image contains a human and finding the approximate location 

of the human body in the image. This topic is very much explored in the context 

of pedestrian detection, which can be considered a type of object recognition [153], 

[154], [155], [156], [157], [158], [159], [160], [161]. A more generic approach that can 

cope with a variety of poses is introduced in [54]. The marginal distribution of the 

position of the torso is first computed and its modes are used to predict the position 

of the human bounding box. For the specific application of human movies and TV 

shows, Eichner et al. [144] applied some methods that had excellent performance 

in rigid body detection for training an upper body detector. They first start with 

the Histogram of Oriented gradient [55] and linear SVM classification approach and 

then tried latent SVM [162] that improves the previous method by using a filter on 

HOG features. They also tried to improve the performance by combining a face 

detector [163] with their upper body detector. For purposes of pose estimation in 

videos, Sapp et al. [164] incorporated a similar initial upper body detector. They 

introduced a feature-based model that uses a variety of single frame features (e.g., 

colour and flow-based hand detector, HOG based limb detector for shoulder and 

elbow) and between the frame features. A multi-person detection and pose estima­

tion by Eichner et al. [165], used full and upper body detector based on latent SVM 

and face detectors to increase the detection rate and decrease the false positive rate. 

Additional methods for initialising 3D trackers based on 2D images are introduced 

in [166], [167], [20], [168], [169], [170] and [171], [172]. Many of the single frame hu­

man detection and pose estimation methods are used for tracking purpose too [173], 

[174], [175], [176], [13], these algorithms are often combined with frame to frame 

techniques for more reliable result [177] [178], [179]. 

2.2.1.6.4 Human tracking Frame to frame tracking of human and its pose can 

be done with computing optical flow and comparing the appearance of the limbs 

across frames. In [180] appearance of upper and lower leg portions is modelled as 

a moving rectangle and optical flow is used for estimation of the location of these 

parts in each frame. In [119], [96] limbs are tracked using templates and optical 

flow and additional methods are employed to deal with uncertainty and multiple 

hypotheses. Full 3D model of the limb and body motion is used in [85] for tracking. 

Estimated motion fields are matched to some prototypes in [181] for identification 

of a specific phase in the motion (running motion) or for matching two portions of 

a low resolution video in the video replacement procedure. Non-rigid deforming of 

the objects such as the subject clothes also can be tracked using flow based methods 

[182], [183], [184], [185], [186], [187]. The 3D mesh model of a moving person that is 

evolving can also be estimated using inter-frame motion [188]. 
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2.2.1.6.5 Body part parsing After pre-processing the image via detection and seg­

mentation, the most important step is locating different body parts in the image. We 

will review different approaches regarding different features used for body part de­

tection and the models employed for parsing the body parts. 

The features that can be extracted from the input image can be handcrafted lo­

cal features or learning based features. Handcrafted features, refer to features that 

are derived using various algorithms from the image data. They are usually used 

with traditional machine learning methods for various computer vision tasks (e.g., 

Object recognition). The most recent approaches like convolutional neural networks 

do not need these handcrafted features and are able to learn the features from the 

image data directly. Histogram of oriented gradient [189] and shape context [54] 

are the most widely used handcraft features. Sapp et al. [190] used a combination 

of appearance, geometry and shape information of parts or pairs of parts in their 

cascade of models which is used to prune the state space (all possible positions and 

orientations) of parts. The recently emerging deep learning methods, automatically 

learn the image representation by capturing the data structure. In recent work, deep 

learning methods are also used for feature extraction in human pose estimation. In 

[191] the location of body joints is found by a 7-layered generic convolutional Deep 

Neural Network (DNN). For increasing the precision, a cascade of DNN based pose 

predictors is also introduced. Chen et al. [192] trained a Deep Convolutional Neu­

ral Network to estimate part presence and also pairwise part relations from local 

image patches that centered at the body joints. In [193] human detection and pose 

estimation is learned jointly by a single deep model. The proposed multi-source 

deep model nonlinearly integrates various information sources such as appearance 

and deformation. Deep learning approaches are more tolerant to the variation of the 

dataset and bottom-up part based models make it easier to incorporate prior knowl­

edge about the human body structure. A convolutional network part detector is 

combined with a part based spatial model in [194] into a single learning framework 

to improve the performance. 

Structural models show the relationship between body parts. In a tree struc­

ture model, each body part is a node that is connected to its neighbour part (node). 

To extend capability of the tree structured graphical models and capturing all the 

interactions between body parts, Ramakrishna et al. [195] introduced an inference 

machine framework to learn a spatial model and use a supervised predictor that 

results in an improved pose estimation. A full relational body model [196] is used 

instead of a tree model for improving body part parsing. The relation between body 

segments (for example right and left limbs) is defined in the full relational model as 

well as the kinematic relation in the tree model. This improvement needs adopting 

approximate inference and learning procedures. Karlinsky et al. [197] introduced a 

part detector that use linking features instead of kinematic constraints. The model 

also learns the appearance of part linking and individual parts. The Pictorial Struc­

ture Model that is originally introduced by Fischler et al. [198] around forty years 
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ago, describe a visual object by breaking it down to a number of primitive parts 

and specifying a range of spatial relations that should be satisfied. The deformable 

model of nodes (body parts) and the springlike connection between them enables 

a high variation in the appearance. Felzenszwalb et al. [143] applied the Pictorial 

Structure Model to human pose estimation for the first time. The pictorial struc­

ture framework is generic and different methods can describe appearance of each 

part and geometric relationship between the parts. It enables modelling faces and 

articulated bodies using the pictorial structure. The appearance models which are 

related to parsing each body part individually, restricts the likely regions containing 

a part. The success of a pictorial structure framework is highly dependent on a good 

appearance model. Eichner et al. [199] used a general learned appearance model 

that learns the relationship between location and appearance of different body parts 

from training data. Yang et al [57] introduced an extension to tree structure models 

that models co-occurrence between a mixture of parts in addition to spatial relations 

between part locations. (An Example of co-occurrence is a constraint of two body 

parts of the same limb to have the same orientation). They also showed that a mix­

ture of non-oriented pictorial structures have a better performance than explicitly 

articulated parts because it can be tuned to find parts with a specific orientation. 

The models that are used in many part-based pose estimation methods are an exten­

sion of linear pictorial structure models. Body parts in all poses and appearances are 

detected using the same model. Multimodal decomposable models in [200] increase 

the number of modes in models that can capture different poses and appearances. A 

model based on the conditional random field is introduced in [201] to detect human 

body parts. It is a modification of the pictorial structure framework in which a bi­

nary random variable shows the presence or absence of a body part in every possible 

position, orientation and scale. In a similar approach by Pishchulin et al. [202] [203], 

the dependencies between body parts that are not connected is captured using the 

poselet feature representation. This improved the body part estimation results. 

2.2.2 Research Gap 

The aim of this section is the identification of research gaps in human motion esti­

mation. Human skeleton and mesh estimation is an important problem that has at­

tracted a lot of research in the previous decade. Vision-based monocular estimation 

of the human pose and shape from video/ image and its improvement is the focus 

of the current work. There is a wide variety of solutions and methods introduced in 

the literature to solve the HPE (Human Pose Estimation) problem. More specifically, 

deep learning-based approaches are extensively used in this area and have shown a 

significant performance increase as compared to the previous methods. Despite this 

advancement, some unresolved issues and challenges are still open in this field. For 

example, problems regarding the pose ambiguity, depth and global position percep­

tion, occlusion by self or an object, collision of body parts, unnatural poses or issues 

with the training data set such as inadequate 3D annotation, low diversity of poses 
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within the 3D data set and unavailability of more specialized 3D human motion data 

set that are going beyond daily human activities, still exists. 

This section provides an overview of some of the most important existing chal­

lenges in human pose and shape estimation using monocular videos. More specifi­

cally, the occlusion problem and the related literature are reviewed. Some solutions 

for improving the result of human pose estimation that can address problems such 

as body part occlusion, unnatural poses will be suggested. For comparison with the 

previous work and understanding that the solutions are effective and relative to hu­

man pose estimation problems, some examples of previous work that made use of 

the same concepts will be mentioned. Finally, the section also will mention some of 

the less explored and new research directions that are more related to the current 

project objective. 

2.2.2.1 Problem Statement 

The main objective of the research is to improve 3D human inference from monoc­

ular RGB videos. The result represented by the output model of the HPE methods 

can be skeleton-based or model-based. The skeleton is the result of position-based 

estimation that infers root-relative joint positions. Joint positions only represent 3 

degrees of freedom, however, in many potential applications, 6 degrees of freedom 

including the rotations are needed. Therefore, the information related to joint/link 

orientation or appearance is lacking from the skeleton-based pose which limits their 

practical application. To illustrate this issue, Figure 2.9 shows an example of pose 

ambiguity in skeleton-based methods with having only joint positions as an out­

put. This shows, specific 3D skeleton poses and joint positions can represent many 

different joint angles and lack sufficient information. 

FIGURE 2.9: Left, middle and right images show different wrist rota­
tions yet all have the same joint positions 

Due to the mentioned reasons, the SMPL-based methods are chosen as the output 

representation. They can infer a 3D character with body shape and joint rotations 

that is a more accurate representation of the real 3D human body. 

Focusing on SMPL-based methods, the aim is to identify and resolve some com­

mon problems that human 3D estimation faces, more specifically inaccuracies caused 

by occlusion, unnatural poses. 
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The improvement and comparison of results from model-based output with a 

3D mesh can be shown qualitatively and quantitatively. For qualitative comparison, 

usually, the resulting 3D human model is illustrated in 2D images in the research 

papers to show improvement or the result can be exported to the 3D environment 

where more detailed information about the output can be seen. SMPL-based human 

models lack specific evaluation metrics that can make comparison between the cur­

rent work easier. The 3D model output contains more information than only 3D key 

points and using the skeleton-based 3D benchmarks and their evaluation metric is 

not enough. 

As the joint rotations are the main parameters of the pose in these models, the 

mean rotation error of the joints using quaternion representation is used to show 

overall improvement and compare the result across different methods. Comparison 

between joint positions is also still possible but as mentioned before, using position 

data results in pose ambiguity. This also relies on the estimation of a simplified 

(weak perspective) version of the camera model to compute 3D positions which itself 

is a source of error and not always available. It should be also noted that the ground 

truth skeleton structure of the position-based benchmark datasets is different from 

the underlying skeleton of the 3D model and also across different datasets, making 

the position error measurement imperfect. In this work, the 3D joint position errors 

of SMPL models will be found by exporting the models to 3D environments such as 

Blender. 

2.2.2.2 HPE Specific Research Gaps 

The deep learning methods have contributed significantly to the development of 

the monocular pose estimation methods. The unresolved challenges and the gap 

between research and practical applications still persist. Some example common 

problems are body part occlusion, temporal consistency, unnatural pose estimation, 

depth ambiguity and lack of 3D data sets. There is a history of related research in 

each area that is trying to address these general problems. Some of these problems 

such as occlusion can also occur when using other types of inputs such as depth sen­

sors or motion capture or can occur due to a variety of reasons such as the presence 

of other objects, crowded scenes, or being outside the video frame. Here the focus 

is on the self-occlusion of body parts in a full-body RGB video input. It should be 

noted that the state-of-the-art HPE methods also progressed over time and the latest 

research shows fewer errors and improvements in these areas. 

Because of fast progression of the HPE methods through time, some of the lat­

est methods on the lab videos (containing data about exercise and body part occlu­

sion) and in-the-wild videos (containing data of challenging poses and movements) 

are tested on the state-of-the-art to better understand areas that can be improved. 

From our observation, some of the main sources of inaccuracies in the model-based 

estimations are body part occlusion, temporal inconsistency, extreme and unnatu­

ral poses, and wrong estimation during the collision of body parts together. There 
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is also the difference between the result of the skeleton-based and more difficult 

model-based predictions that require 3D mesh recovery. 

In terms of current research trends, one of the future directions in this research 

area is improving benchmarks, protocols, and toolkits for 3D mesh recovery. Despite 

being a promising direction, there is a lack of large-scale 3D mesh data sets online 

and protocols for effective evaluation of such methods are still not available. These 

problems are addressed by recording and producing a custom 3D mesh data set in 

the lab consisting of synchronized video and 3D human mesh sequence. A new 

evaluation metric for the model-based output that is focused on the correct pose 

prediction will be developed and will be covered in Chapter 3. 

More realistic human representations are also among the potential future direc­

tions. Few work are available that combine the models of all body parts and there 

is also a lack of paired and annotated data sets that merge all this information in a 

unified human body within the data set. 

The real 3D world is a dynamic space where objects interact with each other. 

Building a system that is interaction-aware is among the interesting directions. 

Some general approaches for improving the current HPE methods are context 

modeling, better and more effective training (efficient network or adequate training 

data), and post-processing techniques. In this work, the planned improvements will 

be done using post-processing techniques that can improve the resulting 3D human 

model output of the state-of-the-art HPE method by resolving the common issues of 

these systems. 

As the name suggests, post-processing deals with previously processed but im­

perfect results. It can also get some information from the input data or do additional 

processing of input data to enhance the result. Although there is the ranking of HPE 

methods online based on the joint positioning, in reality, considering all input sce­

narios, there is no perfect human pose estimator and sometimes lower-ranking ones 

perform better than higher-ranking methods in challenging situations or other spe­

cific situations. The post-processing methods can be applied to any HPE method to 

improve the result of the pose estimator. 

2.2.2.3 Suggested Solutions 

Here a range of potential solutions for improving the output of the model-based 

pose estimation methods with SMPL output are introduced. 

The problem of lack of 3D model-based data sets is addressed in this research by 

recording and producing a data set of ground truth mesh and synchronized videos. 

Unlike most current data sets, the actions in the recorded data set are not daily activ­

ities but more challenging exercise motions with a range of different actions aimed at 

better evaluation of the pose estimation performance. There is repetition in each per­

formed action and the same actions are repeated by different subjects which is also 

unique among the existing datasets. This enabled us to implement action modeling 
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in motion estimation part and also be able to use the dataset for motion evaluation 

purpose. 

The recorded data set focused on self-occlusion scenarios, a widely known prob­

lem with monocular video pose estimation methods. The repeated actions in the 

data set enabled us to produce action-specific data and train a machine-learning 

model to address the problem of self-occlusion. Using the rotation-based evaluation 

metric, is shown an improvement in the overall pose while training a model with 

corresponding correct and incorrect pose data. Supervised training on the action­

specific data can also significantly improve the incorrect poses due to body part 

occlusion and reduce the error of the evaluation metric even further. 

One solution to problems such as occlusion and unnatural poses can be using 

the deep learning based 3D key point prediction of limb's endpoints and applying 

inverse kinematics (IK) to guide the model arms and legs to the correct destina­

tion. This can be done by aligning and scaling the deep learning predicted skeleton 

structure with the 3D mesh model and finding the 3D position target for the 3D hu­

man model limbs. This will also improve and close the gap between model-based 

and skeleton-based predictions. Looking at the current research papers, the idea of 

applying IK is tried and combined with different methods. This method can be con­

sidered as the initial stage or be improved to have distinction from current methods. 

2.2.2.4 Existing Solutions 

In this section, previous research about the problem of occlusion and self-occlusion 

in human pose estimation is listed. 

2.2.2.4.1 Self-Occlusion/Occlusion in HPE The video input of our project is a 

single-person, full-body monocular video and no external object or person is be­

tween the subject and the camera. Hence, the main source of occlusion is self­

occlusion of the body parts due to having only one camera v. Current HPE methods 

are ranked based on the achievable pose error and not by handling extreme cases 

so their ability to evaluate self-occlusion or external occlusion may vary. Most of 

the more recent work on occlusion is working on severe cases, for example being 

occluded by another person, external objects, being outside of the frame, crowded 

scenes or having only a single image. Self-occlusion still can be an issue with some 

state-of-the-art methods at various levels depending on their architecture. 

Human pose estimation algorithms are divided into top-down and bottom-up 

approaches. The bottom-up approach has lower accuracy, but they are better at han­

dling the occlusion because of considering the joint relationships. Some examples 

of such bottom-up methods are 0RPM [204] (occlusion robust pose-map) which 

uses the joint location redundancy, that can be applied to only extremity joints to 

infer occlusion, and Xnect [205] that encodes the joint's immediate local context in 

the kinematic tree to handle occlusion, and depth aware part association algorithm 

[206] that is robust to occlusion. Apart from bottom-up approaches, the occluded 
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pose estimation problem is solved by various methods: a category of methods first 

finds the 3D skeleton that has some missing joints and then completes the missing 

joints with statistical and geometric models [207], [205], [208], [209]. The attention 

mechanism is used to enforce the model to focus on non-occluded areas that result in 

more robustness in the final output [210], [211], [212]. If the input is video, it is pos­

sible to use temporal information [213], [214], [215], [216], [217], [218], [219], [220], 

[221]. If the complexity of occlusion in the real world is higher than the available 

data, data augmentation methods [222], [221], [223], [224] can solve this problem. 

In severe occlusion scenarios where there is no or little cues, some recent methods 

regress multiple plausible poses [225], [226], [227], [228]. 

For better handling of occlusion in [229] two separate upper and lower body 

parts are used. Similarly, in [230] two separate models for occluded and non-occluded 

body parts are trained to resolve occlusion by another person. In [231], [222], [213] a 

multi-stride temporal deep neural network and a discriminator to check the validity 

of the pose are employed. Some key points are masked during training and final op­

timization based on projection of 3D key points to 2D key points is performed. A pair 

of occluded 2D key points and correct 3D key points are used for training. Similarly, 

in [232] this pair of 2D and 3D poses are used for training graph convolutional neu­

ral networks and transformers. Synthetic data is used for data augmentation. More 

analysis based on the number of occluded 2D joints and number of occluded frames 

is presented and the result is compared to the existing HPE frameworks. The data 

augmentation approach used in [231] is in the form of discrete/continuous frame­

wise and point-wise occlusion. A Bayesian approach for 2D Human pose estimation 

that employs both local and global information is used in [233]. A CNN-based pose 

estimation like Open Pose is used for detecting the visible joints, then a Bayesian 

pose estimation is applied to fill the missing joints. The task of pose estimation is 

divided into two parts: visible 2D key points detection and occluded 2D key points 

reasoning [230]. Motivated by the advantage of explicit modeling compared to the 

previous methods and implicit modeling, they have proposed a deeply supervised 

encoder distillation to solve the occlusion problem. To create occlusion labels on the 

datasets to enable this explicit reasoning, a skeleton-guided shape-fitting method is 

introduced. The problem of 2D occluded key points estimation is also solved by 

[213]. Confidence heat-map of key points and optical flow-based constraints can 

find the incorrectly estimated key points. Then the incomplete 2D pose is used to 

infer the complete 3D pose. Synthetic data with plenty of occluded 2D poses are 

produced using the projection of the cylindrical man model into the image plane. 

The problem of 3D human pose estimation is treated as an unsupervised learn­

ing problem in [234] to avoid the common issue of supervised methods when deal­

ing with unfamiliar out-of-distribution data. To quantify the prediction uncertainty, 

model-free joint parameters and model-based pose parameters inference are used. 

The adaptation process aims to minimize the uncertainty for unlabeled data and 
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maximize it for an extreme data case. In [235], Instead of using synthetic occlu­

sion datasets, a 3D occluded dataset is built. Non-occluded human data is used to 

learn joint-level spatial-temporal motion prior to inferring occluded humans in a 

self-supervised strategy. Similar to the previously mentioned research, a 2D input 

skeleton with missing joints was used in [236] as an input to infer the 3D skeleton. A 

temporal dilated CNN along with a mechanism for removing the 2D occluded joints 

using confidence values is introduced. Comparison with a range of current static 

and dynamic HPE methods is made under various levels of occlusion, for example 

removing around 90 percent of the joints from the input data. 

Some previous research also worked more specifically on the problem of self­

occlusion. For example, in [208] to reduce the ambiguity in inferring a 3D pose 

from a single image, both kinematic and orientation-related constraints are used. 

This is done by projecting the 3D model into the image and some synthetic views 

and improving the ambiguity. The occlusion problem in a single image is solved 

by using the Euclidean Distance Matrix in [237]. A Markov random field is used 

to represent the occlusion relationship between human body parts in terms of oc­

clusion state variables [238]. The depth ordering of the body parts is considered 

as occlusion states that need to be estimated. The dataset is labelled according to 

how the depth ordering of body parts and self-occlusion is changing during the 

video. The inference is done in two separate stages: body pose inference and oc­

clusion state inference. A new cue is used in [239] to address the problem of self­

occlusion. The self-occlusion handling process uses the torso orientation as a cue. 

A new occlusion-aware graphical model is introduced in [240] that explicitly mod­

els both self-occlusion and other occlusion to improve the robustness to occlusion. 

The model learns the part-level occlusion relationship from data and infers the oc­

clusion states of parts explicitly. There are a few other work that tried to model self­

occlusion. In [241] pixel level hidden binary variables are used for self-occlusion rea­

soning. Some others try to model self-occlusion holistically. In [242] self-occlusion 

of pedestrians is modelled in a joint shape and appearance tracking framework. In 

[208] self-occlusion reasoning is treated as post-process with Twin-GP regression for 

2D pose rectification. In [243], an LSTM-based method that uses multiple frames is 

proposed that considers both spatial and temporal correlation by connecting mul­

tiple LSTM networks, suggesting better solutions for self-occluded scenarios. A 

sequence-to-sequence LSTM framework is shown to be effective in handling self­

occlusion [244]. 

In summary, most of the previous research in self-occlusion is related to a single 

image and 2D human pose estimation or 2D silhouette. Some of them are demand­

ing in terms of data, for example, they are taking advantage of multiple view train­

ing data and need a large training dataset. The depth ordering of body parts is also 

required to be known beforehand. Some are video-based method but being part­

based they are unable to estimate invisible body parts or limbs. The most widely 

used human body model in the previous work on self-occlusion is the body parts 
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model. Existing work on occlusion problems in SMPL-based methods [211] worked 

on occlusion by other objects and do not perform well in self-occlusion scenarios in 

which body parts are occluded by other body parts. 

This research focused on the problem of self-occlusion in video-based 3D human 

model estimation which is an under-investigated area. We also believe this is the 

first work on the problem of self-occlusion in SMPL-based methods. Our approach 

does not require a complicated or large training dataset and only uses single-view 

video data. Furthermore, it is able to estimate invisible motions and body parts, 

unlike the previous video-based research. 

2.2.2.5 Suggested Solutions 

In this section some current work in HPE that incorporates the suggested computer 

vision concepts are discussed to ensure the distinction of the proposed methodology 

from the currently existing research. 

2.2.2.5.1 Inverse Kinematics (IK) for HPE Inverse Kinematics can improve the 

3D model estimation when the predicted 3D positions are better than the estimated 

3D model parameter. This might not be the case in all challenging scenarios. 

The IK method uses the joint positions to place the joints of the parametric mod­

els in the desired place. The current evaluation metrics are solely based on joint 

position errors. Deep learning methods (e.g. [245]) can infer 3D joint positions in 

challenging scenarios. Despite that, the position data itself is incomplete and using 

only analytical IK, leads to correct joint positions but incorrect orientations. This is 

resolved by using a combination of IK and other methods or enforcing more con­

straints on the model. In [246], a post-processing refinement is applied to the result 

of the IK. A combination of analytical and learning-based (Neural) Inverse Kinemat­

ics is used in [247] where the rotations are estimated jointly from the image and 3D 

key points. It has been improved recently [248] by learning both forward and inverse 

processes and using the error from the learned manifold of plausible human poses. 

In [229] the pose is divided into the upper and lower body for increasing robustness. 

The 3D pose (joint orientations) is regressed by deep neural networks. Then the IK is 

applied to the result along with applying some constraints to the body model using 

the camera information and known limb parameters. 

2.2.2.5.2 Optical Flow/Kalman Filter for HPE Optical flow is used as a temporal 

feature for improving the result of 2D and 3D human pose estimation results. For 

example, in [249], [250] using dense optical flow as an additional feature, showed im­

provement compared to using only RGB input. In [251] the under-constrained prob­

lem of human pose and shape estimation showed improvement in the "optimization­

based" method when the constraints based on silhouette and optical flow were 

added to the joint position-based constraints. The use of flow-based features and 

CNN for real-time/ online processing is investigated in [252]. Optical flow is used 
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in [253] to improve the robustness and compensate for the issues caused by the tem­

poral continuity error of the 2D pose estimator. A new representation called Pose 

Flow is introduced in [254] that can jointly describe pose and motion. Temporal 

differences are used instead of optical flow in [255] to use motion cues. In [213] op­

tical flow in conjunction with joint confidence maps (heatmaps) are used to realize 

which joint is occluded and remove them from the 2D estimations because of being 

inaccurate. 

2.2.2.5.3 Attention Mechanism for HPE A temporal attention-based mechanism 

is used in [256] for the purpose of 3D human pose estimation. The attentional mech­

anism adaptively identifies significant frames from each deep neural network layer 

leading to better estimation. 

2.3 Human Motion Evaluation 

Human motion analysis is a rapidly growing field that is focused on studying the 

movement of the human body to gain a better understanding of it. Some useful 

applications of human motion analysis is in the areas such as healthcare or sport 

science where the tasks are not currently fully automated. For example motion anal­

ysis can be used in the development of musculoskeletal models to understand the 

effect of different movements on the body, and this can help in preventing injuries. 

Kinesiology which is studying the mechanics of human movement can also benefit 

from human motion analysis. In the area of physical therapy, human motion analy­

sis can lead to a more effective treatment plan for the patients with better outcome 

and less pain. In ergonomics it can be used to design more efficient and comfortable 

workplaces by study of worker movements. The study of athlete motions can help 

optimizing the performance and choose the best training for each individual. 

In this work, the human motion is analyzed with the purpose of evaluating (scor­

ing) the performed sport action by an athlete more specifically martial artist. Human 

motion evaluation is concerned with how well a certain action is performed and, in 

some cases, providing some feedback on motion improvement. This branch of hu­

man motion analysis is different from action recognition/ classification (labelling the 

actions in a set of predefined categories), action detection (specifying the beginning 

and end of a specific action in the motion sequence) or action prediction (predicting 

the future motions based on the previous history in incomplete motion observation). 

Many emerging applications for the human action evaluation are introduced in the 

recent years including healthcare, skill training and sport scoring. 

2.3.1 Previous work 

Due to the diversity of research in this area, categorizing all the research is a difficult 

task. The main research that introduces some insights into the main problems in 



2.3. Human Motion Evaluation 37 

a complete human motion analysis pipeline (main taxonomy of the research prob­

lems) are provided in surveys. According to [124] the research can be divided into 

initialization, tracking (sometimes includes background segmentation), pose esti­

mation, and action/ activity recognition. In [123] the paper is divided into tracking 

(background subtraction, deformable template, flow, probabilistic models), 3D pose 

recovery from 2D observation, and data association and body parts. The topic of mo­

tion synthesis, which is more discussed in the area of computer graphics was also 

mentioned [257], [258], [259]. Another important topic is about the taxonomy of the 

research in this area that can be divided into whether monocular (2D) or multi-view 

(3D) data are used for processing, and if the human body model is in 3D or in 2D. 

2.3.1.1 Classic machine learning methods 

The statistics of human motion (e.g. mean and standard deviation of the timeseries) 

are important factors in understanding the motion in various areas such as biome­

chanics, computer animation or ergonomics. 

Handcrafted features are very common in the classic solution of two stage fea­

ture extraction and feature learning. Most famous feature detectors such as spa­

tial-temporal interest points (STIP) [260], histogram of gradient (HOG) [261], his­

togram of optical flow (HOF) [262], scale-invariant feature transform (SIFT) [263], 

and motion boundary histogram (MBH) [264]. Depending on the application more 

custom features can also be developed. In the next step which is learning the action 

model can be trained using the methods such as a bag of words (BOW) [265] or the 

hidden Markov model (HMM) [266] and an evaluation function result shows the 

quality/ score of the motion. Some issues can cause less quality in the result of this 

method, for example, in the cases that variety of action types are performed, using 

one handcrafted feature might not be possible. Also, if the action is complex or time 

duration is long, this method doesn't produce a satisfactory result. 

2.3.1.1.1 Human Movement Features Human motion data can be diverse and in 

different formats and may be generally large and complex. Some of the most com­

mon forms of this data are a sequence of joint positions/rotations, RGB-D data, sil­

houettes, RGB data, etc. In order to process and perform inference from this data, it 

is necessary to achieve some more abstract representation of this data. Furthermore, 

depending on the type of study, some aspects of the data might be unimportant 

in decision making and this extra information can be removed for easier processing. 

The aim of designing a movement feature is highlighting some aspects of movement 

which are important to us and can help in achieving the task. In this section general 

categories of movement features are introduced and in the next section the features 

related to the martial art motions are discussed. Movement features can be grouped 

into three areas: 

1. Subject Features 
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2. Transition Features 

3. Motion Features 

2.3.1.1.1.1 Subject Features Human bodies are different depending on the 

physical characteristics of the subject. This morphology has an effect on the per­

ceived motion as it might be an important prior data that can help in the motion 

analysis step. This type of feature is not directly related to the motion, but is about 

the subject itself. Some examples can be specific bone size, the distance between 

the various joints in human body skeletal representation, the height of the subject, 

width of shoulder /hip or rotation limit of each joint. Measurement of these features 

is easier using motion capture systems when there is access to the subject, otherwise 

it can be complicated and require extra data to be done correctly. When using a mo­

tion capture system anthropomorphic characteristics of the body can be measured in 

T-pose/rest-pose. To extract body proportions more than one pose is usually used. 

Distances in these systems are shown with different statistics such as mean, median 

or standard deviation. It should also be noted that high quality captures should be 

used for extracting physical properties to reduce the effect of issues such as occlu­

sion, capture space and reflections. 

In image-based methods, because of an unstructured form of the data compared 

to the MoCap data, there are fewer descriptors about the subject. Silhouette width 

and height are one of the features that are used [267], but they are not view-independent 

and might not be a reliable measure in some situations. Body parts length was used 

in the model-based application [268], distance between head and pelvis, pelvis and 

feet, head and foot plus some dynamic distances like distance between the two feet 

during walking are used as the feature vector. A synchronised camera system is 

used for marker-less human motion capture and estimation of a 3D model composed 

of twelve 3D cylinders where the length of the cylinders is extracted as a subject­

specific feature [269]. Bone length and subject height are also computed from the 3D 

human data captured by Kinect [270], [271]. 

Pose Features: Static features are extracted from the pose of the person at any 

given time, and they are defined independently from other poses happening at dif­

ferent times. Therefore, they are not affected by factors such as speed of motion or 

the type of action performed by the subject. Since they are defined as a function of 

human pose, their input space will be all possible poses that can be generated by the 

subject which is a continuous nonlinear space [272]. 

Appearance (Silhouette) based Features: This type of feature uses the human silhou­

ette or some other extracted information from it, as a pose feature. Using a silhouette 

on walking videos with a fixed velocity is used in [273]. First, the area of the silhou­

ette in the first and last frame is manually specified as a bounding box, and because 

the moving speed is considered to be constant, then intermediate bounding boxes 

for other frames can be computed. In the final step, background subtraction is done 
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in each of the frame bounding boxes and the silhouette is extracted as a motion fea­

ture. This appearance-based approach is combined with model-based methods by 

defining each area of the silhouette as a specific body part (for example: right arm, 

head, torso, etc.) And each of these parts of the silhouette is considered as a pose 

feature [274]. This method was tested on the USF dataset [275], where some body 

part features showed a worse discrimination ability than others. Especially the body 

parts related to the right side of the body which was mostly occluded in the videos. 

Therefore the discrimination depended on whether the body parts appeared in the 

image or not and it was not affected by the shape of each extracted part. The sil­

houette itself can also be a source of other information and features, for example the 

contour of a 2D silhouette is extracted by Wang et al. and then is unwrapped as 1D 

signal [276]. The unwrapping procedure is done by computing the distance of each 

pixel on the silhouette contour (starting from the top in a clockwise direction) and 

the center point of the silhouette. The initial length of the produced 1D signal will be 

equal to the number of pixels on the contour. The magnitude of the signal is normal­

ized and the length of it is re-sampled to a fixed length. Poor quality of silhouette 

images could affect this feature [277]. Further improvement to this method is done 

[278], [279], [280] to increase the effectiveness. The width of the contour (distance 

between the right and left pixels in each row) is also used as a feature vector [281], 

[282] in various applications. 

Skeleton Joints Rotation and Distance Features: The second group of features that 

are a function of the human pose in the image, are model based (skeleton based) 

features. The human skeleton model can be defined in 2D or 3D, so these features 

can be defined in 3D when spatial data are computed or is available. In rotation­

based features, the degree of freedom of each joint in the human model is equal to 3 

[283], while in a 2D skeleton model each joint (connection between body segments) 

has 1 DOF. For simplicity and accuracy in measurement of the joint angles in the two­

dimensional space, usually the sagittal view is used, and motion also is constrained 

to this view. Joint angles used in [284], [285], and shows as a periodic signal in [286], 

[287] using joint angles. The hip and knee angles [288] in the sagittal view of the 

human body, are used in a model of the human leg as a 2D pendulum. The whole 

human 2D body model with nine key points is used by Yoo et al. [289]. Six joint 

angles from this model are extracted as a feature. Similarly, in [290], [267] body parts 

are modelled as a rectangle/truncated cones, and angles between these parts are 

measured. Measuring the joint angles only in sagittal view, means that the solution 

is not view-independent, and its application is limited to such an input data. As 

a view invariant method, 2D angles are extracted from the 3D skeleton model by 

projecting the 3D skeleton to a 2D plane. The lower limb is projected into the sagittal 

plane in [291], [292], and the joint angle is found from the projected trajectory, for the 

purpose of human motion retrieval. The same method with additional projection 

onto transverse and frontal planes is used in [293]. 

In a 3D human model, the joint rotation angle can be also described in the 3D 
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space. This 3D rotation value can be expressed with different values depending on 

how the rotation of the joints is modelled in a specific type of coordinate system for 

the human body model. Generally, there are two main types of coordinate systems 

for assigning rotation/position values to 3D skeleton joints. In the global (scene) 

coordinate system values are computed with respect to the world coordinate system 

in the scene, while in the local coordinate system values are with respect to some 

points on the human body itself. The local system is camera view-independent and 

is further divided into two types: a hierarchical and absolute coordinate system. In 

the hierarchical system the rotation of each joint is expressed with respect to the par­

ent joint while in the absolute system the root joint (usually pelvis) is the reference 

point. 3D Joint angles in the quaternion form can be acquired from the wearable 

gyroscope and accelerometer sensors to be used for action recognition [294]. Other 

motion capture systems such as Kinect or optical motion captures like Vicon can 

directly give the rotation values. 

If only joint positions are available, it is possible to convert joint positions to joint 

rotations and vice versa using inverse kinematics (IK) and forward kinematics (FK) 

respectively. Because converting joint positions to joint angles using IK is compu­

tationally expensive, a simplified computation is usually used. One of the common 

solutions is computing the angle between the two bones (body segments) attached 

to the joint in the body model (for example humerus and forearm bones for elbow 

angle). Another way for approximating the angle is definition of some planes using 

the human body and compute declination of the bone from that plane. For example 

the shoulder angle is computed by first defining a plane on the shoulder-thorax link 

and another plane on the shoulder-elbow link. The angle between these two planes 

is measured and projected on the first and second plane respectively. This results in 

two angle values describing the 3 DOF joint rotation. A human skeleton of 18 joints 

is used in [295] with dividing joints into lDOF (elbow, wrist, knee and ankle) and 

3DOF (hip, shoulder and spine) groups. The joint angle of lDOF joints is defined 

as the angle between the related bones, and the rotation angle of the 3DOF joints is 

approximated by measuring the declination of the bones from sagittal and frontal 

planes. The roll rotation is ignored in this approximation. Joint rotation approxima­

tion in [296] is defined as an angle between two vectors each specified by two body 

joints. The vectors used in feature extraction were not limited to the bones of the 

skeleton. Other vectors using different pairs of joints were also defined. In [297] an­

gles between a spine vector and humerus, radius, femur and tibia vectors are used 

as features. The rotation representation of the rotation matrix is used in [272] and all 

joint rotation values are relative to the torso which is considered as an origin. The 

orientation of the bone vectors is used as a feature in [298], if the skeleton rotates 

without any change in the pose. Using this method will result in a different set of 

features for the same pose and this is a disadvantage. 3D joint rotations are repre­

sented in the quaternion form in [299], while in [300] joint angles computed in Euler 

and quaternion forms are used for finding acceleration and angular momenta. 
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Joint distance features measure the distance of the joint to a certain point. There 

are two common types of this feature: 

• Joint to joint distance can involve any arbitrary pair of joints depending on the 

definition of the feature. 

• Joint to plane features where the plane can be defined relative to the human 

body. For example the body frontal plane, which is made by left hip, right hip 

and root joints. It can also be a fixed absolute plane in the scene for example 

the floor plane. 

Joint to joint distance is used in [301], [302] and [303], [294], [304] as a pose fea­

ture. The distance-time signal is used in [301], [302]. A similar approach is used 

in [303] for action recognition with normalizing joint to joint distances. Anthropo­

metric properties of different human bodies can affect the distance feature, while in 

action recognition it is desired that the feature is only a function of the human pose 

not the shape or proportions of the human body. This is the reason for normaliz­

ing the distance feature. The length of the path between two joints in the kinematic 

tree (3D human skeleton) is used as an indicator of human size and the direct 3D 

distance (distance features) are divided into this value to be normalized. A motion 

capture classification method proposed in [305], [296] uses the joint to plane distance 

as features. These types of planes are used in the definition of features, they can be 

defined by: (1) three joints, (2) one joint and normal vector of the plane (defined by 

two joints) or (3) points in the scene. Depending on negative or positive sign of the 

computed distance between a joint and specific plane, a set of binary features such 

as right hand above head, right foot behind left leg, etc. are extracted. Joint to plane 

distances are also used in [304] for action recognition where the distance of some 

body joints like hand, pelvis, etc. and the floor plane is measured as a pose feature. 

2.3.1.1.1.2 Transition Features If we consider the human motion as a series of 

poses each happening in a the specific time instance, it is also interesting to study 

how the transition from one pose to the next poses is done. Like the pose features, 

transition features describe an information about the motion at a specific time in­

stance, but for computation of their value, data from the time instances around (be­

fore or after) them is used. At least two consequent poses are needed to compute 

a transition feature, but usually no more prior information about the whole motion 

signal is needed. Instantaneous velocity, the rate of change in position for the time 

period, is an example of transitional features. The sampling frequency of the motion 

capturing technology that provides the input signal specifies the time period value. 

For example in the video or Kinect, the input frame rate is 30 Hz (fps) and optical 

MoCap devices have a higher sampling frequency like 120 Hz. The transition fea­

tures can be computed from appearance based or model-based information in the 

input data, so depending on the given data various forms of features can be defined. 
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Transition features based on appearance use the image frames in the video di­

rectly. The optical flow technique [306] which is used in video processing is an ex­

ample of such features. Optical flow in conjunction with silhouette deformation and 

pixel-based silhouette difference is used in [307] for video action recognition. Sil­

houette deformation is defined as changes in the Chamfer distances [308] between 

points on the silhouette in two consequent frames. Silhouette difference between 

two frames is computed as the pixel wise difference between the contours. Com­

bined Local Global (CLG) motion flow, which is composed of optical flow and shape 

flow features, is introduced in [309]. Optical flow is represented by velocity vectors 

that are derived from the normalized flow of each quadrant of the silhouette im­

age, characterizing the recognition of motion in action with less noise. The shape 

flow features are extracted from the global flow of the shape. The global flow of the 

silhouette images is computed by applying robust description of geometric orthogo­

nal moments [310], flow deviation and anthropometry flow, which characterizes the 

recognition of shapes in action. 

Model based transition features use data from the human body skeletal model 

as an input. Cartesian or angular velocity of the joints that are extracted from the 

position or angle trajectory of the joints are examples of such features. The angular 

joint velocities are extracted from 2D skeleton data in [289]. In [271] the joints of a 3D 

skeleton are projected on 2D views, and the angular velocity is then computed. 3D 

angular velocity of the human skeleton joints and the corresponding rotation angles 

in the form of quaternions [299] and angular momenta [300] are used as features. 

One of the problems in computing the velocity from the joint position signals is the 

appearance of high frequency errors (temporary spikes) due to noise in the joint 

motion data captured by various means such as Kinect, optical MoCap or video pro­

cessing. To solve this problem motion smoothing techniques are used. Low pass 

filters are suitable for removal of high frequencies and convolutional low pass fil­

ters are usually used for this purpose [311], [312], [305]. In addition to the absolute 

value of the velocity [270], [313], [271], the direction of the velocity vector can also 

be used as a feature [294], [299]. The concept of relative velocity, which captures 

changes in joint positions relative to each other, can also be explained by the velocity 

vectors. The relative velocity features are used in [272] and this idea is extended in 

[305], [296] for motion annotation purposes. They define an absolute value for the 

velocity of a joint j in the direction of a specific vector cJ. The vector cJ is made 

using the position of two joints on the human skeletal model. The acceleration is 

another transition feature which can be derived from velocity values and is used for 

motion segmentation [307] and motion generation [300] applications. In addition to 

kinematic features such as velocity or acceleration, kinetic values such as force and 

torque can be extracted. For example, in [293] force plates and motion capture are 

used for extraction of joint reaction forces during walking. The measured forces on 

lower limb joints from sagittal, frontal and transverse views are evaluated in their 

work. To find the correct time instance for transition from one motion sequence to 
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the next sequence, a transitional feature is defined in [258]. Consecutive poses in a 

window with predefined length are used to make a large point cloud. The extracted 

feature from the point cloud will help to solve the mentioned motion segmentation 

problem. 

2.3.1.1.1.3 Motion Features The motion features are assigned to an entire mo­

tion sequence or a set of frames. Other lower-level features introduced in previous 

sections can help in this task or it can be done manually by the user. Like previous 

types of features, the motion features can be in the appearance based or model-based 

category. An example of appearance-based motion features are temporal templates 

introduced in [314] for action recognition in 2D RGB videos. A temporal template 

is an aggregation of all frames corresponding to an action, into one image in which 

each pixel is a function of the foreground motion at the specific time instance. The 

foreground motion is defined as the image difference of silhouette image of two 

consecutive frames. The MEI (Motion Energy Image) feature is defined as the ag­

gregation (union) of such differential images over all frame sequences. The contri­

bution/weight of each frame is equal in the computation of the MEI feature, while 

in the MHI (Motion History Image) feature each frame can have a weight which de­

pends on the time instance of that frame. The temporal templates are used in [315] 

for walk cycle actions. The feature Gait Energy Image (GEi) is introduced which is 

like the definition of the MEI feature previously discussed. Assume having the sil­

houette images of the human gait over a series of n frames, GEi is computed by the 

summation of all the silhouette images divided by the number of frames n. In the re­

sulting image the brightness of each pixel shows the duration of human walking oc­

currence at that pixel position. Similarly, the Gait History Image (GHI) features [316] 

is inspired by the MHI features. MHI and GHI can preserve the temporal variation 

in the resulting image feature by gradual intensity distribution on the moving trace, 

so the brightness of pixels in that image is also a function of frame time and increases 

gradually. More improvement on temporal templates are introduced in [317], [318], 

[319], [320], [321], [322]. To reduce the effect of incomplete silhouettes, in [323] Frame 

Difference Energy Image (FDEI) is introduced as a robust dynamic gait representa­

tion. Temporal templates are also used in 3D, where such a data is available through 

multiple camera setup or depth sensors. The concepts such as Motion Energy Vol­

ume and Motion History Volume are introduced in [324], in which the 3D silhouettes 

were created by the RGB videos captured from different views using a multi-camera 

setup. Gait Energy Volume using depth map of the walking sequence in frontal view 

is used in [325]. Apart from temporal templates, statistical image description is an­

other approach to describe a sequence of silhouettes that represents an action. An 

Example of image statistical description methods is Hu moments [310] that is used 

in [326] to discriminate shapes in a scale and translation invariant way. The matrix 

of moment's mean and covariance is computed through the entire movement that is 
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analysed. The 3D extension of Hu moments is introduced in [327]. Another statisti­

cal image descriptor is the mean shapes. A series of mean shapes is extracted from 

a series of silhouettes of walking cycle using Procrustes shape analysis [328] [290], 

[329]. 

Model based motion features are using the joint motion data of a sequence to 

compute a feature. An example of such features is the average velocity or traveled 

distance of a joint in the motion sequence related to an action. Features such as ca­

dence of specific steps [330], stride [271 ], [330], [270] or length of walk cycle [271] are 

in this category. Features such as velocity, distance and action duration are used in 

[273] for action recognition. Statistical descriptors of human motion sequences such 

as mean, standard deviation, minimum and maximum values, median, median ab­

solute deviation and modus are another example of motion features. The mean, 

standard deviation and max and min values of joint rotation angles are used as a 

feature in [271], [292]. Signal processing techniques can also be used to find some 

patterns in the motion signal, for example [271] examined the periodic pattern in the 

signals such as arm joint rotation, knee joint rotation, hip joint rotation, distance of 

head to floor and distance of COM (centre of mass) to the floor. They have used the 

autocorrelation (correlation of the motion signal by itself) as an identifier of period­

icity. The position of 3D joints in different time instances during an action can be 

considered as joint trajectories XYZT describing a human action. In [331] a set of 

action bases is generated where any action can be defined as a linear combination 

of these action bases. Similarly, features of the action can be computed with linear 

combinations of action bases and features are represented as a vector of the corre­

sponding coefficients for this linear formula. Another approach in [332] mapped the 

action data from the space-time domain to the space domain which means showing 

an action as an image. Each human body model joint coordinates in XYZ had the 

corresponding RGB colour and converted to a pixel on the image depending on its 

position. 

2.3.1.1.2 Movement Features Processing The features related to human motions 

introduced in the previous sections, are usually vectors with real values. The re­

sulting feature space required for analysis can be very high dimensional, and this 

will cause fast growing of the feature space and consequently sparsity of data which 

cause problems when statistical significance is required for data analysis. The values 

of the features also can contain error values and noise values that can cause issues in 

further interpretation of the input through the extracted features. Therefore, there is 

a need for processing the extracted features using some methods before performing 

the analysis. 

2.3.1.1.2.1 Quantisation The extracted features of human motion data are usu­

ally in the form of real numbers, these values can deviate from the real-world range 

of the features which is constrained by different factors including the physics of the 
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human body. For example, rotation angle of knee cannot be 360 degrees or there is a 

limitation to the joint velocities too. In feature quantization we use the fact that slight 

differences in feature values are associated with similar human motions, by defin­

ing a set of predefined bin values for assigning the exact values of features to them. 

Quantized features were used instead of numeric features in [333] and showed in­

variance properties in recognition problems. They are also used for indexing in [296]. 

In a more general form, feature quantisation can be defined as a way of discretizing 

the feature values to integer numbers. For example, in [305] 39 different features 

were defined that further quantised to binary classes 0, 1. The resulting binary val­

ues create binary feature vectors that can be more easily clustered in comparison to 

feature vectors with non-quantized values. The thresholding process is a common 

issue with quantization methods. That is because the fluctuation of input around the 

threshold value will cause fluctuation in the output. This is not desirable because a 

small change in the data due to some artifacts can produce a different value. This 

issue is solved in [305] by using hysteresis thresholding which have a two threshold 

values for the increasing and decreasing trend in the input. This will prevent the 

output quantised values from fluctuation by creating a band for thresholding. 

2.3.1.1.2.2 Dimensionality Reduction The features extracted from the human 

motion signal have high dimensionality also known as the curse of dimensionality. It 

is preferable to reduce the dimensionality of these feature vectors as much as possi­

ble. Dimensionality reduction allows both computational and memory advantages 

(i.e., reducing the training time and the amount of required training data) and re­

duces the risk of overfitting, by searching for a low dimensional feature subset. One 

of the most used dimensionality reduction methods is called Principal Component 

Analysis (PCA) [334] that can decrease the dimensions of the feature vector by keep­

ing the most important values. If we consider each element of the feature vector as 

a variable that jointly describe the feature data in the n-dimensional space, principal 

components are new variables that are made of linear combination of these initial 

variables. The new variables (principal components) are chosen in a way that more 

information about the initial variables can be explained and compressed into the first 

principal component and most of the remaining information can be explained with 

the second component and so on. Principal components should also be uncorrelated 

to each other. 

PCA is used in [335], [298] for feature dimension reduction. It is mentioned that 

although dimensionality reduction is more efficient, the resulting feature vectors 

will be more sensitive to deformation of input poses [336]. In [276] PCA is used for 

converting the high dimensional features to a low dimensional eigenspace. There are 

other approaches similar to PCA, for dimensionality reduction like singular value 

decomposition (SVD) that are used for handling the large data. More ideas and 

methods for dimensionality reduction can be found in [337]. 
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2.3.1.1.3 Human Motion Analysis Human motion analysis research is motivated 

by applications over a wide spectrum of topics and focusing on diverse research ar­

eas such as body structure analysis (model based/non model based), tracking (sin­

gle camera/multiple camera), action recognition, action detection, action evaluation, 

etc. An example of application areas for human motion analysis in action recogni­

tion and detection is gaming [338], computer vision [339], animation [259], surveil­

lance [340], human-machine interaction [341] and robotics [342]. The research efforts 

until recent years were mainly focused on using video sequences or RFID sensors, 

and later with the advent of low-cost depth sensors, research on 3D joint positions 

as one of the most important data that can indicate the body motion is increased 

and recently, research efforts also been devoted to human action evaluation. Some 

examples of research in this area are applications such as interactive gaming [343], 

rehabilitation [344], self-learning and practising sports [345], dance [346] and mar­

tial arts [347]. Assume having an input human motion, the problem can be defined 

as finding (1) the corresponding predefined category for the motion or (2) similar 

motions to the input motion. At the core of such analysis is a distance function that 

besides the input human motion takes a dataset of human motions (and for the first 

case corresponding target values), and outputs a real number related to the cate­

gory or similarity of the input motion. In the following sections these two common 

approaches in motion analysis are introduced. 

2.3.1.1.3.1 Motion Classification The learning methods, learn patterns from 

the training data consist of a dataset of motions paired with their corresponding 

target values. The quality of training data plays the major role in the success of these 

methods, also it is important to avoid overfitting to the training data which is only 

a subset of all possible observations in the real world. Supervised learning methods 

are very common in these types of problems and are reviewed in this section. 

Neural Networks: Neural networks are computational methods that try to find 

the underlying relationship between a set of provided data like the way human brain 

do it through learning things by observation. For complex operations, we would 

need a multilayer neural network where perceptrons are arranged in interconnected 

layers. Neural networks were also used in fall detection problem [348]. Convolu­

tional neural networks for action recognition in Mocap data is used in [349], [304], 

where the MoCap data are converted to image inputs of the CNN. 

Support Vector Machine (SVM): Support Vector Machine is another supervised 

learning algorithm that can solve classification and regression problems. An SVM 

kernel is a function that converts the low dimensional input to higher dimensional 

data and in this way a non-separable problem becomes a separable problem with the 

data transformation method. All possible poses of a person in MoCap data, creates 

a non-linear input space that can be classified using SVM. SVM is used in [272] for 

action classification purpose using quaternion joint angles and their velocities as 

features, it is also used in [294], [298], [350] and [271], [351]. 



2.3. Human Motion Evaluation 47 

Naive Bayes and HMM Stochastic Methods: The input data in some machine 

learning problems can be in a form of sequence. Human motion data can also be 

considered as a sequence in which the sequential supervised learning methods can 

be applied. The sequenced training data is in the form of (x,y) pairs of inputs and 

targets, and in most cases these sequences have sequential correlation. This means 

that it is very likely that nearby x and y are related to each other. In sequential 

supervised learning the aim is to find ally values in the sequence y1, y2, · · • , Ym· This 

is slightly different from time-series problems in which all the previous observed y 
values until the time t are available and can be used for predicting the next value of 

y at the time t + l. Two common algorithms for sequence classification are HMM 

(Hidden Markov Models) and Naive Bayes methods. 

Naive Bayes classifier is used in [271] using a set of subjects, pose and action 

features, similarly bone length, bone speed and length of step used as a feature in 

[270]. Naive Bayes is also used in action recognition problem [352], [353], [354], 

[299]. HMM based classifier is used in [353] and [281] for different problems. Similar 

application of HMM classification for human motion analysis can be found in [355], 

[356], [280], [357],[299]. 

Decision Tree and Forest: If we have a test set of data, the classification problem 

can be solved by asking a series of questions about the characteristics and attributes 

of the input data. After receiving each answer, a follow-up question can be asked 

until reaching a conclusion about the target label of the input. These series of ques­

tions and their answers can form a hierarchical structure of a decision tree. Decision 

forest is the collection of decision trees and randomized decision forest is based on 

selecting random subset of features during learning in order to decrease the effect 

of feature correlation. Decision tree, decision forest and randomized decision forests 

are used in [294], [270], [358], [359]. 

2.3.1.1.3.2 Motion Similarity The human motion analysis methods described 

in the previous section were based on machine learning. There are another group 

of analysis methods called similarity-based methods that does not use learning or 

any predefined set of categories for output and are used in cases where there are few 

positive examples are available. Since there is no training stage in these methods, 

they rely on a distance function d that can compare two different motion sequences. 

The quality of features and data also plays an important role in the success of these 

methods. The distance function is dealing with two time-series data of different 

lengths, so the motion sequence alignment methods [360] need to be used to produce 

a sequence of corresponding (frame, pose) pairs for both motion sequences. Various 

motion alignment methods are used in the literature, including Uniform Time Warp­

ing (UTW) [361], Interpolated Uniform Time Warping (IUTW) [362], [363], Uniform 

Scaling [364] and Dynamic Time Warping (DTW) [365]. The distance functions used 

in the similarity methods are usually implemented metric measures over pose fea­

tures such as joints positions, rotations or velocity. These features can be defined as 
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a vector with n dimensions. Different distance measures such as Euclidean, Man­

hattan, Cosine and Quadratic form distance can be defined over the vector space. 

2.3.1.2 Deep learning based methods 

In the recent years using convolutional neural networks (CNNs) in the field of ac­

tion recognition replaced using handcrafted spatial and temporal features. During 

this short number of years, a lot of progress has been made in different areas such 

as using CNNs for learning features and action recognition in single images, us­

ing 3D convolutions in spatiotemporal volumes and use of recurrent networks for 

modelling temporal transitions. CNNs show a very good performance in solving 

computer vision and image processing problems. They are also used to extract deep 

features from human motion, for example in action recognition problems. Examples 

of such networks are the 3D convolutional network (C3D) [366], [367], long-short 

term memory (LSTM) [368], [369], and the two-stream convolutional network [370], 

[371]. Long videos can be processed with frame-based aggregation methods or video 

based temporal relation methods. The frame based methods use a pooling operation 

for fusing extracted features of each frame to form video based features. The video 

based methods use a recurrent neural network to model the temporal relationship 

between frames. 

Monocular (single image) action and gesture recognition using deep architec­

tures is like object recognition solutions. In both applications feature learning and 

classification is jointly done by the deep neural network in an end-to-end manner. 

The dimensionality of the network's input is also expanded to using spatiotempo­

ral data blocks, as mentioned before when having such cases the dimension of the 

convolution filters will be in 3D [372], [373], [374]. The spatiotemporal framework 

is extended in [375] to include a large number of frames at the same time, which 

is called long-term convolutions. The model is shown to have an improved perfor­

mance in video classification. In gesture recognition, the frames are concatenated in 

[376]. Then a 3D convolution is applied, and the result is a multiplication of the class 

probabilities in the double resolution framework. The use of hand-crafted features 

as a pre-processing step such as optical flow or gradient also is common in the previ­

ous work. In [374] some handcrafted filters are used for low-level feature processing 

that later act as an input to a CNN that can learn spatiotemporal features and also 

do the classification. Optical flow estimation is used in [375], [377], [378], [370] for 

learning the action models. Another similar approach in [379] used DeepFlow for 

a patch matching problem. In a different approach spatial (scene characterization) 

and temporal (motion dynamics i.e., optical flow) stream of data is separated and 

given to a pair of convolutional networks in [370]. Later the prediction of the two 

networks is combined to produce the result. In another work [380], only optical flow 

volumes are used for human activity recognition. Pose based CNNs (P-CNNs) are 

introduced in [381] which learns the motion and appearance data along trajectories. 

In a similar approach, two 3D convolutional networks with different scale are used 
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for action recognition in [382] where the first network input is the depth image, and 

the second input is the specific region of interest provided by the Kinect skeleton 

tracker. 

As mentioned before, it is shown that when the input is a spatiotemporal 3D vol­

ume, processing of temporal data using the spatial methods improves the result. But 

this is not a significant improvement, so many work use temporal recurrent models 

to also process the temporal dependencies in the data [372], [368], [383]. Among 

these methods, the use of the double-deep network [368] (named LRCN-Long-term 

Recurrent Convolutional Network) is a major contribution. LRCN networks are fur­

ther used in many work. [384] use separate spatial and temporal convolutions in the 

input layer and also a bidirectional LSTM as a long-term temporal model. In [385] 

LRCN networks are used in conjunction with the focus selectivity idea [373]. During 

the action recognition process a soft attention mechanism [386] is used instead of a 

fixed focus on the center of the frame. In this way the model can learn the important 

region of the frame for the assigned task and weigh the extracted features from that 

area higher than other regions. 

2.3.1.3 Pre-processing of human motion data 

Dynamic changes in human body motion have a direct relation with finding the 

quality of human motion, so this research field is mostly focused on skeleton-based 

analysis of human motion. Acquisition and pre-processing of this skeleton data is 

one of the challenges in this field. Capturing skeleton data often requires a lab en­

vironment setting with different devices like optical motion capture, stereo cam­

eras or depth sensors and this limits the availability of the data. Some widely used 

sensors like depth cameras facilitate providing the skeleton data, but suffer from 

issues like occlusion, sensing from a distance, and being impractical in outdoor sit­

uations. More diverse data can be achieved via RGB data using the recent deep 

learning techniques [17], [13], [8], [176]. The resulting skeleton data still can be noisy 

due to different issues like cluttered background or occlusion. Noise filtering solu­

tions can involve traditional image filtering techniques such as Laplacian smoothing, 

Gaussian filtering, discrete cosine transformation (DCT), and discrete Fourier trans­

formation (DFT) to preserve only low-frequency components of the joint trajectory 

components. Normalization of the different sizes of the subjects due to variation in 

height and distance from the camera, and alignment of the skeleton position in spa­

tial (view-variance) and temporal (action start-end) space also is an important step 

in pre-processing of the motion data. 

2.3.1.4 HME Specific Research 

Human Motion Evaluation (HME) is performing analysis on the actions with the 

aim of finding how well the motions are performed by a subject. Action quality 
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assessment in human motion has been studied in diverse research areas such as re­

habilitation, sport movement analysis ad skill training. The evaluation criteria are 

usually problem dependent which limits the ability to compare the result of different 

work. In rehabilitation research, normal and abnormal movement models compari­

son is done to find anomalies in a specific movement. In the sports applications, the 

predicted score is compared with the ground truth scores provided by the experts in 

the field. For skill training methods, the expertise level is ranked in a few categories, 

for example expert, intermediate and novice. 

2.3.1.4.1 Physical rehabilitation Assessment of functional mobility motions (gait 

on stairs, walking on a flat surface and the transition between sitting and standing) is 

done by Paiement et al. [387], [388] with comparing the statistical model of healthy 

subjects by new subject observation, frame by frame. Extracted features are joint 

positions, joint velocities, pairwise joint distances and pairwise joint angles. Redun­

dancy of skeleton features is reduced using nonlinear manifold learning (diffusion 

map) which reduce the dimensionality of the mentioned low-level features. Hid­

den Markov Models (HMMs) are used for modelling the sequential motion data. 

In the frame-by-frame analysis, continuous HMMs performed better than discrete­

state HMMs in detecting abnormalities. The motion sequences are recorded with an 

RGB-D Xmotion camera and a Kinect2 camera for Staircase, Walking and Sit-stand 

experiments. The area under the curve (AUC) of the Receiver Operating Characteris­

tic (ROC) curve of sequence classification is used as a performance metric for motion 

abnormality detection. The best AUCs for walking, sitting and standing were 1.00, 

0.99 and 1.00 respectively. 

Elkholy et al. [389] worked on the same motions and trained a normalcy model 

that classifies a test sequence as being normal or abnormal based on its likelihood. 

To capture the abnormality, a number of medical-related features such as asym­

metry, velocity magnitude, and centre of mass (COM) trajectory deformation are 

extracted. Two probabilistic models, Gaussian Mixture Model (GMM) and Kernel 

Density Estimation (KDE) were built from extracted features of normal sequences 

during training. The test sequences likelihood is computed by evaluating the trained 

models and based on the learned threshold a decision will be made about normal­

ity/ abnormality of the motion. The best AU Cs achieved by the KDE model, with 

1.00 values for walking, sitting and standing and 0.98 for gaits on the stairs. The 

previous work's SPHERE data set as well as a new dataset (EJMQA) with 32 pa­

tients with abnormal gait and 11 healthy volunteers used for testing the proposed 

method. In addition to abnormality detection, the quality of action is also assessed 

for finding the degree of abnormality. A multiple linear regression predicts an as­

sessment score on the scale of 1-5 (1 correspond to highest abnormality and 5 is no 

abnormality) based on the features as independent variables. Multiple linear re­

gression has the best fitting result compared to quadratic regression, linear Support 

Vector Regression (SVR), Gaussian SVR, and squared exponential Gaussian Process 
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Regression (GPR) on the data. Vakanski et al. [390], [391] made a different dataset 

with Vicon optical motion capture system and Microsoft Kinect sensor, consisting 

10 different physical therapy movements (Deep squat, Hurdle step, Inline lunge, 

Side lung, Sit to stand, Standing active straight leg raise, Standing shoulder ab­

duction/ extension, Standing shoulder internal-external rotation, Standing shoulder 

scaption). 10 healthy subjects repeated the exercise 10 times in both correct and in­

correct manner to stimulate the patients that have musculoskeletal constraints. A 

deep autoencoder neural network reduces the dimensionality of the captured data. 

It is compared to linear techniques like PCA as it can produce a richer data rep­

resentation. Then a parametric probabilistic model (Gaussian mixture model) was 

used for modelling the specific exercise. Model-based performance metrics evaluate 

the repetitions data with respect to this model and employs the log-likelihood for 

performance evaluation. Model-based methods can handle the stochastic variabil­

ity of the motion data better than model-less techniques such as Euclidean distance, 

Mahalanobis distance or DTW Distance that are calculated directly from joint tra­

jectories without modelling the movement. Instead of specifying only correct and 

incorrect classes, a scoring function maps the result of the performance metric of 

a movement quality score between O and 1. These scores are used in supervised 

learning by a neural network to regress the quality of the movement score from the 

test input motion. From the three deep learning architectures that were investigated 

(CNN, RNN and DNN), CNN had the best performance and acquired the minimum 

deviation between input and predicted scores in overall for ten different exercises. 

The deviation is between 0.013-0.041 for CNN, 0.016-0.093 and 0.030-0.192 for RNN 

andHNN. 

2.3.1.4.2 Sport activity scoring To score the sports activities a regression prob­

lem is usually solved and the performance of the regression is found by computing 

the similarity between ground truth score and the predicted score. To measure the 

similarity the Spearman rank correlation coefficient or Pearson's correlation coeffi­

cient is employed. Much of the recent work in this field was tested on MIT Olympic 

Scoring dataset [392] (Diving and Skating) and UNLV AQA-7 dataset [393] (Diving 

and Vault). Both of these datasets are from the video of Olympics competitions on 

YouTube and there are variations in view of samples. MIT dataset is made of 309 

diving and figure-skating videos with 60 FPS and 24 FPS frame rate respectively. 

The AQA (Action Quality Assessment) score is between 20-100 and 0-100 for fig­

ure skating. Seven action categories (single/synchronous diving, gymnastic vault­

ing, skiing, snowboarding and trampoline) with the total number of 1189 samples 

exist in the UNLV AQA-7 dataset Multiplication of execution and difficulty score 

is considered as ground truth. The performance of skeleton/kinematic data-based 

methods [392], [394] with the handcrafted approach were lower than deep learning 

methods [395], [393], [396], [397], [398], [399] on these datasets. The best correlation 

performance measures on the UNLV AQA-7 dataset are 0.84 and 0.7 for diving and 
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vaulting while for the smaller MIT dataset the best correlations are 0.86 and 0.59 for 

diving and figure skating. 

2.3.1.4.3 Skill training In the skill training research category, the performance of 

learners of the particular task like surgical skills or the daily activity of life is as­

sessed. In the JIGSAWS dataset [400], [401] three levels of expertise (expert, interme­

diate and beginner) were classified in the different work. In the JIGSAWS dataset, 

eight persons are doing three surgical tasks (Suturing, Knot Tying, Needle Passing) 

with five repetitions using a da Vinci Surgical System. There are 103 Samples (Video 

and Kinematic data) with two left and right views and the same background. Eval­

uation criteria on this dataset is varied between classification accuracy, score pre­

diction and rank accuracy (percentage of correctly ordered videos in ranking). Both 

deep learning [402], [403], [404], [405] and non-deep learning, skeleton/kinematic 

data-based methods [406], [407], [408], [409] were able to achieve high classification 

accuracy with this dataset. 

2.3.2 Research Gap 

The motion evaluation problem is highly dependent on the specific chosen applica­

tion. We have focused on sport motions evaluation and more specifically martial arts 

because of the slower motions with mostly upright and normal body poses that can 

be less challenging for capturing with video cameras in video-based motion capture. 

One of the limiting factors for motion evaluation methods is availability of anno­

tated dataset with the expert judge scores on quality of motion. This ground truth is 

specially needed when using the supervised machine learning methods. For train­

ing the deep learning methods, large number of data is required. The mentioned 

datasets in the previous research for the sport activity scoring (see section 2.3.1.4.2) 

have between around 150 to 1100 video sequences. Since 3D data of the sport mo­

tion with the scoring ground truth information can be collected in limited quantity, 

increasing the accuracy of classic machine learning methods is valuable in this area. 

In the previous work on martial art motion evaluation which is our chosen appli­

cation, despite trying various combination of features and a range of machine learn­

ing methods, the achieved accuracy between the predicted and actual scores could 

be still improved. Using only classic machine learning, we can show that prediction 

accuracy can be significantly improved with the right selection of the features and 

the machine learning method. Furthermore, if the model is only trained on an spe­

cific movement, the best combination of feature type and machine learning method 

is not fixed and depends on the type of movement. The achieved correlation be­

tween the predicted score and ground truth is the highest among the state-of-the-art 

methods in sport activity scoringnd also better compared to previous methods that 

used the same martial arts dataset. 

The output of the human pose estimation is the 3D SMPL model. There is little 

work about motion evaluation of the SMPL human models or their related datasets. 
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We have used a large dataset of SMPL motions (AMASS) with diverse motions and 

annotated it using pseudo-scoring computed by a program as ground truth. Using 

this large dataset, it is possible to demonstrate the potential of deep learning meth­

ods in motion evaluation of movement of SMPL human models. 

2.4 Summary 

In this chapter some background and previous research regarding to human motion 

estimation and analysis are discussed. This will give the reader a good overview of 

common methods used and a lot of insight in pursuing future research in this area. 

The identified research gaps are also highlighted and related work to the research 

gap and the suggested solutions are discussed. The research gap section is the basis 

of the research that is done in the next chapters and is related to the methodology 

and results presented in this thesis. 
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Chapter 3 

Human Motion Estimation 

3.1 Introduction 

In this Chapter the methodology and the result of the research regarding to Human 

Pose and Motion Estimation is explained. The methodology is mainly focused on 

the methods designed for improving the accuracy of current state-of-the-art human 

pose estimation methods. The baseline method and quantitative evaluation metrics 

are introduced. The data that is recorded for testing our methods is an action based 

dataset focusing on occlusion. The data acquisition method and the training data 

and training procedure are explained as well as the experimental setup. Different 

validation and robustness tests are done regarding the introduced methods. The ex­

periments and their results are presented and compared with state-of-the-art pose 

estimation methods including work focusing on occlusion of SMPL human model 

estimations. It can be shown that the introduced methodology can improve the re­

sults compared to the baseline and state-of-the-art methods. 

3.2 Research Design 

The input data in this project are derived from single view video footage. These data 

go through a pipeline where the human motion is estimated first, then the resulting 

motion is evaluated. The research objective is to improve the accuracy of motion 

estimation and therefore, modifications are done to improve the results compared 

to the baseline and other state-of-the-art methods. To resolve problems such as self­

occlusion and unnatural poses in SMPL model estimation, extra processing stages 

are added to existing human pose estimators. 

Better accuracy in video based markerless human motion capture, that estimates 

the SMPL parametric models, is the research objective in human motion estimation. 

As mentioned before, the choice of the SMPL model is because of its more realistic 

representation of human motion in 3D that includes both rotational and positional 

degrees of freedom. 

The majority of the state-of-the-art research in human pose estimation report 

their performance based on testing motions in the available datasets and they usu­

ally lack information about the performance of the method on challenging motions. 
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In order to find the source of inaccuracies in the current state-of-the-art human pose 

estimators, we have tested a diverse range of online videos that contain challenging 

motions. Based on my observations, two areas of inaccuracies are chosen to further 

investigate: self-occlusion and unnatural poses. 

Two possible approaches to solve this problem are either designing a new model 

to estimate the SMPL parameters from 2D input data or expanding the existing 3D 

SMPL estimation models to increase the accuracy. The difference between these two 

options lies in 2D and 3D data processing respectively. 

2D human data is vastly available and its annotation can be easily done manu­

ally. In contrast, the large scale 3D annotated data, especially with SMPL model an­

notations, is not available. The key to advancement of SMPL-based human pose es­

timation models is in fact improvement in accuracy of the 2D pose estimation meth­

ods in finding the joints in an image/video frame caused by abundance of available 

2D data. While this improvement leads to better results for 3D prediction, it also be­

comes the bottleneck of the 2D-to-3D algorithms since they are mostly reliant on 2D 

joint information in various stages. Therefore, any problems in the 2D human pose 

estimation will be directly transferred to the 3D prediction. This can be the result of 

incorrect 2D prediction, for example in a challenging pose, or correct 2D prediction, 

for example depth ambiguity in self occluded poses. 

Because of the aforementioned limitations, processing the 3D data will be a better 

choice compared to 2D data processing. Every pose estimation model has its own in­

accuracies and performs better or worse on different poses depending on the model 

design and the training data that is used. Therefore, post-processing of the output 

3D data also makes it possible to adjust to different model-dependent inaccuracies 

in the 3D pose estimation output. 

The proposed machine learning based post processing techniques, use two dif­

ferent type of models for handling the self-occlusion. The first one is a random forest 

that performs frame to frame pose mapping. The second one is a predictive autoen­

coder that maps sequences of poses and is therefore performing motion to motion 

mapping. The autoencoder model is called predictive because it maps a sequence of 

poses from current and past times to a sequence of poses of the future. Predictive 

setting is used because of the assumption that the motions before the self-occluded 

frames are available and it is possible to use this information to estimate the future 

occluded frames. In this project, self-occluded poses correspond to incorrect estima­

tion of the pose not lack of information about the joint data. The predictive method 

can be especially effective when we don't have any information regarding the poses 

of current occluded frames. The autoencoders that are used have one and two lay­

ers of LSTM neural networks. The LSTM network unlike the traditional neural net­

works incorporates feedback connections allowing it to process the entire sequence 

of data instead of individual data points. LSTM networks are proven to be effective 

in predicting and understanding patterns when the data is sequential, for example 

in speech, text or other timeseries data like human motion. 
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For handling the unnatural poses in SMPL model estimation, we have realised 

that the 3D key point estimation is more accurate and robust in dealing with unnat­

ural poses due to its non-restricted nature. It is possible to take advantage of this 

extra information and use them as a position targets for the IK algorithm to lead 

the hands and feet joints to a more correct position. Before being able to do that, 

the skeletons of SMPL and 3D key points should be unified with the same size and 

shape and aligned together. The whole process will be done automatically using the 

Python libraries of blender software. 

3.2.1 Overview 

After human pose estimation, post-processing will be done to improve the resulting 

motions. The post-processing method can be: 

• data driven and use machine learning 

• non-data driven and use Inverse Kinematics (IK) 

Figure 3.1 shows the flowchart of the processing pipeline. In the first step the 

baseline HPE method is applied to the video to infer 3D key points, the SMPL hu­

man model and action. If the input video contain self-occlusion or unnatural poses, 

the resulting SMPL model from the first step can be improved in the second step 

which is post-processing. We have introduced machine learning based method for 

resolving self-occlusion and IK based methods for dealing with unnatural poses. 

The improved SMPL human motion can be used in the third step for motion evalu­

ation. The third step will be discussed in the next chapter. 

3.2.2 Data Acquisition 

In the previous section it is mentioned that the 3D data (3D pose) processing is cho­

sen as a approach for better human motion estimation. This means that the current 

3D motion resulting from a baseline 3D pose estimator will be processed further to 

achieve better human motion estimation in terms of self-occlusion and unnatural 

(complex) poses. We will call this "post-processing" of the motion but it is not a typ­

ical post-procedure that uses optimization to gain a perfect result. The aim is using 

some external information to automatically correct the incorrect estimations made 

by the human pose estimator. If machine learning is to be used for such a corrective 

procedure, it would need data to be trained on. For supervised machine learning, 

it would need a pair of incorrect (wrong estimations due to self-occlusion or unnat­

ural poses) and correct motions as input and ground truth respectively. Since such 

specific video data that is focused on self-occlusion is not available and the input 

motions that are bad estimations due to self-occlusion are dependent of the HPE 

method that is used, a new dataset should be created. 

The raw data for the new dataset was collected in the motion capture lab that 

has eight Vicon optical motion capture cameras that are synchronised with a single 
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video Vicon camera. A total of 30 simple exercise motions were designed to test the 

accuracy of the video based pose estimation methods. These actions include differ­

ent scenarios of self-occlusion with body parts invisible to the single video camera 

or body parts in collision with one another. The subjects were asked to repeat the 

same action 5 times. Different viewpoints of the same movement are captured in 

some cases. 

The data was collected in two rounds. In the first round the frame rate of both 

camera and motion capture was 120 fps. There were problems with dropped frames 

that resulted in un-synchronised input and ground truth as well as problems with 

the large size of video input data for each motion that made the dataset unreasonably 

large and difficult to process. Also the video and motion capture both had the same 

frame rate that made the synchronization issue more difficult to solve. In the second 

attempt, the video frame rate was reduced to normal 30 fps and motion capture 

recording stayed at 120 fps. The video frame resolution was 1280 by 720 pixels and 

the length of each action was between 10 and 40 seconds with the majority of actions 

taking between 20 and 40 seconds. 

The raw MoCap data in the .mcp format and the video data in .mov format is 

collected by the Vicon Shogun software. Before data collection, the motion capture 

cameras and the subject are calibrated. For marker placement, the standard model 

with 53 markers without fingers is used. This made subject calibration step easier 

as the subject was recognised by the system easily. Although capturing with the 

normal clothes was tested successfully, it was decided eventually to use the MoCap 

suit for all subjects due to its reliability and ease of use. It is worth mentioning that 

the cameras should be given time to warm up before starting capturing to avoid the 

need to re-calibrate again in the subject calibration stage. 

After capturing the data, the MoCap was converted to .c3d format using the 

Shogun Post software. The .mov videos were also converted to .mp4 format with 

the same resolution decreasing its size without reducing the quality. These raw data 

files are not the data that can be used for post-processing. The ground truth MoCap 

should be converted to an SMPL model (using Mosh++ Python code) and the video 

should be processed with HPE to be converted to the SMPL model. If all actions are 

recorded in one go, the actions should be separated using knowledge of exact start 

and end frames of each part so we can make correspondence between video parts 

and synchronised motion capture frames. This is because the current HPE method 

cannot accept long videos as input. 

The resulting SMPL motions from the video and motion capture will have a dif­

ference in the number of frames that should be reasonably small. The chosen ap­

proach cuts the small number of extra frames from the longer motion sequence and 

assumes that they are almost synchronized. The coordinate systems and the root 

bone orientation of the video and MoCap SMPL models are also different. There­

fore, the two models are rotated and adopt the same root bone orientation before 

any comparison or error computation between them can be made. 
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FIGURE 3.1: Human Motion Estimation and Evaluation Pipeline. The 
video is processed by the baseline HPE, result in SMPL model, 3D key 
points and Action type. Post-processing using IK or machine learning 
can improve the problems such as self-occlusion and unnatural poses. 
The improved motion from the SMPL model can be evaluated using 

classical machine learning or deep learning method 
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3.3 Methodology 

Human Pose Estimation refers to extracting the 3D key-points or 3D parametric 

model such as SMPL from the input monocular video. Depending on the method­

ology and data that is used in designing the human pose estimator, each algorithm 

can have a advantages or drawbacks and there is no perfect human pose estimator. 

Some common drawbacks in the current human pose estimation methods are lack 

of sensitivity to occlusion and also unnatural motion. 

In this work, we are aiming to improve the result of a human pose estimator (it 

can be any of the state-of-the-art methods) using post-processing of the result. We 

will try out methods based on machine learning (Random Forest and LSTM) and 

without machine learning (Inverse Kinematics and Kalman Filter) for this purpose. 

3.3.1 Inverse Kinematics 

In this section, the IK (Inverse Kinematics) method is briefly explained and then its 

application to the problem is explained. Before starting to work with the human 

data, we should choose a model to represent human motion. The human body is 

shown using a tree-like hierarchical structure with joints and links. In such model, 

each limb of the body is like a mechanical chain of different limbs. The joints move­

ments in human body is only rotational and such joints are called revolute joints. 

The hierarchy between limbs starts from the root joint, so the root joint is the 

local reference. The center of the hip is usually chosen as the root joint of the human 

skeleton or armature. The end-effector is the final position of the most outward link 

in each individual limb. A pose of an articulated body like a human skeleton is a 

set of joint articulations that result in specific positioning of the articulated body. 

Articulation is rotation or translation of a joint, for example in a planar arm with 

three links we can have 12, 6 and 3 degrees articulation that make up a pose. 

FK (Forward Kinematics) takes the pose of an articulated body as an input and 

gives the position of the end effector as the output. IK in the reverse process, having 

the position of the end effector, it computes each articulation which is the pose of an 

articulated object. 

The human pose skeleton as an articulated object has four end effectors at the end 

of each limb. In order to position the hands and feets in a more correct position, we 

would need the end effector position and orientation as the IK targets. Here we are 

using the result of 3D key points estimation as the limbs targets. During our testing 

on various challenging movement videos, we realized that there is strong evidence 

that the 3D body key points estimation is more powerful in finding the challenging 

poses that we are calling unnatural poses compared to the SMPL human body model 

estimation. For a few cases of self occlusion we also found that 3D key points might 

be more accurate in some self-occluded frames but this is not true for all videos. 

Generally for the whole sequence, the key points estimation is also affected by self­

occlusion similar to the SMPL human body model estimation. 
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It can be shown that in extreme and unnatural poses, IK on a parametric SMPL 

model using estimated 3D key points can achieve lower position error for the limb 

end-effectors. Figure 3.2 demonstrates post-processing of SMPL human motion us­

ing IK and HPE estimated 3D key points. 

Video (Wilh Unnatural Poses) 

HPE 
[Human POS€ 

Estimator) 

- --- - - - - -- - - - - - -- - -1 

' ' ' ' 

Inverse 
Kinemalics 

FIGURE 3.2: Human Pose Estimation Post-processing using Inverse 
Kinematics 

3.3.1.1 Skeleton Alignment and IK 

The aim in this part is to make use of deep learning results (3D key points) as target 

points for IK. More specifically, hand and feet 3D positions of the SMPL model are 

moved to more accurate target positions provided by 3D key points. 

The HPE estimated 3D key point skeleton structure in Figure 3.3 is based on the 

Human3.6M benchmark dataset and is not the same as the SMPL skeleton. There­

fore, a series of transformations is applied to match both skeletons. The procedure 

below illustrates this process. All the process is done automatically using python 

code and blender Python library. 

FIGURE 3.3: 3D key point skeleton structure (Human3.6M ground 
truth [62]) 

1. Importing 3D key points into Blender (see Figure 3.4) 

2. Re-calculate the 3D key points skeleton to match the 3D SMPL model joint 

positions in terms of bone length and root position. 
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3. Rotate the 3D SMPL model root bone to the right orientation to match the 3D 

key point skeleton orientation 

4. Use foot and hand key points as an IK target and move hands and feet to the 

new target position 

In step 1, for importing the key points into Blender, a small cube for each joint 

in 3D is created - see Figure 3.4. In situations like unnatural poses or occlusion 

when the 3D estimated key points are more accurate than the estimated SMPL model 

parameters, IK improvement can be done. 

FIGURE 3.4: 3D key points position imported in the Blender 3D envi­
ronment 

In step 2, the 3D key point skeleton is automatically transformed to match the 

SMPL model's proportions and structure. This involves adjusting the key points to 

ensure that their bone lengths correspond to those in the SMPL model and that they 

are positioned relative to a common root joint. Here's how the process works: 

• Root-Relative Positioning: 

First, each 3D key point is converted into a position relative to the root joint 

(typically the pelvis or hip). This centers the key point skeleton, allowing for 

easier alignment and scaling without altering the entire skeleton's position in 

3D space. 

• Bone Length Calculation and Adjustment: 

With the key points in a root-relative format, the bone lengths (the distance 

between connected joints) are calculated. These calculated bone lengths from 

the 3D key points are then compared to the corresponding SMPL model bone 

lengths. Since the SMPL skeleton may have different proportions, each bone 

vector in the key points skeleton is scaled to match the SMPL bone length for 

that joint pair. This reshapes the 3D key point skeleton to ensure its proportions 

align with the SMPL model while preserving the general body structure. 
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• Consideration for Structural Differences: 

This automated adjustment assumes that most joint pairs in the two skeletons 

correspond directly. However, for joints with notable structural differences 

(like hip joints), special handling may be needed to prevent distortions. This 

process preserves the 3D key point skeleton's orientation and positions while 

reshaping it to align with the SMPL model's proportions, setting up for smooth 

integration in later steps. 

Figure 3.5 shows the result of reshaping the 3D key-points skeleton. 

FIGURE 3.5: Reshaping and scaling the 3D key points skeleton to 
match the SMPL prediction (Gray: original key points. Red: trans­

formed key points.) 

In step 3 the SMPL human model is imported and rotated. In step 4, after finding 

potential target positions for IK in step 2, the distal joint of leg and arm bones is 

moved to the new targets. 

In the program, we can control the number of bones in the IK chain. This number 

is set to two so that spinal bones are not affected. Figure 3.6 shows the difference 

between IK chains with unlimited and limited (2) length respectively. 

FIGURE 3.6: Left: IK chain of unlimited length causes an asymmetric 
spine. Right: IK chain of length two prevents unwanted spine move­

ment 

It should be noted that, considering model constraints, sometimes it is not possi­

ble to move both hand and feet joints simultaneously to the desired position. 
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Figure 3.8 and Figure 3.9 show handstand and kneeling as a unnatural pose re­

spectively. Figure 3.7 shows hand behind back as a self-occluded motion. 

FIGURE 3.7: Hand behind back self-occluded pose improved by IK 

FIGURE 3.8: Handstand unnatural Pose improved by IK, Left: Scaling 
and reshaping the 3D key point skeleton, Right: Using hand and feet 

targets 

3.3.2 Machine Learning 

The main aim of section 3.3 is investigating the current gaps in the state-of-the-art 

human pose estimation frameworks and suggesting appropriate solutions. One of 

the main problems we are focusing on is the occlusion problem more specifically 

self-occlusion. For this purpose, one of the solutions is adding another stage of ma­

chine learning for correcting the incorrect poses. The mentioned model should learn 

how to assign the correct pose or sequence of poses if given an incorrect pose or 

motion sequence - see Figure 3.10. 
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FIGURE 3.9: Kneeling unnatural Poses improved by IK, Left: Scaling 
and reshaping the 3D key point skeleton, Right: Using feet targets 

3.3.2.1 Frame Based Method 
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In this section, a frame to frame correspondence between incorrect and correct SMPL 

pose is established. We need to use a multi-input multi-output model such as ran­

dom forest. The model is trained using the incorrect and correct pairs and the result­

ing human motion is evaluated. Assuming the most part of the motion is invisible 

from the camera point of view, we should have extra knowledge about the action 

that is performed to be able to reconstruct the invisible motion correctly. This is 

done by first recognizing the action and also using the model trained for correct­

ing that action to reconstruct the human motion. We have also tried training the 

model using pose parameters on all the actions in the dateset at once and it showed 

lowering the pose parameters error that it is trained on. 

The input/ output data would be a one dimensional array of pose parameters 

that are joint rotations and the SMPL model joints. This rotation data is in the form 

of Euler angles but can be converted to other rotation representations such as Quater­

nions. 

3.3.2.2 Sequence Based Method 

Human motion is a multi-dimensional signal. One dimension of such signal is time 

and the other dimensions are the joint's orientations. Such multidimensional time 

series data can be viewed as a 2D matrix data. The goal is to map the incorrect 2D 

matrix to the correct 2D matrix. 

3.3.2.2.1 Data Preparation Supposing we have a motion sequence of length n 
which is down-sampled from 120 frames per second to 30 frames per second, a 124-

frame window from this sequence is chosen which is equal to around 4 seconds of 

video. This is enough time for completing one action. We are choosing overlapping 

windows from the sequence one each every second (30 frames). 
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FIGURE 3.10: Human pose estimation post-processing using machine 
learning. The baseline HPE method is predicting 3D key points, 3D 
SMPL and the Action. The action-specific machine learning mod­
els are trained on the self-occluded videos. Specific model is chosen 
based on the recognized action. If the input video contains different 
actions, action segmentation is used to find the start and end frames 

of each action 

Our motion input signal is a T x 72 matrix, in which T is the total number of 

frames in the video and 72 is representing three rotational values for each 24 joints. 

It is divided into overlapping windows of size 124 x 72 one each every 30 frames. 

After dividing our data into overlapping matrices of fixed length (124), we got 10773 

data matrices. To use all the data frames of the video, down-sampling was done with 

4 different starting points. 

The values of each matrix data point are root relative rotations of joints. The root 

joint of the 3D SMPL model from the MoCap data is moving in the 3D space while 

it is fixed in the SMPL model derived from the video. MoCap data also has more 

joints including hand and face key points which are filtered out to match the input 

data from the video. 

We are using a recurrent neural network for the prediction of the motion. A win­

dow from the past is mapped to a window from the future. Since the data from the 

occluded parts is not available or is incorrect, the idea is that by using the previous 

frames, we should be able to predict the future frames. We are using a smaller win­

dow compared to the previous convolutional network. We can increase the window 

size to assess the effect. 

A time series is a sequence of data points that occur in successive order over 

some period of time. When we have only one time-dependent variable, it is called a 

univariate time series. In the case of human motion, each joint position or rotation 

variable is a time series. The movement of joints is interdependent. This means that 

human motion can be expressed as a multivariate time series. In this case, the goal of 

using LSTM is that we use the value of variables in a window of time from the past, 
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to predict the values for a window of time in the future. This is helpful and better 

than the previous pose correction machine learning method in two ways. Firstly, 

instead of learning to map only one pose (incorrect pose output of pose estimation) 

to the correct pose (ground truth MoCap) at any given frame, we are mapping an 

entire incorrect pose motion sequence to the correct pose motion (the duration of 

motion in frames in the length of the window). Secondly instead of mapping only 

corresponding frames, we are mapping the past to the future. This is especially 

helpful for occlusion, because based on the information of the motion from the past 

we can estimate where the self-occluded parts of the body "will" go in the future. 

Two different networks with one and two LSTM layers are used for this pur­

pose - see Figure 3.11 and Figure 3.12. The LSTM network can be structured into an 

Encoder-Decoder LSTM architecture, which enables the model to handle variable­

length input sequences and generate variable-length output sequences. In this setup, 

an encoder LSTM model processes the input sequence step-by-step. Upon read­

ing the entire input sequence, the hidden state or output of the model encapsulates 

an internal representation of the sequence as a fixed-length vector. This vector is 

then passed to the decoder model, which uses it to generate each step of the out­

put sequence. In an Autoencoder LSTM, an encoder-decoder LSTM is designed to 

read, encode, decode, and reconstruct the input sequences from a given dataset. The 

model's performance is assessed by its ability to accurately recreate the input se­

quences. Once the model achieves satisfactory performance in sequence reconstruc­

tion, the decoder can be removed, leaving only the encoder model. This encoder 

model can then be used to convert input sequences into fixed-length vectors. 

input: [(?, 10, 72)] 
input_ !: lnputLayer 1------+---------1 

[(?, I 0, 72)] 

input: (?. 10. 72) 
lstm: LSTM t-----+---------

output [(?, l00), (?, 100), (?, 100)] 

output: (?, 5. 100) 

input: (?, 5, I 00) 
t ime_distributed(dense ): TimeD istributed(Dense) I-----+-----, 

output : (?, 5, 72) 

FIGURE 3.11: AutoEncoder with one layer of LSTM, Input sequence 
of length 10 and output sequence of length 5. The brackets shows the 
dimensions of input and output data of each layer. The first dimen-

sion (n) is the batch size. 
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input: [(?, 10, 72)] 
input_2: InpulLayer >----------,>------1 

[(?, 10, 72)] 

(?, 10, 72) 
lstm_2: LSTM >----------,>----------____, 

[(?, 10, l00), (?, l00), (?, JOO)] 

input: (?, 10, JOO) 
lstm_3: LSTM 1----1-------------i 

output: [(?, 100), (?, JOO), (?, 100)] 

input: (?, 100) 
repeat_vector_ J: RepeatYector >----------t---------< 

output: (?, 5, J 00) 

lstm_4: LSTM 
input: [(?, 5, 100), (?, 100), (?, .100)] 

output: (?, 5, 100) 

input: (?, 5, 100) 
t ime_distributed_ l(dense_ I): TimeD istribuled(Dense) 1------l>-------1 

output: (?, 5, 72) 

FIGURE 3.12: AutoEncoder with two layer of LSTM, Input sequence 
of length 10 and output sequence of length 5. The brackets shows the 
dimensions of input and output data of each layer. The first dimen-

sion (n) is the batch size. 

The training data is first scaled between -1 and + 1 and test and validation data 

are scaled accordingly. Then the data of 120 frames per second is divided into 4 

sequences of similar motion with 30 frames per second. The goal is to use all the 

data we have and not discard any part with down-sampling. Then we split the 

time series into a set of overlapping windows with increments of one. Each pair 

of windows is a member of the training, test or evaluation data. The length of the 

window from the past is 10 frames, which is mapped to a window of the future with 

a length of 5 frames. 

As it can be seen in the Figures 3.11 and 3.12, the output of the network is the 

predicted window of future motion with a fixed length of 5. Since output windows 

are overlapping, for each frame of the initial sequence we will have more than one 

predicted value from different overlapping predicted windows. The average of pre­

dicted values for each frame is computed to find the final output motion signal. 

To properly compensate for the self-occluded motions, the uniqueness of such 

mapping can be ensured when having some information about the action that is 

taking place. A model that is trained to map incorrect motion affected by occlusion, 

to correct motion can better predict future motion when it is trained on actions of 
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that category. Therefore, an additional step is needed to do action segmentation and 

action recognition of an arbitrary sequence of different actions and use the related 

model for predicting the output. 

3.4 Experimental Design 

In this chapter the experimental design and the results regarding human pose and 

motion estimation are demonstrated. Improvements are proposed for the state-of­

the-art methods to increase the accuracy. These improvements aim to reducing the 

error of human pose estimation caused by self-occlusion and also unnatural poses. 

It is worth mentioning in human pose estimation research, there are quantita­

tive and qualitative comparisons between the state-of-the-art and the implemented 

method. Qualitative comparison utilises visual demonstration of the improved mo­

tions. Since the quatitative errors are average measurements during the whole mo­

tion sequence, qualitative comparison is also needed to show how a method can 

improve the overall configuration of the predicted pose in specific occurrences such 

as occlusion and unnatural poses. 

The output of the human pose estimation is an SMPL model with position and 

orientation of the joints. The measured error in human pose estimation is the average 

orientation and position error of the joints between the ground truth and video pose 

estimation. The output of the human motion evauation is the predicted score or 

the evaluation metric. The error of score prediction is measured by computing root 

mean square of the error (RMSE) between ground truth and predicted score. These 

errors are the basis of the comparison between the different methods. 

Figure 3.1 shows the pipeline of all experiments across human motion estima­

tion and evaluation. The human pose estimation can be any of the current methods 

that result in human joint positions and orientations. It can be shown with extra 

stage (it is called "post-processing" in this thesis), common problems in current pose 

estimation methods with unnatural poses and self-occlusion can be improved. 

Finding occluded movements is made possible using knowledge about the per­

formed action (from human pose estimation part). To experiment this, a dataset 

containing various self-occluded scenarios and unnatural poses are recorded using 

a synchronized monocular video and optical motion capture. 

The experiments in this research are designed according to the objectives the re­

search is aiming to achieve. The designed methods aim to decrease the error between 

the ground truth and prediction in human pose/motion estimation. The motion es­

timation improvement experiments are done to address self-occluded poses using 

machine learning and unnatural poses using IK. Machine learning experiments are 

done in two ways. The first is training the models on all videos of the dataset with 

different actions. In the second experiment this is changed by training on videos of 

a specific action. This is done to improve the mapping between incorrect and correct 
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poses or motions. The input video can be of any motion therefore the extra informa­

tion from action recognition is used to first find out the motion that is performed and 

then use the model trained on the specific action to recover the incorrect motion. The 

IK experiment is also taking advantage of the extra information about 3D key points 

to guide the SMPL joints that are incorrectly estimated due to unnatural poses to a 

better position. 

3.4.1 Datasets Details 

The human pose estimators usually are trained on a set of benchmark datasets. Gen­

erally, the datasets may vary depending on the recording modalities but they mostly 

consist of synchronized multi-camera videos and motion capture. The motion cap­

ture data that is used for ground truth usually is converted to the human model 

in the form of skeleton or SMPL model which consists of human pose and shape 

parameters. 

There are two parts in the overall motion estimation pipeline that uses datasets 

for training. The first part is the main pose estimation algorithm which uses bench­

mark datasets for training models to predict the 3D key points and SMPL model. 

These are 3D datasets such as Human3.6M [62], 3DPW [112] and AMASS [106] and 

2D datasets with in-the-wild RGB video such as PoseTrack [410] and Insta Variety 

[411]. The second part is focused on solving the problem of self-occlusion. A differ­

ent dataset is captured in the lab with self-occluded motions to train the second part. 

For unnatural poses problem the videos from the EMDB dataset [412] are used. 

The data we recorded in the lab consist of synchronized motion capture and 

monocular videos similar to the existing dataset. The ground truth is converted 

to SMPL format. The list of 30 different exercise and range-of-motion actions that 

were done by different subjects were as follows [413] 

• Action 1: Lift arms to T position - move arms forward with cross-over - Front 

• Action 2: Lift arms to T position - move arms forward with cross-over - Lateral 

• Action 3: Arms behind back (not touching) face backwards (alternating lead-

ing L-R) 

• Action 4: Upper Body rotation (twist) arms inwards, fists touching 

• Action 5: Upper Body tilt left and right arms up 

• Action 6: Hip rotations, CW and CCW 

• Action 7: Head rotations L-R/nod/tilt (in all three planes), arms down 

• Action 8: Knees up (L/R), arms akimbo 

• Action 9: Squats front - arms akimbo: Heels down and Heels elevated 
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• Action 10: Squats lateral - arms front stretched: Heels down and Heels ele­

vated 

• Action 11: Lateral leg lift (L/R) foot pointing forward, arms lateral 

• Action 12: Turn CW and CCW in steps of 45 degrees, arms to the side and arms 

akimbo 

• Action 13: T position - rotate arms hands facing back, down, forwards, up 

• Action 14: Shoulders forward and backward (popping) 

• Action 15: Shoulders up and down 

• Action 16: Shoulders alternating 

• Action 17: Arms behind back (not touching) Front 

• Action 18: Arms behind back Lateral 

• Action 19: Forwards bend to horizontal (straight back), arms down (next to 

body) 

• Action 20: Knees up (L/R), grab knee, arms akimbo 

• Action 21: Knees up (L/R), turn out, arms lateral 

• Action 22: Squats front - arms forward: Heels down and Heels elevated 

• Action 23: Lateral leg lift (L/R) foot pointing forward then point upwards, 

arms lateral 

• Action 24: Walking (L to R and back) 

• Action 25: Jumping, arms akimbo (L to Rand back) 

• Action 26: Star jumps (facing front) 

• Action 27: Star jumps turn 45 degrees, CW and CCW 

• Action 28: Star jumps with crossed legs (facing front) 

• Action 29: Swinging straight arms, forwards and backwards 

• Action 30: All body shake, i.e. arms, legs, torso, head. 

Each individual action performed by a subject is cropped from the recorded 

video and motion capture sequences. Therefore, each video in the dataset contains 

a subject doing only one motion. From these data fields around 20 percent of the 

data is selected for test and validation and the remaining will be the training data. 

Assignment of data as part of the train, test or validation set is done randomly. The 

error related to the test data video is demonstrated in Table 3.2. The test data videos 

that are chosen randomly are: 
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FIGURE 3.13: Actions in the dataset recorded in the lab 
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• Subject 1: 

- 1) Rotating wrists 

- 2) Knees up (L/R), grab knee, arms lateral 

- 3) Squats front - arms front stretched 

- 4) Jumping, arms akimbo (L to Rand back) 

- 5) Star jumps (facing front) 

- 6) All body shake, i.e. arms, legs, torso, head 

• Subject 3: 

- 7) Arms behind back (not touching) face backwards (alternating leading 

L-R) 

- 8) Knees up (L/R), arms akimbo 

- 9) Lateral leg lift (L/R) foot pointing forward, arms lateral 

- 10) Arms behind back Lateral 



3.4. Experimental Design 73 

• Subject 5: 

- 11) Squats front- arms akimbo 

- 12) Lateral leg lift (L/R) foot pointing forward, arms lateral 

- 13) Rotating wrists 

- 14) Arms behind back Lateral 

- 15) Knees up (L/R), grab knee, arms lateral 

- 16) Star jumps (facing front) 

- 17) crossed legs (facing front)- arms akimbo 

The dataset was collected in two phases. In the first phase, motion data from six 

subjects was captured. In the second phase, data from twelve subjects was recorded. 

Each subject performed a total of 30 actions, with five repetitions per action, and 

each action averaged 30 seconds in duration. In the first phase, one combined video 

and motion capture sequence was recorded for each subject. In the second phase, 

each action was recorded separately. For the first dataset, we needed to separate 

each action from the continuous video in a synchronized manner, which could be 

challenging-particularly if synchronization issues arose, such as dropped frames in 

the motion capture data. Figure 3.13 illustrates each action included in the dataset. 

The random selection of the data presents one of the possible scenarios of select­

ing data. Later, cross validation is done instead of random selection of the data and 

the model performance is reported (see Section 3.6.3). When training on a specific 

action, the actions in the dataset will be limited to only one action and therefore the 

data in this action specific dataset will be different by the subject that performed it. 

The positional error reported in the results is with assumption of standard subject's 

height of around 170 cm in Blender. In reality, height of each subject is different and 

for more accurate results the position errors should be scaled based on the subject's 

real height. 

3.4.2 Training Procedure 

The two models that were used for machine learning based post-processing are 

frame-to-frame random forest and motion-to-motion LSTM AutoEncoders. Random 

forest model have different parameters that can be set. To find the best parameters 

for the model, an iterative random search is done on the parameter grid that is ini­

tialized beforehand. Each model in the iteration is evaluated by the mean squared 

error of the validation data and the best model is chosen for the optimal parameters. 

The AutoEncoder models have one layer or two layers of LSTM network in in 

encoder and decoder parts. Adam optimization method is used for training. The 

Adam optimization is a stochastic gradient descent method that is based on adaptive 

estimation of first-order and second-order moments. According to[414], the method 

is "computationally efficient, has little memory requirement, invariant to diagonal 
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rescaling of gradients, and is well suited for problems that are large in terms of 

data/parameters". The Huber loss function is used for training. The Huber loss 

function is used in robust regression, that is less sensitive to outliers in data than the 

squared error loss. 

We have also performed cross-validation training with 10 folds on both random 

forest and LSTM AutoEncoder models. In this case both models used the MSE 

(Mean Squared Error) as a loss function. The selected model of each fold is eval­

uated by computing the mean squared error loss and r2-score. 

3.4.3 Experimental Setup 

The Vicon software Shogun Live and Shogun Post software are used for capturing 

the data for self-occluded motion estimation and converting it to the correct format. 

The motion capture data is processed by the Mosh++ software to be converted to 

SMPL human model. The video data should be also converted to SMPL format. 

This is done by state-of-the-art pose estimation methods. The main pipeline imple­

mentations used Python and related machine learning libraries such as Sci-kit Learn 

and Tensorflow /Keras. Automatic error measurement is made possible by export­

ing the result and ground truth SMPL models to the 3D environment and measuring 

the poses frame by frame using Blender Python and related mathematical libraries. 

3.4.4 Baseline Methods 

In the human motion motion estimation part, state-of-the-art methods are checked 

against the problems such as self-occlusion and unnatural poses which is common 

with different algorithms. Based on the existing online ranking of the current pose 

estimation methods, the best performing ones which have higher probability of han­

dling difficult poses are chosen for baseline and also comparison. We have used the 

MotionBERT [ 415] method as a baseline which provides SMPL output, 3D key points 

output and action as output. For comparison with the state-of-the-art, another good 

performing model HybrIK [247] and the only occlusion based method for SMPL 

prediction PARE [211] are chosen. 

3.4.5 Evaluation Metrics 

In the human motion estimation part, the goal is obtaining the most accurate motion 

which means the pose in each frame of the motion should be accurate. This accu­

racy is measured by comparing the errors between the joints of the ground truth 

and the result. The SMPL joints have rotation and position characteristics that can 

be measured. For the joint position error we compute the L2 norm of the differ­

ence between two pose vectors (vector of all rotation values). For the joint rotation 

error, first the rotation values are converted from axis-angle to quartenion then the 

difference between two quartenions are computed which is an angle in radians. 
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The accuracy measure (joints positional and rotational error) is compared to the 

baseline method in Figure 3.14 and numerical comparison with state-of-the-art and 

baseline are provided in Tables 3.2 and 3.3. The errors are the average value across 

all joints and frames of the motion sequence. When more than one action video is 

evaluated, the mean and standard deviation across all actions are provided. To cover 

all scenarios of data partitioning, 10-fold cross validation is done and the loss and 

accuracy of each proposed machine learning method prediction is reported. 

The mean joint position error, denoted as j3d, is calculated as the L2 norm (Eu­

clidean distance) between the predicted and ground truth positions of each joint, 

averaged across all frames and joints. Let: 

• pf,;ed: Predicted 3D position of joint i at frame t, 

• pf!: Ground truth 3D position of joint i at frame t, 

• N: Total number of joints, 

• T: Total number of frames. 

The formula for j3d is: 

• _ 1 f, ( 1 f:-, II pred gt II ) J3d - T f=t N 6 p i,t - p i,t 2 

where llpf,;ed - pf,~112 represents the Euclidean distance between the predicted 

and ground truth positions for each joint i at each frame t. 
The mean joint rotation error, denoted as rot, is calculated by measuring the 

shortest angular distance between the predicted and ground truth quaternions for 

each joint and averaging across all frames and joints. Let: 

• qf,;ed: Predicted quaternion for joint i at frame t, 

• qf!: Ground truth quaternion for joint i at frame t, 

• N: Total number of joints, 

• T: Total number of frames. 

To compute the angle ei,t between the predicted and ground truth quaternions, 

we use: 

ei,t = 2 arccos ( I ( qf,;ed, qf!) I) 
where (qf,;ed, qf!) is the dot product of the two quaternions, and the absolute 

value ensures that the angle remains within O and rr. 
The formula for rot is then: 

l T (l N ) 
rot= T L N ~ei,t 

t=l l=l 
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This gives the mean rotational error in radians, averaged over all joints and 

frames. 

The HPE predicted model parameters are joint rotations, therefore the time-series 

input data that is processed by machine learning are rotation values. Hence, the 

model is optimized to better predict rotation values (improve the pose parameters 

of the model) that results in a more similar pose to the ground truth. 

The rotational error of joints is independent from the global position of the char­

acter and shows improvement in overall pose of the SMPL method. When the posi­

tion of joints is dramatically incorrect for example in unnatural poses, the joint po­

sition error can show better positioning of the selected joints. To understand which 

parts of the body have more errors, we have also measured right leg and left leg, 

right arm and left arm errors separately. These parts are the limbs are the body that 

are moving and cause self-occlusion. 

3.5 Results 

3.5.1 Inverse Kinematics 

In this section, post-processing of predicted SMPL the predicted model is done by 

taking advantage of the availability of predicted 3D key points. With examining 

the output of the human pose estimation algorithms on various video inputs, we 

can realize that in challenging scenarios especially unnatural poses that are not the 

everyday activity, 3D key-points can be used to improve the SMPL model prediction. 

For an occlusion scenario (unlike unnatural poses) the improvement from apply­

ing the IK method is marginal, as the 3D key point prediction will be also affected by 

occlusion and might not always be able to provide better joint positions to guide the 

limbs to the correct position. The dataset that was recorded in the lab was mainly 

natural poses with self-occlusion. Videos of unnatural poses with ground truth are 

needed to demonstrate the reduced error after using IK in these scenarios. For this 

purpose, handstand and cartwheel videos that are part of the recent EMDB dataset 

[412] are used to show the IK performance. It can be shown that as expected, IK 

using the predicted 3D key-points can decrease the joint position errors in the SMPL 

model. 

It is also worth mentioning that 3D key points can only specify the position tar­

gets for the body end effectors (wrist and foot joints) and as IK is a position based 

method, information about target orientation is not available in IK. This limitation 

of application of IK with only position targets can also be seen in the result of orien­

tation errors. 

The results presented in Table 3.1 highlight the effectiveness of inverse kinemat­

ics (IK) post-processing when applied to predicted SMPL models, especially in un­

natural poses like handstands and cartwheels. The table shows both joint position 

and rotation errors, with comparisons between the baseline (HPE without IK) and 
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three different IK configurations: targeting both hands and feet, hands only, and feet 

only. 

3.5.1.1 Analysis of Position Error 

In the position error results, we observe a reduction in overall joint position errors 

when applying IK to both hands and feet, or to hands alone. Specifically: 

• The overall joint position error decreases from 110.60 (Baseline) to 104.58 with 

IK on both hands and feet, and to 102.67 with IK applied to hands alone. This 

reduction demonstrates that incorporating 3D key-point predictions for hand 

targets significantly enhances the spatial accuracy of joint predictions. 

• In contrast, applying IK only to the feet results in minimal changes to the joint 

position error (112.50), indicating that feet targets alone are less effective in 

guiding the model's joint positions accurately for these complex poses. 

The arm-specific position errors further confirm these findings, with a notable 

reduction in errors for both the left and right arms when IK targets include the 

hands. For instance, the left arm error drops from 26.14 (Baseline) to 21.46 when 

IK is applied to the hands. This improvement underscores the utility of IK in align­

ing hand and arm positions more accurately during challenging poses, where limb 

occlusions and unusual body orientations make it difficult for the model to maintain 

correct joint positions. 

3.5.1.2 Analysis of Rotation Error 

The rotation error data presents an interesting insight into the limitations of IK based 

solely on position targets: 

• Overall rotation errors increase when IK is applied to hands, feet, or both. For 

example, the baseline rotation error of 317.65 rises to 373.95 when using IK for 

both hands and feet, and to 371.56 when targeting only the hands. 

• This increase suggests that while position-based IK improves spatial accuracy 

for hand and feet placements, it does not provide the necessary orientation 

data to maintain accurate joint rotations, leading to higher overall rotation er­

rors. 

3.5.1.3 Interpretation and Support for IK Contribution 

These results from Table 3.1 support the contribution of using IK in post-processing 

for unnatural poses by demonstrating that: 

1. IK improves positional accuracy for joints, particularly for hand and arm po­

sitions, where hand targets significantly lower position errors. 
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2. IK alone is insufficient for orientation accuracy due to its position-based na­

ture. Without orientation targets, joint rotations may deviate, especially in 

complex poses where limbs are constrained by the SMPL model's kinematic 

structure. 

In summary, this analysis of Table 3.1 validates the benefit of using IK to refine 

joint positions in predicted SMPL models for unnatural poses but also emphasizes 

the limitations of IK when orientation accuracy is essential. Future improvements 

could include methods that integrate both position and orientation data, potentially 

enhancing the overall accuracy in complex motion scenarios. 

i:: 
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TABLE 3.1: Inverse Kinematics, Unnatural poses (Handstand and 
Cartwheel) 

Joint Baseline Post-Processing 
Error HPE IK Hand and Feet IKHand IKFeet 

All 110.60 +- 18.92 104.58 +- 11.07 102.67 +-13.15 112.50 +- 0.02 
LArm 26.14 +-4.38 21.46 +- 0.89 21.46 +- 0.89 26.14 +-4.38 
RArm 24.56 +- 6.04 21.31 +- 3.75 21.31 +- 3.75 24.56 +- 6.04 
LLeg 0.08 +-0.04 0.07 +- 0.04 0.07 +-0.04 0.08 +-0.04 
RLeg 14.81 +- 0.16 16.46 +- 0.91 14.81 +- 0.16 16.46 +- 0.91 
All 317.65 +- 5.37 373.95 +- 13.66 371.56 +-14.48 320.04 +- 4.55 

LArm 54.42 +- 2.92 83.07 +- 2.89 83.07 +- 2.89 54.42 +- 2.92 
RArm 57.80 +- 2.61 83.07 +- 6.48 83.07 +- 6.48 57.80 +- 2.61 
LLeg 56.05 +- 5.82 56.38 +- 7.74 56.05 +- 5.82 56.38 +- 7.74 
RLeg 56.98 +- 4.79 59.05 +- 2.05 56.98 +- 4.79 59.05 +- 2.05 

Since moving the joints together is affected by the constraints in the human 

model, three different experiments were done. The feet joints and the hand joints 

are moved separately and at the same time. The results on the cartwheel and hand­

stand videos shows that using the feet targets alone was not sufficiently effective 

in improving the overall positional error. In contrast, simultaneous hand and feet 

targets or hand targets alone will lead to better overall joint position estimations. 

3.5.2 Machine Learning 

In this section, machine learning based post-processing is done on the imperfect 

result of human pose estimation to reduce the effect of self-occlusion. As it can be 

seen in Figure 3.10 the SMPL model, 3D key points and the action is predicted using 

the baseline HPE method. When the input video contains a self-occluded action, 

an imperfect SMPL output from the HPE can be improved by the machine learning 

based post-processing method. Performed action found in the video can be used 

to select the model trained on an specific action. To separate each action from the 

video, action segmentation is done. An action based dataset with different subjects 

doing the same action is needed to train the post-processing methods. An example 

of such dataset is collected in the lab with exercise motions as different actions. 
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In order to show the effect of the machine learning method on prediction of self 

occlusion videos, we have to choose a challenging action. In this respect, we have 

chosen the hand behind back motion. With the help of action recognition we can 

choose the model trained on the recognized action and predict the occluded motion. 

3.5.2.1 Frame based method with classic machine learning 

The first method is using a random forest model to learn the corresponding correct 

pose to each incorrect predicted pose from human pose estimation. Each pose is a set 

of joint orientations. The random forest method is chosen due to being a multi-input 

and multi-output model suitable for this purpose. This is a frame based method, 

because each index of data belongs to only one frame. 

The result of the predictive sequence based method is compared with the base­

line HPE and frame based method in the Tables 3.2 and 3.3. The frame based method 

have access to the current incorrect motion to predict the current correct motion 

while the predictive methods use motion information from the past frames to predict 

the current correct motion. The frame based method with RF outperform predictive 

sequence based methods AEl and AE2 (Auto Encoders with 1 layer and 2 layers of 

LSTM) when trained on all actions and specific action. When training on all actions, 

the frame based RF method is the only method among the post-processsing methods 

that improves both rotation and position error of the joints compared to the baseline 

HPE. 

The results shown for all action training, are not representative of the final re­

sult and only intermediate experiment. In the next experiment, training on specific 

action is performed to make the machine learning able to not only reduce the error 

but reconstruct the motions in the output correctly. This means in order to recon­

struct the self-occluded motion, with an input sequence of arbitrary motions, first 

the action performed by the subject is identified. Then, the model that is trained 

on actions of that category (action-specific model) is chosen for post-processing. In 

order to know which parts of the video needs to be post-processed by this action 

specific model, action segmentation is done to find the start and end frames of the 

performed action. The result of action specific training which is our selected method 

is shown in the next section (see Table 3.3) in order to compare all the machine learn­

ing based post-processing methods. It should be noted that there is an error with the 

training data ground truth legs captured with MoCap. When converting the motion 

capture to the SMPL model, this error causes unusual bending of knees in the train­

ing data while the subject standing straight (see Figure 3.16). The high legs error in 

all action specific post-processing methods is the mentioned problem with the data. 

3.5.2.2 Predictive sequence based method with deep learning 

The second method is using a sequence of motion as the input data. It is also mak­

ing correspondence between a window of motion from the present to a window of 



80 

1.75 

Chapter 3. Human Motion Estimation 

FIGURE 3.14: Arm joints (LArm=Left Arm, RArm=Right Arm) error 
for action specific learning, Action: Hand Behind Back 

RArm Position RArm Rotation 

LArm Position LARm Rotation 

motion from future frames. This is useful when the information about the present 

self-occluded or other wrong poses are not available and we are trying to guess or 

predict the future motion only based on the previous motions. 

Table 3.2 shows the difference between the baseline, introduced post-processing 

methods and state-of-the-art PARE [211] and HybrIK [247], when training the mod­

els on all actions of the test data. It can be shown that the pose parameter of the 

SMPL which is joint rotations is improved in all the suggested methods. The simul­

taneous frame to frame method which is based on random forest performs better 

compared to the predictive methods that only have access to the previous motions. 

The autoencoder with two layers of LSTM performed better than the autoencoder 

with one layer of LSTM. The performance of all introduced methods are better than 

other state-of-the-art methods. In terms of joint position accuracy, unlike the RF 

(simultaneous frame to frame) method, predictive methods AEl and AE2 do not 

provide joint position improvement compared to the baseline HPE method. 

Table 3.3 shows the result of action specific training on one of the actions com­

pared to the state-of-the-art methods. Here, a problem arose when using only one 

subject data for training, one subject data for test and another subject for validation. 

This caused a large error for the leg-based motions due to being biased towards the 

training subject's posture which has bended knees while standing (see Figure 3.3). 

Ignoring the source of bias, the self-occluded motions are reconstructed correctly 

and this is shown in qualitative results by the improvement of occluded arms mo­

tion that was incorrectly estimated by the baseline. A snapshot of the qualitative 
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TABLE 3.2: Frame Based and Sequence Based Machine Learning (Lab 
Data) 

Baseline Post-Processing SOTA 
HPE RF AE1 AE2 PARE HBIK 

467.10 +- 91.02 186.33 +- 72.19 262.82 +- 88.35 258.13 +- 81.18 480.87 +- 92.84 535.53 +- 94.98 
64.04 +- 11.62 37.98 +- 17.35 51.18 +-15.78 47.95 +- 14.67 63.60 +- 13.66 83.94 +- 21.05 
67.99 +- 15.19 40.03 +-19.06 53.18 +-16.94 50.26 +- 15.71 76.52 +- 15.26 83.19 +-19.11 
52.436 +- 23.78 27.73 +- 15.62 48.57 +-19.98 47.35 +- 17.50 59.64 +- 24.11 62.65 +- 25.36 
53.08 +- 28.61 27.98 +- 14.78 46.29 +- 21.12 47.40 +- 19.21 57.85 +- 25.30 69.13 +- 27.76 
74.90 +- 39.56 57.70 +- 25.60 88.60 +- 32.60 90.72 +- 35.11 88.91 +- 41.78 70.65 +- 34.81 
15.57 +- 5.76 2.91 +- 7.07 20.20 +- 7.68 21.06 +-8.73 19.31 +- 8.89 15.23 +- 4.91 
14.02 +- 4.46 13.73 +- 7.49 18.45 +- 6.67 18.45 +- 6.65 17.43 +- 9.00 13.45 +-4.76 
12.67 +- 8.71 8.77 +-5.15 15.25 +- 5.64 15.18 +- 6.39 14.70 +- 9.31 11.79 +- 8.35 
15.58 +- 11.58 9.27 +-5.14 15.83 +- 8.48 16.89 +- 8.56 16.89 +- 10.62 13.15 +- 10.26 

results can be seen in Figure 3.15. In Table 3.3 and looking on the self-occluded left 

arm and right arm motions, both the random forest and the autoencoder with two 

layer of LSTM show improvement in both position and rotation of the joints and all 

of the introduced methods perform better than the baseline and the selected state­

of-the-art methods when trained on specific action. 

TABLE 3.3: Frame Based and Sequence Based Machine Learning (Ac­
tion 3 (hand behind back) of Lab Data) 

Joint Baseline Post-Processing SOTA 
Error HPE RF AE1 AE2 PARE HBIK 
All 16.83 18.81 14.82 12.70 20.27 23.47 

= LArm 2.13 1.30 1.84 1.84 3.17 4.95 0 .... - RArm 2.65 1.26 3.08 1.71 4.05 4.58 !IS -0 LLeg 0.97 3.24 3.01 2.75 1.37 1.14 
~ 

RLeg 0.95 3.72 3.30 3.07 1.20 1.27 
All 2.90 2.59 3.42 3.02 2.89 3.09 

= LArm 0.96 0.29 0.80 0.53 0.87 0.78 0 .... 
RArm 1.29 0.32 0.69 0.52 1.08 0.98 -.... t/l 

0 LLeg 0.13 0.55 0.55 0.60 0.18 0.27 ~ 

RLeg 0.25 0.77 0.80 1.01 0.13 0.43 

In the next experiment, we have tested a range of other types of motions with 

action specific training. While action specific training is effective in predicting the 

occluded motions it cannot fix all other problems that are caused by incorrect pre­

diction. If the training is person specific it also has the problem of getting biased 

towards the posture of the training subject which in our case happened to be an un­

usual ground truth posture compared to the test and validation data that belong to 

the other subjects. 
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FIGURE 3.15: Self-Occlusion human pose recovery using post­
processing methods, compared to the state of the art and the baseline 
HPE. 1: HPE, 2: Ground-Truth MoCap, 3: RF Post-Processing, 4: Pre­
dictive AutoEncoder Post-Processing with 1-Layered LSTM, 5: Pre­
dictive AutoEncoder Post-Processing with 2-layered LSTM, 6: PARE 

Method, 7: HybrIK Method. 

FIGURE 3.16: ground truth motion capture knee problem in training 
data causes high leg error in action specific post-processing 

3.6 Validation and Robustness 

3.6.1 HPE Training on Lab Data 

In order to show the efficiency of the post-processing in human motion estimation 

compared to training the baseline with the lab data, we have trained the original 

pose estimation network with the default benchmark dataset (3DPW) and the oc­

clusion dataset (LAB data) and compared the error of the result. The result shows 

that training the baseline HPE method with the lab data offers slight improvement 

in some cases and no improvement in the other. The amount of improvement is 

less significant comparing the post-processing methods. This can also be confirmed 
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with the qualitative results that shows the HPE model trained on lab data cannot 

reconstruct the self-occluded motions. 

TABLE 3.4: Lab Data Training without Post-Processing 

Joint Baseline 
Error HPE+Benchmark Data Training HPE+Lab Data Training 

All 510.54 +- 86.11 534.88 +- 86.07 
i::::: LArm 85.65 +- 15.56 81.66 +- 21.48 0 ..... .... RArm 91.92 +- 18.73 97.07 +- 19.49 flS .... 
0 LLeg 58.25 +- 24.57 56.40 +- 24.92 
~ 

RLeg 60.25 +- 29.31 58.68 +- 28.34 
All 119.46 +- 43.73 111.65 +- 38.40 

i::::: LArm 27.39 +- 8.03 29.29 +- 8.21 0 ..... 
RArm 29.12 +- 8.37 28.79 +- 8.96 .... ..... 

f/l 
0 LLeg 17.77 +-10.12 16.30 +- 9.88 ~ 

RLeg 19.54 +-12.14 18.00 +- 10.91 

3.6.2 Unseen Dataset Input 

The post-processing networks are trained on our proprietary data which contains 

specific actions including self-occlusion. To check the performance on other datasets, 

the EMDB dataset [412] is chosen as the new source of input data. There are diverse 

activities in the dataset, performed outside the lab environment. The models that are 

trained on all actions of the lab data which are different from the EMDB dataset ac­

tions, are used in this experiment. The result of testing the sequence-based machine 

learning method on unseen "in-the-wild" dataset are shown in Tables 3.5 and 3.6. 

Data in the wild are naturalistic datasets and can be used to test how the method 

performs on real-world scenarios. 

The result shows that position and orientation of the limbs do not improve when 

using another type of dataset with totally different actions as input. The average 

overall pose parameters error using post-processing trained on lab data showed im­

provement but this was not true for the leg and arm limbs estimation error that are 

usually the source of self-occluded motions. 

3.6.3 Cross-Validation 

The train, validation and test videos of the dataset are chosen randomly from all the 

data. To cover all possible choice of train and test data, we have done 10-fold cross 

validation on both action specific training and all actions training experiments. Ta­

bles 3.7 and 3.8 show the mean and standard deviation of accuracy and loss of each 

fold. The first three columns are related to training on all actions while the last three 

columns are related to training on a specific self-occluded action (hand behind back). 

The frame-to-frame RF method shows the best accuracy and loss value. The second 
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TABLE 3.5: Sequence Based Machine Learning (Unseen in-the-wild 
Dataset, 1-layer Network) 

Joint Baseline Post-Processing 
Error HPE+EMDB AE1 +EMDB 

All 405.00 +- 34.36 343.08 +- 24.71 
s::: LArm 55.07 +- 9.94 57.51 +- 0.01 0 .... - RArm 54.16 +-10.041 84.23 +- 9.85 IC -0 LLeg 49.61 +- 9.02 54.08 +- 5.44 

r:=:: 
RLeg 47.75 +- 12.21 54.70 +- 7.61 
All 77.32 +- 26.73 107.99 +- 16.06 

s::: LArm 16.27 +- 6.57 23.34 +- 5.30 0 .... 
RArm 15.32 +- 6.55 22.05 +- 4.80 -.... Cl} 

0 LLeg 12.89 +- 5.09 18.24 +- 2.64 
~ 

RLeg 12.79 +- 5.63 19.96 +- 3.50 

TABLE 3.6: Sequence Based Machine Learning (Unseen in-the-wild 
Dataset, 2-layer network) 

Joint Baseline Post-Processing 
Error HPE+EMDB AE2+EMDB 

All 405.00 +- 34.36 360.17 +- 22.54 
s::: LArm 55.07 +- 9.94 58.79 +- 12.80 0 .... - RArm 54.16 +-10.04 86.08 +- 9.61 IC -0 LLeg 49.61 +- 9.02 57.56 +- 5.37 

r:=:: 
RLeg 47.75 +- 12.21 56.73 +- 6.11 
All 77.32 +- 26.73 113.45 +- 15.31 

s::: LArm 16.27 +- 6.578 23.91 +- 5.67 0 .... 
RArm 15.32 +- 6.55 22.32 +- 5.86 -.... Cl} 

0 LLeg 12.89 +- 5.09 20.02 +- 2.32 
~ 

RLeg 12.79 +- 5.63 21.47 +- 2.91 
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best model is the predictive autoencoder with two LSTM layers. The predictive au­

toencoder with one LSTM layer has the lowest performance. The standard deviation 

between the fold accuracy and loss is small, suggesting that model's performance is 

relatively consistent across different folds. 

TABLE 3.7: Loss Value for 10-fold cross validation 

RF AEl AE2 
All Act. All Act. All Act. 

RF 
Act. 3 

AEl 
Act. 3 

AE2 
Act. 3 

cross val Loss Mean 0.252 1.179 0.573 0.145 0.342 0.189 
cross val Loss SD 7.58E-3 l.03E-2 2.95E-3 3.0lE-2 9.72E-3 6.62E-3 

TABLE 3.8: Accuracy Value for 10-fold cross validation 

RF AEl AE2 RF AEl AE2 
All Act. All Act. All Act. Act. 3 Act. 3 Act. 3 

cross val Accuracy Mean 99.447 95.960 97.299 99.459 94.220 95.877 
cross val Accuracy SD 0.013 0.137 0.095 0.072 0.544 0.335 

3.7 Limitations 

In the previous sections it is shown how the motions affected by self-occluded and 

unnatural poses can be improved using post-processing on 3D motion. The limi­

tations regarding the motion estimation is that in the data driven solutions based 

on machine learning, the solution will decrease the error on the type actions previ­

ously seen in the training data. In action specific training, the solution is effective 

for self-occluded movement recovery but for other type of inaccuracies in the output 

more investigation should be done to find the reason for lower effectiveness of the 

data driven method. In action-specific training, the number of subjects in the dataset 

should be increased otherwise the training will be biased to only one person posture 

or individual style of movements. 

3.8 Summary 

In this chapter, we presented two main post-processing methods to improve the ac­

curacy of human motion estimation models: Inverse Kinematics (IK) and Machine 

Leaming-based Post-Processing. Both methods were applied to the predicted out­

puts of state-of-the-art human pose estimation (HPE) models, particularly focusing 

on the SMPL model, a widely used human body model. These methods were specif­

ically targeted at enhancing joint positions and rotations in challenging scenarios, 

such as self-occlusion and unnatural poses, where traditional HPE models struggle. 
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3.8.1 Contributions to Human Motion Estimation Post-Processing 

3.8.1.1 Machine Leaming-based Post-Processing 

The first post-processing approach explored in this chapter was machine learning­

based refinement using two distinct models: a Frame-to-Frame Random Forest and 

Motion-to-Motion LSTM AutoEncoders. Both models aimed to correct errors in joint 

positions and rotations based on temporal dependencies in motion sequences. This 

approach was particularly beneficial for self-occlusion scenarios, where parts of the 

body are hidden and pose estimation algorithms typically struggle. 

• Training and Evaluation: Both models were trained using a cross-validation 

approach with 10 folds, where the Mean Squared Error (MSE) was employed 

as the loss function. The performance was evaluated using the joint positional 

and rotational errors. The machine learning models were able to learn the tem­

poral patterns and improve the accuracy of joint predictions across a variety of 

poses. The Random Forest model, optimized through iterative random search, 

performed well in terms of predicting frame-to-frame pose changes. On the 

other hand, the LSTM AutoEncoder models, with one or two LSTM layers, 

demonstrated the ability to capture motion dynamics over time, resulting in 

lower joint position and rotation errors. 

• Validation: These models were validated on diverse datasets, including videos 

with self-occlusion and other complex motions. The machine learning-based 

methods consistently outperformed baseline models (such as MotionBERT, 

HybrIK, and PARE) in terms of joint position errors, particularly when applied 

to natural motion datasets. 

• Best Performing Method: The LSTM AutoEncoder model, in particular, showed 

the most significant result, reducing both positional and rotational errors com­

pared to the baseline methods. This demonstrated the power of temporal mod­

eling in improving the accuracy of human pose predictions. The overall error 

of the RF method was lower because of having access to the current frame 

information. 

3.8.1.2 Inverse Kinematics (IK) Post-Processing 

The second approach explored was the application of Inverse Kinematics (IK) to 

refine predicted 3D joint positions, leveraging predicted 3D key points from the 

HPE models. IK was applied specifically to unnatural poses like handstands and 

cartwheels, which are not typically encountered in natural motion datasets and are 

known for causing difficulties in pose estimation. 

• IK Methodology: IK was applied to adjust the positions of key body joints, 

particularly the hands and feet, using predicted 3D key points as positional 
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targets. The IK method was used to correct joint position errors by applying 

position-based optimization, targeting the wrist and foot joints to improve 

pose accuracy. 

• Validation and Results: The IK method was validated using the EMDB dataset, 

which includes extreme poses like handstands and cartwheels. The IK method 

demonstrated a clear reduction in joint position errors when applied to both 

the hands and feet. For example, the overall joint position error decreased from 

110.60 (baseline) to 102.67 when IK was applied to hands alone, and further 

improved to 104.58 when applied to both hands and feet. However, while IK 

improved position accuracy, it resulted in an increase in rotation errors, high­

lighting its limitation in handling joint orientations without additional orien­

tation targets. 

• IK Performance: IK showed the most significant improvement for arm and leg 

joints, particularly in reducing errors for the left and right arms. However, the 

rotation errors increased because IK is position-based and does not account 

for joint orientations, suggesting the need for methods that incorporate both 

position and orientation data to fully optimize joint accuracy in complex poses. 

3.8.2 Comparison and Conclusion 

Machine Learning-based Post-Processing (using Random Forest and LSTM Au­

toEncoders) and Inverse Kinematics (IK) were both shown to be effective in im­

proving the performance of human motion estimation. However, each method had 

distinct advantages and limitations: 

• Machine Learning-based Post-Processing was more effective in handling self­

occlusion and improving both joint positions and rotations in complex mo­

tions. The LSTM AutoEncoder model, in particular, outperformed other base­

line methods (MotionBERT, HybrIK, and PARE) in terms of accuracy and gen­

eralization, especially when the model was trained with temporal motion data. 

• Inverse Kinematics was particularly useful for refining joint positions in un­

natural poses (e.g., handstands, cartwheels), where traditional HPE models 

struggled. While IK significantly improved positional accuracy, it was limited 

by its inability to refine joint rotations, leading to higher rotation errors when 

applied in isolation. 

3.8.3 Summary of Key Findings 

• Machine Learning-based post-processing methods, especially the LSTM Au­

toEncoder, provided significant improvements in both positional and rota­

tional accuracy across a variety of motion sequences, making it the better choice 

for general-purpose human motion estimation. 
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• Inverse Kinematics demonstrated substantial benefits in unnatural poses, es­

pecially when 3D key points for hands and feet were used as positional targets. 

However, IK's inability to handle joint rotations properly made it less effective 

for improving overall pose quality in some cases. 

• Future improvements could integrate both position and orientation data in 

the post-processing stage to further reduce errors in both joint positions and 

rotations, especially in complex motion scenarios. 

Ultimately, the results confirm that combining both post-processing methods, tai­

lored to specific challenges like self-occlusion and unnatural poses, offers the most 

promising approach for enhancing the accuracy of human motion estimation in di­

verse real-world applications. 
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Chapter4 

Human Motion Evaluation 

4.1 Introduction 

In this Chapter the methodology and the result of the research regarding to human 

motion evaluation is explained. The methodology has two parts: classic machine 

learning and deep learning, each of these using different datasets. In classic machine 

learning, the baseline martial arts dataset and feature design are used to improve the 

human motion evaluation result by adding new classification models and feature se­

lection. In the deep learning part, a larger dataset is annotated and used to compare 

the deep learning method with the classic machine learning models. The evaluation 

metrics and experimental setup as well as the details of the datasets that are used are 

discussed. The results are presented as the comparison of the ground truth motion 

evaluation score and the score value predicted by the models. The classic machine 

learning method shown significantly better prediction with combination of the se­

lected feature type and machine learning model. Improving classic machine learning 

methods is useful when limited number of data with annotated ground truth scores 

are available. Action based modeling for evaluation of an specific motion type also 

shows improved performance compared to all action training. For large datasets 

containing diverse type of motions, and without feature extraction, deep learning 

improves performance compared to classic machine learning. 

4.2 Research Design 

In this chapter the methodology and the results of the research regarding the human 

motion evaluation is explained. The input is the estimated 3D human pose/motion 

that can be derived from the input video. The research objective is improving the 

accuracy of the motion evaluation. 

Modifications are done to the pipeline to improve the results compared to the 

baseline and other state-of-the-art methods. In the human motion evaluation part, 

which is a supervised learning, the feature design and datasets from the recent re­

search is used as a baseline. Modification is done to the types of machine learning 

methods, the processing pipeline and feature selection to improve the results. 
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Assuming we have the 3D motion data available for motion evaluation purposes, 

this part of the project is concerned with more accurate evaluation of the motion. 

Since this is a supervised learning problem that needs a motion dataset that is al­

ready annotated by experts, an existing dataset[416] and standard pipeline of motion 

analysis is used. The previous work on this dataset, worked on combining the differ­

ent features and applying PCA on the result, also trying different machine learning 

methods with different combination of features. From observation of the results, it 

was obvious that combining more features did not act in favour of more accurate 

prediction of the motion evaluation metrics. Therefore, the introduced features are 

implemented and tried separately in combination with two new machine learning 

methods. These shown that separate features have the potential of better motion 

evaluation when combined with a compatible machine learning method. The po­

tential of deep learning for motion evaluation and its better performance compared 

to classic machine learning is also demonstrated by automatic labelling of a large hu­

man motion dataset of SMPL models. This also showed that the output of the first 

stage which is 3D SMPL model can be processed similar to 3D key point skeleton 

data. 

4.2.1 Overview 

After human pose estimation and post-processing to improve the human motion in 

challenging scenarios such as unnatural poses and self-occlusion, the second part 

of the pipeline is focusing on human motion evaluation. Since this part is mainly 

application driven rather than abstract work, the purpose of this analysis should be 

specified. Here, scoring martial art motions is chosen as the application. 

An available dataset of martial art motions with the annotated scores [416] is 

used for comparing methods with classic machine learning. Different simple and 

complex motion features are implemented: 

• Kinematic simple features derived from the joint positions 

• Quaternion and Euler simple features based on the joint rotations 

• Ergonomic complex features related to martial art movements 

• Muller complex features designed based on relation of body part with respect 

to each other 

Compared to the previous work on the same dataset, two new machine learning 

models random forest and ridge regression are used. 

Since the previous dataset is not SMPL based, an existing dataset of SMPL mo­

tion [106] is annotated to compare the functionality of a deep learning (CNN) based 

method with random forest and regression. In this part joint rotations in axis-angle 

format without any feature extractions are used as an input to the both classic ma­

chine learning and deep learning methods. 



4.3. Methodology 91 

4.2.2 Data Acquisition 

As mentioned before, the already existing datasets with 3D joint positions and an­

notated scores of martial art motions [416] and another un-annotated dataset with 

SMPL pose Goint rotations) [106] are used. 

Although eventually online datasets are used for this part, we have also created 

SMPL ground truth for existing online multi-camera martial arts datasets as a pre­

liminary research. Before this, another research is done in the lab using multiple 

cameras to calibrate and synchronize the cameras and eventually use 3D reconstruc­

tion to compute the ground truth. Using multiple cameras as the source of ground 

truth have the advantage of removing the need to synchronise between video and 

other modalities or sensors that create ground truth for the video input. Multiple 

cameras are not used further in this research as synchronized motion capture and 

video used for creating dataset. 

4.3 Methodology 

This section explains evaluation of 3D human motion. Its aim is assigning a score, 

or more generally a motion quality metric number, to an entire motion sequence. 

4.3.1 Classic Machine Leaming 

To evaluate a sequence of human motion in the input data, a series of operations 

should be taken which can be summarized as a pipeline. The motion sequence input 

can be in the form of image data (RGB videos) or skeleton data (3D human pose 

sequence). In the first case we should convert the RGB data to a 3D pose (skeleton) 

sequence consisting of 3D coordinates of the joints before continuing the process. 

Figure 4.2 shows the pipeline when having skeleton data and Figure 4.1 shows the 

similar modified routine when having video data. 

Figure 4.3 shows more details about the feature processing step in the pipeline. 

The extracted features can be in different types but generally all of them are in the 

form of time signals. Assume for each motion sequence in the dataset, there are F 

feature signals. Only two statistics from each signal e.g. mean and standard devia­

tion are extracted and used as a representation of that feature signal. The statistics 

from all features related to a motion sequence form a group of feature numbers. 

Then principal component analysis (PCA) is used to reduce this set. Finally, the clas­

sifier predicts the evaluation score of the person that is doing a particular motion. 

4.3.1.1 Motion feature extraction 

Motion capture or MoCap systems provide the possibility of recording the human 

motion with a range of speed and accuracy depending on the technology that is 

used. Generating MoCap data can be done with different systems like mechani­

cal, optical, video/image camera or magnetic. The resulting data can be in various 
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FIGURE 4.1: Motion Evaluation from RGB Input (video) 

formats but we assume that the motion data is modelled using a kinematic chain 

which consists of joints and bones. Motion analysis techniques are using different 

kind of features that can be quantitative/numerical or qualitative/relational ways to 

describe the motion. Numerical features are more sensitive to details and observed 

changes in the pose while relational features provide an opportunity to compare the 

motions in a more semantic way. 

4.3.1.1.1 Position and Orientation Three dimensional coordinates of the kine­

matic skeleton, joints or other landmarks provide the main information of human 

motion. In order to have a full description of the human skeleton, the orientation of 

the bones should be known. Orientation can be represented in different forms. In 

Euler representation, rotation is described by successive rotations around three axes. 

One of the disadvantages of this representation is that several numbers can describe 

the same rotation. Quaternion representation composed of a scalar value and 3D 

imaginary values has the advantage of being unique for each specific rotation. 

4.3.1.1.2 Kinematic/Kinetic Features Geometrical aspects of the motion are de­

scribed by kinematics related features such as velocity, acceleration and jerk which 

are derived by position and orientation. Kinetics is the relationship between the mo­

tion of the object and its mass and forces applied to it. Centre Of Mass (COM) of 

the body is used to compute the body kinetic energy. We can find body COM from a 
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weighted sum of the COM position of each bone. We can compute the kinetic energy 

of the body using its centre of mass. 

4.3.1.1.3 Relational Features (Muller) Relational features relate joins and bones 

motions based on human knowledge. The distance or angle between two joints is 

an example of a relational feature. We use 39 binary relational features introduced 

by Muller et al. [296] for human motion retrieval and also applied to classification, 

segmentation, annotation and gesture evaluation. 

• Fangle: The angle between two body bones that are defined by joints ji, h, h 
andj4 

• Fjast= The normal speed of the joint U1) 



94 

Temporal Features 
N Samples x F Feature 

Signals 

ffiffld 
Feature 

Processing 

Chapter 4. Human Motion Evaluation 

Simple Features 
N Samples x 2*F 

Features 

Groundtruth 
(Evaluation Scores) 

N Samples 

FIGURE 4.3: Motion Feature Processing and Motion Evaluation 

• Fplane: The distance of the joint j4 and the plane defined by the joints ji, hand 

]3 

• Fnplane: The distance of the joint j4 and the plane with a normal defined by the 

joint h and joint h segments and passing through the joint h 

• Fmove: The speed of the joint j4 in the direction of the bone h --+ h with respect 

to the joint h 

• Fnmove: The speed of the joint j4 in the direction of the normal of the plane 

defined by the joints h, h and h with respect to the joint h 

Threshold values are used for converting the features to a binary value using 

Schmitt trigger [417]. An illustration of some Muller relational features are shown 

in the Figure 4.4. 

4.3.1.1.4 Ergonomics Features Biomechanical properties of the motion can be re­

flected in ergonomics features. For example, the quality of movement in the areas 

like comfort, load and robustness. For each scientific field of motion analysis differ­

ent ergonomics features are introduced in the literature, for example based on the 

Taijiquan ergonomic principle, a set of features is made by Tits et al. [418], [416]. 

• Balance: The balance of the motion means having stability caused by equal 

weight distribution. Balance can be measured by finding the distance between 

the projection of the COM on the ground and the centre of the support base. 

Support points are the points that are in contact with the ground. The sup­

port base is then the area between all support points. Increasing the distance 

measure of balance decreases the balance of the object. In a dynamic situation 

other factors such as the velocity of the COM or the stabilizing force that keeps 

the COM above the support base should be taken into account [419], [420]. 
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• Range of Motion (ROM): The ROM of each joint is the maximum rotation along 

each of its degrees of freedom and will vary among individuals. 

• Postural Load: The postural load of the body can give us information about 

how comfortable a posture is. In extremis, it may convey information when an 

injury may occur. The sum of all joint stresses defines the postural load of the 

overall body. 

• Torques: Are moments of forces that cause rotation of the joints. They have 

their application in evaluating muscle exertion or articular load in ergonomics. 

To compute the torques, we need the weight of the body segments, ground re­

action forces and accurate measurement of accelerations. Details can be found 

in [421]. 

• Coordination/ synchronization: Measuring synchronized motion of the joints 

or limbs have applications in analysis of gait, dance and sport movements. 

There are methods ranging from a formula for a specific action to more com­

plex ways like neural networks, DTW or PCA for finding synchronization in 

more general settings. 

• Tai Chi Ergonomics Features: In this chapter, different features used for score 

analysis in Tai Chi motions, including the ergonomics features are listed. In 

this section we explain further how these features can be computed from the 
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3D human kinematic model illustrated in Figure 4.5. The importance of these 

features is that ergonomics are very related to the skill, therefore, can be an 

indicator of motion quality. In general terms, ergonomics studies the effective­

ness of motor control while minimizing the injury risk and energy consump­

tion. This new set of ergonomic features for martial arts that was first intro­

duced by [416] for Tai Chi motion sequences was inspired by the work of the 

ergonomist and Taijiquan teacher Eric Caulier [422]. The ergonomic features 

are categorized into four major groups: Stability, Joint Alignment, Favourable 

Angle and Fluidity. These four groups are explained in depth in the next para­

graph. 

head 

FIGURE 4.5: Body joint names of the 3D human kinematic model 

4.3.1.1.5 Tai Chi Ergonomic Features As mentioned before, a set of ergonomic 

features were first introduced by [416] inspired from the work related to Tai Chi 

Movements [422]. An illustration of some ergonomic features are shown in the Fig­

ure 4.7. 

4.3.1.1.5.1 Stability The body of the Tai Chi performer should be stable dur­

ing the motion. Four different features are implemented to evaluate the stability: 

• Static Stability: The Euclidean distance between the x and y components of 

the COM and Pelvis joint positions in the horizontal (x, y) plane 

• Dynamic Stability: The time derivation of static stability 
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• Verticality: The Euclidean distance between the x and y components of the 

pelvis and the neck joint position in the horizontal plane shows verticality of 

the trunk 

• Horizontality: The mean absolute difference between the height (z) of the 

shoulders, hips and knee joints shows horizontality of the body 

4.3.1.1.5.2 Joint alignments 

• Joint Vertical Alignments: Euclidean distance between horizontal components 

of two joints 

• Shoulder-Wrist Frontal Alignment: The Euclidean distance between the coor­

dinate of the left/right wrist and left/right shoulder in the body frontal plane. 

The body frontal plane can be defined by three points which are the two hip 

joints and the neck joint. This will define a local coordinate system that is called 

the body frontal coordinate system. 

• Feet Alignment: The absolute difference between the heels' distance and the 

toes' distance shows how much the feet are parallel 

4.3.1.1.5.3 Favourable Angles The favourable angles of the joints are referred 

to the optimal joint flexion that is not fully stretched nor too bent. This can also be 

related to the optimal muscle length that produces the highest force. 

• Low Shoulders: The angle between the shoulder, the neck and the thorax 

joints is extracted. The angle between the three joints j, k and i. 

• Elbow flexion deviation from the optimal angle: The elbow flexion angle 

should be in range of 90° and 135°, the optimal angle is 112.5°. 
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FIGURE 4.7: An illustration of ergonomic features and difference be­
tween world or global coordinate system and body frontal coordinate 

system 

• Elbows not behind body: The z-coordinate in body frontal coordinate system 

is extracted to evaluate if the elbow is behind the body. 

• Elbow not too low/high: The deviation of elbow abduction from the optimal 

angle (67.5°). 

4.3.1.1.5.4 Fluidity The motion of the body should be smooth and should not 

have jerk. The fluidity of each limb and the trunk is found by computing the velocity 

(V), acceleration (A) and jerk (J) of the corresponding COMs. 

4.3.2 Deep learning 

In this section we demonstrate the pipeline for estimation and analysis of human 

motion in videos using deep neural networks (Figure 4.8). The first step is captur­

ing and annotation of the video dataset of human motions. For the human motion 

evaluation step a set of complex features related to quality of martial art motions are 

computed as annotation. 

The resulting moving 3D human model found from the monocular video input 

will not have perfect motion due to issues like pose ambiguity, occlusion, etc. There­

fore, post-processing of the human motion result will be beneficial in increasing the 

accuracy. The 3D motion is then evaluated using deep neural networks and classic 

machine learning methods (such as regression and random forest). The result will 

be a number representing the quality of the motion. 
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4.3.2.1 Human mesh and pose estimation 

In this section, we describe the method used for capturing 3D human motion from 

monocular videos. This is the first and second stage in Figure 4.8. 

4.3.2.1.1 Monocular human pose estimation Human pose is usually represented 

by a set of 3D key points in space that are located on the main body such as joints and 

landmarks. An example of that can be seen in section 2.2.1.4.1. A more realistic 3D 

representation of the human body is SMPL (Skinned Multi-Person Linear Model) 

introduced by Loper et al. [104] (see section 2.2.1.4.2). It is a vertex-based model 

that can describe a wide variety of body shapes and its parameters are learned from 

the data. The pose parameters of the model describe the three rotation values of the 

joints and shape parameters can alter the shape of the human body. Figure 4.9 shows 

an example of an SMPL model and its joints locations. 

4.3.2.1.2 Generating a 3D training dataset As mentioned in the previous section, 

one of the main challenges that limits research in the area of human motion analy­

sis is the lack of data. Consequently, being able to produce a 3D dataset is of great 

importance. To produce large datasets, some commercial companies resort to gen­

erating synthetic data in a virtual environment [423] or random poses [424]. Whilst 

simulated data have an advantage of knowing the ground truth beforehand and 

have more control over motion and environment, they lack realism as compared to 

in the wild videos. 

In order to train the pose and shape estimation model, there is a need for a train­

ing dataset that consists of videos and their corresponding 3D pose and body shape. 

Most of the currently available benchmark datasets include videos of a set of RGB 

cameras and 3D human data from an optical motion capture system that is synchro­

nised with this multi-camera system - see Figure 4.10. Apart from the optical motion 

capture system, a multi-camera system can produce the desired 3D poses [425]. In­

ertial Measurement Units (IMUs) [112] and Kinect sensors [426] can also be used to 

produce the human 3D data. 

4.3.2.2 Human movement analysis 

In this section, we explain a method for prediction of some motion metrics for the 

human movements using deep neural networks. For training the network, we com­

pute these metrics from a large dataset of human motion capture data using a math­

ematical explanation of these measurements. We use pose parameters of the SMPL 

model as a motion signal and input of the network and the output would be the pre­

diction of some desirable aspects of the movement, such as stability, joint alignment, 

fluidity of motion or having desired joint angles. 

Unlike many current models that rely on a complex hardware setup like optical 

motion capture, IMUs or depth sensors, this method makes use of standard video as 
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a cheap and convenient alternative. In many scenarios of human movement analy­

sis, designing a set of effective features that can predict a specific phenomenon can 

be very difficult. In the previous section, defined and computed a wide variety and 

types of features. In contrast to this designed features, deep neural networks use 

multiple layered artificial neural networks to learn a complicated relationship be­

tween input and output, which sometimes cannot be explained with human hand­

crafted features. Furthermore, neural networks can get the complete human motion 

signal as an input in the form of time-series while in the common statistical methods 

like regression and random forest only some motion signal statistics like the mean 

and standard deviation are assigned as the input of the model. This can be an ad­

vantage for neural networks as more details about the input movement signal can 

be preserved and used. 

4.3.2.2.1 Generating the Annotation Dataset In order to predict the motion met­

rics from the human motion videos, an annotated dataset of motions and their cor­

responding measures are required. Generally, assigning a specific motion metric or 

score to a motion can be complicated and usually is done by different means and 

protocols depending on the subject of study and type of motions. We are doing au­

tomatic annotation of metrics that define the quality of the motion such as stability, 

fluidity, joint alignment and having favourable joint angles. As mentioned before, 

SMPL is a rigged body model (a standard skeletal representation and a fully rigged 

surface mesh). This similarity in format of the whole dataset, as well as its richness 

and quantity make it suitable for use in deep learning applications. To compute 

annotations for the human motion sequences in the dataset (Figure 4.12), we first 

converted the SMPL format to the common .bvh format of motion capture data and 

process the movement of the joints. Since we need a number associated with a se­

quence of frames, we have calculated the average of the measures computed for each 

frame, for example average of stability, fluidity values in a set of frames. It should 

also be noted that while converting the motion capture dataset to a training data, the 

frame rate of the data should be consistent with the future input data of the trained 

model which comes from a video source. The video data usually have a frame rate 

of 30 fps while optical motion capture data is recorded at higher frame rates, such 

as 60, 100 or 120 fps, so we have down sampled the MoCap data to match the video 

frame rate. 

4.3.2.2.2 Preparation of automatic and hand-crafted timeseries The output of 

the human poses and shape estimation network is an SMPL model which contains 

information about 3D motion corresponding to the video of the input video. The 

motion of the model can be explained by the pose parameters Goint rotation vectors) 

of the SMPL model. To improve the performance of the neural network, we can add 

more handcrafted features that can explain the output of the neural network. The 

motion signal also should be pre-processed to provide a cleaner and more correct 



4.3. Methodology 101 

motion signal to the neural network. If there is missing data in the input signals, 

linear interpolation is used to fill these values. It is also necessary to cancel out the 

noise so a Gaussian filter (standard deviation <T = 1) is used for smoothing the sig­

nal. The human models in the dataset are the upgraded version of the SMPL model 

(SMPL-H) with more joints. Since the output of the video-based pose estimation is in 

the form of SMPL, we should convert the SMPL-H model to SMPL for compatibility. 

4.3.2.2.3 Training Convolutional Neural Network CNNs are a type of deep learn­

ing models that are designed for processing data that has a grid pattern. Images are 

examples of this form of input data. In our case, each movement signal in a fixed 

time interval can be considered as a data vector and putting all the input movement 

signals together forms a 2D grid that can be used for training the CNN. The CNN is 

working as a mapping between the time-series movement data and the motion met­

ric, so without needing to develop a large set of complicated handcrafted features 

the desired metric can be predicted. 

We will use the CNN architecture from 2D human motion analysis research [429] 

for 3D analysis of the SMPL model motion. The input of the network is a multivari­

ate time-series with fixed length. The main blocks of the network are 1-D convolu­

tional layers with T x D neurons (T is in time dimension, D is the multivariate input 

dimension). Dense block is a multiple linear regression from input d1 dimension to 

d2 dimension (see Figure 4.12). 
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4.4 Experimental Design 

In this chapter the experimental design and the results regarding human motion 

evaluation are demonstrated. Improvements are made on the state-of-the-art meth­

ods in terms of increasing the accuracy. These improvements aim at reducing the 

error of human motion evaluation. For decreasing the error in human motion eval­

uation, we have studied the effect of each feature separately and using this method 

changed the pipeline to get a better result for prediction. The comparison between 

performance of deep learning based methods and classic machine learning methods 

is also demonstrated. 

The output of the human motion analysis is the predicted score of the martial art 

movements. The error of score prediction is measured by computing the root mean 

square of the error between ground truth and predicted score. These errors are the 

the basis of the comparison between the different methods. 

Figure 4.13 shows the pipeline of all experiments across human motion estima­

tion and evaluation. After 3D motion estimation, evaluation of this motion using 

some example data sets is done. The effect of different combinations of features and 

classifiers and also comparison between deep learning and classical methods on a 

larger dataset is examined. The motion analysis is usually is done in the framework 

of specific application. The motion feature design (formulas), and dataset is based 

on the recent work on martial arts scoring [416]. We have changed the processing 

pipeline and further analyzed each feature separately to optimize the result. 

The experiments in this research are designed according to the main objectives 

the research is aiming to achieve as stated in the introduction chapter. The designed 

methods are aiming to improve the error between the ground truth and prediction 

motion evaluation. Assuming we have a sequence of 3D human poses as a result of 

the human motion estimation part, the second part of project is motion evaluation. 

Motion evaluation is concerned with how well a certain action is performed. This 

is done by training a supervised machine learning model to predict the evaluation 

metric which is a single number assigned to the motion. Classic machine learning 

which is feature extraction combined with machine learning as well as deep learn­

ing methods are experimented. The features can be simple meaning derived from 

basic motion variables or complex and formulated using simple features. To under­

stand the effect of each type of features, different combinations of each feature type 

and machine learning method is experimented with. This leads to finding the best 

feature and machine learning model to perform the motion evaluation task. Two 

types of experiments are done for training the motion evaluation for all the actions 

or for an individual action. For evaluating deep learning, a larger dataset of diverse 

motions is automatically annotated and performance of deep learning and classic 

machine learning methods are evaluated on the resulting dataset. 
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4.4.1 Datasets Details 

The two main experiments in the human motion analysis part use different datasets 

with different types of input data. 

Firstly, we have used the existing annotated dataset designed for evaluation of 

martial art motions. The input are the 3D joint positions and output will be the 

skill level of the martial artist based on how well they perform the gestures. The 

description of the dataset subjects and their skill level that is used as annotation is 

listed in Table 4.1. 

ID GN Age Weight Height Practice Category Skill1 Skill2 Skill3 
P0l M 56 95 196 32 Expert 9.3 9 10 
P02 F 57 78 163 30 Expert 9.6 9.1 10 
P03 F 62 58 162 24 Expert 8.5 8.5 9 
P04 F 47 53 150 12 Advanced 8.2 8 8 
P05 F 71 61 163 14 Advanced 6.8 7.4 7.5 
P06 M 25 76 180 10 Advanced 8.4 8.6 8.5 
P07 F 49 57 157 4 Intermediate 7 6.8 6.5 
P08 F 34 56 158 3 Intermediate 8 7.3 7 
P09 M 51 90 178 2.5 Intermediate 6.9 6.8 6.85 
PIO F 59 55 163 1 Novice 6 5.8 6.5 
Pll F 65 58 165 0.2 Novice 5 4.9 5 
P12 M 28 96 181 0.6 Novice 5.8 6 5.75 
M 50.33 69.42 168 11.11 7.46 7.35 7.55 
SD 14 15.93 12.46 11.15 1.37 1.29 1.33 

TABLE 4.1: Tai-chi dataset description of participants [416] 

A set of Tai Chi motions from eight techniques (Bafa Techniques) of the Yang 

Taijiquan styles in the form of 3D human kinematic models are used for analysis. 

Each of the Tai Chi gestures has a certain name. They are numbered from 6 to 13 

1. driving the monkey away 

2. moving hands like clouds 

3. part of the wild horse's mane 

4. the golden rooster stands on one leg 

5. fair lady work shuttles 

6. kick with the heel 

7. brush knee and twist step 

8. grasp the bird's tail 

A separate model is trained for each gesture, using motion sequences from 11 

subjects for training and 1 subject for testing. We have also trained a model using all 

the gesture motions and reported the RMS error and correlation. 

Skill11 

9.43 
9.57 
8.67 
8.07 
8.07 
7.23 
8.5 
6.77 
7.43 
6.1 

4.97 
5.85 
7.45 
1.38 
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The second main experiment is the comparison of deep learning and classic ma­

chine learning models on SMPL-based dataset AMASS dataset [106] is an aggre­

gation of a large set of human motion capture datasets with a total of more than 

11000 motions. The dataset is annotated automatically by computing some evalua­

tion metrics. Unlinke the previous dataset used for motion evaluation that had joint 

positions as input, this dataset has joint rotation values in axis-angle format as the 

input. The list of datasets that are used for creating the AMASS dataset is as follows: 

Sub-Dataset Markers Subjects Motions Minutes 
ACCAD 82 20 258 27.22 

BioMotion 41 111 3130 541.82 
CMU 41 97 2030 559.18 
EKUT 46 4 349 30.74 

Eyes Japan 37 12 795 385.42 
HumanEva 39 3 28 8.48 

KIT 50 55 4233 662.04 
MPIHDM05 41 4 219 147.63 
MPI Limits 53 3 40 24.14 
MPIMoSh 87 20 78 16.65 

SFU 53 7 44 15.23 
SSM 86 3 30 1.87 

TCDHand 91 1 62 8.05 
Total Capture 53 5 40 43.71 
Transitions 53 1 115 15.84 

Total - 346 11451 2488.01 

TABLE 4.2: Datasets contained in AMASS [106], More than 42 hours 
of marker data is unified by converting to the SMPL format 

4.4.2 Experimental Setup 

Human motion evaluation of martial arts required feature extraction. Implementa­

tion of features is done in C++ using the Motion-Machine library and Armadillo C++ 

Linear Algebra Library which makes implementation of the features easier. These 

features are then processed in Python machine learning libraries to complete the 

pipeline. The motion evaluation of the SMPL motions in the AMASS dataset is done 

completely in Python and joint rotations are used directly as an input to the machine 

learning models without feature extraction. 

4.4.3 Baseline Methods 

In terms of human motion evaluation, the standard motion analysis pipeline with 

PCA after feature extraction is used in the main baseline. Therefore, in terms of 

comparison between our result and previous work, the existing work on a martial 

arts evaluation dataset UMONS-TAICHI used as a baseline [418]. 
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4.4.4 Evaluation Metrics 

For the human motion evaluation, the error is computed as a difference between the 

score assigned by the expert and the score found by the machine learning model. 

The root mean squared error as well as Pearson correlation coefficient is computed. 

For the pseudo-score ground truth annotations computed by formulas instead of 

experts, we only use the correlation as error metric because the pseudo-score are not 

normalized within an specific range and different formulas have different ranges. 
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FIGURE 4.13: Human Motion Estimation and Evaluation Pipeline. 
The improved motion from the SMPL model after post-processing 
can be evaluated using classical machine learning or deep learning 
methods. Classic machine learning methods first extract the features 
from the motion, then statistics such as mean, standard deviation and 
quartiles of the feature signal is used to train the random forest and 
regression model. The deep learning method is using the input mo-

tion which is axis-angle joint rotational values directly. 
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4.5 Results 

In this section, the result of human motion analysis using classic machine learning 

and deep learning methods are reported. 

4.5.1 Classic Machine Learning 

Classic Machine Learning for analysis of motion, consists of two consecutive stages 

of feature extraction and machine learning. As mentioned before we have used the 

different motion features and the dataset described in [416]. Examples of different 

features are shown in the Appendix section A.2. The baseline method combined dif­

ferent features together and ran several feature processing methods including PCA 

and morphology independence post-processing. While dimensionality reduction is 

a common practice when dealing with high dimensional data, we can show that it 

is possible to reduce the dimensionality of input by using less features as an input 

instead and get a better result. The result of experiments with single features are 

demonstrated in this section. 

Different machine learning models (random forest and ridge regression) com­

pared to the work in [416] are used. We have also further analyzed the effect of 

using each feature and each machine learning method in our implementation. It can 

be shown that specific combination of features and machine learning methods can 

lead to a better correlation between the predicted and actual gestures compared to 

the baseline method. We have also tried to train the models on specific gesture data 

or on all gestures and compared the results. 

The best result from the baseline method is shown in the Figure 4.15. The related 

work [418] have used EN-Regression, 60 PCs and Morphology Independence feature 

post-processing. We have used separate features instead of combined features along 

with Random Forest and R-Regression (Ridge Regression). 

By reducing the number of features in use, no PCA or feature post-processing 

needs to be used. Table 4.3 shows the result of using individual features combined 

with two new machine learning models (random forest and ridge regression) and 

training the models on all gestures. The RMSE error and correlation between the 

ground truth and the predicted score are reported. We could increase the best achiev­

able correlation up to 0.99 with different combination of features and machine learn­

ing methods. The Muller features with the random forest had the best performance 

and Kinematic features with random forest is the second best combination. In av­

erage, it can be seen that random forest performed better than ridge regression for 

motion evaluation. 

Tables 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13, 4.14 shows similar results 

to the Table 4.3 but with training on specific martial gestures (gesture 3 to gesture 

13). The best combination of features and machine learning models for each gesture 

based on correlation value is as follows (RF is used for random forest and RG for 

ridge regression): 
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• Gesture 3: Quaternion and RG, Ergonomic and RF 

• Gesture 4: Quaternion and RG, Euler and RG 

• Gesture 5: Kinematic and RG, Euler and RG 

• Gesture 6: Euler and RG, Muller and RF 

• Gesture 7: Euler and RF, Quaternion and RF (or RG) 

• Gesture 8: Muller and RF, Kinematic and RG 

• Gesture 9: Euler and RF, Kinematic and RF 

• Gesture 10: Kinematic and RF, Quaternion and RG 

• Gesture 11: Muller and RG, Kinematic and RG 

• Gesture 12: Quaternion and RG, Muller and RG 

• Gesture 13: Ergonomic and RF, Kinematic and RG 

Video 

HPE 
(Human Pose 

Estimator) 

FIGURE 4.14: Human Motion Evaluation using Classic Machine 
Leaming 

4.5.2 Deep Learning 

111 

The main aim of this part is using CNN deep learning and comparing in to the other 

classic machine learning models random forest and ridge regression. No feature 

extraction is used and the input of both methods are joint angles of the SMPL output 

of human pose estimator. Since the previous dataset [416] ground truth in classic 

machine learning was in the form of 3D key points (joint positions) and the output 

of human pose estimator in this thesis is the SMPL model (joint rotations), we have 

used an SMPL-based dataset for this part. 

Figure 4.16 shows the process of human motion evaluation using deep learning. 

The 3D SMPL model resulting from the human pose estimation is evaluated using 

classic machine learning and deep learning by analysing its joint rotations (pose 

parameter of the SMPL model). 

The deep neural networks usually need more data compared to the classic ma­

chine learning models. Since we are using a supervised learning method, a large 
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Score regression for the eight Bafa techniques 
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FIGURE 4.15: Baseline [416] Score Predictions using classic machine 
learning for all gestures with combined features, 60 PCs and Mor­

phology Independence Feature Processing 

SMPL based benchmark dataset (AMASS) [106] is annotated for score targets. Math­

ematical formulas for motion features that indicate a better score (for example de­

sirable joint angles, joints alignment, stability and fluidity of motion), are used for 

annotating the AMASS dataset. 

The results of human motion evaluation are shown in the Table 4.15 to 4.18. In 

Table 4.15, the dataset is annotated using the desirable angle formulas. In Table 4.16, 

the dataset is annotated using the motion fluidity formulas. In Table 4.17, the dataset 

is annotated using the joint alignment formulas. In Table 4.18 the dataset is anno­

tated the movement stability formulas. Each of these four annotation categories has 

more than one criteria for computing the amount of stability, fluidity, joint alignment 

or desirable angles which can involve different parts of the body. Each row of the re­

sult tables show the result of using different annotation method (formula) within the 



4.5. Results 113 

Features Random Forest Regression 

Ergonomic 

7 7 
Measured Meas!Jf'ed 

correlation= 0.97, rmse = 0.33 correlation= 0.80, rmse = 0.80 

Euler 

7 7 
Measixed Meas!Jl'ed 

correlation= 0.97, rmse = 0.32 correlation= 0.77, rmse = 0.86 

Quaternion 

7 7 
MeasiKed Measured 

correlation= 0.98, rmse = 0.30 correlation= 0.86, rmse = 0.67 

Kinematic 

correlation= 0.99, rmse = 0.23 correlation= 0.90, rmse = 0.58 
11---------~ .. 

Muller 

correlation= 0.99, rmse = 0.21 correlation= 0.84, rmse = 0.74 

TABLE 4.3: Score Predictions for all Gestures 

specified category. The result of all annotation formulas are shown in the Appendix 

section A.1 and more distinct result in each annotation category are mentioned in 

this section. 

In motion evaluation using desirable angle (Table 4.15) and joint alignment cri­

teria (Table 4.17) some annotations can be predicted easily by both deep learning 
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Features 

Ergonomic 

Euler 

Quaternion 

Kinematic 

Muller 
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Random Forest Regression 

10 

7 7 
Measured Me11sured 

correlation= 0.99, rmse = 0.17 correlation= 0.92 , rmse = 0.47 

7 7 
Measixed Menured 

correlation= 0.93, rmse = 0.64 correlation= 0.98 , rmse = 0.31 

. ; s .,. 

.,..,."' 
)I' 

; 

7 7 

. ; 
; . 

Me1mxed Measured 

,.: 
.,..,..,. .,,,,,"' 

correlation= 0.99, rmse = 0.18 correlation= 0.99, rmse = 0.15 

. .,. , ..... .,. .,. , . ... 
6 .,. ... 

... .;. ... 
.. .,. .. 
~ ... 

6.0 6.5 7.0 7.S 8.0 8.S 9.0 9.S 
Measured 

correlation= 0.96, rmse = 0.34 correlation= 0.89 , rmse = 0.53 

7 7 
Me1mxed Measured 

correlation= 0.91 , rmse = 0.72 correlation= 0.99, rmse = 0.27 

TABLE 4.4: Score Predictions for Gesture 3 

and classic machine learning while in the more difficult ones CNN has the best per­

formance, random forest is the second best and ridge regression has the worst per­

formance. In motion evaluation using fluidity (Table 4.16) and stability (Table 4.18) 

criteria, CNN performs better in all the cases. Random forest comes after CNN in 

terms of performance and ridge regression in the last in the ranking. 

Overall, the correlation between correct score and predicted score can show that 

in almost all scenarios CNN can perform better than the classic methods such as 
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Features 

Ergonomic 

Euler 

Quaternion 

Kinematic 

Muller 
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Random Forest Regression 
1,~----------~ 

1 1 
Measured Meas!Jf'ed 

correlation = 0.94 , rmse = 0.48 correlation = 0.97 , rmse = 0.37 

correlation = 0.98 , rmse = 0.43 correlation = 0.98 , rmse = 0.28 

1 1 
Measured Measured 

correlation = 0.91 , rmse = 0.52 correlation = 0.99 , rmse = 0.21 

70 75 8.0 8.5 90 9.5 
Measured 

70 75 8.0 8.5 90 9.5 
Measured 

correlation= 0.14, rmse = 1.01 correlation= 0.96, rmse = 0.24 

" 

5.0 5.5 6.0 6.5 70 7 S 8.0 8.5 5.0 5.5 6.0 6.5 70 75 8.0 8.5 

correlation= 0.89, rmse = 0.51 correlation= 0.95, rmse = 0.37 

TABLE 4.5: Score Predictions for Gesture 4 

regression and random forest. Between the classic machine learning methods, the 

random forest can perform better compared to regression method. 
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Features 

Ergonomic 

Euler 
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Random Forest Regression 

7 7 
Measixed Measured 

correlation= 0.91 , rmse = 0.63 correlation= 0.96, rmse = 0.45 

7 
Measixed 

correlation = 0.85 , rmse = 0.71 

7 
Measured 

correlation = 0.97 , rmse = 0.34 

Quaternion 

Kinematic 

Muller 

Video 

correlation = 0.85 , rmse = 0.71 correlation = 0.97, rmse = 0.34 

7 7 
Me11s1Ked Measured 

correlation = 0.84 , rmse = 0.94 correlation = 0.98 , rmse = 0.29 

7 7 
Measured Measured 

correlation= 0.96, rmse = 0.39 correlation= 0.96 , rmse = 0.36 

HPE 
(Human Pose 

Estimator) 

TABLE 4.6: Score Predictions for Gesture 5 

FIGURE 4.16: Human Motion Evaluation using Deep Learning 
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Features Random Forest Regression 

10 •• 

Ergonomic 

7 7 
Measixed Meas!Jf'ed 

correlation = 0.92 , rmse = 0.64 correlation = 0.91 , rmse = 0.62 

Euler 

correlation= 0.96, rmse = 0.37 correlation= 0.97, rmse = 0.31 

10 

Quaternion 

7 7 
Measixed Meas!Jf'ed 

correlation= 0.97, rmse = 0.42 correlation= 0.97, rmse = 0.36 

Kinematic 

correlation= 0.89, rmse = 0.33 correlation= 0.97, rmse = 0.34 

Muller 

correlation= 0.97, rmse = 0.33 correlation= 0.97, rmse = 0.39 

TABLE 4.7: Score Predictions for Gesture 6 
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Features 

Ergonomic 

Euler 

Quaternion 

Kinematic 

Muller 
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Random Forest Regression 

10 

7 7 
Measixed Menured 

correlation= 0.93, rmse = 0.46 correlation= 0.70, rmse = 0.95 

7 7 
Me11s1Ked Measured 

correlation= 0.98, rmse = 0.22 correlation= 0.92, rmse = 0.46 

6.0 6.S 70 75 8.0 8.5 90 9.5 

10 ~----------~ 

.,,:, 

6 ,, .. . 
.,,,, . .,, . 

.,,4 .,, 

A' .,, . .,, ... 
_,_, I 

6.0 6.5 70 75 8.0 8.S 9.0 9.5 
Measured Measured 

correlation= 0.97, rmse = 0.28 correlation= 0.97, rmse = 0.29 

10 

correlation= 0.91 , rmse = 0.54 correlation= 0.95, rmse = 0.35 

10 

6.0 6.5 70 75 8.0 8.5 9.0 9.5 
Measured 

correlation= 0.91 , rmse = 0.44 correlation= 0.90 , rmse = 0.39 

TABLE 4.8: Score Predictions for Gesture 7 
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Features 

Ergonomic 

Euler 

Quaternion 

Kinematic 

Muller 
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Random Forest Regression 

1 1 
Measixed Measixed 

correlation = 0.93 , rmse = 0.48 correlation = 0.96 , rmse = 0.37 

correlation= 0.98, rmse = 0.33 correlation= 0.92, rmse = 0.59 
,.o 

8.5 

8.0 

1S 

17.0 
ll ... 

6.0 

S.S 

S.0 

I ,, ,,,, . . ,, ,, . . ,, ., ,.,, ,, . 
~ .. ,, . ,, ,, ,, ,, 

5.0 5.5 6.0 6.5 70 7 S 8.0 8.5 
Me11sured 

90 

as ,, 
ao ,-". ,, ,, 
1S ,, 

ll ,, 
,t,;170 :,_ ; . 
J! .. . . ,, . . ,, . ., I ,, ., 

" 
,, ": ,, 

" 
,, 
5.0 5.5 6.0 6.S 70 75 8.0 8.5 

correlation= 0.92, rmse = 0.49 correlation= 0.89, rmse = 0.53 

correlation= 0.94, rmse = 0.58 correlation= 0.97, rmse = 0.32 

correlation= 0.99, rmse = 0.25 correlation= 0.97, rmse = 0.42 

TABLE 4.9: Score Predictions for Gesture 8 
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Features Random Forest Regression 

10 

Ergonomic 

6.0 6.S 10 1s ao as 90 9.s 6.0 6.5 70 75 8.0 8.5 9.0 9.5 
Measured Menured 

correlation= 0.86, rmse = 0.66 correlation= 0.49, rmse = 1.15 

Euler 

7 7 
Me11s1Ked Measured 

correlation= 0.96, rmse = 0.46 correlation= 0.87, rmse = 0.71 

Quaternion 

7 7 
Measixed Measured 

correlation= 0.90, rmse = 0.58 correlation= 0.95 , rmse = 0.42 

Kinematic 

7 7 
Me11s1Ked Measured 

correlation= 0.96, rmse = 0.57 correlation= 0.94, rmse = 0.53 

Muller 

correlation= 0.93, rmse = 0.59 correlation= 0.93 , rmse = 0.67 

TABLE 4.10: Score Predictions for Gesture 9 
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Features 

Ergonomic 

Euler 

Quaternion 

Kinematic 

Muller 
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Random Forest Regression 

7 7 
Measixed Meas!Jf'ed 

correlation= 0.94, rmse = 0.63 correlation= 0.92, rmse = 0.59 

,.o 

as 

il 8.0 

j 75 • 

6.0 6.5 7.0 7 S 8.0 8.5 9.0 
Measured 

correlation = 0.82 , rmse = 0.64 correlation = 0.91 , rmse = 0.41 

7 7 
Measixed Measixed 

correlation= 0.96, rmse = 0.53 correlation= 0.96, rmse = 0.37 

correlation= 0.96, rmse = 0.37 correlation= 0.95, rmse = 0.40 

correlation= 0.96, rmse = 0.50 correlation= 0.82, rmse = 0.74 

TABLE 4.11: Score Predictions for Gesture 10 
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Features 

Ergonomic 

Euler 

Quaternion 

Kinematic 

Muller 

Chapter 4. Human Motion Evaluation 

Random Forest Regression 

7 7 
Measixed Measured 

correlation= 0.92, rmse = 0.54 correlation= 0.93, rmse = 0.49 

11 

10 

7 7 
Me11s1Ked Measured 

correlation= 0.95, rmse = 0.60 correlation= 0.86 , rmse = 0.77 

5.0 5.5 6.0 6.5 70 7 S 8.0 8.5 
Measured 

5.0 5.5 6.0 6.5 70 75 8.0 8.5 
Measured 

correlation= 0.91 , rmse = 0.55 correlation= 0.89 , rmse = 0.48 

7 7 
Me11s1Ked Measured 

correlation= 0.93, rmse = 0.86 correlation= 0.95, rmse = 0.52 

7 7 
Me11s1Ked Measured 

correlation= 0.94, rmse = 0.69 correlation= 0.95 , rmse = 0.49 

TABLE 4.12: Score Predictions for Gesture 11 
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Features Random Forest Regression 

Ergonomic 

7 7 
Measixed Measixed 

correlation= 0.88, rmse = 0.66 correlation= 0.90, rmse = 0.52 

Euler 

6..0 6..5 70 75 8_0 8.S 
Measured 

correlation= 0.65, rmse = 0.70 correlation= 0.75, rmse = 0.65 

Quaternion 

7 7 
Measixed Measixed 

correlation= 0.90, rmse = 0.58 correlation= 0.96, rmse = 0.44 

Kinematic 

correlation= 0.92, rmse = 0.57 correlation= 0.90, rmse = 0.64 

Muller 

correlation= 0.92, rmse = 0.71 correlation= 0.95, rmse = 0.50 

TABLE 4.13: Score Predictions for Gesture 12 
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Features 

Ergonomic 

Euler 

Quaternion 

Kinematic 

Muller 
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Random Forest Regression 

7 7 
Measixed Measured 

correlation= 0.97, rmse = 0.46 correlation= 0.93, rmse = 0.51 

7 7 
Me11s1Ked Measured 

correlation= 0.92, rmse = 0.76 correlation= 0.94, rmse = 0.65 

7 7 
Measixed Menured 

correlation= 0.95, rmse = 0.58 correlation= 0.85 , rmse = 0.78 

75 

!! 70 

I,, • 
., . 

5.0 5_5 6.0 6.5 7.0 7.5 8.0 8.5 
Measured 

correlation= 0.89, rmse = 0.58 correlation= 0.94, rmse = 0.42 

7 7 
Me11s1Ked Measured 

correlation= 0.93, rmse = 0.50 correlation= 0.88, rmse = 0.65 

TABLE 4.14: Score Predictions for Gesture 13 
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CNN 

CNN 

~ 

,,.,.; ," 
/ , ~ 

Random Forest Regression 

i 0,6 

§ 0.4 

§o.6 

' ~ 
8 04 

TABLE 4.15: Motion evaluation with angle criteria 

Random Forest 

i:: 

Regression 

~ 0.6 

1 
8 0,4 

TABLE 4.16: Motion evaluation with fluidity criteria 
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Angle Correlation 

Random-Forest 1\-R.eg ression 
Ang le3 Correlation 

Ang le7 Correlation 

Fluidity Correlation 

R-Regression 
Flu idity6Correlation 

R-R.egression 
Flu idity8Correlation 
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CNN 

CNN 

Random Forest 

,' 
l• 
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Regression JointAlign Correlation 

§o.6 . 
1 
8 0.4 

Random-Forest R-Regress;on 
JointAlign lCorrelM ion 

Random-Forest R-Regression 
JointAlign6Corre lM ion 

Random-Forest R-Regression 
Jo intAlignBCorre lat ion 

TABLE 4.17: Motion evaluation with joint align criteria 

Random Forest 

l " 

' " 

~/ 

1: ill""< / 

Regression 

, ... ,,," 
. , < • 

,Ii. .. ,.. ...... , 
-:• .· ·.· . . 

Stability Correlation 

Random -Fo rest 
Slabil ity lCorrelal ion 

Random -Forest R-Regression 
51abil it y3Corre lal ion 

TABLE 4.18: Motion evaluation with stability criteria 
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4.6 Limitations 

The motion evaluation part limitation is that it is a supervised method and needs an 

annotated dataset by experts to be able to evaluate the actions. Not having access to 

such knowledge or not having enough amount of annotated data makes the use of 

data demanding methods such as deep learning difficult. That is why our improve­

ment to 99 percent correlation and low error by just using the simple and traditional 

machine learning methods is valuable. Another way of tackling this problem is au­

tomatic annotation. 

4.7 Summary 

In this chapter, several contributions were made to improve the accuracy and ef­

fectiveness of human motion estimation and evaluation. The primary focus was 

on human motion evaluation using different machine learning approaches, partic­

ularly comparing traditional machine learning models (Random Forest and Ridge 

Regression) with deep learning models (CNNs). These models were applied to hu­

man pose data obtained from the SMPL model, which provides a more detailed and 

accurate representation of human motion. 

One of the key contributions of this work is the Human Motion Evaluation, 

which aims to improve the quality and accuracy of motion analysis by assessing the 

postures and movements of humans after motion estimation. This evaluation was 

conducted using a variety of motion features, including joint rotations (SMPL pose 

parameters), which were directly fed into the machine learning models without any 

feature extraction. 

The Human Motion Evaluation was validated using several datasets, includ­

ing AMASS, a large-scale benchmark dataset annotated for motion features such 

as desirable joint angles, motion fluidity, joint alignment, and movement sta­

bility. These features were selected based on mathematical formulas representing 

the desired qualities of good human motion. The annotations for each feature cate­

gory were manually prepared using expert knowledge or mathematical definition, 

and the evaluation was performed on both martial arts and general human motion 

datasets, offering a comprehensive assessment across various motion types. 

4.8 Comparison of Features and Models for Classic Machine 

Learning and Martial Arts Dataset 

The input features used for the classic machine learning models (Random Forest 

and Ridge Regression) were diverse and represented different motion characteris­

tics: 
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- Ergonomic Features: These features focus on human biomechanics, including 

joint angles, limb lengths, and other anatomical parameters that represent the phys­

ical constraints of human movement. 

- Euler Angles: These angles describe the orientation of joints and body seg­

ments in 3D space using rotation matrices. 

- Quaternions: A more compact and computationally stable representation of 

rotations compared to Euler angles. 

- Kinematic Features: These features describe the motion of the human body in 

terms of velocity, acceleration, and the movement of joints over time. 

- Miiller Features: This refers to a set of higher-order motion descriptors that 

capture the geometry of joint motion and the smoothness of transitions. 

After evaluating different feature sets and machine learning models, it was found 

that the combination of the following performed the best in terms of motion evalua­

tion accuracy: 

-Best Feature Combination: The combination of kinematic features (which in­

clude velocity, acceleration, and joint movement over time) and ergonomic features 

(which represent the anatomical constraints and joint angles of the human body) 

showed the best performance for Random Forest. These features provided com­

plementary information that allowed the model to effectively evaluate both the dy­

namic and static aspects of human motion. 

-Best Machine Learning Model: Among the classic machine learning models, 

Random Forest consistently outperformed Ridge Regression. Random Forest's abil­

ity to handle non-linear relationships in the data and its robustness to overfitting 

made it particularly effective for motion evaluation, especially when combined with 

kinematic and ergonomic features. It was the top performer for tasks such as joint 

alignment and desirable angles. 

Therefore, the Random Forest model combined with kinematic and ergonomic 

features achieved the best performance in motion evaluation. The model demon­

strated superior accuracy and correlation with expert-annotated data, achieving higher 

performance than Ridge Regression in nearly all evaluation criteria. 

4.9 Machine Learning Model Comparison for Deep Learning 

and General AMASS Dataset 

The results from the experiments demonstrated that deep learning (CNN) outper­

formed traditional machine learning models (Random Forest and Ridge Regression) 

in all categories, especially for more complex motion characteristics, such as fluidity 

and stability. In contrast, Random Forest showed strong performance, particularly 

for features involving joint alignment and desirable angles, although it is still be­

hind CNN in terms of performance. Ridge Regression generally performed the least 

well across all the criteria, especially in more challenging evaluations of fluidity and 

stability. 
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- Random Forest: This method showed strong performance when combined 

with kinematic and ergonomic features, particularly for evaluating joint alignment 

and desirable angles. The combination of these features with Random Forest re­

sulted in the best performance among the traditional machine learning models. 

- Ridge Regression: Ridge Regression had the least performance overall, partic­

ularly in the evaluation of fluidity and stability. It is a linear model, which limits its 

ability to capture the complex, nonlinear patterns that exist in human motion data. 

- Deep Learning (CNN): CNNs demonstrated the best performance across all 

motion evaluation categories. They were particularly effective at capturing the com­

plexities of fluidity and stability that the traditional methods struggled with. The 

CNN model could learn complex representations of human motion directly from the 

raw joint rotation data, outperforming both Random Forest and Ridge Regression 

in almost every category. 

4.10 Key Findings and Contributions 

• Improved Motion Evaluation: The proposed method for human motion eval­

uation using the SMPL model significantly enhanced the accuracy of motion 

scoring, especially when combined with better feature selection and the appli­

cation of deep learning models. 

• Feature Selection: The evaluation demonstrated that a combination of kine­

matic features and ergonomic features were the most effective for traditional 

machine learning models. Euler angles and quaternions showed weaker per­

formance but still contributed useful information to the evaluation. 

• Machine Learning Model Comparison: The comparison between Random 

Forest, Ridge Regression, and CNN revealed that deep learning models were 

superior when dealing with raw motion signals, especially for complex fea­

tures like fluidity and stability. Random Forest performed well on features 

such as joint alignment and desirable angles, when combined with kinematic 

and ergonomic features, while Ridge Regression struggled in most cases. 

• Performance Validation: The methods were validated using the AMASS dataset 

and other datasets containing martial arts and general human motion, demon­

strating the ability to evaluate diverse types of human motion effectively. The 

evaluation metrics, including correlation and RMSE, showed that CNNs con­

sistently outperformed traditional methods across most of the criteria. 

• Improved Evaluation Accuracy: By utilizing deep learning models with raw 

motion data and enhancing the feature selection process, significant improve­

ments were achieved in human motion evaluation, surpassing the results from 
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previous works that utilized similar datasets. This was achieved without the 

need for complicated feature engineering or hand-crafted features, showcasing 

the strength of deep learning models in human motion analysis. 

• Contributions to Motion Evaluation: The main contribution of this chapter 

is the Human Motion Evaluation, which significantly enhanced the accuracy 

of motion scoring. This method uses joint rotations from the SMPL model, 

avoiding the need for extensive feature extraction, and uses machine learning 

models (both classic and deep learning) to assess the quality of human mo­

tion. The method was validated across several datasets and proved effective 

in improving evaluation accuracy. For classic machine learning effectiveness of 

feature selection combined with choice of appropriate machine learning model 

improved the motion evaluation error significantly. 

Overall, this chapter contributes to the field by advancing human motion evalu­

ation through both improved machine learning methods and the use of more accu­

rate human body representations (SMPL model). The Human Motion Evaluation 
demonstrated clear benefits when using deep learning, achieving high correlation 

scores (up to 99%) and low error rates across various motion evaluation categories. 

The results shows the power of deep learning in human motion analysis, while also 

highlighting the limitations of traditional methods when dealing with complex mo­

tion dynamics like fluidity and stability. 
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Chapter 5 

Conclusions 

This chapter will conclude the study by summarising the key research findings in 

relation to the research aims, as well as the value and contribution thereof. It will also 

review the limitations of the study and propose opportunities for future reserach. 

5.1 Research Summary 

This research focused on three main stages of inferring and analysing the 3D human 

motion data from monocular video. These stages are capturing data and producing 

the dataset, human motion estimation and human motion evaluation. We aimed 

at improving accuracy and solving issues of baseline methods in motion estimation 

and motion evaluation by various means. Baseline human motion estimation meth­

ods are improved in terms of self-occlusion and unnatural poses. Improvements to 

the baseline motion estimation and evaluation methods are listed in the following 

paragraphs. 

5.1.1 Human Pose Estimation 

In the human pose estimation problem, instead of using the more common 3D hu­

man kinematic skeleton structure we used more accurate adaptive shape modeling 

that infers 3D parametric human models and is called SMPL. 

The input data of the pose estimation system is monocular video footage which 

causes limitations on the resulting 3D inferences. Being view-independent and ro­

bust to occlusion is usually a common goal. We have addressed these limitations 

by adding another post-processing step after the pose estimator to compensate for 

such biases which maps incorrect poses/motions caused by self-occlusion to correct 

poses/ motions. 

Traditional online benchmark datasets for 3D human pose estimation tend to 

have 3D key points as their ground truth. Though only a handful of datasets have 

been created using the SMPL human model as the ground truth. In my thesis, I 

have focused on improving the estimation of self-occluded motions using SMPL 

models. I have also created a data set of self-occluded motions that were performed 

by three subjects whilst using the SMPL model as the ground truth. These data 

included monocular video capture and MoCap as the ground truth. Additionally, I 
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also introduced a new error measurement method to evaluate the correct pose using 

SMPL rotation parameters. 

The transition between predicted poses between each frame is not usually smooth. 

Use of different signal processing filters showed that many low-pass filters can give 

a good result. 

The current accuracy metric for human pose estimation is the average 3D joint 

error between the prediction and ground truth. While this can be an indicator of 

relative quality of a specific method, it cannot provide more detailed explanation 

about which frames had better or worse predictions or if there is a common issue 

in all predicted poses in a sequence. The action specific error measurements and 

qualitative results can help to find the issues in pose estimation. 

To enhance motion continuity and positional accuracy especially in the case of 

occlusion where the errors are high, two main post-processing techniques were ap­

plied: machine learning-based post-processing (using Random Forest and LSTM 

AutoEncoders) and inverse kinematics (IK). Each approach contributed differently 

to improving the SMPL pose predictions and was evaluated for effectiveness under 

various conditions. 

5.1.1.1 Machine Leaming-Based Post-Processing 

The first post-processing approach utilized machine learning models, specifically 

frame-to-frame Random Forest models and motion-to-motion LSTM AutoEncoders, 

to refine pose predictions. Random Forest models were tuned iteratively for optimal 

parameters using a validation-based random search. This model excels in reduc­

ing positional noise on a frame-by-frame basis, allowing it to correct sudden shifts 

or outliers in joint positions without sacrificing temporal continuity. However, the 

LSTM AutoEncoder model was particularly effective in temporal smoothing, as its 

recurrent structure captured sequential dependencies in the motion data, resulting 

in smoother and more realistic transitions between frames. This model proved ben­

eficial for complex poses involving significant limb overlap, where individual frame 

corrections alone may be insufficient. 

The results of applying these machine learning models showed a marked reduc­

tion in both 3D joint positional errors and rotational discrepancies when compared 

to baseline predictions. Furthermore, in experiments using cross-validation, both 

models improved prediction accuracy, though the LSTM model displayed a greater 

capacity for long-sequence consistency, which is crucial in self-occluded actions. The 

RF method had access to the current frame motion data and showed better accuracy 

compared to the predictive autoencoder method. 

5.1.1.2 Inverse Kinematics Post-Processing 

Inverse kinematics (IK) was used as a secondary post-processing approach to im­

prove SMPL model accuracy, especially for unnatural or challenging poses such as 
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handstands and cartwheels. IK leveraged predicted 3D key points, which, while 

not precise in orientation, provided accurate spatial targets for limb endpoints (e.g., 

wrists and feet). IK improved joint position accuracy significantly, especially for 

upper body poses, as hands served as precise targets in cases of occlusion. 

However, the results demonstrated a trade-off: while IK reduced positional er­

rors, the orientation accuracy of joints (particularly rotational alignment) decreased 

due to the IK model's reliance solely on position data, without rotational targets. 

This limitation was evident in increased rotation errors, especially for limb move­

ments requiring accurate angle alignment (e.g., arms in overhead motions). 

5.1.1.3 Performance Analysis and Comparison 

The two post-processing methods addressed different facets of the pose estimation 

problem. Machine learning-based post-processing offered improvements in both 

position and rotation accuracy and performed particularly well on actions with con­

sistent motion patterns. Meanwhile, IK proved advantageous in refining joint posi­

tions in complex or self-occluded motions, with noticeable reductions in hand and 

arm positional errors. However, due to the lack of orientation control, IK was less 

effective in scenarios requiring strict rotational precision. 

Overall, combining both methods demonstrated the potential for a complemen­

tary approach, where machine learning could handle frame-to-frame consistency 

and temporal smoothing, while IK could be selectively applied to refine endpoint 

joint positions in cases of extreme occlusion. The validation results across varied 

datasets support the effectiveness of these post-processing techniques in enhancing 

SMPL-based pose estimation accuracy, particularly in self-occluded and complex 

motion scenarios. 

If the post-processing model is trained on a specific action, it performs better 

compared to the model trained on all the actions of the dataset. Action-specific mod­

eling is introduced to leverage action recognition as to select the appropriate model 

trained on specific action. This provides a tailored approach for reconstructing self­

occluded motions. 

5.1.2 Human Motion Evaluation 

The goal of human motion evaluation in this research is assigning a score value to 

the subject's movement. The motion sequence length can be as small as a gesture 

or a more complicated movement. We have used both classic and deep learning 

methods to evaluate a movement and compared their error and correlation values. 

The classic machine learning methods using explicit feature extraction was im­

plemented. We have found that adding different feature categories together does not 

help in better prediction of the output score. This causes a very large feature space 

that later should be reduced by methods such as PCA. Instead, we have used only 
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one category of features for the model and used better classifiers such as random 

forest which improves the prediction result compared to the baseline method. 

Separate use of each feature category also helps to compare the effectiveness of 

each feature and classifier in prediction of the score value. In a model trained on 

all gestures, the random forest performed better than regression and among the fea­

tures Kinematic and Muller gained the best performance. We have also trained a 

separate model for scoring each gesture. When training on specific gestures, the 

highest achievable accuracy is usually lower compared to when we train the model 

on all gestures. The choice of the best performing feature extraction and classifica­

tion method varies depending on the type of gesture. 

The dataset used for classic motion evaluation [416] was relatively small and its 

3D human data was in the form of a 3D kinematic skeleton. The dataset ground 

truth score values were labelled visually by some experts. To check the performance 

of deep neural networks for motion evaluation, a larger data set was needed. The 

format of the 3D human data should also be compatible with the pose estimator 

framework i.e. 3D human shape model such as SMPL. For this purpose, an unla­

belled large dataset of SMPL motions [106] was labelled using mathematical quality 

metrics. 

Comparing the result of motion evaluation using deep learning (CNN) and clas­

sic machine learning methods showed that the CNN model performed generally 

better than classic methods. Similar to the previous dataset, random forest predic­

tion is better than regression method. The joint rotations of the SMPL model proved 

to be a good input for both random forest and CNN methods without the need for 

extra feature extraction. 

5.2 Limitations and Future Research 

5.2.1 Data Collection 

The motion capture system in the lab consists of the optical MoCap cameras and 

a synchronised video camera that can record with the same high frame rate of 120 

fps. Other sensors such as Kinect or multi-camera system can also be synchronised 

and connected to the existing motion capture system providing richer datasets and 

optimized ground truth through fusion of the available data. 

Synchronization between multiple video cameras, and between motion capture 

and a single video camera, is done using hardware synchronization which has high 

precision. When this is not practical due to hardware limitations, it is possible to 

investigate synchronising by other means for example matching the 3D motion wave 

patterns resulting from the two systems or using sound. 
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5.2.2 Human Motion Estimation 

In the human pose estimation, the predicted SMPL model can be rotated along one 

of the axes. While the results are aligned together to measure the error between joint 

prediction, the effect of such incompatibility in the coordinate axis can be further 

investigated. 

The predicted human motion in SMPL format lacks global position prediction, 

therefore only the local body motion is tracked. More experiments can be done for 

inferring the global position of the subject in the 3D environment. 

The predicted camera parameters from the pose estimator are parameters for a 

weak perspective model and used for orthographic projection of predicted 3D joints 

to predicted 2D joints and then comparing it with the 2D ground truth. It is possible 

to predict the full camera parameters using deep learning and use it to improve the 

result. 

The loss function for the 3D human pose estimation method can consider the 

difference between SMPL parameters, 2D and 3D joint positions. An improved loss 

function can result in better final predictions. 

In terms of the available 3D training data, there is an inconsistency in the struc­

ture of the ground truth 3D skeleton annotations between different available datasets. 

To be able to use the datasets together, it is good to use a standard format such as 

the SMPL model. Other available datasets can also be processed to assign a ground 

truth with the common format. 

As mentioned before, many current 3D pose estimation methods are motivated 

by lack of 3D ground truth. Improving such models can be investigated by use of 

strong 3D supervision as opposed to using weak supervision by 2D joint locations 

along with small 3D datasets. 

It should be noted that the place of key points in the 2D pose estimators such 

as Openpose sometimes does not match the corresponding position on the SMPL 

model, e.g. in the hip joints. This will have an effect on different stages of the HPE 

method. For example when reconstructing a 3D SMPL model from 2D joints predic­

tion for creating multi-camera ground truth or when computing the 2D re-projection 

error in the pose estimator loss function. 

The correspondence between the various 3D human models also should be taken 

into account when producing ground truth using MoCap data (SMPL-X). Precise 

conversion between SMPL-X and SMPL models requires re-computing the SMPL 

model not only choosing corresponding joints. 

In capturing the data in the lab environment, the subjects used the black MoCap 

suit and a green screen is set up behind the subject. This might be different from the 

normal clothing in the training data of the video pose estimator. The effect of using 

different background and clothing on the result of the 3D pose estimator and ways 

to improve it can be investigated. 
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5.2.3 Human Motion Post-Processing 

In human motion correction, we can denoise the output of the human pose estima­

tor. The 3D pose estimator can predict similar joint rotations with different signs 

in x, y and z elements of the axis-angle representation. This change of sign in the 

elements is not visible in the human motion but causes rotation of the character in 

a few filtered frames while using our windowed noise filtering methods. The input 

motion can be pre-processed to cancel the effect of such an inconsistency between 

consequent frames, before using noise filtering methods. 

In using machine learning for prediction of correct poses, the dataset of repeat­

ing similar actions by different people is needed. The amount of these data can be 

increased and other learning methods such as deep learning can be investigated. 

The 2D pose estimator is used in different parts of the 3D pose estimator. In 

the SMPL estimation part, the initial human detection and tracking uses 2D pose 

estimation. In the 3D skeleton estimation part, the intermediate step of finding 2D 

joints is using the 2D pose estimation. While we have focused on improving self­

occlusion in the 3D result in the final steps, it is good to remove the effect of occlusion 

on the 2D pose estimator too. We can use an improved 2D pose estimator which is 

robust to occlusion and see how it affects better 3D human prediction. 

5.2.4 Human Motion Evaluation 

In human motion evaluation, we have worked with supervised learning for predict­

ing a score. In supervised learning the role of the annotated dataset is important. 

Annotation usually is done by experts for example in sports, healthcare or medi­

cal fields. Use of unsupervised learning for evaluating the motion can be further 

investigated with more focus on the specific application. 

When creating annotation for motion evaluation purposes, we have assigned a 

number related to motion quality of a motion sequence. Various scoring criteria 

are used for automatic annotation. The annotation values can be normalised for 

example between O and 10 for easier interpretation. 

We have used local joint rotations of the 3D SMPL human model as an input of 

the motion analysis. Unlike this method, use of 3D coordinates of the joints needs 

normalisation and scaling of the skeleton data. Simple normalisation of such data 

will cause unwanted change in motion features and is not recommended. The ef­

fect of using different motion standardization between different subjects on better 

human motion evaluation can be further investigated. 

Production of synthetic data in the graphical environment using the realistic mo­

tions from MoCap and making the appearance of the avatar more realistic can also 

be investigated. It is also possible to use motion transfer and the SMPL model mo­

tion on a more realistic avatar in a photo-realistic 3D environment. This can be used 

to create more data related to the application area of the project. 
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Figures and Charts 
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TABLE A.1: HPE Results on Gymnastics Bar Motions 
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TABLE A.2: HPE Results on Gymnastics Ring Motions 
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TABLE A.3: HPE Results on Exercise Motions 
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TABLE A.4: HPE Results on Handstand Motion 
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TABLE A.5: HPE Results on Handstand Motion 
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TABLE A.6: HPE Results on Yoga Motions 
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TABLE A.7: HPE Results on Yoga Motions 
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A.1 Deep Learning Extended Results 
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TABLE A.13: Ergonomic Features of a motion sequence of Person 12 
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TABLE A .14: Euler Features of a motion sequence of Person 12 
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TABLE A .16: Muller Features of a motion sequence of Person 12 
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TABLE A.17: Muller Features of a motion sequence of Person 12 
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TABLE A.18: Quaternion Features of a motion sequence of Person 12 
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