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Abstract

Agricultural production is highly vulnerable to climate change. Warming global temperatures,
increased frequency of extreme weather events, such as flash flooding, and shifts in the ranges
of crop pathogens highlight current agroclimate challenges faced in the 21 century. In the mid-
1990s, the UK observed plateaus in yields of staple crops including wheat (Triticum aestivum L.),
and in recent years, strong yield impacts of high interannual weather variability have been
observed nationally. To meet the growing demand for food and increase domestic production,
there is an urgent need to increase the climate resilience of key cereal crops and the broader

agri-food sector.

This thesis explores how crop breeding and changes in weather and climate variables important
to agriculture, i.e. the agroclimate, have contributed to cereal yield variability in the UK. In the
first State of the UK Agroclimate, trends and variability in national yields and key agroclimate
metrics are quantified for 1981-2020 to allow growers and farmers to make climate-informed
decisions on crop and variety choices. Incorporating historical time-series records of these
agroclimate metrics into statistical models with variety trials data establishes their relative
importance in determining winter wheat yields and enables variety sensitivity to each metric to
be investigated. In doing so, methods of identifying climate-resilient crop varieties are presented.
The contribution of plant breeding to national cereal yields is quantified through the calculation
of genetic gain. Given the importance of this metric for the evaluation of success of plant breeding

programmes and for funding allocation, the sensitivity and robustness of this metric is explored.

Changes in the UK agroclimate provide both risks and opportunities for cereal growers. The
increase in solar radiation during grain fill observed in the South-East of the UK was shown to be
beneficial for winter wheat yields, whilst increasing interannual yield variability has contributed
to overall stagnation in yields in the last decade. Long-term warming trends have contributed to
cereal drilling dates getting earlier, extending the growing season. However, in years of high
autumn rainfall, delays in planting, a shortening of the growing season and lower yields were
observed. Comparing national and variety trial yield trends shows that crop breeding is
responsible for over 95% of yield increases over the last 30 years, however, to further optimise
yield increases there is a need to grow varieties that perform best based on local climatic
conditions. Use of case study datasets extracted from the variety trials data showed that genetic
gain is sensitive to a number of factors, including the choice and number of long-term “check”
varieties included in a variety trials programme. Recommendations are made on how best to

calculate the metric.
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CAlBNAT YEAIS. ettt ettt ettt ettt ettt ettt 168
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genetic gain and standard error are shown by the horizontal line in black, and grey, respectively.

Figure 5.4: Relative median yield difference (%) between fungicide treated and untreated trial
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Figure 5.5: Variety age against the treated-untreated variety trials yield difference for a. winter
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winter wheat, winter barley and spring barley. The effect of variety age on the yield difference,
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treated and untreated variety yields was modelled using equation [2.8] and restricted to
varieties aged up to 10 years. Variety age indicates the number of years since the variety

entered the trials system. The red line shows the linear relationship between the two variables.
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present in successive years is -0.1 t/ha, which gives an estimated year effect of -0.1 t/ha, as
opposed to an actual year effect of 0. Differences in variety performance are estimated by
calculating the differences between a variety and its predecessor(s) within years, +0.2 t/ha. This
results in variety effects biased upwards and year effects biased downwards. Figure taken from

MaACKAY BT AL (2011) ittt ae e 180
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1 The role of breeding and climate in UK cereal production, and

the need to combine the two in analysis

Challenges faced by agriculture in the 21% century are dominated by climate change and
increasingly extreme weather events (Parolini, 2022). This has contributed to changes in the
distributions of viable cropping areas and ranges of pests and diseases. Combined with an
increasing global population, the goal of eliminating world hunger seems more and more
unobtainable (FAO et al.,, 2021). As one of the main contributors to climate change, the
agricultural industry needs to decrease resource usage, greenhouse gas emissions and
biodiversity destruction whilst increasing productivity. Despite the continued contribution of
plant breeding to yield increases (Peltonen-Sainio, Jauhiainen and Laurila, 2009; Mackay et al.,
2011; Noleppa and Cartsburg, 2021), in recent decades agricultural productivity has been limited

by stagnating yields in vital crops.

Crop yield is intrinsically linked with climate variability (Ray et al., 2015), along with management
decisions and agronomic changes. Recent global events have demonstrated how vulnerable crop
production is to external shocks. The COVID pandemic disrupted vital supply chains, such as
through labour shortages (Hobbs, 2020), and the Russian invasion of Ukraine has highlighted the
risks associated with high dependency on one or two countries for specific foods, in this case
wheat (Triticum aestivum L.). There is a need to strengthen the resilience of domestic supply
chains and food production as well as diversify international food supply to enhance the UK’s food

security and overall national resilience (Berry and Brown, 2021; DEFRA, 2022).

In recent years, the UK has seen significant yield fluctuations in staple food crops, including
cereals (DEFRA, 2021a). This creates high instability in income for farmers and in prices for
consumers. ldentifying climatic causes of production variability is important for future-proofing
UK agriculture as the changes in climate affect the likelihood of challenging weather events (Arnell
and Freeman, 2021). Several studies have identified the risks associated with future climate
change for UK crop production (Semenov, 2009; Cho et al., 2012; Arnell and Freeman, 2021) but
very few have looked at how observed climate has affected historical yields, and the focus of
these has largely been on one region (Addy et al., 2020, 2021a) or using national yield and climate
data which can mask significant local weather and climate variability (Knight et al., 2012). Given
the array of weather and climate risks to crops vyields, there is an urgent need to utilise the
detailed climate information now available to identify the best suited existing crops and varieties

to grow locally, as well as to help develop climate resilient varieties.
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This thesis investigates the genetic and environmental causes of recent variability and trends in
UK cereal yields. Here, yield is defined as grain yield at 15% moisture content and measured in
tonnes per hectare. The thesis explores how agroclimate information can be better incorporated
into breeding programmes and made more accessible to growers. This analysis demonstrates the
drivers of recent barley (Hordeum vulgare L.) and wheat vyield variability and identifies wheat
varieties with greatest sensitivity to the main climate drivers of yield. Whilst it’s not possible to
totally “weatherproof” agriculture as the title suggests, this thesis seeks to provide methods for

improving the climate resilience of UK crops in the face of climate change.

This chapter commences with a discussion on the challenges faced in achieving global food
security and addresses the genetic, agronomic, and climatic causes of observed yield plateaus.
Section 1.2 explores the importance of agriculture and crop breeding in the UK, how the UK’s
growing climate is changing and the current literature on crop-climate relationships. Section 1.3
identifies the opportunities to use climate data to support crop breeding and agriculture in the

changing climate.

1.1 Threats and opportunities for agriculture in changing climates

1.1.1 The challenges of achieving global food security

The term “food security” first appeared in the mid-1970s at the 1974 World Food Conference
(FAO, 2006), and has evolved from focussing on food availability and price stability to incorporate
four key dimensions: availability, access, utilization and stability. The challenge to achieve global
food security and meet the Sustainable Development Goal of Zero Hunger by 2030 is multi-
faceted and has become increasingly difficult in recent years. The decline in world hunger seen
since 2005 came to an end in 2014 (FAQO et al., 2021). This is due, in part, to population growth,
constraints on land availability for agriculture, an observed increase in weather variability and
extreme events, and greater climatic uncertainty due to climate change (Cassman et al., 2011;
Mandryk et al., 2015; Portner et al., 2022), with the COVID-19 pandemic contributing to recently
rising levels of malnutrition (FAO et al., 2021). This has been compounded by the 2022 Russian
invasion of Ukraine; together these two countries produce nearly 30% of the world’s traded
wheat and so the military conflict has resulted in great uncertainty surrounding the export of this
grain (Behnassi and El Haiba, 2022). This has driven up food prices and has highlighted the fragility
of globalised food systems and risks associated with high dependency on one or two countries

for specific foods.

Observed impacts of climate change on agricultural productivity, documented in over 150 articles

since the last Intergovernmental Panel on Climate Change (IPCC) Assessment Report in 2014,
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indicates that climate change has had an overall negative impact of productivity thus far (IPCC,
2022). Under current pledges for climate change mitigation, an anticipated 3°C of warming would
result in more than 50% of agricultural area in China, Brazil, Egypt, Ethiopia, Ghana and India
projected to be exposed to severe droughts of more than one year within a 30-year period (Price
et al., 2022). GDP and welfare in all of these countries, except for China, are projected to be
negatively impacted by declining crop yields due to this level of warming (Wang et al., 2021).
Feeding the projected population of 9.7 billion in 2050 (Roser, 2013) with nutritious food and
reduced environmental impact is an incredibly daunting task. Modelling studies have shown it is
in theory possible (KC et al., 2018; Springmann et al., 2018), but would require drastic dietary
changes (Vermeulen et al., 2020), which can take significant time. To prevent widespread
starvation and loss of livelihoods, there is a need to understand how agriculture on a global scale

can adapt to changing climates as quickly and efficiently as possible.

1.1.2 Understanding recent yield trends

Afurther challenge for increasing food production to meet global demand has been the slow yield
increase observed in several staple crops in many parts of the world. The intensification and
mechanisation of agriculture, along with genetic improvements, saw major crop yield increases
in the 1960s, 1970s and 1980s. The green revolution resulted in a unique period in human history
when food supply consistently outstripped demand (Cassman et al., 2011). While world food
production has continued to increase, and vyield gains have continued for some crops and
countries, a decline in the rate of yield increase, often referred to as a ‘yield plateau’, arose at the
turn of the new millennium in several crops and regions (Hafner, 2003; Cassman et al., 2011;
Grassini et al., 2013). These include wheat in northwest Europe, Australia and India, maize (Zea
mays L.) in China and rice (Oryza sativa L.) in China, Indonesia and India (Brisson et al., 2010;
Cassman et al., 2011; Hochman et al., 2017; Espe et al., 2018). Globally, during 1990-2010 there
was strong evidence for widespread deceleration in the rate of increase in average yields for 31%
of total global rice, wheat and maize production (Grassini et al., 2013). There is limited scope to
increase crop-growing areas, however closing the yield gap between the potential yield of a crop
variety at a specific location, and the average actual yield achieved by farmers, could be a way of
increasing crop production (Senapati and Semenov, 2019). Possible causes of yield plateaus and
yield gaps can be loosely classified as genetic, agronomic or climatic (Brisson et al., 2010). Whilst

each crop and location are unique, common causes for a yield plateau may apply.
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Genetic factors

A handful of studies have indicated that there may be a limit to genetic improvement which
breeders have begun to reach, and as a consequence genetic yield improvement has not
increased (Calderini and Slafer, 1998; Espe et al., 2018). However, genetic improvement through
plant breeding has been widely shown to have contributed to continued increases in vyield
potential (Peltonen-Sainio, Jauhiainen and Hakala, 2009; Brisson et al., 2010; Mackay et al., 2011).
For example, Brisson et al. (2010) showed that despite a yield plateau in wheat in France, yield
potential, as defined as the improvement in variety trial yields, was still increasing in the order of
0.1 t/ha/yr, indicating genetics has not contributed to observed yield stagnations. Furthermore,
the emerging field of phenomics, in which whole-plant phenotypes (traits) are broken down into
separate ones that are controlled by a smaller number of genes, is enabling targeted breeding
focused on enhancing fundamental plant processes such as photosynthesis, which is expected to

lead to further yield increases (Flood et al., 2011; van Bezouw et al., 2019; Simpson et al., 2022).

One hypothesis addressing the observed yield plateaus, is that average national yields plateau
when they reach 70-80% of the genetic yield potential ceiling (Lobell et al., 2009). The gap
between average yields achieved by farmers and yield potential depends on the extent to which
crop and soil management practices remove abiotic and biotic stresses, as well as the yielding
capability of available crop varieties (Cassman, 1999; Grassini et al., 2013). Yield potential can be
seen as a biophysical limit to the attainable yield at a given location (Knight et al., 2012; Grassini
et al, 2013). It is neither cost-effective nor physically possible to achieve near perfect
management on an industrial scale: as farmers’ yields approach the vyield potential ceiling,
incremental yield increases come from finer tuning of different management techniques, the
costs of which can offset any monetary gain from small yield increases. Therefore, it should be
expected that average yields stagnate when they approach a high fraction of the yield potential.
For example, Ray et al. (2012) suggest wheat yields may have stagnated in Bangladesh and parts
of India because current cultivars are approaching their yield potentials. The estimated global
genetic yield gap, defined as the gap between the genetic yield potential of an optimized local

wheat cultivar and the potential yield of the current local cultivar, is 51% (Senapati et al., 2022).

On a local scale, this highlights the importance of regular cultivar replacement with new, better
adapted and higher vyielding varieties. At a global scale, substantial increases in food grain
production will need to come from yield increases in countries in which the yield gap between
obtained yield and yield potential is greatest, which will be a challenge given the low development

levels of these countries (Grassini et al., 2013).
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Agronomic factors

There have been significant changes in agronomy since the 1960s, including changes in cropping
regimes, fertiliser application and the introduction of stricter environmental policies that have
limited the protection of crops from pests and diseases. For example, since 2000, the UK has seen
a reduction in inputs of fertilizers (1.5%/year), plant protection product (1.2%/year), labour

(0.8%/year) and capital (0.3%/year) (Noleppa and Cartsburg, 2021).

Changes in crop rotations and stricter environmental policies have also impacted cereal yields. To
increase food supply, intensive agriculture has used increasing quantities of nitrogen fertilizer (Gu
etal., 2023), however more than half of the cropland nitrogen inputs are lost to the air and water.
This has led to an array of negative environmental impacts, including air and soil pollution, whilst
also contributing to climate change through the potent greenhouse gas nitrous oxide (Erisman et
al., 2013; Steffen et al., 2015). As a consequence, a rise in environmental regulations for restricted
nitrogen use, such as in Nitrate Vulnerable Zones, has resulted in a plateau in nitrogen application
in the UK (Knight et al., 2012). Combined with an observed decrease in wheat crops following
nitrogen-fixing legumes, this has contributed to a 24% decrease in soil nitrogen from 2000 to
2019 (DEFRA, 2021a), and a reduction in UK wheat yields (Knight et al., 2012). The influence of
more recent policy changes on yields, such as the ban on outdoor use of the slug pesticide
metaldehyde in April 2022 (DEFRA et al., 2020), is yet to be quantified, but could well contribute

to further stagnation.
Climate factors

Climate is widely recognised as being responsible for interannual variability in yield (Brisson et al.,
2010; Ray et al., 2015), however the effect on yield stagnation is less well understood, partly
because interannual variability can mask the trend. The IPCC Sixth Assessment Report indicates
wheat, soybean and maize production have been negatively impacted on by recent climate trends
(IPCC, 2022). In Asia and Australia, yields of wheat and rice may have stagnated due to climate-
change related heat stress and increased night time temperatures (Ray et al., 2012; Sadok and
Jagadish, 2020): from 1979-2003, rice grain yield in the Philippines declined by 10% for each 1°C
increase in growing season (the period from planting to harvest) minimum temperature (Peng et
al.,, 2004). In Europe, the effects of climate change may have partly counteracted the genetic
progress made in wheat. The depressive effect of climate is greatest in areas of intensive cereal
growing (Brisson et al., 2010). In Finland, an increase in mean temperatures reduced seed yield

of newer rapeseed cultivars (Peltonen-Sainio et al., 2007). There is limited capacity of a single

28



crop genotype to perform well under climatic variability, thus a set of cultivars with diverse

responses to weather conditions is required in order to spread risk (Kahiluoto et al., 2019).
Competing objectives

Whilstin the 1970s and 1980s, farmers’ main objective was often to maximise crop yield, in recent
years farmers have had many other competing objectives, which means that high yields has not
always been the end goal. Wheat and barley can be grown for different end uses, including bread-
making, biscuit-making, malt for brewing and for feed (AHDB, 2023), with each market a trade-
off in terms of quantity i.e. yield, and quality. Increased volatility in commodity prices in the world
market and the lack of control over market prices for grain (Ladnemets et al., 2011) can mean
that a grower may seek lower risk, such as maximise gross margins for any one field but investing
less in other fields, resulting in lower average yields. Changes in government policy and the
introduction of more incentives for environmental protection (Knight et al., 2012) have

encouraged a reduction in inputs, such as fertilisers, again having yield trade-offs.

1.1.3 Methods of overcoming yield plateaus
Overcoming vield plateaus and increasing production with reduced inputs and environmental

impact is required to achieve food security. Production is a function of both yield and area, thus
production can be increased by improving yields and/or increasing cultivation area (Bradshaw,
2017). Inthe UK, 71% of land is dedicated to agriculture, such that there is little suitable additional
land to further increase food production in this way (DEFRA, 2018; Downing and Coe, 2018).
Rather, the most likely avenue for increasing self-sufficiency and reducing the yield gap is by
increasing land productivity (AHDB Cereals & Oilseeds, 2018b), which is achieved by the
optimisation of many factors, including using well-adapted cultivars, and good crop and sail

management practices.

1.1.4 The role of crop breeding in increasing yields

Breeding has made a major contribution to increasing global agricultural productivity. In the UK,
at least 88% of cereal and oilseed rape crop yield improvement from 1982-2007 was attributed
to geneticimprovement, as opposed to agronomic changes (Mackay et al., 2011). However, there
is concern that major breeding efforts in the last century have caused a reduction in crop genetic
diversity. This narrowing of the crop gene pool leaves crops at greater risk to strains of diseases.
For example, there is a risk of the resurgence of stem rust (Puccinia graminis) in the UK, with the
potential for widespread wheat and barley yield losses due to low genetic diversity and a lack of
resistance to new strains (Lewis et al., 2018). There is conflicting evidence for changes in diversity

level, even for the same crop and same regions (Roussel et al., 2004; Huang et al., 2007). A recent
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assessment of the diversity of wheat responses to weather events in nine different European

countries shows a decline in response diversity of wheat in farmer’s fields (Kahiluoto et al., 2019)

Breeding cultivars better adapted to the changing climatic conditions will be pivotal to
overcoming yield plateaus and closing yield gaps. In the most recent Assessment Report of the
Intergovernmental Panel on Climate Change, cultivar improvement was identified as one of the
effective adaptation options for enhancing food security (Portner et al., 2022). Current breeding
programmes and cultivar selections don’t prepare for climatic uncertainty and variability: for
example, there is a lack of positive responses of European wheat to abundant on-farm
precipitation, yet in variety trials the negative yield response is less (Bradshaw, 2017). This
suggests there is an unexplored potential to draw upon tested cultivars. For UK oilseed rape,
better uptake of new varieties helped close the yield gap and overcome the yield plateau of 1994-
2004 (Knightetal., 2012). An in silico experiment showed that even in high productive countries,
designing crop ideotypes, or virtual idealized crops expected to produce greater grain quality and
quantity, can close the gap further and increase land productivity by providing key traits for crop

improvement (Senapati and Semenov, 2019).

In many developing countries, in particular where extreme weather events such as droughts are
common, locally adapted, domesticated varieties, known as landraces, are the backbone of
agricultural production. These traditional varieties of plants are well-adapted and can be
genetically diverse (Azeez et al., 2018). They demonstrate a range of grain yield responses to
these conditions, with all landraces producing some yield, whereas some modern cultivars fail.
Research into barley has shown that landraces yield more than modern cultivars in low-input and
stress conditions (Ceccarelli et al., 2007), whilst integrating material from landraces into spring
wheat has been shown to increase yield under heat stress compared to elite lines, whilst leading
to no significant yield penalty under favourable conditions (Molero et al., 2022). Landraces and
wild relatives are the best source of resistance to abiotic and biotic stresses. Thus, replacing
numerous landraces and traditional cultivars with few modern varieties is a huge threat to global
food security (Upadhyaya et al., 2013; Bradshaw, 2017). There is a need to assess the existing
collection of landraces for maintaining system resilience, and overcoming current yield stagnation

and future climatic challenges (Makinen et al., 2015).

Traditional breeding techniques are a form of artificial selection and thus far have been largely
limited to naturally occurring varieties. However, in recent decades the direct manipulation of
genes through DNA transfer has become possible, allowing new genes from one species to be

incorporated into a completely unrelated species through genetic engineering, creating
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genetically modified (GM) crops (Phillips, 2008). The capacity for genetic modification to combine
desirable traits has already been demonstrated for several crops, including the transfer of a
sunflower gene that encodes a stress-responsive transcription factor into soya bean, increasing
its drought stress-tolerance (Cabello and Chan, 2012; Cabello et al., 2012). In 2015, GM crops
were already being grown on over 10% of the world’s arable land (The Royal Society, 2016). There
is great potential for GM crops to alleviate some future yield losses due to climatic changes,
however widespread opposition delayed uptake in Europe and there has been a wide gap
between the rapid acceptance of cultivating GM crops by farmers, and the often-limited
acceptance by consumers (Falloon et al., 2015; Lucht, 2015). More recently, EU legislation has
changed giving individual governments more power to decide whether to grow GM crops.
Furthermore, gene editing, in which a small genetic change is induced often mimicking what could
be produced through breeding, is becoming more widely accepted and in the UK, the new Genetic
Technology (Precision Breeding) Bill is making its way through Parliament and seeks to make

provision about the growth and sale of such plants (Vaughan, 2022).

1.1.5 The influence of farm management on crop production

To close the yield gap between theoretical yield potential and actual attained yield, optimal crop
and soil management is required to alleviate more abiotic and biotic stresses that can limit crop
growth and yield (Cassman et al., 2003, 2011). There is considerable opportunity for the yield gap
between the current, local climatic yield potential and actual yield to be closed through suitable
management practices (Licker et al., 2010; Liu et al., 2022). Chen et al. (2014) showed that
implementing soil-crop system management practices that account for crop ecophysiology and
soil biogeochemistry can substantially increase average yields for rice, wheat and maize without
needing increases in nitrogen fertilizer. Furthermore, simulation of the combined effect of
optimal farm management, and the breeding and growing of well-adapted varieties, suggests that
crop-level management adaptations could increase global yields in a 2°C warmer world by an

average of 7-15% relative to no-adaptation scenarios (Challinor et al., 2014).

Precision agriculture offers additional methods of achieving more production with more
sustainable agronomy, through the automation and precision application enabled through
technology (Bhakta et al., 2019). This application of technology, however, may not be feasible for

poorer farmers in developing countries.

Ultimately, there is a need for an integrated approach to achieving sustainable food security in a
changing climate (Lipper et al., 2014). Practices need to be adapted to fit local contexts and

actions both on-farm and beyond the farm. Incorporating weather and climate information into

31



all aspects of farm management is an important step for decreasing the yield gap. In the North
China Plain, varietal changes in both wheat and maize have helped stabilise the length of the pre-
flowering period and extend the length of the grain-filling period (Liu et al., 2010). Using climate
information to support crop breeding and growers’ decisions in this way has great potential to

increase vyields (Falloon et al., 2015).

1.1.6 The carbon dioxide fertilisation effect

The current atmospheric carbon dioxide concentrations (417 mm) are projected to double by the
end of the century, under the high emissions Representative Concentration Pathway (RCP) 8.5
(Stocker et al., 2013). Elevated CO; has been shown to increase biomass and yields in C; plants,
such as wheat, (Jablonski et al., 2002; Hogy et al., 2009; O’Leary et al., 2015; Fitzgerald et al.,
2016), but decrease protein content and overall nutritional value (Taub et al., 2008; Myers et al.,
2014; Blandino et al., 2020; Carreras Navarro et al., 2020). Crop modelling studies using future
climate projections, have found that the CO; fertilisation effect often outweighs the negative
effects associate with climate change, such as increase in drought and heat stress (Cho et al,,
2012; Putelat et al., 2021; Leung et al., 2022). However, as has been observe