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Abstract
Ecologists	 have	 historically	 quantified	 fundamental	 biodiversity	 patterns,	 including	
species-	area	relationships	(SARs)	and	beta	diversity,	using	observed	species	counts.	
However,	imperfect	detection	may	often	bias	derived	community	metrics	and	subse-
quent	community	models.	Although	several	statistical	methods	claim	to	correct	for	
imperfect	detection,	 their	performance	 in	species-	area	and	β-	diversity	research	re-
mains	unproven.	We	examine	inaccuracies	in	the	estimation	of	SARs	and	β-	diversity	
parameters	that	emerge	from	imperfect	detection,	and	whether	such	errors	can	be	
mitigated	using	a	non-	parametric	diversity	estimator	 (iNEXT.3D)	and	Multi-	Species	
Occupancy	Models	(MSOMs).	We	simulated	28,350	sampling	regimes	of	2835	frag-
mented	communities,	varying	the	mean	and	standard	deviation	of	species	detection	
probabilities,	and	the	number	of	sampling	repetitions.	We	then	quantified	the	bias,	
accuracy,	and	precision	of	derived	estimates	of	model	coefficients	for	SARs	and	the	
effects	of	patch	area	on	β-	diversity	 (pairwise	Sørensen	similarity).	 Imperfect	detec-
tion	biased	estimates	of	all	evaluated	parameters,	particularly	when	mean	detection	
probabilities	were	 low,	 and	 there	were	 few	 sampling	 repetitions.	Observed	 counts	
consistently	underestimated	 species	 richness	and	SAR	z-	values,	 and	overestimated	
SAR	c-	values;	iNEXT.3D	and	MSOMs	only	partially	resolved	these	biases.	iNEXT.3D	
provided	the	best	estimates	of	SAR	z-	values,	although	MSOM	estimates	were	gen-
erally	comparable.	All	 three	methods	accurately	estimated	pairwise	Sørensen	simi-
larity	 in	most	circumstances,	but	only	MSOMs	provided	unbiased	estimates	of	 the	
coefficients	of	models	examining	covariate	effects	on	β-	diversity.	Even	when	using	
iNEXT.3D	 or	 MSOMs,	 imperfect	 detection	 consistently	 caused	 biases	 in	 SAR	 co-
efficient	 estimates,	 calling	 into	 question	 the	 robustness	 of	 previous	 SAR	 studies.	
Furthermore,	the	inability	of	observed	counts	and	iNEXT.3D	to	estimate	β-	diversity	
model	coefficients	resulted	from	a	systematic,	area-	related	bias	in	Sørensen	similarity	
estimates.	Importantly,	MSOMs	corrected	for	these	biases	in	β-	diversity	assessments,	
even	in	suboptimal	scenarios.	Nonetheless,	as	estimator	performance	consistently	im-
proved	with	increasing	sampling	repetitions,	the	importance	of	appropriate	sampling	
effort	cannot	be	understated.
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1  |  INTRODUC TION

A	major	aim	in	ecology	centres	on	identifying	relationships	between	
the	spatial	configuration	of	habitat	patches	and	their	biotic	assem-
blages	(Ewers	et	al.,	2010;	MacArthur	&	Wilson,	1963).	Researchers	
have	typically	addressed	this	issue	via	the	use	of	species-	area	rela-
tionships	(henceforth	‘SARs’),	used	to	assess	how	local	species	rich-
ness	declines	with	habitat	patch	area	(MacArthur	&	Wilson,	1963),	
and	analyses	of	species	composition	(beta-	diversity),	which	provide	
additional	 insight	 into	how	species	are	distributed	throughout	dis-
turbed	 landscapes	 (Banks-	Leite	 et	 al.,	2012;	 Socolar	 et	 al.,	 2016).	
Historically,	 estimates	of	 both	 species	 richness	 and	β-	diversity	 in-
dices	 have	 been	 derived	 from	 observed	 species	 counts	 (Dorazio	
et	al.,	2010;	MacKenzie	&	Royle,	2005).	However,	observed	counts	
usually	 represent	 only	 a	 subset	 of	 the	 true	 community	 (Colwell	
et	al.,	2004),	and	 failure	 to	account	 for	 this	can	 lead	to	significant	
biases	 in	 derived	 community	 metrics	 and	 subsequent	 community	
models	 (Gwinn	 et	 al.,	 2015;	McNew	&	Handel,	 2015).	 Correcting	
for	 imperfect	detection	 is	thus	widely	recognized	as	vital	 for	mak-
ing	robust	conservation	and	management	decisions	within	human-	
modified	 landscapes	 (Banks-	Leite	et	al.,	2014;	Zipkin	et	al.,	2009).	
However,	the	importance	of	correcting	for	imperfect	detection	has	
received	 surprisingly	 little	 attention	 in	 studies	 aiming	 to	 quantify	
SARs	and	beta-	diversity	trends.

Estimating	 species	 richness	 has	 been	 a	 longstanding	 issue	
(Fisher	et	al.,	1943;	Gwinn	et	al.,	2015),	and	many	statistical	meth-
ods	exist	 to	estimate	 true	 richness	 from	observed	species	counts.	
For	instance,	the	Chao	family	of	non-	parametric	estimators,	includ-
ing	 the	 iNEXT.3D	programme	 (Chao	et	 al.,	2021),	 are	widely	used	
to	estimate	asymptotic	species	richness	based	on	rarefaction	and/
or	the	frequency	of	rare	species	within	a	sample	(e.g.,	Mendenhall	
et	al.,	2014;	Palmeirim	et	al.,	2021),	 and	have	also	been	expanded	
to	 estimate	 detection-	corrected	 β-	diversity	 indices	 (iNEXT.be-
ta3D;	Chao	et	al.,	2023).	While	addressing	imperfect	detection,	the	
Chao/iNEXT.3D	estimators	do	not	consider	the	influence	of	covari-
ates	 on	 species	 occurrence	or	 detection	 (MacKenzie	 et	 al.,	 2005).	
Hierarchical	Multi-	Species	Occupancy	Models	(MSOMs;	e.g.,	Jones	
et	 al.,	2021;	 Semper-	Pascual	 et	 al.,	2021)	 offer	 an	 alternative	 ap-
proach	that	can	explicitly	model	occurrence	and	detection	probabil-
ities	of	both	observed	and	unobserved	species	(Kéry	&	Royle,	2008; 
Zipkin	et	 al.,	2009).	Researchers	may	 then	derive	asymptotic	esti-
mates	of	species	richness	and	β-	diversity	from	the	species-	specific	
occurrence	estimates	(Broms	et	al.,	2015),	providing	a	directly	com-
parable	alternative	to	the	Chao/iNEXT.3D	estimators.

When	analysing	spatial	patterns	in	biodiversity	such	as	SARs	and	
β-	diversity	relationships,	researchers	should	seek	to	correct	for	im-
perfect	detection	using	methods	that	accurately	uncover	true	vari-
ation	 in	assemblage	structure	 (Iknayan	et	al.,	2014).	However,	 few	
studies	have	examined	how	effective	currently	available	techniques	
are	for	this	purpose.	Accounting	for	imperfect	detection	can	dramat-
ically	alter	insights.	For	example,	Palmeirim	et	al.	(2021)	found	that	
SAR	slopes	increased	twofold	when	observed	counts	were	replaced	
with	iNEXT	(the	predecessor	to	iNEXT.3D;	Hsieh	et	al.,	2016)	rich-
ness	estimates	in	a	community	of	Amazonian	snakes,	a	group	with	
infamously	 low	 detection	 probabilities	 (Durso	 et	 al.,	 2011; Fraga 
et	al.,	2014).	However,	statistical	estimators,	including	Chao/iNEXT.	
3D	and	MSOMs,	tend	to	perform	poorly	when	sample	sizes	are	small	
and	species	detection	probabilities	are	low	(McNew	&	Handel,	2015; 
Tingley	et	al.,	2020),	and	it	is	thus	possible	that	the	dramatic	changes	
in	SAR	slopes	observed	by	Palmeirim	et	al.	(2021)	represents	an	ar-
tefact	of	estimation	error	(Type	I	Error),	rather	than	underlying	pat-
terns	of	species	richness	(Gwinn	et	al.,	2015).	Further	investigation	is	
thus	required	to	determine	how	sampling	effort	influences	the	esti-
mation	of	biodiversity	trends	within	fragmented	landscapes,	and	the	
circumstances	where	 statistical	 estimators	may	be	able	 to	 reliably	
correct	for	deficiencies	in	sampling	(Montgomery	et	al.,	2021).

Previous	 studies	 have	 assessed	 the	 accuracy	 of	 MSOM	 and	
Chao/iNEXT.3D	 richness	 estimates	 using	 simulations	 and	 subsets	
of	exhaustive	empirical	data,	where	 the	 true	values	of	community	
properties	are	known	(McNew	&	Handel,	2015,	Tingley	et	al.,	2020).	
However,	no	previous	study	has	examined	the	relative	performance	
of	MSOMs	and	Chao/iNEXT.3D	for	SAR	estimation.	This	evaluation	
is	 urgently	 needed,	 as	 the	 richness	 estimates	 that	 underpin	 SARs	
are	known	to	be	highly	sensitive	to	species'	detection	probabilities	
(McNew	&	Handel,	2015,	Tingley	et	al.,	2020),	the	underlying	species	
abundance	distribution	(Gwinn	et	al.,	2015;	Rajakaruna	et	al.,	2016),	
and	sampling	design	(MacKenzie	&	Royle,	2005).

Imperfect	 detection	 has	 also	 been	 recognized	 as	 an	 issue	
in	 β-	diversity	 analyses	 (Dorazio	 et	 al.,	 2010;	 Nilsson	 &	 Nilsson	
1982,	 1983)	 and	 frequently	 used	 β-	diversity	 indices	 have	 pre-
viously	 been	 shown	 to	 be	 sensitive	 to	 undersampling	 (Cardoso	
et	al.,	2009;	Roden	et	al.,	2018).	Estimating	β-	diversity	in	the	ab-
sence	of	complete	species	catalogues	may	be	even	more	challeng-
ing	 than	 estimating	 species	 richness:	 while	 richness	 estimators	
need	only	estimate	the	number	of	species	occurring	within	a	single	
assemblage,	the	estimation	of	β-	diversity	requires	estimating	both	
the	number	 and	 identity	of	 species	 in	 two	or	more	assemblages	
(Barwell	et	al.,	2015;	Cardoso	et	al.,	2009).	Indeed,	via	a	case	study	
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on	 a	 long-	term	 butterfly	 monitoring	 dataset	 (Swiss	 Biodiversity	
Monitoring	Program),	Dorazio	et	al.	(2010)	demonstrated	that	ob-
served	 species	 counts	 tend	 to	 substantially	 underestimate	 pair-
wise	 Jaccard	 similarity	 compared	 to	 MSOMs.	 However,	 to	 our	
knowledge,	 there	 has	 been	 no	 assessment	 of	 the	 comparative	
performance	 of	MSOMs	 and	 non-	parametric	 β-	diversity	 estima-
tors	 (the	 latter	of	which	are	more	accessible	to	most	ecologists),	
and	there	is	a	need	to	determine	whether	the	findings	of	Dorazio	
et	al.	(2010)	are	generalizable	to	other	settings,	e.g.,	fragmentation	
ecology.

Here,	we	 use	 simulations	 to	 explore	 the	 impacts	 of	 imperfect	
detection	on	typical	field	study	designs	for	SAR	and	β-	diversity	es-
timation.	We	assess	the	comparative	performance	of	observed	spe-
cies	counts,	an	abundance-	based	Chao	estimator	(iNEXT.3D/iNEXT.
beta3D;	Chao	 et	 al.,	2021,	2023)	 and	MSOMs	 to	 estimate	 patch-	
level	species	richness,	the	slope	and	intercept	of	species-	area	rela-
tionships	(SARs),	pairwise	β-	diversity	between	each	pair	of	patches,	
and	 the	 slope	 and	 intercept	 of	 the	 relationship	 between	 pairwise	
differences	in	patch	area	and	pairwise	β-	diversity.	We	evaluate	the	
sensitivity	of	estimators	to	variation	 in	species	detectabilities,	and	
the	sampling	design	used	to	assess	communities.	We	then	make	rec-
ommendations	on	the	relative	effectiveness	of	each	estimator	and	
consider	the	circumstances	in	which	it	is	preferable	to	use	either	iN-
EXT.3D,	MSOMs,	or	observed	species	counts	to	assess	patterns	of	
species	richness	and/or	β-	diversity.

2  |  METHODS

2.1  |  Community parameters of interest

We	defined	a	novel	framework	to	simulate	realistic	communities	and	
sampling	 designs	 that	 are	 typically	 applied	 in	 SAR	 and	β-	diversity	
research,	focusing	on	biodiversity	patterns	across	fragmented	land-
scapes.	While	MSOMs	 can	 only	 incorporate	 data	 on	 species	 inci-
dence	(i.e.,	detection/non-	detection;	Kéry	&	Royle,	2008),	there	are	
both	 incidence	and	abundance-	based	versions	of	 iNEXT.3D	 (Chao	
et	 al.,	 2021,	 2023).	 We	 therefore	 opted	 to	 simulate	 abundance-	
based	communities	and	sampling	procedures,	and	then	collapse	the	
species	counts	into	incidence	data	for	occupancy	modelling.

Using	 our	 simulated	 landscape	 communities,	 we	 assessed	 the	
extent	 to	which	 imperfect	detection	causes	 inaccuracies/biases	 in	
estimates	of	 a	 total	of	 six	 community	parameters	 (i.e.,	 differences	
between	the	true	parameter	values	and	estimates	derived	from	ob-
served	species	counts),	and	whether	MSOMs	and	iNEXT.3D	can	cor-
rect	for	such	errors.	Here,	we	outline	the	formulae	used	to	calculate	
the	true	values	of	each	community	parameter:

• Parameter 1:	Patch-	level	species	richness,	defined	as	the	number	
of	species	that	occur	within	each	habitat	patch	p:

where Np,i	is	a	vector	containing	the	true	abundance	of	each	spe-
cies i 	in	patch	p.

• Parameters 2 and 3:	The	intercept	(c-	value)	and	slope	(z-	value)	of	a	
log–log	(power)	model	of	the	relationship	between	patch-	level	spe-
cies	richness	Sp	and	patch	area	Areap	(i.e.,	SAR;	Rosenzweig,	1995):

• Parameter 4:	Pairwise	Sørensen	similarity	between	the	communi-
ties	of	each	pair	of	patches:

where A	 and	 B	 are	 the	 true	 species	 occurrence	 records	 for	
patches a	and	b,	respectively.

• Parameters 5 and 6:	The	 intercept	 (�0)	and	slope	 (�1)	of	 the	 rela-
tionship	between	pairwise	Sørensen	similarity	and	the	logn(x + 1)	
transformed	pairwise	difference	in	patch	area	ΔAreaa,b:

As	the	Sørensen	similarity	index	is	constrained	to	values	between	
0	and	1,	we	modelled	pairwise	β-	diversity	using	a	logit	link.

As	 all	 incidence-	based	 indices	 of	 overall	 compositional	 sim-
ilarity	 (e.g.,	 Jaccard,	 Sørensen)	 are	 calculated	 as	 a	 function	 of	
the	 species	 richness	of	 individual	 sites	 and	 the	number	of	 spe-
cies	 shared	between	 sites	 (Baselga,	2010),	 estimation	 accuracy	
should	not	vary	between	indices	derived	from	the	same	dataset.	
We	therefore	assessed	the	 impact	of	 imperfect	detection	on	β- 
diversity	estimation	using	only	 the	pairwise	Sørensen	similarity	
index	(Sørensen,	1948).

2.1.1  |  Simulating	fragmented	landscape	
communities

Each	 simulated	 landscape	 featured	 25	 habitat	 patches	 of	 varying	
area,	with	the	smallest	and	largest	patches	pre-	assigned	areas	of	25	
and	20,000	Ha,	respectively.	The	areas	of	the	remaining	23	patches	
were	drawn	from	a	four-	parameter	beta	distribution:

Here,	Areap	is	the	area	of	patch	p,	�	and	�	are	the	shape	parameters	of	
the	four-	parameter	beta	distribution,	and	min	and	max	are	the	small-
est	and	 largest	possible	patch	areas,	 respectively.	These	parameters	
generated	a	negative	power	law	relationship	between	frequency	and	
area,	as	is	typical	of	real-	world	fragmented	tropical	forest	landscapes	
(Taubert	et	al.,	2018).	The	generated	patch	areas	also	covered	~3.15	
orders	 of	 magnitude,	 encompassing	 the	 range	 typically	 sampled	 in	
habitat	 fragmentation	 studies	 (mean ± SD = 2.75 ± 0.08;	 Watling	 &	
Donnely,	2006).Sp =

∑[
Np,i > 0

]

logn
(
Sp
)
= c + z × logn

(
Areap

)

Søra,b =
2 |A ∩ B|
|A| + |B|

Logit
(
Søra,b

)
= �0 + �1 × logn

(
ΔAreaa,b + 1

)

Areap ∼ Beta4(� = 1, � = 4,min = 25,max = 20,000)
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We	then	generated	the	landscape	metacommunity	according	to	
a	 log-	normal	 species	 abundance	 distribution	 (mean = 650,	 SD = 3),	
implemented	using	the	‘sim_sad’	function	of	the	‘mobsim’	R	package	
(May	et	al.,	2018;	R	Core	Team,	2023).	This	enabled	us	to	control:	
(1)	the	number	of	species	and	(2)	the	number	of	individuals.	We	set	
the	number	of	simulated	species	within	each	landscape	to	200.	To	
ensure	 a	 minimum	 viable	 landscape-	level	 population	 size	 of	 each	
species,	we	first	set	the	number	of	individuals	to	equal	the	total	area	
(Ha)	of	all	patches	in	the	landscape,	and	subsequently	multiplied	the	
resultant	species	abundances	by	500	to	give	the	final	metacommu-
nity.	Therefore,	the	minimum	number	of	individuals	of	each	species	
within	a	landscape	was	500,	and	overall	population	density	was	500	
individuals	per	Ha.	We	assumed	population	density	to	be	consistent	
throughout	 each	 landscape,	 and	 the	 carrying	 capacity	K	 of	 each	
patch p	was	thus:

Next,	we	generated	area	responses	for	each	species	(�Area,i)	using	
draws	from	species-	specific	four-	parameter	beta	distributions:

Here,	�i	is	a	species-	specific	value	of	the	first	shape	parameter	�,	� 
is	the	second	shape	parameter	(consistent	across	species),	and	min 
and	max	are	the	lowest	and	highest	possible	values	of	�Area,i,	respec-
tively.	For	each	simulated	community,	we	sequentially	generated	�i 
for	each	species	across	the	range	0.1	to	�max,	in	inverse	proportion	
to	the	species'	simulated	abundances.	This	meant	that	species	with	
lower	landscape-	level	abundance	tended	to	have	area	responses	of	
greater	magnitude,	as	is	apparent	in	real-	world	fragmented	commu-
nities	(Franzén	et	al.,	2012;	Keinath	et	al.,	2017).	To	simulate	natural	
variation	in	the	area-	related	structuring	of	fragmented	communities,	
we varied �max	 between	 simulated	communities	 (�max = 4,	8	or	12),	
with greater �max	 values	yielding	communities	with	greater	SAR	z- 
values	(i.e.,	steeper	slope).	Furthermore,	as	patch	area	responses	are	
rarely	uniformly	positive	(Jones	et	al.,	2021;	Noble	et	al.,	2023),	we	
randomly	selected	1/8th	of	the	species	in	each	community	and	mul-
tiplied	 their	 area	 response	by	−1,	 thereby	yielding	a	negative	area	
response.

Using	the	generated	species	area	responses,	we	then	determined	
the	probability	of	an	individual	of	each	species	 i 	being	assigned	to	
each patch p,	using	the	functions:

where Wp,i	is	the	assignment	weight	and	�p,i	is	the	assignment	proba-
bility	(i.e.,	Wp,i	scaled	to	sum	to	one).	We	iteratively	assigned	species	in-
dividuals	to	patches	according	to	the	species'	assignment	probabilities	
(i.e.,	weighted	random	sampling).	To	ensure	a	minimum	‘viable’	patch-	
level	population	of	each	species,	individuals	were	assigned	to	groups	

of	 100.	 When	 the	 population	 carrying	 capacity	Kp	 of	 a	 patch	 was	
reached,	the	patch	was	removed	from	the	potential	assignment	pool.	
This	 yielded	 communities	with	 realistic	power	model	 (log–log)	 SARs	
(Rosenzweig,	1995; see Figure 1),	with	the	z- values	ranging	between	
0.137	and	0.345,	roughly	encompassing	the	range	typically	observed	
in	real-	world	landscapes	(Matthews	et	al.,	2016).

2.1.2  |  Simulating	sampling	procedures

To	simulate	imperfect	sampling,	we	drew	individual-	level	detection	
probabilities	for	each	species	�i	from	community-	level	hyperparam-
eter	distributions:

where �	 is	 the	mean	 and	�	 the	 standard	deviation	of	 the	detection	
probability	hyperparameter	 for	a	given	 landscape	community.	To	 in-
vestigate	the	influence	of	variation	in	detection	probabilities	on	SAR	
and	β-	diversity	estimation,	we	varied	�	and	�	among	simulated	com-
munities	(see	Table 1).

Fragmentation	 ecologists	 usually	 sample	 only	 a	 spatial	 subset	
of	 each	 habitat	 patch,	 and	 scale	 sampling	 effort	 with	 patch	 area	
(Azovsky,	2011,	Rybicki	&	Hanski,	2013).	To	emulate	this,	we	simu-
lated	sampling	from	a	set	of	500 m	transects	within	each	patch,	each	
with	a	50-	m	search	radius	(i.e.,	one	transect = 5.93 ha).	We	varied	the	
number	of	transects	placed	according	to	patch	area	so	that	the	total	
area	of	each	patch	sampled	�p	 increased	roughly	proportionally	to	
patch	size	(Appendix	S1:	Table	S1).	Then,	we	calculated	the	number	
of	individuals	of	each	species	in	each	patch	that	were	available	for	
sampling	np,i	as	the	proportion	of	all	individuals	in	the	patch	Np,i pres-
ent	within	�p,	assuming	constant	within-	patch	densities	and	round-
ing	to	the	nearest	integer:

Next,	we	simulated	replicate	surveys	of	each	patch	as	a	series	of	
binomial	trials,	where	the	number	of	 individuals	X	of	species	s	ob-
served	in	patch	p	on	visit	v	was	determined	by	their	species-	specific	
detection	probabilities.	Thus:

As	previous	studies	have	shown	that	the	accuracy	of	both	MSOMs	
and	 Chao	 estimators	 is	 correlated	 with	 sample	 size	 (McNew	 &	
Handel,	 2015;	 Tingley	 et	 al.,	 2020),	 we	 varied	 the	 total	 number	
of	 replicate	 surveys	V	 at	 each	 site	 among	 simulated	 communities	
(Table 1).

2.1.3  |  Simulation	repetitions

We	 simulated	 10	 communities	 using	 each	 possible	 combination	
of	μ	 (0.005,	0.05,	0.2),	σ	 (0.25,	1.0,	3.0),	�max	 (4,	8,	12),	and	V	 (3,	

Kp = Areap × 500

�Area,i ∼Beta4
(
�=�i , � =5,min=0,max=5

)

Wp,i =exp
(
�Area,i× logn

(
Areap

))

�p,i =
Wp,i

∑25

p=1
Wp,i

Logit
(
�i
)
∼N(Logit(�), �)

np,i = Round
(
Np,i × �p

)

Xp,i,v ∼Binomial
(
np,i , �i

)

 20457758, 2024, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.70017 by U

niversity O
f E

ast A
nglia, W

iley O
nline L

ibrary on [27/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  5 of 15NOBLE et al.

6,	12)	(total	possible	combinations = 81).	To	determine	the	extent	
to	 which	 stochastic	 variation	 in	 sampling	 may	 affect	 estimator	
performance	 (Walther	 &	Moore,	 2005),	 we	 generated	 10	 sepa-
rate	 sampled	 datasets	 for	 each	 simulated	 landscape	 community,	
using	the	same	parameters	but	different	seed	values.	Therefore,	
we	 simulated	 a	 total	 of	 2835	 communities	 and	 28,350	 sampled	
datasets	(Table 1).

2.2  |  Estimating richness and β - diversity

2.2.1  |  Observed	species	counts

To	quantify	the	effects	of	 imperfect	detection	on	species	richness	
and	estimates,	we	first	calculated	patch-	level	species	richness	and	
pairwise	Sørensen	similarity	based	on	the	observed	species	counts	

F I G U R E  1 Examples	of	species-	area	relationships	(SARs)	constructed	using	the	true	richness	values	(True)	and	richness	estimates	from	
observed	species	counts	(Observed),	the	abundance-	based	iNEXT.3D	estimator	(iNEXT.3D),	and	Multi-	Species	Occupancy	models	(MSOM).	
The	results	from	a	single	sampling	process	within	a	single	simulated	landscape	are	shown	for	each	of	the	nine	possible	detection	scenarios.	
In	each	depicted	instance,	six	repeat	sampling	visits	were	simulated	within	each	patch	(V = 6)	and	the	maximum	α	parameter	of	the	species-	
specific	area	response	distributions	was	set	to	eight	(�max= 8).	Scenarios	are	presented	in	order	of	increasing	mean	(μ;	top	to	bottom)	and	
standard	deviation	(σ;	left	to	right)	of	the	detection	probability	hyperparameter.
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6 of 15  |     NOBLE et al.

pooled	across	all	sampling	repetitions	(i.e.,	using	Xp,i	in	place	of	the	
true	abundance	values	in	the	formulae	outlined	in	Section	2.1).

2.2.2  |  iNEXT.3D/	iNEXT.3betaD

We	generated	 iNEXT.3D	estimates	of	patch-	level	 species	 richness	
and	Sørensen	 similarity	using	 the	 ‘iNEXT.3D’	 and	 ‘iNEXT.beta3D’	R	
packages,	respectively	(Chao	et	al.,	2021,	2023,	R	Core	Team,	2023).	
We	 used	 the	 abundance-	based	 versions	 of	 iNEXT.3D	 and	 iNEXT.
beta3D,	and	applied	 these	 to	 the	observed	species	counts	pooled	
across	 all	 sampling	 repetitions.	We	 took	 the	mean	 estimated	 val-
ues	as	point	estimates	of	richness	and	Sørensen	similarity	and	used	
these	for	all	further	analyses.

2.2.3  | MSOMs

To	fit	MSOMs,	we	generated	an	incidence	matrix	Yp,i,	indicating	the	
number	of	sampling	occasions	where	each	species	i 	was	detected	in	
each patch p.	We	augmented	the	incidence	matrix	with	double	the	
number	of	unobserved	species	(i.e.,	all	0	observation	records)	as	ob-
served	species	(Kéry	&	Royle,	2008),	for	a	total	number	of	possible	
species M.	The	model	likelihood	took	the	form:

Here,	�m	is	a	latent	variable	indicating	whether	each	species	m	in	the	
augmented	dataset	was	truly	present	 in	the	overall	community;	Ω is 
the	probability	of	a	species	being	present	 in	 the	overall	community;	
zp,m	 is	 a	 binary	 variable	 indicating	whether	 species	m	 truly	occurred	
in	patch	p; �p,m	and	�p,m	are	the	estimated	occurrence	and	detection	
probabilities	of	species	m	in	patch	p,	respectively;	�0,m	and	�0,m are the 
species-	specific	 occurrence	 and	detection	model	 intercepts,	 respec-
tively;	and	�1,m	 is	 the	species-	specific	effect	of	patch	area	on	occur-
rence	probability.

We	 specified	 a	 joint-	bivariate	 normal	 prior	 for	 the	 occurrence	
�0,m	 and	 detection	�0,m	 model	 intercepts	 (Zipkin	 et	 al.,	 2009)	 and	
drew	 all	 species-	level	 parameters	 from	 community-	level	 hyperpa-
rameter	distributions	(Dorazio	et	al.,	2006).	We	used	beta	priors	(1,1)	
for	 intercept	 hyperparameter	means,	 normal	 priors	 (0,1)	 for	 slope	
hyperparameter	 means,	 uniform	 priors	 (0,5)	 for	 hyperparameter	
variance	components,	and	an	approximation	of	Link's	scale	prior	for	
the	community	inclusion	parameter	Ω	(Link,	2013).

We	 fitted	 MSOMs	 using	 the	 ‘nimble’	 R	 package	 (de	 Valpine	
et	al.,	2017;	R	Core	Team,	2023).	Inference	was	made	from	4	chains	
of	50,000	Markov	Chain	Monte	Carlo	(MCMC)	iterations,	each	with	
a	burn-	in	of	10,000	and	a	thinning	factor	of	20,	resulting	in	a	total	
of	8000	MCMC	iterations	being	retained	from	each	model.	These	
MCMC	parameters	were	sufficient	to	achieve	acceptable	chain	con-
vergence	in	preliminary	testing,	assessed	according	to	the	Gelman-	
Rubin	 Diagnostic,	 where	 values	 of	 <1.05	 were	 taken	 to	 indicate	
proper	convergence	(Gelman	&	Rubin,	1992).	Full	model	specifica-
tion	is	available	in	Appendix	S2.

Using	the	species	occurrence	estimates	zp,m	from	each	model	it-
eration,	we	then	estimated	species	richness	for	each	patch	p:

And	Sørensen	similarity	between	each	pair	of	patches	(a	and	b):

We	then	calculated	the	posterior	mean	values	of	patch-	level	species	
richness	and	pairwise	Sørensen	similarity	across	all	iterations	and	used	
these	as	point	estimates	for	all	further	analyses.

2.3  |  Estimating SARs and effects of area on 
β - diversity

For	each	simulated	dataset,	we	constructed	log–log	(power	model)	
SARs	(Rosenzweig,	1995)	using	the	richness	estimates	derived	from	
observed	species	counts,	and	 iNEXT.3D	and	MSOM	(i.e.,	 substi-
tuted	the	richness	estimates	into	the	SAR	formula	in	Section	2.1).	
To	model	the	effect	of	patch	area	on	pairwise	β-	diversity,	we	con-
structed	a	pairwise	environmental	distance	matrix	containing	the	

�m∼Bernoulli(Ω)

zp,m∼Bernoulli
(
�m×�p,m

)

yp,m∼Binomial
(
V , zp,m×�p,m

)

Logit
(
�p,m

)
=�0,m+�1,m×Areap

Logit
(
�p,m

)
=�0,m

Ŝp =
∑

zp,1:M

Ŝøra,b =
2||za,1:M ∩ zb,1:M

||
||za,1:M|| + ||zb,1:M||

TA B L E  1 The	nine	detection	scenarios	were	simulated,	varying	
the	mean	(μ)	and	standard	deviation	(σ)	of	the	detection	probability	
hyperparameter	of	the	sampled	communities,	from	which	
individual-	level	species	detection	probabilities	were	drawn.

Scenario ID
Mean detection 
probability (μ)

Standard deviation of 
detection probability (σ)

S1 0.005 0.25

S2 0.005 1.0

S3 0.005 3.0

S4 0.05 0.25

S5 0.05 1.0

S6 0.05 3.0

S7 0.2 0.25

S8 0.2 1.0

S9 0.2 3.0

Note:	We	simulated	35	landscape	communities	and	350	sampled	
datasets	(i.e.,	10	sampling	processes	were	simulated	for	each	landscape	
community)	using	every	possible	combination	of	detection	probability	μ 
and	σ,	three	levels	of	repeat	sampling	visits	to	each	site	(V:	3,	6,	or	12),	
and	three	values	for	the	species-	specific	area	response	distributions	
(�max:	4,	8,	or	12).	There	were	thus	81	possible	parameter	combinations,	
resulting	in	a	total	of	2,835	simulated	landscape	communities	and	
28,350	simulated	sampling	datasets.
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    |  7 of 15NOBLE et al.

absolute	difference	in	area	between	each	pair	of	patches.	We	then	
modelled	the	effect	of	the	log-	transformed	distance	matrix	values	
(logn(x + 1))	 on	 the	 Sørensen	 similarities	 derived	 from	 observed	
species	 counts,	 and	 iNEXT.3D	 and	MSOMs	 using	 a	 generalized	
linear	model	with	a	logit	link	(i.e.,	substituted	the	Sørensen	similar-
ity	estimates	into	the	formula	in	Section	2.1).	In	all	instances,	the	
coefficients	of	SARs	(c-	value	and	z-	value)	and	β-	diversity	models	
(intercept	 and	 slope)	were	 estimated	 using	Maximum	Likelihood	
Estimation,	and	we	used	the	mean	coefficient	estimates	(point	es-
timates)	for	all	further	analysis.

2.4  |  Assessing estimator performance

We	assessed	the	performance	of	observed	species	counts,	MSOMs	
and	iNEXT.3D,	as	estimators	of	each	of	the	six	community	param-
eters	 using	 three	 criteria	 (Walther	 &	 Moore,	 2005).	 In	 all	 cases,	
the	criteria	were	calculated	using	the	parameter	estimates	derived	
based	 on	 the	 difference	 between	 the	 true	 parameter	 values	 (see	
Section	2.1)	and	the	corresponding	parameter	estimates	from	each	
of	the	10	replicate	datasets	from	each	simulated	landscape:

1.	 Bias	 –	 The	mean	 of	 the	 signed	 differences	 between	 the	 point	
estimates	 and	 true	 values.	 For	 site-	level	 richness,	 we	 divided	
bias	 values	 by	 the	 true	 richness,	 to	 quantify	 percentage	 dif-
ferences	 (i.e.,	 scaled	 mean	 error).

2.	 Accuracy	–	The	mean	of	 the	absolute	differences	between	 the	
point	 estimates	 and	 true	values,	multiplied	by	−1.	As	with	bias,	
we	divided	accuracy	values	of	site-	level	richness	estimates	by	the	
true	richness.

3.	 Precision	–	The	standard	deviation	of	the	point	estimates	divided	
by	 the	absolute	mean	of	 the	point	estimates	 (i.e.,	 coefficient	of	
variation),	multiplied	by	−1.

3  |  RESULTS

3.1  |  Species richness and SARs

MSOMs	and	iNEXT.3D	always	provided	more	accurate	and	less	biased	
estimates	of	species	richness	than	observed	species	counts.	MSOMs	
consistently	 provided	 the	 least	 biased	 and	most	 accurate	 richness	
estimates,	 though	all	 three	methods	 tended	 to	underestimate	 spe-
cies	richness	to	some	degree	(Figure 2a;	Appendix	S1:	Figure	S1).	In	
all	simulated	scenarios,	iNEXT.3D	richness	estimates	were	consider-
ably	less	precise	than	estimates	from	MSOMs	and	observed	counts,	
among	which	precision	was	comparable.	The	accuracy,	precision,	and	
bias	of	 richness	estimates	 improved	with	 increased	sampling	effort	
(i.e.,	number	of	repeat	samples)	in	all	cases,	though	MSOM	estimates	
showed	the	lowest	sensitivity	to	sampling	effort	(Appendix	S1:	Figure	
S1).	Similarly,	MSOMs	were	the	least	sensitive	of	the	three	methods	
to	variation	in	the	mean	and	standard	deviation	of	species	detection	
probabilities	(Figure 2a;	Appendix	S1:	Figure	S1).

All	three	methods	consistently	underestimated	SAR	z-	values	 in	
the	presence	of	imperfect	detection	(Figures 1	and	2b;	Appendix	S1: 
Figure	S2).	 iNEXT.3D	provided	slightly	 less	biased	and	more	accu-
rate z-	value	estimates	 than	 the	other	methods	when	mean	detec-
tion	probabilities	were	lowest	(μ = 0.005).	At	higher	mean	detection	
probabilities	(μ = 0.05	or	0.2),	the	bias	and	accuracy	of	MSOM	and	
iNEXT.3D	 z-	value	 estimates	were	 largely	 comparable,	 on	 average.	
Both	MSOMs	and	iNEXT.3D	tended	to	provide	more	accurate	and	
less	biased	estimates	of	SAR	z-	values	than	observed	species	counts,	
apart	from	when	the	standard	deviation	of	species	detection	prob-
abilities	was	highest	(σ = 3.0),	in	which	case	accuracy	and	bias	were	
comparable	among	the	three	methods	(Appendix	S1:	Figure	S2).	All	
three	estimators	also	tended	to	overestimate	SAR	c-	values	(Figures 1 
and	2c,	Appendix	S1:	Figure	S3).	However,	observed	counts	provided	
largely	unbiased	c-	value	estimates	when	mean	detection	probability	
was	 lowest	 (μ = 0.005)	and	 the	standard	deviation	highest	 (σ = 3.0;	
Appendix	S1:	Figure	S3).

Estimates	 of	 both	 SAR	 coefficients	 tended	 to	 become	more	 ac-
curate	 and	 less	 biased	 as	 mean	 detection	 probabilities	 increased,	
regardless	 of	 the	 estimator	 used.	 This	 effect	was	most	 apparent	 in	
MSOM	c-	value	estimates,	which	were	considerably	more	biased	than	
estimates	from	observed	counts	and	iNEXT.3D	when	the	mean	detec-
tion	probability	was	low	(μ = 0.005),	but	often	outperformed	the	other	
estimators	 when	mean	 detection	 probability	 across	 the	 community	
was	high	(μ = 0.2),	except	for	cases	in	which	the	standard	deviation	of	
detection	probabilities	was	also	high	(σ = 3.0;	Appendix	S1:	Figure	S3).	
Greater	 variability	 in	 detection	 probabilities	 consistently	 resulted	 in	
reduced	bias	and	increased	accuracy	for	estimates	of	both	SAR	coeffi-
cients	derived	from	observed	counts,	iNEXT.3D	and,	to	a	lesser	extent,	
MSOMs	(Appendix	S1:	Figures	S2,	S3).	However,	at	higher	mean	de-
tection	probabilities,	increases	in	the	standard	deviation	of	detection	
probabilities	led	MSOM	estimates	of	both	SAR	coefficients	to	become	
more	biased	and	less	accurate	(Appendix	S1:	Figures	S2,	S3).

Precision	 was	 generally	 highest	 for	 SAR	 coefficient	 estimates	
derived	from	observed	counts.	iNEXT.3D	consistently	provided	the	
least	precise	estimates	of	SAR	z-	values	 (Figure 2b,c;	Appendix	S1: 
Figures	S2,	S3)	and	the	least	precise	estimates	of	SAR	c-	values	at	all	
but	the	highest	mean	detection	probability	(μ = 0.2),	where	MSOM	
c-	value	estimates	tended	to	be	slightly	less	precise.	The	precision	of	
estimates	of	both	SAR	coefficients	increased	with	increasing	mean	
detection	probability	 regardless	of	 the	method	used,	although	the	
magnitude	of	this	variation	was	greatest	for	iNEXT.3D.

3.1.1  |  Pairwise	β-	diversity

All	three	methods	estimated	pairwise	Sørensen	similarity	with	rea-
sonable	accuracy	and	bias	 in	most	scenarios,	 though	MSOMs	pro-
vided	 the	most	accurate,	 least	biased,	 and	most	precise	estimates	
in	most	 scenarios.	 Interestingly,	 iNEXT.3D	estimates	 tended	 to	be	
more	biased,	less	accurate,	and	less	precise	than	Sørensen	estimates	
derived	 from	 observed	 counts	 in	 almost	 all	 scenarios	 (Figure 3a; 
Appendix	S1:	Figure	S4).
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8 of 15  |     NOBLE et al.

In	scenarios	where	community	mean	detection	probability	was	
lowest	 (μ = 0.005),	 all	 methods	 underestimated	 Sørensen	 similar-
ity,	 though	 estimates	 became	 less	 biased	 and	more	 accurate	with	
increases	 in	 sampling	 repetitions	 and	 detection	 probability	 stan-
dard	deviations	(Appendix	S1:	Figure	S4).	However,	at	higher	mean	

detection	 probabilities,	 variation	 in	 sampling	 repetitions	 and	 the	
standard	deviation	of	detection	probabilities	had	negligible	impacts	
on	Sørensen	estimate	accuracy.	The	precision	of	Sørensen	estimates	
increased	with	the	mean	of	detection	probabilities	and	the	number	
of	 sampling	 repetitions,	 regardless	 of	 the	method	 used.	However,	

F I G U R E  2 Estimator	performance	for	(a)	site-	level	species	richness,	(b)	the	slope	(z-	value)	of	species-	area	relationships	(SAR),	and	(c)	
the	intercept	(c-	value)	of	SARs,	from	representative	scenarios	where	the	standard	deviation	of	the	detection	probability	was	set	to	the	
intermediate	value	(i.e.,	σ = 1.0)	and	six	repeat	sampling	visits	were	simulated	for	each	site.	Estimates	were	derived	from	observed	species	
counts	(Obs),	the	abundance-	based	iNEXT.3D	estimator	(iNEXT.3D)	and	Multi-	Species	Occupancy	models	(MSOM),	presented	in	order	of	
increasing	mean	detection	probability	(μ).	Bias	and	accuracy	of	site-	level	richness	estimates	are	presented	in	units	of	percentage	difference	
from	the	true	richness.	Results	from	other	simulated	scenarios	are	shown	in	Appendix	S1.
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    |  9 of 15NOBLE et al.

the	magnitude	of	sensitivity	to	sampling	and	detection	variation	was	
considerably	greater	for	iNEXT.3D	estimates	than	for	observed	spe-
cies	counts	and	MSOMs,	the	latter	being	relatively	robust	to	varia-
tion	in	sampling	and	detection	variation	in	terms	of	bias,	accuracy,	
and	precision	(Appendix	S1:	Figure	S4).

3.1.2  |  β-	Diversity	model	coefficients

Under	all	 scenarios,	MSOMs	provided	substantially	more	accurate	
and	 less	biased	estimates	of	the	slope	and	 intercept	of	models	for	
area	 effects	 on	 pairwise	 Sørensen	 similarity,	 relative	 to	 observed	

F I G U R E  3 Estimator	performance	for	β-	diversity	metrics,	measured	as	(a)	pairwise	Sørensen	similarity,	(b)	the	slope	of	models	relating	
pairwise	Sørensen	similarity	to	patch	area,	and	(c)	the	intercept	of	pairwise	Sørensen	similarity	models,	shown	for	representative	scenarios	
with	intermediate	standards	deviations	of	the	detection	probability	(σ = 1.0)	and	six	repeat	sampling	visits	for	each	site.	Estimates	were	
derived	from	observed	species	counts	(Obs),	the	abundance-	based	iNEXT.beta3D	estimator	(iNEXT.3D)	and	Multi-	Species	Occupancy	
models	(MSOM).	Bias	and	accuracy	are	presented	in	their	native	units.	Simulation	scenarios	are	presented	in	order	of	increasing	mean	
detection	probability	(μ),	from	top	to	bottom.	For	results	from	all	simulated	scenarios,	see	Appendix	S1.
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10 of 15  |     NOBLE et al.

counts	 and	 iNEXT.3D	 (Figure 3b,c;	 Appendix	 S1:	 Figures	 S5,	 S6).	
Indeed,	 MSOMs	 consistently	 provided	 unbiased	 estimates	 in	 all	
simulated	scenarios	 (mean	bias	values	≈0).	MSOM	accuracy	varied	
minimally	 with	 increases	 in	 the	 number	 of	 sampling	 repetitions,	
and	while	MSOM	coefficient	estimates	tended	to	be	more	accurate	
when	the	mean	and	standard	deviation	of	detection	probability	were	
higher,	the	magnitude	of	this	variation	was	only	slight	(Appendix	S1: 
Figures	S5,	S6).

In	contrast,	estimates	of	Sørensen	model	coefficients	derived	
from	observed	counts	and	iNEXT.3D	tended	to	become	substan-
tially	 less	 accurate	 and	 more	 biased	 with	 fewer	 sampling	 rep-
etitions	 and	 lower	mean	 detection	 probabilities	 and	were	 never	
comparable	 to	 MSOM	 estimates.	 Variation	 in	 the	 standard	 de-
viation	of	 species	detection	probabilities	had	minimal	 impact	on	
the	 bias	 and	 accuracy	of	 coefficient	 estimates	 derived	 from	ob-
served	counts	and	iNEXT.3D.	In	all	scenarios,	iNEXT.3D	provided	
the	least	precise	estimates	of	both	β-	diversity	model	coefficients.	
Precision	tended	to	increase	with	mean	detection	probability	and	
the	 number	 of	 sampling	 repetitions,	 regardless	 of	 the	 method	
used.	 However,	 this	 variation	 was	 most	 marked	 for	 iNEXT.3D	
coefficient	 estimates	 and	 least	 apparent	 for	 MSOM	 estimates	
(Appendix	S1:	Figures	S5,	S6).

4  |  DISCUSSION

We	show	that	imperfect	detection	substantially	biases	estimates	
of	SAR	parameters,	pairwise	β-	diversity	(Sørensen	similarity),	and	
β-	diversity	 model	 coefficients.	 Importantly,	 we	 found	 that	 SAR	
z- values	 were	 consistently	 underestimated,	 and	 SAR	 c-	values	
overestimated,	 even	 when	 statistical	 approaches	 were	 used	 to	
account	for	imperfect	detection	(i.e.,	 iNEXT.3D	or	MSOMs).	This	
highlights	an	important	limitation	in	SAR	research,	potentially	call-
ing	 into	question	 the	accuracy	of	assessments	of	 the	 impacts	of	
habitat	 fragmentation	 on	 species	 richness.	 In	 empirical	 settings,	
a	systematic	negative	bias	 in	SAR	z-	value	estimates	would	result	
in	underestimates	of	the	number	of	local	species	extinctions	that	
result	 from	 increasing	 habitat	 fragmentation,	 potentially	 leading	
to	recommendations	of	minimum	habitat	patch	sizes	below	those	
required	 for	 the	 persistence	 of	 species	 with	 large	 area	 require-
ments	(Cam	et	al.,	2002;	Montgomery	et	al.,	2021).	Furthermore,	
although	observed	species	counts	were	generally	able	to	provide	
accurate	pairwise	Sørensen	similarity	estimates,	this	did	not	trans-
late	 into	 accurate	 estimates	 of	 β-	diversity	 model	 coefficients,	
and	such	 inaccuracies	were	only	worsened	by	 the	application	of	
iNEXT.3D.	Encouragingly,	MSOMs	consistently	provided	accurate	
and	unbiased	estimates	of	pairwise	Sørensen	similarity,	and	both	
β-	diversity	model	coefficients,	even	when	detection	probabilities,	
were	 low.	 The	 superior	 performance	 of	MSOMs	 relative	 to	 the	
other	methods	highlights	how	failure	to	account	for	covariate	ef-
fects	(e.g.,	patch	area)	on	species	occupancy	can	substantially	bias	
assessments	of	pairwise	β-	diversity	 trends	 (Dorazio	et	al.,	2010; 
Iknayan	et	al.,	2014).

4.1  |  Richness and SARs

Rarely	 are	 all	 species	 in	 a	 community	 detected	 by	 sampling	
(Longino	et	al.,	2002),	and	species	richness	estimates	derived	from	
observed	counts	are	thus	expected	to	be	negatively	biased	(Kéry	
&	 Royle,	 2008;	 McNew	 &	 Handel,	 2015).	 However,	 our	 results	
suggest	that	iNEXT.3D	and	MSOMs	still	routinely	underestimate	
species	richness	under	sampling	designs	typically	applied	in	frag-
mentation	ecology	research	and	consequently	struggle	to	gener-
ate	 accurate	 estimates	 of	 SAR	 parameters.	 In	 a	 previous	 study	
focussing	 on	 richness	 estimation,	 McNew	 and	 Handel	 (2015)	
found	 that	 the	 asymptotic	Chao	 estimator	 (Chao,	1984)	 consist-
ently	 overestimated	 richness,	 while	 MSOM	 richness	 estimates	
were	 generally	 unbiased.	 Discrepancies	 between	 these	 findings	
and	 our	 own	 likely	 result	 from	 the	 simulated	 sampling	 designs:	
McNew	and	Handel	(2015)	simulated	spatially	complete	sampling	
of	their	target	areas,	whereas	we	only	simulated	sampling	of	a	spa-
tial	subset	of	each	habitat	patch.

Spatially	exhaustive	sampling	is	rarely	feasible	in	empirical	eco-
logical	 research,	 particularly	 fragmentation	 ecology	 (Eigenbrod	
et	al.,	2011;	Pasher	et	al.,	2013),	and	previous	research	has	high-
lighted	 that	 the	 portion	 of	 a	 habitat	 patch	 that	 is	 sampled	may	
often	 be	 of	 insufficient	 size	 to	 encounter	 the	 first	 individual	 of	
species	 with	 low	 abundance	 and/or	 spatially	 aggregated	 distri-
butions	 (Cam	et	al.,	2002;	He	&	Hubbell,	2011).	We	deliberately	
sought	 to	 emulate	 this	 in	 our	 simulation	 framework,	 calculating	
the	number	of	species	individuals	that	were	available	for	sampling	
within	each	patch	as	a	function	of	the	proportional	area	sampled	
(see	Section	2.1.2).	Therefore,	species	with	low	patch-	level	abun-
dance	would	often	be	unavailable	for	sampling,	as	their	abundance	
within	the	target	area	would	be	rounded	to	zero.	In	this	way,	our	
simulation	 framework	 adds	 an	 additional	 source	 of	 imperfect	
detection	 compared	 to	 previous,	 similar	 studies	 that	 have	 simu-
lated	complete	spatial	sampling	(e.g.,	Guillera-	Arroita	et	al.,	2019; 
McNew	 &	 Handel,	 2015;	 Tingley	 et	 al.,	 2020).	 Importantly,	 our	
findings	suggest	that	neither	observed	species	counts,	MSOMs	or	
iNEXT.3D,	can	fully	account	for	this	incomplete	spatial	sampling,	
as	 they	 routinely	underestimated	species	 richness.	Furthermore,	
inspecting	 the	 relationship	between	patch	 area	 and	bias	 in	 rich-
ness	estimates	showed	that	while	iNEXT.3D	and	observed	counts	
typically	provided	relatively	unbiased	estimates	for	small	habitat	
patches,	where	 the	proportion	of	each	patch	sampled	was	high-
est,	 richness	estimates	derived	from	all	 three	methods	exhibited	
considerable	negative	biases	as	patch	size	increased,	and	the	pro-
portion	of	each	patch	sampled	decreased	(Appendix	S1:	Table	S1,	
Figure	S7).	This	is	perhaps	unsurprising,	given	that	the	proportion	
of	individuals	captured	will	tend	to	increase	with	the	proportional	
area	 of	 a	 patch	 that	 is	 sampled,	 and	 that	 previous	 research	 has	
shown	 that	 Chao	 and	 MSOM	 richness	 estimates	 improve	 with	
increases	 in	other	aspects	of	 sampling	effort	 (Chao	et	al.,	2009; 
McNew	&	Handel,	 2015;	 Tingley	 et	 al.,	2020).	 Further	 research	
seeking	 to	 determine	 the	 minimum	 proportion	 of	 a	 target	 area	
that	 must	 be	 sampled	 to	 accurately	 estimate	 species	 richness,	
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both	when	using	observed	species	counts	and	statistical	richness	
estimators,	should	thus	constitute	a	vital	next	step	 in	optimizing	
ecological	study	design	(Cam	et	al.,	2002;	He	&	Hubbell,	2011).

Interestingly,	 MSOMs	 tended	 to	 overestimate	 richness	 of	 the	
smallest	habitat	patches	and	underestimate	richness	of	the	 largest	
habitat	patches,	with	 the	magnitude	of	 these	biases	being	compa-
rable	(Appendix	S1:	Figure	S7),	in	turn	explaining	why	MSOMs	still	
performed	relatively	poorly	as	estimators	of	SAR	c-	values.	This	may,	
in	part,	be	explained	by	the	fact	that	MSOMs	draw	species-	level	co-
variate	responses	 (slopes)	 from	community-	level	hyperparameters,	
and	for	unobserved	species	these	slopes	thus	tend	toward	the	hy-
perparameter	mean,	 in	a	process	termed	shrinkage	(Everitt,	2002).	
Given	 that	 we	 simulated	 species	 with	 both	 negative	 and	 positive	
area	 responses,	 MSOM	 area	 response	 estimates	 for	 unobserved	
species	tended	toward	zero	in	most	instances.	This	would	lead	the	
estimated	probability	of	occurrence	of	many	unobserved	species	to	
be	comparable	among	the	smallest	and	largest	patches,	thus	leading	
to	underestimates	of	 the	number	of	 species	exhibiting	preference	
for	large	habitat	patches	and	overestimates	of	the	number	of	species	
capable	of	inhabiting	small	patches.

Overall,	 observed	 species	 counts	 tended	 to	 provide	 the	 best	
estimates	of	 SAR	 c-	values.	However,	 both	 iNEXT.3D	and	MSOMs	
were	able	 to	provide	comparable	SAR	c-	value	estimates	 in	certain	
conditions	 (Appendix	 S1:	 Figure	 S3).	 Furthermore,	 iNEXT.3D	 and	
MSOMs	almost	always	provided	less	biased	SAR	z-	value	estimates	
than	 observed	 counts,	 which	 tend	 to	 be	 of	 greater	 ecological	 in-
terest	than	SAR	c-	values.	For	instance,	in	their	assessment	of	SARs	
across	 biogeographical	 realms,	 Matthews	 et	 al.	 (2016)	 only	 com-
pared	 SAR	 z-	values,	 while	 many	 empirical	 habitat	 fragmentation	
analyses	do	not	even	report	c-	values	(e.g.,	Litza	&	Diekmann,	2020; 
Palmeirim	et	al.,	2021).	Based	on	our	results,	it	thus	seems	prefera-
ble	to	use	MSOMs	or	iNEXT.3D	for	estimating	species	richness	and	
SARs,	compared	to	observed	species	counts.	Ecologists	must,	how-
ever,	recognize	the	potential	for	inaccuracy	in	SAR	estimation	(and	
particularly	 underestimated	 z-	values)	 regardless	 of	 the	 estimator	
used.	Most	importantly,	our	results	indicate	that	researchers	should	
always	seek	to	maximize	sampling	effort	to	limit	biases	in	SARs,	par-
ticularly	for	larger	patches,	even	when	using	statistical	estimators	to	
correct	for	imperfect	detection.

4.2  |  Beta- diversity estimates

Observed	 species	 counts	 provided	 accurate	 estimates	 of	 pairwise	
Sørensen	similarity	in	almost	all	simulated	scenarios,	suggesting	that	
incidence-	based	β-	diversity	is	less	sensitive	to	imperfect	detection	
than	species	richness.	Indeed,	previous	research	suggests	β-	diversity	
estimates	can	be	fairly	accurate	if	the	most	common	species	in	each	
assemblage	are	detected	(Cardoso	et	al.,	2009;	Roden	et	al.,	2018),	
though	 accuracy	 is	 also	 known	 to	 improve	 roughly	 linearly	 with	
sampling	completeness	(Beck	et	al.,	2013).	Our	results	support	this,	
and	we	 found	 that	observed	counts	often	substantially	underesti-
mate	 Sørensen	 similarity	 when	 mean	 detection	 probabilities	 are	

low	 (Appendix	 S1:	 Figure	 S4).	 Importantly,	we	 show	 that	MSOMs	
consistently	 provided	 improved	 Sørensen	 estimate	 performance	
over	observed	counts,	and	highly	accurate	Sørensen	estimates	even	
when	mean	detection	probabilities	were	very	low.

Furthermore,	both	observed	counts	and	iNEXT.3D	consistently	
failed	to	provide	accurate	estimates	of	the	effects	of	patch	area	on	
β-	diversity	(i.e.,	Sørensen	model	coefficients),	suggesting	there	were	
area-	related	biases	 in	 the	associated	pairwise	Sørensen	estimates.	
Indeed,	both	observed	counts	and	iNEXT.3D	considerably	underes-
timated	Sørensen	similarity	when	differences	in	patch	area	were	low	
(Appendix	S1:	Figure	S8),	leading	to	the	observed	underestimates	of	
the	 intercept,	 and	overestimates	of	 the	 slope,	 of	β-	diversity	mod-
els.	 This	 suggests	 that	 iNEXT.3D	provides	 no	 advantage	 over	 ob-
served	counts	when	 investigating	 covariate	effects	on	β-	diversity.	
However,	MSOMs	were	able	to	provide	unbiased	Sørensen	similar-
ity	estimates	across	the	full	spectrum	of	differences	in	patch	area,	
which	translated	into	highly	accurate	estimates	of	β-	diversity	model	
coefficients	(Appendix	S1:	Figures	S5,	S6,	S8).	We	thus	recommend	
that,	wherever	possible,	MSOMs	should	be	used	in	assessments	of	
covariate	effects	on	pairwise	β-	diversity.

4.3  |  Sensitivity to detection probability and 
sampling design

Unsurprisingly,	 estimates	 of	 all	 investigated	 parameters	 tended	
to	 improve	 with	 increases	 in	 mean	 species	 detection	 probability.	
Greater	 variability	 in	 detection	 probabilities	 across	 a	 community	
also	 tended	 to	 improve	estimator	performance	when	mean	detec-
tion	probability	was	 low	but	had	the	opposite	effect	at	high	mean	
detection	probability.	This	roughly	translates	to	declines	in	estimator	
performance	with	increases	in	the	proportion	of	cryptic	or	rare	spe-
cies,	in	line	with	previous	research	on	richness	estimators	(McNew	&	
Handel,	2015;	Poulin,	1998;	Tingley	et	al.,	2020).	In	almost	all	cases,	
MSOMs	were	more	 robust	 to	 variation	 in	 the	mean	 and	 standard	
deviation	of	detection	probabilities	than	other	estimators.

iNEXT.3D	 consistently	 provided	 the	 least	 precise	 estimates	
of	 all	 parameters	apart	 from	SAR	 intercepts,	while	 the	precision	
of	MSOM	estimates	was	almost	always	comparable	to,	or	better	
than,	observed	 species	 counts.	Our	 findings	 thus	 support	previ-
ous	work	showing	that	Chao	estimators	may	yield	highly	variable	
diversity	 estimates	 depending	 on	 the	 observed	 data,	 especially	
when	a	substantial	proportion	of	species	in	a	community	are	rare	
or	hard	to	detect	(McNew	&	Handel,	2015,	Poulin,	1998,	Tingley	
et	 al.,	 2020),	 as	 is	 common	 in	 real-	world	 communities	 (Fisher	
et	al.,	1943;	Novotný	&	Basset,	2003).	Given	that	ecologists	rarely	
have	 a	 priori	 knowledge	 of	 the	mean	 and	 standard	 deviation	 of	
species	detection	probabilities	within	empirical	 communities,	di-
versity	estimators	should	ideally	provide	reliable	estimates,	or	at	
least	 estimates	 with	 a	 predictable	 level	 of	 error,	 across	 the	 full	
spectrum	of	detection	probabilities	 (Iknayan	et	al.,	2014;	Kéry	&	
Royle,	2008).	Considering	that	MSOMs	consistently	provided	the	
most	accurate	estimates	of	richness	and	all	β-	diversity	parameters	
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and	provided	estimates	of	SAR	z-	values	that	were	comparable	to	
iNEXT.3D	in	terms	of	bias	and	accuracy,	but	more	precise,	our	re-
sults	suggest	 that	MSOMs	may	be	preferable	 for	most	empirical	
applications.

Estimates	 of	 SAR	 coefficients	 also	 consistently	 improved	with	
increases	in	the	number	of	sampling	repetitions,	although	MSOMs	
were	able	 to	provide	accurate	estimates	of	all	β-	diversity	parame-
ters	even	when	sampling	repetitions	were	 low.	Nonetheless,	given	
the	 importance	 of	 quantifying	 both	 alpha-		 and	 beta-	diversity	 ac-
curately	 (Socolar	 et	 al.,	 2016),	 our	 findings	 suggest	 that	 diversity	
estimators	 should	 serve	 to	 complement,	 rather	 than	 substitute,	 a	
sufficiently	 appropriate	 sampling	 effort	 (Banks-	Leite	 et	 al.,	2014).	
Of	 course,	 it	 would	 be	 naïve	 to	 ignore	 the	 logistical	 and	 funding	
constraints	 often	 imposed	 on	 empirical	 field	 studies,	 which	 limit	
the	feasible	number	of	sampling	repetitions	(Eigenbrod	et	al.,	2011; 
Pasher	et	al.,	2013),	thus	limiting	the	potential	to	implement	MSOMs	
(Dorazio	et	al.,	2006).	However,	occupancy	models	may	be	applied	
to	spatial,	rather	than	temporal,	sampling	replicates,	lessening	asso-
ciated	logistical	demands	(Dorazio	et	al.,	2011;	Noble	et	al.,	2023).

4.4  |  Limitations and further research

Although	we	used	simulation	parameter	values	typical	of	empirical	
studies	 of	 real	 landscapes	 (Taubert	 et	 al.,	2018)	 and	 communities	
(Matthews	et	al.,	2016),	there	is	the	possibility	that	the	evaluated	es-
timators	may	perform	differently	when	applied	to	empirical	data.	For	
instance,	Tingley	et	al.	(2020)	found	that	MSOMs	tended	to	overesti-
mate	gamma	richness	in	simulated	communities,	but	underestimated	
gamma	richness	in	empirical	datasets.	To	conclusively	evaluate	the	
influence	of	imperfect	detection	on	SARs	and	β-	diversity	trends,	and	
the	ability	of	diversity	estimators	to	correct	for	this,	further	research	
should	 apply	 estimators	 to	 exhaustively	 sampled	 real-	world	 com-
munities.	 The	 use	 of	 richness	 estimators	 in	 conjunction	with	 SAR	
models	 that	 incorporate	 the	 effects	 of	 sampling	 effort	 (e.g.,	 sam-
pling	effort	species-	area	relationships;	Azovsky,	2011,	de	la	Sancha	
&	Boyle,	2019)	may	also	help	overcome	the	biases	in	SAR	coefficient	
estimates	observed	here.

We	 also	 only	 analysed	 the	 performance	 of	 estimators	 of	
incidence-	based	 alpha-		 and	 beta-	diversity	 indices	 in	 this	 study.	
However,	much	ecological	research	focuses	on	patterns	of	species	
evenness,	which	can	only	be	assessed	using	abundance-	based	diver-
sity	indices	(Barwell	et	al.,	2015).	It	may	thus	also	be	of	interest	to	in-
vestigate	the	relative	performance	of	methods	such	as	iNEXT.3D	and	
Multi-	Species	Abundance	Models	(the	abundance-	based	equivalent	
of	MSOMs;	Mimnagh	et	al.,	2022;	Madsen	&	Royle,	2023),	as	esti-
mators	of	trends	in	abundance-	based	alpha-		and	β-	diversity	indices.	
To	date,	MSAMs	have	received	relatively	limited	use	within	fragmen-
tation	ecology	compared	to	MSOMs	(but	see	Fogarty	et	al.,	2022).	
Therefore,	 to	maximize	 the	wider	 applicability	of	our	 findings,	we	
opted	to	focus	our	study	on	MSOMs,	and	their	relative	performance	
compared	to	observed	species	counts	and	iNEXT.3D.	Nonetheless,	
given	that	MSOMs	routinely	provided	biased	estimates	of	richness	

and	SAR	coefficients	under	our	 simulation	 framework,	 further	 re-
search	may	also	seek	to	assess	whether	MSAMs	may	perform	better	
than	MSOMs	as	estimators	of	species	richness	and	SARs,	as	well	as	
incidence-	based	β-	diversity	indices	and	models.

Finally,	given	the	relative	paucity	of	research	on	the	impacts	of	
imperfect	detection	and	covariate-	related	biases	 in	β-	diversity	es-
timation,	 it	would	be	of	value	to	explore	estimator	performance	in	
different	ecological	contexts,	particularly	concerning	other	drivers	
of	biogeographic	variation	in	species	composition,	where	β-	diversity	
indices	are	frequently	used	(Socolar	et	al.,	2016).	A	topic	of	particular	
interest	may	be	the	ability	to	account	for	spatial	autocorrelation	in	
species	identities,	and	thus	community	(dis)similarity.	We	opted	not	
to	 incorporate	spatial	autocorrelation	 in	species	occurrence	within	
our	simulation	framework,	 instead	assuming	that	variation	 in	habi-
tat	patch	area	was	the	major	factor	driving	variation	in	community	
structure	 among	 patches.	 Nonetheless,	 recent	 simulation	 studies	
suggest	that	spatial	autocorrelation	in	species	occurrence	can	influ-
ence	trends	in	community	structure	within	fragmented	landscapes	
(Ciccheto	et	al.,	2024;	Tardanico	&	Hovestadt,	2023).	Furthermore,	
at	 larger	 spatial	 scales	 (e.g.,	 across	multiple	biomes	or	 ecoregions)	
spatial	autocorrelation	is	likely	to	be	one	of,	if	not	the,	major	contrib-
utors	to	variation	in	community	structure.	Given	that	there	are	now	
several	 spatially	 explicit	 estimators	 of	 richness	 and	 beta-	diversity,	
including	spatial	MSOMs	(Doser	et	al.,	2022;	Johnson	et	al.,	2013),	
evaluating	the	combined	impacts	of	spatial	autocorrelation	and	im-
perfect	detection	on	estimates	of	β-	diversity	trends,	and	the	ability	
of	diversity	estimators	to	correct	for	these	influences,	should	be	a	
focus	of	future	research	(Guelat	&	Kery,	2018).

5  |  CONCLUSIONS

Although	our	simulations	focused	on	the	area-	related	structuring	of	
fragmented	communities,	our	findings	reflect	widely	used	sampling	
approaches	 and	 therefore	 can	 be	 generalized	 to	 many	 contexts.	
Importantly,	 we	 show	 that	 statistical	 diversity	 estimators	 seldom	
fully	account	for	biases	resulting	from	imperfect	detection	and	 in-
complete	spatial	sampling.	The	impacts	of	spatial	subsampling	have	
long	been	recognized	as	a	potential	cause	of	inaccuracies	in	biodiver-
sity	assessments,	but	in	practice,	this	issue	has	often	been	ignored	
(Azovsky,	2011;	 Eigenbrod	 et	 al.,	2011).	 This	 study	 serves	 to	 reit-
erate	the	need	to	consider	the	relative	coverage	of	sampling	effort	
when	drawing	inference	on	richness-	covariate	relationships	(Banks-	
Leite	et	al.,	2014).	Nonetheless,	we	show	that	both	 iNEXT.3D	and	
MSOMs	constitute	useful	tools	for	better	estimation	of	the	slopes	
of	SARs	and	other	richness	models.	Furthermore,	for	the	first	time,	
we	 demonstrate	 that	 MSOMs	 can	 provide	 accurate	 estimates	 of	
pairwise β-	diversity	model	coefficients,	even	in	the	most	suboptimal	
scenarios.	Nevertheless,	 given	 that	both	alpha-		 and	beta-	diversity	
should	be	combined	to	fully	characterize	biotic	assemblages	(Socolar	
et	al.,	2016),	and	that	richness	estimates	improved	substantially	with	
increased	sampling	repetitions,	regardless	of	the	method	used,	the	
value	of	increased	sampling	effort	cannot	be	understated.
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