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SUMMARY
Poor understanding of the cellular and molecular basis of clinical and genetic heterogeneity in progressive
multiple sclerosis (MS) has hindered the search for new effective therapies. To address this gap, we analyzed
632,000 single-nucleus RNA sequencing profiles from 156 brain tissue samples of MS and control donors to
examine inter- and intra-donor heterogeneity. We found distinct cell type-specific gene expression changes
between MS gray and white matter, highlighting clear pathology differences. MS lesion subtypes had
different cellular compositions but surprisingly similar cell-type gene expression patterns both within and
across patients, suggesting global changes. Most gene expression variability was instead explained by pa-
tient effects, allowing us to stratify patients and describe the different pathological processes occurring be-
tween patient subgroups. Future mapping of these brain molecular profiles with blood and/or CSF profiles
from living MS patients will allow precision medicine approaches anchored in patient-specific pathological
processes.
INTRODUCTION

Although we have highly effective therapies for the early inflam-

matory relapsing-remitting phase of multiple sclerosis (MS), we

lack such therapies for the neurodegenerative progressive

phase. Therapeutic strategies that have been tested in clinical

trials include enhancing neuroprotection directly and enhancing
396 Neuron 113, 396–410, February 5, 2025 ª 2024 The Author(s). P
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remyelination, resulting in indirect neuroprotection by restoring

metabolic support and saltatory conduction to the demyelinated

axon.1 However, in spite of promising preclinical data, such trials

have not so far resulted in improvement in clinical disability, even

though subgroup analysis has shown some promise (e.g., MS-

SMART,2 Opicinumab,3 Bexarotene,4,5 and Clemastine6). This

translational mismatch may result from the diversity of disease
ublished by Elsevier Inc.
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Figure 1. Single-cell dissection of cellular heterogeneity in multiple sclerosis lesions
(A) Overview of the donor and sample characteristics (CTRL, control; RRMS, relapsing-remitting MS; SPMS, secondary progressive MS; PPMS, primary pro-

gressive MS).

(B) Uniform manifold approximation and projection (UMAP) plot of cell types. (Endo + Peri, endothelial cells and pericytes).

(C) Heatmaps showing selected markers of glial states and their subclusters. Color shows Z scored mean log CPMs, scaled per gene across glial states.

Oligodendroglia: OPC, oligodendrocyte precursor cell; COP, committed oligodendrocyte precursor; NFOL, newly formed oligodendrocyte; MFOL, myelin

forming oligodendrocyte; MOL, myelinating oligodendrocyte; DA, disease associated; IFN, interferon signaling related; gene groupings derived from Falcão

et al.10 and Hilscher et al.11 Astrocytes: interlaminar, interlaminar astrocytes; cilia, ciliated astrocytes and ependymal cells. Microglia: homeo, homeostatic; PVM,

perivascular macrophage.

(D) UMAP plot restricted to oligodendroglia showing subclusters.

(E) PAGA applied to oligodendrocyte and OPC/COP subclusters across all samples (edges with weights below 0.2 not shown).

(F) UMAP plot restricted to astrocytes showing subclusters.

(G) UMAP plot restricted to microglia showing subclusters.

(H) Differential abundance of GMMS samples against control GM, as calculated by bootstrapped Analysis of Compositions of Microbiomes with Bias Correction

(ANCOM-BC) (see STAR Methods and supplemental information). The model accounts for sample layer position, by using formula count �lesion_type + sex +

age_scale + pmi_cat + layer_PC1 + layer_PC2 + layer_PC3 + layer_PC4 (where age_scale is age at death, normalized to have SD = 0.512). The line at

(legend continued on next page)
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response in people with MS: within both primary and secondary

progressive MS (PPMS and SPMS) clinical subtypes, there is a

clear heterogeneity of clinical course, with some people with

MS never reaching the progressive disability phase, while others

rapidly become disabled. This diverse disease course is difficult

to predict at disease onset in the individual, either using patient

characteristics or currently available imaging/biomarker tools.

We speculated that these differing disease outcomes relate to

a heterogeneous neurodegenerative and/or neuroregenerative

MS pathological response between patients. In previous work,

we and others identified cellular heterogeneity in MS using sin-

gle-nucleus transcriptomics, albeit in a limited number of pa-

tients and pathological MS lesion types.7–9 However, these

studies had insufficient samples to characterize inter-patient or

intra-patient heterogeneity. To address this critical gap, we per-

formed a single-nucleus RNA sequencing (snRNA-seq) study on

the most extensive cohort of MS patients to date (Figure 1A),

including both white matter (WM) and gray matter (GM) areas.

Our goals were first to identify the basis of heterogeneity by

comparing cellular compositions and cell type-specific gene

expression signatures acrossWMandGMMS lesion types. Sec-

ond, we sought to identify pathologically relevant ways of strat-

ifying patients on the basis of these responses, to better find and

test potential therapies for progressive MS.

RESULTS

Diverse neural cell subtypes observed in brain WM and
GM in MS and controls
Weprofiled 173WMandGM samples, including >950,000 nuclei

from 55MS cases and 30 controls (pre QC), and >630,000 nuclei

from 54 MS cases and 28 controls (post QC). Our cohort was

similar for age, gender, and post-mortem interval (PMI) between

MS and controls (Figures S1A and S1B; Data S1 and S2;

Table S1). After randomization of samples during library prepara-

tion and sequencing to minimize batch effects, followed by

doublet removal and cell and sample QC, including using

CellBender13 to reduce ambient RNA (STAR Methods), we ob-

tained 632,375 single-nucleus transcriptomes from 156 QC-

passed samples, including 506,594 nuclei from MS patients

and 125,781 nuclei from controls, profiled at a median depth of

3,810 nuclei/sample, 3,508 reads/nucleus, and 1,826 genes/nu-

cleus (Data S1 and S2). These comprised 62WM lesions (WMLs)

(21 active demyelinated lesions [AL], 17 chronic active demyeli-

nated lesions [CAL], 13 chronic inactive demyelinated lesions

[CIL], and 11 remyelinated lesions [RL]), 17 adjacent normal-ap-

pearing WM (NAWM) regions from MS patients, and 13 cortical

hemisphereWM regions from non-neurological controls. In addi-

tion, we profiled 33 subpial cortical GM demyelinated lesions

(GMLs), 15 adjacent normal-appearing GM (NAGM) regions
0 corresponds to no difference between healthy and MS. Points correspond to

strapped confidence interval, the gray range is 95% confidence interval (CI). Poi

(I) Pseudobulk analysis showing percentage (pct) of broad cell types in each sam

(J) Differential abundance ofWMMSsamples against controlWM, as calculated b

age_scale + pmi_cat. Abbreviations: WM, white matter; GM, gray matter; NAWM

active demyelinated lesion; CAL, chronic active demyelinated lesion; CIL, chro

demyelinated lesion.
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from MS patients, and 16 cortical GM tissues from controls, all

defined per classical neuropathology,14 thereby creating a

comprehensive atlas of single-nuclei MS transcriptomes (Fig-

ure 1A). We performed pre-processing, integration, and clus-

tering via two distinct pipelines (STAR Methods; integration per-

formed with Harmony15,16 and Conos17), and the clusters

identified showed high agreement (Data S1 and S3). All clusters

had acceptable QC metrics, and no cluster was composed of

nuclei captured only from individual patients, samples, lesion

types, or technical covariates, indicating that data integration

was successful (Data S1). This captured all major cell types of

the human cortical GM and WM (Figure 1B) identified using ca-

nonical markers (Figures 1C and S2), derived from both MS

and control donor samples (Data S1). There was regional and

disease-related heterogeneity, and we found 59 distinct fine

cell type clusters (STAR Methods), including 14 subtypes of

cortical excitatory neurons (across layers 2–6), 12 of inhibitory

neurons, 10 of oligodendroglia, 7 of astrocytes, 7 of microglia/

macrophages, 7 blood vessel-related cells (including 4 endothe-

lial cell and 1 pericyte clusters), and B cell and T cell subpopula-

tions (Figure S2; Data S4).We also identified 9 small clusters with

mixed lineages, which were potentially doublets (Figure S2; Data

S1 and S4) and were not considered further.

We interrogated the fine cell type clusters in turn. Based on

the expression of previously described genes characterizing

oligodendroglia,7,10,18 we identified 2 oligodendrocyte precur-

sor cell (OPC,OLIG1+, PTPRG+, PTPRZ1+), 1 committed oligo-

dendrocyte precursor (COP, GPR17+, BCAS1+), and 7 oligo-

dendrocyte populations (Figures 1C and 1D; Data S4).

(Example of GPR17 validation for COPs shown in Figure S3).

Analysis of connectivity with partition-based graph abstraction

(PAGA)19 found a putative main trajectory from OPCs to COPs,

followed by Oligo_A, then Oligo_B to C, and finally Oligo_D (Fig-

ure 1E). Markers of this pathway were suggestive of classical

oligodendrocyte differentiation, leading from Oligo_A immature

markers (e.g., OPALIN, PLP1+), through B and C, to Oligo_D

oligodendrocytes with most myelin protein transcripts (e.g.,

MOG+ along with RBFOX1 and KLK6) (Figures 1C and 1E;

Data S4). However, there is, in both MS WM and control WM,

an additional branch point to the large cluster Oligo_E, express-

ing immature markers as well as transcripts relating to cell

morphology, cholesterol synthesis, and active metabolism

(e.g., FCHSD2, ABCG1,20 SFRP1) (Data S4). We also found 2

additional branches leading to either Oligo_F or G, both of which

are disease-associated (DA) (see below), expressing transcripts

related to the interferon response (e.g., IRF9) (Figure 1C).

Oligo_G expresses transcripts related to heat shock protein

and chaperone protein folding responses (e.g., HSP90AA1)

and CDKN1A and TNFRSF12A, similar to the DA2 clusters

described in mice21 (Figure 1C; Data S4). Oligo_F expresses
median log2FC effect estimated by ANCOM-BC; colored range is 80% boot-

nts are filled when the 95% CI excludes zero; otherwise, empty.

ple group.

y bootstrappedANCOM-BCas in (H). Model fitted is count�lesion_type + sex +

, normal-appearing white matter; NAGM, normal-appearing gray matter; AL,

nic inactive demyelinated lesion; RL, remyelinated lesion; GML, gray matter
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Figure 2. Patterns and determinants of cell type-specific gene expression profiles in WMLs and GMLs

(A and B) Contribution to variability in cell type abundances explained by lesion plus patient in WM (A) and GM (B). In (B), three neuronal layer PCs are included as

confounders. FDR is Benjamini-Hochberg-corrected p values from likelihood ratio tests of nested models. Axes show evidence that lesion type (y axis) or donor

effect (x axis) significantly improve the fit of a model explaining the cell type proportion of a sample.

(C) Bar charts showing number of significant differentially expressed (DE) genes for WM and GM tissue and cell type, only DE for this cell type, or also DE in

another cell type.

(D and E) Dot plots of top GO terms plotted for broad cell types and tissue (GM, D; WM, E). Key is shared.

(F) DE genes related to glutamate signaling, glucose homeostasis, ion channels, and oxidative phosphorylation in excitatory neurons in GMLs (mean log2 CPM).

(G) Differential expression of interferon alpha and gamma genes in oligodendroglial cells in WMLs (mean log2 CPM).

(H) WM gene expression fold change profiles over lesion types for each broad cell type showing continuous patterns (opc_cop, OPCs + COPs; oligo, oligo-

dendrocytes; astro, astrocytes; micro, microglia). Restricted to genes where at least one lesion type has FDR < 15%, hierarchical clustering with cut distance set

to log(4), and clusters with fewer than 10 genes not shown. The figure in brackets shows the number of genes in the cluster.

(I) Pseudobulk expression heatmap of genes showing either MS or donor variability in broad cell types in WM, samples ordered by lesion type.

(J) Pseudobulk expression heatmap as in (I), row order on the basis of hierarchical clustering, showing differences between MS donors not explained by lesion

type, sex, or type of MS, but all samples from one donor cluster together, suggesting a strong donor effect.

(legend continued on next page)
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transcripts related to DNA damage and injury (e.g., TOP2A)

(Data S4).

Astrocytes (Figure 1F) were divided into GM and WM types,

expressing WIF1, ETV5 (GM, Astro_A–B) and TNC (WM, As-

tro_D–F), similar to those in mice22 (Figure 1C). GM astrocytes

are more involved in synapse function (e.g., CHRDL1) and

phagocytosis (e.g., MERTK), whereas WM astrocytes are more

involved with blood-brain barrier (BBB) function and water trans-

port (e.g., with higher expression of AQP4) (Figure 1C; Data S4).

Astro_D–F aremore reactive, expressing higher levels of VEGFA,

HIF1A, or CHI3L1 (Figure 1C). A clear cluster of ciliated astro-

cytes was present (CFAP299, DTHD1) (Figures 1C and 1F).

Similar to signatures identified in recent microglial datasets,23

we observedmicroglial subclusters expressing transcripts asso-

ciatedwith homeostasis, in addition tomore reactive subclusters

(Figures 1C and 1G). Micro_A andMicro_B appear to be homeo-

static, showing relatively high expression of P2RY12 and

CXCR1, while Micro_C–E had a more reactive phenotype, ex-

pressing higher levels of transcripts such as TREM2 and APOE

(Figure 1C; Data S4). Some microglia expressing these markers

have been described in other neurodegenerative diseases in

mice and humans, sometimes termed DAmicroglia (DAM) or mi-

croglia inflamed in MS (MIMS).23 Micro_C expresses markers

related to stress and chaperone proteins (e.g., HSPA6, HIF1A),

Micro_D markers such as GPNMB and MITF, and Micro_E

markers such as IL1B and CCL3. Perivascular macrophages

(PVMs)/border-associated macrophages were also detected,

expressing high levels of transcripts such as MARCO and

LYVE1 (Figures 1C and 1G).

Neuronal heterogeneity reflected the subtypes of excitatory

and inhibitory neurons found in cortical layers in human GM,

including for excitatory neurons, CUX2+ neurons from layer 2,

RORB+ neurons from layer 3 and 5, and TLE4+ neurons in the

lower layers (5/6) (Figure S2). Inhibitory GABAergic neurons sub-

divided by location (e.g., RELN+ neurons [layer 1]) and by neuro-

transmitter (e.g., PVALB+, SST+, VIP+ neurons) (Figure S2).

As a result, our dataset, which uses snRNA-seq to study the

largest cohort of MS patients and lesions to date, describes a

wide range of homeostatic and DA cell states. We further exam-

ined these in terms of their composition and transcriptional

changes in both lesions and patients.

Distinct compositional profiles in WMLs and GMLs
Having defined our cell-type subclusters, we next investigated

the compositional differences betweenMS and control samples.

We focused first onGMsamples, aswe and others have shown a

loss of PVALB+ and SST+ inhibitory neurons in MS GM,24,25 as

well as a loss of some types of excitatory neurons.8 We repro-

duced these findings (Figure 1H), with effects similar between

GMLs and NAGM, as before, but more pronounced in GMLs.

Consistent with astrogliosis, GM astrocyte clusters Astro_A, As-

tro_B, and Astro_F are increased inMS inGM, both in NAGMand

GMLs (Figure 1H). As expected, oligodendrocyte clusters Oli-
(I and J) Column order determined by the first principal component of the gene

NAWM, normal-appearing white matter; NAGM, normal-appearing gray matter;

chronic inactive demyelinated lesion, RL, remyelinated lesion; GML, gray matter d

astrocytes; micro, microglia; endo_peri, endothelial cells + pericytes.
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go_C and Oligo_D (expressing most myelin protein transcripts)

are reduced in GMLs compared to NAGM and control. However,

DA oligodendrocytes (Oligo_G) are increased. Immature oligo-

dendrocytes (e.g., Oligo_A) are increased in abundance in

GMLs and NAGM, and there is increased Oligo_B and Oligo_C

abundance in NAGM (but not GMLs), consistent with the

described regenerative response to demyelination in GMLs,

which is generated in surrounding NAGM tissue and is more suc-

cessful than in WM26 (Figure 1H).

Turning to WM, classical pathology descriptions divide WM

MS demyelinated lesions by the pattern of immune infiltrate

into AL, CAL, and CIL, with additional RL (definitions in STAR

Methods and Figure S4). Analysis of sample compositions at

the broad cell type level confirmed the changes in overall

neuronal and glial numbers previously described within the clas-

sical lesion subtypes: the expected reduction in oligodendro-

cytes in MS, most pronounced in demyelinated lesions; an in-

crease in microglia/macrophages, especially in AL and CAL

(defining these lesions); and an increase in astrocytes in MS

compared to NAWM and control WM (Figure 1I). However,

more detailed differential abundance analysis at the cell type

subcluster level reveals additional differences in subcluster pat-

terns (Figure 1J). While most oligodendrocyte subtypes were

reduced inMSWM, there was an increase in immature oligoden-

drocyte type Oligo_A confined to NAWM, (whereas this was

increased in both NAGM and GMLs, reiterating the different en-

vironments of GM and WM for oligodendrocyte regeneration),

and an increase in Oligo_G (DA oligodendrocytes). There was

also a change in microglia from a more homeostatic phenotype

(Micro_A,B) to a more reactive type (Micro_C,D), a change of as-

trocytes from amore homeostatic phenotype (Astro_A) to amore

reactive phenotype (Astro_E,F), and an increase in ciliated astro-

cytes (Astro_Ciliated) (Figure 1J). These differences were gener-

ally present in most MS samples compared to controls, but also

with clear differences between MS sample types, with NAWM

samples being more similar to RLs and controls, and AL and

CAL being similar but with the biggest differences relative to

non-MS samples. Repeat analysis with the orthogonal technique

Milo27 showed broadly similar results (Figures S5A and S5B).

Distinct cell type-specific transcriptional responses in
GMLs and WMLs
The cell composition analysis indicates that there is considerable

variation in specific glial cell types in WML and GML samples

(Figures 1H–1J, 2A, and 2B). Comparing gene expression, we

also found significant differences in many glial types in WM sam-

ples from different donors (12 out of 23 glia types; false discovery

rate [FDR] < 0.05 for donor effect) (Figure 2A), and some in GM

samples (5 out of 17; FDR < 0.05 for donor effect) (Figure 2B).

To explore this further, we investigated the differential gene

expression (DEG) between cells in different lesion environments,

taking into account donor variation.We identified gene expression

changes for each broad cell type between WMLs and control
matrix for each cell type. Abbreviations: WM, white matter; GM, gray matter;

AL, active demyelinated lesion; CAL, chronic active demyelinated lesion; CIL,

emyelinated lesion; opc_cop, OPCs and COPs; oligo, oligodendrocytes; astro,
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WM tissue, and between GMLs and control GM tissue using a

mixed model (glmmTMB28) fit to pseudobulk data, including

age, sex, and PMI as possible confounding variables, and donor

ID as a random component (STAR Methods; supplemental infor-

mation). Indeed, the fitted models for all broad cell types showed

strong donor effects for many genes (Figures S6A and S6B).

Nevertheless, we identified 5,106 DEGs in WM and 4,824 DEGs

in GM across all major cell types (Figure 2C; Data S5; https://

malhotralab.shinyapps.io/MS_broad/).

To identify signatures of the different WML types described in

many previous classical MS pathology studies, we next

compared ‘‘bulk-like’’ transcriptional changes between control

and different MSWM samples and foundmany genes were tran-

scriptionally regulated, with the most numerous changes in AL

and CAL (Figure S7). Of the many genes of interest, we highlight

one example, S1PR3, which is increased in expression in AL and

CAL, and described previously as increased at the protein level

in ‘‘active MS lesions.’’29 With snRNA-seq, we can identify that

S1PR3 is mainly expressed in vascular cells and astrocytes

(https://malhotralab.shinyapps.io/MS_broad/), and this is of in-

terest as S1PRs are the targets of the S1PR modulator family

of MS disease-modifying drugs such as fingolimod, ozanimod,

ponesimod, and siponimod—the last of which is licensed for

use in SPMS.

Examining the snRNA-seq profiles, all cell types inMSGMand

WMshowed strong changes in gene expression, moremarked in

demyelinated lesions than normal-appearing matter (Figure 2C),

with gene ontology analysis (Figures 2D and 2E) indicating

several altered pathways. In GM, both excitatory and inhibitory

neurons showed more DEGs in GMLs compared to NAGM, pre-

dominantly in selectively vulnerable neuronal cells (PVALB+ in-

terneurons and upper/mid layer excitatory neurons) (Data S5;

https://malhotralab.shinyapps.io/MS_fine/). Focusing on MS

excitatory neurons (residing in layer II/IV), there was upregulation

of genes related to glutamate signaling (e.g., GRIA1,2,4,

GRIN2B, GRM1,5), glucose or cation homeostasis (SLC2A12,

SLC22A10) with concurrent downregulation of specific ion

channels (SCN1A, SCN1B, SCN2B, SCN4B, KCNA1, KCNA2,

KCNC1) and oxidative phosphorylation (OXPHOS) genes

(ATP1A1, ATP1B1, NDUFB10, NDUFS3, UQCRH) (Figure 2F).

This unregulated glutamate signaling in excitatory neurons,

together with the decrease in inhibitory neurons (Figure 1H),

could potentially generate excitotoxicity that would contribute

to MS GM pathology.

In WMLs, consistent with our prior observations,10,30 expres-

sion of genes involved in interferon alpha and gamma responses

varied across MS lesions and often showed opposite patterns in

OPCs compared to oligodendrocytes (Figure 2G). Genes

involved in inflammation-related pathways were also enhanced

in astrocytes, microglia, and oligodendrocytes in WMLs (Fig-

ure 2E). However, at the snRNA-seq level, we found no patterns

of gene expression predictive of lesion type. Within each glial

broad type, the majority of DEGs were shared across lesions

(Figures 2E and 2G). For some such transcripts, we observed

‘‘u’’/‘‘n’’-shaped profiles of transcriptional changes along the

pathological category of the lesion, with NAWM lesions showing

small fold changes relative to control WM, increasing to the

largest fold changes in AL and CAL, then decreasing again in
CIL and RL (Figure 2H; STARMethods). This indicated that there

is a continuum of transcriptional differences across MS lesions,

most likely reflecting global neuropathology.

Donor effects drive cellular and transcriptional
heterogeneity in MS brains
The cell-type abundance and gene expression comparisons

show distinct changes associated with MS, with a continuum

of cellular (Figures 1H and 1J) and transcriptional pathology

across lesion categories, which does not fully explain the differ-

ences in our data (Figures 2D–2H). Based on the significant inter-

individual variation in cell type gene expression noted above, we

hypothesized that different subgroups of patients might better

share transcriptional pathological signatures than lesion types.

This hypothesis could not be explored in prior bulk RNA-seq

studies of WMLs, but the unique strength of our study design,

with multiple different lesion types from the same patient and

the power of single-nuclei resolution, enables it to be tested.

For each sample, and in each broad cell type, we analyzed the

gene expression pattern for genes that either showed significant

disease effect or were highly variable for each sample. As ex-

pected from our earlier results, there was no pattern of upregu-

lation or downregulation of genes that correlated with sample

neuropathological category or lesion type, in either WMLs (Fig-

ure 2I) or GMLs (Figure S8A). However, in bothWMandGMsam-

ples, hierarchical clustering of the same data showed a clear

expression pattern that correlated with the donor ID of the sam-

ples (Figures 2J and S8B). This provided strong evidence for

cross-cell type transcriptional similarity within patients. Within

an individual patient, the gene expression profiles were remark-

ably similar across multiple lesion types and normal-appearing

matter, while subgroups of different patients showed distinct

transcriptional profiles (Figures 2I, 2J, S8A, and S8B). We

concluded that although MS lesions clearly differed in cellular

composition, at the gene expression level, cells within both

WMLs and GMLs appeared more affected by donor identity

rather than by the lesion environment.

Coordinated multicellular gene expression programs
define patient subgroups
This demonstration that patients with long-standing MS differ

markedly in the transcriptional signatures of their glia, whatever

their lesion classification, yet fall into apparent subgroups, is

important in the context of the variable responses to experi-

mental neuroprotective therapies, such as those targeting re-

myelination. To explore these apparent subgroups more, and

to understand the underlying cellular and molecular mecha-

nisms, we adapted multiomics factor analysis (MOFA) to identify

similar donor-associated transcriptional patterns acrossmultiple

cell types (modalities) simultaneously.31,32 For each cell type, we

selected genes with evidence of an MS effect and/or a donor ef-

fect (Figures S6A and S6B) to capture both consistent MS pa-

thology and patient-patient variability. This resulted in gene

sets largely distinct for each cell type, with some common genes

(Figures S9A and S9B). MOFA identified five factors each in both

GM (GM_F1-5) and WM (WM_F1-5) samples that explained at

least 5% of variability for a cell type, with each factor describing

one axis of variation in MS. Where the factor explains variance in
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multiple cell types simultaneously, this represents a cross-

cellular response to MS; where the factor explains variance

mostly in one cell type, this program is most influential in that

cell type.

In GM samples, for all factors except factors GM_F1 and

GM_F3, there was considerable overlap between the distribu-

tions of control and MS samples (Figure S10A). Factor GM_F1

gene expression could robustly distinguish MS GM pathology

(NAGM and GML) from healthy control GM, with MS diagnosis

explaining 71% of variability in factor GM_F1 (Figure S10B). Fac-

tor GM_F1 explains equivalent variability in gene expression

across glia (Figure S10B). Factor GM_F3 distinguishes GMLs

from control, is predominantly neuronal (as GM_F2), and high

factor GM_F3 is characterized by downregulation of genes

related to OXPHOS, the electron transport chain, and protein

folding (Data S1 and S6), indicating altered metabolism and

mitochondrial function, as previously described in MS brain

samples.33,34 To investigate whether neuronal compositional dif-

ferences within the GM cortex influence the analysis, we reran

the MOFA analysis without the neurons. This also identified

five factors that correlated very strongly with the original GM

MOFA factors, with the exception of the original GM_F3 factor

(Data S1). No new factor had a strong correlation with original

GM_F3, but as this factor is entirely determined by gene expres-

sion in neurons, this is expected (Data S1). Within each donor,

factor values for all samples were very similar (Figure S10C), re-

flecting the gene expression similarities within one donor

(Figure S10B).

MOFA WM factor scores (WM_F1-5) clearly distinguished

MS patients from controls and also stratified MS patients into

distinct subgroups (Figure 3A). Very similar factors were found

using the orthogonal method Single-Cell Interpretable Tensor

Decomposition (scITD)35 (Data S1; STAR Methods). Four sub-

groups of MS patients had a distinct pattern of high/low factor

scores across factors WM_F1–4, being either factor WM_F1,

WM_F2, WM_F3, or WM_F4 high; scores for factor WM_F5

showed more variability across donors (Figure 3B). These

apparent subgroups were not explained by lesion type (Fig-

ure 3A) or any available known metadata, including sex, type

of MS, age, PMI, brain bank origin (Data S1), or differences in

technical quality (Data S1). To infer potential mechanisms, we

examined the genes driving these factors and found that,

broadly, factors WM_F1–4 described glial responses to dam-

age, while WM_F5 described an astrocyte regenerative

response (Figure S10D). More specifically, high factor WM_F1

scores were characterized by a pan-glial upregulation of genes

involved in protein folding, chaperone proteins, and ubiquitina-

tion (e.g., HSPB1, HSPA4L, HSP90AA, BAG3, SERPINH1, as

found in other neurodegenerative diseases36,37) and a reduced

microglial expression of CX3CR1, P2RY12, and P2RY13 (ho-

meostatic markers), suggesting an adaptive cellular response

to stress (Figure 3C; Data S1 and S6). High factor WM_F2

genes were characterized by cross-glial upregulation of genes

in the integrated stress response, DNA damage, growth arrest,

and apoptosis pathways, including GADD45A, GADD45B,38

and NAMPT (Figure 3D). Factor WM_F3, which affects oligo-

dendroglia most strongly, was characterized by the upregula-

tion of extracellular matrix (ECM) genes, including COL19A1,
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COL22A1, TNC, and ITGB4 (Figure 3E), described to inhibit

oligodendrocyte maturation and reduce myelination.39,40 High

factor WM-F3 was also associated with the downregulation

of CRYAB (alpha-crystallin B), which is thought to be protective

in demyelination41 and is of interest due to its protein homology

to Epstein-Barr virus nuclear antigen 1 with its association with

MS diagnosis.42 Factor WM_F4 also affected oligodendroglia

most strongly, but was characterized by the upregulation of

major histocompatibility complex (MHC) class 1 molecules

(HLA-B and HLA-C), previously described as upregulated in

oligodendroglia in MS lesions and in preclinical mouse models

of experimental autoimmune encephalomyelitis (EAE), targeting

them for destruction,10,30 as well as the immune-related gene

ARHGAP24 described before as expressed in oligodendro-

cytes.43 In addition, WM_F4 was associated with genes whose

upregulation is associated with efforts to increase oligodendro-

genesis, oligodendrocyte differentiation, and myelination (e.g.,

SFRP144 and ANGPT2 similar to ANGPTL245; Figure 3F).

Finally, factor WM_F5, affecting only astrocytes, was charac-

terized by a strong upregulation of genes relating to primary

cilia, including DNAH11+6, SPAG17, ZBBX, and CFAP54

(Figure 3G). Ciliated astrocytes are thought to be pro-regener-

ative,46 although may become longer and dysfunctional in

disease.47–49

To further investigate whether these WM factors could

describe different degenerative and regenerative pathological

responses, we compared glial cellular compositional changes

in samples and WM factor values (Figure 3H). High factors

WM_F1–3 were associated with fewer oligodendrocyte types

(Oligo_B–D), consistent with a general loss of oligodendrocytes

and/or conversion to other more disease-related types. High

factor WM_2 was associated with increases in Oligo_F and G

(high in stress genes), reactive astrocytes (Astro_D–F), and

reactive microglia (Micro_C), whereas high factor WM_F1 was

associated with a marked reduction in the homeostatic micro-

glia Micro_A, and to a lesser extent Micro_B and E. Oligo_G

was increased in factors WM_1, 2, and 4. In addition, increased

WM_F4 (affecting oligodendroglia most strongly) showed a

reduction in Oligo_D, the subtype making most myelin tran-

scripts, with no reduction in the immature subtypes. As

WM_F4 is associated with genes related to increased oligoden-

drocyte differentiation and myelination, this may suggest that

the regenerative response is mounted but blocked, and matura-

tion fails. The increase in microglial subtypes Micro_A and B

(with homeostatic markers) with increasing WM_F4 may also

suggest an attempted regenerative response, since oligoden-

droglial crosstalk with specific microglial populations is essen-

tial in effective regeneration.50,51 High factor WM_F5 (affecting

astrocytes most strongly) was markedly associated with ciliated

astrocytes (astro-ciliated), with their proposed beneficial ef-

fect.46 Thus, factor-based analysis correlated with differential

cell type composition and allows us to propose stratifica-

tion of the majority of MS donors by WM pathology pheno-

type: pattern 1 (stressed—chaperone response), pattern 2

(stressed—DNA damage), pattern 3 (inhibitory ECM response),

pattern 4 (immune and blocked regenerative oligodendrocyte

response) in combination with a more variable expression of a

regenerative astrocyte response.
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Figure 3. Patient stratification by WM factor values

(A) MOFA+ WM factor values (WM_F1–5) for control and MS samples, showing no correlation with WML type.

(B) Heat map of MOFA+ factors (columns) with signs changed to positively correlate with MS status, with donors in rows. Yellow boxes point to (C)–(G) showing

genes driving each factor including a bar plot showing percentage (pct) variance explained by the factor in each broad cell type, and a heatmap of 15 genes with

largest absolute factor weights for each cell type (10 increased, 5 decreased) where R10% variance is explained by factor. Columns are samples, ordered in

increasing order of factor score (top bar). Rows are genes, split by broad cell type. Heatmap colors are log CPM of pseudobulk expression, Z scored within each

row; gray indicates insufficient cells of this cell type in the sample. Column annotations show log2FC, FDR, and whether the gene is a transcription factor.

(C–G) (C) WM factor 1, (D) WM factor 2, (E) WM factor 3, (F) WM factor 4, and (G) WM factor 5. Key bottom right.

(H) Dot plot showing the relationship between cell type abundance of glial and immune cell subclusters and WM MOFA factors.
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Validation of proposed patient stratification in other MS
cohorts
To investigate whether the patient stratification identified by our

MOFA+ approach was unique to our MS dataset (cohort I) or

could also stratify other MS patients, we analyzed an indepen-
dent snRNA-seq cohort (cohort II) of 43 WM samples from 21

MS donors and 8 control donors (Figure 4A). Using the same

workflow as before (see STAR Methods), after QC, we were

able to include 10 new WM MS samples (referred to here as

cohort IIa) and WM samples from published datasets (cohort
Neuron 113, 396–410, February 5, 2025 403
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Figure 4. Second cohort dataset for validation

(A) Overview of cohort II donor and sample characteristics (CTR, control; RRMS, relapsing-remitting MS; SPMS, secondary progressive MS; PPMS, primary

progressive MS)

(B) UMAP plot of cell types of cohorts I and II combined to show similarity. (Endo + Peri, endothelial cells and pericytes.)

(C) Cartoon of how the regression model is applied to data for factor estimates.

(D) Factor estimates for cohort II compared to cohort I factor values colored by dataset. Annotations show results of Kolmogorov-Smirnov test of whether the

compared distributions are the same; p values adjusted with Benjamini-Hochberg method; n.s., not significant; *adjusted p < 0.05 and >0.01.

(E–G) Gene expression of selected genes related to WM factors in selected broad cell types, in controls, single samples per donor for datasets, and

multiple samples per donor for cohort I and cohort II, ordered by WM factor level expression, (E) BAG3 (WM_ F1), (F) GADD45B (WM_F2), and (G)

CRYAB (WM_F3).

(H) Graphs of Z score for RNAscope signal for four probes that showed positive correlation when plotted against factor value for each validation sample. R2 and

p values calculated with cor.test function in R, using method = ‘‘Pearson.’’

(I) Examples of RNAscope staining (see STAR Methods for details). Scale bar indicates 50 mm.
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IIb, including 14 MS samples and 3 controls from the Absinta

et al. dataset9 and 1 MS donor and 3 controls from our previous

J€akel et al. dataset7). The Absinta et al. dataset9 contained 5 MS

donors, each with 2–4 samples, whereas the rest were single

samples from single donors. Datasets (e.g., Schirmer et al.8)

containing mixed WM and GM samples could not be included.

The integration of the new cohort II with cohort I showed the

same broad cell clusters (Figure 4B). We then implemented a

regression model that allows us to estimate factor values ac-

quired from a snRNA-seq cohort to any new snRNA-seq cohort

dataset (which could be MS or any other neurological disease)

(Figure 4C; STAR Methods). We used this regression model to

estimate cohort I WM factor values in cohort II (Figure 4C) and

found that the validation samples showed very similar distribu-

tions of WM factor values as in the discovery data, with the

exception of WM-F3, which may relate to the low sample size

(Figure 4D). In addition, visualization of examples of genes

driving these factors (e.g., WM_F1: BAG3) across multiple sam-

ples of the cohort II dataset indicated similar expression across

different lesion types and distinct expression across MS individ-

uals, adding evidence to the global donor effect rather than

lesion effect (Figures 4E–4G). Thus, these different MS patholog-

ical phenotypes were also identified in distinct subsets of pa-

tients in independent MS cohorts.

Furthermore, we performed validation of patient stratification

based on WM_F1–4 using RNAscope in WM tissue blocks

from 14 MS patients (5 donors from cohort I and 9 donors from

cohort II) for whom we had WM_F1–F4 values derived or esti-

mated from MOFA analyses of their snRNA-seq profiles as

described above, with a range of values. Although the factor

groupings are based on many hundreds of genes with different

weightings, we selected three genes each for WM_F1–4, as

these factors clearly grouped donors (see STAR Methods for

RNAscope gene selection) with the hypothesis that RNAscope

quantifications of WM_F1–F4 genes would show good correla-

tion with their respective WM_F1–F4 values. Some of these

genes did not present differences, possibly related to the low

sample size. Notably, however, we found that HSP90AA1 posi-

tively correlated with WM_F1, NAMPT with WM_F2, and A2M

and TGFBR with WM_F4, but not with the chosen probes for

WM_F3 (Figures 4H and 4I; further examples in Figures S11A

and S11B). Overall, this proof-of-concept validation in a small

sample size of MS patients corroborates the concept of patient

stratification and indicates that factor markers can constitute

biomarkers for distinct MS patient groups.

DISCUSSION

This snRNA-seq study on the most extensive cohort of MS pa-

tients to date provides an extensive resource for the community.

It shows that GM and WM biology in MS are fundamentally

different at a molecular and cellular level: while GM changes

relate to the presence of a demyelinated lesion and patient ID,

WM MS biology is more complex. Although there are cellular

compositional and transcriptional differences present in each

of the classical MS WML categories, as we would expect, the

gene expression patterns of cells with different lesions are sur-

prisingly mostly agnostic to the lesion environment and are
instead associated more with individual patient effects. These

global patient effects allow us to take the first step toward the

stratification of progressive MS patients by their molecular and

cellular pathology, only made possible by the large number of

samples captured both within individuals and from different indi-

viduals. Recent work has explored the trade-offs between read

depth and number of individuals,52 finding greater read depth

is useful for characterizing lowly expressed genes and rare cell

types, but our study suggests that there is also much to be

discovered by increasing the breadth of patient samples.

Our WM results point to four fundamentally different neurode-

generative pathological phenotypes in MS, selective for a sub-

group of patients and shared by all WMLs and NAWM in a single

patient: first, where there is a cross-glial stress response with

increased protein folding/chaperone/ubiquitination pathways

(pattern 1 stressed—chaperone response). Second, where there

is an alternative cross-glial DNA damage stress response

(pattern 2 stressed—DNA damage). Third, where there is an

increased inhibitory ECM response to oligodendroglial differen-

tiation (pattern 3—inhibitory ECM response). Fourth, where there

is an immune oligodendrocyte response and a failure in the final

stage of oligodendrocyte maturation (pattern 4—immune

response). Superimposed on these is an apparent regenerative

astrocyte response. None of these phenotypes group with any

available patient metadata including age, sex, type of progres-

sive MS, previous medications, post-mortem delay, sample

quality measures, or disease duration, with the lack of associa-

tion with the latter suggesting that phenotype does not change

over the course of the disease (Data S1; Figure S10E). The pro-

posal that distinct pathological processes underpin heterogene-

ity between MS patients is reminiscent of the previous work of

Lucchinetti et al., who divided different patient pathological re-

sponses into patterns I–IV on the basis of lesion composition,

analyzing numbers of oligodendrocytes, T cells, and microglia,

as well as amount of immunoglobulins, complement, and myelin

protein by immunohistochemistry.53 On this basis, even without

the benefit of current high-resolution techniques, all lesion sam-

ples from a given MS donor were of the same pathological

pattern. Comparison of our WM factor values with the composi-

tion of our samples (nearest to the Lucchinetti classification)

(Figure 3H) shows some possible overlap. Donors high in

WM_F1 or WM_F2 have fewer oligodendrocytes and more

stressed/diseased oligodendrocytes and may correspond to

Lucchinetti pattern III, while donors high in WM_F4 or WM_F5

have increased numbers of B cells (making immunoglobulins)

and may correspond to Lucchinetti type II (with increased

plasma cells).

A key prediction of our results is that each patient group ex-

pressing one of WM factors 1–4 will respond best to different

neuroprotective/regenerative therapies. This may help explain

the apparent poor response to neuroprotective/pro-regenerative

therapies in progressive MS trials—beneficial effects may have

been missed due to the inability to perform appropriate (factor-

based) subgroup analysis. Any positive response in these trials

may be ‘‘diluted’’ by patient heterogeneity, and effective thera-

pies for one subgroup may be lost. We propose that pro-remye-

linating drugs acting through increasing oligodendrocyte matu-

ration may be most effective in the patient subgroup patterns 3
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and 4, where oligodendrocytes stall in differentiation, and not in

those subgroups where the need is to reduce cellular stress. It is

also conceivable that siponimod, now approved for selected

SPMS patients, may have a more marked effect in the pattern

2 (stressed—DNA damage) subgroup, through its proposed

role in NRF2 signaling and antioxidant pathways.54

Our hypothesis that this MS patient stratification by pathology

will convert into a clinically useful tool is yet to be proven. A

blood-based stratification of relapsing-remitting MS patients

into endophenotypes has recently been shown to correlate

with efficacy upon interferon-beta treatment.55 An effective pa-

tient stratification predicting brain pathological responses would

give future clinical trials of neuroprotective agents the greatest

power to reveal effective therapies. Our next step is to link these

post-mortem phenotypes to biomarkers measurable in living in-

dividual, ideally in serum or cerebrospinal fluid (CSF), or perhaps

even as targets for positron emission tomography (PET) ligands.

We propose some initial possible biomarker candidates based

on our initial validation studies. Encouragingly, consistent with

our GM transcriptional change findings, it has already been

shown that high protein levels of CSF parvalbumin correlated

with the loss of PVALB+ inhibitory cortical neurons and

increased MS disease severity.24 Biomarker identification will

allow us to determine whether pathological phenotypes are sta-

ble in the same patients over time56 and to interrogate clinical

trial datasets for effect or indeed lack of effect within post hoc

stratified patient groups. Pathological subgroups may relate to

genetic SNP variation, and SNPs are now emerging that relate

to MS disease progression.57 However, although we now have

a large resource, we still currently lack the donor numbers

required for these analyses. In the context of other neurodegen-

erative diseases, it will be interesting to determinewhether any of

these pathological patterns in response to MS are similar in sub-

groups of patients in response to Alzheimer’s disease, Parkin-

son’s disease, etc., or whether these are MS-specific. For

example, multiple recent studies of Alzheimer’s disease have

discussed a microglia cluster similar to our Micro_D, character-

ized by high expression of GPNMB and other DAM signature

genes.58,59

In this study, we provide a resource of cell type-specific genes,

whose expression distinguishes WM/GM pathology and sub-

group phenotypes, to aid such future biomarker efforts. This is

an essential step change for designing effective precision med-

icine therapeutic strategies for progressive MS—a critical un-

met need.

Limitations of the study
A peripheral readout for CNS pathology in MS would be optimal

in clinical settings for monitoring of the degenerative phase of

the disease with stratification for prognosis and therapies. Our

dataset, the largest snRNA-seq of MS samples yet, including

WM and GM, and including multiple samples from the same do-

nors, constitutes the first important step in this direction,

providing a molecular blueprint of MS neuropathological re-

sponses. We anticipate that in the near future, with additional

large MS cohorts where snRNA-seq CNS profiles can be inte-

grated with blood/CSF datasets, and potentially SNP data,

this will become possible.
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For practical reasons, our study uses snRNA-seq from post-

mortem archival tissues, with the limitation that this only evalu-

ates primarily pre-mRNA nuclear transcripts. We undersampled

rare immune cell populations, e.g., activated CD8 T cells, mono-

cytes, dendritic cells, B cells, and MIMS,9 which are mostly en-

riched at the edges of chronically inflamed WMLs, perhaps as

we focused on the entire lesion, but the sharing of gene expres-

sion programs across all lesions in oligodendrocytes, astrocytes,

andmicroglia suggests the generalizability of our results. In addi-

tion, we cannot comment on subpial GMLs adjacent to compart-

mentalized inflammatory meningeal infiltrates,60 as these were

not in our dataset. We tried tomatch our MS donors and controls

as well as possible, but differences (in banks, PMI, etc.) remain

and differences will exist that we are unaware of. However, no re-

sults associated with any available patient metadata. Efforts to

process clinical summaries from archival tissue from neurolog-

ical patients with neurological disorders are now on the way.61

The integration of such studies with datasets as ours will be

required in the future to link snRNA-seq based stratification

with clinical criteria. Although we use a larger cohort of individ-

uals than often used in single cell-omic studies, with all available

and suitable public data for validation, even larger numbers will

be required to validate our findings of patient groupings based

on factor analysis at a transcriptional level, especially the high

in factor WM-F3 group. Increasing the scope of our analysis

with other modalities, for instance at the proteomics, lipidomics,

and epigenomics level in future studies will help in the further

characterization and stratification of MS patients.
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accession number PRJNA544731

(NCBI Bioproject ID: 544731)

Software and algorithms
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interactive web browser to analyse cell

type-specific expression levels of genes

and transcriptomic changes in MS versus
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This paper https://malhotralab.shinyapps.io/MS_broad/;

https://malhotralab.shinyapps.io/MS_fine/
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human tissue
Human tissue samples were obtained from the Netherlands Brain Bank (NBB), the MS UK tissue bank (UKTB) and the Edinburgh

Brain Bank (EBB) via donor schemes with full ethical approval from respective brain banks (METc/2009/148 from Medical Ethical
Neuron 113, 396–410.e1–e9, February 5, 2025 e1

https://doi.org/10.5281/zenodo.8338963
https://zenodo.org/record/8338963
https://velocyto.org/
https://malhotralab.shinyapps.io/MS_broad/
https://malhotralab.shinyapps.io/MS_fine/


ll
OPEN ACCESS Article
Committee of the Amsterdam UMC, MREC/02/2/39 from UK Ethics Committee), and individual material transfer agreements be-

tween Roche and ABB, UKTB and EBB. We have complied with all relevant ethical regulations regarding the use of human postmor-

tem tissue samples.

In the discovery dataset, we examined a total of 156 (127MS and 29 controls) snap frozen brain tissue blocks obtained at autopsies

from 54 MS patients and 26 controls. MS patients and controls were similarly matched for age and sex. Samples were from frontal,

parietal or temporal regions, with cortical GM or underlying WM. For detailed donor information see Data S2. As some brain banks

only collect disease samples rather than controls, we inevitably have some differences in sample source with case-control status and

different collection practices also impact age and PMI for the GM samples (Table S1). However, we have had to be pragmatic with

these precious resources. For example, analyses of these variables in our differential expression and cell composition analyses found

very few genes or cell types associated with age. The details of the relevant genes are included in Data S5. We have added a state-

ment to this effect in the limitations section.

METHOD DETAILS

Sample preparation and single nuclei RNA sequencing
Brain tissue characterization

Snap frozen tissue blocks from donors with GM lesionswere provided by UKTB to Roche. Subpial GM lesions were determined using

MBP and PLP staining by neuropathologists at Roche and confirmed by independent experts (Anna Williams, Roberta Magliozzi).

Pathological staging of WM lesions from EBB and ABB donor samples was done at the respective brain banks. In the WM, de-

and remyelinated lesions were identified by Luxol Fast Blue (LFB) staining and demyelinated lesions were grouped into active,

chronic active and chronic inactive lesions with Oil red O staining to determine microglial activity.69 Remyelinated lesions were

defined as showing light staining on LFB, and presence of only a few non-activated microglia/macrophages which did not contain

ingested MOG, PLP or MBP. Brain tissue specimens from the respective WM regions were shipped on dry ice to Roche and directly

processed.

Nuclei isolation and single nuclei RNA sequencing

Nuclei were isolated from fresh-frozen 10mm sections, using Nuclei Pure Prep Nuclei Isolation Kit (Sigma Aldrich) with the following

modifications. The regions of interest weremacro-dissected with a scalpel blade, lysed in Nuclei Pure Lysis Solution with 0.1%Triton

X, 1mMDTT and 0.4U/ul SUPERase-In� RNase Inhibitor (ThermoFisher Scientific) freshly added before use, and homogenised with

the help first of a 23G and then of a 29G syringe. Cold 1.8M Sucrose Cushion Solution, prepared immediately before use with the

addition of 1mM DTT and 0.4U/ul RNase Inhibitor, was added to the suspensions before they were filtered through a 30mm strainer.

The lysates were then carefully layered on top of 1.8M Sucrose Cushion Solution. Samples were centrifuged for 45min at 16000xg at

4�C. Pellets were re-suspended in Nuclei Storage Buffer with 0.4U/ul RNase Inhibitor, transferred in new Eppendorf tubes and centri-

fuged for 5min at 500xg at 4�C. Pellets were again re-suspended in Nuclei Storage Buffer with 0.4U/ul RNase Inhibitor, and centri-

fuged for 5 minutes at 500xg at 4�C. Finally, purified nuclei were re-suspended in Nuclei Storage Buffer with 0.4U/ul RNase Inhibitor,

stained with trypan blue and counted using an automated cell counter (Countess II, Life technologies). A total of 12,000 estimated

nuclei from each sample was loaded on the 10x Single Cell Next GEM G Chip. cDNA libraries have been prepared using the Chro-

mium Single Cell 3’ Library and Gel Bead v3.3 kit according to the manufacturer’s instructions. cDNA libraries were sequenced using

Illumina NovaSeq 6000 System and NovaSeq 6000 S2 Reagent Kit v1.5 (100 cycles), aiming at a sequencing depth of minimum 30K

reads/nucleus.

Immunohistochemistry and analysis
FFPE sections (4 mm) were deparaffinized in decreasing concentrations of ethanol, and antigen retrieval was performed in antigen

unmasking solution (Vector Laboratories, H-3300) for 10 min in the microwave. Sections were incubated with autofluorescence elim-

inator reagent (Millipore, 2160) for 1 min and washed with TBS 0.001% Triton-X (wash buffer). Endogenous peroxidases were

quenched with 3% H2O2 for 15 min at room temperature (RT), washed in wash buffer and blocked for 30 min at room temperature

with PBS 0.5% Triton-X (TBS-T), 10% HIHS (blocking buffer). Primary antibody incubation was performed overnight at 4�C in block-

ing buffer. Sections were washed and incubated for 2hrs at RT with HRP-labelled secondary antibodies. Fluorophore reaction was

performed using OPAL 570 and OPAL 650 reaction kits for 10 min at RT (Akoya Biosciences, FP1488001KT and FP1496001KT

respectively, 1:500). Sections were counterstained using Hoechst (Thermo Fisher, 62249; 1:1,000), washed and mounted.

The following primary antibodies were used: mouse anti-CNP (Atlas, AMAb91072, 1:1,000, RRID:AB_2665789), rabbit anti-

human GPR17 (Cayman Chemical, 10136, 1:100, RRID:AB_10613826), MBP (Rat anti MBP aa82-87 BioRad 1:300, RRID:AB_

10886666), PLP (Mouse anti-Myelin Proteolipid Protein Antibody, CT, clone PLPC1 MAB388 Millipore, 1:200, RRID:AB_177623),

MHCII (Dako 1:50, RRID:AB_2313661), MOG Z12 (inhouse clone 1:5070). The following secondary antibodies were used: Vector

Laboratories, rabbit-HRP IgG (MP-7401, Vector laboratories, RRID:AB_2336529), mouse-HRP IgG (MP-7402, Vector laboratories,

RRID:AB_2336528).

For quantifications of GPR17 cell numbers, sections were co-labelled with GPR17 and CNP which was used to define demyeli-

nated lesions. Sections were scanned using a VectraPolaris slide scanner and processed usingQupath71 and Fiji72 imaging software.
e2 Neuron 113, 396–410.e1–e9, February 5, 2025
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Within individual lesions, several regions of interest were selected randomly. These regions of interest were randomised using the Fiji

randomization plugin and quantified completely blinded mixing samples from all conditions, regions and lesions.

In Situ Hybridization on brain tissue - RNAscope
The RNAscope� 2.5 LS Assay Brown kit (322100) was used to detect target RNA expression in fresh frozen tissue sections (15mm).

Sections were mounted on charged Superfrost� plus slides and baked at 60�C for 1 hr. Tissue was then fixed with 10% neutral buff-

ered formalin (NBF) for 15min at 4�C, and dehydrated through 50%, 70%and 100%EtOH (5min for each concentration and twice for

100% EtOH) and air-dried for 5 min. Following pre-treatment, the RNAscope� 2.5 LS Assay was carried out on the Bond RX (Leica

Biosystems), involving hybridization of each RNAscope probe to the target RNA, followed by signal amplification steps. Detection

was achieved using the chromogenic substrate provided in the kit, resulting in a brown precipitate at the site of the target RNA. RNA-

scope probes used were: HSP90AA1 (477068), HMGB1 (434638), LINGO1 (414838), CRYAB (426278), NAMPT (599318), CD44

(311278), CLIP1 (447298), CACNA1A (558588), SHISA9 (831608), A2M (532508), TGFBR2 (407948), SYK (422838).

High resolution brightfield images were captured using a Zeizz Axioscan slide scanner and analysed using both QuPath and Im-

ageJ software. Three ROIs were created for each tissue section (width: 2200mm; height: 1750mm) and DAB (brown) channel isolated.

ROIs were imported into ImageJ, thresholded and smoothened. RNA particles were then calculated within each ROI using the ‘anal-

yse particles’ function within ImageJ to provide quantitative data. The mean RNA signalling over all three ROIs per sample was

calculated.

QUANTIFICATION AND STATISTICAL ANALYSIS

See Figure S13 for an overview of the analysis workflow.

Sample swap checks via genotyping
Wegenotyped all samples included in this study using theGSAv3 illumina CHIP. Genotypeswere imputed using the Haplotype Refer-

ence Consortium (HRC) reference panel (version r1.1)73 and lifted over to GRCh38. Genotype processing and quality control was

performed using Plink v1.9.74 SNPs with imputation score <0.4 or with missingness greater than 5% were excluded. We used

MBV75 to identify sample swaps. Briefly, MBV takes as input a VCF file containing the genotype data of the samples, as well as

bam files containing themapped single nuclei sequencing reads. MBV then reports the proportion of heterozygous and homozygous

genotypes (for each individual in the VCF file) for which both alleles are captured by the sequencing reads in all bam files. Correct

samples can then be identified as they should have a high proportion of concordant heterozygous and homozygous sites between

the genotype data and the mapped sequencing reads. We identified and corrected 23 sample swaps; three further samples were

excluded because they could not be matched to a genotype.

snRNAseq data processing and quality control
All samples were processed with CellRanger (v3.1.0), using the GRCh38 reference human genome and the ensembl Homo_sapiens

GRCh38.96 reference annotation (modified to count intronic reads, and including genes with gene biotype protein_coding, lincRNA,

antisense, and IG_* and TR_* genes). Ambient RNA contamination was removed via processing all samples with CellBender (v0.2.2),

using the raw_feature_bc_matrix.h5 output file from CellRanger as input, with –total-droplets-included set to 25000, –expected-cells

set to the ‘‘Estimated Number of Cells’’ given in the CellRanger metrics_summary.csv output file, and other parameters set to de-

faults. Barcodes called as cells by CellBender, with the corresponding cleaned count matrices, were used for gene expression quan-

tifications. We used velocyto (v0.17.17) on the CellRanger output to quantify intronic and exonic reads.

We identified doublets using scDblFinder (v1.12.0), applied to each sample separately (multiSampleMode = ‘‘split’’), with all other

parameters default.63 We used the score threshold determined from the data by scDblFinder.

After removing doublets, we did quality control, primarily on the basis of percentage of exonic reads. We first removed nuclei with

insufficient data to be worth including, requiring nuclei to have a minimum of 300 expressed genes, 500 UMI counts, and amaximum

of 50% mitochondrial reads. We also excluded samples where an excessive proportion of input barcodes were called as cells by

CellBender. Specifically, for each sample we calculated the proportion of droplets given >50% probability of being a cell by Cell-

Bender, applied the logit transform, calculated the median, and excluded any samples whose proportion was more than 3 MADs

distant from the median. The result of this was to exclude 7 GM samples with >95% droplets called as cells, one GM sample with

<3% droplets called as cells, and no WM samples. We then excluded any nuclei with greater than 75% exonic reads, or greater

than 20%mitochondrial reads. After applying these filters, we then excluded any samples with <500 nuclei remaining. This resulted

in 64 GM and 92 WM samples passing QC, comprising 632k nuclei across 156 samples.

Data integration and clustering
Data integration

Data integration was done with Harmony (v0.1.1), as implemented within the Seurat package. Mitochondrial genes (those starting

with MT-) were excluded. The counts data were loaded into a Seurat object, then we applied the functions NormalizeData,

FindVariableFeatures, ScaleData, RunPCA (with n_dims = 50), followed by RunHarmony, with group.by.vars set to ‘‘sample_id’’
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(i.e. integrating across samples); with the exception of n_dims for RunPCA, all parameters were set to default. To identify clusters at

the broad celltype level, we ran FindNeighbours then FindClusters, with resolution set to 1.

Broad cell types were assigned to each cluster on the basis of known marker genes: PLP1, MAG, MOG, OPALIN (Oligodendro-

cytes), PDGFRA, BCAN (OPCs / COPs), FGFR3, GFAP, SLC14A1, AQP4 (Astrocytes), P2RY12, SPP1, CSF1R, IRF8 (Microglia),

SLC17A7, FEZF2, RORB (Excitatory neurons), GAD1, ADARB2, LHX6 (Inhibitory neurons), CLDN5, FLT1, EPAS1 (Endothelial cells),

EPS8, LAMA2 (Pericytes), IGHG1 (B cells) and IL7R (T cells). The log normalised expression of each gene was calculated for each

cluster, and these values scaled to 0 to 1 over all clusters. For each cluster, the broad cell type with the highest scaled expression

averaged over the known marker genes was selected as the label.

Subclustering

Integration with Harmony identified cell types annotated with broad cell type labels. To identify subclusters corresponding to cell

states, we repeated the integration process within the broad cell types. It is not advisable to integrate samples with very small

numbers of cells. To avoid this, we first grouped the broad cell types together into the following six combinations of cell types,

with the number of PCs used given in brackets: OPCs + COPS and oligodendrocytes (30 PCs); astrocytes (20 PCs); microglia (20

PCs); excitatory neurons (30 PCs); inhibitory neurons (30 PCs); and endothelial cells, pericytes, T cells and B cells (20 PCs).

For each of these broad cell type groupings, even after grouping together, some samples had very low numbers of cells. We there-

fore excluded any samples with fewer than 100 cells before performing integration with Harmony. Harmony was performed as above,

with resolution 0.2 for all broad cell type groups, except OPCs +COPs and oligodendrocytes where we used resolution 0.5. Any clus-

ters with fewer than 200 cells in total were excluded.

To label the cells in the samples with fewer than 100 cells, we trained a classifier (XGBoost76) on up to 1000 randomly selected cells

from each cluster, using a second set of an equal number of randomly selected cells as a validation set. This classifier was applied to

all unlabelled cells, and all cells that the classifier labelled with at least 50% probability were retained.

This resulted in 68 distinct batch-corrected fine cell type clusters, comprising: 11 of oligodendroglia; 7 of astrocyte; 7 of microglia /

perivascular macrophages; 14 of cortical excitatory neurons (across layers 2-6); 12 of inhibitory neurons; 7 blood vessel-related cells

(including 4 endothelial cell and 1 pericyte clusters); B cell and T cell subpopulations; and 9 clusters withmixed lineages. Thesemixed

clusters could potentially be doublets that had not been identified by scDblFinder, and were therefore excluded from further analysis;

this resulted in 59 QC-passed clusters.

Independent data processing, integration and clustering

We additionally performed an entirely independent processing pipeline (distinct methods for: handling ambient RNA contamination;

QC; integration; and clustering). We found high concordance between the clusters identified by both methods (Figure S2A; Data S3).

Marker gene identification and cell type annotation
To identify marker genes within each of the 6 broad cell type groupings, we used edgeR applied to pseudobulk counts of each sub-

cluster in each sample. This avoids the inflated FDR values due to pseudoreplication that are common to methods such as

FindMarkers in Seurat.15 To do this, we first constructed a matrix of pseudobulk values, where each row corresponds to a gene,

and each column corresponds to the sum of all the cells of one cluster in one sample. We ran edgeR using calcNormFactors with

the method ‘‘TMMwsp’’ applied to library sizes across all clusters simultaneously (the default here is ‘‘TMM’’, however ‘‘TMMwsp’’

is designed to better take zeros into account, and is therefore more appropriate when some samples may have small library sizes).

The cluster variable was used to construct the design matrix for estimating dispersions via estimateDisp. We then ran glmQLFit and

glmTreat on each cluster, with the formula �is_cluster, where is_cluster = cluster == sel_cl, to identify genes that are differentially

expressed in that cluster relative to all other clusters. We defined marker genes as genes differentially expressed in a cluster, not

labelled as either lincRNA, pseudogene or antisense, with positive logFC, and >= 1 CPM mean expression in that cluster. We

then ran FGSEA on the marker genes identified for each cluster, using logFC as the ranking variable.

Differential abundance of cell types in MS lesions and control samples - ANCOM-BC

We first checked for samples with sample sizes that were much smaller than for other samples, to exclude samples where abun-

dances might be very noisy. We excluded samples with log sample sizes 2*MAD (median absolute deviation) less than the median

log sample size, separately for WM and GM; this excluded zero WM samples and two GM samples. We also checked for samples

with unusual proportions of neuronal cells relative to other WM or GM samples. White matter samples with neuronal proportion at

least 2*MAD (median absolute deviation) higher than the median neuronal proportion for all WM samples were excluded; grey matter

samples with at least 2*MAD neuronal proportion fewer than the GM median neuronal proportion were excluded. This excluded 18

out of 94 WM samples and 1 out of 71 GM samples.

To test whether abundances of fine cell types across samples were affected by lesion type and donor ID (Figures 2I and 2J), we

used likelihood ratio tests applied to models including lesion type and donor id. Briefly, we fit a series of nested models for each fine

cell type: full (counts� lesion_type + sex + age_scale + pmi_cat + (1 | donor_id)), fixed (counts� lesion_type + sex + age_scale + pmi_

cat), covariates only (counts� sex + age_scale + pmi_cat) and null (counts� 1). We used the R package glmmTMB (v1.1.2.2)28 to fit a

negative binomial distribution to the raw counts for each cell type (see supplemental information for explanation of use of raw counts

rather than proportions). We used the function anova to perform likelihood ratio tests of the following nested sequence of models: full;

fixed; covariates only; null. This gives a p-value indicating whether the more complex model improved the fit more than would be
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expected by chance.We adjusted the p-values across these tests using the Benjamini-Hochberg procedure, across all cell types and

models together.

To test for differential abundance in fine cell type due to lesion type, we used ANCOM-BC version 1.3.2.66 The likelihood ratio test

analysis above indicated that donor ID needed to be taken into account, however this version of ANCOM-BC does not allow random

effects. To factor out donor effects, we therefore did a bootstrapped analysis of abundance: each bootstrap took one random sample

per donor, and ran ANCOM-BC on each bootstrapped sample (e.g. in WM, there were 76 samples across 42 donors, so each boot-

strap comprised 42 samples).We summarised the results of 20k bootstraps by taking themedian, 80%and 95%confidence intervals

of the inferred coefficients for each fine cell type (20k samples is sufficient to properly estimate tail probabilities for 95% CIs; cf Hes-

terberg 201177).

To test differential abundance in WM samples, we additionally excluded all neuronal cell types, as these should not be present in

WM. We fit ANCOM-BC with the formula � lesion_type + sex + age_scale + pmi_cat, where age_scale is patient age, scaled to have

SD = 0.5 across all patients in the dataset,12 and pmi_cat is post-mortem interval, split into three categories (under 1 hour, between 1

and 12 hours, and more than 12 hours).

To test differential abundance inGMsamples, we first fit the data with a similar formula:� lesion_type + sex + age_scale + pmi_cat2

(here, lesion_type includes ctrGM, NAGM and GML; pmi_cat2 has only two categories to reflect the values observed in GM, between

1 and 12 hours, and more than 12 hours).

Using this formula this produced results that conflicted with known biology, identifying multiple neurons as increasing in abun-

dance in GM lesions relative to GM controls. Analysing differences between neuronal proportions between ctrGM, NAGM and

GML, we observed that GML samples were enriched in L1/L2/L3 neurons, and those from NAGM samples were enriched in L5/

L6 neurons (ctrGM samples had intermediate proportions) (Figure S12A). This indicated that GML samples were taken from more

superficial cortical layers in the brain, and the matched NAGM also contained deeper layers (although the experimenters had

made efforts to take all samples from the same depth).

To identify layer effects for each sample, we calculated principal components (PCs) reflecting neuronal layer distributions in normal

tissue. We applied PCA to the centred log ratios of the neuronal cell types in the control GM samples. We then identified principal

components that could be relevant to layers (by filtering on both the absolute Spearman rank correlation between the PC loading

and the layer numbers of neurons known to be layer-specific, thresholding at minimum 0.2 correlation) and which explained at least

1% of variance. This identified seven PCs that could contain layer information (Figure S12B). This analysis was performed in control

GM samples only; we then calculated CLRs for all samples, and projected them into the selected PCs, using the loadings derived

from the control samples.

We then repeated the bootstrapped ANCOM-BC analysis, including layer PCs as covariates to factor out layer effects.We used the

formula � lesion_type + sex + age_scale + pmi_cat2 + layerPC1 + . + layerPCn, i.e. we repeated the analysis using the first n layer

PCs identified above, including from 1 up to 7 PCs. We found that including the first 3 layer PCs gave results that fitted well with ex-

pected biology, i.e. that almost no neuronal typeswere found to increase in abundance in either NAGMorGML relative to control GM,

and PVALB+ neurons decreased in abundance (Figures S12C and S12D).We included 3 layer PCs, however there is little difference in

the results for including between 3 and 7 layer PCs.

Differential abundance of cell types in MS lesions and control samples – miloR

miloR is an R package that identifies neighbourhoods within a nearest neighbours graph that are enriched or depleted in cells from a

particular condition.27 We ran Milo on WM and GM samples separately, using a graph constructed on Harmony-corrected principal

components.

Briefly, we restricted to relevant cell types for each tissue (WM: OPCs + COPs, Oligodendrocytes, Astrocytes, Microglia, T cells, B

cells; GM: OPCs + COPs, Oligodendrocytes, Astrocytes, Microglia, Excitatory neurons, Inhibitory neurons, T cells, B cells), and

selected 2000 highly variable genes evenly across each major cell type (this ensures that the HVGs are not dominated by the cell

types with largest numbers). We then ran Harmony on the selected cells and HVGs using the default parameters.

To account for multiple samples per donor, we did a bootstrapped analysis of abundance, as with ANCOM-BC: each bootstrap

took one random sample per donor, and ranmiloR on each bootstrapped sample. (The bootstrapping was only of the counts of cells,

and not of the graph construction.) We performed 2000 bootstrap replicates for each model tested.

To identify the neighbourhoods associated with lesion types, we applied the bootstrappedmiloRwith the following formulae: WM,

� lesion_type + sex + age_scale + pmi_cat; GM,�lesion_type + sex + age_scale + pmi_cat2 + ctrl_PC01 + ctrl_PC03 + ctrl_PC04. The

3 layer PCs here are to correct for layer effects in the GM tissue, as described in the ANCOM-BC analysis. To identify the neighbour-

hoods associated with factors, we applied the bootstrappedMiloRwith the following formulae: WM,�WM_F1 +WM_F2 +WM_F3 +

WM_F4 +WM_F5 + sex + age_scale + pmi_cat; GM,�GM_F1 +GM_F2 +GM_F3 +GM_F4 +GM_F5 + sex + age_scale + pmi_cat2 +

ctrl_PC01 + ctrl_PC03 + ctrl_PC04.

To plot the bootstrap results, we showed the median bootstrap value per neighbourhood. We reported the coefficient for a neigh-

bourhood as being significantly different from zero if the 90% bootstrap interval of the log2FC did not overlap with the interval

[-log2(1.2), log2(1.2)] (this is the same principle as in the TREATmethod in edgeR78). We used the function annotateNhoods inmiloR

to give fine cell type labels to each neighbourhood.
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Differential expression analysis using generalised linear mixed models
To identify genes differentially expressed in MSWM and MS GM samples compared to respective control samples per cell type, we

did differential expression analysis on pseudo-bulk data, i.e. analysis at the level of the transcript totals across all cells of a given type

in each sample. Pseudobulk approaches are known to offer a good compromise between sensitivity and run time constraints79,80

(see supplemental information for the details of our analysis using different pseudobulk approaches and identification of strong pa-

tient effects). Inspection of gene expression at the donor level indicated that our model would need to include donor effects.

We therefore used glmmTMB28 with a negative binomial model, and donor_id as a random intercept. To filter out samples with low

library sizes or numbers of cells, genes with low counts, and estimate library sizes, we followed the approach set out in muscat.79

Briefly, this comprises: removing samples with fewer than 10 cells; removing pseudobulk samples whose log library size is less

than 3 MADs less than the median; removing genes with low expression using the function filterByExpr in edgeR; calculating

TMM-normalised library sizes with the function calcNormFactors in edgeR.65

The formula for WMwas counts� lesion_type + sex + age_scale + pmi_cat + (1 | donor_id), where pmi_cat is post-mortem interval,

split into three categories (under 1 hour, between 1 and 12 hours, andmore than 12 hours, and age_scale is patient age, normalised to

have SD = 0.5.12

In the GM analysis, we accounted for layer effects by including 3 layer PCs as described in the ANCOM-BC analysis. The formula

for GM was therefore counts � lesion_type + sex + age_scale + pmi_cat2 + ctrl_PC01 + ctrl_PC02 + ctrl_PC03 + ctrl_PC04 + (1 |

donor_id); to reflect values observed in GM samples, pmi_cat2 has only two categories (between 1 and 12 hours, and more than

12 hours). We included an offset of log(lib.size) - log(1e6), so that the reported coefficients correspond to log counts per million

(logCPM). Genes with absolute log2 fold change in expression of at least log2(1.5) and an FDR-corrected P < 0.05 were selected

as differentially expressed. FDRs were calculated at the level of combination of cell type and model coefficient.

To quantify the extent of donor effects, for each gene we also used glmmTMB to fit three simpler models (in addition to the full

model with all variables): with lesion type plus covariates (i.e. fixed effects only) (counts �l esion_type + sex + age_scale + pmi_cat),

with covariates only (counts� sex + age_scale + pmi_cat) and a null model (counts� 1). We then used the anova function to perform

likelihood ratio tests for this nested sequence of models; we applied a Benjamini-Hochberg correction across all genes and LRTs,

separately within each cell type.

Gene set enrichment analysis of differentially expressed genes
FGSEA67 was used to perform statistical enrichment tests of differentially expressed genes in each cell type (broad and fine) from

each comparison in WM and GM samples. All genes expressed in a given cluster were used as a background list, and GO-term anal-

ysis for enriched biological processes and hallmark genes fromMSigDB81 was performed. Z-score was used as the ranking variable

in FGSEA (calculated from the unadjusted p-value and the sign of the log fold change). FDR correction was calculated within each

combination of cell type, model coefficient and pathway collection. Processes with an FDR-corrected P < 0.1 were considered and

their normalised enrichment scores (NES) plotted as a dotplot using ggplot282 R-based libraries.

Assessment of cluster connectivity with PAGA

To characterise connectivity between clusters, we used PAGA19 as implemented in scanpy version 1.8.2.83 As input, we used the

nearest neighbour graph constructed by conos, restricted to just cells with oligodendrocyte or OPC / COP labels. We ran PAGA clus-

tering and layout embedding using fine cell types as the group variable, and otherwise used defaults.

Patient stratification using MOFA+

We used MOFA+ to identify factors explaining the variability across the samples (implemented in the R package MOFA2).31 MOFA+

was developed for data with multiple modalities measured from the same samples. In this study, we took the different cell types to be

the different modalities. This allows us to identify responses that are coherent across samples, across multiple cell types simulta-

neously, and which may have cell type-specific responses. MOFA+ does this by finding factors that seek to explain the variability

in the input data (intuitively similar to PCA) across samples, and which correspond to coordinated tissue-level responses, even

though the genes identified for each cell type are distinct. For example, a factor corresponding to remyelination might involve myeli-

nation genes in oligodendrocytes, debris-clearance genes in microglia, and metabolic support genes in astrocytes. These factors

can then suggest possible ways to stratify patients.

We first identified geneswith relevant variation for each cell type, based on the negative binomial models fitted to each gene in each

cell type. We identified genes with either an MS effect, or a donor effect (or both). Genes with an MS effect were defined as those

where at least one lesion type had both an FDR < 1% and an absolute log2 fold change of 1 for WM, or log2(1.5) for GM (we observed

lower effect sizes in GM, and therefore used a more relaxed threshold). Genes with a donor effect were those where the likelihood

ratio test of including the donor effect had an FDR< 1%, and the standard deviation of the donor random intercepts was at least log(2)

for WM, and log(1.5) for GM. These thresholds are arbitrary but we have found the factors identified by MOFA+ to be robust to var-

iations on these thresholds. In WM, this resulted in the selection of: 231 genes for OPCs + COPs, 821 for oligodendrocytes, 1192 for

astrocytes, 1023 for microglia, 225 for endothelial cells and pericytes. In GM, we selected: 339 genes for OPCs + COPs, 1039 for

oligodendrocytes, 1239 for astrocytes, 412 for microglia, 1159 for excitatory neurons, 924 for inhibitory neurons, 852 for endothelial

cells and pericytes.
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We then calculated normalised expression for the selected genes in each cell type as input to MOFA+. We first excluded any sam-

ples with fewer than 10 cells observed for that cell type (this means that there may be missing data for some cell types in some sam-

ples). We also excluded any samples with log library sizes 3*MAD (median absolute deviation) less than themedian log library size for

that cell type. For the remaining samples, we calculated the log(CPM + 1) of the pseudobulk values, calculating CPMs with library

sizes via the effectiveLibSizes function in edgeR.65 To remove any possible layer effects in GM samples, we fit a linear model using

the first four layer PCs as covariates, i.e. logCPM� layerPC1 + layerPC2 + layerPC3 + layerPC4, and used the residuals of this model

as values for input toMOFA+. To ensure each gene contributed equally to themodel, we then z-scored all resulting valueswithin each

combination of gene and cell type.

For each ofWMandGM,we then fitMOFA+ to this data, using 5 factors. Aswe are interested in an unbiased characterisation of the

heterogeneity of the data, we did not use the group variable in MOFA+; otherwise we used the default parameters. In both WM and

GM, we found 5 factors which explained at least 5% of variance for some cell type.

As described above, we fit MOFA+ only to a relevant subset of genes for each cell type. To identify associations between the iden-

tified factors and all genes, we then used edgeR fit to the counts of each gene, with the formula � WM_F1 + WM_F2 + WM_F3 +

WM_F4 + WM_F5 + sex + age_scale + pmi_cat (and similarly for GM).

To estimate the variance explained by the MOFA factors across all genes, we first obtained variance-stabilised log transforms of

the data with the vst function in the R package DESeq284; notably, this shrinks the high sampling variability of genes with low mean

counts. We then fit a linear model to the log-transformed values of each gene with the formula above, calculated anova, and recorded

the sum of squares for each factor. We restricted to genes with vst-transformed variance of at least 0.5, and calculated variance ex-

plained as the total sum of squares for each factor, divided by the total variance across all included genes.

To calculate geneset enrichment of the genes in MOFA+ factors, we ranked the genes for a given cell type in descending order of

the signed log edgeR p-value, and used the function fgseaMultilevel from the FGSEA package,67 using aminimum set size of 5 genes

and otherwise the default parameters.

Validation of MOFA+ factors with scITD

scITD is a computational method designed to extract multicellular gene expression programs that vary across donors or samples.35

We ran scITD on WM pseudobulk data from the same set of cell types used as input to MOFA (i.e. OPCs + COPs, oligodendrocytes,

astrocytes, microglia, endothelial cells and pericytes). We used the parameters set out in the method vignette (http://pklab.med.

harvard.edu/jonathan/), resulting in inclusion of 5098 genes across all cell types.

Projection of MOFA+ factors onto new cohort
To estimate factor values on the second cohort, we used a regularised regression model trained on the first cohort, and applied it to

the second cohort. The regression task was to predict a factor score for each sample, using as predictors amatrix of gene expression

for different genes in each celltype, with all celltypes concatenated together.

To train the regression model, we used log CPM pseudobulk expression values for each gene in each celltype as variables, for the

five broad celltypes used in theWMMOFAmodel: Oligodendrocytes, OPCs + COPs, Astrocytes, Microglia, Endo + Peri. CPM values

were calculated using TMM-normalised library sizes. Within each celltype, genes were filtered by the median absolute deviation of

the logCPM values, with a minimumMAD of 1 required. This resulted in 592, 387, 1710, 939 and 1995 genes being kept respectively

for the celltypes in the order listed previously; this resulted in a total of 5623 distinct celltype*gene combinations. Each gene was then

scaled to have mean 0 and sd 1. The input to the regression model was a matrix of 5623 celltype*gene combinations, across 92 WM

samples.We used the function cv.glmnet from the package glmnet (v 4.1.8), with the parameter alpha set to 1 to give ridge regression.

To define the folds for cross-validation, we split the donors in theCohort I whitematter data into 5 folds, distributing donorswith larger

numbers of samples evenly across folds. We trained a separate model for predicting each factor separately, and chose the model

corresponding to lambda.min to minimise error. This resulted in 77, 75, 74, 95 and 78 celltype*gene combinations with non-zero co-

efficients for factors 1 to 5 respectively.

To predict the MOFA values in Cohort II, we scaled the logCPM values for the 5 celltypes by the mean and sd calculated from the

samples in Cohort I. We then multiplied these values by the coefficients calculated by the regression model. As a sanity check, we

also calculated these estimated factor values for the samples in Cohort I, and checked that they correlated extremely closely with the

original values used for training.

Selection of probes for validation of MOFA+ factors by in situ hybridisation on tissue
Wesummed transcripts across all cell types for each sample, to create approximations to bulk samples and used a standard edgeR65

analysis pipeline to identify genes that were significantly associated with eachMOFA factor in theWM samples. To identify candidate

biomarkers, we filtered for genes that were significantly up-regulated with a minimum level of expression (FDR < 0.05; logFC > 0;

logCPM > log2(50)), annotated them as being secreted or not in the Human Protein Atlas85,86 (proteinatlas.org) and prioritised those

with high expression as these would be more likely to be detectable by in situ hybridization techniques. Note that the genes that are

significantly associated with factors can differ at the bulk level from the pseudobulk (i.e. individual cell type) level, as the bulk level

reflects changes in expression within cell types, multiplied by changes in proportions of cell types.
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Contribution of model elements to cell type abundance variability
To test whether lesion type and donor ID explain the cell type proportion across samples, we fit a series of nested models of

increasing complexity for each cell type:

d null (counts � 1);

d covariates only full (counts � sex + age_norm + pmi_cat);

d fixed full (counts � lesion_type + sex + age_norm + pmi_cat); and

d full (counts � lesion_type + sex + age_norm + pmi_cat + (1 | donor_id)).

We use the R package glmmTMB (v1.1.2.2) to fit a negative binomial distribution for each model to the raw counts. We then use

likelihood ratio tests (via the anova function) to test whether the more complex model increases the goodness of fit, i.e. whether add-

ing this variable improves the model more than we would expect by chance. We adjusted the p-values across these tests for all cell

types using the Benjamini-Hochberg procedure (i.e. across 3 * 50 p-values).

Note that we model raw counts rather than cell type proportions. An implicit assumption here is that there is no consistent bias in

sample sizes between conditions or donors. This is a strong assumption, however this analysis is used only to make a weak conclu-

sion, that donor variability is an important factor for some cell types.

If we model cell type proportions rather than raw counts, we introduce difficulties due composition (i.e. proportions summing to 1).

Here, an increase in the proportion of one cell type results in a decrease in the proportion of all other cell types. Treating the data as

compositional makes interpretation much more challenging, as differences in proportion could equally be caused by an increase in

absolute abundance of one cell type, or a decrease in absolute abundance of a different cell type. In particular, it makes it difficult to

make conclusions such as ‘‘abundance of cell type A varies considerably between MS patients’’, as this apparent effect may be

mediated by another cell type. The true explanation could be ‘‘abundance of cell type B varies considerably between MS patients;

this results in high patient-patient variability in the proportion of cell type A’’.

Differential abundance of cell types in MS lesions and control samples
Differential abundance involves testing whether the abundance of a given group changes consistently between conditions; in our

case, this indicates whether particular cell types are enriched or reduced in MS lesions vs controls. Such tests are subtle: to account

for experimental variability, we would like to normalise by the total number of cells, and work with proportions. However, in the case

where one cell type increases in abundance and all other cell types remain unchanged, the proportions of the other cell types will

decrease, and vice versa.

Various methods have been developed to address this point. They principally use one or more cell types whose abundance

is assumed to remain unchanged between all samples, and can therefore be used as a reference. ANCOM-BC is a method

developed for microbiome data that uses a mixture model to computationally identify cell types which remain unchanged,

and does not require users to specify a reference cell type.66 An independent benchmarking study (of microbiome data) found

ANCOM-BC to consistently be one of the best-performing currently available methods.87 scCODA is a method developed spe-

cifically for single cell data, however it requires users to specify one unchanging cell type as reference88. As we do not know a

priori which cell types are unaffected by MS, we used ANCOM-BC, and were unable to cross-check the results against

scCODA.

Differential expression analysis using generalised linear mixed models
Recent work has indicated that the primary limitation in differential expression analysis is sampling from a small number of individ-

uals,80,89 and that pseudo-bulk approaches such as Muscat79 (that work at the level of the transcript totals across all cells of a given

type in each sample) offer a good compromise between sensitivity and run time constraints. We therefore considered several pseu-

dobulk approaches for analysing differential expression between our comparisons of interest. After analysis of the options, we chose

a negative binomial model with a random effect, fit to count data with the glmmTMB package.28

Initially, we ran muscat with edgeR,65 using the formula counts � lesion_type + sex + age_scale + pmi_cat. Here, age_scale is pa-

tient age, normalised to have SD= 0.5,12 and pmi_cat is post-mortem interval, split into three categories (under 1 hour, between 1 and

12 hours, and more than 12 hours). However, we found that for some genes there were substantial patient effects, i.e. genes where

the donor ID was amuch stronger determinant of expression than lesion type. Unfortunately edgeR does not at present allow random

effects models.

We then investigated using dream from the variancePartition package,90 however we found that it returned extremely low numbers

of results for cell types where the library sizes were low. In particular, this resulted in 2 significant results being reported for immune

cells, compared to over 200 (biologically expected) genes reported for the same comparison with the negative binomial model. This

may be due to dream operating on logCPM values, which do not explicitly model the variability of small counts. Using a mixed model

also has the advantage of returning a value for each donor random effect (i.e. donor) in the study, which can be interesting for down-

stream analysis.

We therefore used a generalised linear mixed model, to allow both random effects and properly model count data. We used the

glmmTMB function from the glmmTMB package,28 with a negative binomial model, and donor_id as a random effect. The formula for
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WM was counts � lesion_type + sex + age_scale + pmi_cat + (1 | donor_id); the formula for GM was counts � lesion_type + sex +

age_scale + pmi_cat2 + (1 | donor_id), where pmi_cat2 has only two categories (between 1 and 12 hours, and more than 12 hours).

We included an offset of log(lib.size) - log(1e6), so that the reported coefficients correspond to log counts per million (logCPM).

For a small number of genes, there were zero counts for the control condition. Where this occurs, glmmTMBdoes not fit properly (it

operates at the log scale, and such a situation corresponds to themean of one condition equalling log(0), i.e. minus infinity). Where an

all-zeros condition occurred, we therefore added a count of 1 to the sample in the all-zeros condition with the largest library size. This

is the smallest possible perturbation that avoids complete separation of the data.

Statistical analysis
No statistical methods were used to predetermine sample sizes, but our sample size is eight times larger than those reported in pre-

vious snRNAseqMS publications (J€akel et al.,7 Schirmer et al.,8 Absinta et al.9). Statistical analyses and graphical visualisations were

performed using open-source R programming software.91 See dedicated method sections for the details of the snRNA-seq bio-

informatic analysis; differentially expressed genes were defined as genes significantly expressed (P adjusted for multiple compari-

sons < 0.05), and showing, on average, >1.5-fold difference between groups of nuclei in each cell type in every DEG comparison.

Volcano plots were constructed by plotting the log2(fold change) of lesion type with smallest p-value for each gene in the x axis

and by plotting standard deviation of random (donor) effects for each gene on the y-axis. Statistical analysis used two tailed para-

metric or non-parametric t-tests for two groups, and Fisher’s exact test and one-way analysis of variance with corresponding post

hoc tests for multiple group comparisons. Data distributions are presented as barplots, dotplots (with individual data points) and

heatmaps. Log CPM gene expression values in the dot plots and heat maps were averaged, mean-centred, and z-score-scaled.

Dot size indicates the percentage of nuclei in the cluster in which the gene was detected; among the nuclei in which the gene

was detected, the expression level was mean-centred and scaled. Graphical object in Figure 1A was created with BioRender.com.

ADDITIONAL RESOURCES

Two interactive web browsers for analysing cell type-specific expression levels of genes and transcriptomic changes in MS versus

control tissue are available:

d At broad celltype level: https://malhotralab.shinyapps.io/MS_broad/

d At fine celltype level: https://malhotralab.shinyapps.io/MS_fine/
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