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Abstract
There are a variety of computational formulations of retinex

but it is the center/surround convolutional variant that is of inter-
est to us here. In convolutional retinex, an image is filtered by a
center/surround operator that is to designed to mitigate the effects
of shading, which in turn compresses the dynamic range. The pa-
rameters that define the shape and extent of these filters are tuned
to give the “best” results. In their 1988 paper, Hurlbert & Pog-
gio showed that the problem can be formulated as a regression,
where corresponding pairs of images with and without the effects
of shading are related by a center/surround convolution filter that
is found by solving an optimization.

This paper starts with the observation that finding suffi-
ciently large representative pairs of images with and without
shading is difficult. This leads us to reformulate the Hurlbert &
Poggio approach so that we analytically integrate over the whole
sets of shadings and albedos, which means that no sampling is re-
quired. Rather nicely, the derived filters are found in closed form
and have a smooth shape, unlike the filters derived by the prior
art. Experiments validate our method.

Introduction
The famous retinex theory [1, 2] of color vision pioneered

by Land postulates that the human visual system (HVS) does not
actually perceive a scene directly in terms of its radiance distribu-
tion. Instead, it was proposed that the HVS evolved to discount
the illuminant, which means that the perception of a given scene
is correlated to its reflectance distribution rather than the actual
flux entering the eye.

Land describes color in terms of a triplet of lightness values
that correspond to three separate retinex systems, one for each of
the long, medium, and short types of cone receptors in the eye [2].
Lightness, measured on a relative scale from dark to light, is the
psychophysical interpretation of luminance, a relationship that is
often approximated as being logarithmic [3]. In retinex theory,
lightness response is correlated with the relative reflectance of a
scene object rather than its luminance [1]. White is generated
when lightness is placed at the top of the scale in each of the
three retinex systems, while color arises from differences in the
lightness response between the systems [2].

The original retinex algorithms [1, 2] were path-based com-
putations and several variants of this type of approach were de-
veloped [4]. In 1986, Land proposed an alternative technique [5],
the idea being to discount the illumination by dividing the scene
flux at each small area of interest by a weighted average of the
flux from an extended surround. In terms of computation on dig-
ital images, this idea can be interpreted as the convolution of an
image with a center/surround filter. This version of retinex, which
assumed a 1/r2 functional form for the surround, was developed
further by Jobson et al. who used a Gaussian surround [6]. They

Figure 1. The left image with a significant shading field is convolved with a

center/surround filter, resulting in the image on the right, where the effects of

shading are clearly reduced.

also developed a multiscale version which, in effect, uses a sum
of Gaussians of different spatial extents when defining their cen-
ter/surround [7, 8, 9]. Other investigations into the shape of the
center/surround have also been carried out [10, 11, 12].

Arguably, and understandably, much of the prior art has
been directed towards designing retinex convolution filters that
result in a visually pleasing processed output image. However,
a more fundamental way of approaching the filter design ques-
tion was proposed by Hurlbert & Poggio [13], who formulated
center/surround retinex as a least-squares optimization problem.
Specifically, as training examples they used scan lines along many
pairs of randomly-generated Mondrian images, where each pair
comprised an albedo image and the same image with a randomly-
generated shading (illumination gradient) superimposed. They
then used a least squares argument to calculate a filter that could
be used to recover the albedo images to good accuracy. How-
ever, because of the problem formulation, the computed filter was
not smooth. Indeed, it had a shape that would unlikely be imple-
mented in computational or biological systems.

Our aim is to build upon the work of Hurlbert & Poggio by
reformulating their approach so that the best filter is solved for an-
alytically in closed form. A key part of our approach is to provide
a method for integrating over all possible albedo distributions and
all possible shadings of a given functional form. Given this model
approach, we can solve for the optimal filter in closed form, and
so the derived filters are smooth. Our approach is flexible so that
it is easy to change the model assumptions, and our method can be
tuned to different input classes of images. For example, Fig. 1 il-
lustrates the capability of our method in terms of shading removal
using a filter optimised for Mondrian images.

Readers familiar with tone mapping will be aware that the
center/surround retinex (linear filtering in the logarithmic domain)
is unlikely to deliver shading-free images or, indeed, preferred
images. However, most spatially varying tone mappers, including
edge-sensitive variants such as those that use bilateral filtering,
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Figure 2. 1D albedo and shading convolution filters fr and fe solved for

using the Hurlbert & Poggio method [13]. The albedo filter center extends

almost to unity. The sum of fr and fe is a delta function.

make an assumption about how spatial information is integrated.
Thus, the work we present here could also be applied in the con-
text of more advanced algorithms.

Before outlining our methodology, we close this introduction
by briefly summarising the novel approach taken by Hurlbert &
Poggio [13].

Hurlbert & Poggio’s least squares formulation
For each RGB image channel (or a combined luminance

channel), let the color signals be defined by

c′(x,y) = r′(x,y)e′(x,y), (1)

where r′ and e′ are the albedo and shading components, and x,y
denote the pixel locations [4]. These color signals are assumed
to be the linear image pixel values in the channel. By defining
c(x,y) = logc′(x,y), r(x,y) = logr′(x,y), and e(x,y) = loge′(x,y),
the logarithm of a color signal can be written as a sum,

c(x,y) = r(x,y)+ e(x,y). (2)

In order to determine a linear operator that is able to extract the
albedo image r(x,y) from c(x,y), consider pairs of randomly-
generated Mondrian images as training examples. Mondrian im-
ages consist of random arrangements of rectangular patches of
random sizes [2] and are widely used in visual experiments [14,
15, 16, 17].

Here each Mondrian pair is defined by a randomly-generated
albedo image with randomly-generated constant albedo value in
each patch, and the same albedo image superimposed with a
randomly-generated and smoothly-varying shading. Instead of
dealing directly with the 2D images, vertical and horizontal scan
lines were taken instead [13], which amounts to using many pairs
of 1D vectors r(x) and c(x), each of length p pixels.

A set of N color signal vectors {c(x)} can be constructed
from N randomly-generated combinations of r(x) and e(x) ac-
cording to the above prescription. These can be arranged as the
rows of a color signal matrix C as follows,

C = R+E, (3)
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Figure 3. Shading (middle panel) and albedo (lower panel). Ground truth

data is on the left and recovered data is on the right. The color signal (top

panel) is necessarily identical in both cases.

where R and E are the corresponding albedo and shading matri-
ces [13]. These matrices all have dimension N × p.

Consider the linear matrix operators Lr and Le defined as
follows,

C Lr ≈ R, C Le ≈ E. (4)

(The vectors and matrices defined here are the transposes of those
used in Ref. [13] and so matrix rows in Ref. [13] correspond to
matrix columns here). By over-constraining the system so that
N ≫ p, the least-squares solutions are obtained as

Lr =
(

C⊤C
)−1

C⊤R, Le =
(

C⊤C
)−1

C⊤E, (5)

where ⊤ denotes the transpose operator. The matrix
(
C⊤C

)−1
C⊤,

which allows us to solve least-squares regressions in closed form,
is known as the Moore-Penrose pseudoinverse. Furthermore, we
see that the driving forces behind least squares are the auto- and
cross-correlation terms. For Lr, these are C⊤C and C⊤R, respec-
tively. This is a point that we will return to as it is important for
the arguments set forth in this paper. Note that Lr + Le = I, where
I is the p× p identity matrix, which means that the method always
returns the correct color signal.

Although the operators Lr and Le are full p× p matrices, a
1D albedo convolution filter fr of length p, which we generalize
to 2D later in this paper, can be extracted from Lr simply by taking
the central column. (In principle, the central column can be inter-
preted as a convolution filter that is optimised for the central pixel
of the training vectors). This filter is then used to estimate the
albedo vectors. Note that a 1D shading convolution filter fs can
similarly be extracted from Le, and fr(x) + fe(x) = δ (x− xo) due
to the logarithmic separation, where xo denotes the filter center.

Figure 2 illustrates example Hurlbert & Poggio filters. These
were obtained using 2,000,000 training examples and p = 161;
each training sample comprised a single 161 component albedo
vector (a scan line through a random 2D Mondrian image with
random albedo values in the range [0,1]) and a single 161 com-
ponent shading vector (either a random linear ramp or a random



slowly-varying sinusoid in the range [0,1], with equal probabil-
ity). Flipped pairs (the same data in reverse order) were also
included in the dataset since ultimately we wish to solve for a
symmetric operator, and so N = 4,000,000.

Figure 3 illustrates a typical result of applying the filters of
Fig. 2. The top panel of Fig. 3 is an example of a random color sig-
nal c(x), which is the product of the ground truth randomly gen-
erated shading (left, center panel) and albedo (left, lower panel).
The recovered shading and albedo are shown on the right center
and lower panels, respectively.

Note that Fig. 3 shows data in the primal domain but we actu-
ally carry out the computation in the logarithmic domain by taking
the log of the albedo (and using log units for the shading) accord-
ing to Eq. (2), and exponentiating the result. This log-process-
exponentiate procedure is also used when we process real images,
except that for real images a scalar is added so that the maximum
log value is zero and the exponentiated result always returns val-
ues in the [0,1] interval.

Method
Here we build upon Hurlbert & Poggio’s least squares for-

mulation of retinex [13]. Our contributions:

• We reformulate the base theory to include the set of all color
signals rather than a sum of randomly chosen examples.

• We show that we can solve for the shading and albedo au-
tocorrelation matrices in closed form by integrating over the
sets of all shading and albedo images according to a model
assumption. Significantly, the color signal autocorrelation
is shown to depend directly on the autocorrelations for the
shadings and albedos.

• Our autocorrelation optimisation via integration leads to
smooth and hence more biologically plausible filters com-
pared to the prior art.

• We derive closed-form expressions for the autocorrelation
matrices for some example scene statistics.

• We extend our method so that it can be applied to 2D im-
ages.

The set of all color signals
In Ref. [13] the color signal matrix was constructed as the

sum of a randomly generated albedo matrix and a randomly-
generated shading matrix, as described by Eq. (3). Here, let us
instead begin by constructing sets of n albedo vectors {r} and m
shading vectors {e}. We seek to construct a color signal matrix
that includes all n×m possible combinations of r and e.

A construction method that can deliver this outcome was
proposed in Ref. [18] in a different context, where the aim was to
combine spectral reflectance and spectral power distribution prod-
ucts. Here we use a similar approach except that we are dealing
with pixel vectors instead. Furthermore, we are in the logarithmic
domain and so products become sums.

First consider the n×p matrix R and the m×p matrix E
formed by arranging the sets {r} and {e}, respectively, as their
rows:

R =


R11 · · · R1p
R21 · · · R2p

...
n1 · · · Rnp

 , E =


E11 · · · E1p
E21 · · · E2p

...
Em1 · · · Emp

 . (6)

Now consider the kth row of E, which is a single illumination
gradient vector ek(x) with k ∈ {1, · · ·m}, and construct an n×p
matrix Ek with n identical rows, each defined by the chosen ek(x).
Its matrix elements can be written

Ek =


Ek1 · · · Ekp
Ek1 · · · Ekp

...
Ek1 · · · Ekp

 . (7)

The total color signal matrix C can now expressed as the sum of
two large concatenated albedo and shading matrices Rc and Ec,

C = Ec +Rc, (8)

where

Ec =


E1
E2
...

Em

 , Rc =


R
R
...
R

 . (9)

In summary, Ec is the concatenation of m different shading matri-
ces Ek defined by Eq. (7) with k = 1, · · ·m, and Rc is the concate-
nation of m identical albedo matrices R defined by Eq. (6). Each
matrix in Eq. (8) has dimension (m×n)×p.

Using the above, the least squares equations defined by
Eq. (5) are generalized as follows,

Lr =
(

C⊤C
)−1

C⊤Rc, Le =
(

C⊤C
)−1

C⊤Ec. (10)

These matrix operators again have dimension p× p and again Lr
+ Le = I.

Closed-form analytic solutions
A general matrix element of the color signal autocorrelation

matrix C⊤C can be obtained by multiplying the ith row of C⊤ by
the jth column of C defined by Eqs. (8) and (9). Collecting terms
yields[

C⊤C
]

i j
=

1
m

m

∑
k=1

EkiEk j +
1

nm

n

∑
k=1

Rki

m

∑
k=1

Ek j

+
1
n

n

∑
k=1

RkiRk j +
1

nm

m

∑
k=1

Eki

n

∑
k=1

Rk j

, (11)

where autocorrelation has been defined to include a normalisation
by the number of sample points. In matrix form,

C⊤C =C⊤Ec +C⊤Rc, (12)

where

C⊤Ec = E⊤E + ⟨R⟩⊤⟨E⟩

C⊤Rc = R⊤R + ⟨E⟩⊤⟨R⟩ .
(13)

Here:

• C⊤C is the color signal autocorrelation matrix for the set of
all m×n color signals,



Figure 4. Shading autocorrelation matrix for a 50:50 mix of linear ramps and

sinusoids with p = 321, λmin = 2, and primal-domain shading values restricted

to the range [0,1].

• E⊤E is the shading autocorrelation matrix for the starting
set of m vectors {e},

• R⊤R is the albedo autocorrelation matrix for the starting set
of n vectors {r},

• ⟨E⟩ is a row vector defined by the mean of {e},
• ⟨R⟩ is a row vector defined by the mean of {r}.

The practical utility of the decomposition given above is that
closed-form analytic solutions can be derived for all of the quan-
tities involved. Moreover, given functional forms for the possible
albedo and shading vectors, the entire parameter space can be in-
tegrated over analytically by letting the number of training vectors
m,n → ∞. In other words, there is no need to sample the param-
eter space; the training set includes all possible instances of the
albedo and shading vectors.

Clearly, the nature of the resultant matrix operators Lr and
Le will depend upon the functional form of the albedo and shad-
ing vectors {r} and {e}. This means that convolution filters can
be extracted from matrix operators that are optimal (in the least
squares sense) for specific categories of scenes and shadings.

Shading autocorrelation matrix
Hurlbert & Poggio [13] used an example training set com-

prised of a 50:50 mix of random linear ramps (with both positive
and negative gradients) and sinusoids (with random amplitude,
wavelength and phase), all non-negative in the range [u,v]. We
will show elsewhere that by integrating over the whole of this set
analytically, the shading autocorrelation matrix elements (assum-
ing a uniform probability distribution) are given by the following
closed-form expression:[

E⊤E
]

i j
=

1
24

(
u2 +uv+ v2

)(
5+

Sa(kmax(y− x))
2

)
+

1
6

(
xy− (x+ y)

2
+

1
12

)
(v−u)2,

(14)

where Sa is the sampling function or unnormalized sinc function.
Here x = (i− 1)/(p− 1), i = 1,2, · · · p and y = ( j − 1)/(p− 1),
j = 1,2, · · · p denote pixel locations on the p× p pixel grid. The

Figure 5. Albedo autocorrelation matrix in the logarithmic domain for Mon-

drians with α = 0.981, which corresponds to an expected patch length of 52.6

pixels. The primal-domain albedo values were restricted to the range [0,1].

maximum wavenumber, which corresponds to the minimum al-
lowed wavelength, is defined by kmax = 2π/λmin. The mean vec-
tor required by Eq. (13) is simply a constant defined by ⟨E⟩i =
3(u+ v)/8.

The above matrix is illustrated in Fig. 4. However, in our cal-
culations we implemented Eq. (14) using logarithmic units with
[u,v] = [−6,0].

Albedo autocorrelation matrix
We recently proposed that the albedo autocorrelation matrix

R⊤R for Mondrian images, which has a Toeplitz structure, can be
used as a proxy for that of real scenes [19]. If the albedo values are
restricted to the range [0,1], the matrix elements in the logarithmic
domain are given by[

R⊤R
]

i j
= 2α

| j−i|+
(

1−α
| j−i|

)
, (15)

where the parameter α controls the typical size of the Mondrian
patches. This controls the extent at which the autocorrelation falls
to its minimum value with distance away from the matrix diagonal
(see Fig. 5 for an illustration). Physically, a larger α means that
the scene contains larger regions of constant albedo value on the
average, while α = 0 corresponds to a completely random scene.

The above expression assumes a uniform probability distri-
bution for the albedo values, which in general does not lead to a
mean that corresponds with real scenes. However, least squares
can be used to fit this analytic expression to the albedo correla-
tion matrix for any given image dataset, which can be determined
numerically by averaging over many image scan lines [19].

2D convolution filter
After solving Eq. (10) and extracting a 1D convolution filter

such as that illustrated in Fig. 6, a straightforward way to con-
struct a symmetric 2D convolution filter, which we again denote
fr or fe, is simply to replicate the surround radially, interpolating
as necessary. Naturally, the surround subsequently needs to be
normalised so that its sum equals that of the 1D surround. The fil-
ter center (i.e. the central pixel where the spike is located) should
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Figure 6. Blue solid curves: Same as Fig. 2 except that the filters have

been obtained analytically in closed form. Here the Mondrian albedo patch-

length parameter α = 0.85. Orange dash curves: Filters obtained when α

is increased to α = 0.99.

Figure 7. 2D albedo convolution filter optimised for the Kodak dataset.

be left unaltered so that this pixel is identical in 1D and 2D. We
implement the convolution in the Fourier domain using the flip-
flip technique discussed in Ref. [9].

Results
Here we describe preliminary investigations into the shape

of the filters and the ability of our method to process real images.

Filter shape
Since Eq. (10) can be solved analytically, smooth convolu-

tion filters are obtained. For example, by utilizing Eqs. (14) and
(15) for the shading and albedo autocorrelation matrices, Fig. 6
shows the 1D filters fr and fe, which estimate the albedo and shad-
ing images, obtained using the same parameters as the Hurlbert &
Poggio filters illustrated back in Fig. 2. Note that the extent of the
filter depends upon p, the length of the training vectors, and this
is built into our closed-form solutions.

Investigations show that the shape characteristics of the fil-
ters are strongly influenced by the shape of the shading and albedo

autocorrelation matrices, E⊤E and R⊤R. The former depends
upon the functional form and range assumed for the shadings, and
the latter depends upon the correlation between neighbouring pix-
els in the albedo image, which is controlled by the parameter α .
For example, a larger α produces an albedo autocorrelation ma-
trix with a wider shape (i.e. the distance between maximum and
minimum autocorrelation is larger) since there will be larger re-
gions of constant albedo value on the average. In turn, this leads
to a shallower filter fr, as illustrated in Fig. 6 (orange dot-dash
curves).

Lightness processing
Recall that Fig. 1 demonstrated the ability of our method to

remove a synthetic shading from a Mondrian image. Here, we
test how well we can remove synthetic shadings applied to the 24
images in the Kodak dataset. Figure 8 shows a typical example of
a Kodak image with a synthetic shading applied and the recovered
shading-free image that was obtained using our method.

An error analysis using multiple examples is given below, but
first we summarise how the convolution filter was obtained. Equa-
tion (10) was solved using our analytic expressions for the shading
and albedo autocorrelation matrices. The shading matrix was as
previously described by Eq. (14) and Fig. 4, which corresponds to
a 50:50 mix of linear ramps and slowly-varying sinusoids. For the
albedo autocorrelation matrix, we used the method of Ref. [19] to
‘fit’ to the observed path autocorrelation matrix for the Kodak im-
age dataset. That is, we only used the path statistics drawn from
the Kodak images as a means to derive the parameters that de-
fine an analytic albedo autocorrelation matrix. Furthermore, we
only considered the luma channel rather than filtering each chan-
nel separately. In this case, the best fit was found for scale and
offset parameters given by 0.2051 and 0.8524, and the expected
patch-size parameter was found to be α = 0.981. (See earlier sec-
tion on albedo correlation matrix and also Ref. [19] for further
details). This enabled us to determine the best 1D convolution
filter, which was converted to the 2D filter fr illustrated in Fig. 7.

Error analysis
Here we quantitatively test the ability of our method to re-

move synthetic shadings applied to the Kodak image dataset. Let
us denote the ith image with shading as Ci and the best solved-
for convolution filter by fr, so Ci is the product of the ith shading
field Ei (randomly selected) and Ri (luma channel of one of the 24
Kodak images, again chosen randomly). Note that the images Ci
and Ri are assumed to have values in the interval (0,1], i.e these
images are not in log units.

Now we use our method to try and estimate Ri from Ci. Let
R̂i denote the albedo image estimated by convolving the logarithm
of Ci with fr,

R̂i = exp(log(Ci)⋆ fr), (16)

where ⋆ denotes convolution. We would like to measure how
close R̂i is to Ri. Post-convolution we have found it is useful to al-
low a scaling of the estimated albedo. Indeed, we can arrive at the
same colour image Ci given the pairs (Ri,Ei) and (αRi,(1−α)Ei)
as there is an in-built scaling ambiguity. Thus, in considering how
close R̂i is to Ri we will allow a constant scaling term kR,i so that
||kR,iR̂i −Ri|| is smallest in a least-squares sense. Here and in the



(a) Original

(b) With shading

(c) Filtered

Figure 8. (a) Original Kodak image. (b) Same image with a randomly

generated shading applied. (c) Result of removing the shading by applying

an albedo convolution filter optimised for the Kodak dataset.

next two equations, ||.|| denotes the Frobenius norm. Our percent-
age recovery error errorR() is defined as

errorR(R̂i,Ri) =
100×

∣∣∣∣kR,i R̂i −R
∣∣∣∣

||Ri||
. (17)

Of course, we need to compare our method to the error found
when the image Ci is not filtered at all (i.e. we do nothing to
remove shading). For consistency, we also allow a per image
scaling term kC,i that is designed to minimize ||kC,iCi − Ri|| in
a least-squares sense. Thus the null error, errorN (the error with
no filtering) is calculated as

errorN (Ci,Ri) =
100×

∣∣∣∣kC,i Ci −R
∣∣∣∣

||Ri||
. (18)

Figure 9. Left (red): Distribution of percentage error from the ground truth

when 10,000 random shadings were applied to randomly selected Kodak

images. Right (blue): Same error distribution after filtering. Note: The white

circles indicate the medians and the horizontal bars the means.

For 10,000 randomly generated shaded images Ci (i =
1,2, · · ·10,000), we calculated the percentage recovery and null
errors. These errors are visualised in the violin plot of Fig. 9. Note
that we only considered shadings with a mean null error above
25% as below this threshold the visual effect of shading was often
not significant but at 25% the shading effect was always clearly
evident. The mean of the null error, i.e. the “do nothing” error, on
the LHS (red violin) is 0.61 and that of the percentage recovery
error on the RHS is 0.31, and so application of the filter halves
the error. Furthermore, the largest errors post-filtering are much
diminished, as indicated by the top section of the violins.

While it is pleasing that the error is halved, it is not close to
zero. But, this is to be expected. First, the Kodak images them-
selves often have some shading that is mixed with our synthetic
shading superimposed on top, and we cannot expect our filter to
distinguish these. Furthermore, linear filtering in the log domain
can deliver only so much. Removing 50% of the effects of shad-
ing with this simple convolutional processing is a good result.

Finally, as a qualitative test we applied the above filter opti-
mised for the Kodak dataset to unseen images, namely the TM-
DIED dataset [20], which has images that often lack detail due to
the strong shading present. In Fig. 10 we show one of the images
before and after the application of the filter. This is a nice qualita-
tive result when we consider that we used a convolution filter that
was optimised for a different dataset.

Conclusion
In this paper we reformulated Hurlbert & Poggio’s least

squares optimisation approach to center/surround retinex [13] and
showed that it can be solved analytically. The Hurlbert & Poggio
method, based on sampled albedos and shadings, returns filters
that are very jagged in shape. Here we showed that their optimi-
sation depends on the autocorrelations of the shading and albedo
images, where the actual images we record in the real world are
products of shading and albedo. We argue that we should use
autocorrelation matrices that account for all shadings and albedo
images, and we derive analytic expressions for these. When all



Figure 10. Upper image: Original image from the TM-DIED dataset. Lower

image: Output after applying the filter of Fig. 7, which was optimised for the

Kodak dataset.

the likely data is considered, the optimal center/surround filters
are smooth. Our method is general in the sense that the shape
of the filter can be tuned to the expected statistics of shading and
albedo in an image.

Experiments validate our method. Qualitatively, our filter
can effectively mitigate the effect of shading from images, and
this is also seen quantitatively for a large set of semi-synthetic
test images (actual images with shading superimposed).
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