of the
ROYAL ASTRONOMICAL SOCIETY

MNRAS 535, 2449-2468 (2024)
Advance Access publication 2024 October 29

The Meissner effect in neutron stars

S. K. Lander*

https://doi.org/10.1093/mnras/stae2453

School of Engineering, Mathematics and Physics, University of East Anglia, Norwich NR4 7TJ, UK

Accepted 2024 October 24. Received 2024 October 24; in original form 2024 September 2

ABSTRACT

We present the first model aimed at understanding how the Meissner effect in a young neutron star affects its macroscopic
magnetic field. In this model, field expulsion occurs on a dynamical time-scale, and is realized through two processes that
occur at the onset of superconductivity: fluid motions causing the dragging of field lines, followed by magnetic reconnection.
Focusing on magnetic fields weaker than the superconducting critical field, we show that complete Meissner expulsion is but
one of four possible generic scenarios for the magnetic-field geometry, and can never expel magnetic flux from the centre of the
star. Reconnection causes the release of up to ~ 5 x 10* erg of energy at the onset of superconductivity, and is only possible for
certain favourable early-phase dynamics and for pre-condensation fields 102G < B < 5 x 10'* G. Fields weaker or stronger

than this are predicted to thread the whole star.
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1 INTRODUCTION

The hallmark of superconductivity in a material is the Meissner(-
Ochsenfeld) effect, characterized by an expulsion of magnetic flux
and occurring once the temperature 7 drops below some critical
value T,. The nature of the expulsion depends on the strength B
of the magnetic field through the material prior to the onset of
superconductivity. For weak fields, there is a complete expulsion of
flux from the interior of the superconducting sample; for sufficiently
strong fields, superconductivity is destroyed and the conductivity is
normal; for intermediate field strengths, there is a partial expulsion
of flux. The nature of this latter state depends on the kind of
superconductivity that is operative, but generally is characterized
by narrow structures of concentrated flux that have returned to the
normal regime, surrounded by superconducting regions with zero
magnetic field.

In the laboratory, the magnetic field is imposed on a sample exter-
nally, and once cooled below T, the sample sets up a supercurrent that
screens the external field and ensures the sample harbours no internal
magnetic flux. But this effect is also important in astrophysics, being
operative in one class of magnetic stars: neutron stars (NSs). The
extremely high density of an NS core leads to a correspondingly
high critical temperature for superconductivity, and efficient neutrino
cooling allows the star to drop below this value shortly after birth.

A few features of the physics of NSs indicate that any magnetic-
flux rearrangement occurring due to the transition to superconduc-
tivity will differ from the Meissner effect familiar from terrestrial
physics. For one, their magnetic field is internal to the star, produced
by the persistent electric currents within the stellar fluid. As the
Meissner effect is not intrinsically dissipative, it is less obvious how
to expel this field than in the laboratory setup. Secondly, 7, varies
considerably throughout the core and is highest close to the crust—
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core boundary; the Meissner effect will therefore proceed gradually,
on the cooling time-scale, and rather than expelling the core magnetic
field may instead trap some of it. Finally, terrestrial superconductors
are solid, and the electron fluid becomes superconducting. An NS
core is entirely fluid, and instead of the low-mass electrons, it is the
proton fluid which forms a superconductor. Because the neutrons,
with their lower critical temperature, only become superfluid consid-
erably later on, the core may be treated as a single fluid at the onset
of superconductivity. We are therefore in a magnetohydrodynamic
(MHD) regime, with the additional restrictions that places on the fluid
flow, and therefore on how Meissner expulsion may be realized.

The aim of this paper is to explore how the Meissner effect operates
in this setting, and what the result is likely to be on the star’s large-
scale magnetic field.

2 THE ONSET OF SUPERCONDUCTIVITY:
TERRESTRIAL VERSUS NEUTRON-STAR
CONDITIONS

Superconductivity occurs when it becomes energetically favourable
for two fermions to become coupled into a Cooper pair, notwithstand-
ing the Coulomb repulsion between them. In terrestrial materials, it
is the electrons in the medium that may form Cooper pairs; in NS
cores, the proton fluid. The critical temperature, below which pairing
sets in, depends upon the properties of the medium, and is well
understood for low-temperature superconductors — generally defined,
in the terrestrial case, as those for which 7, < 77K, the boiling
point of liquid nitrogen. For NS cores, the typical value is rather
higher than this, 7. ~ 10°K, due to their vastly higher densities.
This means that it is still appropriate to treat them with the standard
theory of low-temperature superconductivity, whose fundamentals
are covered in several textbooks (we frequently draw upon Tinkham
2004 here). For temperatures 7 > T, superconductivity is destroyed,
and the medium behaves according to the usual equations of classical
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electrodynamics. Analogous to 7., there also exists a critical field
strength H,: superconductivity can be destroyed by increasing the
magnetic-field strength B beyond H,., as well as by heating it
above T..

In a typical, small, sample of terrestrial superconductor, 7,
B, and the mass density o will be very close to constant, and
once cooled sufficiently, the onset of superconductivity will occur
effectively instantaneously and globally throughout the sample. The
Meissner effect sets in, with the superconducting electrons forming
a supercurrent that screens the interior of the sample from the
externally imposed field, and in the simplest case of low temperatures
and weak magnetic fields B < H,, the magnetic flux is effectively
transported out of the bulk of the sample, into a thin boundary
layer. Like the onset of superconductivity, the action of the Meissner
effect in expelling magnetic flux is effectively instantaneous, leaving
a steady-state solution where the expulsion has been completed.
Really, although the term ‘Meissner expulsion’ has connotations
of the process of field rearrangement itself, there is no ‘Meissner
term’ that can simply be inserted into Ohm’s law and thence into
Faraday’s equation to describe the evolution of the field during this
phase. Instead, the expression ‘Meissner effect’ is used to mean the
final state once field rearrangement is over, where the free energy is
minimized. This endpoint can be readily calculated, from the London
equation for a magnetic field B in equilibrium:

B

2 _
VB_)\z'

M
The solution to this is a magnetic field that drops exponentially from
its external value to zero inside the medium, over a length-scale A
known as the penetration depth, which is in good agreement with
experimental studies. Though the final Meissner state is simple, a
literature review indicates that the very brief phase of flux rearrange-
ment prior to the realization of this state is not a research priority for
the field of terrestrial superconductivity, neither for experimentalists
nor theorists. It has even been argued that the standard theory of
superconductivity is not actually able to explain the dynamics leading
to Meissner expulsion (Hirsch 2012).

In contrast to the terrestrial case, the onset of superconductivity
and the Meissner effect are slow processes for an NS. 7, depends
on p, which in turn varies by a factor of up to ~ 10 in an NS core.
Because the core evolves into a roughly isothermal state before the
first onset of superconductivity, the variation in 7, throughout the core
directly corresponds to variation in the time at which different layers
become superconducting. Neither the density profile of the core, nor
the critical temperature, are known to a high degree of certainty, as a
result of differing approaches to treat the relevant microphysics — but
the qualitative details are quite robust (Sedrakian & Clark 2019), and
are as follows. The first thin shell of superconducting matter forms
in the outer core at some radius R, not far in from the crust—core
boundary, some minutes after the star’s birth. The shell becomes
thicker, expanding both inwards and outwards on the cooling time-
scale for the star; it reaches the crust—core boundary quickly, but its
inward progress is slower. Here, the evolution may differ from model
to model, depending on the equation of state and gap model, and in
some cases the superconducting region may still not have reached the
centre after 10% yr (Ho, Andersson & Graber 2017); though for some
of the models presented here, the inner part of the 7, profile may be
irrelevant, as the inward progress of the superconducting shell can
be arrested by a core region of magnetic field amplified to the critical
field strength (see Section 5). Note that the core neutrons will also
undergo pairing, forming a superfluid, but at a substantially lower
critical temperature of ~ 5 x 108 K (Page etal. 2011), corresponding
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to a stellar age of ~ 300 yr; we will therefore treat them as a normal
fluid throughout this paper.

We will use a single critical temperature and cooling model here
for simplicity, but clearly the analysis could be repeated for any
other equation of state and gap model, were there motivation to do
so. In particular, following Ho, Glampedakis & Andersson (2012),
we use an approximation to the proton pairing gap of Chen et al.
(1993), parametrized in terms of the particle number density, which
can then be rewritten to give 7, as a function of p (multiplying the
number density by the average nucleon mass). Converting this into
an expression for 7, as a function of radius requires us to specify a
density profile for the star, i.e. an equilibrium solution for a particular
equation of state. An obvious simple choice would be the analytic
solution from the Lane-Emden equation for an N = 1 polytrope, for
which the density profile is

. Tr
o(r) = psincé ; & = R 2

*

where p, is the central density. However, although we will employ
this later for an analytic expression for a magnetic-field equilibrium
(for which, we will argue, it is quite accurate), for the calculation of
T, itresults in arather unrealistic profile. Instead, we find that a tweak
to equation (2) gives a profile very close to that of the SLy equation of
state (Douchin & Haensel 2001) for densities above the crust—core
boundary value p.. = 1.4 x 10" gecm™3 (which is the only part of
the profile relevant here):

0(r) = per/sinc(1.06¢). 3)

Of course this expression is of no significance in the context of
the Lane-Emden equation — it is just a convenient closed-form
expression that emulates a realistic core equation of state. The
critical temperature also depends on the proton fraction x,. Following
Glampedakis, Andersson & Lander (2012), we assume a simple
linear dependence on p:

x, =012 “
Pe

Utilizing these results, and with the parametrization of Ho et al.

(2012), we are able to produce a critical-temperature profile.

Finally, to track the spreading of the superconducting region over
time as the core temperature drops, we use the closed-form cooling
prescription for an isothermal core of Page, Geppert & Weber (2006),
employing values for the completely unpaired case (recalling that
neutrons, representing the bulk of the star’s mass, are normal at this
stage). Comparing this with the 7, profile, we find that the onset of
superconductivity happens after 170 s and at aradius of /R, = 0.79.
The spreading of the superconducting region then proceeds as shown
in Fig. 1.

The aim of this paper is to consider possible scenarios by which
the Meissner effect is realized in an NS, over the long phase during
which the region of superconductivity spreads to encompass most of
the core. We will argue that whether or not the magnetic field can
be rearranged to realize the Meissner effect depends on processes
occurring just as a first thin shell drops below T,. The first process
involves fluid motions at the onset of superconductivity which,
through Alfven’s frozen-flux theorem, drag field lines around; the
second is the subsequent process of magnetic reconnection that
causes sufficiently distorted field lines to pinch off and separate.
If either process is ineffective the Meissner state will not be realized,
even though it is the state minimizing the free energy of the system
for B < H.. The field configuration resulting from this first phase
then dictates the later evolution of the magnetic field in the face of a
spreading region of superconductivity.
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Figure 1. Left: critical temperature for proton superconductivity, using an approximate model similar to that of Ho et al. (2012). Assuming an isothermal
core cooling according to the approximation of Page et al. (2006) and overlaying these (horizontal) lines for different ages, we find that the first thin shell of
superconducting matter forms after 170 s at the dimensionless radius marked R, and the superconducting shell reaches the crust-core boundary after 22 min. A
few other ages are shown, and in the absence of magnetic field the entire core will become superconducting after 42 yr. Right: thickness of the superconducting

shell, as a fraction of the stellar radius R,, as a function of time ¢.

3 FIELD REARRANGEMENT AT THE ONSET
OF SUPERCONDUCTIVITY

What happens when the first superconducting shell forms will dictate
the later magnetic-field structure, so this is a logical place to start
any analysis.

3.1 Time-scales

The likely slow nature of Meissner expulsion from a superconducting
NS core was discussed in the landmark paper of Baym, Pethick &
Pines (1969a), who identified the process with that of Ohmic decay:

oB 1 c?
— =——Vx|—VxB 5)
at 4 o

with characteristic time-scale

4rol?

h,
TOohm = o, (6)

c2
where o is the electrical conductivity and /., Some characteristic
length-scale for the magnetic field. This implicitly assumes that
the mechanism for transporting magnetic flux in order to achieve
Meissner expulsion must be a dissipative one. But NS core matter —
in its normal state — forms an outstandingly good electrical conductor,
leading Baym et al. (1969a) to conclude that field expulsion would
proceed on a time-scale comparable with the age of the Universe.
This assertion has been reported uncritically ever since, but—as we
have already noted—the condensation of the core protons into a
superconducting state is itself very slow and may never be completed,
so clearly one cannot make estimates for the whole core in this
manner. The spreading of the superconducting region occurs on the
cooling time-scale, and is of great relevance, since it may be ongoing
in at least the younger observed NSs, and could have important
observational consequences. The only study to date that explores this
time-dependent process appears to be that of Ho et al. (2017). These
authors make a significant new contribution to the problem: a detailed
comparison of the shortest magnetic-field evolutionary time-scales
(which they find to be Ohmic decay and the drag due to scattering of
electrons against flux tubes) with the cooling time-scale. From this
they find that the cooling time-scale is always shorter than that of
field evolution, until a temperature of T < 103 K (equivalently, an
age > 10° yr), and therefore that in any NS hotter (younger) than
this, flux expulsion is not possible.

What these earlier studies and others all have in common is the
association of a Meissner-type expulsion from a region of the star
with decay of the magnetic field there, but the Meissner effect is not
itself instrinsically dissipative. In fact, as noted earlier it is not an
evolutionary process at all, but just a statement about the system’s
desired minimum-energy equilibrium configuration (in its simplest
form, it is found as a solution to the time-independent London
equation 1).

Here, we build on the arguments of Ho et al. (2017), but argue that
the shortest relevant magnetic-field time-scale is not due to either of
the secular dissipative effects they invoke, but rather the dynamical
time-scale associated with the advection of magnetic field by the
fluid flow. This evolution is given by the expression

oB
— =V x (v x B), 7
ot

where the velocity could, in principle, be approximately as high as the
Alfvén speed vy = B//4mp. Here, we are interested in the fastest
possible evolution, so we set |v| = vy4, leading to a characteristic
dynamical time-scale

lchar lchar\/ 47[)0

"= VA - B
where we have employed the short-hand notation that a numerical
subscript n on a variable means its value in cgs units divided by 10",
e.g. Lehar.6 = lchar/ (10° cm). In equation (8), T, is vastly shorter than
flux-dissipation time-scales, but the comparison with the cooling
time-scale 7. is equivocal. Taking, for example, the result from
Page et al. (2006) for slow neutrino cooling (i.e. indirect Urca
processes) in the absence of any Cooper-pairing, and using their
fiducial values for heat capacity and the temperature—luminosity
relation, we have

Teool X 3 X 10° T9_6 S. )

=35 Lhars01s B s, (8)

Evaluating this for the peak critical temperature from before, Ty =
6.8, gives T = 30s — identical (to the level of approximation)
to the pre-factor from equation (8) for t4, and presaging our later
conclusions that the efficacy of the Meissner effect depends quite
sensitively on the strength and characteristic length-scale of the
magnetic field at the onset of superconductivity.

We will explore this dynamical Meissner process in detail, re-
garding it as one that achieves flux expulsion mostly through field
rearrangement, rather than a wholesale dissipation of flux.
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3.2 Restrictions

However the Meissner effect proceeds, it has to obey some basic rules
(Mestel 2012). First, by integrating the Maxwell equation V - B = 0
over the volume enclosed by the initial superconducting shell at
radius r = R and converting it to a surface integral over this shell,
we see that the magnetic field normal to the surface B, must be
continuous across this surface:

0= B" - B
- 1
= B — B for a spherical surface r = R. (10)

This result is universal, and so no evolution mechanism can simply
‘cut’ and rejoin radial field lines across the initial shell of super-
conductivity in order to effect flux expulsion. That is, even in the
previously considered idea of flux expulsion via dissipation, it is
not enough for Ohmic decay simply to reduce the overall magnetic-
field strength across the superconducting shell — it must qualitatively
rearrange it too.
Secondly, we define the magnetic flux through a surface S:

SE/B-dS=/BldS

:/ﬁ@azw/&mﬁﬁmwww
for a spherical surface r = R. (11)

In the ideal MHD limit, § must be conserved during the advection
of field lines by the fluid, i.e.
038

E =0:>gin =Som=30, (12)

where §in, Sout, and Fp are, respectively, the magnetic flux across the
inner and outer boundaries of the superconducting shell, and across
the shell of radius » = R just prior to the onset of superconductivity.
This will be exactly satisfied for the dynamical-time-scale process
of dragging field lines around by the fluid, and very well satisfied
for almost all of the epoch during which the superconducting
shell expands, given that the cooling time-scale is almost certainly
considerably shorter than the Ohmic decay time-scale. The one
exception, where a significant change in § may occur on short time-
scales, is if there is a phase of magnetic reconnection across the
newly formed superconducting shell.

3.3 Pre-condensation field configuration

To gain any detailed understanding of how much the Meissner
effect acts, we need a quantitative model of the magnetic field By
immediately prior to the first onset of superconductivity. Without
this we cannot make any predictions, since time-scale and energy
considerations both involve the characteristic length-scale and dis-
tribution of the magnetic field. The restrictions (10) and (12) will
also have different implications for different field geometries. For
example, one could imagine a contrived initial field configuration
that just so happens to have B; = 0 all along the spherical shell
at which superconductivity first sets in — i.e. there are no field
lines crossing the shell. Neither of the two earlier restrictions
applies, and as the superconducting shell expands it is able just
to push the outer zone of the field further outwards, and the
inner zone further inwards; it can thus straightforwardly realize a
complete Meissner expulsion. This field configuration is, however,
a pathological case: a poloidal field would never naturally have
such a geometry because, among other reasons, the radius r = R
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is of no physical significance to the pre-condensed state of the
star.

On the other hand, every purely toroidal field has the property of no
field lines crossing » = R, potentially allowing for a straightforward
expulsion from the growing superconducting region (see later dis-
cussion, in Section 6.1). There are, however, two strong arguments
to dismiss toroidal fields as generic models for an NS field: first,
all their field lines close within the star, leaving B = 0 outside and
rendering the object undetectable as a typical NS; secondly, such
field configurations are dynamically unstable (Tayler 1973) and so
could not be long-lived.

In fact, the second argument against purely toroidal fields also
applies to purely poloidal fields: they suffer instabilities on dynamical
time-scales and so will not be realized in nature (Wright 1973),
meaning that any realistic field configuration must contain both
toroidal and poloidal components, whose exact form will not be
generic but rather determined by the birth dynamo that amplifies the
field, together with early-time dynamics and stability. However, for
the purposes of this paper the most important feature of any realistic
pre-condensation field configuration is that there will always be field
lines crossing the initial superconducting shell. Now, without any
straightforward route to a Meissner-expelled state, the magnetic-field
evolution will involve the interplay between the superconducting
region wanting to realize its minimum-energy state, and the energy
penalty associated with stretching and breaking field lines in order
to realize such a state.

We wish to start with the simplest non-trivial, realistic, pre-
condensation field configuration, and one we can progressively build
upon to increase the level of realism. For this, we will take an axisym-
metric, purely poloidal, dipolar, magnetic field. This case embodies
the basic and most important feature for our analysis: that magnetic-
field lines will always cross the nascent superconducting shell. If
one understands this test case, then we argue later on (Section 6.1)
that more realistic, complex field geometries — featuring higher
multipoles, a toroidal component, a non-axisymmetric structure —can
be tackled incrementally, and do not pose specific new conceptual
challenges.

We will also assume that the magnetic field is weak enough so
that the minimum energy state is full flux expulsion (regardless of
whether the star can actually achieve this). Quantifying the strength
of a ‘weak’ field warrants a brief digression. We first remark that
different regions of an NS may harbour protons with different super-
conducting properties, known as type-I or type-II superconductors.
We will not discuss the differences in detail here (although see e.g.
Tilley & Tilley 2019; Glampedakis, Andersson & Samuelsson 2011),
since the classification is related to the minimum-energy state of
a superconductor in the presence of stronger magnetic fields than
those we consider here. We do, however, need to understand the
physical meanings of the four critical fields related to these type
of superconductivity: these are usually denoted H,.;, H, for type-I
superconductivity and H,, H,, for type-II superconductivity. Two
of these fields represent upper limits: superconductivity is destroyed
if B > H, (H.,) for a type-I (type-1I) superconductor, meaning the
stellar fluid then behaves as in normal MHD. The other two fields are
lower limits for flux penetration: if B < H.; (H,;) for a type-I (type-
II) superconductor, the minimal-energy state is full flux expulsion.
Finally, magnetic fields with strengths between these lower and upper
limits will penetrate the superconductor, but through small-scale flux
structures rather than the smooth local field distribution expected for
normal MHD.

The critical fields for a type-1I superconductor depend only on
quantities related to the equation of state (Glampedakis et al. 2011),
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in particular the proton fraction and the effective proton mass' and not
the magnetic field itself. The upper critical fields for type-I and type-
II superconductors are also related in a simple way, H,, = V21H, /&,
where £ is the proton coherence length. But the lower critical field of
a type-I superconductor is geometry-dependent — for example, for a
spherical superconductor in a vertical field, H.; = (2/3)H,; in other
geometries H,; may be as high as H, or as low as zero.

The critical fields do not all vary in the same way with the star’s
density (equivalently, radius), but ignoring the very specific case
where H, drops to zero for the type-I case, the variation in the lower
critical fields H.; and H.; will generally only be by a small factor,
mainly in the rough range 5 x 10" — 10"* G (e.g. Glampedakis
et al. (2011)). Our priority is to establish a single, representative,
cut-off value below which a magnetic field will be energetically
favoured to be expelled from the superconducting region, without
needing to change treatment above a certain density, nor for a
certain field configuration. Because the variation in lower critical
fields is relatively small, we will simply assume a spatially constant
critical field, and re-appropriate the symbol H, to denote this value,
remaining agnostic about the type of superconductivity, i.e. by
‘weak fields’ we mean the case

B < H., where H. = const =5 x 10" G. (13)

Although at least some NSs probably host interior fields B > H,, it
will be easier to tackle that case once the weak-field case is better
understood. We briefly discuss stronger fields at the end of this
paper, but defer any detailed calculations to future work.

3.4 Stretching of field lines during the onset of
superconductivity

Having established a representative pre-condensation magnetic field
and explored restrictions on how this field can be rearranged, we are
now in a position to describe our scenario for realizing a Meissner
state on a dynamical time-scale. This scenario consists of two steps:
first, distorting the field through advection into a geometry amenable
to magnetic reconnection, and secondly, the reconnection phase
itself. We consider the first step in this subsection, and the second in
the following subsection. The first step envisages a transitional phase
between the normal and superconducting phases: that, at the onset
of superconductivity, fluid motions (treated with normal MHD) seek
to drag the magnetic field into the lower energy state desired by the
superconducting shell. To start with, then, we need to understand
whether this is plausible.

The minimum thickness for which the incipient shell can display
its superconducting properties is given by the penetration depth A,
which for the outer part of the NS core (where superconductivity will
first develop) is given by (Mendell 1991)

A~ 107" cm. (14)

Clearly the shell’s thickness will expand to a huge multiple of
A almost instantaneously, well within a typical Alfvén time-scale,
which by equation (8) is of order seconds. This suggests that long
before any fluid motions can act to distort the initial magnetic field,
the shell will be firmly in the superconducting phase, invalidating
the whole approach of this paper. However, the fact that the incipient
superconducting shell is — by definition — at a temperature 7 =~ T,
changes this conclusion.

ISee e.g. Chamel (2008) for profiles of these quantities.
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Figure 2. Geometry of a field line distorted from its original length L; due
to shearing in the incipient superconducting shell (the thick shaded purple
circle).

The penetration depth A and critical field H. are temperature-
dependent, and at temperatures close to 7, differ from their zero-
temperature values Ay, H,, in the following manner (Tinkham 2004):

MT ™" :
U:[l—()} ,ﬂ=1—<1>. (15)

)‘0 Tc Hco Tc
Consider the state of the star 10 s after the onset of superconductivity.
After this time, the superconducting shell has already expanded to
0.05R,, i.e. 6 x 10* cm for a 12-km star: likely to be far longer than
the characteristic length-scale for any fluid motion (this is discussed
more in Section 3.5). The critical temperature at the inner and outer
surfaces of the shell is (by definition) exactly equal to the current
temperature of the core, whilst within the shell at »r = 0.79R, —
the point of first onset of superconductivity — the temperature is
0.96 per cent below its critical value. This corresponds, using the
above relations, to a penetration depth 5.2 times longer than A and
a critical field 53 times lower than H,,. The former modification is
clearly not significant (A remains vastly shorter than any relevant
hydrodynamic length-scale), but the latter is dramatic. Taking our
fiducial value of H,, = 5 x 10'* G, it would mean that the 0.05R,-
thick superconducting shell would have a critical field no higher than
10" G in its centre, and lower towards its boundaries. Given that the
shell need not be this thick before field rearrangement occurs, H.(T")
would be even lower and very likely weaker than the existing field
in that region; from this we conclude that it is reasonable to treat the
early-stage dynamics in the shell with normal MHD.

For a simple dipolar geometry, field lines need to be advected
a distance comparable with the stellar radius, i.e. & 10°cm, in
order to produce a geometry where reconnection can later occur;
see Fig. 2. If the Alfvén speed is too low, this advection will not have
time to produce such a geometry before the region is enveloped by
the superconducting region. To estimate the characteristic angular
length-scale £ associated with advection in the incipient shell,
we set the Alfvén (8) and cooling (9) time-scales equal to one
another for the appropriate values for the onset of superconductivity
(Ty = 6.8 and p;4 = 4.3) within our model, yielding the result

L‘,”,() ~ 1.3By,. (16)

2Chosen for the sake of definiteness; our conclusions do not rely on the
specific time.
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From this, we conclude that hydromagnetic motions can rearrange
the field in the nascent superconducting shell sufficiently (i.e. over a
10°-cm scale) if the pre-condensation magnetic-field strength

By > 10" G. (17)

Why should these motions set in to start with? First, it is natural
to assume that the star is not strictly static; even motions from the
star’s birth may not have been entirely dissipated by viscosity in
that time. Secondly, even if the star had managed to achieve a strict
equilibrium with the pre-condensation field, the change of magnetic
force from the normal-matter Lorentz force to the corresponding
magnetic force for a superconductor would itself be enough to
violate the equilibrium and hence induce fluid motion. Thirdly, the
condensation energy density

H?
8
represents the difference in Helmholtz free energies at B = 0 for
the superconducting £ and normal f? states,? so that the Meissner
state is able to minimize free energy, even though it will involve
distorting field lines away from the pre-condensation state, and thus
increasing the overall magnetic energy (Annett 2004).

The detailed dynamics will inevitably be complex and are beyond
the scope of this first analysis, and we will just assume that they act
to drive the magnetic field in the superconducting region towards its
minimum-energy state of full expulsion. We come back to this point
in Section 7.

Fluid motions that stretch the field lines also increase the total
magnetic energy of the configuration, and for full Meissner expulsion
the fluid would need to advect the field lines in such a way as to bunch
them all up in a very small volume of the superconducting shell,
where they are highly distorted, have a small local characteristic
length-scale, and hence are susceptible to reconnection. Reconnec-
tion pinches the field lines off across the shell and allows for complete
Meissner expulsion, as discussed in the following subsection; for
this process, we need to invoke Ohmic decay. But first we consider
the case of gradually distorting the magnetic-field lines, when the
characteristic length-scale is still too long to need to worry about
dissipative effects, and we can assume infinite conductivity of the
matter, with the field lines perfectly frozen into the fluid.

Consider an infinitesimally thin flux tube of cross-sectional area
dA running along the entire interior length L, of a magnetic-field
line, before the onset of superconductivity. It is likely safe to assume,
to leading order, that any internal distortion of the field line will have
no effect on the part of the field line that extends outside the star, and
so we may ignore the exterior field throughout this calculation. We
define the magnetic energy of the flux tube &, as the (field) line
integral of the magnetic-energy density B2/8m, multiplied by dA:

2
LBOF ds, (19)

L T

= 1= as)

Coge = dA

where s is a parameter defining distance along a field line.

Now assume that the action of fluid motions causes maximal
distortion of the (still single) field line, dragging it towards the equator
within the superconducting shell, as shown in Fig. 2. When the field
line is thus distorted, it gains an additional length 2L, — one factor of
L, each for its journey towards the equator, and back again. Denoting
the radius at which the superconducting shell first appears by R, the

3This expression is for the condensation energy at zero temperature; the
energy will be substantially smaller close to 7.
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length L, must be in the interval
0<L,=<7R, (20)

and the total length after reconnection is the sum of the lengths of the
now-separated two field lines, i.e. L 4+ 2L,. The flux tube energy
also gains an additional piece from the stretching, with the total now
being related to the sum over the line integrals along both L; and

Lzl
2 2
[B(s1)] ds; +2 [B(s2)] dsz), @1

Cnag = dA
mag < L T L 87

where the two parametrizing functions s; and s, may be different.

This increase in magnetic energy must be sourced from some-
where, be it kinetic energy from residual fluid motion remaining
from the birth phase, the condensation energy, or any other physics
related to the onset of superconductivity. It is certainly unlikely that
the star will be entirely static, so there may be a substantial well
of kinetic energy to draw upon, but there is no obvious way to
quantify this whilst retaining the generality of the model. Instead,
as an indicative upper limit on how much the field can be distorted,
we will regard the magnetic energy increase as being sourced solely
by the condensation energy in the relevant superconducting shell.
Calculating this is problematic, since (unlike terrestrial calculations)
it is not obvious what volume of shell to use, and because within this
shell H.(T') could be substantially lower than the zero-temperature
value we mean when we write H.. To give ourselves an order-of-
magnitude idea of the kind of well of energy we may be able to draw
on, we estimate the condensation energy using the zero-temperature
H. =5 x 10" G and a shell extending from 0.8 — 0.9R,:

H? dv ~ 47[(0.9R,)* — (0.8R,)*] H?
/shell 87 - 3 8w
assuming a stellar radius R, = 12km.

This suggests — somewhat counterintuitively — that Meissner
expulsion from the superconducting region actually increases the
total magnetic energy of the star, at least in the initial field-line-
stretching phase; we can get a qualitative estimate of this increase
by assuming the stretching roughly doubles the average length
of field lines (based on the sketch of Fig. 2), and therefore also
roughly doubles the magnetic energy. Some, and possibly most, of
this additional energy will be lost if there is a reconnection phase
afterwards; we will make quantitative calculations of these values
for a specific model in the following section.

Finally, we recall that Meissner expulsion represents the sys-
tem seeking a lowest energy state where B =0, and so is
not expected unless B < H,. Essentially, the same physics is
also encapsulated by the requirement that any field-line stretch-
ing increases the magnetic energy by at most the estimate of
equation (22).

~ 10% erg, 22)

3.5 Resistivity and reconnection

We assume that the main cause of flux rearrangement during the
onset of superconductivity is due to advection by fluid motions,
with the field being perfectly frozen into the fluid, as is the case
where the conductivity is infinite. Through this process, the field
lines in the thin initial shell of superconducting matter could be
dragged around significantly; see Fig. 2 and the middle row of
cartoons from Fig. 3. However, Meissner expulsion can not be
completed unless the highly sheared magnetic-field lines ultimately
reconnect. We assume the matter can still be treated as in a normal
state here, since reconnection should occur (if it occurs) at the onset
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Meissner effect in NSs

Figure 3. Four different scenarios for the rearrangement of flux due to the expanding region of superconductivity, all for B < H,. An initially dipolar poloidal
magnetic field (top row) may be advected by fluid motions (middle row) and then experience reconnection (bottom row). The (in)efficacy of these processes

leads to four post-condensation field configurations.

of superconductivity, when T ~ T, and B > H.(T), as discussed
in the previous subsection. Even if there is significant supercurrent
screening, however, causing a substantial reduction in the value
of B compared with elsewhere in the star, this will not affect the
calculation, since neither reconnection nor cooling depend (to
leading order) on the magnetic-field strength itself.

Whether the advected field discussed in the previous section can
reconnect depends on whether or not this process is faster than the
spreading of the superconducting region as the star cools, i.e. the
efficacy of reconnection in this scenario can be measured with the
ratio:

trec

(23)

Teool

The smaller the value of this ratio, the more efficiently reconnection
should be able to alter the geometry of the distorted field in the
thin shell where superconductivity begins. Amongst the various
mechanisms for magnetic reconnection in the literature, there are
essentially two kinds of relevance here; both are related to Ohmic
decay (and so depend upon the resistivity of NS matter in its normal
state), but they differ in the assumed characteristic magnetic-field
length-scale and small-scale magnetic-field structure. The first is the
classic Sweet—Parker reconnection (Parker 1957; Sweet 1958), which
acts on the macroscopic field; the second is stochastic reconnection,
frequently invoked to explain the phenomenon of fast dynamo action
in stars (Lazarian & Vishniac 1999), where jagged microscopic field
structures allow for a faster diffusive rearrangement of magnetic
field.
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2456  S. K. Lander

We begin with the Sweet—Parker mechanism, whose reconnection
time-scale is simply that of Ohmic decay, T,ec = Tonm. TO evaluate
this, we adopt the density- and temperature-dependent expression for
o from Baym et al. (1969b), together with our previous approxima-
tion (4) for proton fraction, which gives us

o =47 x10% p L 3T s~ 24)

Now plugging this into equation (6) and using the cooling prescrip-
tion of Page et al. (2006), we arrive at the ratio

frec

=22 10%0, 22 035 Tt a1 - (25)
The large pre-factor suggests that Sweet—Parker reconnection is
unlikely to be effective at flux rearrangement at the onset of supercon-
ductivity, given the plausible range in which the other quantities can
vary. For our particular model, the onset of superconductivity occurs
at T = 6.8 x 10°K and at a radius 0.79R,., which corresponds to a
density p;s = 0.43 for a model with central density p. ;5 = 1. Let
us insert these values into equation (25), and also change notation
from ., to £, to emphasize the fact that the relevant length-scale
is related to the component of the magnetic field/fluid motion normal
to the nascent shell of superconductivity (cf. equation 16 for £):

e 37 % 10422 |, (26)
Tcool '

i.e. that only a characteristic field length-scale £, < 1073 cm would
allow for effective reconnection. A large-scale configuration like a
dipolar field, with £, ~ 10° cm, will therefore clearly not experience
any qualitative rearrangement on the onset of superconductivity. If
field lines are, however, strongly distorted in the initial shell of
superconductivity, the length-scale becomes shorter. Determining
this length-scale quantitatively requires a full, numerical, solution of
the MHD equations for this scenario, but we can at least determine
a minimum characteristic length-scale. This will depend on whether
the main dissipative mechanism acting on the MHD flow is due to
resistivity ¢?/(4m o) or viscosity v.

Although the NS is only 170s old, it is still comfortably in the
neutrino-transparent phase (Burrows & Lattimer 1986), for which
viscosity is dominated by the contribution from neutron—neutron
scattering (Flowers & Itoh 1979), with (Cutler & Lindblom 1987)
VA 19 o T rem? s 27)
At the onset of superconductivity in our model, this gives a value
of v &~ 10cm? s~'. We can now combine equations (24) and (27) to
yield an expression for the magnetic Prandtl number Pm, the ratio of
resistivity to viscosity:

Pm = 1.2 x 10° p_ 100 T, (28)

At the onset of superconductivity this gives Pm = 1.6 x 107, and
shows that the shortest characteristic length-scale will be set by
the viscosity, which acts on a fluid flow that can be no faster than
the Alfvén speed vy = B/+/4mp; now combining v and v, and
with suitable parametrizations, we arrive at a lower limit for the
characteristic length-scale of the viscous MHD flow:

JAar
. . P 2.1 %1073 p![* By, T em. (29)
Inserting values for the onset of superconductivity, within the model
we adopt, yields a viscous scale of

Lyise = 1.1 x 107331_2l cm. (30)

lvisc =

Reconnection cannot proceed if it requires a shorter length-scale
than /yisc, S0 we compare the latter with the /.y, required to produce
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a ratio of unity in equation (25): this shows that for Sweet—Parker
reconnection to be at least marginally effective, it requires

By > 10" G. 31

This only proves that this reconnection scenario is not implausible
for a maximally distorted pre-condensation field > 10'>G; only
simulations can determine whether it is actually likely. Note that
Meissner expulsion through the mechanism discussed in this paper
requires both significant advection of the fluid flow and effective re-
connection, and these lead to identical minimum-field requirements,
equations (17) and (31), respectively. This is just a coincidence, but
it does make the lower field bound more robust.

Next we examine the mechanism of stochastic reconnection. This
mechanism has proved invaluable in understanding the problem of
fast dynamos in astrophysics, i.e. dynamos whose field-amplification
rate becomes independent of resistivity in the limit of vanishing
resistivity. The original work on this topic gives a reconnection speed
Vrec that depends upon the rms velocity due to energy injection at the
stochastic scale vy, and upon the ratio of two key length-scales, the
width of the reconnection region L, and the scale of energy injection
linj (Lazarian & Vishniac 1999):

Lx lin'
vrecgvain{1/lim,1/l‘j}, (32)

with (as required by the motivation of understanding fast dynamos)
no dependence on o . This expression depends on details of the energy
injection, but an indicative range of values for the reconnection speed
18 Ve = (0.01 — 0.1)v, (Kowal et al. 2009).

The above result is valid when viscosity is weak, which en-
compasses most astrophysical fluid settings where dynamos and
field rearrangement are expected, but we just saw that NSs are an
exception to this, with Pm >> 1. In this large-Pm regime, the previous
reconnection speed is modified to (Jafari et al. 2018):

L, Re!/4pm~1/2
Urec S v —

l“ 1 +ln(Pm) ’ (33)

where [ is a parallel eddy length-scale. Note that in this case
reconnection is no longer truly ‘fast’, as it regains an implicit
dependence on resistivity through the Pm terms. The two length-
scales in this relation are not likely to be independent of one another,
as both relate to the field structure produced by the MHD flow
and therefore should scale with (or be equal to) the viscous scale;
we will therefore just pessimistically assume the ratio L, /I to be
unity, though it could be substantially larger. For the rms velocity
we assume vy = 0.01v,, and we calculate the Reynolds number
based on a flow moving at v,, giving Re = 1400 Bialchar,1- Then,
evaluating the ratio in the above expression, we arrive at a stochastic
reconnection speed (reduced by viscosity) of

Uree = 0.012 B ems ™. (34)

The ratio of reconnection to cooling time-scales in this case, for
our fiducial model parameters for the onset of superconductivity, is
therefore

2 =3B (35)
Teool

Although this has a far smaller pre-factor than for Sweet—Parker
reconnection (equation 25), this is counteracted by the weaker de-
pendence on /.y, and setting the above ratio equal to unity indicates
that the stochastic reconnection mechanism is effective on somewhat
less fine magnetic-field structures than Sweet—Parker reconnection,
lehar S 0.23152/3 cm. This length-scale is also more comfortably above
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the viscous scale (equation 30), at a field strength B, = 1. This
calculation could therefore be invoked to push the lower limit for
partial/complete Meissner expulsion below 10'2 G — however, given
the crude assumptions we have made about parameters related to
stochastic reconnection, and the fact that the work of Jafari et al.
(2018) was doubtless never intended for the kinds of extreme
magnetic Prandtl numbers we consider here, we find it safer to retain
10'2 G as an indicative lower limit.

To summarize, understanding the role of reconnection at the onset
of superconductivity is hampered by the complexity of the process,
even with the simplification that it occurs in normally conduct-
ing matter. Sweet—Parker reconnection involves one characteristic
length-scale; stochastic reconnection involves at least two — and
none of these can be satisfactorily analysed without simulations.
We can however draw some useful conclusions. MHD flows in the
high-Pm regime expected in a young NS are capable of producing
field structures on a length-scale where reconnection can take
place. Furthermore, if the average field strength B > 10'? G, then
reconnection is faster than cooling; the field may be rearranged
before the superconducting shell spreads too far. Weaker fields will
not be substantially rearranged; for stronger fields, the efficacy of
reconnection increases roughly linearly with field strength.

3.6 Four limiting cases

From the previous two subsections, we saw that the range of field
strengths for which a partial or complete Meissner expulsion could
occur is limited to

102G < By <5x 10MG, (36)

but that even within this range, expulsion depends on the fluid flow
and reconnection properties of the star at the point of formation of
the incipient superconducting shell. It is therefore now instructive
to consider four limiting cases of how the magnetic field may be
affected, and to examine the circumstances under which they may
be realized. The final field configuration depends on the efficacy of
both field-line advection and the subsequent magnetic reconnection.
These four scenarios are summarized in Fig. 3.

In the first scenario for the phase of field rearrangement, fluid
motions are effective at transporting the magnetic flux in the
superconducting shell to a small equatorial volume of the shell. In the
second scenario, there is also large-scale fluid motion, but this time,
it advects field lines towards the north and south poles. Finally, the
last scenario (scenario 3) accounts for the possibility of negligible
fluid motion, and so the field lines remaining undistorted as they
cross the superconducting region.

After the advective phase, any reconnection then occurs. In sce-
nario 1, the flux has been concentrated around the equator, forming an
X-point geometry with neighbouring field lines having the opposite
sense from one another. If reconnection is effective, such a geometry
is able to reconnect fully, with every field line pinching off across the
incipient superconducting shell, separating from the part of the field
line on the other side and rejoining a line on its own side (scenario
1i). If reconnection is ineffective, the concentration of flux produced
in an equatorial band (scenario 1lii) will remain there, threading an
otherwise B = 0 shell. But if the flux is concentrated around the
poles, reconnection cannot be effective, both because neighbouring
field lines will not have the opposite sense needed, and because the
characteristic length-scale of the field across the shell £ is too long
to experience the requisite dissipation to allow for reconnection. The
field must then continue to thread through the superconducting shell
in these two polar holes (scenario 2). In scenario 3, like scenario 2,
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there are no regions with sufficiently distorted field lines to be subject
to reconnection; the field lines towards the symmetry axis are already
fairly straight, and those around the equator will tend to be ‘combed
out’ by the boundary condition between the normal inner region and
the expanding superconducting shell (see Henriksson & Wasserman
2013, for a detailed discussion of this). All these possibilities are
plotted in Fig. 3.

Scenario 1i is what is usually understood by the term ‘Meissner
effect’, and is what is implied in magnetic-field evolutions that
implement a B = 0 inner boundary and call it a ‘Meissner boundary
condition’ (e.g. Hollerbach & Riidiger 2002; Pons & Geppert
2007). It is sometimes thought to be a consequence of type-I
superconductivity, and this is not correct; a type-II superconductor
can just as effectively expel flux. However, it clearly requires a
particular set of circumstances to arise, even for B < H, where it
represents the minimum-energy configuration, because the physics
may not allow for it to be realized. Scenario 3 is the opposite
limit: one in which the macroscopic magnetic field is essentially
unaffected in both its magnitude and direction by the developing
superconducting region, except that the closed-field-line region tends
to be pushed out of the core altogether, and into the crust. In our
model, all pre-condensation fields By < 10'? or > 5 x 10 G are
expected to follow this evolutionary path and end up threading the
entire superconducting core, but even with the ‘right’ initial field,
102G < By <5 x 10 G, scenario 3 is also the likely outcome
if there is limited advection of field lines. It is worth noting that
equilibrium models for a type-II superconducting core with B < H,
(Roberts 1981; Henriksson & Wasserman 2013; Lander 2014) also
resemble this outcome, with no field lines closing within the core
itself.

Scenarios 1i and 3 are two extremes: one where field is entirely ex-
pelled from the superconducting region, and another where it threads
the entire region. Between these two lie a variety of possibilities for
flux penetration in distinct, macroscopic regions, with other regions
where the field drops to zero; the two limiting cases of this group of
configurations are scenarios 1ii and 2.

We have argued that all of the four scenarios are, at the very least,
plausible, in that they place requirements on the length-scale and
time-scale of dynamics in the incipient shell which can be satisfied
for some part of the relevant parameter space. A detailed analysis of
the early evolutionary phase proposed here is well beyond the scope
of this paper, presenting a mixture of conceptual and computational
challenges (e.g. in modelling dynamics and reconnection at the onset
of superconductivity). None the less, several aspects of the different
scenarios are amenable to calculation, using some generic restrictions
from MHD theory together with the notion of a maximum permissible
field strength, the critical field. We discuss these next.

3.7 Quantifying scenario geometries

We are able to quantify, to some extent, the field borne from each of
our four scenarios, using the rules discussed in Section 3.2. We
are now focused on the field just after any field rearrangement
and reconnection has taken place, whilst the shell is still thin; this
corresponds to the bottom row of configurations in the cartoon of
Fig. 3, though the thickness of the superconducting shell there is
increased for clarity and should not be taken literally. In general,
both the magnetic-field component normal to the superconducting
shell B, and the component tangential to the shell By will vary with
position, in different ways. As sketched in the top panel of Fig. 3,
the pre-condensation field appears dominantly radial, i.e. B, > By,
but through advection (middle panel), it may generate a substantial
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parallel component, resulting in B; ~ Bj. Quantifying these effects
requires a far more sophisticated analysis than the scope of this work.
Instead, for simplicity we will assume that B is constant across the
region of the shell that it penetrates, and that the parallel component
in these regions is a fixed fraction of the normal component, i.e.

By =¢B,, ¢ =const. 37

Of the four endpoints, we will start with scenario 2, where the field
cannot be fully expelled and reconnection will be ineffective due to
the large-length-scale field geometry threading the polar regions of
the superconducting shell, with all neighbouring field lines having
the same sense. The simplest scenario is that superconductivity
minimizes the volume of the B # 0 region of the shell by squeezing
the field lines inwards towards the & = 0, 7 axis until the magnetic
field is so concentrated that its magnetic energy density reaches that
of the critical field, i.e. we are left with two normal-matter holes (one
for each pole) in the shell, where

B+ B! (1+¢H)B? H? H,
i+8 _A+OHB  He o He (38)
8 8 8 V1+22

Given that we do not expect any significant reconnection, let us
assume that the magnetic flux through both the inner and outer
boundaries of the superconducting shell Ty, Sou is equal to the
pre-condensation value §o; see equation (12). Just after the onset
of superconductivity we may approximate the initial radius of
onset of superconductivity R and the inner and outer radii of the
superconducting shell Ri,, Roy as all having the same value, and
the conservation of flux expression becomes a relation between
the normal magnetic-field component before B and after B
condensation:

Gopen

To = 47[72235)_ = 27'[732350St 2/ sinf df = Fin = Sou = Tpost-

(39)

Combining this result with the preceding equation to eliminate B5™*
yields an expression for the opening angle ;. of the normal ‘hole’
in the superconducting shell:

1+ ¢2BY
7’;{ L> ) (40)

c

Oopen = arccos (1 —

For this scenario, then, 6. = 7/2 when the pre-condensation field
components are B; = By ~ 3.5 x 104G - i.e. flux conservation
dictates that any field stronger than this must thread the entire initial
shell of superconductivity.

Scenario lii is similar to that of scenario 2, except that now the
field is confined around the equator. Again, superconductivity acts to
minimize the volume of the shell where B # 0, resulting in a single
equatorial ring of normal matter, cleaving the superconducting shell
into two halves. The only change to the previous calculation is that
the limits on the #-integral must now be changed from {0, Oypen} to
{0eq, /2}, where /2 — 6 is the half-angular thickness of the ring
(i.e. the total angular extent is double this, by equatorial symmetry),
and the result is:

1 2BV
V1T B ; 3 L>‘ @1

c

0cq = arccos (

As expected, the same value of magnetic field as for scenario 2, B, =
B) ~ 3.5 x 10" G, results in magnetic flux threading the entire shell.

Scenario 1i invokes a reconnection event to ‘pinch off’ all the
equatorial field lines and leave an unbroken B = 0 superconducting

MNRAS 535, 2449-2468 (2024)

shell. Clearly flux is not conserved during this process; beforehand a
general field crossing the radius of onset of superconductivity would
be expected to have B, ~ B and some flux §,, but afterwards
Sin = Sou = 0 and B, — 0 when approaching the superconducting
shell from either side, as steps in this component violate V - B =
0. By, on the other hand, is permitted to drop abruptly from its
value in a normal domain to zero in the superconducting shell, since
steps in this component can be matched with a surface current along
the normal-superconducting boundary. Flux conservation and the
traction condition on B do not, therefore, provide any restriction on
the geometry of scenario 1i.

Finally, in scenario 3, there is no motion tangential to the shell of
onset of superconductivity and so no distortion of field lines away
from their pre-condensation state. Once a thin superconducting shell
has formed, flux conservation and the traction condition imply that
the field lines must thread the entirety of the superconducting region
on a macroscopic scale, as they previously threaded that volume
when it was normal matter. As the shell thickens, the field lines are
thus combed out across the shell: not strictly radial, which would lead
to kinks at the inner and outer shell boundaries and so require the
existence of surface currents, but with minimal curvature to ensure
the whole length of each field line is smooth. On a microscopic scale,
however, the flux distribution will differ from the pre-condensation
state. The evenly distributed flux in the normal-matter region will
become split up into thinner flux structures in the superconducting
shell, over a transition region whose thickness is the penetration
depth. Depending on the type of superconductivity operative in the
shell, the flux structures will either be a predictable Abrikosov lattice
of evenly distributed flux tubes with central magnetic-field strength
B = H,; surrounded by B = 0 matter (type-II superconductivity),
or regions with various possible thicker (but still small-scale) flux
structures with B = H, alternating with B = 0 regions. These two
states are the favoured, minimum-energy, states for flux penetration
when H.; < B < H, (type-I superconductivity) or H.; < B < H,
(type-1I superconductivity), whereas for the weaker fields we con-
sider here, the global minimum energy state would be a complete
shell of B = 0. For this region, our scenario 3 represents a state that
is sometimes dubbed ‘quasi-stable’, but we would argue that there is
no need for the qualifying prefix ‘quasi’: it is simply stable, being a
local minimum-energy state from which there is no feasible route for
the system to reach the B = 0 global minimum. We believe this to
be a more solid argument than earlier ones (e.g. Baym et al. 1969a)
for why an NS with a relatively weak field has flux penetrating the
entire core rather than exhibiting the Meissner effect.

3.8 Energy release during reconnection

Let us denote the pre-condensation magnetic energy as Er?lag, and
use szfig to denote the additional magnetic energy gained from the
stretching of field lines in the initial shell of superconductivity. Since
in practice we will never be able to ‘measure’ the pre- or post-
condensation magnetic energies, the more relevant quantity is the
fractional change « in magnetic energy resulting from the advection

of field lines at the onset of condensation, i.e.

&
a= . 2)

mag

Reconnection takes a magnetic field from a higher energy config-
uration to one of lower energy, so this process always releases
energy; we will assume this is some unknown fraction 8 of the
energy gained during the advection pl}ase Er‘j};g.'How much df?pends
on various factors such as how extensive field-line stretching is, and
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the initial field geometry, but for any large-scale field rearrangement
the fraction will be significant, so we suggest 0.1 < 8 < 1. Note
that 8 > 1 is also quite possible: it means the Meissner-expelled
state is of lower energy than the pre-condensation field By. Recall
that reconnection will not occur for a pre-condensation field less
than ~ 10'? G. In addition, the requisite field-line stretching needed
to produce sharp features on which reconnection can act will not
occur if the pre-condensation field > H,. The value of By cannot be
converted to a precise pre-condensation magnetic energy because this
depends on the quantitative field structure, but we can approximate
it as some average magnetic energy density B3 /87 multiplied by the
volume of the star,

B2R? B \V' [ R\’
0 ~ 0% _ 41 0 %
8mag N = 2.9 x 10 <1012 G> (12 > erg. (43)
Summarizing the arguments of this subsection, the kind of reconnec-

tion event required to produce a Meissner-expelled magnetic field
will release somewhere in the range

Emag ~ af x (2.9 x 10" — 7.2 x 10%) erg (44)

of energy, where the parameters v and § are most likely to be of order
unity. In the following section, we will make quantitative calculations
of the former. The above energy release will coincide with the onset
of superconductivity, i.e. after a few minutes. Although the supernova
is still very bright at this stage, this rather specific signature could
potentially be detectable — or at least constrained. Furthermore,
exactly when it occurs would provide a valuable constraint on the
variety of different energy gap models, as it would lead directly to an
estimate of the maximum value of 7, (Lander et al. 2024). Although
enhanced cooling is also a signature of the start of Cooper pairing,
and neutron—neutron pairing may be responsible for the current
thermal evolution of the Cas A NS (whose age is around 350 yr,
Page et al. 2011; Ho et al. 2015), the corresponding effect due to
proton—proton pairing would occur so close to birth as to be masked
by the still-bright supernova. The possible energy injection discussed
here is therefore the only plausible possibility for observationally
constraining the proton gap model.

4 A QUANTITATIVE MODEL FOR FIELD
REARRANGEMENT

Any of the above scenarios could, potentially, be realized, with
the details depending on the pre-condensation magnetic field, the
internal fluid motion of the star, and the efficiency of reconnection
mechanisms. We now consider a simple concrete example where all
calculations are semi-analytic, to get some quantitative results.

The most general axisymmetric poloidal magnetic field satisfying
the solenoidal constraint V - B = 0 takes the form

B = Vu x ey, (45)

where u = u(r, 0) is the poloidal stream function. Note that from
equation (45),

B-Vu=0, (46)

which implies that u = const along a given field line. Every field
line can therefore be labelled the value u = u( along it, which will
be convenient later. This value lies in the range 0 < u < up,y, where
u =0 for 6 = 0 and up,, is attained at the centre of the equatorial
region of closed field lines, at which the poloidal magnetic-field
strength drops to zero.

In the case of a dipolar magnetic field in magnetohydrostatic
equilibrium in an N = 1 polytropic star, Monaghan (1965) found
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Figure 4. A purely poloidal field in hydromagnetic equilibriuminan N = 1
polytropic star. The surface of the star is at a radius r = 7, in the usual
dimensionless units used in the Lane—-Emden equation. Colour scale shows
the magnitude of the field; and white lines show contours of constant value

of the stream function, equivalently, the magnetic-field lines.

the following analytic solution for the stream function:

(47)

u=PBsin’0 (431711é 2€2>
£ )

—4cosé —2&Esiné — 5

where ‘B is an arbitrary constant setting the magnitude of the
magnetic field and £ is the usual dimensionless radius from the
solution to the Lane-Emden equation (2). We plot the magnitude
and direction of the resulting magnetic field in Fig. 4. Note that the
inclusion of more realistic equations of state and thermal pressure
contributions result in only minor deviations from this simple model
(Lander et al. 2021).

To evaluate the magnetic energy along a flux tube (equation 19),
we need a way to parametrize position along a given field line. We
cannot use the stream function u, because a field line is defined by
u = const. Each field line is a set of 2D coordinates {r, 6}, so if we
can express either of the coordinates as a function of the other, i.e.
r =r(0)or & = 6(r), this will give us a satisfactory parametrization
to use.

Looking at Fig. 4 and imagining drawing spokes radially outwards
from the origin (i.e. lines of 6 = const), we see that in general (it
is easiest to visualize in the equatorial region of closed field lines),
a single spoke passes through the same field line in two places, so
writing » = r(6) would map one radial value to two positions on the
field line, and therefore r(6) violates the definition of a function and
we cannot use 6 for location along a given field line u = uy. Instead
imagining concentric circles of constant r, we see that each of these
crosses a single field line in just one location; reversing the previous
logic means that we can parametrize position along any given field
line u = const = u( by . We may now evaluate the magnetic energy
along a flux tube (equation 19), but it is informative to start with
the simpler calculation of the length of a field line, stretched and
unstretched. We present the details for the case of advecting field
lines towards the equator, as in Fig. 2; the case of stretching field
lines towards the pole is a trivial modification to the calculation (and
we will give results for this case t0o).

MNRAS 535, 2449-2468 (2024)
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Figure 5. Length of unstretched field lines L; (solid line) and the additional stretched component L, (dashed line), in dimensionless units divided by 7, as a
function of the constant value of the stream function labelling each field line, from the straight field line running from pole to pole (1o = 0), past the start of the
closed-field-line region u( ~ 2.6 to the maximum value at the centre of the closed-field-line region u ~ 3.0.

Using a standard result for lengths of parametrized curves, an
unstretched field line u = u has length

Fmax 2
Ll(uo)=2/\/1+r2 <w> dr, (48)

Tmin

where the integration is carried out only in the quadrant shown in
Fig. 4, exploiting the equatorial symmetry of the field, so the factor
of 2 gives the full length of the field line. The length of the additional
stretched component is simply twice that of the circular arc from
where the field line intersects the radius » = R to the equator 6 =
w/2,1ie.

Lo(ug) = 2R (% — (R, uo)) . (49)

We plot L, and L, for field lines throughout the star in Fig. 5. To
understand this plot, recall that every field line can be labelled the
value u = u along it. The field line with u = 0 is the straight line
along the magnetic-field symmetry axis, which runs from pole to
pole. Moving away from this axis u increases,* reaching the value
ug = (2> — 12)/3 at which field lines begin to close inside the
star. Moving further into the closed-field-line region u continues to
increase, and reaches a maximum u = uy,x ~ 3.0069 at the centre
of the closed-field-line region. In the dimensionless units used, the
radius of the star is at a value . We therefore expect the straight
field line running from pole to pole to have a length equal to the
diameter of the star, 277, and for the length to drop to zero at the
centre of the closed-field-line region; this is seen in Fig. 5 for the
unstretched field line L. There is not a monotonic decrease in field-
line length from u = 0 to u,: a small cusp is seen corresponding to
the transition from open to closed field lines (only the length inside
the star is measured, otherwise it would be a smooth decrease at
the transition). If the field lines are maximally stretched towards the
equator and back at the radius of onset of superconductivity fixed
at R = 0.8R,, as shown in Fig. 2, the additional length is the value
L, plotted. The field line running along the symmetry axis should
have its length increased by 0.87 x 27 ~ 5.0, which agrees with

4Actually, as defined in the Monaghan solution, u drops from zero along the
axis to being negative definite everywhere else. When referring to specific
values of the stream function we actually quote the absolute value |« | to avoid
confusion when referring to the ‘maximum’ value um,x.

MNRAS 535, 2449-2468 (2024)

the plot, and this stretched component decreases to zero for field
lines progressively closer to the equator (which therefore have less
distance to cover), as expected.

Stretching magnetic-field lines increases the energy of the con-
figuration; recall Section 3.4. It is informative to think of this
process through the contributions of individual field lines, or more
specifically a thin volume with length given by the magnetic-field
line and some infinitesimal cross-sectional area dA. We will refer to
the integral of the magnetic energy density B?/8m along a field line
multiplied by dA as the ‘magnetic energy of the field line” and denote
this &,,. For the Monaghan field, combining the contributions from
the unstretched piece Qi?nag and the stretched region &} for a given
field line u = uy gives us:

" B(r, 0(r)P 400, )\’
0 ste
g = €+ E = {2/[8n 142 (T dr

F'min

2
£ 4R (% —O(R, uo)w» % dA, (50)

where we have combined equations (21), (48), and (49). In the
calculations that follow, we set the pre-factor B from equation (47)
to unity. This results in no loss of generality, as we are interested in
the fractional increase in magnetic energy per field line for a given
starting magnetic field, so the B factors cancel from numerator and
denominator in such a ratio. There is also no qualitative difference
between the field-line structure at different field strengths.

Fig. 6 shows that the increase in &, is not simply proportional to
the increased length of the field line, because the field strength at the
point where the superconducting shell begins varies across the star.
For ‘R further in, the total increase in field-line length is reduced, but
because the field strength is higher towards the centre, the magnetic
energy per field line is actually increased. We notice that the energy
increases are far greater if field lines are stretched towards the equator
rather than the pole. This is because in the former case, the field lines
that are most stretched are those in regions of strong magnetic field;
and in the latter case, the most stretching is from the closed-field-line
region, where B is small (and drops to zero in the centre).

This calculation is in dimensionless units, but because the
magnetic-field structure is the same at any field strength, the results
can be readily rescaled. The key result will be quantifying the
fractional increase in total magnetic energy o in the two cases
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Figure 6. Energy per field line as a function of value u = ug. Unstretched field shown with the solid line, dashed (dotted) lines show the additional magnetic
energy for each field line due to the stretched piece of the field when R = 0.8 (0.77). Left-hand panel shows the increase in energy by stretching field lines
towards 6§ = 7/2; and right-hand panel shows the corresponding energy increases resulting from stretching field lines towards 6 = 0.

where the field is stretched in the onset shell of superconductivity.
Note, however, this quantitative calculation adds nothing new to our
understanding of the efficacy of reconnection, i.e. the 8 parameter
from equation (44) describing the amount of magnetic energy that is
ultimately released.

We now want to understand the total increase in magnetic energy
when all the field lines across the shell » = R are suitably distorted
towards either the equator or pole. Similarly to the calculation for
the length of a field line (equation 48), we may also calculate the
area of the surface of revolution obtained from rotating this field line
through an angle of 27 radians in the azimuthal direction:

Fmax

2
/ 27'rx(r)\/1 +r2 (7(1907 u0)> dr
dr

Tmin

Fmax )
:4n/rsin9(r)\/1+r2 <M) dr. (51)

Si(up) =2

’
Tmin

Finally, the whole volume of the star can then be described as a set

of nested surfaces of revolution, each with constant # and with an

infinitesimal spacing du between them — that is, the volume of the

star V is given by the integral

V:/Sl(u)du. (52)
u=0

Similarly, we will find the magnetic energy of the original magnetic
field £),, and the additional stretched component £y, by first
evaluating the following functions (note that these differ from the
€mag functions in their extra 27 sin 6(r) surface area element in the

integrand) for a given field line u = u:

Tmax

2
Eo(uo)zi/Bzrsine(r)\/l—l—rz (@) dr, (53)

‘min X
Eqe(uo) = 87 R*sin (R, up) (% —O(R, MO)W) ’

(54
and then integrating these over u:
Umax

/ Eo(u) du, 56)

u=0

((/‘() _

mag

Umax

evr = /Em(u) du, (57)

mag —

u=0

In practice, we find consistent inaccuracies with this approach. The
volume calculated from equation (52) is 4.8 per cent greater than the
exact value of 477* /3 for a sphere of radius R, = 7, and the magnetic
energy for the pre-condensation field calculated in the same manner,
from equation (56), is 29 per cent greater than the straightforward
volume integral® of the energy density:

27w Ry
1 2 2 .
—_— B“r~sinf drdfde. (59)
8w

$=00=0r=0

These discrepancies seem to stem from a shortcoming of parametriz-
ing a field line as r = r(0), since although this is formally a satis-
factory choice (as discussed earlier), towards the equator field lines
become tangential to contours of constant radius — so a substantial
change in field-line location becomes a very small change in radius.
To check whether the parametrization was at fault or an error in
our calculations, we tried a different magnetic-field configuration
with straight vertical lines, and in this case, the integral of field-line
contributions over the range of values of the stream function did
yield the correct results for volume and magnetic energy. This gives
us confidence that the method of calculation is not itself at fault
and, although the resulting 29 per cent inaccuracy in the energy is
undesirable, it is likely to affect the calculations of both Egag and £V,
in a similar manner. Since we are interested in the fractional increase
in magnetic energy, a = E37, /Sfr’mg, the systematic inaccuracies in
both numerator and denominator are likely to cancel each other out
to a large extent, resulting in a ratio that is reliable to our order of
working. In Table 1 we present values for « for a range of plausible
values of the radius R of the nascent superconducting shell.
Returning to the arguments of Section 3.8, any reconnection event
will be accompanied by the release of a substantial amount of energy.
To quantify this, we now need to convert from dimensionless to cgs

SIn fact the magnetic energy evaluated both in this conventional way and via
the field-line parametrization should both take the radial integration out to
infinity; but the result of stopping at the surface should be the same for both
methods.

MNRAS 535, 2449-2468 (2024)
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units. Using the fact that the dimensionless radius 7 and magnetic
field at the polar cap B, are given by

Tr A B 4 8
Rf,Bp=fp=f—f, (60)

"= B 3 n?
we simply need to multiply these quantities by a pre-factor to yield
the physical ones:

r=32x10°R,cm, B, =19 x 10B,B), G. (61)

Two other useful relations are obtained from the dimensionless
magnetic energy Sr?mg = 5.4937. We can use it to define an average

internal magnetic field é, and hence find the ratio of polar cap to
average internal field, which is the same in both dimensionless and
physical units:

— ~ 0

B 1 8 €&
== T = 1.972. (62)
B, B BV V

We can also calculate magnetic energy from equation (56) in physical
units, which entails multiplying by B; R}, giving us:

2
B) R, \’
0 41 P *
Emag = 6.5 x 10 <1012 > (le ) erg. (63)

For simplicity, let us assume that all the additional energy from
field-line stretching is released, i.e. 8 = 1. In the case of the stretch
towards the equator, full reconnection is possible, and depending on
where the initial shell of superconductivity R is located (which in
turn depends upon the gap model), the value of o will differ (see
Table 1). This leads to a predicted energy release in the range

>‘ (o]

' =(35-6.0) x 10¥ B | erg. (64)

For our fiducial model with R = 0.79, the pre-factor in the above
expression is 4.8. In the case of stretching towards the pole, however,
we do not expect substantial reconnection — let us take 8 = 0.1 for
the sake of definiteness — and Table 1 shows us that « is also a little
smaller in this case, and so we estimate

&M =(0.33-0.51) x 10¥ B} s erg (65)

in this latter case, with a pre-factor of 0.39 for the fiducial model.
However such an energy release manifests itself, it will clearly
produce a rather weaker signal. Finally, scenarios lii and 3 both
assume reconnection is at best feeble, and so in these cases negligible
energy release would be expected at the onset of superconductivity.

Earlier on we used the requirement of flux conservation together
with B < H, to calculate the angular extent of any B # 0 hole
through the otherwise Meissner-expelled superconducting shell,
culminating in equations (40) and (41). This general treatment of flux
conservation can now also be made specific to the Monaghan field,
whose flux through a spherical shell of given radius is plotted in Fig.
7; note that the maximum value of the magnetic flux occurs at a radius
very close to that of the onset of superconductivity for our fiducial
model. For the post-rearrangement phase we made the assumption
that B? = B‘f, but one can see visually that for the specific model
considered here, the field is virtually radial at a radius of 0.797 (and
near to the equator, where the angular component is relatively large,
the overall magnitude is close to zero). We quantify the typical value
of Bf/B? with the ratio

[T BX(R, 6)d6

[T BX(R, 6)do

= 0.0048 for R = 0.797. (66)
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The criterion for overcoming superconductivity, written in terms of
B, then becomes

B, = A
T /1.0048

Otherwise we follow the same working as before, which for scenario
2 leads to a polar hole opening angle of

So
B 471R2HL.) (68)

= H, to our order of accuracy. 67)

BOopen = arccos (1

and for scenario 1ii, an equatorial ring of half-angular thickness

So
Bcq = arccos <m> . (69)

Both these angles are plotted in Fig. 8 as a function of field strength,
for the Monaghan field and our fiducial model for superconductivity.

Were the field strength in the inner and outer regions to remain
constant as the superconducting region expands, then by flux con-
servation through the polar hole (or equatorial ring), the B # 0 zone
within the superconducting shell would be of constant cross-sectional
area, i.e. acylindrical hole in the case of scenario 2. However, because
the expansion of the superconducting shell also decreases the volume
of the inner and outer normal regions, flux conservation also implies
that the field will be ‘concentrated’ and amplified. We explore this
next.

5 LATER EVOLUTION

5.1 Field evolution in NS cores

The expansion of the superconducting shell, in every case except
scenario 3, drives an amplification of the magnetic field in the
B # 0 regions, as described in the following subsection. The time-
scale for this process depends on the specific superconducting gap
profile, but at least the early phase should proceed over a mere few
years after birth, considerably faster than any other mechanism for
core-field evolution. At later times, if the critical temperature drops
significantly towards the centre of the star, the Meissner-induced field
amplification may slow down considerably, and it becomes important
to understand whether this process might work in tandem with other
field-evolution processes in the core.

Core field evolution is a contentious topic, with a variety of
approaches that lead to wildly different estimates for the charac-
teristic evolutionary time-scale: as short as 103 yr (e.g. Castillo,
Reisenegger & Valdivia 2020) and at least as long as 10'' yr (e.g.
Graber et al. 2015). This is not our primary focus here, but a review of
recent literature suggests that the only short-time-scale mechanisms
assume normal matter (i.e. non-superconducting protons and non-
superfluid neutrons, Castillo et al. 2020; Moraga et al. 2024). Earlier
work suggesting short-time-scale evolution in a superconducting
core (e.g. Jones 2006) has recently been criticized, with counter-
arguments suggesting far slower evolution (Passamonti et al. 2017;
Gusakov 2019), at least if the star is static (Gusakov, Kantor &
Ofengeim 2020).

We conclude that the dynamic Meissner effect considered in this
paper will, in general, not add to this discordance, as it should be
completed well before even the fastest plausible core-field evolution
mechanisms have begun their work. In particular, for the specific
approximate critical temperature profile we adopt, the transition
to superconductivity is completed (in the regions where it can be
completed) in a matter of a few decades.
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as a function of position of superconducting shell R. We consider a plausible

range of values of R in increments of 0.05R,, and also the ‘fiducial’ model with R = 0.79R,. In the dimensionless units used in the

calculation, the pre-condensation magnetic energy £Smg = 5.4937.

Position of R 0.9 0.85 0.8 0.79 0.75 0.7
Emag increase from field lines stretched towards equator 0.5380 0.6267 0.7212 0.7411 0.8233 0.9271
Emag increase from field lines stretched towards pole 0.5029 0.5436 0.5930 0.6058 0.6704 0.7817

5.2 Compression of flux

Whichever of our four scenarios for field rearrangement (recall Fig. 3)
is realized, the later evolution will be dictated by this initial shell
formation. If flux penetrates the shell, it will continue to do so as
the shell expands, a process which we will assume, for simplicity,
does not change the field structure itself within that region (a related
issue is touched upon in Section 6.1). In all cases except scenario 3,
the volume of the star threaded by the macroscopic field decreases
as the superconducting shell expands. In ideal MHD, however,
Alfvén’s frozen-flux theorem dictates that expulsion of magnetic
flux would have to be accompanied by expulsion of the fluid too!
Instead, Alfvén’s theorem can only be valid for the normal proton
fluid, which is strongly coupled to the (non-superfluid) neutron fluid
too. Over a transition region into the superconducting shell, where
T ST, butT <& T,, the proton fluid will behave like an admixture
of normal and superconducting components, as for the two-fluid
model of liquid helium; fluid elements will effectively start to be
able to slip across field lines rather than being permanently threaded
by them. This phase deserves further study; for now, we simply
point out that without this re-definition of Alfvén’s theorem, there
can be no development of the Meissner effect in the thickening
superconducting shell.

With this revised Alfvén’s theorem, the expansion of the su-
perconducting shell pushes field lines beyond the outer boundary
r = Ry further outwards, and inner field lines r < R;, further
inwards. We can see by flux conservation that this will necessarily
amplify the magnetic field. More precisely, since the expansion of
the superconducting shell is radial, we will also assume the magnetic
field is pushed radially inwards/outwards. We cannot apply Eulerian
flux conservation, i.e. across a shell of fixed radius, because the
region hosting the flux is shrinking from its initial radial extent of R
for the inner sphere (R, — R for the outer shell). Instead we need to
consider Lagrangian flux conservation. Let R; be the radius of some
arbitrary spherical shell at the onset of superconductivity, R;, and Ry
the inner and outer radii of the superconducting shell some time later,
and R the radius of the initial shell of superconducting matter. Then
Lagrangian flux conservation means that the magnetic flux through
the shell » = R, at the onset of superconductivity should be equal to
the flux through a different shell » = R, once the superconducting
shell has expanded, where

for Ry <R,

for Ry > R. (70)

R R,
R,=¢ K -
’ {R* — AR = Ry)

Flux conservation is then expressed as

S

B [ BR10.6)d0dp = R [ B(Ro.6.9) 2006 = 52
2

JB(Ry.6.9)d6d¢p _ (RIN® (o o

J B.(Ry, 0, ¢) d0d¢ R,

[ B:(R.—Ry.0.¢)d0d¢ (R, —R,
[B.(R. —Ry,0,¢)d0dp \ R.— R,

(71

2
) for Ry > R. (72)

In the special case where the radial magnetic field is a separable
function, of the form B(r, 8, ¢) = f(r)g(6)h(¢) — which includes
the Monaghan field — the above expressions reduce to considerably
simpler forms:

B,(R R\ B.(R.—R
(R) = (—1) for Ry <R, 7( 2
Br(Rl) RZ Br(R* - Rl)
R, — R \?
= (="t for Ry > R. (73)
R.— R,

Note that we have to be careful to choose a shell within one of the
normal-matter regions, because along the boundary shells at r =
Rin, ¥ = Ry the flux is zero, so flux conservation here does not give
any information about the amplification of B due to the expansion
of the superconducting shell. Finally, although we have found a
relation for the amplification of B,, if we assume the field geometry
is unchanged by this compression, then the other components of B
must also be magnified in the same way. On the other hand, even if
the other field components are assumed not to be amplified in the
same way, they must still be excluded from the superconducting shell
— ingredients for the possible (and perhaps inevitable) development
of current sheets; we will therefore dismiss this possibility, and so
regard the previous relation as applying to the magnitude of the
total magnetic field and not just its radial component. We can then
combine equations (70) and (73) to give

2
B(R,) = (RE) B(R)) for Ry <R, B(R.—Ry)

in

R R\ B(R, — R)) for R, > R (74)
= — . — or >R.
R* - Rout : :

5.3 Final state after flux compression

The flux compression described above cannot continue indefinitely,
as it will eventually result in a magnetic field with B = H,.. At this
point, the expansion of the superconducting shell is arrested, and
the final configuration from scenarios 1i, lii, and 2 is dictated by
this. Along the way to reaching this final state, as the magnetic
field is amplified, this also affects the opening angle of the polar
holes/equatorial ring from scenarios 1ii and 2. We discuss whether
these regions are actually normal or superconducting in the following
subsection.

Let us solve to find this post-compression state for the Monaghan
field. This field does not have a spatially constant magnitude B,
nor does any self-consistent equilibrium solution, making it less
obvious which quantity should be equated with H,. to determine
when compression must cease. Here, we will simply assume this
occurs when

1
/ B?dV = H,.

inner
Vinuer

>~
I

(75)
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Figure 7. Magnetic flux through a spherical surface of constant radius, as a
function of dimensionless radius & in the star. The onset of superconductivity
in our fiducial model is marked.

We combine this with equation (74) to find the final radius of the
B # 0 inner region:

| B,
Ry, = 7 7
R A (76)

where B) is the average field strength of the inner region r < R at
the onset of superconductivity. A similar calculation can be done for
the outer normal region, but in this case the radius is not necessarily
constrained by flux conservation, since the outer 0.1 R, of the radius
of the star will be normal in any case. So the inner radius of the outer
normal region is

B
Roy = min {0.9R*, R. — (R, —R)y/ ﬁl } (7

As well as this inner core, we note that the crustal field is
also somewhat increased by the flux being pushed outwards, by a
factor of 4.4 for the Monaghan field and our fiducial model for
superconductivity; only in the case of B, = 10'* G does this outer
region exceed the critical field and lead to the outer boundary Ry
of the superconducting region being a little in from the crust—core
boundary, as seen in the right-hand panel of Fig. 10. The variation of
Ri, and R, with average internal field strength is plotted in Fig. 9.
This completes the description of the final state for scenario 1i.

For another of the four scenarios, scenario 3, there is no calculation
to perform: we assume flux threads the entire star on a macroscopic
scale, and so flux conservation does not impose any restrictions on
the final state of the magnetic field. This leaves scenarios lii and 2. In
both these cases, R;, and R, are the same as for scenario 1i, but we
also need to calculate the spatial extent of the polar holes/equatorial
ring. Because the angles Oypen, feq depend on the magnetic field,
which in turn is amplified by flux compression, we cannot just use a
calculation based on the radius of the nascent superconducting shell
‘R; the angular extent of these B # 0 regions will change as the
shell expands. In practice, these can be calculated by replacing R
in equations (68) and (69) with the changing R;, and Ry, to build
up a full 2D meridional cut through the star of the B = 0 region at
the end of the flux-compression phase. This region is shown shaded
in purple in Fig. 10 for three different field strengths within the
range where Meissner expulsion is possible, with polar-cap values
B, = 10'%, 10", and 10" G, for the case of B # 0 polar holes, and
so completes the description of the end state for scenario 2. The
change in opening angle throughout the shell is subtle but noticeable
(the boundaries of the holes are visibly slightly curved). Scenario lii,
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the equatorial ring, is identical in the 2D plot except that the plots
need to be rotated by an angle of 7 /2.

5.4 Are B # 0 core regions normal or superconducting?

Throughout this paper, we have avoided discussing the state of the
core region inside the B = 0 superconducting shell (for scenarios 1i,
1ii, and 2), and the B # 0 regions within that shell (for scenarios 1ii
and 2) — specifically, whether these B # 0 parts of the stellar core
are in a normal or superconducting state. This issue is less important
within the narrow focus of the current work, and by side-stepping
it, we avoid a potentially involved discussion about the differences
between flux structures in type-I and type-1I superconductors, and
normal matter. The same issue also affects the nature of the core
in scenario 3. The intention is to confront this issue alongside the
general B ~ H, case, in a follow-up paper. Here, we simply assume
flux compression results in a final state where B = H, in these
regions.

The state of these B # 0 core regions is, however, potentially
crucial for related issues, such as the interactions with the superfluid
neutrons in these regions (Lander et al. 2024), so warrants at least
some brief speculation. The state is likely determined by evolutionary
processes, and understanding it is probably inhibited by our simplistic
assumption that H. = const and that we can perform calculations
using an average value for the magnetic field B.

More realistically, the inner region r < R;, starts normal with
a field strength that is likely to peak near/at the centre of the
star and decrease away from it. Flux compression will halt further
encroachment of the superconducting shell into this region once the
outer part has reached — probably — a lower critical field, H.; and H,;
(type-I and I1, respectively). The outer part of the r < R;, core would
then be superconducting, but instead of having B = 0 would be in
the intermediate state, where flux penetrates through small-scale
flux structures. In the very central region, however, flux compression
may have taken B above the upper critical field by that point —
in which case the matter will remain normal (it does not ‘break’
superconductivity, as it never entered that state).

If flux compression has this effect, then it would imply that the B #
0 holes in the superconducting shell would also be superconducting
and in the intermediate state where flux penetration is possible —
i.e. the entire shell is superconducting, but with just one or two
contiguous regions threaded by field lines.

6 TOROIDAL COMPONENT AND HIGHER
MULTIPOLES

6.1 Toroidal and linked poloidal-toroidal fields

We have argued that the key early phases of field rearrangement
depend on the magnetic-field component that crosses the nascent
shell of superconductivity. As long as the star is approximately
spherical, B, &~ B,. A toroidal field is, by definition, perpendicular
to the radial direction — so would not evolve through any scenario
involving fluid motion, making its later evolution simpler. Either
it would simply be enveloped by the expanding superconducting
shell, i.e. scenario 3 in our terminology, or could be ‘cut’ across the
incipient superconducting shell without any need for rearrangement
through advection (since toroidal field lines are tangential to spherical
shells, including the incipient superconducting shell). In this latter
case, however, matching the field to zero across a boundary would
require a surface current whose magnitude would scale with the field
strength.
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Figure 8. Opening angles for B # 0 regions within the superconducting shell, in scenarios 1ii (6eq, the dashed line) and 2 (6open, the solid line), as a function
of field strength. Oqpen increases with field strength until it reaches the equator. 04 begins at the equator, 6 = /2, so for increasing field strength its value

decreases, as it expands out towards the symmetry axis running from pole to pole.
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Figure 10. The final structure of the superconducting region, after flux compression has finished, for scenario 2 (shaded purple region). Scenario lii has an
identical structure in this 2D plane, but rotated through 77 /2, so that the Northern and Southern polar ‘holes’ in the Meissner shell then become a single equatorial
ring where the Meissner effect is not present; scenario 1i only has the central region with magnetic field and no breaks in the shell. For this end state, the average
field strength of the inner region will be H. = 5 x 10'* G. Note that whilst the crust (outside the dashed circle but within the solid circle) is always composed
of normal matter, the white core regions could either be normal matter or superconducting matter threaded by field lines (the minimum-energy state for stronger

fields than those we consider).
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Its later evolution, including field amplification in the inner core
and crustal regions, would follow that of scenario 1i, as discussed
in Section 5 and plotted in Fig. 9. There is no reason for scenarios
lii and 2 to be realized, i.e. if there is a Meissner-expelled region,
it is likely to be a complete shell, without B # 0 holes. The effect
of the expanding superconducting shell on a purely toroidal field, in
scenario 1i, is sketched in Fig. 11.

Which field configuration is most likely? Purely poloidal and
purely toroidal magnetic fields are both unrealistic, both because
there is no plausible formation scenario for these, and also because
they are unstable on dynamical time-scales (Wright 1973; Tayler
1973), so we now consider linked poloidal-toroidal fields where
the poloidal component is at least ‘significant’ (not necessarily
dominant).

The requirement V - B = 0 already reduces B to having two
degrees of freedom, poloidal and toroidal, and axisymmetry further
reduces this to one. In particular, the poloidal stream function u
becomes the single variable, and the toroidal field is expressed as
a function of u. This means that the toroidal component takes a
constant value along any contour of u, i.e. a poloidal field line.
The total extent of the region with a toroidal component is usually
chosen to be demarcated by the largest field line that closes within
the star, to avoid having the current distribution extending outside
the star (Lander & Jones 2009). As seen earlier (recall Fig. 3), the
superconducting transition results in various possible scenarios for
the rearrangement of poloidal field lines. In the closed-field-line
region, when a toroidal component is added, these closed loops in
the plane of the page become spiral-shaped field lines that extend into
the azimuthal direction, and any fluid flow driving the rearrangement
will advect these complete field lines, not just their poloidal or
toroidal components (the latter case would also require surface
currents to allow for abrupt jumps across the normal-superconducting
boundaries). Therefore, the toroidal component must adjust to the
rearranging closed poloidal field lines: one can imagine simply
“filling in’ this region with toroidal field. Doing so, we see that for
scenario 1i we will be left with two disconnected regions of toroidal
field, on the inside and outside of the superconducting shell. In
scenario lii, these regions will be joined across the equatorial B # 0
belt to leave a region with a dumbbell-shaped cross-section where
the toroidal field resides. In both scenarios 2 and 3, the details
of the closed-field-line rearrangement depend on the exact pre-
condensation field geometry and the location of the incipient shell
of superconductivity, but we believe the mostly likely result is a
small region of toroidal field confined to the crust alone. All these
possibilities are sketched in Fig. 12. Note the similarity of scenario
3, where poloidal fields are all open in the core and the toroidal field
is confined to the crust, to earlier equilibrium models for a magnetic-
field threading the entire stellar interior and B < H. (Lander
2014).

This more realistic geometry deserves more attention, however, as
the toroidal component is not simply passive during the rearrange-
ment, but will play at least two roles itself. One is that the stronger the
toroidal component, the more it acts to shrink its host closed poloidal-
field region (Lander & Jones 2009; Armaza, Reisenegger & Valdivia
2015) — thus, a very strong pre-condensation toroidal component is
more likely to be confined to a radius » > R, which — following
the onset of superconductivity — will be pushed outwards, so that
the only toroidal field remaining at the end of the Meissner phase
is in the crust. The other role the toroidal field will play is through
its contribution to the overall B2, thus exceeding the critical field
more easily in the closed-field-line region and invalidating our earlier
approximation that B & const along r = R.
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6.2 Higher multipole pre-condensation magnetic fields

If the magnetic field is dominated by higher multipoles, unlike the
dipolar configuration we have assumed, the characteristic length-
scale of the field will become correspondingly shorter, affecting the
likely final state of the magnetic field. Let us assume for definiteness a
spherical harmonic expansion of the field, with the largest amplitude
contribution being some particular harmonic Y;". The characteristic
angular scale £ for the field will be reduced from L ~ & for
the dipole field to £, ~ m/l for the (I, m) harmonic (recall that
|m| <1, so it is /] and not 7 /m that gives the minimum angular
scale).

For the higher multipole field, the distance one must stretch a field
line until it encounters an oppositely directed neighbouring field line
is reduced from ~ 7 /2 (recall the cartoon of Fig. 3) to ~ 7 /(2l).
Progressively less fluid motion is, therefore, required to achieve this
as the multipolar index increases; in this sense it becomes ‘easier’
to realize scenario 1i for full Meissner expulsion. The efficacy of
reconnection is, however, unaffected, since it depends upon the
thickness of the reconnection zone (i.e. its radial extent, in this
context) £ rather than L.

Scenarios 1ii and 2 will have a more complex structure for a
higher multipole field; instead of being pierced once or twice, as for
the dipole field, we anticipate that the number of normal ‘holes’ in
the superconducting shell will scale with / and m. The higher the
multipolar index, the more likely it is that the star will end up in
scenario 3 (which can be thought of as the limiting case of scenario
1ii or 2 in the limit of very large [, m).

7 DISCUSSION AND OUTLOOK

One might find the Meissner-effect scenario proposed here implau-
sible, relying as it does on an interplay of two pieces of physics —
field-line advection and reconnection — whose modelling is difficult
and only outlined here. But the motivation for this paper was not a
frivolous survey of contrived scenarios for this phase, but rather to ask
the question: is there any way to produce a Meissner-expelled region
on a short time-scale? If the answer had been no, we would have had
to conclude that essentially all numerical work on magnetic-field
evolution in the crust — a field of research built up over the last two
decades (e.g. Hollerbach & Riidiger 2002; Pons & Geppert 2007;
Perna & Pons 2011; Ascenzi et al. 2024) — would have been suspect,
and magnetar modelling would potentially need substantial revision
(without rapid crustal evolution, one would need to return to earlier
ideas of core evolution involvement, but the latter process is likely to
be even slower). On the other hand, had our conclusion been that the
dynamical-time-scale Meissner expulsion explored here is always
effective, theoretical modelling of NS rotation would have faced
challenges (Lander et al. 2024). The model proposed here allows for
both extremes, as well as intermediate scenarios where a Meissner-
expelled shell is broken by one or two regions through which field
penetrates.

Even if more detailed future work were to show the Meissner
mechanism proposed here to be ineffective, much of our discussion
about the necessary conditions for macroscopic field expulsion would
remain relevant. For example, Ohmic decay alone reduces magnetic
energy but does not obviously have any way to induce the kind
of field rearrangement needed to produce a zero-field region. If,
therefore, one wishes to invoke Ohmic decay as a mechanism for
flux transport and Meissner expulsion (as in earlier studies), one
must still confront some of the same issues discussed in this paper.
In particular, the solenoidal constraint on the magnetic field will
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Figure 11. A purely toroidal field has field lines everywhere perpendicular to poloidal lines, and so orthogonal to the page in this meridional plot, and is
non-zero within some region like the two blue lobes plotted here. At the onset of superconductivity (left), the toroidal field on either side of the incipient
superconducting shell can be matched to zero by having a surface current at both inner and outer boundaries; cf. Fig. 3. As the shell expands (right), a complete
Meissner-expelled shell can be formed without any additional dynamics other than compression of flux in the crust, and in the inner core region.

O

) 4

Figure 12. Sketch of the location of the toroidal component (plotted as blue lobes) of a linked poloidal-toroidal field in each of the purely-poloidal-field

scenarios shown in Fig. 3. Left to right: scenarios 1i, 1ii, 2, and 3.

again restrict how the field can be expelled, as will (on appropriate
time-scales/length-scales) flux conservation.

Previous work on the Meissner effect has focused on local
dynamics, whether a small region is uniformly penetrated by flux
(the normal state), irregularly penetrated (by thin flux tubes whose
dimensions are universal, in the case of type-II superconductivity;
or other flux structures, in the case of type-I superconductivity), or
fully expelled (Ho et al. 2017). The problem is particularly rich
when the proton superconductor co-exists with a neutron superfluid
(Haber & Schmitt 2017; Wood & Graber 2022), as expected after a
few hundred years (beyond the phase of primary interest to us here).
But we argue here that additional restrictions need to be considered on
the macroscopic scale, related to the field geometry, and only then
can one predict whether a given flux-transport mechanism could
produce a field-expelled region. These also lead to restrictions on
the minimum field strength for which we expect Meissner expulsion:
both the field-line advection phase and the reconnection phase require
the same value, B > 10'> G. This means that although, in principle,
one might expect partial Meissner expulsion for lower field strengths
than full expulsion (in the case of ineffective reconnection, scenarios
lii and 2), in practice this is not realized. However, we emphasize
that B > 10'? G does not imply the star will host a Meissner-expelled
region, only that it is possible. A closer examination of the likelihood
of each of the two stages in our Meissner model (advection and
reconnection) will help to assess how plausible each of the scenarios
is, in practice. In contrast with the lower limit on B, the upper
limit is not given by macroscopic arguments, but rather is the same
as that for local calculations, the critical field strength. However,

our macroscopic calculations for a Meissner-expelled region with a
B # 0 hole do also naturally reach the limit of no expelled field in
the case of B = H,. Once the field strength reaches H, — or if it is
already globally this strong before the onset of superconductivity —
the problem becomes more subtle. There is no longer a single clear
minimum-energy state of B = 0, and the resulting configuration will
be an interplay between whatever the new minimum-energy state
is — be it flux tubes, lamellae, or other flux structures — and the
advection and reconnection physics needed to realize this state. A
realistic model of the NS core would, in fact, likely involve an inner
core region of type-I superconductivity, a type-II superconducting
outer core, a normal crust, and suitable conditions to describe the
interface between each of these. We intend to return to this B ~ H,
case in a future study.

There are reassuring similarities between our scenario 3 and
previous work on B < H, equilibrium magnetic-field configurations
in a type-II superconductor (Roberts 1981; Henriksson & Wasserman
2013; Lander 2014), showing that in this limit of our modelling, the
field naturally leads to the development of a global hydromagnetic
equilibrium. In cases with partial or complete Meissner expulsion,
the expected configurations are qualitatively different. Scenario 1i
features a disconnected inner region of poloidal and toroidal field,
and in scenario lii, a B # 0 equatorial band through the field-
expelled shell potentially allows for penetration of the toroidal
component into the core even in the case of relatively weak B; a
core toroidal component was previously found not to occur below
~ 10 G (Lander 2013, 2014). For scenario 2, on the other hand,
even in the case B > 10'* G, the toroidal component is likely to
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be confined to the crust. Finally, we showed that a stronger pre-
condensation toroidal field is more likely to be confined to the crust
post-condensation.

The model presented here invokes an unmodelled fluid flow to
rearrange magnetic-field lines prior to reconnection, and the nature of
this fluid flow deserves detailed scrutiny in the future. Some residual
dynamics from birth are to be expected, but whether this is the
leading mechanism driving field-line advection remains to be seen.
What is clear is that the axisymmetric model considered here is likely
to be overly simplistic, since a near-incompressible flow V - v = 0
moving consistently towards (say) the equator in one meridional
plane would have to travel some distance in the azimuthal direction
and then circulate away again. This simplistic flow, together with the
assumed initially dipolar field, make the realization of Meissner state
in the sketches here seem rather contrived and unlikely. However,
this is just a limiting case that is conceptually simpler. In reality,
the more multipolar and small-scale the pre-condensation field and
fluid flow are, the easier it will be to produce partial or complete
Meissner expulsion. None the less, some features of the simple
model, including the restriction on the range of internal field strengths
and the need for an inner B # 0 core of matter underneath the
Meissner shell, are expected to be robust.

Some of the ideas explored here have crossover with similar
notions from stellar dynamos. In both cases, one is concerned
with understanding how a suitable MHD flow can be rearranged
and reconnected into a new configuration, and a detailed treatment
inevitably involves assumptions about the nature of the small-scale
field to be reconnected (Rincon 2019). Both the dynamo and the
Meissner-expulsion phase of an NS are further complicated by the
high magnetic Prandtl number of the flow (Lander 2021). Another
interesting, related problem from fluid dynamics that may have
relevance to understanding the advection phase of our Meissner
model is that of the expulsion of magnetic flux by an eddy (Weiss
1966; Galloway & Weiss 1981).

This paper focuses on development of the theory of a dynamical
Meissner effect. A companion letter (Lander et al. 2024), explores
some of the interesting observational consequences of this model.
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