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Ising Hamiltonian minimization: Gain-based computing with manifold reduction
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We investigate the minimization of Ising Hamiltonians, comparing the performance of gain-based computing
paradigms based on the dynamics of semiclassical soft-spin models with quantum annealing. We systematically
analyze how the energy landscape for the circulant couplings of a Möbius graph evolves with increased
annealing parameters. Our findings indicate that these semiclassical models face challenges due to a widening
dimensionality landscape. To counteract this issue, we introduce the manifold reduction method, which restricts
the soft-spin amplitudes to a defined phase space region. Concurrently, quantum annealing demonstrates a natural
capability to navigate the Ising Hamiltonian’s energy landscape due to its operation within the comprehensive
Hilbert space. Our study indicates that physics-inspired or physics-enhanced optimizers will likely benefit from
combining classical and quantum annealing techniques.
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I. INTRODUCTION

Pursuing enhanced computing speed and power efficiency
has led to exploring alternatives to traditional electronic
systems in solving complex tasks. Optical neural networks
(ONNs) promise unprecedented parallelism, potentially supe-
rior speeds, and reduced power consumption. ONNs encode
neural weights as phase shifts or changes in light intensity,
with activation functions instantiated via nonlinear optical
materials or components, or via a strong hybridization to
matter excitations [1]. They offer the potential to operate in the
terahertz range, vastly surpassing the gigahertz frequencies of
conventional electronic systems that can be exploited in ma-
chine learning and combinatorial optimization. The common
feature of ONNs is to utilize a network of optical oscilla-
tors dynamically described by a coupled system of soft-spin
models on complex-valued fields ψi = ri exp[iθi] that have
amplitude ri (referred to as the “soft mode”) and phase θi

(discrete, e.g., θi ∈ {0, π}, or continuous “spin”) degrees of
freedom. Each spin in the network can be associated with the
quadrature of the optical complex-valued fields, thereby in the
classical limit reducing the system to a model of real soft spins
given by ri cos θi, which we analyze hereafter.

Optical parametric oscillator based coherent Ising ma-
chines (CIMs) [2–5], lasers [6–8], spatial light modulators
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(SLMs) [9], lattices of polariton [10,11] and photon con-
densates [12], Microsoft’s analog iterative machine [13],
and Toshiba’s simulated bifurcation machine [14] can
all minimize the classical hard-spin Ising Hamiltonians
HI = −∑

i, j Ji jsis j , with si = ±1 for a coupling matrix
J, and other spin Hamiltonians [e.g., XY Hamiltonians
HXY = −∑

i, j Ji jsi · s j , with si = (cos ϕi, sin ϕi )] using soft-
spin bifurcation dynamics via the Aharonov-Hopf bifurcation
[15]. This principle of operation has led to an exciting new
paradigm known as “gain-based computing.” The concept
behind gain-based computing is that computational problems
can be encoded in the gain and loss rates of driven-dissipative
systems, which are then driven through a symmetry-breaking
transition (bifurcation), selecting a mode that minimizes
losses. Such soft-spin models exploit enhanced dimension-
ality, marked by small energy barriers during amplitude
bifurcation, but also complicate the energy landscape with
numerous local minima. In parallel to these methods, quantum
annealing is another approach to minimize the hard-spin Ising
Hamiltonian. Despite numerous studies contrasting classical
and quantum methods, the limitations of currently available
hardware and the limitations of simulating quantum systems
classically have led to contrasting conclusions as to whether a
quantum advantage can potentially be realized using quantum
annealing [16–22] and, in particular, how quantum annealers
such as D-Wave perform in comparison with CIMs [23]. In the
latter, the connectivity of the coupling matrix was assumed
to be a key factor in performance differences between these
machines [23].

An all-optical scalable ONN was recently proposed for
cyclic graphs; SLMs are used to discretize the optical field,
where each pixel defines a different pulse amplitude [24].
A SLM with Mx×My pixels is set up with a transmission
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function J̃k which multiplies the Fourier transform of the
amplitudes at each round trip. The SLM couples the fields
with coupling matrix Ji j ≡ J̃ j−i+1, which corresponds to a
circulant graph. An alternative setup allows for any gen-
eral coupling matrix. However, there is an N = Mx limit to
the number of pulses. Circulant graphs such as Möbius lad-
ders therefore lend themselves well to optical solvers, where
N = Mx×My ∼ 106 spins can be defined.

The couplings are often geometrical in polariton conden-
sates, photon condensates, and laser cavities (e.g., the sign
and amplitude of the coupling strength depend on the dis-
tance between condensates and outflow wave number [25]).
The condensates arranged in a circle interact with the nearest
neighbors, but the interactions beyond this decay exponen-
tially. Previously, various ways of establishing long-range
interactions in polariton-based XY-Ising machines were dis-
cussed. An easier way to achieve the couplings between
remote sites is to use digital micromirror devices (DMDs) to
direct the light across the ring. DMDs were shown to perform
complex (amplitude and phase) modulation. By splitting the
complex field into real and imaginary parts and using the
time modulation scheme of the DMD, a complex signal can
be synthesized [26]. Reflecting the entire ring of condensates
on itself with a radial displacement implements a 3-regular
cyclic graph. Cyclic graphs are known to be computationally
intractable for classical computers for sampling probability
distributions of quantum walks [27].

Using ONNs for optimization has shown promise, yet
key questions remain: What are suitable benchmarks for
optical machines? How does one guide annealing to aid op-
timization? What are the ONN energy landscape dynamics
during annealing to ensure the optimal state is achieved,
and what are the distinguishing features between quantum
and classical annealing? Answers often rely on the coupling
matrix J. An instructive problem encoded in J should be
technologically feasible, have controllable couplings, possess
nontrivial structures resistant to simple local perturbations,
and be mathematically tractable. Moreover, it is better to have
deterministic rather than random couplings to avoid issues of
statistical convergence [28].

Here, we analyze and contrast gain-based computing for
soft-spin Ising models (SSIMs) with quantum annealing for
circulant coupling matrices, which allow complete control of
frustration, energy gaps, and the structure of critical points.
Furthermore, the potential to realize SSIMs in future optical
systems [24] makes them more suitable for consideration
compared with previously reported benchmarks [29–31]. A
highlighted challenge for SSIM annealing lies in the opposing
relationship between local and global minima when mapping
the Ising Hamiltonian to the energy of the soft-spin system
[28]. Notably, we demonstrate that quantum annealing within
the whole Hilbert space of the hard-spin system navigates this
challenge. Additionally, we suggest that “manifold reduction,”
aligning amplitudes to the mean, is needed to augment the
likelihood of a SSIM finding the global minima.

ONNs based on laser operation leverage quantum-inspired
principles such as coherence, interference, and parallelism.
They are dissipative systems that tend to minimize losses
on their route to coherence. The losses can be written as an
“energy” (“cost”) function to be minimized. For instance, in

the classical limit, a CIM’s energy landscape to be minimized
is

E = C

4

N∑
i=1

(
p(t ) − x2

i

)2 − 1

2

N∑
i, j=1

Ji jxix j, (1)

where xi are quadratures of the optical parametric oscillators,
p(t ) describes the effective laser pumping power (injection
minus linear losses), and C corresponds to the strength of
saturable nonlinearity. As p(t ) grows from large negative to
large positive p(t ) = p∞ values, E anneals from the dominant
convex first term on the right-hand side of Eq. (1) that is
minimized at xi = 0 for all i to the minimum of the sec-
ond term, which is the scaled target Ising Hamiltonian with
xi = ±√

p∞. The temporal change in p(t ) therefore is the
annealing parameter combined with gradient descent as

ẋi = −∂E

∂xi
= C

[
p(t )xi − x3

i

] +
N∑

i=1

Ji jx j . (2)

The operation of CIMs therefore relies on the gradient descent
of an annealed energy landscape. All ONN soft-spin opti-
mizers exploit this central principle, while the details of the
nonlinearity or the gradient dynamics can vary from platform
to platform [15]. In particular, CIM dynamics is an example
of the Hopfield-Tank (HT) network ẋi = p(t )xi + ∑N

i=1 Ji jx j ,
which is also used for Ising Hamiltonian minimization
[32,33]. Another approach uses second-order resonance to
project the XY dynamics onto the Ising dynamics [34]. In the
next section, we describe the principles of gain-based comput-
ing and contrast it with simulated and quantum annealing.

II. PRINCIPLES OF OPERATION OF GAIN-BASED
COMPUTING, QUANTUM ANNEALING,

AND SIMULATED ANNEALING

Gain-based computing is a computational paradigm in
which problems are encoded in the gain and loss rates of
driven-dissipative systems, as illustrated in Fig. 1(a). These
systems undergo a symmetry-breaking transition when var-
ious physical modes are excited from the vacuum state. As
these modes grow, the loss function evolves until a coherent
state that minimizes losses emerges. The mode that achieves
the minimum of the loss function is amplified, as shown in
Fig. 1(a). Gain-based computing leverages soft-spin models,
which provide enhanced dimensionality and small energy
barriers during amplitude bifurcation. Although these mod-
els create a complex energy landscape with numerous local
minima, making optimization challenging, they are also rich
in potential solutions.

Simulated annealing (SA), on the other hand, is a classical
optimization technique [see Fig. 1(b)]. SA probabilistically
explores the solution space by simulating the cooling of a
material to reach a state of minimum energy. It uses thermal
fluctuations to escape local minima, as the system trajectory
shown in blue indicates, with the probability of accepting
worse solutions decreasing over time. This simulates a cool-
ing process that gradually refines the search for the global
minimum. Implemented on classical computing systems using
stochastic algorithms, SA explores the energy landscape by
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FIG. 1. Schematics of the operation of (a) gain-based computing, (b) simulated annealing, and (c) quantum annealing.

thermal fluctuations, with a gradual reduction in temperature
controlling the balance between exploration and exploitation.
The performance of simulated annealing is influenced by the
cooling schedule, which determines how the temperature is
reduced over time, as well as the specific parameters of the
algorithm.

In contrast, quantum annealing (QA) is a quantum com-
putation method used to find the ground state of a system’s
energy [see Fig. 1(c)]. QA operates by evolving the system
from an initial Hamiltonian, which is usually simple and con-
vex, to the target Hamiltonian that encodes the optimization
problem. This evolution relies on the principles of quantum
mechanics, specifically quantum tunneling, to explore the
energy landscape. Quantum annealing utilizes quantum fluc-
tuations to escape local minima and tunnel through energy
barriers, potentially leading to faster convergence to the global
minimum. This approach can be advantageous in navigating
complex landscapes with high barriers between local minima.
In Fig. 1(c), the varying energy landscape is shown as the
annealing from the initial convex Hamiltonian to the target
Hamiltonian takes place in time. The system starts at the
ground state of the initial Hamiltonian and remains in the
ground state if annealing is sufficiently slow. The blue line
shows the state of the system at each moment.

III. MÖBIUS LADDER GRAPHS

Cyclic graphs with N nodes are characterized by the circu-
lant coupling matrix J ∈ RN×N , constructed through cyclical
permutations of an N vector. These graphs inherently have
vertex permutation symmetry, signifying boundary periodic-
ity and uniform neighborhoods. The structure of a circulant
matrix is contained in any row, and its eigenvalues and eigen-
vectors can be analytically derived using the N roots of unity
of a polynomial, where the row components of the matrix
act as coefficients: λn = ∑N

j=1 J1, j cos[ 2πn
N ( j − 1)] [35–37].

We consider the minimization of the Ising Hamiltonian on
a particular form of cyclic graph: Möbius ladder graphs
with tunable hardness. They have even N such that the ith
vertex has two edges connecting it to vertices i ± 1 with
antiferromagnetic coupling with strength Ji,i±1 = −1 (circle
couplings) and an additional antiferromagnetic coupling with
vertex i + N/2 with strength Ji,i+N/2 = −J for J > 0 (cross-
circle couplings). We denote by S0 the state in which the spins
alternate along the ring so that sisi±1 = −1 for all i [Fig. 2(a)]
and by S1 the state in which the spins alternate everywhere ex-
cept at two positions on opposite sides of the ring: sisi+1 = −1
for all i �= i0 and si0 si0+1 = si0+N/2si0−1+N/2 = 1 [Fig. 2(b)].
When N/2 is odd, S0 is always the ground state with energy
HI(J ) = −(J + 2)N/2. When N/2 is even, the S0 configura-

tion has energy H (0)
I (J ) = (J − 2)N/2, and S1 has H (1)

I (J ) =
4 − (J + 2)N/2. Therefore, S0 (S1) is the global minimum
[while S1 (S0) is the excited state] if J < Jcrit ≡ 4/N (J >

Jcrit ). The eigenvalues of the coupling matrix J for the Möbius
ladder with J1, j ∈ {−1, 0,−J} are λn = −2 cos(2πn/N ) −

FIG. 2. (a)–(c) Schematic representation of the states realized by
the soft-spin models in Eq. (1) on Möbius ladder graphs with varying
cross-circle couplings (shown in red). (a), (b), and (c) depict states
that map onto S0 and S1 Ising states for N = 8 and the S1 state
for N = 12, respectively. (c) uses a different node arrangement that
illustrates the graph relationship with the topology of the Möbius
strip. The same colors are used to show equal intensities; the larger
sizes correspond to larger intensities. (d) Regions of different global
minima from Eq. (1), E1 in the blue region and E0 in the pink
region, in J-p space for N = 8 and C = 1. Two critical values of J
are shown as solid black lines. Between these lines, S0 is expected
as the hard-spin Ising model global minimizer. Thin lines show
the contours E1 = E0 for C = 1, 1.2, 1.5, 2, and 4 in that region.
(e) Success probability of reaching E0 (labeled as SP0) and E1 (la-
beled as SP1) states of the soft-spin energy in Eq. (1) from a point x
with randomly chosen components xi in [−1, 1] for different values
of p and J = 0.4, N = 8, and C = 1. For larger values of p, a third
state of higher energy appears with success probability SP2; when
projected on spins si = xi/|xi|, this state corresponds to S1. (f) The
height of the minimum energy barrier between E1 and E0 calculated
as the energy difference between E1 and the energy of the nearest
saddle point is shown as a black dashed line for J = 0.4 and C = 1.
The difference between E0 and E1 is shown in red.
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FIG. 3. Evolution of N = 8 soft spins for (a) J = 0.35 and
(b) J = 0.55 according to Eq. (2). In each case, the ground state
is recovered. The amplitudes connected by the frustrated edges are
lower than in the rest of the system and are shown in red. In all runs,
C = 1, p0 = J − 2, ε = 0.003, 	t = 0.1, and each xi(0) is chosen
randomly from a uniform distribution in the range [−0.001, 0.001].

J (−1)n. Equating the two largest eigenvalues 2 cos(2π/N ) +
J and 2 − J gives the value of J = Je = 1 − cos(2π/N ) at
which the leading eigenvectors change. When Je < J < Jcrit ,
the eigenvalues for S0 are less than those for S1, despite S0 be-
ing the lower-energy state (see Appendix A for the derivation
of the spectra). This is in contrast to computationally simple
problem instances, in which the ground state minimizer is
located at the hypercube corner of the projected eigenvector
corresponding to the largest eigenvalue [38].

IV. SOFT-SPIN ISING MODEL

The SSIM in Eq. (1) has real amplitudes xi. As the laser
pumping p(t ) increases from negative values, the minimizers
x∗ of Eq. (1) and minima of E change. We associate Ising
spins with xi via si = xi/|xi|. We expect that the soft-spin
energy state E0 that corresponds to the hard-spin Ising state S0

and is depicted in Fig. 2(a) is symmetric in amplitudes as all
spins experience the same frustration of the cross-circle cou-
pling, so all amplitudes have the same modulus |xi| = X. From
Eq. (2), X satisfies X = √

p(t ) + (2 − J )/C, with the cor-
responding soft-spin energy E0 = (J − 2)N (2 − J + 2C p)/4.

This state can be realized from a vacuum state when p(t )
exceeds (J − 2)/C. The soft-spin energy state E1 correspond-
ing to S1, when two side edges are frustrated, is asymmetric
in amplitudes. This asymmetry is shown schematically in
Figs. 2(b) and 2(c), in agreement with the dynamical simula-
tions presented in Fig. 3. This occurs because the lower energy
is achieved if the amplitudes connected by the frustrated edges
|xi| = XL are lower than in the rest of the system. For N = 8
in Fig. 2(b), there are two types of amplitudes: four nodes
with ±|XL| and four with amplitudes |xi| = XB, where XB =
(1 − J − C p)XL + CX 3

L , as obtained from the steady states of
Eq. (2) governing the dynamics of XL, while the steady state
on the evolution of XL gives (p + 1 + J )XB + XL = X 3

B . By
solving the polynomial equation for XL, we can compute E1

across any p, J, N , and C. This allows us to discern regions in
this parameter space where the global minimum aligns with
either E0 or E1 and to confirm whether these states corre-
spond to the hard-spin Ising Hamiltonian’s global minimum.
Figure 2(d) depicts distinct regions in the J-p parameter space.
Within the Je < J < Jcrit interval S0 emerges as the hard-spin

Ising model’s lowest-energy state. For the soft-spin model,
however, only the region shown in pink corresponds to this
state (E0). Figure 2(d) shows that for values Je < J < Jcrit ,
as laser power p rises, the E0 state becomes the energy min-
imum for the soft-spin model, aligning with the hard-spin
Ising Hamiltonian’s S0. However, the success probability of
converging to the true ground state does not increase beyond
0.2, as shown in Fig. 2(e). This is a consequence of increas-
ing amplitudes that cause the increased height of the energy
barriers that prevent the system from transitioning to state S0

[see Fig. 2(f)]. Figure 4 depicts the basins of attraction for
various p and fixed Je < J < Jcrit. The basins of attraction are
defined as the sets of points randomly distributed on [−1, 1]
from which gradient descent leads to different minima. At the
threshold of large negative p, the basin of attraction of E1,
which is the ground state of E as given by Eq. (1), dominates.
As p increases, the basin of attraction of the excited state E0

increases, while at small positive values of p, E0 becomes the
ground state. With a further increase of p, other states with
even higher energy appear.

The space structure of soft-spin models can be further
understood by considering the critical points of their energy
landscape for different annealing parameter values [39]. We
can determine the critical (minima and saddle) points by
setting ∂E/∂xi = 0 for all i = 1, . . . , N and classify them
using the Hessian matrix. The number of critical points grows
exponentially fast with p, but not in terms of energy and the
distance from the state xi = 0 ∀ i, as Fig. 5 illustrates.

The S1 state is always farther away from the origin than
other critical points (S0 and saddle points). At the same time,
the transition between minima E0 and E1 is possible only
through a saddle point whose energy relative to E1 and E0

defines the height of the energy barriers [see Fig. 2(f)].

V. MANIFOLD REDUCTION

The aforementioned considerations suggest that amplitude
heterogeneities have a severely detrimental effect on the op-
timization process in some regions of parameter space as
they allow the soft-spin energy landscape to find and follow
its ground state, which is quite different from the ground
state of the hard-spin Ising Hamiltonian. This problem was
recognized before [40,41], but in the context of the final
state, so various feedback schemes were suggested to bring all
amplitudes to the same value, say, ±1, at the end of the sim-
ulations. This can be achieved, for instance, by changing the
laser intensity individually for each spin as ṗi(t ) = ε(1 − x2

i ),
where ε is a small constant parameter. However, as our results
on the simple circulant graphs illustrate, this feedback does
not change the most essential part of the dynamics during the
pitchfork bifurcation from the vacuum state. Moreover, this
feedback becomes important only for amplitudes sufficiently
close to ±1 when the barriers between states are already too
high.

Instead, we suggest introducing feedback restricting the
soft-spin energy landscape to keep the amplitudes close to the
average value. This restriction can be achieved by modifying
the signal intensities, bringing them towards the average mass
per particle defined by the square radius of the quadrature
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FIG. 4. Basins of attraction of the soft-spin energy in Eq. (1) as defined in the text. We take N = 8, J = 0.4,C = 1, various laser powers p,
and 20 000 randomly distributed xi in [−1, 1] to show which minimum is reached via gradient descent using Newton’s method. To characterize
points, the average magnetization m = ∑

i xi/N (vertical axis) and the correlations along the circle between xi, defined as Xcorr = ∑
i(xi −

m)(xi+1 − m)/
∑

i(xi − m)2 (horizontal axis), are used. For small p, the basin of attraction is dominated by the S1 state as any initial state
descends to E1. As p grows, the ratio of the volume of the basins of attraction of the S1 state to the volume of the basins of attraction of S0

approaches 4. At the critical value of p ≈ −0.08715, both S1 and S0 states have the same energy, and after that the S0 state becomes the ground
state: This is indicated by the switch between ground (blue) and excited (red) states.

R(x) ≡ ∑
i=1 x2

i /N as

xi → (1 − δ)xi + δRxi/|xi|. (3)

If δ = 0, then no adjustment is made. If δ = 1, then all ampli-
tudes are set to the same (average) value. For 0 < δ < 1, 1/δ

determines the proportion of the effective space for the re-
stricted evolution.

Figure 6 shows the probability of finding the ground state
of the Ising Hamiltonian using the HT networks: Eq. (2) (de-
noted CIM-I), Eq. (2) with individual pumping adjustments
p → pi according to ṗi = ε(1 − x2

i ) (CIM-II), and Eq. (2)
with manifold reduction by Eq. (3) (CIM-III). For CIM-I
and CIM-III, we set p(t ) = (1 − p0) tanh(ε t ) + p0. CIM-III
shows a significant improvement in finding the ground state
compared with other models. Thus, in soft-spin models, the
imperative to constrain the manifold implies that dimensional
annealing should be tailored according to the energy land-
scape’s characteristics. Quantum annealing, on the other hand,
harnesses dimensional annealing within an extended Hilbert
space. By utilizing only linear dynamics at the expense of
operating within this higher-dimensional phase space, it can
effectively navigate energy barriers. Next, we study the quan-
tum evolution on the Ising energy landscape of circulant
coupling matrices in order to contrast its performance with
soft-spin nonlinear models.

VI. QUANTUM ANNEALING

We consider the transverse field Ising model given by

Ĥ = −1

2

N,N∑
i, j=1
i �= j

Ji j Ŝ
z
i Ŝz

j −
N∑

i=1

hiŜ
z
i − γ (t )

N∑
i=1

Ŝx
i ,

Ŝα
i = 1 ⊗ 1 ⊗ · · ·1 ⊗ Ŝα ⊗1 ⊗ · · · ⊗ 1 ⊗ 1︸ ︷︷ ︸

i−1 terms

, α = x, y, z ,

(4)

where Ŝα are the spin-1/2 Pauli matrices, 1 is the 2×2 identity
matrix, and ⊗ denotes a tensor product. The first term, Ĥ0, cor-
responds to the operator representation of the classical Ising
Hamiltonian HI. The second term is a symmetry-breaking
longitudinal magnetic field; the third term is a transverse field
that gives rise to the quantum Ising model. We will take the
annealing term to have the form γ (t ) = B/

√
t + t0 for some

constant B [42] and set t0 = 0.5. Our quantum system is made
up of N spin-1/2 subsystems, each having a basis |↓〉, |↑〉. A
general state |〉 of the N-spin system can then be written as

|〉 =
∑

ξ

Cξ |ξ 〉,
∑

ξ

|Cξ |2 = 1, (5)
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FIG. 5. Critical points of the CIM energy (1) for N = 8,C = 1,
and different values of laser power p. Minima are shown in green;
saddles with one, two, three, and four or more unstable directions
are shown as red, light blue, dark blue, and black points, respec-
tively. The S0 state is farthest from the origin, which becomes
the global minimum for p > pc = −0.0872. The minima for p =
2 are S0, S1, (−,−, +, −, +, −, −,+), (+,−, −, +, +, −, +, −),
and (+, −,−, +, +, −, −, +) in increasing energy.

FIG. 6. Ground state probability for HT, CIM-I, CIM-II, CIM-
III, and quantum annealing (QA) for the Möbius ladder graph with
N = 8. For CIM-III, for each value of J , the optimum value of 0 <

δ < 1 is chosen based on a set of preliminary runs in which δ is
varied. Two thousand runs are used to calculate the probability of
finding the ground state PGS for each value of J . For QA, B = 5, and
	t = 0.1. The inset shows the same plots but for N = 100.

FIG. 7. Time evolution of the ground state probability of a
target Hamiltonian with J = 0 and B = 5 for quantum annealing
(QA), single-spin simulated annealing (SA), and classical annealing
(CA) and the corresponding probabilities expected for adiabatic (ad)
SA and ad QA. (a) and (b) correspond to simulation without the
symmetry-breaking term which corresponds to a doubly degenerate
ground state. Each plot corresponds to the projection of the probabil-
ity density onto each one of the ground states. (c) and (d) correspond
to a simulation with a symmetry-breaking term added which lifts the
degeneracy and leads to a unique ground state.

where the Cξ ’s are complex numbers and the basis element

|ξ 〉 ≡ |ξ1 · · · ξN 〉 = |ξN 〉 ⊗ · · · ⊗ |ξ1〉, ξk = {|↓〉, |↑〉} ,

(6)

for k = 1, . . . , N . We begin with an initial state, which is the
ground state of the transverse field Hamiltonian. The initial
state at time ti can then be expressed as

|(ti)〉 = |ψ→〉 ⊗ · · · ⊗ |ψ→〉 , (7)

where for each subsystem |ψ→〉 = (|↑〉 + |↓〉)/
√

2. The wave
function is then evolved according to the time-dependent
Schrödinger equation (see Appendix B for details) [43]. As
t → ∞, γ (t ) → 0, and the contribution of the last term de-
cays to bring about the target Hamiltonian. Provided γ (t )
is varied adiabatically, the state evolves while remaining in
the true ground state of the system and settles into the target
Hamiltonian’s desired ground state at sufficiently long times.

To determine the probability of finding the ground state, we
compute the projection of |(t )〉 onto the ground state |φGS〉 of
the classical Hamiltonian, Ĥ0, given by PGS = |〈φGS |(t )〉|2. In
Fig. 7, we present numerical simulations of the time evolution
of the success probability for finding the ground state of an
N = 8 spin system with J = 0 and B = 5. For comparison,
we also include the results for simulated annealing [44] and
classical annealing by evolving a master equation [42] (see
Appendix D for details). In the former, we allow transition
probabilities for only single-spin flips, whereas in the lat-
ter, we allow for all spin flips to reveal the importance of
spin correlations on the success probability of finding the
ground states. Such collective transitions can be important
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when topological constraints associated with particular spin
configurations can render certain single-spin transitions inef-
fective at escaping local energy minima.

For J < Jcrit , the S0 ground state has a twofold degeneracy.
Therefore, in the absence of a symmetry-breaking term, we
can expect that the probability of finding one of the ground
states is PGS = 1/2. Figures 7(a) and 7(b) present simulations
for the case where no symmetry-breaking term is included
so that the system contains two degenerate energy minima.
Time evolution of the probabilities for finding the system
in one of the two degenerate ground states shows an equal
probability for the system to be found in either one of these
states. Moreover, the results are relatively similar regardless
of which numerical method is considered. Therefore, quan-
tum annealing, simulated annealing, and classical annealing
show similar performances in tracking the ground states, as
indicated by the curves representing the adiabatic evolution of
the system.

In Figs. 7(c) and 7(d), we present simulations for the case
where a symmetry-breaking term is included. To introduce
the symmetry-breaking term, we use 0.05|ξ 〉S0 + 0.05|ξ 〉S1 ,
where |ξ 〉S0 and |ξ 〉S1 correspond to the S0 and S1 states, re-
spectively. In contrast to the previous case, the behavior of the
different models is now markedly different. In particular, we
observe that both quantum annealing and classical annealing
correctly evolve with the true ground state, as indicated by
the curves corresponding to the adiabatic evolution. Moreover,
due to the symmetry breaking, there is one unique ground
state that the two methods can follow. In contrast, simulated
annealing is not always successful at tracking the true ground
state even for the case where J = 0. We found a success
probability of only 67%, whereas the remaining probability
is associated with the system converging to what is now a
metastable state. These results demonstrate the importance of
the symmetry-breaking terms and how they affect the time
evolution of the ground state probabilities.

In Figs. 8(a) and 8(b), we present results with and with-
out symmetry-breaking terms for the case with J = 0.35 and
B = 5, which corresponds to a hard region of the parameter
space for the soft-spin models. As can be seen, now the
success probability for simulated annealing degrades even in
the absence of symmetry-breaking terms. In contrast, clas-
sical annealing and quantum annealing continue to perform
well. Although the convergence of simulated annealing can be
enhanced for slower annealing rates, in general, the success
probabilities are lower than the other algorithms we have
investigated over a range of annealing schedules (see also
Ref. [42]).

To compare the quantum annealing and semiclassical
soft-spin simulations, we computed the single-spin reduced
density matrix ρ̂1,i from the pure state |(t )〉. In general, the
single-spin density matrix will correspond to entangled states.
This is illustrated by recovering the Bloch vector from ρ̂1,i(t )
(see Appendix C for details). In the inset of Fig. 8(a), we
show the evolution of the Bloch vector with time evaluated
for one of the spins (other spins show similar behavior) for
a simulation with J = 0.35 and B = 5 in the absence of a
symmetry-breaking term. We see that the spin is initially
aligned along the equator (consistent with the form of |→〉)
but shrinks towards the origin as the state evolves. The depar-

FIG. 8. Evolution of N = 8 spins, with J = 0.35, B = 5, and
	t = 0.1. (a) Ground state probability of the target Hamiltonian for
quantum annealing (QA), single-spin simulated annealing (SA), and
classical annealing (CA) and corresponding probabilities expected
for adiabatic (ad) SA and ad QA. Insets show the Bloch vector
for a single spin and the magnitude of Bloch vector |u|. (b) The
same results as (a), but with symmetry-breaking terms added to the
Hamiltonian and the Bloch sphere showing typical trajectories of
two neighboring spins. (c) Evolution of the probability amplitude of
the |↑〉 state in the quantum annealing simulation with J = 0.35 and
(d) J = 0.6. The amplitudes in red correspond to the frustrated spins
as in Figs. 2(b) and 3(b).

ture of the Bloch vector from the surface of the Bloch sphere
is indicative of quantum entanglement, while its dynamics
towards the origin signals a spin state that is maximally en-
tangled with the rest of the system. A definite state emerges
only upon measurement, which then subsequently collapses
the corresponding wave function to one specific configuration.

These results demonstrate the striking differences between
the states of a fully quantum mechanical description and the
semiclassical description considered earlier. To facilitate com-
parison with the deterministic semiclassical simulations, we
remove the ground state degeneracy in our quantum annealing
simulations by introducing the symmetry-breaking term Ĥ1

in Eq. (4). We set hi to correspond to 0.05|ξ 〉S0 + 0.05|ξ 〉S1 .
This enforces the evolution towards a specific ground state,
as can be seen by contrasting the success probability for the
ground states presented in Figs. 8(a) and 8(b). The resulting
Bloch vector is shown in the inset of Fig. 8(b) and now indi-
cates evolution that ends at the surface of the Bloch sphere,
reaching either the |↑〉 or |↓〉 state, which represents a final
state that is not in quantum superposition. Since the Bloch
vector does not remain on the surface of the Bloch sphere
during the evolution, it clearly demonstrates that although
individual spins converge towards a noncorrelated value, their
evolution bears the imprint of interspin correlations. Unlike
the semiclassical models, our quantum annealing algorithm
consistently identifies the correct ground state for a wide range
of parameters in the interval Je < J < Jcrit (see Fig. 6) and
demonstrates that correlations play a key role in facilitating
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FIG. 9. Time evolution of the probability amplitude of the |↑〉
state (left panels) and the magnitude of Bloch vectors (right panels)
in the quantum annealing computation with J = 0.35 and B = 5. The
dashed lines correspond to spins that at the end of the annealing align
along the |↓〉 state, whereas solid lines correspond to spins that align
with the |↑〉 state. The red and blue lines correspond to the color of
the spins shown in Figs. 2(b) and 3(b).

the system to converge to the true ground state. However, its
performance appears to degrade near Jcrit . In contrast, the CIM
gain-based algorithm is less sensitive near Jcrit and indicates
an advantage of gain-based computing on such a Möbius lad-
der graph. The corresponding time-dependent probability of
finding each spin i in the |↑〉 state is presented in Fig. 8(c) for
J = 0.35 [and for J = 0.6 in Fig. 8(d)]. As can be seen from
the initial evolution of the single-spin probability amplitude,
we strongly perturb the system towards state S1 through the
form of the symmetry-breaking terms used. Despite this, the
results emphasize the quantum annealing algorithm’s capacity
to find the correct ground state during gradual γ (t ) quenches,
leveraging the quantum system’s expanded phase space.

In order to perform a more systematic study of the impact
of including the symmetry-breaking terms on the results pre-
sented, in Fig. 9 we present results for simulations performed
using a symmetry-breaking term of the form 0.05|ξ 〉S0 +

h1|ξ 〉S1 , where h1 is varied from 0.005 to 0.1. For each value of
h1, we evaluated the time evolution of the probability ampli-
tudes 〈↑|ρ̂1,k|↑〉 for each spin k, as well as the time evolution
of the magnitude of the corresponding Bloch vectors |uk|. The
results demonstrate that as h1 is increased, the initial evolution
of the probability amplitudes is to align the spins towards the
S1 state, which is caused by the increasing contribution of the
symmetry-breaking term. However, as the system navigates
the energy landscape, quantum correlations develop, as indi-
cated by the decreasing amplitude of the Bloch vectors of the
individual spins. This emerging quantum entanglement of the
spins prevents the system from becoming stuck in local en-
ergy minima and subsequently allows the spins to readjust in
order to track the true ground state. Subsequently, the system
converges to the true ground state that is well described by a
product state as the magnitude of the Bloch vectors converge
to unity. We note that during the evolution, the maximal entan-
glement occurs at the time when the projection of some of the
spins flips to the opposite direction. This time also coincides
with the time when simulated annealing fails to track the
correct ground state in comparison to quantum annealing, as
reflected in the results in Figs. 7 and 8. We therefore conclude
that quantum correlations play a key role in allowing quantum
annealing to outperform other methods in this region of the
parameter space of the Möbius circulant graph.

VII. CONCLUSIONS

In summary, we analyzed the optimization of Ising Hamil-
tonians, contrasting the classical dynamics of semiclassical
soft-spin models with quantum annealing. We discussed the
challenges that arise with using semiclassical models, which
are due to a broadening dimensionality landscape, especially
when the models’ global minima map to the Ising Hamilto-
nian’s excited state. A solution termed “manifold reduction”
was presented, constraining the soft-spin amplitudes and re-
stricting the dimensionality landscape. On the other hand,
we showed that quantum annealing can inherently traverse
the Ising Hamiltonian’s energy terrain, operating within an
extensive Hilbert space. The findings highlight the impor-
tance of understanding the influence of dimensionality and the
energy landscape overall on optimizing physical systems. Fur-
thermore, they demonstrate how extensions of semiclassical
models to include quantum effects has the potential to assist
the annealing in navigating the system towards the true ground
state.
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APPENDIX A: EIGENVECTORS AND EIGENVALUES
OF THE MÖBIUS LADDER COUPLING MATRIX

To find the eigenvalues and eigenvectors of the N×N
matrix J for even N , we use the roots of unity, so the solutions

013150-8



ISING HAMILTONIAN MINIMIZATION: GAIN-BASED … PHYSICAL REVIEW RESEARCH 7, 013150 (2025)

of ωN = 1 are ωk = exp(i2πk/N ) for k = 0, . . . , N − 1.
The corresponding eigenvectors are (1, ωk, ω

2
k , . . . , ω

N−1
k ),

which can be verified by direct computation. Then,
from the first row of J, we form the polynomial
f (ω) = −ω − JωN/2 − ωN−1 and evaluate it at the unit
roots ωk = exp[i2πk/N] to obtain the eigenvalues λk =
f (ωk ) = −2 cos(2πk/N ) − J (−1)k with the corresponding
eigenvectors vk = (1, ωk, ω

2
k , . . . , ω

N−1
k ). The largest f (ωk ) is

either λN/2 = 2 − J or λN/2±1 = J + 2 cos(2π/N ), depending
on whether J < Je or J > Je, with Je ≡ 1 − cos(2π/N ) being
the value where these two eigenvalues cross. The correspond-
ing real-valued and mutually orthogonal eigenvectors μk

can be formed from v(ωk ) as μk = Re[v(ωk )] + Im[v(ωk )]
[36]. For the two largest eigenvalues, the eigenvectors
are μN/2 = (1,−1, 1,−1, . . . ,−1) and μN/2±1 = (1,±
cos(2π/N ) ± sin(2π/N ), . . . ,± cos(2πk/N ) ± sin(2πk/N ),
. . . ,± cos[2π (N − 1)/N] ± sin[2π (N − 1)/N]). If N/2
is even, then μN/2±1 have the components with two zero
values at the positions separated by N/2 − 1 sign-alternating
components. We illustrate this construction for the Möbius
ladder coupling matrix J with N = 8 considered in the main
text:

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0 0 −J 0 0 −1
−1 0 −1 0 0 −J 0 0

0 −1 0 −1 0 0 −J 0
0 0 −1 0 −1 0 0 −J

−J 0 0 −1 0 −1 0 0
0 −J 0 0 −1 0 −1 0
0 0 −J 0 0 −1 0 −1

−1 0 0 −J 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A1)
The eigenvalues are λ0 = f (ω0) = f (1) = −2 − J ,
λ1 = f (ω1) = −√

2 + J, λ2 = f (ω2) = −J , λ3 = f (ω3) =√
2 + J , λ4 = f (ω4) = 2 − J , λ5 = f (ω5) = √

2 + J, λ6 =
f (ω6) = −J, and λ7 = f (ω7) = −√

2 + J . The eigenvector
that corresponds to λ3 is μ3 = (1,−1, 1,−1, 1,−1, 1,−1),
and the eigenvector that corresponds to, say, λ4 is
μ4 = (1,−√

2, 1, 0,−1,
√

2,−1, 0). The soft-spin
system therefore follows the (+,−,+,+,−,+,−,−)
or (+,−,+,−,−,+,−,+) direction at the onset of the
pitchfork bifurcation when J > Je, while λ4 becomes the
dominant eigenvalue of matrix J. Figure 10 illustrates how
these eigenvalues vary as a function of J .

APPENDIX B: SOLUTION OF THE TIME-DEPENDENT
SCHRöDINGER EQUATION

The wave function is evolved according to the time-
dependent Schrödinger equation (with h̄ = 1) given by

i
d

dt
|(t )〉 = Ĥ (t ) |(t )〉 , (B1)

Ĥ (ti ) |(ti )〉 = εgs |(ti )〉 , (B2)

where εgs denotes the ground state energy of the system at
the initial time. To evolve the time-dependent Hamiltonian
given by Eq. (B1), we use a second-order accurate Strang
time-splitting method where Ĥ0 is evolved for half a time step
	t , followed by Ĥ1 for a full time step and then Ĥ0 for another
half a time step. The resulting time-integration scheme can

FIG. 10. Eigenvalues of an N = 8 Möbius ladder graph as a
function of J . Je is the value of J where the red dashed line shows the
two largest eigenvalues crossing. Jcrit shows where their energies are
equal, E1 = E0. The ground state corresponds to S0 for J < Jcrit and
S1 for J > Jcrit .

then be written as

|(tn+1)〉 = exp

(
−i

	t

2
ĤD

)(
− i

2

∫ tn+1

tn

Ĥ2(t̃ )dt̃

)

× exp

(
−i

	t

2
ĤD

)
|(tn)〉 , (B3)

where ĤD = Ĥ0 + Ĥ1. By placing the Hamiltonian operator
Ĥ2(t ) containing the time-dependent term in the middle of
the split-step algorithm, we ensure that we have a symmetric
time-splitting method. The time integral appearing in Eq. (B3)
was evaluated analytically. In our simulations, we set 	t ≡
tn+1 − tn = 0.1. The simulations were performed in MATLAB.
The exponentials of the diagonal and nondiagonal Hamilto-
nian can then be readily evaluated using the expm function
[43].

APPENDIX C: COMPUTATION OF BLOCH VECTORS
IN QUANTUM ANNEALING SIMULATIONS

The single-spin reduced density matrix ρ̂1,k is obtained by
taking the partial trace of the 2N × 2N density matrix ρ̂ over
the Hilbert space of the other N − 1 spins. For the kth spin,
this is defined as

ρ̂1,k (t ) = Tr{N\k}ρ̂ , (C1)

where {N\k} denotes the N spin Hilbert space excluding the
kth spin. The single-spin density matrix can then be parame-
terized as

ρ̂1,k = 1

2
(1 + uk · Ŝ) = 1

2

(
1 + wk uk − ivk

uk + ivk 1 − wk

)
, (C2)

where uk = (uk, vk,wk ) defines the corresponding Bloch vec-
tor and Ŝ = (Ŝx, Ŝy, Ŝz ) corresponds to the vector of spin-1/2
Pauli matrices. For pure states the single-spin reduced density
matrix has rank 1, with a magnitude of the Bloch vector
|uk| = 1. The surface of the Bloch sphere therefore represents
all the possible pure states, whereas the interior of the sphere
corresponds to mixed states. The collapse of the Bloch vector
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towards the origin implies that the state represents a maxi-
mally entangled Bell-like state.

APPENDIX D: MASTER EQUATION FOR CLASSICAL
AND SIMULATED ANNEALING

To model simulated annealing, we follow the method de-
scribed in Ref. [42] and introduce the master equation for the
transition probability Pi(t ) for each spin configuration as

dPi(t )

dt
=

2N∑
j=1

Ai j (t )Pj (t ). (D1)

The 2N×2N matrix Ai j (t ) describes the transition rates. The
master equation can be written in the form

dPi(t )

dt
=

∑
i �= j

Ai j (t )Pj (t ) + Aii(t )Pi(t ) (D2)

=
∑
i �= j

[Ai j (t )Pj (t ) − Aji(t )Pi(t )], (D3)

where we have made use of the conservation of probability
given by

d

dt

∑
j

Pj (t ) =
∑
i, j

(AjiPi ) = 0 (D4)

to arrive at the final equality. Since the normalization condi-
tion must hold for any probabilities Pj , it follows that∑

j

A ji = 0 or Aii = −
∑
i �= j

A ji . (D5)

Using Eq. (D5) to represent the diagonal terms of the mas-
ter equation ensures that a numerical integration of this
equation continues to conserve the normalization of the prob-
abilities. The precise form of the transition probabilities is

problem specific, although it is common to use the Boltzmann
distribution. In our work, we follow Ref. [42] and use the
Bose-Einstein distribution such that

Ai j (t ) =

⎧⎪⎨
⎪⎩

{
1 + exp

[ (Ei−Ej )
T (t )

]}−1
, single-spin flip,

−∑
k �=i Aki, i = j,

0, otherwise.

The form given above that is used for our simulated an-
nealing simulations means that entries of Ai j are nonzero
only for transitions corresponding to single-spin flips. The
annealing is performed by varying the temperature T (t ) with
time. To maintain consistency with our quantum annealing
simulations, we varied the temperature according to T (t ) =
D/

√
t + t0, where t0 = 0.5 and D is a free parameter which

we set to D = 5.
For our classical annealing (CA) simulations, we do not

zero out any of the transition probabilities in order to infer
how collective transitions of spins at each time step, as op-
posed to only single-spin transitions, affect the performance
of classical algorithms. It is useful to make the observation
that quantum and classical annealing can be closely related
to one another if one formulates quantum annealing in imag-
inary time following a Wick rotation. It then follows that the
evolution of the N-spin wave function |(t )〉 is given by

d

dt
|(t )〉 = (μ(t ) − Ĥ (t ))|(t )〉. (D6)

Here, μ(t ) plays the role of a Lagrange multiplier which
ensures that the normalization of the wave function is con-
served, in analogy with the modification introduced above
to the diagonal term of the master equation. Therefore, by
comparing quantum annealing, simulated annealing, and clas-
sical annealing, we can distinguish between the effects of
retaining all-spin transitions from the difference of evolving
our equations in real and imaginary time.
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